ath10k: defer hw setup to start/stop mac80211 hooks
[cascardo/linux.git] / drivers / net / wireless / ath / ath10k / pci.c
1 /*
2  * Copyright (c) 2005-2011 Atheros Communications Inc.
3  * Copyright (c) 2011-2013 Qualcomm Atheros, Inc.
4  *
5  * Permission to use, copy, modify, and/or distribute this software for any
6  * purpose with or without fee is hereby granted, provided that the above
7  * copyright notice and this permission notice appear in all copies.
8  *
9  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
10  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
11  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
12  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
13  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
14  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
15  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
16  */
17
18 #include <linux/pci.h>
19 #include <linux/module.h>
20 #include <linux/interrupt.h>
21 #include <linux/spinlock.h>
22
23 #include "core.h"
24 #include "debug.h"
25
26 #include "targaddrs.h"
27 #include "bmi.h"
28
29 #include "hif.h"
30 #include "htc.h"
31
32 #include "ce.h"
33 #include "pci.h"
34
35 unsigned int ath10k_target_ps;
36 module_param(ath10k_target_ps, uint, 0644);
37 MODULE_PARM_DESC(ath10k_target_ps, "Enable ath10k Target (SoC) PS option");
38
39 #define QCA988X_1_0_DEVICE_ID   (0xabcd)
40 #define QCA988X_2_0_DEVICE_ID   (0x003c)
41
42 static DEFINE_PCI_DEVICE_TABLE(ath10k_pci_id_table) = {
43         { PCI_VDEVICE(ATHEROS, QCA988X_1_0_DEVICE_ID) }, /* PCI-E QCA988X V1 */
44         { PCI_VDEVICE(ATHEROS, QCA988X_2_0_DEVICE_ID) }, /* PCI-E QCA988X V2 */
45         {0}
46 };
47
48 static int ath10k_pci_diag_read_access(struct ath10k *ar, u32 address,
49                                        u32 *data);
50
51 static void ath10k_pci_process_ce(struct ath10k *ar);
52 static int ath10k_pci_post_rx(struct ath10k *ar);
53 static int ath10k_pci_post_rx_pipe(struct hif_ce_pipe_info *pipe_info,
54                                              int num);
55 static void ath10k_pci_rx_pipe_cleanup(struct hif_ce_pipe_info *pipe_info);
56 static void ath10k_pci_stop_ce(struct ath10k *ar);
57 static void ath10k_pci_device_reset(struct ath10k *ar);
58 static int ath10k_pci_reset_target(struct ath10k *ar);
59
60 static const struct ce_attr host_ce_config_wlan[] = {
61         /* host->target HTC control and raw streams */
62         { /* CE0 */ CE_ATTR_FLAGS, 0, 16, 256, 0, NULL,},
63         /* could be moved to share CE3 */
64         /* target->host HTT + HTC control */
65         { /* CE1 */ CE_ATTR_FLAGS, 0, 0, 512, 512, NULL,},
66         /* target->host WMI */
67         { /* CE2 */ CE_ATTR_FLAGS, 0, 0, 2048, 32, NULL,},
68         /* host->target WMI */
69         { /* CE3 */ CE_ATTR_FLAGS, 0, 32, 2048, 0, NULL,},
70         /* host->target HTT */
71         { /* CE4 */ CE_ATTR_FLAGS | CE_ATTR_DIS_INTR, 0,
72                     CE_HTT_H2T_MSG_SRC_NENTRIES, 256, 0, NULL,},
73         /* unused */
74         { /* CE5 */ CE_ATTR_FLAGS, 0, 0, 0, 0, NULL,},
75         /* Target autonomous hif_memcpy */
76         { /* CE6 */ CE_ATTR_FLAGS, 0, 0, 0, 0, NULL,},
77         /* ce_diag, the Diagnostic Window */
78         { /* CE7 */ CE_ATTR_FLAGS, 0, 2, DIAG_TRANSFER_LIMIT, 2, NULL,},
79 };
80
81 /* Target firmware's Copy Engine configuration. */
82 static const struct ce_pipe_config target_ce_config_wlan[] = {
83         /* host->target HTC control and raw streams */
84         { /* CE0 */ 0, PIPEDIR_OUT, 32, 256, CE_ATTR_FLAGS, 0,},
85         /* target->host HTT + HTC control */
86         { /* CE1 */ 1, PIPEDIR_IN, 32, 512, CE_ATTR_FLAGS, 0,},
87         /* target->host WMI */
88         { /* CE2 */ 2, PIPEDIR_IN, 32, 2048, CE_ATTR_FLAGS, 0,},
89         /* host->target WMI */
90         { /* CE3 */ 3, PIPEDIR_OUT, 32, 2048, CE_ATTR_FLAGS, 0,},
91         /* host->target HTT */
92         { /* CE4 */ 4, PIPEDIR_OUT, 256, 256, CE_ATTR_FLAGS, 0,},
93         /* NB: 50% of src nentries, since tx has 2 frags */
94         /* unused */
95         { /* CE5 */ 5, PIPEDIR_OUT, 32, 2048, CE_ATTR_FLAGS, 0,},
96         /* Reserved for target autonomous hif_memcpy */
97         { /* CE6 */ 6, PIPEDIR_INOUT, 32, 4096, CE_ATTR_FLAGS, 0,},
98         /* CE7 used only by Host */
99 };
100
101 /*
102  * Diagnostic read/write access is provided for startup/config/debug usage.
103  * Caller must guarantee proper alignment, when applicable, and single user
104  * at any moment.
105  */
106 static int ath10k_pci_diag_read_mem(struct ath10k *ar, u32 address, void *data,
107                                     int nbytes)
108 {
109         struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
110         int ret = 0;
111         u32 buf;
112         unsigned int completed_nbytes, orig_nbytes, remaining_bytes;
113         unsigned int id;
114         unsigned int flags;
115         struct ce_state *ce_diag;
116         /* Host buffer address in CE space */
117         u32 ce_data;
118         dma_addr_t ce_data_base = 0;
119         void *data_buf = NULL;
120         int i;
121
122         /*
123          * This code cannot handle reads to non-memory space. Redirect to the
124          * register read fn but preserve the multi word read capability of
125          * this fn
126          */
127         if (address < DRAM_BASE_ADDRESS) {
128                 if (!IS_ALIGNED(address, 4) ||
129                     !IS_ALIGNED((unsigned long)data, 4))
130                         return -EIO;
131
132                 while ((nbytes >= 4) &&  ((ret = ath10k_pci_diag_read_access(
133                                            ar, address, (u32 *)data)) == 0)) {
134                         nbytes -= sizeof(u32);
135                         address += sizeof(u32);
136                         data += sizeof(u32);
137                 }
138                 return ret;
139         }
140
141         ce_diag = ar_pci->ce_diag;
142
143         /*
144          * Allocate a temporary bounce buffer to hold caller's data
145          * to be DMA'ed from Target. This guarantees
146          *   1) 4-byte alignment
147          *   2) Buffer in DMA-able space
148          */
149         orig_nbytes = nbytes;
150         data_buf = (unsigned char *)pci_alloc_consistent(ar_pci->pdev,
151                                                          orig_nbytes,
152                                                          &ce_data_base);
153
154         if (!data_buf) {
155                 ret = -ENOMEM;
156                 goto done;
157         }
158         memset(data_buf, 0, orig_nbytes);
159
160         remaining_bytes = orig_nbytes;
161         ce_data = ce_data_base;
162         while (remaining_bytes) {
163                 nbytes = min_t(unsigned int, remaining_bytes,
164                                DIAG_TRANSFER_LIMIT);
165
166                 ret = ath10k_ce_recv_buf_enqueue(ce_diag, NULL, ce_data);
167                 if (ret != 0)
168                         goto done;
169
170                 /* Request CE to send from Target(!) address to Host buffer */
171                 /*
172                  * The address supplied by the caller is in the
173                  * Target CPU virtual address space.
174                  *
175                  * In order to use this address with the diagnostic CE,
176                  * convert it from Target CPU virtual address space
177                  * to CE address space
178                  */
179                 ath10k_pci_wake(ar);
180                 address = TARG_CPU_SPACE_TO_CE_SPACE(ar, ar_pci->mem,
181                                                      address);
182                 ath10k_pci_sleep(ar);
183
184                 ret = ath10k_ce_send(ce_diag, NULL, (u32)address, nbytes, 0,
185                                  0);
186                 if (ret)
187                         goto done;
188
189                 i = 0;
190                 while (ath10k_ce_completed_send_next(ce_diag, NULL, &buf,
191                                                      &completed_nbytes,
192                                                      &id) != 0) {
193                         mdelay(1);
194                         if (i++ > DIAG_ACCESS_CE_TIMEOUT_MS) {
195                                 ret = -EBUSY;
196                                 goto done;
197                         }
198                 }
199
200                 if (nbytes != completed_nbytes) {
201                         ret = -EIO;
202                         goto done;
203                 }
204
205                 if (buf != (u32) address) {
206                         ret = -EIO;
207                         goto done;
208                 }
209
210                 i = 0;
211                 while (ath10k_ce_completed_recv_next(ce_diag, NULL, &buf,
212                                                      &completed_nbytes,
213                                                      &id, &flags) != 0) {
214                         mdelay(1);
215
216                         if (i++ > DIAG_ACCESS_CE_TIMEOUT_MS) {
217                                 ret = -EBUSY;
218                                 goto done;
219                         }
220                 }
221
222                 if (nbytes != completed_nbytes) {
223                         ret = -EIO;
224                         goto done;
225                 }
226
227                 if (buf != ce_data) {
228                         ret = -EIO;
229                         goto done;
230                 }
231
232                 remaining_bytes -= nbytes;
233                 address += nbytes;
234                 ce_data += nbytes;
235         }
236
237 done:
238         if (ret == 0) {
239                 /* Copy data from allocated DMA buf to caller's buf */
240                 WARN_ON_ONCE(orig_nbytes & 3);
241                 for (i = 0; i < orig_nbytes / sizeof(__le32); i++) {
242                         ((u32 *)data)[i] =
243                                 __le32_to_cpu(((__le32 *)data_buf)[i]);
244                 }
245         } else
246                 ath10k_dbg(ATH10K_DBG_PCI, "%s failure (0x%x)\n",
247                            __func__, address);
248
249         if (data_buf)
250                 pci_free_consistent(ar_pci->pdev, orig_nbytes,
251                                     data_buf, ce_data_base);
252
253         return ret;
254 }
255
256 /* Read 4-byte aligned data from Target memory or register */
257 static int ath10k_pci_diag_read_access(struct ath10k *ar, u32 address,
258                                        u32 *data)
259 {
260         /* Assume range doesn't cross this boundary */
261         if (address >= DRAM_BASE_ADDRESS)
262                 return ath10k_pci_diag_read_mem(ar, address, data, sizeof(u32));
263
264         ath10k_pci_wake(ar);
265         *data = ath10k_pci_read32(ar, address);
266         ath10k_pci_sleep(ar);
267         return 0;
268 }
269
270 static int ath10k_pci_diag_write_mem(struct ath10k *ar, u32 address,
271                                      const void *data, int nbytes)
272 {
273         struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
274         int ret = 0;
275         u32 buf;
276         unsigned int completed_nbytes, orig_nbytes, remaining_bytes;
277         unsigned int id;
278         unsigned int flags;
279         struct ce_state *ce_diag;
280         void *data_buf = NULL;
281         u32 ce_data;    /* Host buffer address in CE space */
282         dma_addr_t ce_data_base = 0;
283         int i;
284
285         ce_diag = ar_pci->ce_diag;
286
287         /*
288          * Allocate a temporary bounce buffer to hold caller's data
289          * to be DMA'ed to Target. This guarantees
290          *   1) 4-byte alignment
291          *   2) Buffer in DMA-able space
292          */
293         orig_nbytes = nbytes;
294         data_buf = (unsigned char *)pci_alloc_consistent(ar_pci->pdev,
295                                                          orig_nbytes,
296                                                          &ce_data_base);
297         if (!data_buf) {
298                 ret = -ENOMEM;
299                 goto done;
300         }
301
302         /* Copy caller's data to allocated DMA buf */
303         WARN_ON_ONCE(orig_nbytes & 3);
304         for (i = 0; i < orig_nbytes / sizeof(__le32); i++)
305                 ((__le32 *)data_buf)[i] = __cpu_to_le32(((u32 *)data)[i]);
306
307         /*
308          * The address supplied by the caller is in the
309          * Target CPU virtual address space.
310          *
311          * In order to use this address with the diagnostic CE,
312          * convert it from
313          *    Target CPU virtual address space
314          * to
315          *    CE address space
316          */
317         ath10k_pci_wake(ar);
318         address = TARG_CPU_SPACE_TO_CE_SPACE(ar, ar_pci->mem, address);
319         ath10k_pci_sleep(ar);
320
321         remaining_bytes = orig_nbytes;
322         ce_data = ce_data_base;
323         while (remaining_bytes) {
324                 /* FIXME: check cast */
325                 nbytes = min_t(int, remaining_bytes, DIAG_TRANSFER_LIMIT);
326
327                 /* Set up to receive directly into Target(!) address */
328                 ret = ath10k_ce_recv_buf_enqueue(ce_diag, NULL, address);
329                 if (ret != 0)
330                         goto done;
331
332                 /*
333                  * Request CE to send caller-supplied data that
334                  * was copied to bounce buffer to Target(!) address.
335                  */
336                 ret = ath10k_ce_send(ce_diag, NULL, (u32) ce_data,
337                                      nbytes, 0, 0);
338                 if (ret != 0)
339                         goto done;
340
341                 i = 0;
342                 while (ath10k_ce_completed_send_next(ce_diag, NULL, &buf,
343                                                      &completed_nbytes,
344                                                      &id) != 0) {
345                         mdelay(1);
346
347                         if (i++ > DIAG_ACCESS_CE_TIMEOUT_MS) {
348                                 ret = -EBUSY;
349                                 goto done;
350                         }
351                 }
352
353                 if (nbytes != completed_nbytes) {
354                         ret = -EIO;
355                         goto done;
356                 }
357
358                 if (buf != ce_data) {
359                         ret = -EIO;
360                         goto done;
361                 }
362
363                 i = 0;
364                 while (ath10k_ce_completed_recv_next(ce_diag, NULL, &buf,
365                                                      &completed_nbytes,
366                                                      &id, &flags) != 0) {
367                         mdelay(1);
368
369                         if (i++ > DIAG_ACCESS_CE_TIMEOUT_MS) {
370                                 ret = -EBUSY;
371                                 goto done;
372                         }
373                 }
374
375                 if (nbytes != completed_nbytes) {
376                         ret = -EIO;
377                         goto done;
378                 }
379
380                 if (buf != address) {
381                         ret = -EIO;
382                         goto done;
383                 }
384
385                 remaining_bytes -= nbytes;
386                 address += nbytes;
387                 ce_data += nbytes;
388         }
389
390 done:
391         if (data_buf) {
392                 pci_free_consistent(ar_pci->pdev, orig_nbytes, data_buf,
393                                     ce_data_base);
394         }
395
396         if (ret != 0)
397                 ath10k_dbg(ATH10K_DBG_PCI, "%s failure (0x%x)\n", __func__,
398                            address);
399
400         return ret;
401 }
402
403 /* Write 4B data to Target memory or register */
404 static int ath10k_pci_diag_write_access(struct ath10k *ar, u32 address,
405                                         u32 data)
406 {
407         /* Assume range doesn't cross this boundary */
408         if (address >= DRAM_BASE_ADDRESS)
409                 return ath10k_pci_diag_write_mem(ar, address, &data,
410                                                  sizeof(u32));
411
412         ath10k_pci_wake(ar);
413         ath10k_pci_write32(ar, address, data);
414         ath10k_pci_sleep(ar);
415         return 0;
416 }
417
418 static bool ath10k_pci_target_is_awake(struct ath10k *ar)
419 {
420         void __iomem *mem = ath10k_pci_priv(ar)->mem;
421         u32 val;
422         val = ioread32(mem + PCIE_LOCAL_BASE_ADDRESS +
423                        RTC_STATE_ADDRESS);
424         return (RTC_STATE_V_GET(val) == RTC_STATE_V_ON);
425 }
426
427 static void ath10k_pci_wait(struct ath10k *ar)
428 {
429         int n = 100;
430
431         while (n-- && !ath10k_pci_target_is_awake(ar))
432                 msleep(10);
433
434         if (n < 0)
435                 ath10k_warn("Unable to wakeup target\n");
436 }
437
438 void ath10k_do_pci_wake(struct ath10k *ar)
439 {
440         struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
441         void __iomem *pci_addr = ar_pci->mem;
442         int tot_delay = 0;
443         int curr_delay = 5;
444
445         if (atomic_read(&ar_pci->keep_awake_count) == 0) {
446                 /* Force AWAKE */
447                 iowrite32(PCIE_SOC_WAKE_V_MASK,
448                           pci_addr + PCIE_LOCAL_BASE_ADDRESS +
449                           PCIE_SOC_WAKE_ADDRESS);
450         }
451         atomic_inc(&ar_pci->keep_awake_count);
452
453         if (ar_pci->verified_awake)
454                 return;
455
456         for (;;) {
457                 if (ath10k_pci_target_is_awake(ar)) {
458                         ar_pci->verified_awake = true;
459                         break;
460                 }
461
462                 if (tot_delay > PCIE_WAKE_TIMEOUT) {
463                         ath10k_warn("target takes too long to wake up (awake count %d)\n",
464                                     atomic_read(&ar_pci->keep_awake_count));
465                         break;
466                 }
467
468                 udelay(curr_delay);
469                 tot_delay += curr_delay;
470
471                 if (curr_delay < 50)
472                         curr_delay += 5;
473         }
474 }
475
476 void ath10k_do_pci_sleep(struct ath10k *ar)
477 {
478         struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
479         void __iomem *pci_addr = ar_pci->mem;
480
481         if (atomic_dec_and_test(&ar_pci->keep_awake_count)) {
482                 /* Allow sleep */
483                 ar_pci->verified_awake = false;
484                 iowrite32(PCIE_SOC_WAKE_RESET,
485                           pci_addr + PCIE_LOCAL_BASE_ADDRESS +
486                           PCIE_SOC_WAKE_ADDRESS);
487         }
488 }
489
490 /*
491  * FIXME: Handle OOM properly.
492  */
493 static inline
494 struct ath10k_pci_compl *get_free_compl(struct hif_ce_pipe_info *pipe_info)
495 {
496         struct ath10k_pci_compl *compl = NULL;
497
498         spin_lock_bh(&pipe_info->pipe_lock);
499         if (list_empty(&pipe_info->compl_free)) {
500                 ath10k_warn("Completion buffers are full\n");
501                 goto exit;
502         }
503         compl = list_first_entry(&pipe_info->compl_free,
504                                  struct ath10k_pci_compl, list);
505         list_del(&compl->list);
506 exit:
507         spin_unlock_bh(&pipe_info->pipe_lock);
508         return compl;
509 }
510
511 /* Called by lower (CE) layer when a send to Target completes. */
512 static void ath10k_pci_ce_send_done(struct ce_state *ce_state,
513                                     void *transfer_context,
514                                     u32 ce_data,
515                                     unsigned int nbytes,
516                                     unsigned int transfer_id)
517 {
518         struct ath10k *ar = ce_state->ar;
519         struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
520         struct hif_ce_pipe_info *pipe_info =  &ar_pci->pipe_info[ce_state->id];
521         struct ath10k_pci_compl *compl;
522         bool process = false;
523
524         do {
525                 /*
526                  * For the send completion of an item in sendlist, just
527                  * increment num_sends_allowed. The upper layer callback will
528                  * be triggered when last fragment is done with send.
529                  */
530                 if (transfer_context == CE_SENDLIST_ITEM_CTXT) {
531                         spin_lock_bh(&pipe_info->pipe_lock);
532                         pipe_info->num_sends_allowed++;
533                         spin_unlock_bh(&pipe_info->pipe_lock);
534                         continue;
535                 }
536
537                 compl = get_free_compl(pipe_info);
538                 if (!compl)
539                         break;
540
541                 compl->send_or_recv = HIF_CE_COMPLETE_SEND;
542                 compl->ce_state = ce_state;
543                 compl->pipe_info = pipe_info;
544                 compl->transfer_context = transfer_context;
545                 compl->nbytes = nbytes;
546                 compl->transfer_id = transfer_id;
547                 compl->flags = 0;
548
549                 /*
550                  * Add the completion to the processing queue.
551                  */
552                 spin_lock_bh(&ar_pci->compl_lock);
553                 list_add_tail(&compl->list, &ar_pci->compl_process);
554                 spin_unlock_bh(&ar_pci->compl_lock);
555
556                 process = true;
557         } while (ath10k_ce_completed_send_next(ce_state,
558                                                            &transfer_context,
559                                                            &ce_data, &nbytes,
560                                                            &transfer_id) == 0);
561
562         /*
563          * If only some of the items within a sendlist have completed,
564          * don't invoke completion processing until the entire sendlist
565          * has been sent.
566          */
567         if (!process)
568                 return;
569
570         ath10k_pci_process_ce(ar);
571 }
572
573 /* Called by lower (CE) layer when data is received from the Target. */
574 static void ath10k_pci_ce_recv_data(struct ce_state *ce_state,
575                                     void *transfer_context, u32 ce_data,
576                                     unsigned int nbytes,
577                                     unsigned int transfer_id,
578                                     unsigned int flags)
579 {
580         struct ath10k *ar = ce_state->ar;
581         struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
582         struct hif_ce_pipe_info *pipe_info =  &ar_pci->pipe_info[ce_state->id];
583         struct ath10k_pci_compl *compl;
584         struct sk_buff *skb;
585
586         do {
587                 compl = get_free_compl(pipe_info);
588                 if (!compl)
589                         break;
590
591                 compl->send_or_recv = HIF_CE_COMPLETE_RECV;
592                 compl->ce_state = ce_state;
593                 compl->pipe_info = pipe_info;
594                 compl->transfer_context = transfer_context;
595                 compl->nbytes = nbytes;
596                 compl->transfer_id = transfer_id;
597                 compl->flags = flags;
598
599                 skb = transfer_context;
600                 dma_unmap_single(ar->dev, ATH10K_SKB_CB(skb)->paddr,
601                                  skb->len + skb_tailroom(skb),
602                                  DMA_FROM_DEVICE);
603                 /*
604                  * Add the completion to the processing queue.
605                  */
606                 spin_lock_bh(&ar_pci->compl_lock);
607                 list_add_tail(&compl->list, &ar_pci->compl_process);
608                 spin_unlock_bh(&ar_pci->compl_lock);
609
610         } while (ath10k_ce_completed_recv_next(ce_state,
611                                                            &transfer_context,
612                                                            &ce_data, &nbytes,
613                                                            &transfer_id,
614                                                            &flags) == 0);
615
616         ath10k_pci_process_ce(ar);
617 }
618
619 /* Send the first nbytes bytes of the buffer */
620 static int ath10k_pci_hif_send_head(struct ath10k *ar, u8 pipe_id,
621                                     unsigned int transfer_id,
622                                     unsigned int bytes, struct sk_buff *nbuf)
623 {
624         struct ath10k_skb_cb *skb_cb = ATH10K_SKB_CB(nbuf);
625         struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
626         struct hif_ce_pipe_info *pipe_info = &(ar_pci->pipe_info[pipe_id]);
627         struct ce_state *ce_hdl = pipe_info->ce_hdl;
628         struct ce_sendlist sendlist;
629         unsigned int len;
630         u32 flags = 0;
631         int ret;
632
633         memset(&sendlist, 0, sizeof(struct ce_sendlist));
634
635         len = min(bytes, nbuf->len);
636         bytes -= len;
637
638         if (len & 3)
639                 ath10k_warn("skb not aligned to 4-byte boundary (%d)\n", len);
640
641         ath10k_dbg(ATH10K_DBG_PCI,
642                    "pci send data vaddr %p paddr 0x%llx len %d as %d bytes\n",
643                    nbuf->data, (unsigned long long) skb_cb->paddr,
644                    nbuf->len, len);
645         ath10k_dbg_dump(ATH10K_DBG_PCI_DUMP, NULL,
646                         "ath10k tx: data: ",
647                         nbuf->data, nbuf->len);
648
649         ath10k_ce_sendlist_buf_add(&sendlist, skb_cb->paddr, len, flags);
650
651         /* Make sure we have resources to handle this request */
652         spin_lock_bh(&pipe_info->pipe_lock);
653         if (!pipe_info->num_sends_allowed) {
654                 ath10k_warn("Pipe: %d is full\n", pipe_id);
655                 spin_unlock_bh(&pipe_info->pipe_lock);
656                 return -ENOSR;
657         }
658         pipe_info->num_sends_allowed--;
659         spin_unlock_bh(&pipe_info->pipe_lock);
660
661         ret = ath10k_ce_sendlist_send(ce_hdl, nbuf, &sendlist, transfer_id);
662         if (ret)
663                 ath10k_warn("CE send failed: %p\n", nbuf);
664
665         return ret;
666 }
667
668 static u16 ath10k_pci_hif_get_free_queue_number(struct ath10k *ar, u8 pipe)
669 {
670         struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
671         struct hif_ce_pipe_info *pipe_info = &(ar_pci->pipe_info[pipe]);
672         int ret;
673
674         spin_lock_bh(&pipe_info->pipe_lock);
675         ret = pipe_info->num_sends_allowed;
676         spin_unlock_bh(&pipe_info->pipe_lock);
677
678         return ret;
679 }
680
681 static void ath10k_pci_hif_dump_area(struct ath10k *ar)
682 {
683         u32 reg_dump_area = 0;
684         u32 reg_dump_values[REG_DUMP_COUNT_QCA988X] = {};
685         u32 host_addr;
686         int ret;
687         u32 i;
688
689         ath10k_err("firmware crashed!\n");
690         ath10k_err("hardware name %s version 0x%x\n",
691                    ar->hw_params.name, ar->target_version);
692         ath10k_err("firmware version: %u.%u.%u.%u\n", ar->fw_version_major,
693                    ar->fw_version_minor, ar->fw_version_release,
694                    ar->fw_version_build);
695
696         host_addr = host_interest_item_address(HI_ITEM(hi_failure_state));
697         if (ath10k_pci_diag_read_mem(ar, host_addr,
698                                      &reg_dump_area, sizeof(u32)) != 0) {
699                 ath10k_warn("could not read hi_failure_state\n");
700                 return;
701         }
702
703         ath10k_err("target register Dump Location: 0x%08X\n", reg_dump_area);
704
705         ret = ath10k_pci_diag_read_mem(ar, reg_dump_area,
706                                        &reg_dump_values[0],
707                                        REG_DUMP_COUNT_QCA988X * sizeof(u32));
708         if (ret != 0) {
709                 ath10k_err("could not dump FW Dump Area\n");
710                 return;
711         }
712
713         BUILD_BUG_ON(REG_DUMP_COUNT_QCA988X % 4);
714
715         ath10k_err("target Register Dump\n");
716         for (i = 0; i < REG_DUMP_COUNT_QCA988X; i += 4)
717                 ath10k_err("[%02d]: 0x%08X 0x%08X 0x%08X 0x%08X\n",
718                            i,
719                            reg_dump_values[i],
720                            reg_dump_values[i + 1],
721                            reg_dump_values[i + 2],
722                            reg_dump_values[i + 3]);
723 }
724
725 static void ath10k_pci_hif_send_complete_check(struct ath10k *ar, u8 pipe,
726                                                int force)
727 {
728         if (!force) {
729                 int resources;
730                 /*
731                  * Decide whether to actually poll for completions, or just
732                  * wait for a later chance.
733                  * If there seem to be plenty of resources left, then just wait
734                  * since checking involves reading a CE register, which is a
735                  * relatively expensive operation.
736                  */
737                 resources = ath10k_pci_hif_get_free_queue_number(ar, pipe);
738
739                 /*
740                  * If at least 50% of the total resources are still available,
741                  * don't bother checking again yet.
742                  */
743                 if (resources > (host_ce_config_wlan[pipe].src_nentries >> 1))
744                         return;
745         }
746         ath10k_ce_per_engine_service(ar, pipe);
747 }
748
749 static void ath10k_pci_hif_set_callbacks(struct ath10k *ar,
750                                          struct ath10k_hif_cb *callbacks)
751 {
752         struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
753
754         ath10k_dbg(ATH10K_DBG_PCI, "%s\n", __func__);
755
756         memcpy(&ar_pci->msg_callbacks_current, callbacks,
757                sizeof(ar_pci->msg_callbacks_current));
758 }
759
760 static int ath10k_pci_start_ce(struct ath10k *ar)
761 {
762         struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
763         struct ce_state *ce_diag = ar_pci->ce_diag;
764         const struct ce_attr *attr;
765         struct hif_ce_pipe_info *pipe_info;
766         struct ath10k_pci_compl *compl;
767         int i, pipe_num, completions, disable_interrupts;
768
769         spin_lock_init(&ar_pci->compl_lock);
770         INIT_LIST_HEAD(&ar_pci->compl_process);
771
772         for (pipe_num = 0; pipe_num < ar_pci->ce_count; pipe_num++) {
773                 pipe_info = &ar_pci->pipe_info[pipe_num];
774
775                 spin_lock_init(&pipe_info->pipe_lock);
776                 INIT_LIST_HEAD(&pipe_info->compl_free);
777
778                 /* Handle Diagnostic CE specially */
779                 if (pipe_info->ce_hdl == ce_diag)
780                         continue;
781
782                 attr = &host_ce_config_wlan[pipe_num];
783                 completions = 0;
784
785                 if (attr->src_nentries) {
786                         disable_interrupts = attr->flags & CE_ATTR_DIS_INTR;
787                         ath10k_ce_send_cb_register(pipe_info->ce_hdl,
788                                                    ath10k_pci_ce_send_done,
789                                                    disable_interrupts);
790                         completions += attr->src_nentries;
791                         pipe_info->num_sends_allowed = attr->src_nentries - 1;
792                 }
793
794                 if (attr->dest_nentries) {
795                         ath10k_ce_recv_cb_register(pipe_info->ce_hdl,
796                                                    ath10k_pci_ce_recv_data);
797                         completions += attr->dest_nentries;
798                 }
799
800                 if (completions == 0)
801                         continue;
802
803                 for (i = 0; i < completions; i++) {
804                         compl = kmalloc(sizeof(struct ath10k_pci_compl),
805                                         GFP_KERNEL);
806                         if (!compl) {
807                                 ath10k_warn("No memory for completion state\n");
808                                 ath10k_pci_stop_ce(ar);
809                                 return -ENOMEM;
810                         }
811
812                         compl->send_or_recv = HIF_CE_COMPLETE_FREE;
813                         list_add_tail(&compl->list, &pipe_info->compl_free);
814                 }
815         }
816
817         return 0;
818 }
819
820 static void ath10k_pci_stop_ce(struct ath10k *ar)
821 {
822         struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
823         struct ath10k_pci_compl *compl;
824         struct sk_buff *skb;
825         int i;
826
827         ath10k_ce_disable_interrupts(ar);
828
829         /* Cancel the pending tasklet */
830         tasklet_kill(&ar_pci->intr_tq);
831
832         for (i = 0; i < CE_COUNT; i++)
833                 tasklet_kill(&ar_pci->pipe_info[i].intr);
834
835         /* Mark pending completions as aborted, so that upper layers free up
836          * their associated resources */
837         spin_lock_bh(&ar_pci->compl_lock);
838         list_for_each_entry(compl, &ar_pci->compl_process, list) {
839                 skb = (struct sk_buff *)compl->transfer_context;
840                 ATH10K_SKB_CB(skb)->is_aborted = true;
841         }
842         spin_unlock_bh(&ar_pci->compl_lock);
843 }
844
845 static void ath10k_pci_cleanup_ce(struct ath10k *ar)
846 {
847         struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
848         struct ath10k_pci_compl *compl, *tmp;
849         struct hif_ce_pipe_info *pipe_info;
850         struct sk_buff *netbuf;
851         int pipe_num;
852
853         /* Free pending completions. */
854         spin_lock_bh(&ar_pci->compl_lock);
855         if (!list_empty(&ar_pci->compl_process))
856                 ath10k_warn("pending completions still present! possible memory leaks.\n");
857
858         list_for_each_entry_safe(compl, tmp, &ar_pci->compl_process, list) {
859                 list_del(&compl->list);
860                 netbuf = (struct sk_buff *)compl->transfer_context;
861                 dev_kfree_skb_any(netbuf);
862                 kfree(compl);
863         }
864         spin_unlock_bh(&ar_pci->compl_lock);
865
866         /* Free unused completions for each pipe. */
867         for (pipe_num = 0; pipe_num < ar_pci->ce_count; pipe_num++) {
868                 pipe_info = &ar_pci->pipe_info[pipe_num];
869
870                 spin_lock_bh(&pipe_info->pipe_lock);
871                 list_for_each_entry_safe(compl, tmp,
872                                          &pipe_info->compl_free, list) {
873                         list_del(&compl->list);
874                         kfree(compl);
875                 }
876                 spin_unlock_bh(&pipe_info->pipe_lock);
877         }
878 }
879
880 static void ath10k_pci_process_ce(struct ath10k *ar)
881 {
882         struct ath10k_pci *ar_pci = ar->hif.priv;
883         struct ath10k_hif_cb *cb = &ar_pci->msg_callbacks_current;
884         struct ath10k_pci_compl *compl;
885         struct sk_buff *skb;
886         unsigned int nbytes;
887         int ret, send_done = 0;
888
889         /* Upper layers aren't ready to handle tx/rx completions in parallel so
890          * we must serialize all completion processing. */
891
892         spin_lock_bh(&ar_pci->compl_lock);
893         if (ar_pci->compl_processing) {
894                 spin_unlock_bh(&ar_pci->compl_lock);
895                 return;
896         }
897         ar_pci->compl_processing = true;
898         spin_unlock_bh(&ar_pci->compl_lock);
899
900         for (;;) {
901                 spin_lock_bh(&ar_pci->compl_lock);
902                 if (list_empty(&ar_pci->compl_process)) {
903                         spin_unlock_bh(&ar_pci->compl_lock);
904                         break;
905                 }
906                 compl = list_first_entry(&ar_pci->compl_process,
907                                          struct ath10k_pci_compl, list);
908                 list_del(&compl->list);
909                 spin_unlock_bh(&ar_pci->compl_lock);
910
911                 if (compl->send_or_recv == HIF_CE_COMPLETE_SEND) {
912                         cb->tx_completion(ar,
913                                           compl->transfer_context,
914                                           compl->transfer_id);
915                         send_done = 1;
916                 } else {
917                         ret = ath10k_pci_post_rx_pipe(compl->pipe_info, 1);
918                         if (ret) {
919                                 ath10k_warn("Unable to post recv buffer for pipe: %d\n",
920                                             compl->pipe_info->pipe_num);
921                                 break;
922                         }
923
924                         skb = (struct sk_buff *)compl->transfer_context;
925                         nbytes = compl->nbytes;
926
927                         ath10k_dbg(ATH10K_DBG_PCI,
928                                    "ath10k_pci_ce_recv_data netbuf=%p  nbytes=%d\n",
929                                    skb, nbytes);
930                         ath10k_dbg_dump(ATH10K_DBG_PCI_DUMP, NULL,
931                                         "ath10k rx: ", skb->data, nbytes);
932
933                         if (skb->len + skb_tailroom(skb) >= nbytes) {
934                                 skb_trim(skb, 0);
935                                 skb_put(skb, nbytes);
936                                 cb->rx_completion(ar, skb,
937                                                   compl->pipe_info->pipe_num);
938                         } else {
939                                 ath10k_warn("rxed more than expected (nbytes %d, max %d)",
940                                             nbytes,
941                                             skb->len + skb_tailroom(skb));
942                         }
943                 }
944
945                 compl->send_or_recv = HIF_CE_COMPLETE_FREE;
946
947                 /*
948                  * Add completion back to the pipe's free list.
949                  */
950                 spin_lock_bh(&compl->pipe_info->pipe_lock);
951                 list_add_tail(&compl->list, &compl->pipe_info->compl_free);
952                 compl->pipe_info->num_sends_allowed += send_done;
953                 spin_unlock_bh(&compl->pipe_info->pipe_lock);
954         }
955
956         spin_lock_bh(&ar_pci->compl_lock);
957         ar_pci->compl_processing = false;
958         spin_unlock_bh(&ar_pci->compl_lock);
959 }
960
961 /* TODO - temporary mapping while we have too few CE's */
962 static int ath10k_pci_hif_map_service_to_pipe(struct ath10k *ar,
963                                               u16 service_id, u8 *ul_pipe,
964                                               u8 *dl_pipe, int *ul_is_polled,
965                                               int *dl_is_polled)
966 {
967         int ret = 0;
968
969         /* polling for received messages not supported */
970         *dl_is_polled = 0;
971
972         switch (service_id) {
973         case ATH10K_HTC_SVC_ID_HTT_DATA_MSG:
974                 /*
975                  * Host->target HTT gets its own pipe, so it can be polled
976                  * while other pipes are interrupt driven.
977                  */
978                 *ul_pipe = 4;
979                 /*
980                  * Use the same target->host pipe for HTC ctrl, HTC raw
981                  * streams, and HTT.
982                  */
983                 *dl_pipe = 1;
984                 break;
985
986         case ATH10K_HTC_SVC_ID_RSVD_CTRL:
987         case ATH10K_HTC_SVC_ID_TEST_RAW_STREAMS:
988                 /*
989                  * Note: HTC_RAW_STREAMS_SVC is currently unused, and
990                  * HTC_CTRL_RSVD_SVC could share the same pipe as the
991                  * WMI services.  So, if another CE is needed, change
992                  * this to *ul_pipe = 3, which frees up CE 0.
993                  */
994                 /* *ul_pipe = 3; */
995                 *ul_pipe = 0;
996                 *dl_pipe = 1;
997                 break;
998
999         case ATH10K_HTC_SVC_ID_WMI_DATA_BK:
1000         case ATH10K_HTC_SVC_ID_WMI_DATA_BE:
1001         case ATH10K_HTC_SVC_ID_WMI_DATA_VI:
1002         case ATH10K_HTC_SVC_ID_WMI_DATA_VO:
1003
1004         case ATH10K_HTC_SVC_ID_WMI_CONTROL:
1005                 *ul_pipe = 3;
1006                 *dl_pipe = 2;
1007                 break;
1008
1009                 /* pipe 5 unused   */
1010                 /* pipe 6 reserved */
1011                 /* pipe 7 reserved */
1012
1013         default:
1014                 ret = -1;
1015                 break;
1016         }
1017         *ul_is_polled =
1018                 (host_ce_config_wlan[*ul_pipe].flags & CE_ATTR_DIS_INTR) != 0;
1019
1020         return ret;
1021 }
1022
1023 static void ath10k_pci_hif_get_default_pipe(struct ath10k *ar,
1024                                                 u8 *ul_pipe, u8 *dl_pipe)
1025 {
1026         int ul_is_polled, dl_is_polled;
1027
1028         (void)ath10k_pci_hif_map_service_to_pipe(ar,
1029                                                  ATH10K_HTC_SVC_ID_RSVD_CTRL,
1030                                                  ul_pipe,
1031                                                  dl_pipe,
1032                                                  &ul_is_polled,
1033                                                  &dl_is_polled);
1034 }
1035
1036 static int ath10k_pci_post_rx_pipe(struct hif_ce_pipe_info *pipe_info,
1037                                    int num)
1038 {
1039         struct ath10k *ar = pipe_info->hif_ce_state;
1040         struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
1041         struct ce_state *ce_state = pipe_info->ce_hdl;
1042         struct sk_buff *skb;
1043         dma_addr_t ce_data;
1044         int i, ret = 0;
1045
1046         if (pipe_info->buf_sz == 0)
1047                 return 0;
1048
1049         for (i = 0; i < num; i++) {
1050                 skb = dev_alloc_skb(pipe_info->buf_sz);
1051                 if (!skb) {
1052                         ath10k_warn("could not allocate skbuff for pipe %d\n",
1053                                     num);
1054                         ret = -ENOMEM;
1055                         goto err;
1056                 }
1057
1058                 WARN_ONCE((unsigned long)skb->data & 3, "unaligned skb");
1059
1060                 ce_data = dma_map_single(ar->dev, skb->data,
1061                                          skb->len + skb_tailroom(skb),
1062                                          DMA_FROM_DEVICE);
1063
1064                 if (unlikely(dma_mapping_error(ar->dev, ce_data))) {
1065                         ath10k_warn("could not dma map skbuff\n");
1066                         dev_kfree_skb_any(skb);
1067                         ret = -EIO;
1068                         goto err;
1069                 }
1070
1071                 ATH10K_SKB_CB(skb)->paddr = ce_data;
1072
1073                 pci_dma_sync_single_for_device(ar_pci->pdev, ce_data,
1074                                                pipe_info->buf_sz,
1075                                                PCI_DMA_FROMDEVICE);
1076
1077                 ret = ath10k_ce_recv_buf_enqueue(ce_state, (void *)skb,
1078                                                  ce_data);
1079                 if (ret) {
1080                         ath10k_warn("could not enqueue to pipe %d (%d)\n",
1081                                     num, ret);
1082                         goto err;
1083                 }
1084         }
1085
1086         return ret;
1087
1088 err:
1089         ath10k_pci_rx_pipe_cleanup(pipe_info);
1090         return ret;
1091 }
1092
1093 static int ath10k_pci_post_rx(struct ath10k *ar)
1094 {
1095         struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
1096         struct hif_ce_pipe_info *pipe_info;
1097         const struct ce_attr *attr;
1098         int pipe_num, ret = 0;
1099
1100         for (pipe_num = 0; pipe_num < ar_pci->ce_count; pipe_num++) {
1101                 pipe_info = &ar_pci->pipe_info[pipe_num];
1102                 attr = &host_ce_config_wlan[pipe_num];
1103
1104                 if (attr->dest_nentries == 0)
1105                         continue;
1106
1107                 ret = ath10k_pci_post_rx_pipe(pipe_info,
1108                                               attr->dest_nentries - 1);
1109                 if (ret) {
1110                         ath10k_warn("Unable to replenish recv buffers for pipe: %d\n",
1111                                     pipe_num);
1112
1113                         for (; pipe_num >= 0; pipe_num--) {
1114                                 pipe_info = &ar_pci->pipe_info[pipe_num];
1115                                 ath10k_pci_rx_pipe_cleanup(pipe_info);
1116                         }
1117                         return ret;
1118                 }
1119         }
1120
1121         return 0;
1122 }
1123
1124 static int ath10k_pci_hif_start(struct ath10k *ar)
1125 {
1126         struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
1127         int ret;
1128
1129         ret = ath10k_pci_start_ce(ar);
1130         if (ret) {
1131                 ath10k_warn("could not start CE (%d)\n", ret);
1132                 return ret;
1133         }
1134
1135         /* Post buffers once to start things off. */
1136         ret = ath10k_pci_post_rx(ar);
1137         if (ret) {
1138                 ath10k_warn("could not post rx pipes (%d)\n", ret);
1139                 return ret;
1140         }
1141
1142         ar_pci->started = 1;
1143         return 0;
1144 }
1145
1146 static void ath10k_pci_rx_pipe_cleanup(struct hif_ce_pipe_info *pipe_info)
1147 {
1148         struct ath10k *ar;
1149         struct ath10k_pci *ar_pci;
1150         struct ce_state *ce_hdl;
1151         u32 buf_sz;
1152         struct sk_buff *netbuf;
1153         u32 ce_data;
1154
1155         buf_sz = pipe_info->buf_sz;
1156
1157         /* Unused Copy Engine */
1158         if (buf_sz == 0)
1159                 return;
1160
1161         ar = pipe_info->hif_ce_state;
1162         ar_pci = ath10k_pci_priv(ar);
1163
1164         if (!ar_pci->started)
1165                 return;
1166
1167         ce_hdl = pipe_info->ce_hdl;
1168
1169         while (ath10k_ce_revoke_recv_next(ce_hdl, (void **)&netbuf,
1170                                           &ce_data) == 0) {
1171                 dma_unmap_single(ar->dev, ATH10K_SKB_CB(netbuf)->paddr,
1172                                  netbuf->len + skb_tailroom(netbuf),
1173                                  DMA_FROM_DEVICE);
1174                 dev_kfree_skb_any(netbuf);
1175         }
1176 }
1177
1178 static void ath10k_pci_tx_pipe_cleanup(struct hif_ce_pipe_info *pipe_info)
1179 {
1180         struct ath10k *ar;
1181         struct ath10k_pci *ar_pci;
1182         struct ce_state *ce_hdl;
1183         struct sk_buff *netbuf;
1184         u32 ce_data;
1185         unsigned int nbytes;
1186         unsigned int id;
1187         u32 buf_sz;
1188
1189         buf_sz = pipe_info->buf_sz;
1190
1191         /* Unused Copy Engine */
1192         if (buf_sz == 0)
1193                 return;
1194
1195         ar = pipe_info->hif_ce_state;
1196         ar_pci = ath10k_pci_priv(ar);
1197
1198         if (!ar_pci->started)
1199                 return;
1200
1201         ce_hdl = pipe_info->ce_hdl;
1202
1203         while (ath10k_ce_cancel_send_next(ce_hdl, (void **)&netbuf,
1204                                           &ce_data, &nbytes, &id) == 0) {
1205                 if (netbuf != CE_SENDLIST_ITEM_CTXT)
1206                         /*
1207                          * Indicate the completion to higer layer to free
1208                          * the buffer
1209                          */
1210                         ATH10K_SKB_CB(netbuf)->is_aborted = true;
1211                         ar_pci->msg_callbacks_current.tx_completion(ar,
1212                                                                     netbuf,
1213                                                                     id);
1214         }
1215 }
1216
1217 /*
1218  * Cleanup residual buffers for device shutdown:
1219  *    buffers that were enqueued for receive
1220  *    buffers that were to be sent
1221  * Note: Buffers that had completed but which were
1222  * not yet processed are on a completion queue. They
1223  * are handled when the completion thread shuts down.
1224  */
1225 static void ath10k_pci_buffer_cleanup(struct ath10k *ar)
1226 {
1227         struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
1228         int pipe_num;
1229
1230         for (pipe_num = 0; pipe_num < ar_pci->ce_count; pipe_num++) {
1231                 struct hif_ce_pipe_info *pipe_info;
1232
1233                 pipe_info = &ar_pci->pipe_info[pipe_num];
1234                 ath10k_pci_rx_pipe_cleanup(pipe_info);
1235                 ath10k_pci_tx_pipe_cleanup(pipe_info);
1236         }
1237 }
1238
1239 static void ath10k_pci_ce_deinit(struct ath10k *ar)
1240 {
1241         struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
1242         struct hif_ce_pipe_info *pipe_info;
1243         int pipe_num;
1244
1245         for (pipe_num = 0; pipe_num < ar_pci->ce_count; pipe_num++) {
1246                 pipe_info = &ar_pci->pipe_info[pipe_num];
1247                 if (pipe_info->ce_hdl) {
1248                         ath10k_ce_deinit(pipe_info->ce_hdl);
1249                         pipe_info->ce_hdl = NULL;
1250                         pipe_info->buf_sz = 0;
1251                 }
1252         }
1253 }
1254
1255 static void ath10k_pci_hif_stop(struct ath10k *ar)
1256 {
1257         ath10k_dbg(ATH10K_DBG_PCI, "%s\n", __func__);
1258
1259         ath10k_pci_stop_ce(ar);
1260
1261         /* At this point, asynchronous threads are stopped, the target should
1262          * not DMA nor interrupt. We process the leftovers and then free
1263          * everything else up. */
1264
1265         ath10k_pci_process_ce(ar);
1266         ath10k_pci_cleanup_ce(ar);
1267         ath10k_pci_buffer_cleanup(ar);
1268 }
1269
1270 static int ath10k_pci_hif_exchange_bmi_msg(struct ath10k *ar,
1271                                            void *req, u32 req_len,
1272                                            void *resp, u32 *resp_len)
1273 {
1274         struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
1275         struct ce_state *ce_tx = ar_pci->pipe_info[BMI_CE_NUM_TO_TARG].ce_hdl;
1276         struct ce_state *ce_rx = ar_pci->pipe_info[BMI_CE_NUM_TO_HOST].ce_hdl;
1277         dma_addr_t req_paddr = 0;
1278         dma_addr_t resp_paddr = 0;
1279         struct bmi_xfer xfer = {};
1280         void *treq, *tresp = NULL;
1281         int ret = 0;
1282
1283         if (resp && !resp_len)
1284                 return -EINVAL;
1285
1286         if (resp && resp_len && *resp_len == 0)
1287                 return -EINVAL;
1288
1289         treq = kmemdup(req, req_len, GFP_KERNEL);
1290         if (!treq)
1291                 return -ENOMEM;
1292
1293         req_paddr = dma_map_single(ar->dev, treq, req_len, DMA_TO_DEVICE);
1294         ret = dma_mapping_error(ar->dev, req_paddr);
1295         if (ret)
1296                 goto err_dma;
1297
1298         if (resp && resp_len) {
1299                 tresp = kzalloc(*resp_len, GFP_KERNEL);
1300                 if (!tresp) {
1301                         ret = -ENOMEM;
1302                         goto err_req;
1303                 }
1304
1305                 resp_paddr = dma_map_single(ar->dev, tresp, *resp_len,
1306                                             DMA_FROM_DEVICE);
1307                 ret = dma_mapping_error(ar->dev, resp_paddr);
1308                 if (ret)
1309                         goto err_req;
1310
1311                 xfer.wait_for_resp = true;
1312                 xfer.resp_len = 0;
1313
1314                 ath10k_ce_recv_buf_enqueue(ce_rx, &xfer, resp_paddr);
1315         }
1316
1317         init_completion(&xfer.done);
1318
1319         ret = ath10k_ce_send(ce_tx, &xfer, req_paddr, req_len, -1, 0);
1320         if (ret)
1321                 goto err_resp;
1322
1323         ret = wait_for_completion_timeout(&xfer.done,
1324                                           BMI_COMMUNICATION_TIMEOUT_HZ);
1325         if (ret <= 0) {
1326                 u32 unused_buffer;
1327                 unsigned int unused_nbytes;
1328                 unsigned int unused_id;
1329
1330                 ret = -ETIMEDOUT;
1331                 ath10k_ce_cancel_send_next(ce_tx, NULL, &unused_buffer,
1332                                            &unused_nbytes, &unused_id);
1333         } else {
1334                 /* non-zero means we did not time out */
1335                 ret = 0;
1336         }
1337
1338 err_resp:
1339         if (resp) {
1340                 u32 unused_buffer;
1341
1342                 ath10k_ce_revoke_recv_next(ce_rx, NULL, &unused_buffer);
1343                 dma_unmap_single(ar->dev, resp_paddr,
1344                                  *resp_len, DMA_FROM_DEVICE);
1345         }
1346 err_req:
1347         dma_unmap_single(ar->dev, req_paddr, req_len, DMA_TO_DEVICE);
1348
1349         if (ret == 0 && resp_len) {
1350                 *resp_len = min(*resp_len, xfer.resp_len);
1351                 memcpy(resp, tresp, xfer.resp_len);
1352         }
1353 err_dma:
1354         kfree(treq);
1355         kfree(tresp);
1356
1357         return ret;
1358 }
1359
1360 static void ath10k_pci_bmi_send_done(struct ce_state *ce_state,
1361                                      void *transfer_context,
1362                                      u32 data,
1363                                      unsigned int nbytes,
1364                                      unsigned int transfer_id)
1365 {
1366         struct bmi_xfer *xfer = transfer_context;
1367
1368         if (xfer->wait_for_resp)
1369                 return;
1370
1371         complete(&xfer->done);
1372 }
1373
1374 static void ath10k_pci_bmi_recv_data(struct ce_state *ce_state,
1375                                      void *transfer_context,
1376                                      u32 data,
1377                                      unsigned int nbytes,
1378                                      unsigned int transfer_id,
1379                                      unsigned int flags)
1380 {
1381         struct bmi_xfer *xfer = transfer_context;
1382
1383         if (!xfer->wait_for_resp) {
1384                 ath10k_warn("unexpected: BMI data received; ignoring\n");
1385                 return;
1386         }
1387
1388         xfer->resp_len = nbytes;
1389         complete(&xfer->done);
1390 }
1391
1392 /*
1393  * Map from service/endpoint to Copy Engine.
1394  * This table is derived from the CE_PCI TABLE, above.
1395  * It is passed to the Target at startup for use by firmware.
1396  */
1397 static const struct service_to_pipe target_service_to_ce_map_wlan[] = {
1398         {
1399                  ATH10K_HTC_SVC_ID_WMI_DATA_VO,
1400                  PIPEDIR_OUT,           /* out = UL = host -> target */
1401                  3,
1402         },
1403         {
1404                  ATH10K_HTC_SVC_ID_WMI_DATA_VO,
1405                  PIPEDIR_IN,            /* in = DL = target -> host */
1406                  2,
1407         },
1408         {
1409                  ATH10K_HTC_SVC_ID_WMI_DATA_BK,
1410                  PIPEDIR_OUT,           /* out = UL = host -> target */
1411                  3,
1412         },
1413         {
1414                  ATH10K_HTC_SVC_ID_WMI_DATA_BK,
1415                  PIPEDIR_IN,            /* in = DL = target -> host */
1416                  2,
1417         },
1418         {
1419                  ATH10K_HTC_SVC_ID_WMI_DATA_BE,
1420                  PIPEDIR_OUT,           /* out = UL = host -> target */
1421                  3,
1422         },
1423         {
1424                  ATH10K_HTC_SVC_ID_WMI_DATA_BE,
1425                  PIPEDIR_IN,            /* in = DL = target -> host */
1426                  2,
1427         },
1428         {
1429                  ATH10K_HTC_SVC_ID_WMI_DATA_VI,
1430                  PIPEDIR_OUT,           /* out = UL = host -> target */
1431                  3,
1432         },
1433         {
1434                  ATH10K_HTC_SVC_ID_WMI_DATA_VI,
1435                  PIPEDIR_IN,            /* in = DL = target -> host */
1436                  2,
1437         },
1438         {
1439                  ATH10K_HTC_SVC_ID_WMI_CONTROL,
1440                  PIPEDIR_OUT,           /* out = UL = host -> target */
1441                  3,
1442         },
1443         {
1444                  ATH10K_HTC_SVC_ID_WMI_CONTROL,
1445                  PIPEDIR_IN,            /* in = DL = target -> host */
1446                  2,
1447         },
1448         {
1449                  ATH10K_HTC_SVC_ID_RSVD_CTRL,
1450                  PIPEDIR_OUT,           /* out = UL = host -> target */
1451                  0,             /* could be moved to 3 (share with WMI) */
1452         },
1453         {
1454                  ATH10K_HTC_SVC_ID_RSVD_CTRL,
1455                  PIPEDIR_IN,            /* in = DL = target -> host */
1456                  1,
1457         },
1458         {
1459                  ATH10K_HTC_SVC_ID_TEST_RAW_STREAMS,    /* not currently used */
1460                  PIPEDIR_OUT,           /* out = UL = host -> target */
1461                  0,
1462         },
1463         {
1464                  ATH10K_HTC_SVC_ID_TEST_RAW_STREAMS,    /* not currently used */
1465                  PIPEDIR_IN,            /* in = DL = target -> host */
1466                  1,
1467         },
1468         {
1469                  ATH10K_HTC_SVC_ID_HTT_DATA_MSG,
1470                  PIPEDIR_OUT,           /* out = UL = host -> target */
1471                  4,
1472         },
1473         {
1474                  ATH10K_HTC_SVC_ID_HTT_DATA_MSG,
1475                  PIPEDIR_IN,            /* in = DL = target -> host */
1476                  1,
1477         },
1478
1479         /* (Additions here) */
1480
1481         {                               /* Must be last */
1482                  0,
1483                  0,
1484                  0,
1485         },
1486 };
1487
1488 /*
1489  * Send an interrupt to the device to wake up the Target CPU
1490  * so it has an opportunity to notice any changed state.
1491  */
1492 static int ath10k_pci_wake_target_cpu(struct ath10k *ar)
1493 {
1494         int ret;
1495         u32 core_ctrl;
1496
1497         ret = ath10k_pci_diag_read_access(ar, SOC_CORE_BASE_ADDRESS |
1498                                               CORE_CTRL_ADDRESS,
1499                                           &core_ctrl);
1500         if (ret) {
1501                 ath10k_warn("Unable to read core ctrl\n");
1502                 return ret;
1503         }
1504
1505         /* A_INUM_FIRMWARE interrupt to Target CPU */
1506         core_ctrl |= CORE_CTRL_CPU_INTR_MASK;
1507
1508         ret = ath10k_pci_diag_write_access(ar, SOC_CORE_BASE_ADDRESS |
1509                                                CORE_CTRL_ADDRESS,
1510                                            core_ctrl);
1511         if (ret)
1512                 ath10k_warn("Unable to set interrupt mask\n");
1513
1514         return ret;
1515 }
1516
1517 static int ath10k_pci_init_config(struct ath10k *ar)
1518 {
1519         u32 interconnect_targ_addr;
1520         u32 pcie_state_targ_addr = 0;
1521         u32 pipe_cfg_targ_addr = 0;
1522         u32 svc_to_pipe_map = 0;
1523         u32 pcie_config_flags = 0;
1524         u32 ealloc_value;
1525         u32 ealloc_targ_addr;
1526         u32 flag2_value;
1527         u32 flag2_targ_addr;
1528         int ret = 0;
1529
1530         /* Download to Target the CE Config and the service-to-CE map */
1531         interconnect_targ_addr =
1532                 host_interest_item_address(HI_ITEM(hi_interconnect_state));
1533
1534         /* Supply Target-side CE configuration */
1535         ret = ath10k_pci_diag_read_access(ar, interconnect_targ_addr,
1536                                           &pcie_state_targ_addr);
1537         if (ret != 0) {
1538                 ath10k_err("Failed to get pcie state addr: %d\n", ret);
1539                 return ret;
1540         }
1541
1542         if (pcie_state_targ_addr == 0) {
1543                 ret = -EIO;
1544                 ath10k_err("Invalid pcie state addr\n");
1545                 return ret;
1546         }
1547
1548         ret = ath10k_pci_diag_read_access(ar, pcie_state_targ_addr +
1549                                           offsetof(struct pcie_state,
1550                                                    pipe_cfg_addr),
1551                                           &pipe_cfg_targ_addr);
1552         if (ret != 0) {
1553                 ath10k_err("Failed to get pipe cfg addr: %d\n", ret);
1554                 return ret;
1555         }
1556
1557         if (pipe_cfg_targ_addr == 0) {
1558                 ret = -EIO;
1559                 ath10k_err("Invalid pipe cfg addr\n");
1560                 return ret;
1561         }
1562
1563         ret = ath10k_pci_diag_write_mem(ar, pipe_cfg_targ_addr,
1564                                  target_ce_config_wlan,
1565                                  sizeof(target_ce_config_wlan));
1566
1567         if (ret != 0) {
1568                 ath10k_err("Failed to write pipe cfg: %d\n", ret);
1569                 return ret;
1570         }
1571
1572         ret = ath10k_pci_diag_read_access(ar, pcie_state_targ_addr +
1573                                           offsetof(struct pcie_state,
1574                                                    svc_to_pipe_map),
1575                                           &svc_to_pipe_map);
1576         if (ret != 0) {
1577                 ath10k_err("Failed to get svc/pipe map: %d\n", ret);
1578                 return ret;
1579         }
1580
1581         if (svc_to_pipe_map == 0) {
1582                 ret = -EIO;
1583                 ath10k_err("Invalid svc_to_pipe map\n");
1584                 return ret;
1585         }
1586
1587         ret = ath10k_pci_diag_write_mem(ar, svc_to_pipe_map,
1588                                  target_service_to_ce_map_wlan,
1589                                  sizeof(target_service_to_ce_map_wlan));
1590         if (ret != 0) {
1591                 ath10k_err("Failed to write svc/pipe map: %d\n", ret);
1592                 return ret;
1593         }
1594
1595         ret = ath10k_pci_diag_read_access(ar, pcie_state_targ_addr +
1596                                           offsetof(struct pcie_state,
1597                                                    config_flags),
1598                                           &pcie_config_flags);
1599         if (ret != 0) {
1600                 ath10k_err("Failed to get pcie config_flags: %d\n", ret);
1601                 return ret;
1602         }
1603
1604         pcie_config_flags &= ~PCIE_CONFIG_FLAG_ENABLE_L1;
1605
1606         ret = ath10k_pci_diag_write_mem(ar, pcie_state_targ_addr +
1607                                  offsetof(struct pcie_state, config_flags),
1608                                  &pcie_config_flags,
1609                                  sizeof(pcie_config_flags));
1610         if (ret != 0) {
1611                 ath10k_err("Failed to write pcie config_flags: %d\n", ret);
1612                 return ret;
1613         }
1614
1615         /* configure early allocation */
1616         ealloc_targ_addr = host_interest_item_address(HI_ITEM(hi_early_alloc));
1617
1618         ret = ath10k_pci_diag_read_access(ar, ealloc_targ_addr, &ealloc_value);
1619         if (ret != 0) {
1620                 ath10k_err("Faile to get early alloc val: %d\n", ret);
1621                 return ret;
1622         }
1623
1624         /* first bank is switched to IRAM */
1625         ealloc_value |= ((HI_EARLY_ALLOC_MAGIC << HI_EARLY_ALLOC_MAGIC_SHIFT) &
1626                          HI_EARLY_ALLOC_MAGIC_MASK);
1627         ealloc_value |= ((1 << HI_EARLY_ALLOC_IRAM_BANKS_SHIFT) &
1628                          HI_EARLY_ALLOC_IRAM_BANKS_MASK);
1629
1630         ret = ath10k_pci_diag_write_access(ar, ealloc_targ_addr, ealloc_value);
1631         if (ret != 0) {
1632                 ath10k_err("Failed to set early alloc val: %d\n", ret);
1633                 return ret;
1634         }
1635
1636         /* Tell Target to proceed with initialization */
1637         flag2_targ_addr = host_interest_item_address(HI_ITEM(hi_option_flag2));
1638
1639         ret = ath10k_pci_diag_read_access(ar, flag2_targ_addr, &flag2_value);
1640         if (ret != 0) {
1641                 ath10k_err("Failed to get option val: %d\n", ret);
1642                 return ret;
1643         }
1644
1645         flag2_value |= HI_OPTION_EARLY_CFG_DONE;
1646
1647         ret = ath10k_pci_diag_write_access(ar, flag2_targ_addr, flag2_value);
1648         if (ret != 0) {
1649                 ath10k_err("Failed to set option val: %d\n", ret);
1650                 return ret;
1651         }
1652
1653         return 0;
1654 }
1655
1656
1657
1658 static int ath10k_pci_ce_init(struct ath10k *ar)
1659 {
1660         struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
1661         struct hif_ce_pipe_info *pipe_info;
1662         const struct ce_attr *attr;
1663         int pipe_num;
1664
1665         for (pipe_num = 0; pipe_num < ar_pci->ce_count; pipe_num++) {
1666                 pipe_info = &ar_pci->pipe_info[pipe_num];
1667                 pipe_info->pipe_num = pipe_num;
1668                 pipe_info->hif_ce_state = ar;
1669                 attr = &host_ce_config_wlan[pipe_num];
1670
1671                 pipe_info->ce_hdl = ath10k_ce_init(ar, pipe_num, attr);
1672                 if (pipe_info->ce_hdl == NULL) {
1673                         ath10k_err("Unable to initialize CE for pipe: %d\n",
1674                                    pipe_num);
1675
1676                         /* It is safe to call it here. It checks if ce_hdl is
1677                          * valid for each pipe */
1678                         ath10k_pci_ce_deinit(ar);
1679                         return -1;
1680                 }
1681
1682                 if (pipe_num == ar_pci->ce_count - 1) {
1683                         /*
1684                          * Reserve the ultimate CE for
1685                          * diagnostic Window support
1686                          */
1687                         ar_pci->ce_diag =
1688                         ar_pci->pipe_info[ar_pci->ce_count - 1].ce_hdl;
1689                         continue;
1690                 }
1691
1692                 pipe_info->buf_sz = (size_t) (attr->src_sz_max);
1693         }
1694
1695         /*
1696          * Initially, establish CE completion handlers for use with BMI.
1697          * These are overwritten with generic handlers after we exit BMI phase.
1698          */
1699         pipe_info = &ar_pci->pipe_info[BMI_CE_NUM_TO_TARG];
1700         ath10k_ce_send_cb_register(pipe_info->ce_hdl,
1701                                    ath10k_pci_bmi_send_done, 0);
1702
1703         pipe_info = &ar_pci->pipe_info[BMI_CE_NUM_TO_HOST];
1704         ath10k_ce_recv_cb_register(pipe_info->ce_hdl,
1705                                    ath10k_pci_bmi_recv_data);
1706
1707         return 0;
1708 }
1709
1710 static void ath10k_pci_fw_interrupt_handler(struct ath10k *ar)
1711 {
1712         struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
1713         u32 fw_indicator_address, fw_indicator;
1714
1715         ath10k_pci_wake(ar);
1716
1717         fw_indicator_address = ar_pci->fw_indicator_address;
1718         fw_indicator = ath10k_pci_read32(ar, fw_indicator_address);
1719
1720         if (fw_indicator & FW_IND_EVENT_PENDING) {
1721                 /* ACK: clear Target-side pending event */
1722                 ath10k_pci_write32(ar, fw_indicator_address,
1723                                    fw_indicator & ~FW_IND_EVENT_PENDING);
1724
1725                 if (ar_pci->started) {
1726                         ath10k_pci_hif_dump_area(ar);
1727                 } else {
1728                         /*
1729                          * Probable Target failure before we're prepared
1730                          * to handle it.  Generally unexpected.
1731                          */
1732                         ath10k_warn("early firmware event indicated\n");
1733                 }
1734         }
1735
1736         ath10k_pci_sleep(ar);
1737 }
1738
1739 static int ath10k_pci_hif_power_up(struct ath10k *ar)
1740 {
1741         int ret;
1742
1743         /*
1744          * Bring the target up cleanly.
1745          *
1746          * The target may be in an undefined state with an AUX-powered Target
1747          * and a Host in WoW mode. If the Host crashes, loses power, or is
1748          * restarted (without unloading the driver) then the Target is left
1749          * (aux) powered and running. On a subsequent driver load, the Target
1750          * is in an unexpected state. We try to catch that here in order to
1751          * reset the Target and retry the probe.
1752          */
1753         ath10k_pci_device_reset(ar);
1754
1755         ret = ath10k_pci_reset_target(ar);
1756         if (ret)
1757                 goto err;
1758
1759         if (ath10k_target_ps) {
1760                 ath10k_dbg(ATH10K_DBG_PCI, "on-chip power save enabled\n");
1761         } else {
1762                 /* Force AWAKE forever */
1763                 ath10k_dbg(ATH10K_DBG_PCI, "on-chip power save disabled\n");
1764                 ath10k_do_pci_wake(ar);
1765         }
1766
1767         ret = ath10k_pci_ce_init(ar);
1768         if (ret)
1769                 goto err_ps;
1770
1771         ret = ath10k_pci_init_config(ar);
1772         if (ret)
1773                 goto err_ce;
1774
1775         ret = ath10k_pci_wake_target_cpu(ar);
1776         if (ret) {
1777                 ath10k_err("could not wake up target CPU (%d)\n", ret);
1778                 goto err_ce;
1779         }
1780
1781         return 0;
1782
1783 err_ce:
1784         ath10k_pci_ce_deinit(ar);
1785 err_ps:
1786         if (!ath10k_target_ps)
1787                 ath10k_do_pci_sleep(ar);
1788 err:
1789         return ret;
1790 }
1791
1792 static void ath10k_pci_hif_power_down(struct ath10k *ar)
1793 {
1794         ath10k_pci_ce_deinit(ar);
1795         if (!ath10k_target_ps)
1796                 ath10k_do_pci_sleep(ar);
1797 }
1798
1799 #ifdef CONFIG_PM
1800
1801 #define ATH10K_PCI_PM_CONTROL 0x44
1802
1803 static int ath10k_pci_hif_suspend(struct ath10k *ar)
1804 {
1805         struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
1806         struct pci_dev *pdev = ar_pci->pdev;
1807         u32 val;
1808
1809         pci_read_config_dword(pdev, ATH10K_PCI_PM_CONTROL, &val);
1810
1811         if ((val & 0x000000ff) != 0x3) {
1812                 pci_save_state(pdev);
1813                 pci_disable_device(pdev);
1814                 pci_write_config_dword(pdev, ATH10K_PCI_PM_CONTROL,
1815                                        (val & 0xffffff00) | 0x03);
1816         }
1817
1818         return 0;
1819 }
1820
1821 static int ath10k_pci_hif_resume(struct ath10k *ar)
1822 {
1823         struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
1824         struct pci_dev *pdev = ar_pci->pdev;
1825         u32 val;
1826
1827         pci_read_config_dword(pdev, ATH10K_PCI_PM_CONTROL, &val);
1828
1829         if ((val & 0x000000ff) != 0) {
1830                 pci_restore_state(pdev);
1831                 pci_write_config_dword(pdev, ATH10K_PCI_PM_CONTROL,
1832                                        val & 0xffffff00);
1833                 /*
1834                  * Suspend/Resume resets the PCI configuration space,
1835                  * so we have to re-disable the RETRY_TIMEOUT register (0x41)
1836                  * to keep PCI Tx retries from interfering with C3 CPU state
1837                  */
1838                 pci_read_config_dword(pdev, 0x40, &val);
1839
1840                 if ((val & 0x0000ff00) != 0)
1841                         pci_write_config_dword(pdev, 0x40, val & 0xffff00ff);
1842         }
1843
1844         return 0;
1845 }
1846 #endif
1847
1848 static const struct ath10k_hif_ops ath10k_pci_hif_ops = {
1849         .send_head              = ath10k_pci_hif_send_head,
1850         .exchange_bmi_msg       = ath10k_pci_hif_exchange_bmi_msg,
1851         .start                  = ath10k_pci_hif_start,
1852         .stop                   = ath10k_pci_hif_stop,
1853         .map_service_to_pipe    = ath10k_pci_hif_map_service_to_pipe,
1854         .get_default_pipe       = ath10k_pci_hif_get_default_pipe,
1855         .send_complete_check    = ath10k_pci_hif_send_complete_check,
1856         .set_callbacks          = ath10k_pci_hif_set_callbacks,
1857         .get_free_queue_number  = ath10k_pci_hif_get_free_queue_number,
1858         .power_up               = ath10k_pci_hif_power_up,
1859         .power_down             = ath10k_pci_hif_power_down,
1860 #ifdef CONFIG_PM
1861         .suspend                = ath10k_pci_hif_suspend,
1862         .resume                 = ath10k_pci_hif_resume,
1863 #endif
1864 };
1865
1866 static void ath10k_pci_ce_tasklet(unsigned long ptr)
1867 {
1868         struct hif_ce_pipe_info *pipe = (struct hif_ce_pipe_info *)ptr;
1869         struct ath10k_pci *ar_pci = pipe->ar_pci;
1870
1871         ath10k_ce_per_engine_service(ar_pci->ar, pipe->pipe_num);
1872 }
1873
1874 static void ath10k_msi_err_tasklet(unsigned long data)
1875 {
1876         struct ath10k *ar = (struct ath10k *)data;
1877
1878         ath10k_pci_fw_interrupt_handler(ar);
1879 }
1880
1881 /*
1882  * Handler for a per-engine interrupt on a PARTICULAR CE.
1883  * This is used in cases where each CE has a private MSI interrupt.
1884  */
1885 static irqreturn_t ath10k_pci_per_engine_handler(int irq, void *arg)
1886 {
1887         struct ath10k *ar = arg;
1888         struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
1889         int ce_id = irq - ar_pci->pdev->irq - MSI_ASSIGN_CE_INITIAL;
1890
1891         if (ce_id < 0 || ce_id >= ARRAY_SIZE(ar_pci->pipe_info)) {
1892                 ath10k_warn("unexpected/invalid irq %d ce_id %d\n", irq, ce_id);
1893                 return IRQ_HANDLED;
1894         }
1895
1896         /*
1897          * NOTE: We are able to derive ce_id from irq because we
1898          * use a one-to-one mapping for CE's 0..5.
1899          * CE's 6 & 7 do not use interrupts at all.
1900          *
1901          * This mapping must be kept in sync with the mapping
1902          * used by firmware.
1903          */
1904         tasklet_schedule(&ar_pci->pipe_info[ce_id].intr);
1905         return IRQ_HANDLED;
1906 }
1907
1908 static irqreturn_t ath10k_pci_msi_fw_handler(int irq, void *arg)
1909 {
1910         struct ath10k *ar = arg;
1911         struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
1912
1913         tasklet_schedule(&ar_pci->msi_fw_err);
1914         return IRQ_HANDLED;
1915 }
1916
1917 /*
1918  * Top-level interrupt handler for all PCI interrupts from a Target.
1919  * When a block of MSI interrupts is allocated, this top-level handler
1920  * is not used; instead, we directly call the correct sub-handler.
1921  */
1922 static irqreturn_t ath10k_pci_interrupt_handler(int irq, void *arg)
1923 {
1924         struct ath10k *ar = arg;
1925         struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
1926
1927         if (ar_pci->num_msi_intrs == 0) {
1928                 /*
1929                  * IMPORTANT: INTR_CLR regiser has to be set after
1930                  * INTR_ENABLE is set to 0, otherwise interrupt can not be
1931                  * really cleared.
1932                  */
1933                 iowrite32(0, ar_pci->mem +
1934                           (SOC_CORE_BASE_ADDRESS |
1935                            PCIE_INTR_ENABLE_ADDRESS));
1936                 iowrite32(PCIE_INTR_FIRMWARE_MASK |
1937                           PCIE_INTR_CE_MASK_ALL,
1938                           ar_pci->mem + (SOC_CORE_BASE_ADDRESS |
1939                                          PCIE_INTR_CLR_ADDRESS));
1940                 /*
1941                  * IMPORTANT: this extra read transaction is required to
1942                  * flush the posted write buffer.
1943                  */
1944                 (void) ioread32(ar_pci->mem +
1945                                 (SOC_CORE_BASE_ADDRESS |
1946                                  PCIE_INTR_ENABLE_ADDRESS));
1947         }
1948
1949         tasklet_schedule(&ar_pci->intr_tq);
1950
1951         return IRQ_HANDLED;
1952 }
1953
1954 static void ath10k_pci_tasklet(unsigned long data)
1955 {
1956         struct ath10k *ar = (struct ath10k *)data;
1957         struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
1958
1959         ath10k_pci_fw_interrupt_handler(ar); /* FIXME: Handle FW error */
1960         ath10k_ce_per_engine_service_any(ar);
1961
1962         if (ar_pci->num_msi_intrs == 0) {
1963                 /* Enable Legacy PCI line interrupts */
1964                 iowrite32(PCIE_INTR_FIRMWARE_MASK |
1965                           PCIE_INTR_CE_MASK_ALL,
1966                           ar_pci->mem + (SOC_CORE_BASE_ADDRESS |
1967                                          PCIE_INTR_ENABLE_ADDRESS));
1968                 /*
1969                  * IMPORTANT: this extra read transaction is required to
1970                  * flush the posted write buffer
1971                  */
1972                 (void) ioread32(ar_pci->mem +
1973                                 (SOC_CORE_BASE_ADDRESS |
1974                                  PCIE_INTR_ENABLE_ADDRESS));
1975         }
1976 }
1977
1978 static int ath10k_pci_start_intr_msix(struct ath10k *ar, int num)
1979 {
1980         struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
1981         int ret;
1982         int i;
1983
1984         ret = pci_enable_msi_block(ar_pci->pdev, num);
1985         if (ret)
1986                 return ret;
1987
1988         ret = request_irq(ar_pci->pdev->irq + MSI_ASSIGN_FW,
1989                           ath10k_pci_msi_fw_handler,
1990                           IRQF_SHARED, "ath10k_pci", ar);
1991         if (ret)
1992                 return ret;
1993
1994         for (i = MSI_ASSIGN_CE_INITIAL; i <= MSI_ASSIGN_CE_MAX; i++) {
1995                 ret = request_irq(ar_pci->pdev->irq + i,
1996                                   ath10k_pci_per_engine_handler,
1997                                   IRQF_SHARED, "ath10k_pci", ar);
1998                 if (ret) {
1999                         ath10k_warn("request_irq(%d) failed %d\n",
2000                                     ar_pci->pdev->irq + i, ret);
2001
2002                         for (i--; i >= MSI_ASSIGN_CE_INITIAL; i--)
2003                                 free_irq(ar_pci->pdev->irq + i, ar);
2004
2005                         free_irq(ar_pci->pdev->irq + MSI_ASSIGN_FW, ar);
2006                         pci_disable_msi(ar_pci->pdev);
2007                         return ret;
2008                 }
2009         }
2010
2011         ath10k_info("MSI-X interrupt handling (%d intrs)\n", num);
2012         return 0;
2013 }
2014
2015 static int ath10k_pci_start_intr_msi(struct ath10k *ar)
2016 {
2017         struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
2018         int ret;
2019
2020         ret = pci_enable_msi(ar_pci->pdev);
2021         if (ret < 0)
2022                 return ret;
2023
2024         ret = request_irq(ar_pci->pdev->irq,
2025                           ath10k_pci_interrupt_handler,
2026                           IRQF_SHARED, "ath10k_pci", ar);
2027         if (ret < 0) {
2028                 pci_disable_msi(ar_pci->pdev);
2029                 return ret;
2030         }
2031
2032         ath10k_info("MSI interrupt handling\n");
2033         return 0;
2034 }
2035
2036 static int ath10k_pci_start_intr_legacy(struct ath10k *ar)
2037 {
2038         struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
2039         int ret;
2040
2041         ret = request_irq(ar_pci->pdev->irq,
2042                           ath10k_pci_interrupt_handler,
2043                           IRQF_SHARED, "ath10k_pci", ar);
2044         if (ret < 0)
2045                 return ret;
2046
2047         /*
2048          * Make sure to wake the Target before enabling Legacy
2049          * Interrupt.
2050          */
2051         iowrite32(PCIE_SOC_WAKE_V_MASK,
2052                   ar_pci->mem + PCIE_LOCAL_BASE_ADDRESS +
2053                   PCIE_SOC_WAKE_ADDRESS);
2054
2055         ath10k_pci_wait(ar);
2056
2057         /*
2058          * A potential race occurs here: The CORE_BASE write
2059          * depends on target correctly decoding AXI address but
2060          * host won't know when target writes BAR to CORE_CTRL.
2061          * This write might get lost if target has NOT written BAR.
2062          * For now, fix the race by repeating the write in below
2063          * synchronization checking.
2064          */
2065         iowrite32(PCIE_INTR_FIRMWARE_MASK |
2066                   PCIE_INTR_CE_MASK_ALL,
2067                   ar_pci->mem + (SOC_CORE_BASE_ADDRESS |
2068                                  PCIE_INTR_ENABLE_ADDRESS));
2069         iowrite32(PCIE_SOC_WAKE_RESET,
2070                   ar_pci->mem + PCIE_LOCAL_BASE_ADDRESS +
2071                   PCIE_SOC_WAKE_ADDRESS);
2072
2073         ath10k_info("legacy interrupt handling\n");
2074         return 0;
2075 }
2076
2077 static int ath10k_pci_start_intr(struct ath10k *ar)
2078 {
2079         struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
2080         int num = MSI_NUM_REQUEST;
2081         int ret;
2082         int i;
2083
2084         tasklet_init(&ar_pci->intr_tq, ath10k_pci_tasklet, (unsigned long) ar);
2085         tasklet_init(&ar_pci->msi_fw_err, ath10k_msi_err_tasklet,
2086                      (unsigned long) ar);
2087
2088         for (i = 0; i < CE_COUNT; i++) {
2089                 ar_pci->pipe_info[i].ar_pci = ar_pci;
2090                 tasklet_init(&ar_pci->pipe_info[i].intr,
2091                              ath10k_pci_ce_tasklet,
2092                              (unsigned long)&ar_pci->pipe_info[i]);
2093         }
2094
2095         if (!test_bit(ATH10K_PCI_FEATURE_MSI_X, ar_pci->features))
2096                 num = 1;
2097
2098         if (num > 1) {
2099                 ret = ath10k_pci_start_intr_msix(ar, num);
2100                 if (ret == 0)
2101                         goto exit;
2102
2103                 ath10k_warn("MSI-X didn't succeed (%d), trying MSI\n", ret);
2104                 num = 1;
2105         }
2106
2107         if (num == 1) {
2108                 ret = ath10k_pci_start_intr_msi(ar);
2109                 if (ret == 0)
2110                         goto exit;
2111
2112                 ath10k_warn("MSI didn't succeed (%d), trying legacy INTR\n",
2113                             ret);
2114                 num = 0;
2115         }
2116
2117         ret = ath10k_pci_start_intr_legacy(ar);
2118
2119 exit:
2120         ar_pci->num_msi_intrs = num;
2121         ar_pci->ce_count = CE_COUNT;
2122         return ret;
2123 }
2124
2125 static void ath10k_pci_stop_intr(struct ath10k *ar)
2126 {
2127         struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
2128         int i;
2129
2130         /* There's at least one interrupt irregardless whether its legacy INTR
2131          * or MSI or MSI-X */
2132         for (i = 0; i < max(1, ar_pci->num_msi_intrs); i++)
2133                 free_irq(ar_pci->pdev->irq + i, ar);
2134
2135         if (ar_pci->num_msi_intrs > 0)
2136                 pci_disable_msi(ar_pci->pdev);
2137 }
2138
2139 static int ath10k_pci_reset_target(struct ath10k *ar)
2140 {
2141         struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
2142         int wait_limit = 300; /* 3 sec */
2143
2144         /* Wait for Target to finish initialization before we proceed. */
2145         iowrite32(PCIE_SOC_WAKE_V_MASK,
2146                   ar_pci->mem + PCIE_LOCAL_BASE_ADDRESS +
2147                   PCIE_SOC_WAKE_ADDRESS);
2148
2149         ath10k_pci_wait(ar);
2150
2151         while (wait_limit-- &&
2152                !(ioread32(ar_pci->mem + FW_INDICATOR_ADDRESS) &
2153                  FW_IND_INITIALIZED)) {
2154                 if (ar_pci->num_msi_intrs == 0)
2155                         /* Fix potential race by repeating CORE_BASE writes */
2156                         iowrite32(PCIE_INTR_FIRMWARE_MASK |
2157                                   PCIE_INTR_CE_MASK_ALL,
2158                                   ar_pci->mem + (SOC_CORE_BASE_ADDRESS |
2159                                                  PCIE_INTR_ENABLE_ADDRESS));
2160                 mdelay(10);
2161         }
2162
2163         if (wait_limit < 0) {
2164                 ath10k_err("Target stalled\n");
2165                 iowrite32(PCIE_SOC_WAKE_RESET,
2166                           ar_pci->mem + PCIE_LOCAL_BASE_ADDRESS +
2167                           PCIE_SOC_WAKE_ADDRESS);
2168                 return -EIO;
2169         }
2170
2171         iowrite32(PCIE_SOC_WAKE_RESET,
2172                   ar_pci->mem + PCIE_LOCAL_BASE_ADDRESS +
2173                   PCIE_SOC_WAKE_ADDRESS);
2174
2175         return 0;
2176 }
2177
2178 static void ath10k_pci_device_reset(struct ath10k *ar)
2179 {
2180         struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
2181         void __iomem *mem = ar_pci->mem;
2182         int i;
2183         u32 val;
2184
2185         if (!SOC_GLOBAL_RESET_ADDRESS)
2186                 return;
2187
2188         if (!mem)
2189                 return;
2190
2191         ath10k_pci_reg_write32(mem, PCIE_SOC_WAKE_ADDRESS,
2192                                PCIE_SOC_WAKE_V_MASK);
2193         for (i = 0; i < ATH_PCI_RESET_WAIT_MAX; i++) {
2194                 if (ath10k_pci_target_is_awake(ar))
2195                         break;
2196                 msleep(1);
2197         }
2198
2199         /* Put Target, including PCIe, into RESET. */
2200         val = ath10k_pci_reg_read32(mem, SOC_GLOBAL_RESET_ADDRESS);
2201         val |= 1;
2202         ath10k_pci_reg_write32(mem, SOC_GLOBAL_RESET_ADDRESS, val);
2203
2204         for (i = 0; i < ATH_PCI_RESET_WAIT_MAX; i++) {
2205                 if (ath10k_pci_reg_read32(mem, RTC_STATE_ADDRESS) &
2206                                           RTC_STATE_COLD_RESET_MASK)
2207                         break;
2208                 msleep(1);
2209         }
2210
2211         /* Pull Target, including PCIe, out of RESET. */
2212         val &= ~1;
2213         ath10k_pci_reg_write32(mem, SOC_GLOBAL_RESET_ADDRESS, val);
2214
2215         for (i = 0; i < ATH_PCI_RESET_WAIT_MAX; i++) {
2216                 if (!(ath10k_pci_reg_read32(mem, RTC_STATE_ADDRESS) &
2217                                             RTC_STATE_COLD_RESET_MASK))
2218                         break;
2219                 msleep(1);
2220         }
2221
2222         ath10k_pci_reg_write32(mem, PCIE_SOC_WAKE_ADDRESS, PCIE_SOC_WAKE_RESET);
2223 }
2224
2225 static void ath10k_pci_dump_features(struct ath10k_pci *ar_pci)
2226 {
2227         int i;
2228
2229         for (i = 0; i < ATH10K_PCI_FEATURE_COUNT; i++) {
2230                 if (!test_bit(i, ar_pci->features))
2231                         continue;
2232
2233                 switch (i) {
2234                 case ATH10K_PCI_FEATURE_MSI_X:
2235                         ath10k_dbg(ATH10K_DBG_PCI, "device supports MSI-X\n");
2236                         break;
2237                 case ATH10K_PCI_FEATURE_HW_1_0_WORKAROUND:
2238                         ath10k_dbg(ATH10K_DBG_PCI, "QCA988X_1.0 workaround enabled\n");
2239                         break;
2240                 }
2241         }
2242 }
2243
2244 static int ath10k_pci_probe(struct pci_dev *pdev,
2245                             const struct pci_device_id *pci_dev)
2246 {
2247         void __iomem *mem;
2248         int ret = 0;
2249         struct ath10k *ar;
2250         struct ath10k_pci *ar_pci;
2251         u32 lcr_val;
2252
2253         ath10k_dbg(ATH10K_DBG_PCI, "%s\n", __func__);
2254
2255         ar_pci = kzalloc(sizeof(*ar_pci), GFP_KERNEL);
2256         if (ar_pci == NULL)
2257                 return -ENOMEM;
2258
2259         ar_pci->pdev = pdev;
2260         ar_pci->dev = &pdev->dev;
2261
2262         switch (pci_dev->device) {
2263         case QCA988X_1_0_DEVICE_ID:
2264                 set_bit(ATH10K_PCI_FEATURE_HW_1_0_WORKAROUND, ar_pci->features);
2265                 break;
2266         case QCA988X_2_0_DEVICE_ID:
2267                 set_bit(ATH10K_PCI_FEATURE_MSI_X, ar_pci->features);
2268                 break;
2269         default:
2270                 ret = -ENODEV;
2271                 ath10k_err("Unkown device ID: %d\n", pci_dev->device);
2272                 goto err_ar_pci;
2273         }
2274
2275         ath10k_pci_dump_features(ar_pci);
2276
2277         ar = ath10k_core_create(ar_pci, ar_pci->dev, &ath10k_pci_hif_ops);
2278         if (!ar) {
2279                 ath10k_err("ath10k_core_create failed!\n");
2280                 ret = -EINVAL;
2281                 goto err_ar_pci;
2282         }
2283
2284         /* Enable QCA988X_1.0 HW workarounds */
2285         if (test_bit(ATH10K_PCI_FEATURE_HW_1_0_WORKAROUND, ar_pci->features))
2286                 spin_lock_init(&ar_pci->hw_v1_workaround_lock);
2287
2288         ar_pci->ar = ar;
2289         ar_pci->fw_indicator_address = FW_INDICATOR_ADDRESS;
2290         atomic_set(&ar_pci->keep_awake_count, 0);
2291
2292         pci_set_drvdata(pdev, ar);
2293
2294         /*
2295          * Without any knowledge of the Host, the Target may have been reset or
2296          * power cycled and its Config Space may no longer reflect the PCI
2297          * address space that was assigned earlier by the PCI infrastructure.
2298          * Refresh it now.
2299          */
2300         ret = pci_assign_resource(pdev, BAR_NUM);
2301         if (ret) {
2302                 ath10k_err("cannot assign PCI space: %d\n", ret);
2303                 goto err_ar;
2304         }
2305
2306         ret = pci_enable_device(pdev);
2307         if (ret) {
2308                 ath10k_err("cannot enable PCI device: %d\n", ret);
2309                 goto err_ar;
2310         }
2311
2312         /* Request MMIO resources */
2313         ret = pci_request_region(pdev, BAR_NUM, "ath");
2314         if (ret) {
2315                 ath10k_err("PCI MMIO reservation error: %d\n", ret);
2316                 goto err_device;
2317         }
2318
2319         /*
2320          * Target structures have a limit of 32 bit DMA pointers.
2321          * DMA pointers can be wider than 32 bits by default on some systems.
2322          */
2323         ret = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
2324         if (ret) {
2325                 ath10k_err("32-bit DMA not available: %d\n", ret);
2326                 goto err_region;
2327         }
2328
2329         ret = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32));
2330         if (ret) {
2331                 ath10k_err("cannot enable 32-bit consistent DMA\n");
2332                 goto err_region;
2333         }
2334
2335         /* Set bus master bit in PCI_COMMAND to enable DMA */
2336         pci_set_master(pdev);
2337
2338         /*
2339          * Temporary FIX: disable ASPM
2340          * Will be removed after the OTP is programmed
2341          */
2342         pci_read_config_dword(pdev, 0x80, &lcr_val);
2343         pci_write_config_dword(pdev, 0x80, (lcr_val & 0xffffff00));
2344
2345         /* Arrange for access to Target SoC registers. */
2346         mem = pci_iomap(pdev, BAR_NUM, 0);
2347         if (!mem) {
2348                 ath10k_err("PCI iomap error\n");
2349                 ret = -EIO;
2350                 goto err_master;
2351         }
2352
2353         ar_pci->mem = mem;
2354
2355         spin_lock_init(&ar_pci->ce_lock);
2356
2357         ar_pci->cacheline_sz = dma_get_cache_alignment();
2358
2359         ret = ath10k_pci_start_intr(ar);
2360         if (ret) {
2361                 ath10k_err("could not start interrupt handling (%d)\n", ret);
2362                 goto err_iomap;
2363         }
2364
2365         ret = ath10k_core_register(ar);
2366         if (ret) {
2367                 ath10k_err("could not register driver core (%d)\n", ret);
2368                 goto err_intr;
2369         }
2370
2371         return 0;
2372
2373 err_intr:
2374         ath10k_pci_stop_intr(ar);
2375 err_iomap:
2376         pci_iounmap(pdev, mem);
2377 err_master:
2378         pci_clear_master(pdev);
2379 err_region:
2380         pci_release_region(pdev, BAR_NUM);
2381 err_device:
2382         pci_disable_device(pdev);
2383 err_ar:
2384         pci_set_drvdata(pdev, NULL);
2385         ath10k_core_destroy(ar);
2386 err_ar_pci:
2387         /* call HIF PCI free here */
2388         kfree(ar_pci);
2389
2390         return ret;
2391 }
2392
2393 static void ath10k_pci_remove(struct pci_dev *pdev)
2394 {
2395         struct ath10k *ar = pci_get_drvdata(pdev);
2396         struct ath10k_pci *ar_pci;
2397
2398         ath10k_dbg(ATH10K_DBG_PCI, "%s\n", __func__);
2399
2400         if (!ar)
2401                 return;
2402
2403         ar_pci = ath10k_pci_priv(ar);
2404
2405         if (!ar_pci)
2406                 return;
2407
2408         tasklet_kill(&ar_pci->msi_fw_err);
2409
2410         ath10k_core_unregister(ar);
2411         ath10k_pci_stop_intr(ar);
2412
2413         pci_set_drvdata(pdev, NULL);
2414         pci_iounmap(pdev, ar_pci->mem);
2415         pci_release_region(pdev, BAR_NUM);
2416         pci_clear_master(pdev);
2417         pci_disable_device(pdev);
2418
2419         ath10k_core_destroy(ar);
2420         kfree(ar_pci);
2421 }
2422
2423 MODULE_DEVICE_TABLE(pci, ath10k_pci_id_table);
2424
2425 static struct pci_driver ath10k_pci_driver = {
2426         .name = "ath10k_pci",
2427         .id_table = ath10k_pci_id_table,
2428         .probe = ath10k_pci_probe,
2429         .remove = ath10k_pci_remove,
2430 };
2431
2432 static int __init ath10k_pci_init(void)
2433 {
2434         int ret;
2435
2436         ret = pci_register_driver(&ath10k_pci_driver);
2437         if (ret)
2438                 ath10k_err("pci_register_driver failed [%d]\n", ret);
2439
2440         return ret;
2441 }
2442 module_init(ath10k_pci_init);
2443
2444 static void __exit ath10k_pci_exit(void)
2445 {
2446         pci_unregister_driver(&ath10k_pci_driver);
2447 }
2448
2449 module_exit(ath10k_pci_exit);
2450
2451 MODULE_AUTHOR("Qualcomm Atheros");
2452 MODULE_DESCRIPTION("Driver support for Atheros QCA988X PCIe devices");
2453 MODULE_LICENSE("Dual BSD/GPL");
2454 MODULE_FIRMWARE(QCA988X_HW_1_0_FW_DIR "/" QCA988X_HW_1_0_FW_FILE);
2455 MODULE_FIRMWARE(QCA988X_HW_1_0_FW_DIR "/" QCA988X_HW_1_0_OTP_FILE);
2456 MODULE_FIRMWARE(QCA988X_HW_1_0_FW_DIR "/" QCA988X_HW_1_0_BOARD_DATA_FILE);
2457 MODULE_FIRMWARE(QCA988X_HW_2_0_FW_DIR "/" QCA988X_HW_2_0_FW_FILE);
2458 MODULE_FIRMWARE(QCA988X_HW_2_0_FW_DIR "/" QCA988X_HW_2_0_OTP_FILE);
2459 MODULE_FIRMWARE(QCA988X_HW_2_0_FW_DIR "/" QCA988X_HW_2_0_BOARD_DATA_FILE);