ath10k: Remove qca98xx hw1.0 support
[cascardo/linux.git] / drivers / net / wireless / ath / ath10k / pci.c
1 /*
2  * Copyright (c) 2005-2011 Atheros Communications Inc.
3  * Copyright (c) 2011-2013 Qualcomm Atheros, Inc.
4  *
5  * Permission to use, copy, modify, and/or distribute this software for any
6  * purpose with or without fee is hereby granted, provided that the above
7  * copyright notice and this permission notice appear in all copies.
8  *
9  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
10  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
11  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
12  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
13  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
14  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
15  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
16  */
17
18 #include <linux/pci.h>
19 #include <linux/module.h>
20 #include <linux/interrupt.h>
21 #include <linux/spinlock.h>
22
23 #include "core.h"
24 #include "debug.h"
25
26 #include "targaddrs.h"
27 #include "bmi.h"
28
29 #include "hif.h"
30 #include "htc.h"
31
32 #include "ce.h"
33 #include "pci.h"
34
35 static unsigned int ath10k_target_ps;
36 module_param(ath10k_target_ps, uint, 0644);
37 MODULE_PARM_DESC(ath10k_target_ps, "Enable ath10k Target (SoC) PS option");
38
39 #define QCA988X_2_0_DEVICE_ID   (0x003c)
40
41 static DEFINE_PCI_DEVICE_TABLE(ath10k_pci_id_table) = {
42         { PCI_VDEVICE(ATHEROS, QCA988X_2_0_DEVICE_ID) }, /* PCI-E QCA988X V2 */
43         {0}
44 };
45
46 static int ath10k_pci_diag_read_access(struct ath10k *ar, u32 address,
47                                        u32 *data);
48
49 static void ath10k_pci_process_ce(struct ath10k *ar);
50 static int ath10k_pci_post_rx(struct ath10k *ar);
51 static int ath10k_pci_post_rx_pipe(struct hif_ce_pipe_info *pipe_info,
52                                              int num);
53 static void ath10k_pci_rx_pipe_cleanup(struct hif_ce_pipe_info *pipe_info);
54 static void ath10k_pci_stop_ce(struct ath10k *ar);
55 static void ath10k_pci_device_reset(struct ath10k *ar);
56 static int ath10k_pci_reset_target(struct ath10k *ar);
57 static int ath10k_pci_start_intr(struct ath10k *ar);
58 static void ath10k_pci_stop_intr(struct ath10k *ar);
59
60 static const struct ce_attr host_ce_config_wlan[] = {
61         /* host->target HTC control and raw streams */
62         { /* CE0 */ CE_ATTR_FLAGS, 0, 16, 256, 0, NULL,},
63         /* could be moved to share CE3 */
64         /* target->host HTT + HTC control */
65         { /* CE1 */ CE_ATTR_FLAGS, 0, 0, 512, 512, NULL,},
66         /* target->host WMI */
67         { /* CE2 */ CE_ATTR_FLAGS, 0, 0, 2048, 32, NULL,},
68         /* host->target WMI */
69         { /* CE3 */ CE_ATTR_FLAGS, 0, 32, 2048, 0, NULL,},
70         /* host->target HTT */
71         { /* CE4 */ CE_ATTR_FLAGS | CE_ATTR_DIS_INTR, 0,
72                     CE_HTT_H2T_MSG_SRC_NENTRIES, 256, 0, NULL,},
73         /* unused */
74         { /* CE5 */ CE_ATTR_FLAGS, 0, 0, 0, 0, NULL,},
75         /* Target autonomous hif_memcpy */
76         { /* CE6 */ CE_ATTR_FLAGS, 0, 0, 0, 0, NULL,},
77         /* ce_diag, the Diagnostic Window */
78         { /* CE7 */ CE_ATTR_FLAGS, 0, 2, DIAG_TRANSFER_LIMIT, 2, NULL,},
79 };
80
81 /* Target firmware's Copy Engine configuration. */
82 static const struct ce_pipe_config target_ce_config_wlan[] = {
83         /* host->target HTC control and raw streams */
84         { /* CE0 */ 0, PIPEDIR_OUT, 32, 256, CE_ATTR_FLAGS, 0,},
85         /* target->host HTT + HTC control */
86         { /* CE1 */ 1, PIPEDIR_IN, 32, 512, CE_ATTR_FLAGS, 0,},
87         /* target->host WMI */
88         { /* CE2 */ 2, PIPEDIR_IN, 32, 2048, CE_ATTR_FLAGS, 0,},
89         /* host->target WMI */
90         { /* CE3 */ 3, PIPEDIR_OUT, 32, 2048, CE_ATTR_FLAGS, 0,},
91         /* host->target HTT */
92         { /* CE4 */ 4, PIPEDIR_OUT, 256, 256, CE_ATTR_FLAGS, 0,},
93         /* NB: 50% of src nentries, since tx has 2 frags */
94         /* unused */
95         { /* CE5 */ 5, PIPEDIR_OUT, 32, 2048, CE_ATTR_FLAGS, 0,},
96         /* Reserved for target autonomous hif_memcpy */
97         { /* CE6 */ 6, PIPEDIR_INOUT, 32, 4096, CE_ATTR_FLAGS, 0,},
98         /* CE7 used only by Host */
99 };
100
101 /*
102  * Diagnostic read/write access is provided for startup/config/debug usage.
103  * Caller must guarantee proper alignment, when applicable, and single user
104  * at any moment.
105  */
106 static int ath10k_pci_diag_read_mem(struct ath10k *ar, u32 address, void *data,
107                                     int nbytes)
108 {
109         struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
110         int ret = 0;
111         u32 buf;
112         unsigned int completed_nbytes, orig_nbytes, remaining_bytes;
113         unsigned int id;
114         unsigned int flags;
115         struct ce_state *ce_diag;
116         /* Host buffer address in CE space */
117         u32 ce_data;
118         dma_addr_t ce_data_base = 0;
119         void *data_buf = NULL;
120         int i;
121
122         /*
123          * This code cannot handle reads to non-memory space. Redirect to the
124          * register read fn but preserve the multi word read capability of
125          * this fn
126          */
127         if (address < DRAM_BASE_ADDRESS) {
128                 if (!IS_ALIGNED(address, 4) ||
129                     !IS_ALIGNED((unsigned long)data, 4))
130                         return -EIO;
131
132                 while ((nbytes >= 4) &&  ((ret = ath10k_pci_diag_read_access(
133                                            ar, address, (u32 *)data)) == 0)) {
134                         nbytes -= sizeof(u32);
135                         address += sizeof(u32);
136                         data += sizeof(u32);
137                 }
138                 return ret;
139         }
140
141         ce_diag = ar_pci->ce_diag;
142
143         /*
144          * Allocate a temporary bounce buffer to hold caller's data
145          * to be DMA'ed from Target. This guarantees
146          *   1) 4-byte alignment
147          *   2) Buffer in DMA-able space
148          */
149         orig_nbytes = nbytes;
150         data_buf = (unsigned char *)pci_alloc_consistent(ar_pci->pdev,
151                                                          orig_nbytes,
152                                                          &ce_data_base);
153
154         if (!data_buf) {
155                 ret = -ENOMEM;
156                 goto done;
157         }
158         memset(data_buf, 0, orig_nbytes);
159
160         remaining_bytes = orig_nbytes;
161         ce_data = ce_data_base;
162         while (remaining_bytes) {
163                 nbytes = min_t(unsigned int, remaining_bytes,
164                                DIAG_TRANSFER_LIMIT);
165
166                 ret = ath10k_ce_recv_buf_enqueue(ce_diag, NULL, ce_data);
167                 if (ret != 0)
168                         goto done;
169
170                 /* Request CE to send from Target(!) address to Host buffer */
171                 /*
172                  * The address supplied by the caller is in the
173                  * Target CPU virtual address space.
174                  *
175                  * In order to use this address with the diagnostic CE,
176                  * convert it from Target CPU virtual address space
177                  * to CE address space
178                  */
179                 ath10k_pci_wake(ar);
180                 address = TARG_CPU_SPACE_TO_CE_SPACE(ar, ar_pci->mem,
181                                                      address);
182                 ath10k_pci_sleep(ar);
183
184                 ret = ath10k_ce_send(ce_diag, NULL, (u32)address, nbytes, 0,
185                                  0);
186                 if (ret)
187                         goto done;
188
189                 i = 0;
190                 while (ath10k_ce_completed_send_next(ce_diag, NULL, &buf,
191                                                      &completed_nbytes,
192                                                      &id) != 0) {
193                         mdelay(1);
194                         if (i++ > DIAG_ACCESS_CE_TIMEOUT_MS) {
195                                 ret = -EBUSY;
196                                 goto done;
197                         }
198                 }
199
200                 if (nbytes != completed_nbytes) {
201                         ret = -EIO;
202                         goto done;
203                 }
204
205                 if (buf != (u32) address) {
206                         ret = -EIO;
207                         goto done;
208                 }
209
210                 i = 0;
211                 while (ath10k_ce_completed_recv_next(ce_diag, NULL, &buf,
212                                                      &completed_nbytes,
213                                                      &id, &flags) != 0) {
214                         mdelay(1);
215
216                         if (i++ > DIAG_ACCESS_CE_TIMEOUT_MS) {
217                                 ret = -EBUSY;
218                                 goto done;
219                         }
220                 }
221
222                 if (nbytes != completed_nbytes) {
223                         ret = -EIO;
224                         goto done;
225                 }
226
227                 if (buf != ce_data) {
228                         ret = -EIO;
229                         goto done;
230                 }
231
232                 remaining_bytes -= nbytes;
233                 address += nbytes;
234                 ce_data += nbytes;
235         }
236
237 done:
238         if (ret == 0) {
239                 /* Copy data from allocated DMA buf to caller's buf */
240                 WARN_ON_ONCE(orig_nbytes & 3);
241                 for (i = 0; i < orig_nbytes / sizeof(__le32); i++) {
242                         ((u32 *)data)[i] =
243                                 __le32_to_cpu(((__le32 *)data_buf)[i]);
244                 }
245         } else
246                 ath10k_dbg(ATH10K_DBG_PCI, "%s failure (0x%x)\n",
247                            __func__, address);
248
249         if (data_buf)
250                 pci_free_consistent(ar_pci->pdev, orig_nbytes,
251                                     data_buf, ce_data_base);
252
253         return ret;
254 }
255
256 /* Read 4-byte aligned data from Target memory or register */
257 static int ath10k_pci_diag_read_access(struct ath10k *ar, u32 address,
258                                        u32 *data)
259 {
260         /* Assume range doesn't cross this boundary */
261         if (address >= DRAM_BASE_ADDRESS)
262                 return ath10k_pci_diag_read_mem(ar, address, data, sizeof(u32));
263
264         ath10k_pci_wake(ar);
265         *data = ath10k_pci_read32(ar, address);
266         ath10k_pci_sleep(ar);
267         return 0;
268 }
269
270 static int ath10k_pci_diag_write_mem(struct ath10k *ar, u32 address,
271                                      const void *data, int nbytes)
272 {
273         struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
274         int ret = 0;
275         u32 buf;
276         unsigned int completed_nbytes, orig_nbytes, remaining_bytes;
277         unsigned int id;
278         unsigned int flags;
279         struct ce_state *ce_diag;
280         void *data_buf = NULL;
281         u32 ce_data;    /* Host buffer address in CE space */
282         dma_addr_t ce_data_base = 0;
283         int i;
284
285         ce_diag = ar_pci->ce_diag;
286
287         /*
288          * Allocate a temporary bounce buffer to hold caller's data
289          * to be DMA'ed to Target. This guarantees
290          *   1) 4-byte alignment
291          *   2) Buffer in DMA-able space
292          */
293         orig_nbytes = nbytes;
294         data_buf = (unsigned char *)pci_alloc_consistent(ar_pci->pdev,
295                                                          orig_nbytes,
296                                                          &ce_data_base);
297         if (!data_buf) {
298                 ret = -ENOMEM;
299                 goto done;
300         }
301
302         /* Copy caller's data to allocated DMA buf */
303         WARN_ON_ONCE(orig_nbytes & 3);
304         for (i = 0; i < orig_nbytes / sizeof(__le32); i++)
305                 ((__le32 *)data_buf)[i] = __cpu_to_le32(((u32 *)data)[i]);
306
307         /*
308          * The address supplied by the caller is in the
309          * Target CPU virtual address space.
310          *
311          * In order to use this address with the diagnostic CE,
312          * convert it from
313          *    Target CPU virtual address space
314          * to
315          *    CE address space
316          */
317         ath10k_pci_wake(ar);
318         address = TARG_CPU_SPACE_TO_CE_SPACE(ar, ar_pci->mem, address);
319         ath10k_pci_sleep(ar);
320
321         remaining_bytes = orig_nbytes;
322         ce_data = ce_data_base;
323         while (remaining_bytes) {
324                 /* FIXME: check cast */
325                 nbytes = min_t(int, remaining_bytes, DIAG_TRANSFER_LIMIT);
326
327                 /* Set up to receive directly into Target(!) address */
328                 ret = ath10k_ce_recv_buf_enqueue(ce_diag, NULL, address);
329                 if (ret != 0)
330                         goto done;
331
332                 /*
333                  * Request CE to send caller-supplied data that
334                  * was copied to bounce buffer to Target(!) address.
335                  */
336                 ret = ath10k_ce_send(ce_diag, NULL, (u32) ce_data,
337                                      nbytes, 0, 0);
338                 if (ret != 0)
339                         goto done;
340
341                 i = 0;
342                 while (ath10k_ce_completed_send_next(ce_diag, NULL, &buf,
343                                                      &completed_nbytes,
344                                                      &id) != 0) {
345                         mdelay(1);
346
347                         if (i++ > DIAG_ACCESS_CE_TIMEOUT_MS) {
348                                 ret = -EBUSY;
349                                 goto done;
350                         }
351                 }
352
353                 if (nbytes != completed_nbytes) {
354                         ret = -EIO;
355                         goto done;
356                 }
357
358                 if (buf != ce_data) {
359                         ret = -EIO;
360                         goto done;
361                 }
362
363                 i = 0;
364                 while (ath10k_ce_completed_recv_next(ce_diag, NULL, &buf,
365                                                      &completed_nbytes,
366                                                      &id, &flags) != 0) {
367                         mdelay(1);
368
369                         if (i++ > DIAG_ACCESS_CE_TIMEOUT_MS) {
370                                 ret = -EBUSY;
371                                 goto done;
372                         }
373                 }
374
375                 if (nbytes != completed_nbytes) {
376                         ret = -EIO;
377                         goto done;
378                 }
379
380                 if (buf != address) {
381                         ret = -EIO;
382                         goto done;
383                 }
384
385                 remaining_bytes -= nbytes;
386                 address += nbytes;
387                 ce_data += nbytes;
388         }
389
390 done:
391         if (data_buf) {
392                 pci_free_consistent(ar_pci->pdev, orig_nbytes, data_buf,
393                                     ce_data_base);
394         }
395
396         if (ret != 0)
397                 ath10k_dbg(ATH10K_DBG_PCI, "%s failure (0x%x)\n", __func__,
398                            address);
399
400         return ret;
401 }
402
403 /* Write 4B data to Target memory or register */
404 static int ath10k_pci_diag_write_access(struct ath10k *ar, u32 address,
405                                         u32 data)
406 {
407         /* Assume range doesn't cross this boundary */
408         if (address >= DRAM_BASE_ADDRESS)
409                 return ath10k_pci_diag_write_mem(ar, address, &data,
410                                                  sizeof(u32));
411
412         ath10k_pci_wake(ar);
413         ath10k_pci_write32(ar, address, data);
414         ath10k_pci_sleep(ar);
415         return 0;
416 }
417
418 static bool ath10k_pci_target_is_awake(struct ath10k *ar)
419 {
420         void __iomem *mem = ath10k_pci_priv(ar)->mem;
421         u32 val;
422         val = ioread32(mem + PCIE_LOCAL_BASE_ADDRESS +
423                        RTC_STATE_ADDRESS);
424         return (RTC_STATE_V_GET(val) == RTC_STATE_V_ON);
425 }
426
427 static void ath10k_pci_wait(struct ath10k *ar)
428 {
429         int n = 100;
430
431         while (n-- && !ath10k_pci_target_is_awake(ar))
432                 msleep(10);
433
434         if (n < 0)
435                 ath10k_warn("Unable to wakeup target\n");
436 }
437
438 void ath10k_do_pci_wake(struct ath10k *ar)
439 {
440         struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
441         void __iomem *pci_addr = ar_pci->mem;
442         int tot_delay = 0;
443         int curr_delay = 5;
444
445         if (atomic_read(&ar_pci->keep_awake_count) == 0) {
446                 /* Force AWAKE */
447                 iowrite32(PCIE_SOC_WAKE_V_MASK,
448                           pci_addr + PCIE_LOCAL_BASE_ADDRESS +
449                           PCIE_SOC_WAKE_ADDRESS);
450         }
451         atomic_inc(&ar_pci->keep_awake_count);
452
453         if (ar_pci->verified_awake)
454                 return;
455
456         for (;;) {
457                 if (ath10k_pci_target_is_awake(ar)) {
458                         ar_pci->verified_awake = true;
459                         break;
460                 }
461
462                 if (tot_delay > PCIE_WAKE_TIMEOUT) {
463                         ath10k_warn("target takes too long to wake up (awake count %d)\n",
464                                     atomic_read(&ar_pci->keep_awake_count));
465                         break;
466                 }
467
468                 udelay(curr_delay);
469                 tot_delay += curr_delay;
470
471                 if (curr_delay < 50)
472                         curr_delay += 5;
473         }
474 }
475
476 void ath10k_do_pci_sleep(struct ath10k *ar)
477 {
478         struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
479         void __iomem *pci_addr = ar_pci->mem;
480
481         if (atomic_dec_and_test(&ar_pci->keep_awake_count)) {
482                 /* Allow sleep */
483                 ar_pci->verified_awake = false;
484                 iowrite32(PCIE_SOC_WAKE_RESET,
485                           pci_addr + PCIE_LOCAL_BASE_ADDRESS +
486                           PCIE_SOC_WAKE_ADDRESS);
487         }
488 }
489
490 /*
491  * FIXME: Handle OOM properly.
492  */
493 static inline
494 struct ath10k_pci_compl *get_free_compl(struct hif_ce_pipe_info *pipe_info)
495 {
496         struct ath10k_pci_compl *compl = NULL;
497
498         spin_lock_bh(&pipe_info->pipe_lock);
499         if (list_empty(&pipe_info->compl_free)) {
500                 ath10k_warn("Completion buffers are full\n");
501                 goto exit;
502         }
503         compl = list_first_entry(&pipe_info->compl_free,
504                                  struct ath10k_pci_compl, list);
505         list_del(&compl->list);
506 exit:
507         spin_unlock_bh(&pipe_info->pipe_lock);
508         return compl;
509 }
510
511 /* Called by lower (CE) layer when a send to Target completes. */
512 static void ath10k_pci_ce_send_done(struct ce_state *ce_state,
513                                     void *transfer_context,
514                                     u32 ce_data,
515                                     unsigned int nbytes,
516                                     unsigned int transfer_id)
517 {
518         struct ath10k *ar = ce_state->ar;
519         struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
520         struct hif_ce_pipe_info *pipe_info =  &ar_pci->pipe_info[ce_state->id];
521         struct ath10k_pci_compl *compl;
522         bool process = false;
523
524         do {
525                 /*
526                  * For the send completion of an item in sendlist, just
527                  * increment num_sends_allowed. The upper layer callback will
528                  * be triggered when last fragment is done with send.
529                  */
530                 if (transfer_context == CE_SENDLIST_ITEM_CTXT) {
531                         spin_lock_bh(&pipe_info->pipe_lock);
532                         pipe_info->num_sends_allowed++;
533                         spin_unlock_bh(&pipe_info->pipe_lock);
534                         continue;
535                 }
536
537                 compl = get_free_compl(pipe_info);
538                 if (!compl)
539                         break;
540
541                 compl->send_or_recv = HIF_CE_COMPLETE_SEND;
542                 compl->ce_state = ce_state;
543                 compl->pipe_info = pipe_info;
544                 compl->transfer_context = transfer_context;
545                 compl->nbytes = nbytes;
546                 compl->transfer_id = transfer_id;
547                 compl->flags = 0;
548
549                 /*
550                  * Add the completion to the processing queue.
551                  */
552                 spin_lock_bh(&ar_pci->compl_lock);
553                 list_add_tail(&compl->list, &ar_pci->compl_process);
554                 spin_unlock_bh(&ar_pci->compl_lock);
555
556                 process = true;
557         } while (ath10k_ce_completed_send_next(ce_state,
558                                                            &transfer_context,
559                                                            &ce_data, &nbytes,
560                                                            &transfer_id) == 0);
561
562         /*
563          * If only some of the items within a sendlist have completed,
564          * don't invoke completion processing until the entire sendlist
565          * has been sent.
566          */
567         if (!process)
568                 return;
569
570         ath10k_pci_process_ce(ar);
571 }
572
573 /* Called by lower (CE) layer when data is received from the Target. */
574 static void ath10k_pci_ce_recv_data(struct ce_state *ce_state,
575                                     void *transfer_context, u32 ce_data,
576                                     unsigned int nbytes,
577                                     unsigned int transfer_id,
578                                     unsigned int flags)
579 {
580         struct ath10k *ar = ce_state->ar;
581         struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
582         struct hif_ce_pipe_info *pipe_info =  &ar_pci->pipe_info[ce_state->id];
583         struct ath10k_pci_compl *compl;
584         struct sk_buff *skb;
585
586         do {
587                 compl = get_free_compl(pipe_info);
588                 if (!compl)
589                         break;
590
591                 compl->send_or_recv = HIF_CE_COMPLETE_RECV;
592                 compl->ce_state = ce_state;
593                 compl->pipe_info = pipe_info;
594                 compl->transfer_context = transfer_context;
595                 compl->nbytes = nbytes;
596                 compl->transfer_id = transfer_id;
597                 compl->flags = flags;
598
599                 skb = transfer_context;
600                 dma_unmap_single(ar->dev, ATH10K_SKB_CB(skb)->paddr,
601                                  skb->len + skb_tailroom(skb),
602                                  DMA_FROM_DEVICE);
603                 /*
604                  * Add the completion to the processing queue.
605                  */
606                 spin_lock_bh(&ar_pci->compl_lock);
607                 list_add_tail(&compl->list, &ar_pci->compl_process);
608                 spin_unlock_bh(&ar_pci->compl_lock);
609
610         } while (ath10k_ce_completed_recv_next(ce_state,
611                                                            &transfer_context,
612                                                            &ce_data, &nbytes,
613                                                            &transfer_id,
614                                                            &flags) == 0);
615
616         ath10k_pci_process_ce(ar);
617 }
618
619 /* Send the first nbytes bytes of the buffer */
620 static int ath10k_pci_hif_send_head(struct ath10k *ar, u8 pipe_id,
621                                     unsigned int transfer_id,
622                                     unsigned int bytes, struct sk_buff *nbuf)
623 {
624         struct ath10k_skb_cb *skb_cb = ATH10K_SKB_CB(nbuf);
625         struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
626         struct hif_ce_pipe_info *pipe_info = &(ar_pci->pipe_info[pipe_id]);
627         struct ce_state *ce_hdl = pipe_info->ce_hdl;
628         struct ce_sendlist sendlist;
629         unsigned int len;
630         u32 flags = 0;
631         int ret;
632
633         memset(&sendlist, 0, sizeof(struct ce_sendlist));
634
635         len = min(bytes, nbuf->len);
636         bytes -= len;
637
638         if (len & 3)
639                 ath10k_warn("skb not aligned to 4-byte boundary (%d)\n", len);
640
641         ath10k_dbg(ATH10K_DBG_PCI,
642                    "pci send data vaddr %p paddr 0x%llx len %d as %d bytes\n",
643                    nbuf->data, (unsigned long long) skb_cb->paddr,
644                    nbuf->len, len);
645         ath10k_dbg_dump(ATH10K_DBG_PCI_DUMP, NULL,
646                         "ath10k tx: data: ",
647                         nbuf->data, nbuf->len);
648
649         ath10k_ce_sendlist_buf_add(&sendlist, skb_cb->paddr, len, flags);
650
651         /* Make sure we have resources to handle this request */
652         spin_lock_bh(&pipe_info->pipe_lock);
653         if (!pipe_info->num_sends_allowed) {
654                 ath10k_warn("Pipe: %d is full\n", pipe_id);
655                 spin_unlock_bh(&pipe_info->pipe_lock);
656                 return -ENOSR;
657         }
658         pipe_info->num_sends_allowed--;
659         spin_unlock_bh(&pipe_info->pipe_lock);
660
661         ret = ath10k_ce_sendlist_send(ce_hdl, nbuf, &sendlist, transfer_id);
662         if (ret)
663                 ath10k_warn("CE send failed: %p\n", nbuf);
664
665         return ret;
666 }
667
668 static u16 ath10k_pci_hif_get_free_queue_number(struct ath10k *ar, u8 pipe)
669 {
670         struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
671         struct hif_ce_pipe_info *pipe_info = &(ar_pci->pipe_info[pipe]);
672         int ret;
673
674         spin_lock_bh(&pipe_info->pipe_lock);
675         ret = pipe_info->num_sends_allowed;
676         spin_unlock_bh(&pipe_info->pipe_lock);
677
678         return ret;
679 }
680
681 static void ath10k_pci_hif_dump_area(struct ath10k *ar)
682 {
683         u32 reg_dump_area = 0;
684         u32 reg_dump_values[REG_DUMP_COUNT_QCA988X] = {};
685         u32 host_addr;
686         int ret;
687         u32 i;
688
689         ath10k_err("firmware crashed!\n");
690         ath10k_err("hardware name %s version 0x%x\n",
691                    ar->hw_params.name, ar->target_version);
692         ath10k_err("firmware version: %u.%u.%u.%u\n", ar->fw_version_major,
693                    ar->fw_version_minor, ar->fw_version_release,
694                    ar->fw_version_build);
695
696         host_addr = host_interest_item_address(HI_ITEM(hi_failure_state));
697         if (ath10k_pci_diag_read_mem(ar, host_addr,
698                                      &reg_dump_area, sizeof(u32)) != 0) {
699                 ath10k_warn("could not read hi_failure_state\n");
700                 return;
701         }
702
703         ath10k_err("target register Dump Location: 0x%08X\n", reg_dump_area);
704
705         ret = ath10k_pci_diag_read_mem(ar, reg_dump_area,
706                                        &reg_dump_values[0],
707                                        REG_DUMP_COUNT_QCA988X * sizeof(u32));
708         if (ret != 0) {
709                 ath10k_err("could not dump FW Dump Area\n");
710                 return;
711         }
712
713         BUILD_BUG_ON(REG_DUMP_COUNT_QCA988X % 4);
714
715         ath10k_err("target Register Dump\n");
716         for (i = 0; i < REG_DUMP_COUNT_QCA988X; i += 4)
717                 ath10k_err("[%02d]: 0x%08X 0x%08X 0x%08X 0x%08X\n",
718                            i,
719                            reg_dump_values[i],
720                            reg_dump_values[i + 1],
721                            reg_dump_values[i + 2],
722                            reg_dump_values[i + 3]);
723
724         ieee80211_queue_work(ar->hw, &ar->restart_work);
725 }
726
727 static void ath10k_pci_hif_send_complete_check(struct ath10k *ar, u8 pipe,
728                                                int force)
729 {
730         if (!force) {
731                 int resources;
732                 /*
733                  * Decide whether to actually poll for completions, or just
734                  * wait for a later chance.
735                  * If there seem to be plenty of resources left, then just wait
736                  * since checking involves reading a CE register, which is a
737                  * relatively expensive operation.
738                  */
739                 resources = ath10k_pci_hif_get_free_queue_number(ar, pipe);
740
741                 /*
742                  * If at least 50% of the total resources are still available,
743                  * don't bother checking again yet.
744                  */
745                 if (resources > (host_ce_config_wlan[pipe].src_nentries >> 1))
746                         return;
747         }
748         ath10k_ce_per_engine_service(ar, pipe);
749 }
750
751 static void ath10k_pci_hif_set_callbacks(struct ath10k *ar,
752                                          struct ath10k_hif_cb *callbacks)
753 {
754         struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
755
756         ath10k_dbg(ATH10K_DBG_PCI, "%s\n", __func__);
757
758         memcpy(&ar_pci->msg_callbacks_current, callbacks,
759                sizeof(ar_pci->msg_callbacks_current));
760 }
761
762 static int ath10k_pci_start_ce(struct ath10k *ar)
763 {
764         struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
765         struct ce_state *ce_diag = ar_pci->ce_diag;
766         const struct ce_attr *attr;
767         struct hif_ce_pipe_info *pipe_info;
768         struct ath10k_pci_compl *compl;
769         int i, pipe_num, completions, disable_interrupts;
770
771         spin_lock_init(&ar_pci->compl_lock);
772         INIT_LIST_HEAD(&ar_pci->compl_process);
773
774         for (pipe_num = 0; pipe_num < ar_pci->ce_count; pipe_num++) {
775                 pipe_info = &ar_pci->pipe_info[pipe_num];
776
777                 spin_lock_init(&pipe_info->pipe_lock);
778                 INIT_LIST_HEAD(&pipe_info->compl_free);
779
780                 /* Handle Diagnostic CE specially */
781                 if (pipe_info->ce_hdl == ce_diag)
782                         continue;
783
784                 attr = &host_ce_config_wlan[pipe_num];
785                 completions = 0;
786
787                 if (attr->src_nentries) {
788                         disable_interrupts = attr->flags & CE_ATTR_DIS_INTR;
789                         ath10k_ce_send_cb_register(pipe_info->ce_hdl,
790                                                    ath10k_pci_ce_send_done,
791                                                    disable_interrupts);
792                         completions += attr->src_nentries;
793                         pipe_info->num_sends_allowed = attr->src_nentries - 1;
794                 }
795
796                 if (attr->dest_nentries) {
797                         ath10k_ce_recv_cb_register(pipe_info->ce_hdl,
798                                                    ath10k_pci_ce_recv_data);
799                         completions += attr->dest_nentries;
800                 }
801
802                 if (completions == 0)
803                         continue;
804
805                 for (i = 0; i < completions; i++) {
806                         compl = kmalloc(sizeof(struct ath10k_pci_compl),
807                                         GFP_KERNEL);
808                         if (!compl) {
809                                 ath10k_warn("No memory for completion state\n");
810                                 ath10k_pci_stop_ce(ar);
811                                 return -ENOMEM;
812                         }
813
814                         compl->send_or_recv = HIF_CE_COMPLETE_FREE;
815                         list_add_tail(&compl->list, &pipe_info->compl_free);
816                 }
817         }
818
819         return 0;
820 }
821
822 static void ath10k_pci_stop_ce(struct ath10k *ar)
823 {
824         struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
825         struct ath10k_pci_compl *compl;
826         struct sk_buff *skb;
827         int i;
828
829         ath10k_ce_disable_interrupts(ar);
830
831         /* Cancel the pending tasklet */
832         tasklet_kill(&ar_pci->intr_tq);
833
834         for (i = 0; i < CE_COUNT; i++)
835                 tasklet_kill(&ar_pci->pipe_info[i].intr);
836
837         /* Mark pending completions as aborted, so that upper layers free up
838          * their associated resources */
839         spin_lock_bh(&ar_pci->compl_lock);
840         list_for_each_entry(compl, &ar_pci->compl_process, list) {
841                 skb = (struct sk_buff *)compl->transfer_context;
842                 ATH10K_SKB_CB(skb)->is_aborted = true;
843         }
844         spin_unlock_bh(&ar_pci->compl_lock);
845 }
846
847 static void ath10k_pci_cleanup_ce(struct ath10k *ar)
848 {
849         struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
850         struct ath10k_pci_compl *compl, *tmp;
851         struct hif_ce_pipe_info *pipe_info;
852         struct sk_buff *netbuf;
853         int pipe_num;
854
855         /* Free pending completions. */
856         spin_lock_bh(&ar_pci->compl_lock);
857         if (!list_empty(&ar_pci->compl_process))
858                 ath10k_warn("pending completions still present! possible memory leaks.\n");
859
860         list_for_each_entry_safe(compl, tmp, &ar_pci->compl_process, list) {
861                 list_del(&compl->list);
862                 netbuf = (struct sk_buff *)compl->transfer_context;
863                 dev_kfree_skb_any(netbuf);
864                 kfree(compl);
865         }
866         spin_unlock_bh(&ar_pci->compl_lock);
867
868         /* Free unused completions for each pipe. */
869         for (pipe_num = 0; pipe_num < ar_pci->ce_count; pipe_num++) {
870                 pipe_info = &ar_pci->pipe_info[pipe_num];
871
872                 spin_lock_bh(&pipe_info->pipe_lock);
873                 list_for_each_entry_safe(compl, tmp,
874                                          &pipe_info->compl_free, list) {
875                         list_del(&compl->list);
876                         kfree(compl);
877                 }
878                 spin_unlock_bh(&pipe_info->pipe_lock);
879         }
880 }
881
882 static void ath10k_pci_process_ce(struct ath10k *ar)
883 {
884         struct ath10k_pci *ar_pci = ar->hif.priv;
885         struct ath10k_hif_cb *cb = &ar_pci->msg_callbacks_current;
886         struct ath10k_pci_compl *compl;
887         struct sk_buff *skb;
888         unsigned int nbytes;
889         int ret, send_done = 0;
890
891         /* Upper layers aren't ready to handle tx/rx completions in parallel so
892          * we must serialize all completion processing. */
893
894         spin_lock_bh(&ar_pci->compl_lock);
895         if (ar_pci->compl_processing) {
896                 spin_unlock_bh(&ar_pci->compl_lock);
897                 return;
898         }
899         ar_pci->compl_processing = true;
900         spin_unlock_bh(&ar_pci->compl_lock);
901
902         for (;;) {
903                 spin_lock_bh(&ar_pci->compl_lock);
904                 if (list_empty(&ar_pci->compl_process)) {
905                         spin_unlock_bh(&ar_pci->compl_lock);
906                         break;
907                 }
908                 compl = list_first_entry(&ar_pci->compl_process,
909                                          struct ath10k_pci_compl, list);
910                 list_del(&compl->list);
911                 spin_unlock_bh(&ar_pci->compl_lock);
912
913                 if (compl->send_or_recv == HIF_CE_COMPLETE_SEND) {
914                         cb->tx_completion(ar,
915                                           compl->transfer_context,
916                                           compl->transfer_id);
917                         send_done = 1;
918                 } else {
919                         ret = ath10k_pci_post_rx_pipe(compl->pipe_info, 1);
920                         if (ret) {
921                                 ath10k_warn("Unable to post recv buffer for pipe: %d\n",
922                                             compl->pipe_info->pipe_num);
923                                 break;
924                         }
925
926                         skb = (struct sk_buff *)compl->transfer_context;
927                         nbytes = compl->nbytes;
928
929                         ath10k_dbg(ATH10K_DBG_PCI,
930                                    "ath10k_pci_ce_recv_data netbuf=%p  nbytes=%d\n",
931                                    skb, nbytes);
932                         ath10k_dbg_dump(ATH10K_DBG_PCI_DUMP, NULL,
933                                         "ath10k rx: ", skb->data, nbytes);
934
935                         if (skb->len + skb_tailroom(skb) >= nbytes) {
936                                 skb_trim(skb, 0);
937                                 skb_put(skb, nbytes);
938                                 cb->rx_completion(ar, skb,
939                                                   compl->pipe_info->pipe_num);
940                         } else {
941                                 ath10k_warn("rxed more than expected (nbytes %d, max %d)",
942                                             nbytes,
943                                             skb->len + skb_tailroom(skb));
944                         }
945                 }
946
947                 compl->send_or_recv = HIF_CE_COMPLETE_FREE;
948
949                 /*
950                  * Add completion back to the pipe's free list.
951                  */
952                 spin_lock_bh(&compl->pipe_info->pipe_lock);
953                 list_add_tail(&compl->list, &compl->pipe_info->compl_free);
954                 compl->pipe_info->num_sends_allowed += send_done;
955                 spin_unlock_bh(&compl->pipe_info->pipe_lock);
956         }
957
958         spin_lock_bh(&ar_pci->compl_lock);
959         ar_pci->compl_processing = false;
960         spin_unlock_bh(&ar_pci->compl_lock);
961 }
962
963 /* TODO - temporary mapping while we have too few CE's */
964 static int ath10k_pci_hif_map_service_to_pipe(struct ath10k *ar,
965                                               u16 service_id, u8 *ul_pipe,
966                                               u8 *dl_pipe, int *ul_is_polled,
967                                               int *dl_is_polled)
968 {
969         int ret = 0;
970
971         /* polling for received messages not supported */
972         *dl_is_polled = 0;
973
974         switch (service_id) {
975         case ATH10K_HTC_SVC_ID_HTT_DATA_MSG:
976                 /*
977                  * Host->target HTT gets its own pipe, so it can be polled
978                  * while other pipes are interrupt driven.
979                  */
980                 *ul_pipe = 4;
981                 /*
982                  * Use the same target->host pipe for HTC ctrl, HTC raw
983                  * streams, and HTT.
984                  */
985                 *dl_pipe = 1;
986                 break;
987
988         case ATH10K_HTC_SVC_ID_RSVD_CTRL:
989         case ATH10K_HTC_SVC_ID_TEST_RAW_STREAMS:
990                 /*
991                  * Note: HTC_RAW_STREAMS_SVC is currently unused, and
992                  * HTC_CTRL_RSVD_SVC could share the same pipe as the
993                  * WMI services.  So, if another CE is needed, change
994                  * this to *ul_pipe = 3, which frees up CE 0.
995                  */
996                 /* *ul_pipe = 3; */
997                 *ul_pipe = 0;
998                 *dl_pipe = 1;
999                 break;
1000
1001         case ATH10K_HTC_SVC_ID_WMI_DATA_BK:
1002         case ATH10K_HTC_SVC_ID_WMI_DATA_BE:
1003         case ATH10K_HTC_SVC_ID_WMI_DATA_VI:
1004         case ATH10K_HTC_SVC_ID_WMI_DATA_VO:
1005
1006         case ATH10K_HTC_SVC_ID_WMI_CONTROL:
1007                 *ul_pipe = 3;
1008                 *dl_pipe = 2;
1009                 break;
1010
1011                 /* pipe 5 unused   */
1012                 /* pipe 6 reserved */
1013                 /* pipe 7 reserved */
1014
1015         default:
1016                 ret = -1;
1017                 break;
1018         }
1019         *ul_is_polled =
1020                 (host_ce_config_wlan[*ul_pipe].flags & CE_ATTR_DIS_INTR) != 0;
1021
1022         return ret;
1023 }
1024
1025 static void ath10k_pci_hif_get_default_pipe(struct ath10k *ar,
1026                                                 u8 *ul_pipe, u8 *dl_pipe)
1027 {
1028         int ul_is_polled, dl_is_polled;
1029
1030         (void)ath10k_pci_hif_map_service_to_pipe(ar,
1031                                                  ATH10K_HTC_SVC_ID_RSVD_CTRL,
1032                                                  ul_pipe,
1033                                                  dl_pipe,
1034                                                  &ul_is_polled,
1035                                                  &dl_is_polled);
1036 }
1037
1038 static int ath10k_pci_post_rx_pipe(struct hif_ce_pipe_info *pipe_info,
1039                                    int num)
1040 {
1041         struct ath10k *ar = pipe_info->hif_ce_state;
1042         struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
1043         struct ce_state *ce_state = pipe_info->ce_hdl;
1044         struct sk_buff *skb;
1045         dma_addr_t ce_data;
1046         int i, ret = 0;
1047
1048         if (pipe_info->buf_sz == 0)
1049                 return 0;
1050
1051         for (i = 0; i < num; i++) {
1052                 skb = dev_alloc_skb(pipe_info->buf_sz);
1053                 if (!skb) {
1054                         ath10k_warn("could not allocate skbuff for pipe %d\n",
1055                                     num);
1056                         ret = -ENOMEM;
1057                         goto err;
1058                 }
1059
1060                 WARN_ONCE((unsigned long)skb->data & 3, "unaligned skb");
1061
1062                 ce_data = dma_map_single(ar->dev, skb->data,
1063                                          skb->len + skb_tailroom(skb),
1064                                          DMA_FROM_DEVICE);
1065
1066                 if (unlikely(dma_mapping_error(ar->dev, ce_data))) {
1067                         ath10k_warn("could not dma map skbuff\n");
1068                         dev_kfree_skb_any(skb);
1069                         ret = -EIO;
1070                         goto err;
1071                 }
1072
1073                 ATH10K_SKB_CB(skb)->paddr = ce_data;
1074
1075                 pci_dma_sync_single_for_device(ar_pci->pdev, ce_data,
1076                                                pipe_info->buf_sz,
1077                                                PCI_DMA_FROMDEVICE);
1078
1079                 ret = ath10k_ce_recv_buf_enqueue(ce_state, (void *)skb,
1080                                                  ce_data);
1081                 if (ret) {
1082                         ath10k_warn("could not enqueue to pipe %d (%d)\n",
1083                                     num, ret);
1084                         goto err;
1085                 }
1086         }
1087
1088         return ret;
1089
1090 err:
1091         ath10k_pci_rx_pipe_cleanup(pipe_info);
1092         return ret;
1093 }
1094
1095 static int ath10k_pci_post_rx(struct ath10k *ar)
1096 {
1097         struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
1098         struct hif_ce_pipe_info *pipe_info;
1099         const struct ce_attr *attr;
1100         int pipe_num, ret = 0;
1101
1102         for (pipe_num = 0; pipe_num < ar_pci->ce_count; pipe_num++) {
1103                 pipe_info = &ar_pci->pipe_info[pipe_num];
1104                 attr = &host_ce_config_wlan[pipe_num];
1105
1106                 if (attr->dest_nentries == 0)
1107                         continue;
1108
1109                 ret = ath10k_pci_post_rx_pipe(pipe_info,
1110                                               attr->dest_nentries - 1);
1111                 if (ret) {
1112                         ath10k_warn("Unable to replenish recv buffers for pipe: %d\n",
1113                                     pipe_num);
1114
1115                         for (; pipe_num >= 0; pipe_num--) {
1116                                 pipe_info = &ar_pci->pipe_info[pipe_num];
1117                                 ath10k_pci_rx_pipe_cleanup(pipe_info);
1118                         }
1119                         return ret;
1120                 }
1121         }
1122
1123         return 0;
1124 }
1125
1126 static int ath10k_pci_hif_start(struct ath10k *ar)
1127 {
1128         struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
1129         int ret;
1130
1131         ret = ath10k_pci_start_ce(ar);
1132         if (ret) {
1133                 ath10k_warn("could not start CE (%d)\n", ret);
1134                 return ret;
1135         }
1136
1137         /* Post buffers once to start things off. */
1138         ret = ath10k_pci_post_rx(ar);
1139         if (ret) {
1140                 ath10k_warn("could not post rx pipes (%d)\n", ret);
1141                 return ret;
1142         }
1143
1144         ar_pci->started = 1;
1145         return 0;
1146 }
1147
1148 static void ath10k_pci_rx_pipe_cleanup(struct hif_ce_pipe_info *pipe_info)
1149 {
1150         struct ath10k *ar;
1151         struct ath10k_pci *ar_pci;
1152         struct ce_state *ce_hdl;
1153         u32 buf_sz;
1154         struct sk_buff *netbuf;
1155         u32 ce_data;
1156
1157         buf_sz = pipe_info->buf_sz;
1158
1159         /* Unused Copy Engine */
1160         if (buf_sz == 0)
1161                 return;
1162
1163         ar = pipe_info->hif_ce_state;
1164         ar_pci = ath10k_pci_priv(ar);
1165
1166         if (!ar_pci->started)
1167                 return;
1168
1169         ce_hdl = pipe_info->ce_hdl;
1170
1171         while (ath10k_ce_revoke_recv_next(ce_hdl, (void **)&netbuf,
1172                                           &ce_data) == 0) {
1173                 dma_unmap_single(ar->dev, ATH10K_SKB_CB(netbuf)->paddr,
1174                                  netbuf->len + skb_tailroom(netbuf),
1175                                  DMA_FROM_DEVICE);
1176                 dev_kfree_skb_any(netbuf);
1177         }
1178 }
1179
1180 static void ath10k_pci_tx_pipe_cleanup(struct hif_ce_pipe_info *pipe_info)
1181 {
1182         struct ath10k *ar;
1183         struct ath10k_pci *ar_pci;
1184         struct ce_state *ce_hdl;
1185         struct sk_buff *netbuf;
1186         u32 ce_data;
1187         unsigned int nbytes;
1188         unsigned int id;
1189         u32 buf_sz;
1190
1191         buf_sz = pipe_info->buf_sz;
1192
1193         /* Unused Copy Engine */
1194         if (buf_sz == 0)
1195                 return;
1196
1197         ar = pipe_info->hif_ce_state;
1198         ar_pci = ath10k_pci_priv(ar);
1199
1200         if (!ar_pci->started)
1201                 return;
1202
1203         ce_hdl = pipe_info->ce_hdl;
1204
1205         while (ath10k_ce_cancel_send_next(ce_hdl, (void **)&netbuf,
1206                                           &ce_data, &nbytes, &id) == 0) {
1207                 if (netbuf != CE_SENDLIST_ITEM_CTXT)
1208                         /*
1209                          * Indicate the completion to higer layer to free
1210                          * the buffer
1211                          */
1212                         ATH10K_SKB_CB(netbuf)->is_aborted = true;
1213                         ar_pci->msg_callbacks_current.tx_completion(ar,
1214                                                                     netbuf,
1215                                                                     id);
1216         }
1217 }
1218
1219 /*
1220  * Cleanup residual buffers for device shutdown:
1221  *    buffers that were enqueued for receive
1222  *    buffers that were to be sent
1223  * Note: Buffers that had completed but which were
1224  * not yet processed are on a completion queue. They
1225  * are handled when the completion thread shuts down.
1226  */
1227 static void ath10k_pci_buffer_cleanup(struct ath10k *ar)
1228 {
1229         struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
1230         int pipe_num;
1231
1232         for (pipe_num = 0; pipe_num < ar_pci->ce_count; pipe_num++) {
1233                 struct hif_ce_pipe_info *pipe_info;
1234
1235                 pipe_info = &ar_pci->pipe_info[pipe_num];
1236                 ath10k_pci_rx_pipe_cleanup(pipe_info);
1237                 ath10k_pci_tx_pipe_cleanup(pipe_info);
1238         }
1239 }
1240
1241 static void ath10k_pci_ce_deinit(struct ath10k *ar)
1242 {
1243         struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
1244         struct hif_ce_pipe_info *pipe_info;
1245         int pipe_num;
1246
1247         for (pipe_num = 0; pipe_num < ar_pci->ce_count; pipe_num++) {
1248                 pipe_info = &ar_pci->pipe_info[pipe_num];
1249                 if (pipe_info->ce_hdl) {
1250                         ath10k_ce_deinit(pipe_info->ce_hdl);
1251                         pipe_info->ce_hdl = NULL;
1252                         pipe_info->buf_sz = 0;
1253                 }
1254         }
1255 }
1256
1257 static void ath10k_pci_disable_irqs(struct ath10k *ar)
1258 {
1259         struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
1260         int i;
1261
1262         for (i = 0; i < max(1, ar_pci->num_msi_intrs); i++)
1263                 disable_irq(ar_pci->pdev->irq + i);
1264 }
1265
1266 static void ath10k_pci_hif_stop(struct ath10k *ar)
1267 {
1268         struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
1269
1270         ath10k_dbg(ATH10K_DBG_PCI, "%s\n", __func__);
1271
1272         /* Irqs are never explicitly re-enabled. They are implicitly re-enabled
1273          * by ath10k_pci_start_intr(). */
1274         ath10k_pci_disable_irqs(ar);
1275
1276         ath10k_pci_stop_ce(ar);
1277
1278         /* At this point, asynchronous threads are stopped, the target should
1279          * not DMA nor interrupt. We process the leftovers and then free
1280          * everything else up. */
1281
1282         ath10k_pci_process_ce(ar);
1283         ath10k_pci_cleanup_ce(ar);
1284         ath10k_pci_buffer_cleanup(ar);
1285
1286         ar_pci->started = 0;
1287 }
1288
1289 static int ath10k_pci_hif_exchange_bmi_msg(struct ath10k *ar,
1290                                            void *req, u32 req_len,
1291                                            void *resp, u32 *resp_len)
1292 {
1293         struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
1294         struct ce_state *ce_tx = ar_pci->pipe_info[BMI_CE_NUM_TO_TARG].ce_hdl;
1295         struct ce_state *ce_rx = ar_pci->pipe_info[BMI_CE_NUM_TO_HOST].ce_hdl;
1296         dma_addr_t req_paddr = 0;
1297         dma_addr_t resp_paddr = 0;
1298         struct bmi_xfer xfer = {};
1299         void *treq, *tresp = NULL;
1300         int ret = 0;
1301
1302         if (resp && !resp_len)
1303                 return -EINVAL;
1304
1305         if (resp && resp_len && *resp_len == 0)
1306                 return -EINVAL;
1307
1308         treq = kmemdup(req, req_len, GFP_KERNEL);
1309         if (!treq)
1310                 return -ENOMEM;
1311
1312         req_paddr = dma_map_single(ar->dev, treq, req_len, DMA_TO_DEVICE);
1313         ret = dma_mapping_error(ar->dev, req_paddr);
1314         if (ret)
1315                 goto err_dma;
1316
1317         if (resp && resp_len) {
1318                 tresp = kzalloc(*resp_len, GFP_KERNEL);
1319                 if (!tresp) {
1320                         ret = -ENOMEM;
1321                         goto err_req;
1322                 }
1323
1324                 resp_paddr = dma_map_single(ar->dev, tresp, *resp_len,
1325                                             DMA_FROM_DEVICE);
1326                 ret = dma_mapping_error(ar->dev, resp_paddr);
1327                 if (ret)
1328                         goto err_req;
1329
1330                 xfer.wait_for_resp = true;
1331                 xfer.resp_len = 0;
1332
1333                 ath10k_ce_recv_buf_enqueue(ce_rx, &xfer, resp_paddr);
1334         }
1335
1336         init_completion(&xfer.done);
1337
1338         ret = ath10k_ce_send(ce_tx, &xfer, req_paddr, req_len, -1, 0);
1339         if (ret)
1340                 goto err_resp;
1341
1342         ret = wait_for_completion_timeout(&xfer.done,
1343                                           BMI_COMMUNICATION_TIMEOUT_HZ);
1344         if (ret <= 0) {
1345                 u32 unused_buffer;
1346                 unsigned int unused_nbytes;
1347                 unsigned int unused_id;
1348
1349                 ret = -ETIMEDOUT;
1350                 ath10k_ce_cancel_send_next(ce_tx, NULL, &unused_buffer,
1351                                            &unused_nbytes, &unused_id);
1352         } else {
1353                 /* non-zero means we did not time out */
1354                 ret = 0;
1355         }
1356
1357 err_resp:
1358         if (resp) {
1359                 u32 unused_buffer;
1360
1361                 ath10k_ce_revoke_recv_next(ce_rx, NULL, &unused_buffer);
1362                 dma_unmap_single(ar->dev, resp_paddr,
1363                                  *resp_len, DMA_FROM_DEVICE);
1364         }
1365 err_req:
1366         dma_unmap_single(ar->dev, req_paddr, req_len, DMA_TO_DEVICE);
1367
1368         if (ret == 0 && resp_len) {
1369                 *resp_len = min(*resp_len, xfer.resp_len);
1370                 memcpy(resp, tresp, xfer.resp_len);
1371         }
1372 err_dma:
1373         kfree(treq);
1374         kfree(tresp);
1375
1376         return ret;
1377 }
1378
1379 static void ath10k_pci_bmi_send_done(struct ce_state *ce_state,
1380                                      void *transfer_context,
1381                                      u32 data,
1382                                      unsigned int nbytes,
1383                                      unsigned int transfer_id)
1384 {
1385         struct bmi_xfer *xfer = transfer_context;
1386
1387         if (xfer->wait_for_resp)
1388                 return;
1389
1390         complete(&xfer->done);
1391 }
1392
1393 static void ath10k_pci_bmi_recv_data(struct ce_state *ce_state,
1394                                      void *transfer_context,
1395                                      u32 data,
1396                                      unsigned int nbytes,
1397                                      unsigned int transfer_id,
1398                                      unsigned int flags)
1399 {
1400         struct bmi_xfer *xfer = transfer_context;
1401
1402         if (!xfer->wait_for_resp) {
1403                 ath10k_warn("unexpected: BMI data received; ignoring\n");
1404                 return;
1405         }
1406
1407         xfer->resp_len = nbytes;
1408         complete(&xfer->done);
1409 }
1410
1411 /*
1412  * Map from service/endpoint to Copy Engine.
1413  * This table is derived from the CE_PCI TABLE, above.
1414  * It is passed to the Target at startup for use by firmware.
1415  */
1416 static const struct service_to_pipe target_service_to_ce_map_wlan[] = {
1417         {
1418                  ATH10K_HTC_SVC_ID_WMI_DATA_VO,
1419                  PIPEDIR_OUT,           /* out = UL = host -> target */
1420                  3,
1421         },
1422         {
1423                  ATH10K_HTC_SVC_ID_WMI_DATA_VO,
1424                  PIPEDIR_IN,            /* in = DL = target -> host */
1425                  2,
1426         },
1427         {
1428                  ATH10K_HTC_SVC_ID_WMI_DATA_BK,
1429                  PIPEDIR_OUT,           /* out = UL = host -> target */
1430                  3,
1431         },
1432         {
1433                  ATH10K_HTC_SVC_ID_WMI_DATA_BK,
1434                  PIPEDIR_IN,            /* in = DL = target -> host */
1435                  2,
1436         },
1437         {
1438                  ATH10K_HTC_SVC_ID_WMI_DATA_BE,
1439                  PIPEDIR_OUT,           /* out = UL = host -> target */
1440                  3,
1441         },
1442         {
1443                  ATH10K_HTC_SVC_ID_WMI_DATA_BE,
1444                  PIPEDIR_IN,            /* in = DL = target -> host */
1445                  2,
1446         },
1447         {
1448                  ATH10K_HTC_SVC_ID_WMI_DATA_VI,
1449                  PIPEDIR_OUT,           /* out = UL = host -> target */
1450                  3,
1451         },
1452         {
1453                  ATH10K_HTC_SVC_ID_WMI_DATA_VI,
1454                  PIPEDIR_IN,            /* in = DL = target -> host */
1455                  2,
1456         },
1457         {
1458                  ATH10K_HTC_SVC_ID_WMI_CONTROL,
1459                  PIPEDIR_OUT,           /* out = UL = host -> target */
1460                  3,
1461         },
1462         {
1463                  ATH10K_HTC_SVC_ID_WMI_CONTROL,
1464                  PIPEDIR_IN,            /* in = DL = target -> host */
1465                  2,
1466         },
1467         {
1468                  ATH10K_HTC_SVC_ID_RSVD_CTRL,
1469                  PIPEDIR_OUT,           /* out = UL = host -> target */
1470                  0,             /* could be moved to 3 (share with WMI) */
1471         },
1472         {
1473                  ATH10K_HTC_SVC_ID_RSVD_CTRL,
1474                  PIPEDIR_IN,            /* in = DL = target -> host */
1475                  1,
1476         },
1477         {
1478                  ATH10K_HTC_SVC_ID_TEST_RAW_STREAMS,    /* not currently used */
1479                  PIPEDIR_OUT,           /* out = UL = host -> target */
1480                  0,
1481         },
1482         {
1483                  ATH10K_HTC_SVC_ID_TEST_RAW_STREAMS,    /* not currently used */
1484                  PIPEDIR_IN,            /* in = DL = target -> host */
1485                  1,
1486         },
1487         {
1488                  ATH10K_HTC_SVC_ID_HTT_DATA_MSG,
1489                  PIPEDIR_OUT,           /* out = UL = host -> target */
1490                  4,
1491         },
1492         {
1493                  ATH10K_HTC_SVC_ID_HTT_DATA_MSG,
1494                  PIPEDIR_IN,            /* in = DL = target -> host */
1495                  1,
1496         },
1497
1498         /* (Additions here) */
1499
1500         {                               /* Must be last */
1501                  0,
1502                  0,
1503                  0,
1504         },
1505 };
1506
1507 /*
1508  * Send an interrupt to the device to wake up the Target CPU
1509  * so it has an opportunity to notice any changed state.
1510  */
1511 static int ath10k_pci_wake_target_cpu(struct ath10k *ar)
1512 {
1513         int ret;
1514         u32 core_ctrl;
1515
1516         ret = ath10k_pci_diag_read_access(ar, SOC_CORE_BASE_ADDRESS |
1517                                               CORE_CTRL_ADDRESS,
1518                                           &core_ctrl);
1519         if (ret) {
1520                 ath10k_warn("Unable to read core ctrl\n");
1521                 return ret;
1522         }
1523
1524         /* A_INUM_FIRMWARE interrupt to Target CPU */
1525         core_ctrl |= CORE_CTRL_CPU_INTR_MASK;
1526
1527         ret = ath10k_pci_diag_write_access(ar, SOC_CORE_BASE_ADDRESS |
1528                                                CORE_CTRL_ADDRESS,
1529                                            core_ctrl);
1530         if (ret)
1531                 ath10k_warn("Unable to set interrupt mask\n");
1532
1533         return ret;
1534 }
1535
1536 static int ath10k_pci_init_config(struct ath10k *ar)
1537 {
1538         u32 interconnect_targ_addr;
1539         u32 pcie_state_targ_addr = 0;
1540         u32 pipe_cfg_targ_addr = 0;
1541         u32 svc_to_pipe_map = 0;
1542         u32 pcie_config_flags = 0;
1543         u32 ealloc_value;
1544         u32 ealloc_targ_addr;
1545         u32 flag2_value;
1546         u32 flag2_targ_addr;
1547         int ret = 0;
1548
1549         /* Download to Target the CE Config and the service-to-CE map */
1550         interconnect_targ_addr =
1551                 host_interest_item_address(HI_ITEM(hi_interconnect_state));
1552
1553         /* Supply Target-side CE configuration */
1554         ret = ath10k_pci_diag_read_access(ar, interconnect_targ_addr,
1555                                           &pcie_state_targ_addr);
1556         if (ret != 0) {
1557                 ath10k_err("Failed to get pcie state addr: %d\n", ret);
1558                 return ret;
1559         }
1560
1561         if (pcie_state_targ_addr == 0) {
1562                 ret = -EIO;
1563                 ath10k_err("Invalid pcie state addr\n");
1564                 return ret;
1565         }
1566
1567         ret = ath10k_pci_diag_read_access(ar, pcie_state_targ_addr +
1568                                           offsetof(struct pcie_state,
1569                                                    pipe_cfg_addr),
1570                                           &pipe_cfg_targ_addr);
1571         if (ret != 0) {
1572                 ath10k_err("Failed to get pipe cfg addr: %d\n", ret);
1573                 return ret;
1574         }
1575
1576         if (pipe_cfg_targ_addr == 0) {
1577                 ret = -EIO;
1578                 ath10k_err("Invalid pipe cfg addr\n");
1579                 return ret;
1580         }
1581
1582         ret = ath10k_pci_diag_write_mem(ar, pipe_cfg_targ_addr,
1583                                  target_ce_config_wlan,
1584                                  sizeof(target_ce_config_wlan));
1585
1586         if (ret != 0) {
1587                 ath10k_err("Failed to write pipe cfg: %d\n", ret);
1588                 return ret;
1589         }
1590
1591         ret = ath10k_pci_diag_read_access(ar, pcie_state_targ_addr +
1592                                           offsetof(struct pcie_state,
1593                                                    svc_to_pipe_map),
1594                                           &svc_to_pipe_map);
1595         if (ret != 0) {
1596                 ath10k_err("Failed to get svc/pipe map: %d\n", ret);
1597                 return ret;
1598         }
1599
1600         if (svc_to_pipe_map == 0) {
1601                 ret = -EIO;
1602                 ath10k_err("Invalid svc_to_pipe map\n");
1603                 return ret;
1604         }
1605
1606         ret = ath10k_pci_diag_write_mem(ar, svc_to_pipe_map,
1607                                  target_service_to_ce_map_wlan,
1608                                  sizeof(target_service_to_ce_map_wlan));
1609         if (ret != 0) {
1610                 ath10k_err("Failed to write svc/pipe map: %d\n", ret);
1611                 return ret;
1612         }
1613
1614         ret = ath10k_pci_diag_read_access(ar, pcie_state_targ_addr +
1615                                           offsetof(struct pcie_state,
1616                                                    config_flags),
1617                                           &pcie_config_flags);
1618         if (ret != 0) {
1619                 ath10k_err("Failed to get pcie config_flags: %d\n", ret);
1620                 return ret;
1621         }
1622
1623         pcie_config_flags &= ~PCIE_CONFIG_FLAG_ENABLE_L1;
1624
1625         ret = ath10k_pci_diag_write_mem(ar, pcie_state_targ_addr +
1626                                  offsetof(struct pcie_state, config_flags),
1627                                  &pcie_config_flags,
1628                                  sizeof(pcie_config_flags));
1629         if (ret != 0) {
1630                 ath10k_err("Failed to write pcie config_flags: %d\n", ret);
1631                 return ret;
1632         }
1633
1634         /* configure early allocation */
1635         ealloc_targ_addr = host_interest_item_address(HI_ITEM(hi_early_alloc));
1636
1637         ret = ath10k_pci_diag_read_access(ar, ealloc_targ_addr, &ealloc_value);
1638         if (ret != 0) {
1639                 ath10k_err("Faile to get early alloc val: %d\n", ret);
1640                 return ret;
1641         }
1642
1643         /* first bank is switched to IRAM */
1644         ealloc_value |= ((HI_EARLY_ALLOC_MAGIC << HI_EARLY_ALLOC_MAGIC_SHIFT) &
1645                          HI_EARLY_ALLOC_MAGIC_MASK);
1646         ealloc_value |= ((1 << HI_EARLY_ALLOC_IRAM_BANKS_SHIFT) &
1647                          HI_EARLY_ALLOC_IRAM_BANKS_MASK);
1648
1649         ret = ath10k_pci_diag_write_access(ar, ealloc_targ_addr, ealloc_value);
1650         if (ret != 0) {
1651                 ath10k_err("Failed to set early alloc val: %d\n", ret);
1652                 return ret;
1653         }
1654
1655         /* Tell Target to proceed with initialization */
1656         flag2_targ_addr = host_interest_item_address(HI_ITEM(hi_option_flag2));
1657
1658         ret = ath10k_pci_diag_read_access(ar, flag2_targ_addr, &flag2_value);
1659         if (ret != 0) {
1660                 ath10k_err("Failed to get option val: %d\n", ret);
1661                 return ret;
1662         }
1663
1664         flag2_value |= HI_OPTION_EARLY_CFG_DONE;
1665
1666         ret = ath10k_pci_diag_write_access(ar, flag2_targ_addr, flag2_value);
1667         if (ret != 0) {
1668                 ath10k_err("Failed to set option val: %d\n", ret);
1669                 return ret;
1670         }
1671
1672         return 0;
1673 }
1674
1675
1676
1677 static int ath10k_pci_ce_init(struct ath10k *ar)
1678 {
1679         struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
1680         struct hif_ce_pipe_info *pipe_info;
1681         const struct ce_attr *attr;
1682         int pipe_num;
1683
1684         for (pipe_num = 0; pipe_num < ar_pci->ce_count; pipe_num++) {
1685                 pipe_info = &ar_pci->pipe_info[pipe_num];
1686                 pipe_info->pipe_num = pipe_num;
1687                 pipe_info->hif_ce_state = ar;
1688                 attr = &host_ce_config_wlan[pipe_num];
1689
1690                 pipe_info->ce_hdl = ath10k_ce_init(ar, pipe_num, attr);
1691                 if (pipe_info->ce_hdl == NULL) {
1692                         ath10k_err("Unable to initialize CE for pipe: %d\n",
1693                                    pipe_num);
1694
1695                         /* It is safe to call it here. It checks if ce_hdl is
1696                          * valid for each pipe */
1697                         ath10k_pci_ce_deinit(ar);
1698                         return -1;
1699                 }
1700
1701                 if (pipe_num == ar_pci->ce_count - 1) {
1702                         /*
1703                          * Reserve the ultimate CE for
1704                          * diagnostic Window support
1705                          */
1706                         ar_pci->ce_diag =
1707                         ar_pci->pipe_info[ar_pci->ce_count - 1].ce_hdl;
1708                         continue;
1709                 }
1710
1711                 pipe_info->buf_sz = (size_t) (attr->src_sz_max);
1712         }
1713
1714         /*
1715          * Initially, establish CE completion handlers for use with BMI.
1716          * These are overwritten with generic handlers after we exit BMI phase.
1717          */
1718         pipe_info = &ar_pci->pipe_info[BMI_CE_NUM_TO_TARG];
1719         ath10k_ce_send_cb_register(pipe_info->ce_hdl,
1720                                    ath10k_pci_bmi_send_done, 0);
1721
1722         pipe_info = &ar_pci->pipe_info[BMI_CE_NUM_TO_HOST];
1723         ath10k_ce_recv_cb_register(pipe_info->ce_hdl,
1724                                    ath10k_pci_bmi_recv_data);
1725
1726         return 0;
1727 }
1728
1729 static void ath10k_pci_fw_interrupt_handler(struct ath10k *ar)
1730 {
1731         struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
1732         u32 fw_indicator_address, fw_indicator;
1733
1734         ath10k_pci_wake(ar);
1735
1736         fw_indicator_address = ar_pci->fw_indicator_address;
1737         fw_indicator = ath10k_pci_read32(ar, fw_indicator_address);
1738
1739         if (fw_indicator & FW_IND_EVENT_PENDING) {
1740                 /* ACK: clear Target-side pending event */
1741                 ath10k_pci_write32(ar, fw_indicator_address,
1742                                    fw_indicator & ~FW_IND_EVENT_PENDING);
1743
1744                 if (ar_pci->started) {
1745                         ath10k_pci_hif_dump_area(ar);
1746                 } else {
1747                         /*
1748                          * Probable Target failure before we're prepared
1749                          * to handle it.  Generally unexpected.
1750                          */
1751                         ath10k_warn("early firmware event indicated\n");
1752                 }
1753         }
1754
1755         ath10k_pci_sleep(ar);
1756 }
1757
1758 static int ath10k_pci_hif_power_up(struct ath10k *ar)
1759 {
1760         struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
1761         int ret;
1762
1763         ret = ath10k_pci_start_intr(ar);
1764         if (ret) {
1765                 ath10k_err("could not start interrupt handling (%d)\n", ret);
1766                 goto err;
1767         }
1768
1769         /*
1770          * Bring the target up cleanly.
1771          *
1772          * The target may be in an undefined state with an AUX-powered Target
1773          * and a Host in WoW mode. If the Host crashes, loses power, or is
1774          * restarted (without unloading the driver) then the Target is left
1775          * (aux) powered and running. On a subsequent driver load, the Target
1776          * is in an unexpected state. We try to catch that here in order to
1777          * reset the Target and retry the probe.
1778          */
1779         ath10k_pci_device_reset(ar);
1780
1781         ret = ath10k_pci_reset_target(ar);
1782         if (ret)
1783                 goto err_irq;
1784
1785         if (!test_bit(ATH10K_PCI_FEATURE_SOC_POWER_SAVE, ar_pci->features))
1786                 /* Force AWAKE forever */
1787                 ath10k_do_pci_wake(ar);
1788
1789         ret = ath10k_pci_ce_init(ar);
1790         if (ret)
1791                 goto err_ps;
1792
1793         ret = ath10k_pci_init_config(ar);
1794         if (ret)
1795                 goto err_ce;
1796
1797         ret = ath10k_pci_wake_target_cpu(ar);
1798         if (ret) {
1799                 ath10k_err("could not wake up target CPU (%d)\n", ret);
1800                 goto err_ce;
1801         }
1802
1803         return 0;
1804
1805 err_ce:
1806         ath10k_pci_ce_deinit(ar);
1807 err_ps:
1808         if (!test_bit(ATH10K_PCI_FEATURE_SOC_POWER_SAVE, ar_pci->features))
1809                 ath10k_do_pci_sleep(ar);
1810 err_irq:
1811         ath10k_pci_stop_intr(ar);
1812 err:
1813         return ret;
1814 }
1815
1816 static void ath10k_pci_hif_power_down(struct ath10k *ar)
1817 {
1818         struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
1819
1820         ath10k_pci_stop_intr(ar);
1821
1822         ath10k_pci_ce_deinit(ar);
1823         if (!test_bit(ATH10K_PCI_FEATURE_SOC_POWER_SAVE, ar_pci->features))
1824                 ath10k_do_pci_sleep(ar);
1825 }
1826
1827 #ifdef CONFIG_PM
1828
1829 #define ATH10K_PCI_PM_CONTROL 0x44
1830
1831 static int ath10k_pci_hif_suspend(struct ath10k *ar)
1832 {
1833         struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
1834         struct pci_dev *pdev = ar_pci->pdev;
1835         u32 val;
1836
1837         pci_read_config_dword(pdev, ATH10K_PCI_PM_CONTROL, &val);
1838
1839         if ((val & 0x000000ff) != 0x3) {
1840                 pci_save_state(pdev);
1841                 pci_disable_device(pdev);
1842                 pci_write_config_dword(pdev, ATH10K_PCI_PM_CONTROL,
1843                                        (val & 0xffffff00) | 0x03);
1844         }
1845
1846         return 0;
1847 }
1848
1849 static int ath10k_pci_hif_resume(struct ath10k *ar)
1850 {
1851         struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
1852         struct pci_dev *pdev = ar_pci->pdev;
1853         u32 val;
1854
1855         pci_read_config_dword(pdev, ATH10K_PCI_PM_CONTROL, &val);
1856
1857         if ((val & 0x000000ff) != 0) {
1858                 pci_restore_state(pdev);
1859                 pci_write_config_dword(pdev, ATH10K_PCI_PM_CONTROL,
1860                                        val & 0xffffff00);
1861                 /*
1862                  * Suspend/Resume resets the PCI configuration space,
1863                  * so we have to re-disable the RETRY_TIMEOUT register (0x41)
1864                  * to keep PCI Tx retries from interfering with C3 CPU state
1865                  */
1866                 pci_read_config_dword(pdev, 0x40, &val);
1867
1868                 if ((val & 0x0000ff00) != 0)
1869                         pci_write_config_dword(pdev, 0x40, val & 0xffff00ff);
1870         }
1871
1872         return 0;
1873 }
1874 #endif
1875
1876 static const struct ath10k_hif_ops ath10k_pci_hif_ops = {
1877         .send_head              = ath10k_pci_hif_send_head,
1878         .exchange_bmi_msg       = ath10k_pci_hif_exchange_bmi_msg,
1879         .start                  = ath10k_pci_hif_start,
1880         .stop                   = ath10k_pci_hif_stop,
1881         .map_service_to_pipe    = ath10k_pci_hif_map_service_to_pipe,
1882         .get_default_pipe       = ath10k_pci_hif_get_default_pipe,
1883         .send_complete_check    = ath10k_pci_hif_send_complete_check,
1884         .set_callbacks          = ath10k_pci_hif_set_callbacks,
1885         .get_free_queue_number  = ath10k_pci_hif_get_free_queue_number,
1886         .power_up               = ath10k_pci_hif_power_up,
1887         .power_down             = ath10k_pci_hif_power_down,
1888 #ifdef CONFIG_PM
1889         .suspend                = ath10k_pci_hif_suspend,
1890         .resume                 = ath10k_pci_hif_resume,
1891 #endif
1892 };
1893
1894 static void ath10k_pci_ce_tasklet(unsigned long ptr)
1895 {
1896         struct hif_ce_pipe_info *pipe = (struct hif_ce_pipe_info *)ptr;
1897         struct ath10k_pci *ar_pci = pipe->ar_pci;
1898
1899         ath10k_ce_per_engine_service(ar_pci->ar, pipe->pipe_num);
1900 }
1901
1902 static void ath10k_msi_err_tasklet(unsigned long data)
1903 {
1904         struct ath10k *ar = (struct ath10k *)data;
1905
1906         ath10k_pci_fw_interrupt_handler(ar);
1907 }
1908
1909 /*
1910  * Handler for a per-engine interrupt on a PARTICULAR CE.
1911  * This is used in cases where each CE has a private MSI interrupt.
1912  */
1913 static irqreturn_t ath10k_pci_per_engine_handler(int irq, void *arg)
1914 {
1915         struct ath10k *ar = arg;
1916         struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
1917         int ce_id = irq - ar_pci->pdev->irq - MSI_ASSIGN_CE_INITIAL;
1918
1919         if (ce_id < 0 || ce_id >= ARRAY_SIZE(ar_pci->pipe_info)) {
1920                 ath10k_warn("unexpected/invalid irq %d ce_id %d\n", irq, ce_id);
1921                 return IRQ_HANDLED;
1922         }
1923
1924         /*
1925          * NOTE: We are able to derive ce_id from irq because we
1926          * use a one-to-one mapping for CE's 0..5.
1927          * CE's 6 & 7 do not use interrupts at all.
1928          *
1929          * This mapping must be kept in sync with the mapping
1930          * used by firmware.
1931          */
1932         tasklet_schedule(&ar_pci->pipe_info[ce_id].intr);
1933         return IRQ_HANDLED;
1934 }
1935
1936 static irqreturn_t ath10k_pci_msi_fw_handler(int irq, void *arg)
1937 {
1938         struct ath10k *ar = arg;
1939         struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
1940
1941         tasklet_schedule(&ar_pci->msi_fw_err);
1942         return IRQ_HANDLED;
1943 }
1944
1945 /*
1946  * Top-level interrupt handler for all PCI interrupts from a Target.
1947  * When a block of MSI interrupts is allocated, this top-level handler
1948  * is not used; instead, we directly call the correct sub-handler.
1949  */
1950 static irqreturn_t ath10k_pci_interrupt_handler(int irq, void *arg)
1951 {
1952         struct ath10k *ar = arg;
1953         struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
1954
1955         if (ar_pci->num_msi_intrs == 0) {
1956                 /*
1957                  * IMPORTANT: INTR_CLR regiser has to be set after
1958                  * INTR_ENABLE is set to 0, otherwise interrupt can not be
1959                  * really cleared.
1960                  */
1961                 iowrite32(0, ar_pci->mem +
1962                           (SOC_CORE_BASE_ADDRESS |
1963                            PCIE_INTR_ENABLE_ADDRESS));
1964                 iowrite32(PCIE_INTR_FIRMWARE_MASK |
1965                           PCIE_INTR_CE_MASK_ALL,
1966                           ar_pci->mem + (SOC_CORE_BASE_ADDRESS |
1967                                          PCIE_INTR_CLR_ADDRESS));
1968                 /*
1969                  * IMPORTANT: this extra read transaction is required to
1970                  * flush the posted write buffer.
1971                  */
1972                 (void) ioread32(ar_pci->mem +
1973                                 (SOC_CORE_BASE_ADDRESS |
1974                                  PCIE_INTR_ENABLE_ADDRESS));
1975         }
1976
1977         tasklet_schedule(&ar_pci->intr_tq);
1978
1979         return IRQ_HANDLED;
1980 }
1981
1982 static void ath10k_pci_tasklet(unsigned long data)
1983 {
1984         struct ath10k *ar = (struct ath10k *)data;
1985         struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
1986
1987         ath10k_pci_fw_interrupt_handler(ar); /* FIXME: Handle FW error */
1988         ath10k_ce_per_engine_service_any(ar);
1989
1990         if (ar_pci->num_msi_intrs == 0) {
1991                 /* Enable Legacy PCI line interrupts */
1992                 iowrite32(PCIE_INTR_FIRMWARE_MASK |
1993                           PCIE_INTR_CE_MASK_ALL,
1994                           ar_pci->mem + (SOC_CORE_BASE_ADDRESS |
1995                                          PCIE_INTR_ENABLE_ADDRESS));
1996                 /*
1997                  * IMPORTANT: this extra read transaction is required to
1998                  * flush the posted write buffer
1999                  */
2000                 (void) ioread32(ar_pci->mem +
2001                                 (SOC_CORE_BASE_ADDRESS |
2002                                  PCIE_INTR_ENABLE_ADDRESS));
2003         }
2004 }
2005
2006 static int ath10k_pci_start_intr_msix(struct ath10k *ar, int num)
2007 {
2008         struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
2009         int ret;
2010         int i;
2011
2012         ret = pci_enable_msi_block(ar_pci->pdev, num);
2013         if (ret)
2014                 return ret;
2015
2016         ret = request_irq(ar_pci->pdev->irq + MSI_ASSIGN_FW,
2017                           ath10k_pci_msi_fw_handler,
2018                           IRQF_SHARED, "ath10k_pci", ar);
2019         if (ret) {
2020                 ath10k_warn("request_irq(%d) failed %d\n",
2021                             ar_pci->pdev->irq + MSI_ASSIGN_FW, ret);
2022
2023                 pci_disable_msi(ar_pci->pdev);
2024                 return ret;
2025         }
2026
2027         for (i = MSI_ASSIGN_CE_INITIAL; i <= MSI_ASSIGN_CE_MAX; i++) {
2028                 ret = request_irq(ar_pci->pdev->irq + i,
2029                                   ath10k_pci_per_engine_handler,
2030                                   IRQF_SHARED, "ath10k_pci", ar);
2031                 if (ret) {
2032                         ath10k_warn("request_irq(%d) failed %d\n",
2033                                     ar_pci->pdev->irq + i, ret);
2034
2035                         for (i--; i >= MSI_ASSIGN_CE_INITIAL; i--)
2036                                 free_irq(ar_pci->pdev->irq + i, ar);
2037
2038                         free_irq(ar_pci->pdev->irq + MSI_ASSIGN_FW, ar);
2039                         pci_disable_msi(ar_pci->pdev);
2040                         return ret;
2041                 }
2042         }
2043
2044         ath10k_info("MSI-X interrupt handling (%d intrs)\n", num);
2045         return 0;
2046 }
2047
2048 static int ath10k_pci_start_intr_msi(struct ath10k *ar)
2049 {
2050         struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
2051         int ret;
2052
2053         ret = pci_enable_msi(ar_pci->pdev);
2054         if (ret < 0)
2055                 return ret;
2056
2057         ret = request_irq(ar_pci->pdev->irq,
2058                           ath10k_pci_interrupt_handler,
2059                           IRQF_SHARED, "ath10k_pci", ar);
2060         if (ret < 0) {
2061                 pci_disable_msi(ar_pci->pdev);
2062                 return ret;
2063         }
2064
2065         ath10k_info("MSI interrupt handling\n");
2066         return 0;
2067 }
2068
2069 static int ath10k_pci_start_intr_legacy(struct ath10k *ar)
2070 {
2071         struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
2072         int ret;
2073
2074         ret = request_irq(ar_pci->pdev->irq,
2075                           ath10k_pci_interrupt_handler,
2076                           IRQF_SHARED, "ath10k_pci", ar);
2077         if (ret < 0)
2078                 return ret;
2079
2080         /*
2081          * Make sure to wake the Target before enabling Legacy
2082          * Interrupt.
2083          */
2084         iowrite32(PCIE_SOC_WAKE_V_MASK,
2085                   ar_pci->mem + PCIE_LOCAL_BASE_ADDRESS +
2086                   PCIE_SOC_WAKE_ADDRESS);
2087
2088         ath10k_pci_wait(ar);
2089
2090         /*
2091          * A potential race occurs here: The CORE_BASE write
2092          * depends on target correctly decoding AXI address but
2093          * host won't know when target writes BAR to CORE_CTRL.
2094          * This write might get lost if target has NOT written BAR.
2095          * For now, fix the race by repeating the write in below
2096          * synchronization checking.
2097          */
2098         iowrite32(PCIE_INTR_FIRMWARE_MASK |
2099                   PCIE_INTR_CE_MASK_ALL,
2100                   ar_pci->mem + (SOC_CORE_BASE_ADDRESS |
2101                                  PCIE_INTR_ENABLE_ADDRESS));
2102         iowrite32(PCIE_SOC_WAKE_RESET,
2103                   ar_pci->mem + PCIE_LOCAL_BASE_ADDRESS +
2104                   PCIE_SOC_WAKE_ADDRESS);
2105
2106         ath10k_info("legacy interrupt handling\n");
2107         return 0;
2108 }
2109
2110 static int ath10k_pci_start_intr(struct ath10k *ar)
2111 {
2112         struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
2113         int num = MSI_NUM_REQUEST;
2114         int ret;
2115         int i;
2116
2117         tasklet_init(&ar_pci->intr_tq, ath10k_pci_tasklet, (unsigned long) ar);
2118         tasklet_init(&ar_pci->msi_fw_err, ath10k_msi_err_tasklet,
2119                      (unsigned long) ar);
2120
2121         for (i = 0; i < CE_COUNT; i++) {
2122                 ar_pci->pipe_info[i].ar_pci = ar_pci;
2123                 tasklet_init(&ar_pci->pipe_info[i].intr,
2124                              ath10k_pci_ce_tasklet,
2125                              (unsigned long)&ar_pci->pipe_info[i]);
2126         }
2127
2128         if (!test_bit(ATH10K_PCI_FEATURE_MSI_X, ar_pci->features))
2129                 num = 1;
2130
2131         if (num > 1) {
2132                 ret = ath10k_pci_start_intr_msix(ar, num);
2133                 if (ret == 0)
2134                         goto exit;
2135
2136                 ath10k_warn("MSI-X didn't succeed (%d), trying MSI\n", ret);
2137                 num = 1;
2138         }
2139
2140         if (num == 1) {
2141                 ret = ath10k_pci_start_intr_msi(ar);
2142                 if (ret == 0)
2143                         goto exit;
2144
2145                 ath10k_warn("MSI didn't succeed (%d), trying legacy INTR\n",
2146                             ret);
2147                 num = 0;
2148         }
2149
2150         ret = ath10k_pci_start_intr_legacy(ar);
2151
2152 exit:
2153         ar_pci->num_msi_intrs = num;
2154         ar_pci->ce_count = CE_COUNT;
2155         return ret;
2156 }
2157
2158 static void ath10k_pci_stop_intr(struct ath10k *ar)
2159 {
2160         struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
2161         int i;
2162
2163         /* There's at least one interrupt irregardless whether its legacy INTR
2164          * or MSI or MSI-X */
2165         for (i = 0; i < max(1, ar_pci->num_msi_intrs); i++)
2166                 free_irq(ar_pci->pdev->irq + i, ar);
2167
2168         if (ar_pci->num_msi_intrs > 0)
2169                 pci_disable_msi(ar_pci->pdev);
2170 }
2171
2172 static int ath10k_pci_reset_target(struct ath10k *ar)
2173 {
2174         struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
2175         int wait_limit = 300; /* 3 sec */
2176
2177         /* Wait for Target to finish initialization before we proceed. */
2178         iowrite32(PCIE_SOC_WAKE_V_MASK,
2179                   ar_pci->mem + PCIE_LOCAL_BASE_ADDRESS +
2180                   PCIE_SOC_WAKE_ADDRESS);
2181
2182         ath10k_pci_wait(ar);
2183
2184         while (wait_limit-- &&
2185                !(ioread32(ar_pci->mem + FW_INDICATOR_ADDRESS) &
2186                  FW_IND_INITIALIZED)) {
2187                 if (ar_pci->num_msi_intrs == 0)
2188                         /* Fix potential race by repeating CORE_BASE writes */
2189                         iowrite32(PCIE_INTR_FIRMWARE_MASK |
2190                                   PCIE_INTR_CE_MASK_ALL,
2191                                   ar_pci->mem + (SOC_CORE_BASE_ADDRESS |
2192                                                  PCIE_INTR_ENABLE_ADDRESS));
2193                 mdelay(10);
2194         }
2195
2196         if (wait_limit < 0) {
2197                 ath10k_err("Target stalled\n");
2198                 iowrite32(PCIE_SOC_WAKE_RESET,
2199                           ar_pci->mem + PCIE_LOCAL_BASE_ADDRESS +
2200                           PCIE_SOC_WAKE_ADDRESS);
2201                 return -EIO;
2202         }
2203
2204         iowrite32(PCIE_SOC_WAKE_RESET,
2205                   ar_pci->mem + PCIE_LOCAL_BASE_ADDRESS +
2206                   PCIE_SOC_WAKE_ADDRESS);
2207
2208         return 0;
2209 }
2210
2211 static void ath10k_pci_device_reset(struct ath10k *ar)
2212 {
2213         struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
2214         void __iomem *mem = ar_pci->mem;
2215         int i;
2216         u32 val;
2217
2218         if (!SOC_GLOBAL_RESET_ADDRESS)
2219                 return;
2220
2221         if (!mem)
2222                 return;
2223
2224         ath10k_pci_reg_write32(mem, PCIE_SOC_WAKE_ADDRESS,
2225                                PCIE_SOC_WAKE_V_MASK);
2226         for (i = 0; i < ATH_PCI_RESET_WAIT_MAX; i++) {
2227                 if (ath10k_pci_target_is_awake(ar))
2228                         break;
2229                 msleep(1);
2230         }
2231
2232         /* Put Target, including PCIe, into RESET. */
2233         val = ath10k_pci_reg_read32(mem, SOC_GLOBAL_RESET_ADDRESS);
2234         val |= 1;
2235         ath10k_pci_reg_write32(mem, SOC_GLOBAL_RESET_ADDRESS, val);
2236
2237         for (i = 0; i < ATH_PCI_RESET_WAIT_MAX; i++) {
2238                 if (ath10k_pci_reg_read32(mem, RTC_STATE_ADDRESS) &
2239                                           RTC_STATE_COLD_RESET_MASK)
2240                         break;
2241                 msleep(1);
2242         }
2243
2244         /* Pull Target, including PCIe, out of RESET. */
2245         val &= ~1;
2246         ath10k_pci_reg_write32(mem, SOC_GLOBAL_RESET_ADDRESS, val);
2247
2248         for (i = 0; i < ATH_PCI_RESET_WAIT_MAX; i++) {
2249                 if (!(ath10k_pci_reg_read32(mem, RTC_STATE_ADDRESS) &
2250                                             RTC_STATE_COLD_RESET_MASK))
2251                         break;
2252                 msleep(1);
2253         }
2254
2255         ath10k_pci_reg_write32(mem, PCIE_SOC_WAKE_ADDRESS, PCIE_SOC_WAKE_RESET);
2256 }
2257
2258 static void ath10k_pci_dump_features(struct ath10k_pci *ar_pci)
2259 {
2260         int i;
2261
2262         for (i = 0; i < ATH10K_PCI_FEATURE_COUNT; i++) {
2263                 if (!test_bit(i, ar_pci->features))
2264                         continue;
2265
2266                 switch (i) {
2267                 case ATH10K_PCI_FEATURE_MSI_X:
2268                         ath10k_dbg(ATH10K_DBG_PCI, "device supports MSI-X\n");
2269                         break;
2270                 case ATH10K_PCI_FEATURE_SOC_POWER_SAVE:
2271                         ath10k_dbg(ATH10K_DBG_PCI, "QCA98XX SoC power save enabled\n");
2272                         break;
2273                 }
2274         }
2275 }
2276
2277 static int ath10k_pci_probe(struct pci_dev *pdev,
2278                             const struct pci_device_id *pci_dev)
2279 {
2280         void __iomem *mem;
2281         int ret = 0;
2282         struct ath10k *ar;
2283         struct ath10k_pci *ar_pci;
2284         u32 lcr_val;
2285
2286         ath10k_dbg(ATH10K_DBG_PCI, "%s\n", __func__);
2287
2288         ar_pci = kzalloc(sizeof(*ar_pci), GFP_KERNEL);
2289         if (ar_pci == NULL)
2290                 return -ENOMEM;
2291
2292         ar_pci->pdev = pdev;
2293         ar_pci->dev = &pdev->dev;
2294
2295         switch (pci_dev->device) {
2296         case QCA988X_2_0_DEVICE_ID:
2297                 set_bit(ATH10K_PCI_FEATURE_MSI_X, ar_pci->features);
2298                 break;
2299         default:
2300                 ret = -ENODEV;
2301                 ath10k_err("Unkown device ID: %d\n", pci_dev->device);
2302                 goto err_ar_pci;
2303         }
2304
2305         if (ath10k_target_ps)
2306                 set_bit(ATH10K_PCI_FEATURE_SOC_POWER_SAVE, ar_pci->features);
2307
2308         ath10k_pci_dump_features(ar_pci);
2309
2310         ar = ath10k_core_create(ar_pci, ar_pci->dev, &ath10k_pci_hif_ops);
2311         if (!ar) {
2312                 ath10k_err("ath10k_core_create failed!\n");
2313                 ret = -EINVAL;
2314                 goto err_ar_pci;
2315         }
2316
2317         ar_pci->ar = ar;
2318         ar_pci->fw_indicator_address = FW_INDICATOR_ADDRESS;
2319         atomic_set(&ar_pci->keep_awake_count, 0);
2320
2321         pci_set_drvdata(pdev, ar);
2322
2323         /*
2324          * Without any knowledge of the Host, the Target may have been reset or
2325          * power cycled and its Config Space may no longer reflect the PCI
2326          * address space that was assigned earlier by the PCI infrastructure.
2327          * Refresh it now.
2328          */
2329         ret = pci_assign_resource(pdev, BAR_NUM);
2330         if (ret) {
2331                 ath10k_err("cannot assign PCI space: %d\n", ret);
2332                 goto err_ar;
2333         }
2334
2335         ret = pci_enable_device(pdev);
2336         if (ret) {
2337                 ath10k_err("cannot enable PCI device: %d\n", ret);
2338                 goto err_ar;
2339         }
2340
2341         /* Request MMIO resources */
2342         ret = pci_request_region(pdev, BAR_NUM, "ath");
2343         if (ret) {
2344                 ath10k_err("PCI MMIO reservation error: %d\n", ret);
2345                 goto err_device;
2346         }
2347
2348         /*
2349          * Target structures have a limit of 32 bit DMA pointers.
2350          * DMA pointers can be wider than 32 bits by default on some systems.
2351          */
2352         ret = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
2353         if (ret) {
2354                 ath10k_err("32-bit DMA not available: %d\n", ret);
2355                 goto err_region;
2356         }
2357
2358         ret = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32));
2359         if (ret) {
2360                 ath10k_err("cannot enable 32-bit consistent DMA\n");
2361                 goto err_region;
2362         }
2363
2364         /* Set bus master bit in PCI_COMMAND to enable DMA */
2365         pci_set_master(pdev);
2366
2367         /*
2368          * Temporary FIX: disable ASPM
2369          * Will be removed after the OTP is programmed
2370          */
2371         pci_read_config_dword(pdev, 0x80, &lcr_val);
2372         pci_write_config_dword(pdev, 0x80, (lcr_val & 0xffffff00));
2373
2374         /* Arrange for access to Target SoC registers. */
2375         mem = pci_iomap(pdev, BAR_NUM, 0);
2376         if (!mem) {
2377                 ath10k_err("PCI iomap error\n");
2378                 ret = -EIO;
2379                 goto err_master;
2380         }
2381
2382         ar_pci->mem = mem;
2383
2384         spin_lock_init(&ar_pci->ce_lock);
2385
2386         ar_pci->cacheline_sz = dma_get_cache_alignment();
2387
2388         ret = ath10k_core_register(ar);
2389         if (ret) {
2390                 ath10k_err("could not register driver core (%d)\n", ret);
2391                 goto err_iomap;
2392         }
2393
2394         return 0;
2395
2396 err_iomap:
2397         pci_iounmap(pdev, mem);
2398 err_master:
2399         pci_clear_master(pdev);
2400 err_region:
2401         pci_release_region(pdev, BAR_NUM);
2402 err_device:
2403         pci_disable_device(pdev);
2404 err_ar:
2405         pci_set_drvdata(pdev, NULL);
2406         ath10k_core_destroy(ar);
2407 err_ar_pci:
2408         /* call HIF PCI free here */
2409         kfree(ar_pci);
2410
2411         return ret;
2412 }
2413
2414 static void ath10k_pci_remove(struct pci_dev *pdev)
2415 {
2416         struct ath10k *ar = pci_get_drvdata(pdev);
2417         struct ath10k_pci *ar_pci;
2418
2419         ath10k_dbg(ATH10K_DBG_PCI, "%s\n", __func__);
2420
2421         if (!ar)
2422                 return;
2423
2424         ar_pci = ath10k_pci_priv(ar);
2425
2426         if (!ar_pci)
2427                 return;
2428
2429         tasklet_kill(&ar_pci->msi_fw_err);
2430
2431         ath10k_core_unregister(ar);
2432
2433         pci_set_drvdata(pdev, NULL);
2434         pci_iounmap(pdev, ar_pci->mem);
2435         pci_release_region(pdev, BAR_NUM);
2436         pci_clear_master(pdev);
2437         pci_disable_device(pdev);
2438
2439         ath10k_core_destroy(ar);
2440         kfree(ar_pci);
2441 }
2442
2443 MODULE_DEVICE_TABLE(pci, ath10k_pci_id_table);
2444
2445 static struct pci_driver ath10k_pci_driver = {
2446         .name = "ath10k_pci",
2447         .id_table = ath10k_pci_id_table,
2448         .probe = ath10k_pci_probe,
2449         .remove = ath10k_pci_remove,
2450 };
2451
2452 static int __init ath10k_pci_init(void)
2453 {
2454         int ret;
2455
2456         ret = pci_register_driver(&ath10k_pci_driver);
2457         if (ret)
2458                 ath10k_err("pci_register_driver failed [%d]\n", ret);
2459
2460         return ret;
2461 }
2462 module_init(ath10k_pci_init);
2463
2464 static void __exit ath10k_pci_exit(void)
2465 {
2466         pci_unregister_driver(&ath10k_pci_driver);
2467 }
2468
2469 module_exit(ath10k_pci_exit);
2470
2471 MODULE_AUTHOR("Qualcomm Atheros");
2472 MODULE_DESCRIPTION("Driver support for Atheros QCA988X PCIe devices");
2473 MODULE_LICENSE("Dual BSD/GPL");
2474 MODULE_FIRMWARE(QCA988X_HW_2_0_FW_DIR "/" QCA988X_HW_2_0_FW_FILE);
2475 MODULE_FIRMWARE(QCA988X_HW_2_0_FW_DIR "/" QCA988X_HW_2_0_OTP_FILE);
2476 MODULE_FIRMWARE(QCA988X_HW_2_0_FW_DIR "/" QCA988X_HW_2_0_BOARD_DATA_FILE);