6abb3b6a348f6e7541e9f9bff613c4f779d8be5c
[cascardo/linux.git] / drivers / net / wireless / ath / ath10k / htt_rx.c
1 /*
2  * Copyright (c) 2005-2011 Atheros Communications Inc.
3  * Copyright (c) 2011-2013 Qualcomm Atheros, Inc.
4  *
5  * Permission to use, copy, modify, and/or distribute this software for any
6  * purpose with or without fee is hereby granted, provided that the above
7  * copyright notice and this permission notice appear in all copies.
8  *
9  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
10  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
11  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
12  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
13  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
14  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
15  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
16  */
17
18 #include "core.h"
19 #include "htc.h"
20 #include "htt.h"
21 #include "txrx.h"
22 #include "debug.h"
23 #include "trace.h"
24 #include "mac.h"
25
26 #include <linux/log2.h>
27
28 /* slightly larger than one large A-MPDU */
29 #define HTT_RX_RING_SIZE_MIN 128
30
31 /* roughly 20 ms @ 1 Gbps of 1500B MSDUs */
32 #define HTT_RX_RING_SIZE_MAX 2048
33
34 #define HTT_RX_AVG_FRM_BYTES 1000
35
36 /* ms, very conservative */
37 #define HTT_RX_HOST_LATENCY_MAX_MS 20
38
39 /* ms, conservative */
40 #define HTT_RX_HOST_LATENCY_WORST_LIKELY_MS 10
41
42 /* when under memory pressure rx ring refill may fail and needs a retry */
43 #define HTT_RX_RING_REFILL_RETRY_MS 50
44
45 static int ath10k_htt_rx_get_csum_state(struct sk_buff *skb);
46 static void ath10k_htt_txrx_compl_task(unsigned long ptr);
47
48 static int ath10k_htt_rx_ring_size(struct ath10k_htt *htt)
49 {
50         int size;
51
52         /*
53          * It is expected that the host CPU will typically be able to
54          * service the rx indication from one A-MPDU before the rx
55          * indication from the subsequent A-MPDU happens, roughly 1-2 ms
56          * later. However, the rx ring should be sized very conservatively,
57          * to accomodate the worst reasonable delay before the host CPU
58          * services a rx indication interrupt.
59          *
60          * The rx ring need not be kept full of empty buffers. In theory,
61          * the htt host SW can dynamically track the low-water mark in the
62          * rx ring, and dynamically adjust the level to which the rx ring
63          * is filled with empty buffers, to dynamically meet the desired
64          * low-water mark.
65          *
66          * In contrast, it's difficult to resize the rx ring itself, once
67          * it's in use. Thus, the ring itself should be sized very
68          * conservatively, while the degree to which the ring is filled
69          * with empty buffers should be sized moderately conservatively.
70          */
71
72         /* 1e6 bps/mbps / 1e3 ms per sec = 1000 */
73         size =
74             htt->max_throughput_mbps +
75             1000  /
76             (8 * HTT_RX_AVG_FRM_BYTES) * HTT_RX_HOST_LATENCY_MAX_MS;
77
78         if (size < HTT_RX_RING_SIZE_MIN)
79                 size = HTT_RX_RING_SIZE_MIN;
80
81         if (size > HTT_RX_RING_SIZE_MAX)
82                 size = HTT_RX_RING_SIZE_MAX;
83
84         size = roundup_pow_of_two(size);
85
86         return size;
87 }
88
89 static int ath10k_htt_rx_ring_fill_level(struct ath10k_htt *htt)
90 {
91         int size;
92
93         /* 1e6 bps/mbps / 1e3 ms per sec = 1000 */
94         size =
95             htt->max_throughput_mbps *
96             1000  /
97             (8 * HTT_RX_AVG_FRM_BYTES) * HTT_RX_HOST_LATENCY_WORST_LIKELY_MS;
98
99         /*
100          * Make sure the fill level is at least 1 less than the ring size.
101          * Leaving 1 element empty allows the SW to easily distinguish
102          * between a full ring vs. an empty ring.
103          */
104         if (size >= htt->rx_ring.size)
105                 size = htt->rx_ring.size - 1;
106
107         return size;
108 }
109
110 static void ath10k_htt_rx_ring_free(struct ath10k_htt *htt)
111 {
112         struct sk_buff *skb;
113         struct ath10k_skb_cb *cb;
114         int i;
115
116         for (i = 0; i < htt->rx_ring.fill_cnt; i++) {
117                 skb = htt->rx_ring.netbufs_ring[i];
118                 cb = ATH10K_SKB_CB(skb);
119                 dma_unmap_single(htt->ar->dev, cb->paddr,
120                                  skb->len + skb_tailroom(skb),
121                                  DMA_FROM_DEVICE);
122                 dev_kfree_skb_any(skb);
123         }
124
125         htt->rx_ring.fill_cnt = 0;
126 }
127
128 static int __ath10k_htt_rx_ring_fill_n(struct ath10k_htt *htt, int num)
129 {
130         struct htt_rx_desc *rx_desc;
131         struct sk_buff *skb;
132         dma_addr_t paddr;
133         int ret = 0, idx;
134
135         idx = __le32_to_cpu(*htt->rx_ring.alloc_idx.vaddr);
136         while (num > 0) {
137                 skb = dev_alloc_skb(HTT_RX_BUF_SIZE + HTT_RX_DESC_ALIGN);
138                 if (!skb) {
139                         ret = -ENOMEM;
140                         goto fail;
141                 }
142
143                 if (!IS_ALIGNED((unsigned long)skb->data, HTT_RX_DESC_ALIGN))
144                         skb_pull(skb,
145                                  PTR_ALIGN(skb->data, HTT_RX_DESC_ALIGN) -
146                                  skb->data);
147
148                 /* Clear rx_desc attention word before posting to Rx ring */
149                 rx_desc = (struct htt_rx_desc *)skb->data;
150                 rx_desc->attention.flags = __cpu_to_le32(0);
151
152                 paddr = dma_map_single(htt->ar->dev, skb->data,
153                                        skb->len + skb_tailroom(skb),
154                                        DMA_FROM_DEVICE);
155
156                 if (unlikely(dma_mapping_error(htt->ar->dev, paddr))) {
157                         dev_kfree_skb_any(skb);
158                         ret = -ENOMEM;
159                         goto fail;
160                 }
161
162                 ATH10K_SKB_CB(skb)->paddr = paddr;
163                 htt->rx_ring.netbufs_ring[idx] = skb;
164                 htt->rx_ring.paddrs_ring[idx] = __cpu_to_le32(paddr);
165                 htt->rx_ring.fill_cnt++;
166
167                 num--;
168                 idx++;
169                 idx &= htt->rx_ring.size_mask;
170         }
171
172 fail:
173         *htt->rx_ring.alloc_idx.vaddr = __cpu_to_le32(idx);
174         return ret;
175 }
176
177 static int ath10k_htt_rx_ring_fill_n(struct ath10k_htt *htt, int num)
178 {
179         lockdep_assert_held(&htt->rx_ring.lock);
180         return __ath10k_htt_rx_ring_fill_n(htt, num);
181 }
182
183 static void ath10k_htt_rx_msdu_buff_replenish(struct ath10k_htt *htt)
184 {
185         int ret, num_deficit, num_to_fill;
186
187         /* Refilling the whole RX ring buffer proves to be a bad idea. The
188          * reason is RX may take up significant amount of CPU cycles and starve
189          * other tasks, e.g. TX on an ethernet device while acting as a bridge
190          * with ath10k wlan interface. This ended up with very poor performance
191          * once CPU the host system was overwhelmed with RX on ath10k.
192          *
193          * By limiting the number of refills the replenishing occurs
194          * progressively. This in turns makes use of the fact tasklets are
195          * processed in FIFO order. This means actual RX processing can starve
196          * out refilling. If there's not enough buffers on RX ring FW will not
197          * report RX until it is refilled with enough buffers. This
198          * automatically balances load wrt to CPU power.
199          *
200          * This probably comes at a cost of lower maximum throughput but
201          * improves the avarage and stability. */
202         spin_lock_bh(&htt->rx_ring.lock);
203         num_deficit = htt->rx_ring.fill_level - htt->rx_ring.fill_cnt;
204         num_to_fill = min(ATH10K_HTT_MAX_NUM_REFILL, num_deficit);
205         num_deficit -= num_to_fill;
206         ret = ath10k_htt_rx_ring_fill_n(htt, num_to_fill);
207         if (ret == -ENOMEM) {
208                 /*
209                  * Failed to fill it to the desired level -
210                  * we'll start a timer and try again next time.
211                  * As long as enough buffers are left in the ring for
212                  * another A-MPDU rx, no special recovery is needed.
213                  */
214                 mod_timer(&htt->rx_ring.refill_retry_timer, jiffies +
215                           msecs_to_jiffies(HTT_RX_RING_REFILL_RETRY_MS));
216         } else if (num_deficit > 0) {
217                 tasklet_schedule(&htt->rx_replenish_task);
218         }
219         spin_unlock_bh(&htt->rx_ring.lock);
220 }
221
222 static void ath10k_htt_rx_ring_refill_retry(unsigned long arg)
223 {
224         struct ath10k_htt *htt = (struct ath10k_htt *)arg;
225
226         ath10k_htt_rx_msdu_buff_replenish(htt);
227 }
228
229 static void ath10k_htt_rx_ring_clean_up(struct ath10k_htt *htt)
230 {
231         struct sk_buff *skb;
232         int i;
233
234         for (i = 0; i < htt->rx_ring.size; i++) {
235                 skb = htt->rx_ring.netbufs_ring[i];
236                 if (!skb)
237                         continue;
238
239                 dma_unmap_single(htt->ar->dev, ATH10K_SKB_CB(skb)->paddr,
240                                  skb->len + skb_tailroom(skb),
241                                  DMA_FROM_DEVICE);
242                 dev_kfree_skb_any(skb);
243                 htt->rx_ring.netbufs_ring[i] = NULL;
244         }
245 }
246
247 void ath10k_htt_rx_free(struct ath10k_htt *htt)
248 {
249         del_timer_sync(&htt->rx_ring.refill_retry_timer);
250         tasklet_kill(&htt->rx_replenish_task);
251         tasklet_kill(&htt->txrx_compl_task);
252
253         skb_queue_purge(&htt->tx_compl_q);
254         skb_queue_purge(&htt->rx_compl_q);
255
256         ath10k_htt_rx_ring_clean_up(htt);
257
258         dma_free_coherent(htt->ar->dev,
259                           (htt->rx_ring.size *
260                            sizeof(htt->rx_ring.paddrs_ring)),
261                           htt->rx_ring.paddrs_ring,
262                           htt->rx_ring.base_paddr);
263
264         dma_free_coherent(htt->ar->dev,
265                           sizeof(*htt->rx_ring.alloc_idx.vaddr),
266                           htt->rx_ring.alloc_idx.vaddr,
267                           htt->rx_ring.alloc_idx.paddr);
268
269         kfree(htt->rx_ring.netbufs_ring);
270 }
271
272 static inline struct sk_buff *ath10k_htt_rx_netbuf_pop(struct ath10k_htt *htt)
273 {
274         struct ath10k *ar = htt->ar;
275         int idx;
276         struct sk_buff *msdu;
277
278         lockdep_assert_held(&htt->rx_ring.lock);
279
280         if (htt->rx_ring.fill_cnt == 0) {
281                 ath10k_warn(ar, "tried to pop sk_buff from an empty rx ring\n");
282                 return NULL;
283         }
284
285         idx = htt->rx_ring.sw_rd_idx.msdu_payld;
286         msdu = htt->rx_ring.netbufs_ring[idx];
287         htt->rx_ring.netbufs_ring[idx] = NULL;
288
289         idx++;
290         idx &= htt->rx_ring.size_mask;
291         htt->rx_ring.sw_rd_idx.msdu_payld = idx;
292         htt->rx_ring.fill_cnt--;
293
294         dma_unmap_single(htt->ar->dev,
295                          ATH10K_SKB_CB(msdu)->paddr,
296                          msdu->len + skb_tailroom(msdu),
297                          DMA_FROM_DEVICE);
298         ath10k_dbg_dump(ar, ATH10K_DBG_HTT_DUMP, NULL, "htt rx netbuf pop: ",
299                         msdu->data, msdu->len + skb_tailroom(msdu));
300
301         return msdu;
302 }
303
304 /* return: < 0 fatal error, 0 - non chained msdu, 1 chained msdu */
305 static int ath10k_htt_rx_amsdu_pop(struct ath10k_htt *htt,
306                                    u8 **fw_desc, int *fw_desc_len,
307                                    struct sk_buff_head *amsdu,
308                                    u32 *attention)
309 {
310         struct ath10k *ar = htt->ar;
311         int msdu_len, msdu_chaining = 0;
312         struct sk_buff *msdu;
313         struct htt_rx_desc *rx_desc;
314
315         lockdep_assert_held(&htt->rx_ring.lock);
316
317         for (;;) {
318                 int last_msdu, msdu_len_invalid, msdu_chained;
319
320                 msdu = ath10k_htt_rx_netbuf_pop(htt);
321                 if (!msdu) {
322                         __skb_queue_purge(amsdu);
323                         return -ENOENT;
324                 }
325
326                 __skb_queue_tail(amsdu, msdu);
327
328                 rx_desc = (struct htt_rx_desc *)msdu->data;
329
330                 /* FIXME: we must report msdu payload since this is what caller
331                  *        expects now */
332                 skb_put(msdu, offsetof(struct htt_rx_desc, msdu_payload));
333                 skb_pull(msdu, offsetof(struct htt_rx_desc, msdu_payload));
334
335                 /*
336                  * Sanity check - confirm the HW is finished filling in the
337                  * rx data.
338                  * If the HW and SW are working correctly, then it's guaranteed
339                  * that the HW's MAC DMA is done before this point in the SW.
340                  * To prevent the case that we handle a stale Rx descriptor,
341                  * just assert for now until we have a way to recover.
342                  */
343                 if (!(__le32_to_cpu(rx_desc->attention.flags)
344                                 & RX_ATTENTION_FLAGS_MSDU_DONE)) {
345                         __skb_queue_purge(amsdu);
346                         return -EIO;
347                 }
348
349                 *attention |= __le32_to_cpu(rx_desc->attention.flags) &
350                                             (RX_ATTENTION_FLAGS_TKIP_MIC_ERR |
351                                              RX_ATTENTION_FLAGS_DECRYPT_ERR |
352                                              RX_ATTENTION_FLAGS_FCS_ERR |
353                                              RX_ATTENTION_FLAGS_MGMT_TYPE);
354                 /*
355                  * Copy the FW rx descriptor for this MSDU from the rx
356                  * indication message into the MSDU's netbuf. HL uses the
357                  * same rx indication message definition as LL, and simply
358                  * appends new info (fields from the HW rx desc, and the
359                  * MSDU payload itself). So, the offset into the rx
360                  * indication message only has to account for the standard
361                  * offset of the per-MSDU FW rx desc info within the
362                  * message, and how many bytes of the per-MSDU FW rx desc
363                  * info have already been consumed. (And the endianness of
364                  * the host, since for a big-endian host, the rx ind
365                  * message contents, including the per-MSDU rx desc bytes,
366                  * were byteswapped during upload.)
367                  */
368                 if (*fw_desc_len > 0) {
369                         rx_desc->fw_desc.info0 = **fw_desc;
370                         /*
371                          * The target is expected to only provide the basic
372                          * per-MSDU rx descriptors. Just to be sure, verify
373                          * that the target has not attached extension data
374                          * (e.g. LRO flow ID).
375                          */
376
377                         /* or more, if there's extension data */
378                         (*fw_desc)++;
379                         (*fw_desc_len)--;
380                 } else {
381                         /*
382                          * When an oversized AMSDU happened, FW will lost
383                          * some of MSDU status - in this case, the FW
384                          * descriptors provided will be less than the
385                          * actual MSDUs inside this MPDU. Mark the FW
386                          * descriptors so that it will still deliver to
387                          * upper stack, if no CRC error for this MPDU.
388                          *
389                          * FIX THIS - the FW descriptors are actually for
390                          * MSDUs in the end of this A-MSDU instead of the
391                          * beginning.
392                          */
393                         rx_desc->fw_desc.info0 = 0;
394                 }
395
396                 msdu_len_invalid = !!(__le32_to_cpu(rx_desc->attention.flags)
397                                         & (RX_ATTENTION_FLAGS_MPDU_LENGTH_ERR |
398                                            RX_ATTENTION_FLAGS_MSDU_LENGTH_ERR));
399                 msdu_len = MS(__le32_to_cpu(rx_desc->msdu_start.info0),
400                               RX_MSDU_START_INFO0_MSDU_LENGTH);
401                 msdu_chained = rx_desc->frag_info.ring2_more_count;
402
403                 if (msdu_len_invalid)
404                         msdu_len = 0;
405
406                 skb_trim(msdu, 0);
407                 skb_put(msdu, min(msdu_len, HTT_RX_MSDU_SIZE));
408                 msdu_len -= msdu->len;
409
410                 /* Note: Chained buffers do not contain rx descriptor */
411                 while (msdu_chained--) {
412                         msdu = ath10k_htt_rx_netbuf_pop(htt);
413                         if (!msdu) {
414                                 __skb_queue_purge(amsdu);
415                                 return -ENOENT;
416                         }
417
418                         __skb_queue_tail(amsdu, msdu);
419                         skb_trim(msdu, 0);
420                         skb_put(msdu, min(msdu_len, HTT_RX_BUF_SIZE));
421                         msdu_len -= msdu->len;
422                         msdu_chaining = 1;
423                 }
424
425                 last_msdu = __le32_to_cpu(rx_desc->msdu_end.info0) &
426                                 RX_MSDU_END_INFO0_LAST_MSDU;
427
428                 trace_ath10k_htt_rx_desc(ar, &rx_desc->attention,
429                                          sizeof(*rx_desc) - sizeof(u32));
430
431                 if (last_msdu)
432                         break;
433         }
434
435         if (skb_queue_empty(amsdu))
436                 msdu_chaining = -1;
437
438         /*
439          * Don't refill the ring yet.
440          *
441          * First, the elements popped here are still in use - it is not
442          * safe to overwrite them until the matching call to
443          * mpdu_desc_list_next. Second, for efficiency it is preferable to
444          * refill the rx ring with 1 PPDU's worth of rx buffers (something
445          * like 32 x 3 buffers), rather than one MPDU's worth of rx buffers
446          * (something like 3 buffers). Consequently, we'll rely on the txrx
447          * SW to tell us when it is done pulling all the PPDU's rx buffers
448          * out of the rx ring, and then refill it just once.
449          */
450
451         return msdu_chaining;
452 }
453
454 static void ath10k_htt_rx_replenish_task(unsigned long ptr)
455 {
456         struct ath10k_htt *htt = (struct ath10k_htt *)ptr;
457
458         ath10k_htt_rx_msdu_buff_replenish(htt);
459 }
460
461 int ath10k_htt_rx_alloc(struct ath10k_htt *htt)
462 {
463         struct ath10k *ar = htt->ar;
464         dma_addr_t paddr;
465         void *vaddr;
466         size_t size;
467         struct timer_list *timer = &htt->rx_ring.refill_retry_timer;
468
469         htt->rx_confused = false;
470
471         htt->rx_ring.size = ath10k_htt_rx_ring_size(htt);
472         if (!is_power_of_2(htt->rx_ring.size)) {
473                 ath10k_warn(ar, "htt rx ring size is not power of 2\n");
474                 return -EINVAL;
475         }
476
477         htt->rx_ring.size_mask = htt->rx_ring.size - 1;
478
479         /*
480          * Set the initial value for the level to which the rx ring
481          * should be filled, based on the max throughput and the
482          * worst likely latency for the host to fill the rx ring
483          * with new buffers. In theory, this fill level can be
484          * dynamically adjusted from the initial value set here, to
485          * reflect the actual host latency rather than a
486          * conservative assumption about the host latency.
487          */
488         htt->rx_ring.fill_level = ath10k_htt_rx_ring_fill_level(htt);
489
490         htt->rx_ring.netbufs_ring =
491                 kzalloc(htt->rx_ring.size * sizeof(struct sk_buff *),
492                         GFP_KERNEL);
493         if (!htt->rx_ring.netbufs_ring)
494                 goto err_netbuf;
495
496         size = htt->rx_ring.size * sizeof(htt->rx_ring.paddrs_ring);
497
498         vaddr = dma_alloc_coherent(htt->ar->dev, size, &paddr, GFP_DMA);
499         if (!vaddr)
500                 goto err_dma_ring;
501
502         htt->rx_ring.paddrs_ring = vaddr;
503         htt->rx_ring.base_paddr = paddr;
504
505         vaddr = dma_alloc_coherent(htt->ar->dev,
506                                    sizeof(*htt->rx_ring.alloc_idx.vaddr),
507                                    &paddr, GFP_DMA);
508         if (!vaddr)
509                 goto err_dma_idx;
510
511         htt->rx_ring.alloc_idx.vaddr = vaddr;
512         htt->rx_ring.alloc_idx.paddr = paddr;
513         htt->rx_ring.sw_rd_idx.msdu_payld = 0;
514         *htt->rx_ring.alloc_idx.vaddr = 0;
515
516         /* Initialize the Rx refill retry timer */
517         setup_timer(timer, ath10k_htt_rx_ring_refill_retry, (unsigned long)htt);
518
519         spin_lock_init(&htt->rx_ring.lock);
520
521         htt->rx_ring.fill_cnt = 0;
522         if (__ath10k_htt_rx_ring_fill_n(htt, htt->rx_ring.fill_level))
523                 goto err_fill_ring;
524
525         tasklet_init(&htt->rx_replenish_task, ath10k_htt_rx_replenish_task,
526                      (unsigned long)htt);
527
528         skb_queue_head_init(&htt->tx_compl_q);
529         skb_queue_head_init(&htt->rx_compl_q);
530
531         tasklet_init(&htt->txrx_compl_task, ath10k_htt_txrx_compl_task,
532                      (unsigned long)htt);
533
534         ath10k_dbg(ar, ATH10K_DBG_BOOT, "htt rx ring size %d fill_level %d\n",
535                    htt->rx_ring.size, htt->rx_ring.fill_level);
536         return 0;
537
538 err_fill_ring:
539         ath10k_htt_rx_ring_free(htt);
540         dma_free_coherent(htt->ar->dev,
541                           sizeof(*htt->rx_ring.alloc_idx.vaddr),
542                           htt->rx_ring.alloc_idx.vaddr,
543                           htt->rx_ring.alloc_idx.paddr);
544 err_dma_idx:
545         dma_free_coherent(htt->ar->dev,
546                           (htt->rx_ring.size *
547                            sizeof(htt->rx_ring.paddrs_ring)),
548                           htt->rx_ring.paddrs_ring,
549                           htt->rx_ring.base_paddr);
550 err_dma_ring:
551         kfree(htt->rx_ring.netbufs_ring);
552 err_netbuf:
553         return -ENOMEM;
554 }
555
556 static int ath10k_htt_rx_crypto_param_len(struct ath10k *ar,
557                                           enum htt_rx_mpdu_encrypt_type type)
558 {
559         switch (type) {
560         case HTT_RX_MPDU_ENCRYPT_NONE:
561                 return 0;
562         case HTT_RX_MPDU_ENCRYPT_WEP40:
563         case HTT_RX_MPDU_ENCRYPT_WEP104:
564                 return IEEE80211_WEP_IV_LEN;
565         case HTT_RX_MPDU_ENCRYPT_TKIP_WITHOUT_MIC:
566         case HTT_RX_MPDU_ENCRYPT_TKIP_WPA:
567                 return IEEE80211_TKIP_IV_LEN;
568         case HTT_RX_MPDU_ENCRYPT_AES_CCM_WPA2:
569                 return IEEE80211_CCMP_HDR_LEN;
570         case HTT_RX_MPDU_ENCRYPT_WEP128:
571         case HTT_RX_MPDU_ENCRYPT_WAPI:
572                 break;
573         }
574
575         ath10k_warn(ar, "unsupported encryption type %d\n", type);
576         return 0;
577 }
578
579 #define MICHAEL_MIC_LEN 8
580
581 static int ath10k_htt_rx_crypto_tail_len(struct ath10k *ar,
582                                          enum htt_rx_mpdu_encrypt_type type)
583 {
584         switch (type) {
585         case HTT_RX_MPDU_ENCRYPT_NONE:
586                 return 0;
587         case HTT_RX_MPDU_ENCRYPT_WEP40:
588         case HTT_RX_MPDU_ENCRYPT_WEP104:
589                 return IEEE80211_WEP_ICV_LEN;
590         case HTT_RX_MPDU_ENCRYPT_TKIP_WITHOUT_MIC:
591         case HTT_RX_MPDU_ENCRYPT_TKIP_WPA:
592                 return IEEE80211_TKIP_ICV_LEN;
593         case HTT_RX_MPDU_ENCRYPT_AES_CCM_WPA2:
594                 return IEEE80211_CCMP_MIC_LEN;
595         case HTT_RX_MPDU_ENCRYPT_WEP128:
596         case HTT_RX_MPDU_ENCRYPT_WAPI:
597                 break;
598         }
599
600         ath10k_warn(ar, "unsupported encryption type %d\n", type);
601         return 0;
602 }
603
604 struct rfc1042_hdr {
605         u8 llc_dsap;
606         u8 llc_ssap;
607         u8 llc_ctrl;
608         u8 snap_oui[3];
609         __be16 snap_type;
610 } __packed;
611
612 struct amsdu_subframe_hdr {
613         u8 dst[ETH_ALEN];
614         u8 src[ETH_ALEN];
615         __be16 len;
616 } __packed;
617
618 static const u8 rx_legacy_rate_idx[] = {
619         3,      /* 0x00  - 11Mbps  */
620         2,      /* 0x01  - 5.5Mbps */
621         1,      /* 0x02  - 2Mbps   */
622         0,      /* 0x03  - 1Mbps   */
623         3,      /* 0x04  - 11Mbps  */
624         2,      /* 0x05  - 5.5Mbps */
625         1,      /* 0x06  - 2Mbps   */
626         0,      /* 0x07  - 1Mbps   */
627         10,     /* 0x08  - 48Mbps  */
628         8,      /* 0x09  - 24Mbps  */
629         6,      /* 0x0A  - 12Mbps  */
630         4,      /* 0x0B  - 6Mbps   */
631         11,     /* 0x0C  - 54Mbps  */
632         9,      /* 0x0D  - 36Mbps  */
633         7,      /* 0x0E  - 18Mbps  */
634         5,      /* 0x0F  - 9Mbps   */
635 };
636
637 static void ath10k_htt_rx_h_rates(struct ath10k *ar,
638                                   enum ieee80211_band band,
639                                   u8 info0, u32 info1, u32 info2,
640                                   struct ieee80211_rx_status *status)
641 {
642         u8 cck, rate, rate_idx, bw, sgi, mcs, nss;
643         u8 preamble = 0;
644
645         /* Check if valid fields */
646         if (!(info0 & HTT_RX_INDICATION_INFO0_START_VALID))
647                 return;
648
649         preamble = MS(info1, HTT_RX_INDICATION_INFO1_PREAMBLE_TYPE);
650
651         switch (preamble) {
652         case HTT_RX_LEGACY:
653                 cck = info0 & HTT_RX_INDICATION_INFO0_LEGACY_RATE_CCK;
654                 rate = MS(info0, HTT_RX_INDICATION_INFO0_LEGACY_RATE);
655                 rate_idx = 0;
656
657                 if (rate < 0x08 || rate > 0x0F)
658                         break;
659
660                 switch (band) {
661                 case IEEE80211_BAND_2GHZ:
662                         if (cck)
663                                 rate &= ~BIT(3);
664                         rate_idx = rx_legacy_rate_idx[rate];
665                         break;
666                 case IEEE80211_BAND_5GHZ:
667                         rate_idx = rx_legacy_rate_idx[rate];
668                         /* We are using same rate table registering
669                            HW - ath10k_rates[]. In case of 5GHz skip
670                            CCK rates, so -4 here */
671                         rate_idx -= 4;
672                         break;
673                 default:
674                         break;
675                 }
676
677                 status->rate_idx = rate_idx;
678                 break;
679         case HTT_RX_HT:
680         case HTT_RX_HT_WITH_TXBF:
681                 /* HT-SIG - Table 20-11 in info1 and info2 */
682                 mcs = info1 & 0x1F;
683                 nss = mcs >> 3;
684                 bw = (info1 >> 7) & 1;
685                 sgi = (info2 >> 7) & 1;
686
687                 status->rate_idx = mcs;
688                 status->flag |= RX_FLAG_HT;
689                 if (sgi)
690                         status->flag |= RX_FLAG_SHORT_GI;
691                 if (bw)
692                         status->flag |= RX_FLAG_40MHZ;
693                 break;
694         case HTT_RX_VHT:
695         case HTT_RX_VHT_WITH_TXBF:
696                 /* VHT-SIG-A1 in info 1, VHT-SIG-A2 in info2
697                    TODO check this */
698                 mcs = (info2 >> 4) & 0x0F;
699                 nss = ((info1 >> 10) & 0x07) + 1;
700                 bw = info1 & 3;
701                 sgi = info2 & 1;
702
703                 status->rate_idx = mcs;
704                 status->vht_nss = nss;
705
706                 if (sgi)
707                         status->flag |= RX_FLAG_SHORT_GI;
708
709                 switch (bw) {
710                 /* 20MHZ */
711                 case 0:
712                         break;
713                 /* 40MHZ */
714                 case 1:
715                         status->flag |= RX_FLAG_40MHZ;
716                         break;
717                 /* 80MHZ */
718                 case 2:
719                         status->vht_flag |= RX_VHT_FLAG_80MHZ;
720                 }
721
722                 status->flag |= RX_FLAG_VHT;
723                 break;
724         default:
725                 break;
726         }
727 }
728
729 static bool ath10k_htt_rx_h_channel(struct ath10k *ar,
730                                     struct ieee80211_rx_status *status)
731 {
732         struct ieee80211_channel *ch;
733
734         spin_lock_bh(&ar->data_lock);
735         ch = ar->scan_channel;
736         if (!ch)
737                 ch = ar->rx_channel;
738         spin_unlock_bh(&ar->data_lock);
739
740         if (!ch)
741                 return false;
742
743         status->band = ch->band;
744         status->freq = ch->center_freq;
745
746         return true;
747 }
748
749 static const char * const tid_to_ac[] = {
750         "BE",
751         "BK",
752         "BK",
753         "BE",
754         "VI",
755         "VI",
756         "VO",
757         "VO",
758 };
759
760 static char *ath10k_get_tid(struct ieee80211_hdr *hdr, char *out, size_t size)
761 {
762         u8 *qc;
763         int tid;
764
765         if (!ieee80211_is_data_qos(hdr->frame_control))
766                 return "";
767
768         qc = ieee80211_get_qos_ctl(hdr);
769         tid = *qc & IEEE80211_QOS_CTL_TID_MASK;
770         if (tid < 8)
771                 snprintf(out, size, "tid %d (%s)", tid, tid_to_ac[tid]);
772         else
773                 snprintf(out, size, "tid %d", tid);
774
775         return out;
776 }
777
778 static void ath10k_process_rx(struct ath10k *ar,
779                               struct ieee80211_rx_status *rx_status,
780                               struct sk_buff *skb)
781 {
782         struct ieee80211_rx_status *status;
783         struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
784         char tid[32];
785
786         status = IEEE80211_SKB_RXCB(skb);
787         *status = *rx_status;
788
789         ath10k_dbg(ar, ATH10K_DBG_DATA,
790                    "rx skb %p len %u peer %pM %s %s sn %u %s%s%s%s%s %srate_idx %u vht_nss %u freq %u band %u flag 0x%x fcs-err %i mic-err %i amsdu-more %i\n",
791                    skb,
792                    skb->len,
793                    ieee80211_get_SA(hdr),
794                    ath10k_get_tid(hdr, tid, sizeof(tid)),
795                    is_multicast_ether_addr(ieee80211_get_DA(hdr)) ?
796                                                         "mcast" : "ucast",
797                    (__le16_to_cpu(hdr->seq_ctrl) & IEEE80211_SCTL_SEQ) >> 4,
798                    status->flag == 0 ? "legacy" : "",
799                    status->flag & RX_FLAG_HT ? "ht" : "",
800                    status->flag & RX_FLAG_VHT ? "vht" : "",
801                    status->flag & RX_FLAG_40MHZ ? "40" : "",
802                    status->vht_flag & RX_VHT_FLAG_80MHZ ? "80" : "",
803                    status->flag & RX_FLAG_SHORT_GI ? "sgi " : "",
804                    status->rate_idx,
805                    status->vht_nss,
806                    status->freq,
807                    status->band, status->flag,
808                    !!(status->flag & RX_FLAG_FAILED_FCS_CRC),
809                    !!(status->flag & RX_FLAG_MMIC_ERROR),
810                    !!(status->flag & RX_FLAG_AMSDU_MORE));
811         ath10k_dbg_dump(ar, ATH10K_DBG_HTT_DUMP, NULL, "rx skb: ",
812                         skb->data, skb->len);
813         trace_ath10k_rx_hdr(ar, skb->data, skb->len);
814         trace_ath10k_rx_payload(ar, skb->data, skb->len);
815
816         ieee80211_rx(ar->hw, skb);
817 }
818
819 static int ath10k_htt_rx_nwifi_hdrlen(struct ieee80211_hdr *hdr)
820 {
821         /* nwifi header is padded to 4 bytes. this fixes 4addr rx */
822         return round_up(ieee80211_hdrlen(hdr->frame_control), 4);
823 }
824
825 static void ath10k_htt_rx_h_undecap_raw(struct ath10k *ar,
826                                         struct sk_buff *msdu,
827                                         struct ieee80211_rx_status *status,
828                                         enum htt_rx_mpdu_encrypt_type enctype,
829                                         bool is_decrypted)
830 {
831         struct ieee80211_hdr *hdr;
832         struct htt_rx_desc *rxd;
833         size_t hdr_len;
834         size_t crypto_len;
835         bool is_first;
836         bool is_last;
837
838         rxd = (void *)msdu->data - sizeof(*rxd);
839         is_first = !!(rxd->msdu_end.info0 &
840                       __cpu_to_le32(RX_MSDU_END_INFO0_FIRST_MSDU));
841         is_last = !!(rxd->msdu_end.info0 &
842                      __cpu_to_le32(RX_MSDU_END_INFO0_LAST_MSDU));
843
844         /* Delivered decapped frame:
845          * [802.11 header]
846          * [crypto param] <-- can be trimmed if !fcs_err &&
847          *                    !decrypt_err && !peer_idx_invalid
848          * [amsdu header] <-- only if A-MSDU
849          * [rfc1042/llc]
850          * [payload]
851          * [FCS] <-- at end, needs to be trimmed
852          */
853
854         /* This probably shouldn't happen but warn just in case */
855         if (unlikely(WARN_ON_ONCE(!is_first)))
856                 return;
857
858         /* This probably shouldn't happen but warn just in case */
859         if (unlikely(WARN_ON_ONCE(!(is_first && is_last))))
860                 return;
861
862         skb_trim(msdu, msdu->len - FCS_LEN);
863
864         /* In most cases this will be true for sniffed frames. It makes sense
865          * to deliver them as-is without stripping the crypto param. This would
866          * also make sense for software based decryption (which is not
867          * implemented in ath10k).
868          *
869          * If there's no error then the frame is decrypted. At least that is
870          * the case for frames that come in via fragmented rx indication.
871          */
872         if (!is_decrypted)
873                 return;
874
875         /* The payload is decrypted so strip crypto params. Start from tail
876          * since hdr is used to compute some stuff.
877          */
878
879         hdr = (void *)msdu->data;
880
881         /* Tail */
882         skb_trim(msdu, msdu->len - ath10k_htt_rx_crypto_tail_len(ar, enctype));
883
884         /* MMIC */
885         if (!ieee80211_has_morefrags(hdr->frame_control) &&
886             enctype == HTT_RX_MPDU_ENCRYPT_TKIP_WPA)
887                 skb_trim(msdu, msdu->len - 8);
888
889         /* Head */
890         hdr_len = ieee80211_hdrlen(hdr->frame_control);
891         crypto_len = ath10k_htt_rx_crypto_param_len(ar, enctype);
892
893         memmove((void *)msdu->data + crypto_len,
894                 (void *)msdu->data, hdr_len);
895         skb_pull(msdu, crypto_len);
896 }
897
898 static void ath10k_htt_rx_h_undecap_nwifi(struct ath10k *ar,
899                                           struct sk_buff *msdu,
900                                           struct ieee80211_rx_status *status,
901                                           const u8 first_hdr[64])
902 {
903         struct ieee80211_hdr *hdr;
904         size_t hdr_len;
905         u8 da[ETH_ALEN];
906         u8 sa[ETH_ALEN];
907
908         /* Delivered decapped frame:
909          * [nwifi 802.11 header] <-- replaced with 802.11 hdr
910          * [rfc1042/llc]
911          *
912          * Note: The nwifi header doesn't have QoS Control and is
913          * (always?) a 3addr frame.
914          *
915          * Note2: There's no A-MSDU subframe header. Even if it's part
916          * of an A-MSDU.
917          */
918
919         /* pull decapped header and copy SA & DA */
920         hdr = (struct ieee80211_hdr *)msdu->data;
921         hdr_len = ath10k_htt_rx_nwifi_hdrlen(hdr);
922         ether_addr_copy(da, ieee80211_get_DA(hdr));
923         ether_addr_copy(sa, ieee80211_get_SA(hdr));
924         skb_pull(msdu, hdr_len);
925
926         /* push original 802.11 header */
927         hdr = (struct ieee80211_hdr *)first_hdr;
928         hdr_len = ieee80211_hdrlen(hdr->frame_control);
929         memcpy(skb_push(msdu, hdr_len), hdr, hdr_len);
930
931         /* original 802.11 header has a different DA and in
932          * case of 4addr it may also have different SA
933          */
934         hdr = (struct ieee80211_hdr *)msdu->data;
935         ether_addr_copy(ieee80211_get_DA(hdr), da);
936         ether_addr_copy(ieee80211_get_SA(hdr), sa);
937 }
938
939 static void *ath10k_htt_rx_h_find_rfc1042(struct ath10k *ar,
940                                           struct sk_buff *msdu,
941                                           enum htt_rx_mpdu_encrypt_type enctype)
942 {
943         struct ieee80211_hdr *hdr;
944         struct htt_rx_desc *rxd;
945         size_t hdr_len, crypto_len;
946         void *rfc1042;
947         bool is_first, is_last, is_amsdu;
948
949         rxd = (void *)msdu->data - sizeof(*rxd);
950         hdr = (void *)rxd->rx_hdr_status;
951
952         is_first = !!(rxd->msdu_end.info0 &
953                       __cpu_to_le32(RX_MSDU_END_INFO0_FIRST_MSDU));
954         is_last = !!(rxd->msdu_end.info0 &
955                      __cpu_to_le32(RX_MSDU_END_INFO0_LAST_MSDU));
956         is_amsdu = !(is_first && is_last);
957
958         rfc1042 = hdr;
959
960         if (is_first) {
961                 hdr_len = ieee80211_hdrlen(hdr->frame_control);
962                 crypto_len = ath10k_htt_rx_crypto_param_len(ar, enctype);
963
964                 rfc1042 += round_up(hdr_len, 4) +
965                            round_up(crypto_len, 4);
966         }
967
968         if (is_amsdu)
969                 rfc1042 += sizeof(struct amsdu_subframe_hdr);
970
971         return rfc1042;
972 }
973
974 static void ath10k_htt_rx_h_undecap_eth(struct ath10k *ar,
975                                         struct sk_buff *msdu,
976                                         struct ieee80211_rx_status *status,
977                                         const u8 first_hdr[64],
978                                         enum htt_rx_mpdu_encrypt_type enctype)
979 {
980         struct ieee80211_hdr *hdr;
981         struct ethhdr *eth;
982         size_t hdr_len;
983         void *rfc1042;
984         u8 da[ETH_ALEN];
985         u8 sa[ETH_ALEN];
986
987         /* Delivered decapped frame:
988          * [eth header] <-- replaced with 802.11 hdr & rfc1042/llc
989          * [payload]
990          */
991
992         rfc1042 = ath10k_htt_rx_h_find_rfc1042(ar, msdu, enctype);
993         if (WARN_ON_ONCE(!rfc1042))
994                 return;
995
996         /* pull decapped header and copy SA & DA */
997         eth = (struct ethhdr *)msdu->data;
998         ether_addr_copy(da, eth->h_dest);
999         ether_addr_copy(sa, eth->h_source);
1000         skb_pull(msdu, sizeof(struct ethhdr));
1001
1002         /* push rfc1042/llc/snap */
1003         memcpy(skb_push(msdu, sizeof(struct rfc1042_hdr)), rfc1042,
1004                sizeof(struct rfc1042_hdr));
1005
1006         /* push original 802.11 header */
1007         hdr = (struct ieee80211_hdr *)first_hdr;
1008         hdr_len = ieee80211_hdrlen(hdr->frame_control);
1009         memcpy(skb_push(msdu, hdr_len), hdr, hdr_len);
1010
1011         /* original 802.11 header has a different DA and in
1012          * case of 4addr it may also have different SA
1013          */
1014         hdr = (struct ieee80211_hdr *)msdu->data;
1015         ether_addr_copy(ieee80211_get_DA(hdr), da);
1016         ether_addr_copy(ieee80211_get_SA(hdr), sa);
1017 }
1018
1019 static void ath10k_htt_rx_h_undecap_snap(struct ath10k *ar,
1020                                          struct sk_buff *msdu,
1021                                          struct ieee80211_rx_status *status,
1022                                          const u8 first_hdr[64])
1023 {
1024         struct ieee80211_hdr *hdr;
1025         size_t hdr_len;
1026
1027         /* Delivered decapped frame:
1028          * [amsdu header] <-- replaced with 802.11 hdr
1029          * [rfc1042/llc]
1030          * [payload]
1031          */
1032
1033         skb_pull(msdu, sizeof(struct amsdu_subframe_hdr));
1034
1035         hdr = (struct ieee80211_hdr *)first_hdr;
1036         hdr_len = ieee80211_hdrlen(hdr->frame_control);
1037         memcpy(skb_push(msdu, hdr_len), hdr, hdr_len);
1038 }
1039
1040 static void ath10k_htt_rx_h_undecap(struct ath10k *ar,
1041                                     struct sk_buff *msdu,
1042                                     struct ieee80211_rx_status *status,
1043                                     u8 first_hdr[64],
1044                                     enum htt_rx_mpdu_encrypt_type enctype,
1045                                     bool is_decrypted)
1046 {
1047         struct htt_rx_desc *rxd;
1048         enum rx_msdu_decap_format decap;
1049         struct ieee80211_hdr *hdr;
1050
1051         /* First msdu's decapped header:
1052          * [802.11 header] <-- padded to 4 bytes long
1053          * [crypto param] <-- padded to 4 bytes long
1054          * [amsdu header] <-- only if A-MSDU
1055          * [rfc1042/llc]
1056          *
1057          * Other (2nd, 3rd, ..) msdu's decapped header:
1058          * [amsdu header] <-- only if A-MSDU
1059          * [rfc1042/llc]
1060          */
1061
1062         rxd = (void *)msdu->data - sizeof(*rxd);
1063         hdr = (void *)rxd->rx_hdr_status;
1064         decap = MS(__le32_to_cpu(rxd->msdu_start.info1),
1065                    RX_MSDU_START_INFO1_DECAP_FORMAT);
1066
1067         switch (decap) {
1068         case RX_MSDU_DECAP_RAW:
1069                 ath10k_htt_rx_h_undecap_raw(ar, msdu, status, enctype,
1070                                             is_decrypted);
1071                 break;
1072         case RX_MSDU_DECAP_NATIVE_WIFI:
1073                 ath10k_htt_rx_h_undecap_nwifi(ar, msdu, status, first_hdr);
1074                 break;
1075         case RX_MSDU_DECAP_ETHERNET2_DIX:
1076                 ath10k_htt_rx_h_undecap_eth(ar, msdu, status, first_hdr, enctype);
1077                 break;
1078         case RX_MSDU_DECAP_8023_SNAP_LLC:
1079                 ath10k_htt_rx_h_undecap_snap(ar, msdu, status, first_hdr);
1080                 break;
1081         }
1082 }
1083
1084 static int ath10k_htt_rx_get_csum_state(struct sk_buff *skb)
1085 {
1086         struct htt_rx_desc *rxd;
1087         u32 flags, info;
1088         bool is_ip4, is_ip6;
1089         bool is_tcp, is_udp;
1090         bool ip_csum_ok, tcpudp_csum_ok;
1091
1092         rxd = (void *)skb->data - sizeof(*rxd);
1093         flags = __le32_to_cpu(rxd->attention.flags);
1094         info = __le32_to_cpu(rxd->msdu_start.info1);
1095
1096         is_ip4 = !!(info & RX_MSDU_START_INFO1_IPV4_PROTO);
1097         is_ip6 = !!(info & RX_MSDU_START_INFO1_IPV6_PROTO);
1098         is_tcp = !!(info & RX_MSDU_START_INFO1_TCP_PROTO);
1099         is_udp = !!(info & RX_MSDU_START_INFO1_UDP_PROTO);
1100         ip_csum_ok = !(flags & RX_ATTENTION_FLAGS_IP_CHKSUM_FAIL);
1101         tcpudp_csum_ok = !(flags & RX_ATTENTION_FLAGS_TCP_UDP_CHKSUM_FAIL);
1102
1103         if (!is_ip4 && !is_ip6)
1104                 return CHECKSUM_NONE;
1105         if (!is_tcp && !is_udp)
1106                 return CHECKSUM_NONE;
1107         if (!ip_csum_ok)
1108                 return CHECKSUM_NONE;
1109         if (!tcpudp_csum_ok)
1110                 return CHECKSUM_NONE;
1111
1112         return CHECKSUM_UNNECESSARY;
1113 }
1114
1115 static void ath10k_htt_rx_h_csum_offload(struct sk_buff *msdu)
1116 {
1117         msdu->ip_summed = ath10k_htt_rx_get_csum_state(msdu);
1118 }
1119
1120 static void ath10k_htt_rx_h_mpdu(struct ath10k *ar,
1121                                  struct sk_buff_head *amsdu,
1122                                  struct ieee80211_rx_status *status)
1123 {
1124         struct sk_buff *first;
1125         struct sk_buff *last;
1126         struct sk_buff *msdu;
1127         struct htt_rx_desc *rxd;
1128         struct ieee80211_hdr *hdr;
1129         enum htt_rx_mpdu_encrypt_type enctype;
1130         u8 first_hdr[64];
1131         u8 *qos;
1132         size_t hdr_len;
1133         bool has_fcs_err;
1134         bool has_crypto_err;
1135         bool has_tkip_err;
1136         bool has_peer_idx_invalid;
1137         bool is_decrypted;
1138         u32 attention;
1139
1140         if (skb_queue_empty(amsdu))
1141                 return;
1142
1143         first = skb_peek(amsdu);
1144         rxd = (void *)first->data - sizeof(*rxd);
1145
1146         enctype = MS(__le32_to_cpu(rxd->mpdu_start.info0),
1147                      RX_MPDU_START_INFO0_ENCRYPT_TYPE);
1148
1149         /* First MSDU's Rx descriptor in an A-MSDU contains full 802.11
1150          * decapped header. It'll be used for undecapping of each MSDU.
1151          */
1152         hdr = (void *)rxd->rx_hdr_status;
1153         hdr_len = ieee80211_hdrlen(hdr->frame_control);
1154         memcpy(first_hdr, hdr, hdr_len);
1155
1156         /* Each A-MSDU subframe will use the original header as the base and be
1157          * reported as a separate MSDU so strip the A-MSDU bit from QoS Ctl.
1158          */
1159         hdr = (void *)first_hdr;
1160         qos = ieee80211_get_qos_ctl(hdr);
1161         qos[0] &= ~IEEE80211_QOS_CTL_A_MSDU_PRESENT;
1162
1163         /* Some attention flags are valid only in the last MSDU. */
1164         last = skb_peek_tail(amsdu);
1165         rxd = (void *)last->data - sizeof(*rxd);
1166         attention = __le32_to_cpu(rxd->attention.flags);
1167
1168         has_fcs_err = !!(attention & RX_ATTENTION_FLAGS_FCS_ERR);
1169         has_crypto_err = !!(attention & RX_ATTENTION_FLAGS_DECRYPT_ERR);
1170         has_tkip_err = !!(attention & RX_ATTENTION_FLAGS_TKIP_MIC_ERR);
1171         has_peer_idx_invalid = !!(attention & RX_ATTENTION_FLAGS_PEER_IDX_INVALID);
1172
1173         /* Note: If hardware captures an encrypted frame that it can't decrypt,
1174          * e.g. due to fcs error, missing peer or invalid key data it will
1175          * report the frame as raw.
1176          */
1177         is_decrypted = (enctype != HTT_RX_MPDU_ENCRYPT_NONE &&
1178                         !has_fcs_err &&
1179                         !has_crypto_err &&
1180                         !has_peer_idx_invalid);
1181
1182         /* Clear per-MPDU flags while leaving per-PPDU flags intact. */
1183         status->flag &= ~(RX_FLAG_FAILED_FCS_CRC |
1184                           RX_FLAG_MMIC_ERROR |
1185                           RX_FLAG_DECRYPTED |
1186                           RX_FLAG_IV_STRIPPED |
1187                           RX_FLAG_MMIC_STRIPPED);
1188
1189         if (has_fcs_err)
1190                 status->flag |= RX_FLAG_FAILED_FCS_CRC;
1191
1192         if (has_tkip_err)
1193                 status->flag |= RX_FLAG_MMIC_ERROR;
1194
1195         if (is_decrypted)
1196                 status->flag |= RX_FLAG_DECRYPTED |
1197                                 RX_FLAG_IV_STRIPPED |
1198                                 RX_FLAG_MMIC_STRIPPED;
1199
1200         skb_queue_walk(amsdu, msdu) {
1201                 ath10k_htt_rx_h_csum_offload(msdu);
1202                 ath10k_htt_rx_h_undecap(ar, msdu, status, first_hdr, enctype,
1203                                         is_decrypted);
1204
1205                 /* Undecapping involves copying the original 802.11 header back
1206                  * to sk_buff. If frame is protected and hardware has decrypted
1207                  * it then remove the protected bit.
1208                  */
1209                 if (!is_decrypted)
1210                         continue;
1211
1212                 hdr = (void *)msdu->data;
1213                 hdr->frame_control &= ~__cpu_to_le16(IEEE80211_FCTL_PROTECTED);
1214         }
1215 }
1216
1217 static void ath10k_htt_rx_h_deliver(struct ath10k *ar,
1218                                     struct sk_buff_head *amsdu,
1219                                     struct ieee80211_rx_status *status)
1220 {
1221         struct sk_buff *msdu;
1222
1223         while ((msdu = __skb_dequeue(amsdu))) {
1224                 /* Setup per-MSDU flags */
1225                 if (skb_queue_empty(amsdu))
1226                         status->flag &= ~RX_FLAG_AMSDU_MORE;
1227                 else
1228                         status->flag |= RX_FLAG_AMSDU_MORE;
1229
1230                 ath10k_process_rx(ar, status, msdu);
1231         }
1232 }
1233
1234 static int ath10k_unchain_msdu(struct sk_buff_head *amsdu)
1235 {
1236         struct sk_buff *skb, *first;
1237         int space;
1238         int total_len = 0;
1239
1240         /* TODO:  Might could optimize this by using
1241          * skb_try_coalesce or similar method to
1242          * decrease copying, or maybe get mac80211 to
1243          * provide a way to just receive a list of
1244          * skb?
1245          */
1246
1247         first = __skb_dequeue(amsdu);
1248
1249         /* Allocate total length all at once. */
1250         skb_queue_walk(amsdu, skb)
1251                 total_len += skb->len;
1252
1253         space = total_len - skb_tailroom(first);
1254         if ((space > 0) &&
1255             (pskb_expand_head(first, 0, space, GFP_ATOMIC) < 0)) {
1256                 /* TODO:  bump some rx-oom error stat */
1257                 /* put it back together so we can free the
1258                  * whole list at once.
1259                  */
1260                 __skb_queue_head(amsdu, first);
1261                 return -1;
1262         }
1263
1264         /* Walk list again, copying contents into
1265          * msdu_head
1266          */
1267         while ((skb = __skb_dequeue(amsdu))) {
1268                 skb_copy_from_linear_data(skb, skb_put(first, skb->len),
1269                                           skb->len);
1270                 dev_kfree_skb_any(skb);
1271         }
1272
1273         __skb_queue_head(amsdu, first);
1274         return 0;
1275 }
1276
1277 static void ath10k_htt_rx_h_unchain(struct ath10k *ar,
1278                                     struct sk_buff_head *amsdu,
1279                                     bool chained)
1280 {
1281         struct sk_buff *first;
1282         struct htt_rx_desc *rxd;
1283         enum rx_msdu_decap_format decap;
1284
1285         first = skb_peek(amsdu);
1286         rxd = (void *)first->data - sizeof(*rxd);
1287         decap = MS(__le32_to_cpu(rxd->msdu_start.info1),
1288                    RX_MSDU_START_INFO1_DECAP_FORMAT);
1289
1290         if (!chained)
1291                 return;
1292
1293         /* FIXME: Current unchaining logic can only handle simple case of raw
1294          * msdu chaining. If decapping is other than raw the chaining may be
1295          * more complex and this isn't handled by the current code. Don't even
1296          * try re-constructing such frames - it'll be pretty much garbage.
1297          */
1298         if (decap != RX_MSDU_DECAP_RAW ||
1299             skb_queue_len(amsdu) != 1 + rxd->frag_info.ring2_more_count) {
1300                 __skb_queue_purge(amsdu);
1301                 return;
1302         }
1303
1304         ath10k_unchain_msdu(amsdu);
1305 }
1306
1307 static bool ath10k_htt_rx_amsdu_allowed(struct ath10k *ar,
1308                                         struct sk_buff_head *amsdu,
1309                                         struct ieee80211_rx_status *rx_status)
1310 {
1311         struct sk_buff *msdu;
1312         struct htt_rx_desc *rxd;
1313
1314         msdu = skb_peek(amsdu);
1315         rxd = (void *)msdu->data - sizeof(*rxd);
1316
1317         /* FIXME: It might be a good idea to do some fuzzy-testing to drop
1318          * invalid/dangerous frames.
1319          */
1320
1321         if (!rx_status->freq) {
1322                 ath10k_warn(ar, "no channel configured; ignoring frame(s)!\n");
1323                 return false;
1324         }
1325
1326         /* Management frames are handled via WMI events. The pros of such
1327          * approach is that channel is explicitly provided in WMI events
1328          * whereas HTT doesn't provide channel information for Rxed frames.
1329          */
1330         if (rxd->attention.flags &
1331             __cpu_to_le32(RX_ATTENTION_FLAGS_MGMT_TYPE)) {
1332                 ath10k_dbg(ar, ATH10K_DBG_HTT, "htt rx mgmt ctrl\n");
1333                 return false;
1334         }
1335
1336         if (test_bit(ATH10K_CAC_RUNNING, &ar->dev_flags)) {
1337                 ath10k_dbg(ar, ATH10K_DBG_HTT, "htt rx cac running\n");
1338                 return false;
1339         }
1340
1341         return true;
1342 }
1343
1344 static void ath10k_htt_rx_h_filter(struct ath10k *ar,
1345                                    struct sk_buff_head *amsdu,
1346                                    struct ieee80211_rx_status *rx_status)
1347 {
1348         if (skb_queue_empty(amsdu))
1349                 return;
1350
1351         if (ath10k_htt_rx_amsdu_allowed(ar, amsdu, rx_status))
1352                 return;
1353
1354         __skb_queue_purge(amsdu);
1355 }
1356
1357 static void ath10k_htt_rx_handler(struct ath10k_htt *htt,
1358                                   struct htt_rx_indication *rx)
1359 {
1360         struct ath10k *ar = htt->ar;
1361         struct ieee80211_rx_status *rx_status = &htt->rx_status;
1362         struct htt_rx_indication_mpdu_range *mpdu_ranges;
1363         struct sk_buff_head amsdu;
1364         int num_mpdu_ranges;
1365         u32 attention;
1366         int fw_desc_len;
1367         u8 *fw_desc;
1368         bool channel_set;
1369         int i, ret, mpdu_count = 0;
1370
1371         lockdep_assert_held(&htt->rx_ring.lock);
1372
1373         if (htt->rx_confused)
1374                 return;
1375
1376         fw_desc_len = __le16_to_cpu(rx->prefix.fw_rx_desc_bytes);
1377         fw_desc = (u8 *)&rx->fw_desc;
1378
1379         num_mpdu_ranges = MS(__le32_to_cpu(rx->hdr.info1),
1380                              HTT_RX_INDICATION_INFO1_NUM_MPDU_RANGES);
1381         mpdu_ranges = htt_rx_ind_get_mpdu_ranges(rx);
1382
1383         /* Fill this once, while this is per-ppdu */
1384         if (rx->ppdu.info0 & HTT_RX_INDICATION_INFO0_START_VALID) {
1385                 memset(rx_status, 0, sizeof(*rx_status));
1386                 rx_status->signal  = ATH10K_DEFAULT_NOISE_FLOOR +
1387                                      rx->ppdu.combined_rssi;
1388         }
1389
1390         if (rx->ppdu.info0 & HTT_RX_INDICATION_INFO0_END_VALID) {
1391                 /* TSF available only in 32-bit */
1392                 rx_status->mactime = __le32_to_cpu(rx->ppdu.tsf) & 0xffffffff;
1393                 rx_status->flag |= RX_FLAG_MACTIME_END;
1394         }
1395
1396         channel_set = ath10k_htt_rx_h_channel(htt->ar, rx_status);
1397
1398         if (channel_set) {
1399                 ath10k_htt_rx_h_rates(htt->ar, rx_status->band,
1400                                       rx->ppdu.info0,
1401                                       __le32_to_cpu(rx->ppdu.info1),
1402                                       __le32_to_cpu(rx->ppdu.info2),
1403                                       rx_status);
1404         }
1405
1406         ath10k_dbg_dump(ar, ATH10K_DBG_HTT_DUMP, NULL, "htt rx ind: ",
1407                         rx, sizeof(*rx) +
1408                         (sizeof(struct htt_rx_indication_mpdu_range) *
1409                                 num_mpdu_ranges));
1410
1411         for (i = 0; i < num_mpdu_ranges; i++)
1412                 mpdu_count += mpdu_ranges[i].mpdu_count;
1413
1414         while (mpdu_count--) {
1415                 attention = 0;
1416                 __skb_queue_head_init(&amsdu);
1417                 ret = ath10k_htt_rx_amsdu_pop(htt, &fw_desc,
1418                                               &fw_desc_len, &amsdu,
1419                                               &attention);
1420                 if (ret < 0) {
1421                         ath10k_warn(ar, "rx ring became corrupted: %d\n", ret);
1422                         __skb_queue_purge(&amsdu);
1423                         /* FIXME: It's probably a good idea to reboot the
1424                          * device instead of leaving it inoperable.
1425                          */
1426                         htt->rx_confused = true;
1427                         break;
1428                 }
1429
1430                 ath10k_htt_rx_h_unchain(ar, &amsdu, ret > 0);
1431                 ath10k_htt_rx_h_filter(ar, &amsdu, rx_status);
1432                 ath10k_htt_rx_h_mpdu(ar, &amsdu, rx_status);
1433                 ath10k_htt_rx_h_deliver(ar, &amsdu, rx_status);
1434         }
1435
1436         tasklet_schedule(&htt->rx_replenish_task);
1437 }
1438
1439 static void ath10k_htt_rx_frag_handler(struct ath10k_htt *htt,
1440                                        struct htt_rx_fragment_indication *frag)
1441 {
1442         struct ath10k *ar = htt->ar;
1443         struct ieee80211_rx_status *rx_status = &htt->rx_status;
1444         struct sk_buff_head amsdu;
1445         int ret;
1446         u8 *fw_desc;
1447         int fw_desc_len;
1448         u32 attention = 0;
1449
1450         fw_desc_len = __le16_to_cpu(frag->fw_rx_desc_bytes);
1451         fw_desc = (u8 *)frag->fw_msdu_rx_desc;
1452
1453         __skb_queue_head_init(&amsdu);
1454
1455         spin_lock_bh(&htt->rx_ring.lock);
1456         ret = ath10k_htt_rx_amsdu_pop(htt, &fw_desc, &fw_desc_len,
1457                                       &amsdu, &attention);
1458         spin_unlock_bh(&htt->rx_ring.lock);
1459
1460         tasklet_schedule(&htt->rx_replenish_task);
1461
1462         ath10k_dbg(ar, ATH10K_DBG_HTT_DUMP, "htt rx frag ahead\n");
1463
1464         if (ret) {
1465                 ath10k_warn(ar, "failed to pop amsdu from httr rx ring for fragmented rx %d\n",
1466                             ret);
1467                 __skb_queue_purge(&amsdu);
1468                 return;
1469         }
1470
1471         if (skb_queue_len(&amsdu) != 1) {
1472                 ath10k_warn(ar, "failed to pop frag amsdu: too many msdus\n");
1473                 __skb_queue_purge(&amsdu);
1474                 return;
1475         }
1476
1477         /* FIXME: implement signal strength */
1478         rx_status->flag |= RX_FLAG_NO_SIGNAL_VAL;
1479
1480         ath10k_htt_rx_h_filter(ar, &amsdu, rx_status);
1481         ath10k_htt_rx_h_mpdu(ar, &amsdu, rx_status);
1482         ath10k_htt_rx_h_deliver(ar, &amsdu, rx_status);
1483
1484         if (fw_desc_len > 0) {
1485                 ath10k_dbg(ar, ATH10K_DBG_HTT,
1486                            "expecting more fragmented rx in one indication %d\n",
1487                            fw_desc_len);
1488         }
1489 }
1490
1491 static void ath10k_htt_rx_frm_tx_compl(struct ath10k *ar,
1492                                        struct sk_buff *skb)
1493 {
1494         struct ath10k_htt *htt = &ar->htt;
1495         struct htt_resp *resp = (struct htt_resp *)skb->data;
1496         struct htt_tx_done tx_done = {};
1497         int status = MS(resp->data_tx_completion.flags, HTT_DATA_TX_STATUS);
1498         __le16 msdu_id;
1499         int i;
1500
1501         lockdep_assert_held(&htt->tx_lock);
1502
1503         switch (status) {
1504         case HTT_DATA_TX_STATUS_NO_ACK:
1505                 tx_done.no_ack = true;
1506                 break;
1507         case HTT_DATA_TX_STATUS_OK:
1508                 break;
1509         case HTT_DATA_TX_STATUS_DISCARD:
1510         case HTT_DATA_TX_STATUS_POSTPONE:
1511         case HTT_DATA_TX_STATUS_DOWNLOAD_FAIL:
1512                 tx_done.discard = true;
1513                 break;
1514         default:
1515                 ath10k_warn(ar, "unhandled tx completion status %d\n", status);
1516                 tx_done.discard = true;
1517                 break;
1518         }
1519
1520         ath10k_dbg(ar, ATH10K_DBG_HTT, "htt tx completion num_msdus %d\n",
1521                    resp->data_tx_completion.num_msdus);
1522
1523         for (i = 0; i < resp->data_tx_completion.num_msdus; i++) {
1524                 msdu_id = resp->data_tx_completion.msdus[i];
1525                 tx_done.msdu_id = __le16_to_cpu(msdu_id);
1526                 ath10k_txrx_tx_unref(htt, &tx_done);
1527         }
1528 }
1529
1530 static void ath10k_htt_rx_addba(struct ath10k *ar, struct htt_resp *resp)
1531 {
1532         struct htt_rx_addba *ev = &resp->rx_addba;
1533         struct ath10k_peer *peer;
1534         struct ath10k_vif *arvif;
1535         u16 info0, tid, peer_id;
1536
1537         info0 = __le16_to_cpu(ev->info0);
1538         tid = MS(info0, HTT_RX_BA_INFO0_TID);
1539         peer_id = MS(info0, HTT_RX_BA_INFO0_PEER_ID);
1540
1541         ath10k_dbg(ar, ATH10K_DBG_HTT,
1542                    "htt rx addba tid %hu peer_id %hu size %hhu\n",
1543                    tid, peer_id, ev->window_size);
1544
1545         spin_lock_bh(&ar->data_lock);
1546         peer = ath10k_peer_find_by_id(ar, peer_id);
1547         if (!peer) {
1548                 ath10k_warn(ar, "received addba event for invalid peer_id: %hu\n",
1549                             peer_id);
1550                 spin_unlock_bh(&ar->data_lock);
1551                 return;
1552         }
1553
1554         arvif = ath10k_get_arvif(ar, peer->vdev_id);
1555         if (!arvif) {
1556                 ath10k_warn(ar, "received addba event for invalid vdev_id: %u\n",
1557                             peer->vdev_id);
1558                 spin_unlock_bh(&ar->data_lock);
1559                 return;
1560         }
1561
1562         ath10k_dbg(ar, ATH10K_DBG_HTT,
1563                    "htt rx start rx ba session sta %pM tid %hu size %hhu\n",
1564                    peer->addr, tid, ev->window_size);
1565
1566         ieee80211_start_rx_ba_session_offl(arvif->vif, peer->addr, tid);
1567         spin_unlock_bh(&ar->data_lock);
1568 }
1569
1570 static void ath10k_htt_rx_delba(struct ath10k *ar, struct htt_resp *resp)
1571 {
1572         struct htt_rx_delba *ev = &resp->rx_delba;
1573         struct ath10k_peer *peer;
1574         struct ath10k_vif *arvif;
1575         u16 info0, tid, peer_id;
1576
1577         info0 = __le16_to_cpu(ev->info0);
1578         tid = MS(info0, HTT_RX_BA_INFO0_TID);
1579         peer_id = MS(info0, HTT_RX_BA_INFO0_PEER_ID);
1580
1581         ath10k_dbg(ar, ATH10K_DBG_HTT,
1582                    "htt rx delba tid %hu peer_id %hu\n",
1583                    tid, peer_id);
1584
1585         spin_lock_bh(&ar->data_lock);
1586         peer = ath10k_peer_find_by_id(ar, peer_id);
1587         if (!peer) {
1588                 ath10k_warn(ar, "received addba event for invalid peer_id: %hu\n",
1589                             peer_id);
1590                 spin_unlock_bh(&ar->data_lock);
1591                 return;
1592         }
1593
1594         arvif = ath10k_get_arvif(ar, peer->vdev_id);
1595         if (!arvif) {
1596                 ath10k_warn(ar, "received addba event for invalid vdev_id: %u\n",
1597                             peer->vdev_id);
1598                 spin_unlock_bh(&ar->data_lock);
1599                 return;
1600         }
1601
1602         ath10k_dbg(ar, ATH10K_DBG_HTT,
1603                    "htt rx stop rx ba session sta %pM tid %hu\n",
1604                    peer->addr, tid);
1605
1606         ieee80211_stop_rx_ba_session_offl(arvif->vif, peer->addr, tid);
1607         spin_unlock_bh(&ar->data_lock);
1608 }
1609
1610 void ath10k_htt_t2h_msg_handler(struct ath10k *ar, struct sk_buff *skb)
1611 {
1612         struct ath10k_htt *htt = &ar->htt;
1613         struct htt_resp *resp = (struct htt_resp *)skb->data;
1614
1615         /* confirm alignment */
1616         if (!IS_ALIGNED((unsigned long)skb->data, 4))
1617                 ath10k_warn(ar, "unaligned htt message, expect trouble\n");
1618
1619         ath10k_dbg(ar, ATH10K_DBG_HTT, "htt rx, msg_type: 0x%0X\n",
1620                    resp->hdr.msg_type);
1621         switch (resp->hdr.msg_type) {
1622         case HTT_T2H_MSG_TYPE_VERSION_CONF: {
1623                 htt->target_version_major = resp->ver_resp.major;
1624                 htt->target_version_minor = resp->ver_resp.minor;
1625                 complete(&htt->target_version_received);
1626                 break;
1627         }
1628         case HTT_T2H_MSG_TYPE_RX_IND:
1629                 spin_lock_bh(&htt->rx_ring.lock);
1630                 __skb_queue_tail(&htt->rx_compl_q, skb);
1631                 spin_unlock_bh(&htt->rx_ring.lock);
1632                 tasklet_schedule(&htt->txrx_compl_task);
1633                 return;
1634         case HTT_T2H_MSG_TYPE_PEER_MAP: {
1635                 struct htt_peer_map_event ev = {
1636                         .vdev_id = resp->peer_map.vdev_id,
1637                         .peer_id = __le16_to_cpu(resp->peer_map.peer_id),
1638                 };
1639                 memcpy(ev.addr, resp->peer_map.addr, sizeof(ev.addr));
1640                 ath10k_peer_map_event(htt, &ev);
1641                 break;
1642         }
1643         case HTT_T2H_MSG_TYPE_PEER_UNMAP: {
1644                 struct htt_peer_unmap_event ev = {
1645                         .peer_id = __le16_to_cpu(resp->peer_unmap.peer_id),
1646                 };
1647                 ath10k_peer_unmap_event(htt, &ev);
1648                 break;
1649         }
1650         case HTT_T2H_MSG_TYPE_MGMT_TX_COMPLETION: {
1651                 struct htt_tx_done tx_done = {};
1652                 int status = __le32_to_cpu(resp->mgmt_tx_completion.status);
1653
1654                 tx_done.msdu_id =
1655                         __le32_to_cpu(resp->mgmt_tx_completion.desc_id);
1656
1657                 switch (status) {
1658                 case HTT_MGMT_TX_STATUS_OK:
1659                         break;
1660                 case HTT_MGMT_TX_STATUS_RETRY:
1661                         tx_done.no_ack = true;
1662                         break;
1663                 case HTT_MGMT_TX_STATUS_DROP:
1664                         tx_done.discard = true;
1665                         break;
1666                 }
1667
1668                 spin_lock_bh(&htt->tx_lock);
1669                 ath10k_txrx_tx_unref(htt, &tx_done);
1670                 spin_unlock_bh(&htt->tx_lock);
1671                 break;
1672         }
1673         case HTT_T2H_MSG_TYPE_TX_COMPL_IND:
1674                 spin_lock_bh(&htt->tx_lock);
1675                 __skb_queue_tail(&htt->tx_compl_q, skb);
1676                 spin_unlock_bh(&htt->tx_lock);
1677                 tasklet_schedule(&htt->txrx_compl_task);
1678                 return;
1679         case HTT_T2H_MSG_TYPE_SEC_IND: {
1680                 struct ath10k *ar = htt->ar;
1681                 struct htt_security_indication *ev = &resp->security_indication;
1682
1683                 ath10k_dbg(ar, ATH10K_DBG_HTT,
1684                            "sec ind peer_id %d unicast %d type %d\n",
1685                           __le16_to_cpu(ev->peer_id),
1686                           !!(ev->flags & HTT_SECURITY_IS_UNICAST),
1687                           MS(ev->flags, HTT_SECURITY_TYPE));
1688                 complete(&ar->install_key_done);
1689                 break;
1690         }
1691         case HTT_T2H_MSG_TYPE_RX_FRAG_IND: {
1692                 ath10k_dbg_dump(ar, ATH10K_DBG_HTT_DUMP, NULL, "htt event: ",
1693                                 skb->data, skb->len);
1694                 ath10k_htt_rx_frag_handler(htt, &resp->rx_frag_ind);
1695                 break;
1696         }
1697         case HTT_T2H_MSG_TYPE_TEST:
1698                 /* FIX THIS */
1699                 break;
1700         case HTT_T2H_MSG_TYPE_STATS_CONF:
1701                 trace_ath10k_htt_stats(ar, skb->data, skb->len);
1702                 break;
1703         case HTT_T2H_MSG_TYPE_TX_INSPECT_IND:
1704                 /* Firmware can return tx frames if it's unable to fully
1705                  * process them and suspects host may be able to fix it. ath10k
1706                  * sends all tx frames as already inspected so this shouldn't
1707                  * happen unless fw has a bug.
1708                  */
1709                 ath10k_warn(ar, "received an unexpected htt tx inspect event\n");
1710                 break;
1711         case HTT_T2H_MSG_TYPE_RX_ADDBA:
1712                 ath10k_htt_rx_addba(ar, resp);
1713                 break;
1714         case HTT_T2H_MSG_TYPE_RX_DELBA:
1715                 ath10k_htt_rx_delba(ar, resp);
1716                 break;
1717         case HTT_T2H_MSG_TYPE_PKTLOG: {
1718                 struct ath10k_pktlog_hdr *hdr =
1719                         (struct ath10k_pktlog_hdr *)resp->pktlog_msg.payload;
1720
1721                 trace_ath10k_htt_pktlog(ar, resp->pktlog_msg.payload,
1722                                         sizeof(*hdr) +
1723                                         __le16_to_cpu(hdr->size));
1724                 break;
1725         }
1726         case HTT_T2H_MSG_TYPE_RX_FLUSH: {
1727                 /* Ignore this event because mac80211 takes care of Rx
1728                  * aggregation reordering.
1729                  */
1730                 break;
1731         }
1732         default:
1733                 ath10k_warn(ar, "htt event (%d) not handled\n",
1734                             resp->hdr.msg_type);
1735                 ath10k_dbg_dump(ar, ATH10K_DBG_HTT_DUMP, NULL, "htt event: ",
1736                                 skb->data, skb->len);
1737                 break;
1738         };
1739
1740         /* Free the indication buffer */
1741         dev_kfree_skb_any(skb);
1742 }
1743
1744 static void ath10k_htt_txrx_compl_task(unsigned long ptr)
1745 {
1746         struct ath10k_htt *htt = (struct ath10k_htt *)ptr;
1747         struct htt_resp *resp;
1748         struct sk_buff *skb;
1749
1750         spin_lock_bh(&htt->tx_lock);
1751         while ((skb = __skb_dequeue(&htt->tx_compl_q))) {
1752                 ath10k_htt_rx_frm_tx_compl(htt->ar, skb);
1753                 dev_kfree_skb_any(skb);
1754         }
1755         spin_unlock_bh(&htt->tx_lock);
1756
1757         spin_lock_bh(&htt->rx_ring.lock);
1758         while ((skb = __skb_dequeue(&htt->rx_compl_q))) {
1759                 resp = (struct htt_resp *)skb->data;
1760                 ath10k_htt_rx_handler(htt, &resp->rx_ind);
1761                 dev_kfree_skb_any(skb);
1762         }
1763         spin_unlock_bh(&htt->rx_ring.lock);
1764 }