ath10k: implement device recovery
[cascardo/linux.git] / drivers / net / wireless / ath / ath10k / wmi.c
1 /*
2  * Copyright (c) 2005-2011 Atheros Communications Inc.
3  * Copyright (c) 2011-2013 Qualcomm Atheros, Inc.
4  *
5  * Permission to use, copy, modify, and/or distribute this software for any
6  * purpose with or without fee is hereby granted, provided that the above
7  * copyright notice and this permission notice appear in all copies.
8  *
9  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
10  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
11  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
12  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
13  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
14  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
15  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
16  */
17
18 #include <linux/skbuff.h>
19
20 #include "core.h"
21 #include "htc.h"
22 #include "debug.h"
23 #include "wmi.h"
24 #include "mac.h"
25
26 void ath10k_wmi_flush_tx(struct ath10k *ar)
27 {
28         int ret;
29
30         lockdep_assert_held(&ar->conf_mutex);
31
32         if (ar->state == ATH10K_STATE_WEDGED) {
33                 ath10k_warn("wmi flush skipped - device is wedged anyway\n");
34                 return;
35         }
36
37         ret = wait_event_timeout(ar->wmi.wq,
38                                  atomic_read(&ar->wmi.pending_tx_count) == 0,
39                                  5*HZ);
40         if (atomic_read(&ar->wmi.pending_tx_count) == 0)
41                 return;
42
43         if (ret == 0)
44                 ret = -ETIMEDOUT;
45
46         if (ret < 0)
47                 ath10k_warn("wmi flush failed (%d)\n", ret);
48 }
49
50 int ath10k_wmi_wait_for_service_ready(struct ath10k *ar)
51 {
52         int ret;
53         ret = wait_for_completion_timeout(&ar->wmi.service_ready,
54                                           WMI_SERVICE_READY_TIMEOUT_HZ);
55         return ret;
56 }
57
58 int ath10k_wmi_wait_for_unified_ready(struct ath10k *ar)
59 {
60         int ret;
61         ret = wait_for_completion_timeout(&ar->wmi.unified_ready,
62                                           WMI_UNIFIED_READY_TIMEOUT_HZ);
63         return ret;
64 }
65
66 static struct sk_buff *ath10k_wmi_alloc_skb(u32 len)
67 {
68         struct sk_buff *skb;
69         u32 round_len = roundup(len, 4);
70
71         skb = ath10k_htc_alloc_skb(WMI_SKB_HEADROOM + round_len);
72         if (!skb)
73                 return NULL;
74
75         skb_reserve(skb, WMI_SKB_HEADROOM);
76         if (!IS_ALIGNED((unsigned long)skb->data, 4))
77                 ath10k_warn("Unaligned WMI skb\n");
78
79         skb_put(skb, round_len);
80         memset(skb->data, 0, round_len);
81
82         return skb;
83 }
84
85 static void ath10k_wmi_htc_tx_complete(struct ath10k *ar, struct sk_buff *skb)
86 {
87         dev_kfree_skb(skb);
88
89         if (atomic_sub_return(1, &ar->wmi.pending_tx_count) == 0)
90                 wake_up(&ar->wmi.wq);
91 }
92
93 /* WMI command API */
94 static int ath10k_wmi_cmd_send(struct ath10k *ar, struct sk_buff *skb,
95                                enum wmi_cmd_id cmd_id)
96 {
97         struct ath10k_skb_cb *skb_cb = ATH10K_SKB_CB(skb);
98         struct wmi_cmd_hdr *cmd_hdr;
99         int status;
100         u32 cmd = 0;
101
102         if (skb_push(skb, sizeof(struct wmi_cmd_hdr)) == NULL)
103                 return -ENOMEM;
104
105         cmd |= SM(cmd_id, WMI_CMD_HDR_CMD_ID);
106
107         cmd_hdr = (struct wmi_cmd_hdr *)skb->data;
108         cmd_hdr->cmd_id = __cpu_to_le32(cmd);
109
110         if (atomic_add_return(1, &ar->wmi.pending_tx_count) >
111             WMI_MAX_PENDING_TX_COUNT) {
112                 /* avoid using up memory when FW hangs */
113                 atomic_dec(&ar->wmi.pending_tx_count);
114                 return -EBUSY;
115         }
116
117         memset(skb_cb, 0, sizeof(*skb_cb));
118
119         trace_ath10k_wmi_cmd(cmd_id, skb->data, skb->len);
120
121         status = ath10k_htc_send(&ar->htc, ar->wmi.eid, skb);
122         if (status) {
123                 dev_kfree_skb_any(skb);
124                 atomic_dec(&ar->wmi.pending_tx_count);
125                 return status;
126         }
127
128         return 0;
129 }
130
131 static int ath10k_wmi_event_scan(struct ath10k *ar, struct sk_buff *skb)
132 {
133         struct wmi_scan_event *event = (struct wmi_scan_event *)skb->data;
134         enum wmi_scan_event_type event_type;
135         enum wmi_scan_completion_reason reason;
136         u32 freq;
137         u32 req_id;
138         u32 scan_id;
139         u32 vdev_id;
140
141         event_type = __le32_to_cpu(event->event_type);
142         reason     = __le32_to_cpu(event->reason);
143         freq       = __le32_to_cpu(event->channel_freq);
144         req_id     = __le32_to_cpu(event->scan_req_id);
145         scan_id    = __le32_to_cpu(event->scan_id);
146         vdev_id    = __le32_to_cpu(event->vdev_id);
147
148         ath10k_dbg(ATH10K_DBG_WMI, "WMI_SCAN_EVENTID\n");
149         ath10k_dbg(ATH10K_DBG_WMI,
150                    "scan event type %d reason %d freq %d req_id %d "
151                    "scan_id %d vdev_id %d\n",
152                    event_type, reason, freq, req_id, scan_id, vdev_id);
153
154         spin_lock_bh(&ar->data_lock);
155
156         switch (event_type) {
157         case WMI_SCAN_EVENT_STARTED:
158                 ath10k_dbg(ATH10K_DBG_WMI, "SCAN_EVENT_STARTED\n");
159                 if (ar->scan.in_progress && ar->scan.is_roc)
160                         ieee80211_ready_on_channel(ar->hw);
161
162                 complete(&ar->scan.started);
163                 break;
164         case WMI_SCAN_EVENT_COMPLETED:
165                 ath10k_dbg(ATH10K_DBG_WMI, "SCAN_EVENT_COMPLETED\n");
166                 switch (reason) {
167                 case WMI_SCAN_REASON_COMPLETED:
168                         ath10k_dbg(ATH10K_DBG_WMI, "SCAN_REASON_COMPLETED\n");
169                         break;
170                 case WMI_SCAN_REASON_CANCELLED:
171                         ath10k_dbg(ATH10K_DBG_WMI, "SCAN_REASON_CANCELED\n");
172                         break;
173                 case WMI_SCAN_REASON_PREEMPTED:
174                         ath10k_dbg(ATH10K_DBG_WMI, "SCAN_REASON_PREEMPTED\n");
175                         break;
176                 case WMI_SCAN_REASON_TIMEDOUT:
177                         ath10k_dbg(ATH10K_DBG_WMI, "SCAN_REASON_TIMEDOUT\n");
178                         break;
179                 default:
180                         break;
181                 }
182
183                 ar->scan_channel = NULL;
184                 if (!ar->scan.in_progress) {
185                         ath10k_warn("no scan requested, ignoring\n");
186                         break;
187                 }
188
189                 if (ar->scan.is_roc) {
190                         ath10k_offchan_tx_purge(ar);
191
192                         if (!ar->scan.aborting)
193                                 ieee80211_remain_on_channel_expired(ar->hw);
194                 } else {
195                         ieee80211_scan_completed(ar->hw, ar->scan.aborting);
196                 }
197
198                 del_timer(&ar->scan.timeout);
199                 complete_all(&ar->scan.completed);
200                 ar->scan.in_progress = false;
201                 break;
202         case WMI_SCAN_EVENT_BSS_CHANNEL:
203                 ath10k_dbg(ATH10K_DBG_WMI, "SCAN_EVENT_BSS_CHANNEL\n");
204                 ar->scan_channel = NULL;
205                 break;
206         case WMI_SCAN_EVENT_FOREIGN_CHANNEL:
207                 ath10k_dbg(ATH10K_DBG_WMI, "SCAN_EVENT_FOREIGN_CHANNEL\n");
208                 ar->scan_channel = ieee80211_get_channel(ar->hw->wiphy, freq);
209                 if (ar->scan.in_progress && ar->scan.is_roc &&
210                     ar->scan.roc_freq == freq) {
211                         complete(&ar->scan.on_channel);
212                 }
213                 break;
214         case WMI_SCAN_EVENT_DEQUEUED:
215                 ath10k_dbg(ATH10K_DBG_WMI, "SCAN_EVENT_DEQUEUED\n");
216                 break;
217         case WMI_SCAN_EVENT_PREEMPTED:
218                 ath10k_dbg(ATH10K_DBG_WMI, "WMI_SCAN_EVENT_PREEMPTED\n");
219                 break;
220         case WMI_SCAN_EVENT_START_FAILED:
221                 ath10k_dbg(ATH10K_DBG_WMI, "WMI_SCAN_EVENT_START_FAILED\n");
222                 break;
223         default:
224                 break;
225         }
226
227         spin_unlock_bh(&ar->data_lock);
228         return 0;
229 }
230
231 static inline enum ieee80211_band phy_mode_to_band(u32 phy_mode)
232 {
233         enum ieee80211_band band;
234
235         switch (phy_mode) {
236         case MODE_11A:
237         case MODE_11NA_HT20:
238         case MODE_11NA_HT40:
239         case MODE_11AC_VHT20:
240         case MODE_11AC_VHT40:
241         case MODE_11AC_VHT80:
242                 band = IEEE80211_BAND_5GHZ;
243                 break;
244         case MODE_11G:
245         case MODE_11B:
246         case MODE_11GONLY:
247         case MODE_11NG_HT20:
248         case MODE_11NG_HT40:
249         case MODE_11AC_VHT20_2G:
250         case MODE_11AC_VHT40_2G:
251         case MODE_11AC_VHT80_2G:
252         default:
253                 band = IEEE80211_BAND_2GHZ;
254         }
255
256         return band;
257 }
258
259 static inline u8 get_rate_idx(u32 rate, enum ieee80211_band band)
260 {
261         u8 rate_idx = 0;
262
263         /* rate in Kbps */
264         switch (rate) {
265         case 1000:
266                 rate_idx = 0;
267                 break;
268         case 2000:
269                 rate_idx = 1;
270                 break;
271         case 5500:
272                 rate_idx = 2;
273                 break;
274         case 11000:
275                 rate_idx = 3;
276                 break;
277         case 6000:
278                 rate_idx = 4;
279                 break;
280         case 9000:
281                 rate_idx = 5;
282                 break;
283         case 12000:
284                 rate_idx = 6;
285                 break;
286         case 18000:
287                 rate_idx = 7;
288                 break;
289         case 24000:
290                 rate_idx = 8;
291                 break;
292         case 36000:
293                 rate_idx = 9;
294                 break;
295         case 48000:
296                 rate_idx = 10;
297                 break;
298         case 54000:
299                 rate_idx = 11;
300                 break;
301         default:
302                 break;
303         }
304
305         if (band == IEEE80211_BAND_5GHZ) {
306                 if (rate_idx > 3)
307                         /* Omit CCK rates */
308                         rate_idx -= 4;
309                 else
310                         rate_idx = 0;
311         }
312
313         return rate_idx;
314 }
315
316 static int ath10k_wmi_event_mgmt_rx(struct ath10k *ar, struct sk_buff *skb)
317 {
318         struct wmi_mgmt_rx_event *event = (struct wmi_mgmt_rx_event *)skb->data;
319         struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
320         struct ieee80211_hdr *hdr;
321         u32 rx_status;
322         u32 channel;
323         u32 phy_mode;
324         u32 snr;
325         u32 rate;
326         u32 buf_len;
327         u16 fc;
328
329         channel   = __le32_to_cpu(event->hdr.channel);
330         buf_len   = __le32_to_cpu(event->hdr.buf_len);
331         rx_status = __le32_to_cpu(event->hdr.status);
332         snr       = __le32_to_cpu(event->hdr.snr);
333         phy_mode  = __le32_to_cpu(event->hdr.phy_mode);
334         rate      = __le32_to_cpu(event->hdr.rate);
335
336         memset(status, 0, sizeof(*status));
337
338         ath10k_dbg(ATH10K_DBG_MGMT,
339                    "event mgmt rx status %08x\n", rx_status);
340
341         if (rx_status & WMI_RX_STATUS_ERR_DECRYPT) {
342                 dev_kfree_skb(skb);
343                 return 0;
344         }
345
346         if (rx_status & WMI_RX_STATUS_ERR_KEY_CACHE_MISS) {
347                 dev_kfree_skb(skb);
348                 return 0;
349         }
350
351         if (rx_status & WMI_RX_STATUS_ERR_CRC)
352                 status->flag |= RX_FLAG_FAILED_FCS_CRC;
353         if (rx_status & WMI_RX_STATUS_ERR_MIC)
354                 status->flag |= RX_FLAG_MMIC_ERROR;
355
356         status->band = phy_mode_to_band(phy_mode);
357         status->freq = ieee80211_channel_to_frequency(channel, status->band);
358         status->signal = snr + ATH10K_DEFAULT_NOISE_FLOOR;
359         status->rate_idx = get_rate_idx(rate, status->band);
360
361         skb_pull(skb, sizeof(event->hdr));
362
363         hdr = (struct ieee80211_hdr *)skb->data;
364         fc = le16_to_cpu(hdr->frame_control);
365
366         if (fc & IEEE80211_FCTL_PROTECTED) {
367                 status->flag |= RX_FLAG_DECRYPTED | RX_FLAG_IV_STRIPPED |
368                                 RX_FLAG_MMIC_STRIPPED;
369                 hdr->frame_control = __cpu_to_le16(fc &
370                                         ~IEEE80211_FCTL_PROTECTED);
371         }
372
373         ath10k_dbg(ATH10K_DBG_MGMT,
374                    "event mgmt rx skb %p len %d ftype %02x stype %02x\n",
375                    skb, skb->len,
376                    fc & IEEE80211_FCTL_FTYPE, fc & IEEE80211_FCTL_STYPE);
377
378         ath10k_dbg(ATH10K_DBG_MGMT,
379                    "event mgmt rx freq %d band %d snr %d, rate_idx %d\n",
380                    status->freq, status->band, status->signal,
381                    status->rate_idx);
382
383         /*
384          * packets from HTC come aligned to 4byte boundaries
385          * because they can originally come in along with a trailer
386          */
387         skb_trim(skb, buf_len);
388
389         ieee80211_rx(ar->hw, skb);
390         return 0;
391 }
392
393 static void ath10k_wmi_event_chan_info(struct ath10k *ar, struct sk_buff *skb)
394 {
395         ath10k_dbg(ATH10K_DBG_WMI, "WMI_CHAN_INFO_EVENTID\n");
396 }
397
398 static void ath10k_wmi_event_echo(struct ath10k *ar, struct sk_buff *skb)
399 {
400         ath10k_dbg(ATH10K_DBG_WMI, "WMI_ECHO_EVENTID\n");
401 }
402
403 static void ath10k_wmi_event_debug_mesg(struct ath10k *ar, struct sk_buff *skb)
404 {
405         ath10k_dbg(ATH10K_DBG_WMI, "WMI_DEBUG_MESG_EVENTID\n");
406 }
407
408 static void ath10k_wmi_event_update_stats(struct ath10k *ar,
409                                           struct sk_buff *skb)
410 {
411         struct wmi_stats_event *ev = (struct wmi_stats_event *)skb->data;
412
413         ath10k_dbg(ATH10K_DBG_WMI, "WMI_UPDATE_STATS_EVENTID\n");
414
415         ath10k_debug_read_target_stats(ar, ev);
416 }
417
418 static void ath10k_wmi_event_vdev_start_resp(struct ath10k *ar,
419                                              struct sk_buff *skb)
420 {
421         struct wmi_vdev_start_response_event *ev;
422
423         ath10k_dbg(ATH10K_DBG_WMI, "WMI_VDEV_START_RESP_EVENTID\n");
424
425         ev = (struct wmi_vdev_start_response_event *)skb->data;
426
427         if (WARN_ON(__le32_to_cpu(ev->status)))
428                 return;
429
430         complete(&ar->vdev_setup_done);
431 }
432
433 static void ath10k_wmi_event_vdev_stopped(struct ath10k *ar,
434                                           struct sk_buff *skb)
435 {
436         ath10k_dbg(ATH10K_DBG_WMI, "WMI_VDEV_STOPPED_EVENTID\n");
437         complete(&ar->vdev_setup_done);
438 }
439
440 static void ath10k_wmi_event_peer_sta_kickout(struct ath10k *ar,
441                                               struct sk_buff *skb)
442 {
443         ath10k_dbg(ATH10K_DBG_WMI, "WMI_PEER_STA_KICKOUT_EVENTID\n");
444 }
445
446 /*
447  * FIXME
448  *
449  * We don't report to mac80211 sleep state of connected
450  * stations. Due to this mac80211 can't fill in TIM IE
451  * correctly.
452  *
453  * I know of no way of getting nullfunc frames that contain
454  * sleep transition from connected stations - these do not
455  * seem to be sent from the target to the host. There also
456  * doesn't seem to be a dedicated event for that. So the
457  * only way left to do this would be to read tim_bitmap
458  * during SWBA.
459  *
460  * We could probably try using tim_bitmap from SWBA to tell
461  * mac80211 which stations are asleep and which are not. The
462  * problem here is calling mac80211 functions so many times
463  * could take too long and make us miss the time to submit
464  * the beacon to the target.
465  *
466  * So as a workaround we try to extend the TIM IE if there
467  * is unicast buffered for stations with aid > 7 and fill it
468  * in ourselves.
469  */
470 static void ath10k_wmi_update_tim(struct ath10k *ar,
471                                   struct ath10k_vif *arvif,
472                                   struct sk_buff *bcn,
473                                   struct wmi_bcn_info *bcn_info)
474 {
475         struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)bcn->data;
476         struct ieee80211_tim_ie *tim;
477         u8 *ies, *ie;
478         u8 ie_len, pvm_len;
479
480         /* if next SWBA has no tim_changed the tim_bitmap is garbage.
481          * we must copy the bitmap upon change and reuse it later */
482         if (__le32_to_cpu(bcn_info->tim_info.tim_changed)) {
483                 int i;
484
485                 BUILD_BUG_ON(sizeof(arvif->u.ap.tim_bitmap) !=
486                              sizeof(bcn_info->tim_info.tim_bitmap));
487
488                 for (i = 0; i < sizeof(arvif->u.ap.tim_bitmap); i++) {
489                         __le32 t = bcn_info->tim_info.tim_bitmap[i / 4];
490                         u32 v = __le32_to_cpu(t);
491                         arvif->u.ap.tim_bitmap[i] = (v >> ((i % 4) * 8)) & 0xFF;
492                 }
493
494                 /* FW reports either length 0 or 16
495                  * so we calculate this on our own */
496                 arvif->u.ap.tim_len = 0;
497                 for (i = 0; i < sizeof(arvif->u.ap.tim_bitmap); i++)
498                         if (arvif->u.ap.tim_bitmap[i])
499                                 arvif->u.ap.tim_len = i;
500
501                 arvif->u.ap.tim_len++;
502         }
503
504         ies = bcn->data;
505         ies += ieee80211_hdrlen(hdr->frame_control);
506         ies += 12; /* fixed parameters */
507
508         ie = (u8 *)cfg80211_find_ie(WLAN_EID_TIM, ies,
509                                     (u8 *)skb_tail_pointer(bcn) - ies);
510         if (!ie) {
511                 if (arvif->vdev_type != WMI_VDEV_TYPE_IBSS)
512                         ath10k_warn("no tim ie found;\n");
513                 return;
514         }
515
516         tim = (void *)ie + 2;
517         ie_len = ie[1];
518         pvm_len = ie_len - 3; /* exclude dtim count, dtim period, bmap ctl */
519
520         if (pvm_len < arvif->u.ap.tim_len) {
521                 int expand_size = sizeof(arvif->u.ap.tim_bitmap) - pvm_len;
522                 int move_size = skb_tail_pointer(bcn) - (ie + 2 + ie_len);
523                 void *next_ie = ie + 2 + ie_len;
524
525                 if (skb_put(bcn, expand_size)) {
526                         memmove(next_ie + expand_size, next_ie, move_size);
527
528                         ie[1] += expand_size;
529                         ie_len += expand_size;
530                         pvm_len += expand_size;
531                 } else {
532                         ath10k_warn("tim expansion failed\n");
533                 }
534         }
535
536         if (pvm_len > sizeof(arvif->u.ap.tim_bitmap)) {
537                 ath10k_warn("tim pvm length is too great (%d)\n", pvm_len);
538                 return;
539         }
540
541         tim->bitmap_ctrl = !!__le32_to_cpu(bcn_info->tim_info.tim_mcast);
542         memcpy(tim->virtual_map, arvif->u.ap.tim_bitmap, pvm_len);
543
544         ath10k_dbg(ATH10K_DBG_MGMT, "dtim %d/%d mcast %d pvmlen %d\n",
545                    tim->dtim_count, tim->dtim_period,
546                    tim->bitmap_ctrl, pvm_len);
547 }
548
549 static void ath10k_p2p_fill_noa_ie(u8 *data, u32 len,
550                                    struct wmi_p2p_noa_info *noa)
551 {
552         struct ieee80211_p2p_noa_attr *noa_attr;
553         u8  ctwindow_oppps = noa->ctwindow_oppps;
554         u8 ctwindow = ctwindow_oppps >> WMI_P2P_OPPPS_CTWINDOW_OFFSET;
555         bool oppps = !!(ctwindow_oppps & WMI_P2P_OPPPS_ENABLE_BIT);
556         __le16 *noa_attr_len;
557         u16 attr_len;
558         u8 noa_descriptors = noa->num_descriptors;
559         int i;
560
561         /* P2P IE */
562         data[0] = WLAN_EID_VENDOR_SPECIFIC;
563         data[1] = len - 2;
564         data[2] = (WLAN_OUI_WFA >> 16) & 0xff;
565         data[3] = (WLAN_OUI_WFA >> 8) & 0xff;
566         data[4] = (WLAN_OUI_WFA >> 0) & 0xff;
567         data[5] = WLAN_OUI_TYPE_WFA_P2P;
568
569         /* NOA ATTR */
570         data[6] = IEEE80211_P2P_ATTR_ABSENCE_NOTICE;
571         noa_attr_len = (__le16 *)&data[7]; /* 2 bytes */
572         noa_attr = (struct ieee80211_p2p_noa_attr *)&data[9];
573
574         noa_attr->index = noa->index;
575         noa_attr->oppps_ctwindow = ctwindow;
576         if (oppps)
577                 noa_attr->oppps_ctwindow |= IEEE80211_P2P_OPPPS_ENABLE_BIT;
578
579         for (i = 0; i < noa_descriptors; i++) {
580                 noa_attr->desc[i].count =
581                         __le32_to_cpu(noa->descriptors[i].type_count);
582                 noa_attr->desc[i].duration = noa->descriptors[i].duration;
583                 noa_attr->desc[i].interval = noa->descriptors[i].interval;
584                 noa_attr->desc[i].start_time = noa->descriptors[i].start_time;
585         }
586
587         attr_len = 2; /* index + oppps_ctwindow */
588         attr_len += noa_descriptors * sizeof(struct ieee80211_p2p_noa_desc);
589         *noa_attr_len = __cpu_to_le16(attr_len);
590 }
591
592 static u32 ath10k_p2p_calc_noa_ie_len(struct wmi_p2p_noa_info *noa)
593 {
594         u32 len = 0;
595         u8 noa_descriptors = noa->num_descriptors;
596         u8 opp_ps_info = noa->ctwindow_oppps;
597         bool opps_enabled = !!(opp_ps_info & WMI_P2P_OPPPS_ENABLE_BIT);
598
599
600         if (!noa_descriptors && !opps_enabled)
601                 return len;
602
603         len += 1 + 1 + 4; /* EID + len + OUI */
604         len += 1 + 2; /* noa attr  + attr len */
605         len += 1 + 1; /* index + oppps_ctwindow */
606         len += noa_descriptors * sizeof(struct ieee80211_p2p_noa_desc);
607
608         return len;
609 }
610
611 static void ath10k_wmi_update_noa(struct ath10k *ar, struct ath10k_vif *arvif,
612                                   struct sk_buff *bcn,
613                                   struct wmi_bcn_info *bcn_info)
614 {
615         struct wmi_p2p_noa_info *noa = &bcn_info->p2p_noa_info;
616         u8 *new_data, *old_data = arvif->u.ap.noa_data;
617         u32 new_len;
618
619         if (arvif->vdev_subtype != WMI_VDEV_SUBTYPE_P2P_GO)
620                 return;
621
622         ath10k_dbg(ATH10K_DBG_MGMT, "noa changed: %d\n", noa->changed);
623         if (noa->changed & WMI_P2P_NOA_CHANGED_BIT) {
624                 new_len = ath10k_p2p_calc_noa_ie_len(noa);
625                 if (!new_len)
626                         goto cleanup;
627
628                 new_data = kmalloc(new_len, GFP_ATOMIC);
629                 if (!new_data)
630                         goto cleanup;
631
632                 ath10k_p2p_fill_noa_ie(new_data, new_len, noa);
633
634                 spin_lock_bh(&ar->data_lock);
635                 arvif->u.ap.noa_data = new_data;
636                 arvif->u.ap.noa_len = new_len;
637                 spin_unlock_bh(&ar->data_lock);
638                 kfree(old_data);
639         }
640
641         if (arvif->u.ap.noa_data)
642                 if (!pskb_expand_head(bcn, 0, arvif->u.ap.noa_len, GFP_ATOMIC))
643                         memcpy(skb_put(bcn, arvif->u.ap.noa_len),
644                                arvif->u.ap.noa_data,
645                                arvif->u.ap.noa_len);
646         return;
647
648 cleanup:
649         spin_lock_bh(&ar->data_lock);
650         arvif->u.ap.noa_data = NULL;
651         arvif->u.ap.noa_len = 0;
652         spin_unlock_bh(&ar->data_lock);
653         kfree(old_data);
654 }
655
656
657 static void ath10k_wmi_event_host_swba(struct ath10k *ar, struct sk_buff *skb)
658 {
659         struct wmi_host_swba_event *ev;
660         u32 map;
661         int i = -1;
662         struct wmi_bcn_info *bcn_info;
663         struct ath10k_vif *arvif;
664         struct wmi_bcn_tx_arg arg;
665         struct sk_buff *bcn;
666         int vdev_id = 0;
667         int ret;
668
669         ath10k_dbg(ATH10K_DBG_MGMT, "WMI_HOST_SWBA_EVENTID\n");
670
671         ev = (struct wmi_host_swba_event *)skb->data;
672         map = __le32_to_cpu(ev->vdev_map);
673
674         ath10k_dbg(ATH10K_DBG_MGMT, "host swba:\n"
675                    "-vdev map 0x%x\n",
676                    ev->vdev_map);
677
678         for (; map; map >>= 1, vdev_id++) {
679                 if (!(map & 0x1))
680                         continue;
681
682                 i++;
683
684                 if (i >= WMI_MAX_AP_VDEV) {
685                         ath10k_warn("swba has corrupted vdev map\n");
686                         break;
687                 }
688
689                 bcn_info = &ev->bcn_info[i];
690
691                 ath10k_dbg(ATH10K_DBG_MGMT,
692                            "-bcn_info[%d]:\n"
693                            "--tim_len %d\n"
694                            "--tim_mcast %d\n"
695                            "--tim_changed %d\n"
696                            "--tim_num_ps_pending %d\n"
697                            "--tim_bitmap 0x%08x%08x%08x%08x\n",
698                            i,
699                            __le32_to_cpu(bcn_info->tim_info.tim_len),
700                            __le32_to_cpu(bcn_info->tim_info.tim_mcast),
701                            __le32_to_cpu(bcn_info->tim_info.tim_changed),
702                            __le32_to_cpu(bcn_info->tim_info.tim_num_ps_pending),
703                            __le32_to_cpu(bcn_info->tim_info.tim_bitmap[3]),
704                            __le32_to_cpu(bcn_info->tim_info.tim_bitmap[2]),
705                            __le32_to_cpu(bcn_info->tim_info.tim_bitmap[1]),
706                            __le32_to_cpu(bcn_info->tim_info.tim_bitmap[0]));
707
708                 arvif = ath10k_get_arvif(ar, vdev_id);
709                 if (arvif == NULL) {
710                         ath10k_warn("no vif for vdev_id %d found\n", vdev_id);
711                         continue;
712                 }
713
714                 bcn = ieee80211_beacon_get(ar->hw, arvif->vif);
715                 if (!bcn) {
716                         ath10k_warn("could not get mac80211 beacon\n");
717                         continue;
718                 }
719
720                 ath10k_tx_h_seq_no(bcn);
721                 ath10k_wmi_update_tim(ar, arvif, bcn, bcn_info);
722                 ath10k_wmi_update_noa(ar, arvif, bcn, bcn_info);
723
724                 arg.vdev_id = arvif->vdev_id;
725                 arg.tx_rate = 0;
726                 arg.tx_power = 0;
727                 arg.bcn = bcn->data;
728                 arg.bcn_len = bcn->len;
729
730                 ret = ath10k_wmi_beacon_send(ar, &arg);
731                 if (ret)
732                         ath10k_warn("could not send beacon (%d)\n", ret);
733
734                 dev_kfree_skb_any(bcn);
735         }
736 }
737
738 static void ath10k_wmi_event_tbttoffset_update(struct ath10k *ar,
739                                                struct sk_buff *skb)
740 {
741         ath10k_dbg(ATH10K_DBG_WMI, "WMI_TBTTOFFSET_UPDATE_EVENTID\n");
742 }
743
744 static void ath10k_wmi_event_phyerr(struct ath10k *ar, struct sk_buff *skb)
745 {
746         ath10k_dbg(ATH10K_DBG_WMI, "WMI_PHYERR_EVENTID\n");
747 }
748
749 static void ath10k_wmi_event_roam(struct ath10k *ar, struct sk_buff *skb)
750 {
751         ath10k_dbg(ATH10K_DBG_WMI, "WMI_ROAM_EVENTID\n");
752 }
753
754 static void ath10k_wmi_event_profile_match(struct ath10k *ar,
755                                     struct sk_buff *skb)
756 {
757         ath10k_dbg(ATH10K_DBG_WMI, "WMI_PROFILE_MATCH\n");
758 }
759
760 static void ath10k_wmi_event_debug_print(struct ath10k *ar,
761                                   struct sk_buff *skb)
762 {
763         ath10k_dbg(ATH10K_DBG_WMI, "WMI_DEBUG_PRINT_EVENTID\n");
764 }
765
766 static void ath10k_wmi_event_pdev_qvit(struct ath10k *ar, struct sk_buff *skb)
767 {
768         ath10k_dbg(ATH10K_DBG_WMI, "WMI_PDEV_QVIT_EVENTID\n");
769 }
770
771 static void ath10k_wmi_event_wlan_profile_data(struct ath10k *ar,
772                                                struct sk_buff *skb)
773 {
774         ath10k_dbg(ATH10K_DBG_WMI, "WMI_WLAN_PROFILE_DATA_EVENTID\n");
775 }
776
777 static void ath10k_wmi_event_rtt_measurement_report(struct ath10k *ar,
778                                              struct sk_buff *skb)
779 {
780         ath10k_dbg(ATH10K_DBG_WMI, "WMI_RTT_MEASUREMENT_REPORT_EVENTID\n");
781 }
782
783 static void ath10k_wmi_event_tsf_measurement_report(struct ath10k *ar,
784                                              struct sk_buff *skb)
785 {
786         ath10k_dbg(ATH10K_DBG_WMI, "WMI_TSF_MEASUREMENT_REPORT_EVENTID\n");
787 }
788
789 static void ath10k_wmi_event_rtt_error_report(struct ath10k *ar,
790                                               struct sk_buff *skb)
791 {
792         ath10k_dbg(ATH10K_DBG_WMI, "WMI_RTT_ERROR_REPORT_EVENTID\n");
793 }
794
795 static void ath10k_wmi_event_wow_wakeup_host(struct ath10k *ar,
796                                              struct sk_buff *skb)
797 {
798         ath10k_dbg(ATH10K_DBG_WMI, "WMI_WOW_WAKEUP_HOST_EVENTID\n");
799 }
800
801 static void ath10k_wmi_event_dcs_interference(struct ath10k *ar,
802                                               struct sk_buff *skb)
803 {
804         ath10k_dbg(ATH10K_DBG_WMI, "WMI_DCS_INTERFERENCE_EVENTID\n");
805 }
806
807 static void ath10k_wmi_event_pdev_tpc_config(struct ath10k *ar,
808                                              struct sk_buff *skb)
809 {
810         ath10k_dbg(ATH10K_DBG_WMI, "WMI_PDEV_TPC_CONFIG_EVENTID\n");
811 }
812
813 static void ath10k_wmi_event_pdev_ftm_intg(struct ath10k *ar,
814                                            struct sk_buff *skb)
815 {
816         ath10k_dbg(ATH10K_DBG_WMI, "WMI_PDEV_FTM_INTG_EVENTID\n");
817 }
818
819 static void ath10k_wmi_event_gtk_offload_status(struct ath10k *ar,
820                                          struct sk_buff *skb)
821 {
822         ath10k_dbg(ATH10K_DBG_WMI, "WMI_GTK_OFFLOAD_STATUS_EVENTID\n");
823 }
824
825 static void ath10k_wmi_event_gtk_rekey_fail(struct ath10k *ar,
826                                             struct sk_buff *skb)
827 {
828         ath10k_dbg(ATH10K_DBG_WMI, "WMI_GTK_REKEY_FAIL_EVENTID\n");
829 }
830
831 static void ath10k_wmi_event_delba_complete(struct ath10k *ar,
832                                             struct sk_buff *skb)
833 {
834         ath10k_dbg(ATH10K_DBG_WMI, "WMI_TX_DELBA_COMPLETE_EVENTID\n");
835 }
836
837 static void ath10k_wmi_event_addba_complete(struct ath10k *ar,
838                                             struct sk_buff *skb)
839 {
840         ath10k_dbg(ATH10K_DBG_WMI, "WMI_TX_ADDBA_COMPLETE_EVENTID\n");
841 }
842
843 static void ath10k_wmi_event_vdev_install_key_complete(struct ath10k *ar,
844                                                 struct sk_buff *skb)
845 {
846         ath10k_dbg(ATH10K_DBG_WMI, "WMI_VDEV_INSTALL_KEY_COMPLETE_EVENTID\n");
847 }
848
849 static void ath10k_wmi_service_ready_event_rx(struct ath10k *ar,
850                                               struct sk_buff *skb)
851 {
852         struct wmi_service_ready_event *ev = (void *)skb->data;
853
854         if (skb->len < sizeof(*ev)) {
855                 ath10k_warn("Service ready event was %d B but expected %zu B. Wrong firmware version?\n",
856                             skb->len, sizeof(*ev));
857                 return;
858         }
859
860         ar->hw_min_tx_power = __le32_to_cpu(ev->hw_min_tx_power);
861         ar->hw_max_tx_power = __le32_to_cpu(ev->hw_max_tx_power);
862         ar->ht_cap_info = __le32_to_cpu(ev->ht_cap_info);
863         ar->vht_cap_info = __le32_to_cpu(ev->vht_cap_info);
864         ar->fw_version_major =
865                 (__le32_to_cpu(ev->sw_version) & 0xff000000) >> 24;
866         ar->fw_version_minor = (__le32_to_cpu(ev->sw_version) & 0x00ffffff);
867         ar->fw_version_release =
868                 (__le32_to_cpu(ev->sw_version_1) & 0xffff0000) >> 16;
869         ar->fw_version_build = (__le32_to_cpu(ev->sw_version_1) & 0x0000ffff);
870         ar->phy_capability = __le32_to_cpu(ev->phy_capability);
871
872         ar->ath_common.regulatory.current_rd =
873                 __le32_to_cpu(ev->hal_reg_capabilities.eeprom_rd);
874
875         ath10k_debug_read_service_map(ar, ev->wmi_service_bitmap,
876                                       sizeof(ev->wmi_service_bitmap));
877
878         if (strlen(ar->hw->wiphy->fw_version) == 0) {
879                 snprintf(ar->hw->wiphy->fw_version,
880                          sizeof(ar->hw->wiphy->fw_version),
881                          "%u.%u.%u.%u",
882                          ar->fw_version_major,
883                          ar->fw_version_minor,
884                          ar->fw_version_release,
885                          ar->fw_version_build);
886         }
887
888         /* FIXME: it probably should be better to support this */
889         if (__le32_to_cpu(ev->num_mem_reqs) > 0) {
890                 ath10k_warn("target requested %d memory chunks; ignoring\n",
891                             __le32_to_cpu(ev->num_mem_reqs));
892         }
893
894         ath10k_dbg(ATH10K_DBG_WMI,
895                    "wmi event service ready sw_ver 0x%08x sw_ver1 0x%08x abi_ver %u phy_cap 0x%08x ht_cap 0x%08x vht_cap 0x%08x vht_supp_msc 0x%08x sys_cap_info 0x%08x mem_reqs %u\n",
896                    __le32_to_cpu(ev->sw_version),
897                    __le32_to_cpu(ev->sw_version_1),
898                    __le32_to_cpu(ev->abi_version),
899                    __le32_to_cpu(ev->phy_capability),
900                    __le32_to_cpu(ev->ht_cap_info),
901                    __le32_to_cpu(ev->vht_cap_info),
902                    __le32_to_cpu(ev->vht_supp_mcs),
903                    __le32_to_cpu(ev->sys_cap_info),
904                    __le32_to_cpu(ev->num_mem_reqs));
905
906         complete(&ar->wmi.service_ready);
907 }
908
909 static int ath10k_wmi_ready_event_rx(struct ath10k *ar, struct sk_buff *skb)
910 {
911         struct wmi_ready_event *ev = (struct wmi_ready_event *)skb->data;
912
913         if (WARN_ON(skb->len < sizeof(*ev)))
914                 return -EINVAL;
915
916         memcpy(ar->mac_addr, ev->mac_addr.addr, ETH_ALEN);
917
918         ath10k_dbg(ATH10K_DBG_WMI,
919                    "wmi event ready sw_version %u abi_version %u mac_addr %pM status %d\n",
920                    __le32_to_cpu(ev->sw_version),
921                    __le32_to_cpu(ev->abi_version),
922                    ev->mac_addr.addr,
923                    __le32_to_cpu(ev->status));
924
925         complete(&ar->wmi.unified_ready);
926         return 0;
927 }
928
929 static void ath10k_wmi_event_process(struct ath10k *ar, struct sk_buff *skb)
930 {
931         struct wmi_cmd_hdr *cmd_hdr;
932         enum wmi_event_id id;
933         u16 len;
934
935         cmd_hdr = (struct wmi_cmd_hdr *)skb->data;
936         id = MS(__le32_to_cpu(cmd_hdr->cmd_id), WMI_CMD_HDR_CMD_ID);
937
938         if (skb_pull(skb, sizeof(struct wmi_cmd_hdr)) == NULL)
939                 return;
940
941         len = skb->len;
942
943         trace_ath10k_wmi_event(id, skb->data, skb->len);
944
945         switch (id) {
946         case WMI_MGMT_RX_EVENTID:
947                 ath10k_wmi_event_mgmt_rx(ar, skb);
948                 /* mgmt_rx() owns the skb now! */
949                 return;
950         case WMI_SCAN_EVENTID:
951                 ath10k_wmi_event_scan(ar, skb);
952                 break;
953         case WMI_CHAN_INFO_EVENTID:
954                 ath10k_wmi_event_chan_info(ar, skb);
955                 break;
956         case WMI_ECHO_EVENTID:
957                 ath10k_wmi_event_echo(ar, skb);
958                 break;
959         case WMI_DEBUG_MESG_EVENTID:
960                 ath10k_wmi_event_debug_mesg(ar, skb);
961                 break;
962         case WMI_UPDATE_STATS_EVENTID:
963                 ath10k_wmi_event_update_stats(ar, skb);
964                 break;
965         case WMI_VDEV_START_RESP_EVENTID:
966                 ath10k_wmi_event_vdev_start_resp(ar, skb);
967                 break;
968         case WMI_VDEV_STOPPED_EVENTID:
969                 ath10k_wmi_event_vdev_stopped(ar, skb);
970                 break;
971         case WMI_PEER_STA_KICKOUT_EVENTID:
972                 ath10k_wmi_event_peer_sta_kickout(ar, skb);
973                 break;
974         case WMI_HOST_SWBA_EVENTID:
975                 ath10k_wmi_event_host_swba(ar, skb);
976                 break;
977         case WMI_TBTTOFFSET_UPDATE_EVENTID:
978                 ath10k_wmi_event_tbttoffset_update(ar, skb);
979                 break;
980         case WMI_PHYERR_EVENTID:
981                 ath10k_wmi_event_phyerr(ar, skb);
982                 break;
983         case WMI_ROAM_EVENTID:
984                 ath10k_wmi_event_roam(ar, skb);
985                 break;
986         case WMI_PROFILE_MATCH:
987                 ath10k_wmi_event_profile_match(ar, skb);
988                 break;
989         case WMI_DEBUG_PRINT_EVENTID:
990                 ath10k_wmi_event_debug_print(ar, skb);
991                 break;
992         case WMI_PDEV_QVIT_EVENTID:
993                 ath10k_wmi_event_pdev_qvit(ar, skb);
994                 break;
995         case WMI_WLAN_PROFILE_DATA_EVENTID:
996                 ath10k_wmi_event_wlan_profile_data(ar, skb);
997                 break;
998         case WMI_RTT_MEASUREMENT_REPORT_EVENTID:
999                 ath10k_wmi_event_rtt_measurement_report(ar, skb);
1000                 break;
1001         case WMI_TSF_MEASUREMENT_REPORT_EVENTID:
1002                 ath10k_wmi_event_tsf_measurement_report(ar, skb);
1003                 break;
1004         case WMI_RTT_ERROR_REPORT_EVENTID:
1005                 ath10k_wmi_event_rtt_error_report(ar, skb);
1006                 break;
1007         case WMI_WOW_WAKEUP_HOST_EVENTID:
1008                 ath10k_wmi_event_wow_wakeup_host(ar, skb);
1009                 break;
1010         case WMI_DCS_INTERFERENCE_EVENTID:
1011                 ath10k_wmi_event_dcs_interference(ar, skb);
1012                 break;
1013         case WMI_PDEV_TPC_CONFIG_EVENTID:
1014                 ath10k_wmi_event_pdev_tpc_config(ar, skb);
1015                 break;
1016         case WMI_PDEV_FTM_INTG_EVENTID:
1017                 ath10k_wmi_event_pdev_ftm_intg(ar, skb);
1018                 break;
1019         case WMI_GTK_OFFLOAD_STATUS_EVENTID:
1020                 ath10k_wmi_event_gtk_offload_status(ar, skb);
1021                 break;
1022         case WMI_GTK_REKEY_FAIL_EVENTID:
1023                 ath10k_wmi_event_gtk_rekey_fail(ar, skb);
1024                 break;
1025         case WMI_TX_DELBA_COMPLETE_EVENTID:
1026                 ath10k_wmi_event_delba_complete(ar, skb);
1027                 break;
1028         case WMI_TX_ADDBA_COMPLETE_EVENTID:
1029                 ath10k_wmi_event_addba_complete(ar, skb);
1030                 break;
1031         case WMI_VDEV_INSTALL_KEY_COMPLETE_EVENTID:
1032                 ath10k_wmi_event_vdev_install_key_complete(ar, skb);
1033                 break;
1034         case WMI_SERVICE_READY_EVENTID:
1035                 ath10k_wmi_service_ready_event_rx(ar, skb);
1036                 break;
1037         case WMI_READY_EVENTID:
1038                 ath10k_wmi_ready_event_rx(ar, skb);
1039                 break;
1040         default:
1041                 ath10k_warn("Unknown eventid: %d\n", id);
1042                 break;
1043         }
1044
1045         dev_kfree_skb(skb);
1046 }
1047
1048 static void ath10k_wmi_event_work(struct work_struct *work)
1049 {
1050         struct ath10k *ar = container_of(work, struct ath10k,
1051                                          wmi.wmi_event_work);
1052         struct sk_buff *skb;
1053
1054         for (;;) {
1055                 skb = skb_dequeue(&ar->wmi.wmi_event_list);
1056                 if (!skb)
1057                         break;
1058
1059                 ath10k_wmi_event_process(ar, skb);
1060         }
1061 }
1062
1063 static void ath10k_wmi_process_rx(struct ath10k *ar, struct sk_buff *skb)
1064 {
1065         struct wmi_cmd_hdr *cmd_hdr = (struct wmi_cmd_hdr *)skb->data;
1066         enum wmi_event_id event_id;
1067
1068         event_id = MS(__le32_to_cpu(cmd_hdr->cmd_id), WMI_CMD_HDR_CMD_ID);
1069
1070         /* some events require to be handled ASAP
1071          * thus can't be defered to a worker thread */
1072         switch (event_id) {
1073         case WMI_HOST_SWBA_EVENTID:
1074         case WMI_MGMT_RX_EVENTID:
1075                 ath10k_wmi_event_process(ar, skb);
1076                 return;
1077         default:
1078                 break;
1079         }
1080
1081         skb_queue_tail(&ar->wmi.wmi_event_list, skb);
1082         queue_work(ar->workqueue, &ar->wmi.wmi_event_work);
1083 }
1084
1085 /* WMI Initialization functions */
1086 int ath10k_wmi_attach(struct ath10k *ar)
1087 {
1088         init_completion(&ar->wmi.service_ready);
1089         init_completion(&ar->wmi.unified_ready);
1090         init_waitqueue_head(&ar->wmi.wq);
1091
1092         skb_queue_head_init(&ar->wmi.wmi_event_list);
1093         INIT_WORK(&ar->wmi.wmi_event_work, ath10k_wmi_event_work);
1094
1095         return 0;
1096 }
1097
1098 void ath10k_wmi_detach(struct ath10k *ar)
1099 {
1100         /* HTC should've drained the packets already */
1101         if (WARN_ON(atomic_read(&ar->wmi.pending_tx_count) > 0))
1102                 ath10k_warn("there are still pending packets\n");
1103
1104         cancel_work_sync(&ar->wmi.wmi_event_work);
1105         skb_queue_purge(&ar->wmi.wmi_event_list);
1106 }
1107
1108 int ath10k_wmi_connect_htc_service(struct ath10k *ar)
1109 {
1110         int status;
1111         struct ath10k_htc_svc_conn_req conn_req;
1112         struct ath10k_htc_svc_conn_resp conn_resp;
1113
1114         memset(&conn_req, 0, sizeof(conn_req));
1115         memset(&conn_resp, 0, sizeof(conn_resp));
1116
1117         /* these fields are the same for all service endpoints */
1118         conn_req.ep_ops.ep_tx_complete = ath10k_wmi_htc_tx_complete;
1119         conn_req.ep_ops.ep_rx_complete = ath10k_wmi_process_rx;
1120
1121         /* connect to control service */
1122         conn_req.service_id = ATH10K_HTC_SVC_ID_WMI_CONTROL;
1123
1124         status = ath10k_htc_connect_service(&ar->htc, &conn_req, &conn_resp);
1125         if (status) {
1126                 ath10k_warn("failed to connect to WMI CONTROL service status: %d\n",
1127                             status);
1128                 return status;
1129         }
1130
1131         ar->wmi.eid = conn_resp.eid;
1132         return 0;
1133 }
1134
1135 int ath10k_wmi_pdev_set_regdomain(struct ath10k *ar, u16 rd, u16 rd2g,
1136                                   u16 rd5g, u16 ctl2g, u16 ctl5g)
1137 {
1138         struct wmi_pdev_set_regdomain_cmd *cmd;
1139         struct sk_buff *skb;
1140
1141         skb = ath10k_wmi_alloc_skb(sizeof(*cmd));
1142         if (!skb)
1143                 return -ENOMEM;
1144
1145         cmd = (struct wmi_pdev_set_regdomain_cmd *)skb->data;
1146         cmd->reg_domain = __cpu_to_le32(rd);
1147         cmd->reg_domain_2G = __cpu_to_le32(rd2g);
1148         cmd->reg_domain_5G = __cpu_to_le32(rd5g);
1149         cmd->conformance_test_limit_2G = __cpu_to_le32(ctl2g);
1150         cmd->conformance_test_limit_5G = __cpu_to_le32(ctl5g);
1151
1152         ath10k_dbg(ATH10K_DBG_WMI,
1153                    "wmi pdev regdomain rd %x rd2g %x rd5g %x ctl2g %x ctl5g %x\n",
1154                    rd, rd2g, rd5g, ctl2g, ctl5g);
1155
1156         return ath10k_wmi_cmd_send(ar, skb, WMI_PDEV_SET_REGDOMAIN_CMDID);
1157 }
1158
1159 int ath10k_wmi_pdev_set_channel(struct ath10k *ar,
1160                                 const struct wmi_channel_arg *arg)
1161 {
1162         struct wmi_set_channel_cmd *cmd;
1163         struct sk_buff *skb;
1164
1165         if (arg->passive)
1166                 return -EINVAL;
1167
1168         skb = ath10k_wmi_alloc_skb(sizeof(*cmd));
1169         if (!skb)
1170                 return -ENOMEM;
1171
1172         cmd = (struct wmi_set_channel_cmd *)skb->data;
1173         cmd->chan.mhz               = __cpu_to_le32(arg->freq);
1174         cmd->chan.band_center_freq1 = __cpu_to_le32(arg->freq);
1175         cmd->chan.mode              = arg->mode;
1176         cmd->chan.min_power         = arg->min_power;
1177         cmd->chan.max_power         = arg->max_power;
1178         cmd->chan.reg_power         = arg->max_reg_power;
1179         cmd->chan.reg_classid       = arg->reg_class_id;
1180         cmd->chan.antenna_max       = arg->max_antenna_gain;
1181
1182         ath10k_dbg(ATH10K_DBG_WMI,
1183                    "wmi set channel mode %d freq %d\n",
1184                    arg->mode, arg->freq);
1185
1186         return ath10k_wmi_cmd_send(ar, skb, WMI_PDEV_SET_CHANNEL_CMDID);
1187 }
1188
1189 int ath10k_wmi_pdev_suspend_target(struct ath10k *ar)
1190 {
1191         struct wmi_pdev_suspend_cmd *cmd;
1192         struct sk_buff *skb;
1193
1194         skb = ath10k_wmi_alloc_skb(sizeof(*cmd));
1195         if (!skb)
1196                 return -ENOMEM;
1197
1198         cmd = (struct wmi_pdev_suspend_cmd *)skb->data;
1199         cmd->suspend_opt = WMI_PDEV_SUSPEND;
1200
1201         return ath10k_wmi_cmd_send(ar, skb, WMI_PDEV_SUSPEND_CMDID);
1202 }
1203
1204 int ath10k_wmi_pdev_resume_target(struct ath10k *ar)
1205 {
1206         struct sk_buff *skb;
1207
1208         skb = ath10k_wmi_alloc_skb(0);
1209         if (skb == NULL)
1210                 return -ENOMEM;
1211
1212         return ath10k_wmi_cmd_send(ar, skb, WMI_PDEV_RESUME_CMDID);
1213 }
1214
1215 int ath10k_wmi_pdev_set_param(struct ath10k *ar, enum wmi_pdev_param id,
1216                               u32 value)
1217 {
1218         struct wmi_pdev_set_param_cmd *cmd;
1219         struct sk_buff *skb;
1220
1221         skb = ath10k_wmi_alloc_skb(sizeof(*cmd));
1222         if (!skb)
1223                 return -ENOMEM;
1224
1225         cmd = (struct wmi_pdev_set_param_cmd *)skb->data;
1226         cmd->param_id    = __cpu_to_le32(id);
1227         cmd->param_value = __cpu_to_le32(value);
1228
1229         ath10k_dbg(ATH10K_DBG_WMI, "wmi pdev set param %d value %d\n",
1230                    id, value);
1231         return ath10k_wmi_cmd_send(ar, skb, WMI_PDEV_SET_PARAM_CMDID);
1232 }
1233
1234 int ath10k_wmi_cmd_init(struct ath10k *ar)
1235 {
1236         struct wmi_init_cmd *cmd;
1237         struct sk_buff *buf;
1238         struct wmi_resource_config config = {};
1239         u32 val;
1240
1241         config.num_vdevs = __cpu_to_le32(TARGET_NUM_VDEVS);
1242         config.num_peers = __cpu_to_le32(TARGET_NUM_PEERS + TARGET_NUM_VDEVS);
1243         config.num_offload_peers = __cpu_to_le32(TARGET_NUM_OFFLOAD_PEERS);
1244
1245         config.num_offload_reorder_bufs =
1246                 __cpu_to_le32(TARGET_NUM_OFFLOAD_REORDER_BUFS);
1247
1248         config.num_peer_keys = __cpu_to_le32(TARGET_NUM_PEER_KEYS);
1249         config.num_tids = __cpu_to_le32(TARGET_NUM_TIDS);
1250         config.ast_skid_limit = __cpu_to_le32(TARGET_AST_SKID_LIMIT);
1251         config.tx_chain_mask = __cpu_to_le32(TARGET_TX_CHAIN_MASK);
1252         config.rx_chain_mask = __cpu_to_le32(TARGET_RX_CHAIN_MASK);
1253         config.rx_timeout_pri_vo = __cpu_to_le32(TARGET_RX_TIMEOUT_LO_PRI);
1254         config.rx_timeout_pri_vi = __cpu_to_le32(TARGET_RX_TIMEOUT_LO_PRI);
1255         config.rx_timeout_pri_be = __cpu_to_le32(TARGET_RX_TIMEOUT_LO_PRI);
1256         config.rx_timeout_pri_bk = __cpu_to_le32(TARGET_RX_TIMEOUT_HI_PRI);
1257         config.rx_decap_mode = __cpu_to_le32(TARGET_RX_DECAP_MODE);
1258
1259         config.scan_max_pending_reqs =
1260                 __cpu_to_le32(TARGET_SCAN_MAX_PENDING_REQS);
1261
1262         config.bmiss_offload_max_vdev =
1263                 __cpu_to_le32(TARGET_BMISS_OFFLOAD_MAX_VDEV);
1264
1265         config.roam_offload_max_vdev =
1266                 __cpu_to_le32(TARGET_ROAM_OFFLOAD_MAX_VDEV);
1267
1268         config.roam_offload_max_ap_profiles =
1269                 __cpu_to_le32(TARGET_ROAM_OFFLOAD_MAX_AP_PROFILES);
1270
1271         config.num_mcast_groups = __cpu_to_le32(TARGET_NUM_MCAST_GROUPS);
1272         config.num_mcast_table_elems =
1273                 __cpu_to_le32(TARGET_NUM_MCAST_TABLE_ELEMS);
1274
1275         config.mcast2ucast_mode = __cpu_to_le32(TARGET_MCAST2UCAST_MODE);
1276         config.tx_dbg_log_size = __cpu_to_le32(TARGET_TX_DBG_LOG_SIZE);
1277         config.num_wds_entries = __cpu_to_le32(TARGET_NUM_WDS_ENTRIES);
1278         config.dma_burst_size = __cpu_to_le32(TARGET_DMA_BURST_SIZE);
1279         config.mac_aggr_delim = __cpu_to_le32(TARGET_MAC_AGGR_DELIM);
1280
1281         val = TARGET_RX_SKIP_DEFRAG_TIMEOUT_DUP_DETECTION_CHECK;
1282         config.rx_skip_defrag_timeout_dup_detection_check = __cpu_to_le32(val);
1283
1284         config.vow_config = __cpu_to_le32(TARGET_VOW_CONFIG);
1285
1286         config.gtk_offload_max_vdev =
1287                 __cpu_to_le32(TARGET_GTK_OFFLOAD_MAX_VDEV);
1288
1289         config.num_msdu_desc = __cpu_to_le32(TARGET_NUM_MSDU_DESC);
1290         config.max_frag_entries = __cpu_to_le32(TARGET_MAX_FRAG_ENTRIES);
1291
1292         buf = ath10k_wmi_alloc_skb(sizeof(*cmd));
1293         if (!buf)
1294                 return -ENOMEM;
1295
1296         cmd = (struct wmi_init_cmd *)buf->data;
1297         cmd->num_host_mem_chunks = 0;
1298         memcpy(&cmd->resource_config, &config, sizeof(config));
1299
1300         ath10k_dbg(ATH10K_DBG_WMI, "wmi init\n");
1301         return ath10k_wmi_cmd_send(ar, buf, WMI_INIT_CMDID);
1302 }
1303
1304 static int ath10k_wmi_start_scan_calc_len(const struct wmi_start_scan_arg *arg)
1305 {
1306         int len;
1307
1308         len = sizeof(struct wmi_start_scan_cmd);
1309
1310         if (arg->ie_len) {
1311                 if (!arg->ie)
1312                         return -EINVAL;
1313                 if (arg->ie_len > WLAN_SCAN_PARAMS_MAX_IE_LEN)
1314                         return -EINVAL;
1315
1316                 len += sizeof(struct wmi_ie_data);
1317                 len += roundup(arg->ie_len, 4);
1318         }
1319
1320         if (arg->n_channels) {
1321                 if (!arg->channels)
1322                         return -EINVAL;
1323                 if (arg->n_channels > ARRAY_SIZE(arg->channels))
1324                         return -EINVAL;
1325
1326                 len += sizeof(struct wmi_chan_list);
1327                 len += sizeof(__le32) * arg->n_channels;
1328         }
1329
1330         if (arg->n_ssids) {
1331                 if (!arg->ssids)
1332                         return -EINVAL;
1333                 if (arg->n_ssids > WLAN_SCAN_PARAMS_MAX_SSID)
1334                         return -EINVAL;
1335
1336                 len += sizeof(struct wmi_ssid_list);
1337                 len += sizeof(struct wmi_ssid) * arg->n_ssids;
1338         }
1339
1340         if (arg->n_bssids) {
1341                 if (!arg->bssids)
1342                         return -EINVAL;
1343                 if (arg->n_bssids > WLAN_SCAN_PARAMS_MAX_BSSID)
1344                         return -EINVAL;
1345
1346                 len += sizeof(struct wmi_bssid_list);
1347                 len += sizeof(struct wmi_mac_addr) * arg->n_bssids;
1348         }
1349
1350         return len;
1351 }
1352
1353 int ath10k_wmi_start_scan(struct ath10k *ar,
1354                           const struct wmi_start_scan_arg *arg)
1355 {
1356         struct wmi_start_scan_cmd *cmd;
1357         struct sk_buff *skb;
1358         struct wmi_ie_data *ie;
1359         struct wmi_chan_list *channels;
1360         struct wmi_ssid_list *ssids;
1361         struct wmi_bssid_list *bssids;
1362         u32 scan_id;
1363         u32 scan_req_id;
1364         int off;
1365         int len = 0;
1366         int i;
1367
1368         len = ath10k_wmi_start_scan_calc_len(arg);
1369         if (len < 0)
1370                 return len; /* len contains error code here */
1371
1372         skb = ath10k_wmi_alloc_skb(len);
1373         if (!skb)
1374                 return -ENOMEM;
1375
1376         scan_id  = WMI_HOST_SCAN_REQ_ID_PREFIX;
1377         scan_id |= arg->scan_id;
1378
1379         scan_req_id  = WMI_HOST_SCAN_REQUESTOR_ID_PREFIX;
1380         scan_req_id |= arg->scan_req_id;
1381
1382         cmd = (struct wmi_start_scan_cmd *)skb->data;
1383         cmd->scan_id            = __cpu_to_le32(scan_id);
1384         cmd->scan_req_id        = __cpu_to_le32(scan_req_id);
1385         cmd->vdev_id            = __cpu_to_le32(arg->vdev_id);
1386         cmd->scan_priority      = __cpu_to_le32(arg->scan_priority);
1387         cmd->notify_scan_events = __cpu_to_le32(arg->notify_scan_events);
1388         cmd->dwell_time_active  = __cpu_to_le32(arg->dwell_time_active);
1389         cmd->dwell_time_passive = __cpu_to_le32(arg->dwell_time_passive);
1390         cmd->min_rest_time      = __cpu_to_le32(arg->min_rest_time);
1391         cmd->max_rest_time      = __cpu_to_le32(arg->max_rest_time);
1392         cmd->repeat_probe_time  = __cpu_to_le32(arg->repeat_probe_time);
1393         cmd->probe_spacing_time = __cpu_to_le32(arg->probe_spacing_time);
1394         cmd->idle_time          = __cpu_to_le32(arg->idle_time);
1395         cmd->max_scan_time      = __cpu_to_le32(arg->max_scan_time);
1396         cmd->probe_delay        = __cpu_to_le32(arg->probe_delay);
1397         cmd->scan_ctrl_flags    = __cpu_to_le32(arg->scan_ctrl_flags);
1398
1399         /* TLV list starts after fields included in the struct */
1400         off = sizeof(*cmd);
1401
1402         if (arg->n_channels) {
1403                 channels = (void *)skb->data + off;
1404                 channels->tag = __cpu_to_le32(WMI_CHAN_LIST_TAG);
1405                 channels->num_chan = __cpu_to_le32(arg->n_channels);
1406
1407                 for (i = 0; i < arg->n_channels; i++)
1408                         channels->channel_list[i] =
1409                                 __cpu_to_le32(arg->channels[i]);
1410
1411                 off += sizeof(*channels);
1412                 off += sizeof(__le32) * arg->n_channels;
1413         }
1414
1415         if (arg->n_ssids) {
1416                 ssids = (void *)skb->data + off;
1417                 ssids->tag = __cpu_to_le32(WMI_SSID_LIST_TAG);
1418                 ssids->num_ssids = __cpu_to_le32(arg->n_ssids);
1419
1420                 for (i = 0; i < arg->n_ssids; i++) {
1421                         ssids->ssids[i].ssid_len =
1422                                 __cpu_to_le32(arg->ssids[i].len);
1423                         memcpy(&ssids->ssids[i].ssid,
1424                                arg->ssids[i].ssid,
1425                                arg->ssids[i].len);
1426                 }
1427
1428                 off += sizeof(*ssids);
1429                 off += sizeof(struct wmi_ssid) * arg->n_ssids;
1430         }
1431
1432         if (arg->n_bssids) {
1433                 bssids = (void *)skb->data + off;
1434                 bssids->tag = __cpu_to_le32(WMI_BSSID_LIST_TAG);
1435                 bssids->num_bssid = __cpu_to_le32(arg->n_bssids);
1436
1437                 for (i = 0; i < arg->n_bssids; i++)
1438                         memcpy(&bssids->bssid_list[i],
1439                                arg->bssids[i].bssid,
1440                                ETH_ALEN);
1441
1442                 off += sizeof(*bssids);
1443                 off += sizeof(struct wmi_mac_addr) * arg->n_bssids;
1444         }
1445
1446         if (arg->ie_len) {
1447                 ie = (void *)skb->data + off;
1448                 ie->tag = __cpu_to_le32(WMI_IE_TAG);
1449                 ie->ie_len = __cpu_to_le32(arg->ie_len);
1450                 memcpy(ie->ie_data, arg->ie, arg->ie_len);
1451
1452                 off += sizeof(*ie);
1453                 off += roundup(arg->ie_len, 4);
1454         }
1455
1456         if (off != skb->len) {
1457                 dev_kfree_skb(skb);
1458                 return -EINVAL;
1459         }
1460
1461         ath10k_dbg(ATH10K_DBG_WMI, "wmi start scan\n");
1462         return ath10k_wmi_cmd_send(ar, skb, WMI_START_SCAN_CMDID);
1463 }
1464
1465 void ath10k_wmi_start_scan_init(struct ath10k *ar,
1466                                 struct wmi_start_scan_arg *arg)
1467 {
1468         /* setup commonly used values */
1469         arg->scan_req_id = 1;
1470         arg->scan_priority = WMI_SCAN_PRIORITY_LOW;
1471         arg->dwell_time_active = 50;
1472         arg->dwell_time_passive = 150;
1473         arg->min_rest_time = 50;
1474         arg->max_rest_time = 500;
1475         arg->repeat_probe_time = 0;
1476         arg->probe_spacing_time = 0;
1477         arg->idle_time = 0;
1478         arg->max_scan_time = 5000;
1479         arg->probe_delay = 5;
1480         arg->notify_scan_events = WMI_SCAN_EVENT_STARTED
1481                 | WMI_SCAN_EVENT_COMPLETED
1482                 | WMI_SCAN_EVENT_BSS_CHANNEL
1483                 | WMI_SCAN_EVENT_FOREIGN_CHANNEL
1484                 | WMI_SCAN_EVENT_DEQUEUED;
1485         arg->scan_ctrl_flags |= WMI_SCAN_ADD_OFDM_RATES;
1486         arg->scan_ctrl_flags |= WMI_SCAN_CHAN_STAT_EVENT;
1487         arg->n_bssids = 1;
1488         arg->bssids[0].bssid = "\xFF\xFF\xFF\xFF\xFF\xFF";
1489 }
1490
1491 int ath10k_wmi_stop_scan(struct ath10k *ar, const struct wmi_stop_scan_arg *arg)
1492 {
1493         struct wmi_stop_scan_cmd *cmd;
1494         struct sk_buff *skb;
1495         u32 scan_id;
1496         u32 req_id;
1497
1498         if (arg->req_id > 0xFFF)
1499                 return -EINVAL;
1500         if (arg->req_type == WMI_SCAN_STOP_ONE && arg->u.scan_id > 0xFFF)
1501                 return -EINVAL;
1502
1503         skb = ath10k_wmi_alloc_skb(sizeof(*cmd));
1504         if (!skb)
1505                 return -ENOMEM;
1506
1507         scan_id = arg->u.scan_id;
1508         scan_id |= WMI_HOST_SCAN_REQ_ID_PREFIX;
1509
1510         req_id = arg->req_id;
1511         req_id |= WMI_HOST_SCAN_REQUESTOR_ID_PREFIX;
1512
1513         cmd = (struct wmi_stop_scan_cmd *)skb->data;
1514         cmd->req_type    = __cpu_to_le32(arg->req_type);
1515         cmd->vdev_id     = __cpu_to_le32(arg->u.vdev_id);
1516         cmd->scan_id     = __cpu_to_le32(scan_id);
1517         cmd->scan_req_id = __cpu_to_le32(req_id);
1518
1519         ath10k_dbg(ATH10K_DBG_WMI,
1520                    "wmi stop scan reqid %d req_type %d vdev/scan_id %d\n",
1521                    arg->req_id, arg->req_type, arg->u.scan_id);
1522         return ath10k_wmi_cmd_send(ar, skb, WMI_STOP_SCAN_CMDID);
1523 }
1524
1525 int ath10k_wmi_vdev_create(struct ath10k *ar, u32 vdev_id,
1526                            enum wmi_vdev_type type,
1527                            enum wmi_vdev_subtype subtype,
1528                            const u8 macaddr[ETH_ALEN])
1529 {
1530         struct wmi_vdev_create_cmd *cmd;
1531         struct sk_buff *skb;
1532
1533         skb = ath10k_wmi_alloc_skb(sizeof(*cmd));
1534         if (!skb)
1535                 return -ENOMEM;
1536
1537         cmd = (struct wmi_vdev_create_cmd *)skb->data;
1538         cmd->vdev_id      = __cpu_to_le32(vdev_id);
1539         cmd->vdev_type    = __cpu_to_le32(type);
1540         cmd->vdev_subtype = __cpu_to_le32(subtype);
1541         memcpy(cmd->vdev_macaddr.addr, macaddr, ETH_ALEN);
1542
1543         ath10k_dbg(ATH10K_DBG_WMI,
1544                    "WMI vdev create: id %d type %d subtype %d macaddr %pM\n",
1545                    vdev_id, type, subtype, macaddr);
1546
1547         return ath10k_wmi_cmd_send(ar, skb, WMI_VDEV_CREATE_CMDID);
1548 }
1549
1550 int ath10k_wmi_vdev_delete(struct ath10k *ar, u32 vdev_id)
1551 {
1552         struct wmi_vdev_delete_cmd *cmd;
1553         struct sk_buff *skb;
1554
1555         skb = ath10k_wmi_alloc_skb(sizeof(*cmd));
1556         if (!skb)
1557                 return -ENOMEM;
1558
1559         cmd = (struct wmi_vdev_delete_cmd *)skb->data;
1560         cmd->vdev_id = __cpu_to_le32(vdev_id);
1561
1562         ath10k_dbg(ATH10K_DBG_WMI,
1563                    "WMI vdev delete id %d\n", vdev_id);
1564
1565         return ath10k_wmi_cmd_send(ar, skb, WMI_VDEV_DELETE_CMDID);
1566 }
1567
1568 static int ath10k_wmi_vdev_start_restart(struct ath10k *ar,
1569                                 const struct wmi_vdev_start_request_arg *arg,
1570                                 enum wmi_cmd_id cmd_id)
1571 {
1572         struct wmi_vdev_start_request_cmd *cmd;
1573         struct sk_buff *skb;
1574         const char *cmdname;
1575         u32 flags = 0;
1576
1577         if (cmd_id != WMI_VDEV_START_REQUEST_CMDID &&
1578             cmd_id != WMI_VDEV_RESTART_REQUEST_CMDID)
1579                 return -EINVAL;
1580         if (WARN_ON(arg->ssid && arg->ssid_len == 0))
1581                 return -EINVAL;
1582         if (WARN_ON(arg->hidden_ssid && !arg->ssid))
1583                 return -EINVAL;
1584         if (WARN_ON(arg->ssid_len > sizeof(cmd->ssid.ssid)))
1585                 return -EINVAL;
1586
1587         if (cmd_id == WMI_VDEV_START_REQUEST_CMDID)
1588                 cmdname = "start";
1589         else if (cmd_id == WMI_VDEV_RESTART_REQUEST_CMDID)
1590                 cmdname = "restart";
1591         else
1592                 return -EINVAL; /* should not happen, we already check cmd_id */
1593
1594         skb = ath10k_wmi_alloc_skb(sizeof(*cmd));
1595         if (!skb)
1596                 return -ENOMEM;
1597
1598         if (arg->hidden_ssid)
1599                 flags |= WMI_VDEV_START_HIDDEN_SSID;
1600         if (arg->pmf_enabled)
1601                 flags |= WMI_VDEV_START_PMF_ENABLED;
1602
1603         cmd = (struct wmi_vdev_start_request_cmd *)skb->data;
1604         cmd->vdev_id         = __cpu_to_le32(arg->vdev_id);
1605         cmd->disable_hw_ack  = __cpu_to_le32(arg->disable_hw_ack);
1606         cmd->beacon_interval = __cpu_to_le32(arg->bcn_intval);
1607         cmd->dtim_period     = __cpu_to_le32(arg->dtim_period);
1608         cmd->flags           = __cpu_to_le32(flags);
1609         cmd->bcn_tx_rate     = __cpu_to_le32(arg->bcn_tx_rate);
1610         cmd->bcn_tx_power    = __cpu_to_le32(arg->bcn_tx_power);
1611
1612         if (arg->ssid) {
1613                 cmd->ssid.ssid_len = __cpu_to_le32(arg->ssid_len);
1614                 memcpy(cmd->ssid.ssid, arg->ssid, arg->ssid_len);
1615         }
1616
1617         cmd->chan.mhz = __cpu_to_le32(arg->channel.freq);
1618
1619         cmd->chan.band_center_freq1 =
1620                 __cpu_to_le32(arg->channel.band_center_freq1);
1621
1622         cmd->chan.mode = arg->channel.mode;
1623         cmd->chan.min_power = arg->channel.min_power;
1624         cmd->chan.max_power = arg->channel.max_power;
1625         cmd->chan.reg_power = arg->channel.max_reg_power;
1626         cmd->chan.reg_classid = arg->channel.reg_class_id;
1627         cmd->chan.antenna_max = arg->channel.max_antenna_gain;
1628
1629         ath10k_dbg(ATH10K_DBG_WMI,
1630                    "wmi vdev %s id 0x%x freq %d, mode %d, ch_flags: 0x%0X,"
1631                    "max_power: %d\n", cmdname, arg->vdev_id, arg->channel.freq,
1632                    arg->channel.mode, flags, arg->channel.max_power);
1633
1634         return ath10k_wmi_cmd_send(ar, skb, cmd_id);
1635 }
1636
1637 int ath10k_wmi_vdev_start(struct ath10k *ar,
1638                           const struct wmi_vdev_start_request_arg *arg)
1639 {
1640         return ath10k_wmi_vdev_start_restart(ar, arg,
1641                                              WMI_VDEV_START_REQUEST_CMDID);
1642 }
1643
1644 int ath10k_wmi_vdev_restart(struct ath10k *ar,
1645                      const struct wmi_vdev_start_request_arg *arg)
1646 {
1647         return ath10k_wmi_vdev_start_restart(ar, arg,
1648                                              WMI_VDEV_RESTART_REQUEST_CMDID);
1649 }
1650
1651 int ath10k_wmi_vdev_stop(struct ath10k *ar, u32 vdev_id)
1652 {
1653         struct wmi_vdev_stop_cmd *cmd;
1654         struct sk_buff *skb;
1655
1656         skb = ath10k_wmi_alloc_skb(sizeof(*cmd));
1657         if (!skb)
1658                 return -ENOMEM;
1659
1660         cmd = (struct wmi_vdev_stop_cmd *)skb->data;
1661         cmd->vdev_id = __cpu_to_le32(vdev_id);
1662
1663         ath10k_dbg(ATH10K_DBG_WMI, "wmi vdev stop id 0x%x\n", vdev_id);
1664
1665         return ath10k_wmi_cmd_send(ar, skb, WMI_VDEV_STOP_CMDID);
1666 }
1667
1668 int ath10k_wmi_vdev_up(struct ath10k *ar, u32 vdev_id, u32 aid, const u8 *bssid)
1669 {
1670         struct wmi_vdev_up_cmd *cmd;
1671         struct sk_buff *skb;
1672
1673         skb = ath10k_wmi_alloc_skb(sizeof(*cmd));
1674         if (!skb)
1675                 return -ENOMEM;
1676
1677         cmd = (struct wmi_vdev_up_cmd *)skb->data;
1678         cmd->vdev_id       = __cpu_to_le32(vdev_id);
1679         cmd->vdev_assoc_id = __cpu_to_le32(aid);
1680         memcpy(&cmd->vdev_bssid.addr, bssid, 6);
1681
1682         ath10k_dbg(ATH10K_DBG_WMI,
1683                    "wmi mgmt vdev up id 0x%x assoc id %d bssid %pM\n",
1684                    vdev_id, aid, bssid);
1685
1686         return ath10k_wmi_cmd_send(ar, skb, WMI_VDEV_UP_CMDID);
1687 }
1688
1689 int ath10k_wmi_vdev_down(struct ath10k *ar, u32 vdev_id)
1690 {
1691         struct wmi_vdev_down_cmd *cmd;
1692         struct sk_buff *skb;
1693
1694         skb = ath10k_wmi_alloc_skb(sizeof(*cmd));
1695         if (!skb)
1696                 return -ENOMEM;
1697
1698         cmd = (struct wmi_vdev_down_cmd *)skb->data;
1699         cmd->vdev_id = __cpu_to_le32(vdev_id);
1700
1701         ath10k_dbg(ATH10K_DBG_WMI,
1702                    "wmi mgmt vdev down id 0x%x\n", vdev_id);
1703
1704         return ath10k_wmi_cmd_send(ar, skb, WMI_VDEV_DOWN_CMDID);
1705 }
1706
1707 int ath10k_wmi_vdev_set_param(struct ath10k *ar, u32 vdev_id,
1708                               enum wmi_vdev_param param_id, u32 param_value)
1709 {
1710         struct wmi_vdev_set_param_cmd *cmd;
1711         struct sk_buff *skb;
1712
1713         skb = ath10k_wmi_alloc_skb(sizeof(*cmd));
1714         if (!skb)
1715                 return -ENOMEM;
1716
1717         cmd = (struct wmi_vdev_set_param_cmd *)skb->data;
1718         cmd->vdev_id     = __cpu_to_le32(vdev_id);
1719         cmd->param_id    = __cpu_to_le32(param_id);
1720         cmd->param_value = __cpu_to_le32(param_value);
1721
1722         ath10k_dbg(ATH10K_DBG_WMI,
1723                    "wmi vdev id 0x%x set param %d value %d\n",
1724                    vdev_id, param_id, param_value);
1725
1726         return ath10k_wmi_cmd_send(ar, skb, WMI_VDEV_SET_PARAM_CMDID);
1727 }
1728
1729 int ath10k_wmi_vdev_install_key(struct ath10k *ar,
1730                                 const struct wmi_vdev_install_key_arg *arg)
1731 {
1732         struct wmi_vdev_install_key_cmd *cmd;
1733         struct sk_buff *skb;
1734
1735         if (arg->key_cipher == WMI_CIPHER_NONE && arg->key_data != NULL)
1736                 return -EINVAL;
1737         if (arg->key_cipher != WMI_CIPHER_NONE && arg->key_data == NULL)
1738                 return -EINVAL;
1739
1740         skb = ath10k_wmi_alloc_skb(sizeof(*cmd) + arg->key_len);
1741         if (!skb)
1742                 return -ENOMEM;
1743
1744         cmd = (struct wmi_vdev_install_key_cmd *)skb->data;
1745         cmd->vdev_id       = __cpu_to_le32(arg->vdev_id);
1746         cmd->key_idx       = __cpu_to_le32(arg->key_idx);
1747         cmd->key_flags     = __cpu_to_le32(arg->key_flags);
1748         cmd->key_cipher    = __cpu_to_le32(arg->key_cipher);
1749         cmd->key_len       = __cpu_to_le32(arg->key_len);
1750         cmd->key_txmic_len = __cpu_to_le32(arg->key_txmic_len);
1751         cmd->key_rxmic_len = __cpu_to_le32(arg->key_rxmic_len);
1752
1753         if (arg->macaddr)
1754                 memcpy(cmd->peer_macaddr.addr, arg->macaddr, ETH_ALEN);
1755         if (arg->key_data)
1756                 memcpy(cmd->key_data, arg->key_data, arg->key_len);
1757
1758         ath10k_dbg(ATH10K_DBG_WMI,
1759                    "wmi vdev install key idx %d cipher %d len %d\n",
1760                    arg->key_idx, arg->key_cipher, arg->key_len);
1761         return ath10k_wmi_cmd_send(ar, skb, WMI_VDEV_INSTALL_KEY_CMDID);
1762 }
1763
1764 int ath10k_wmi_peer_create(struct ath10k *ar, u32 vdev_id,
1765                            const u8 peer_addr[ETH_ALEN])
1766 {
1767         struct wmi_peer_create_cmd *cmd;
1768         struct sk_buff *skb;
1769
1770         skb = ath10k_wmi_alloc_skb(sizeof(*cmd));
1771         if (!skb)
1772                 return -ENOMEM;
1773
1774         cmd = (struct wmi_peer_create_cmd *)skb->data;
1775         cmd->vdev_id = __cpu_to_le32(vdev_id);
1776         memcpy(cmd->peer_macaddr.addr, peer_addr, ETH_ALEN);
1777
1778         ath10k_dbg(ATH10K_DBG_WMI,
1779                    "wmi peer create vdev_id %d peer_addr %pM\n",
1780                    vdev_id, peer_addr);
1781         return ath10k_wmi_cmd_send(ar, skb, WMI_PEER_CREATE_CMDID);
1782 }
1783
1784 int ath10k_wmi_peer_delete(struct ath10k *ar, u32 vdev_id,
1785                            const u8 peer_addr[ETH_ALEN])
1786 {
1787         struct wmi_peer_delete_cmd *cmd;
1788         struct sk_buff *skb;
1789
1790         skb = ath10k_wmi_alloc_skb(sizeof(*cmd));
1791         if (!skb)
1792                 return -ENOMEM;
1793
1794         cmd = (struct wmi_peer_delete_cmd *)skb->data;
1795         cmd->vdev_id = __cpu_to_le32(vdev_id);
1796         memcpy(cmd->peer_macaddr.addr, peer_addr, ETH_ALEN);
1797
1798         ath10k_dbg(ATH10K_DBG_WMI,
1799                    "wmi peer delete vdev_id %d peer_addr %pM\n",
1800                    vdev_id, peer_addr);
1801         return ath10k_wmi_cmd_send(ar, skb, WMI_PEER_DELETE_CMDID);
1802 }
1803
1804 int ath10k_wmi_peer_flush(struct ath10k *ar, u32 vdev_id,
1805                           const u8 peer_addr[ETH_ALEN], u32 tid_bitmap)
1806 {
1807         struct wmi_peer_flush_tids_cmd *cmd;
1808         struct sk_buff *skb;
1809
1810         skb = ath10k_wmi_alloc_skb(sizeof(*cmd));
1811         if (!skb)
1812                 return -ENOMEM;
1813
1814         cmd = (struct wmi_peer_flush_tids_cmd *)skb->data;
1815         cmd->vdev_id         = __cpu_to_le32(vdev_id);
1816         cmd->peer_tid_bitmap = __cpu_to_le32(tid_bitmap);
1817         memcpy(cmd->peer_macaddr.addr, peer_addr, ETH_ALEN);
1818
1819         ath10k_dbg(ATH10K_DBG_WMI,
1820                    "wmi peer flush vdev_id %d peer_addr %pM tids %08x\n",
1821                    vdev_id, peer_addr, tid_bitmap);
1822         return ath10k_wmi_cmd_send(ar, skb, WMI_PEER_FLUSH_TIDS_CMDID);
1823 }
1824
1825 int ath10k_wmi_peer_set_param(struct ath10k *ar, u32 vdev_id,
1826                               const u8 *peer_addr, enum wmi_peer_param param_id,
1827                               u32 param_value)
1828 {
1829         struct wmi_peer_set_param_cmd *cmd;
1830         struct sk_buff *skb;
1831
1832         skb = ath10k_wmi_alloc_skb(sizeof(*cmd));
1833         if (!skb)
1834                 return -ENOMEM;
1835
1836         cmd = (struct wmi_peer_set_param_cmd *)skb->data;
1837         cmd->vdev_id     = __cpu_to_le32(vdev_id);
1838         cmd->param_id    = __cpu_to_le32(param_id);
1839         cmd->param_value = __cpu_to_le32(param_value);
1840         memcpy(&cmd->peer_macaddr.addr, peer_addr, 6);
1841
1842         ath10k_dbg(ATH10K_DBG_WMI,
1843                    "wmi vdev %d peer 0x%pM set param %d value %d\n",
1844                    vdev_id, peer_addr, param_id, param_value);
1845
1846         return ath10k_wmi_cmd_send(ar, skb, WMI_PEER_SET_PARAM_CMDID);
1847 }
1848
1849 int ath10k_wmi_set_psmode(struct ath10k *ar, u32 vdev_id,
1850                           enum wmi_sta_ps_mode psmode)
1851 {
1852         struct wmi_sta_powersave_mode_cmd *cmd;
1853         struct sk_buff *skb;
1854
1855         skb = ath10k_wmi_alloc_skb(sizeof(*cmd));
1856         if (!skb)
1857                 return -ENOMEM;
1858
1859         cmd = (struct wmi_sta_powersave_mode_cmd *)skb->data;
1860         cmd->vdev_id     = __cpu_to_le32(vdev_id);
1861         cmd->sta_ps_mode = __cpu_to_le32(psmode);
1862
1863         ath10k_dbg(ATH10K_DBG_WMI,
1864                    "wmi set powersave id 0x%x mode %d\n",
1865                    vdev_id, psmode);
1866
1867         return ath10k_wmi_cmd_send(ar, skb, WMI_STA_POWERSAVE_MODE_CMDID);
1868 }
1869
1870 int ath10k_wmi_set_sta_ps_param(struct ath10k *ar, u32 vdev_id,
1871                                 enum wmi_sta_powersave_param param_id,
1872                                 u32 value)
1873 {
1874         struct wmi_sta_powersave_param_cmd *cmd;
1875         struct sk_buff *skb;
1876
1877         skb = ath10k_wmi_alloc_skb(sizeof(*cmd));
1878         if (!skb)
1879                 return -ENOMEM;
1880
1881         cmd = (struct wmi_sta_powersave_param_cmd *)skb->data;
1882         cmd->vdev_id     = __cpu_to_le32(vdev_id);
1883         cmd->param_id    = __cpu_to_le32(param_id);
1884         cmd->param_value = __cpu_to_le32(value);
1885
1886         ath10k_dbg(ATH10K_DBG_WMI,
1887                    "wmi sta ps param vdev_id 0x%x param %d value %d\n",
1888                    vdev_id, param_id, value);
1889         return ath10k_wmi_cmd_send(ar, skb, WMI_STA_POWERSAVE_PARAM_CMDID);
1890 }
1891
1892 int ath10k_wmi_set_ap_ps_param(struct ath10k *ar, u32 vdev_id, const u8 *mac,
1893                                enum wmi_ap_ps_peer_param param_id, u32 value)
1894 {
1895         struct wmi_ap_ps_peer_cmd *cmd;
1896         struct sk_buff *skb;
1897
1898         if (!mac)
1899                 return -EINVAL;
1900
1901         skb = ath10k_wmi_alloc_skb(sizeof(*cmd));
1902         if (!skb)
1903                 return -ENOMEM;
1904
1905         cmd = (struct wmi_ap_ps_peer_cmd *)skb->data;
1906         cmd->vdev_id = __cpu_to_le32(vdev_id);
1907         cmd->param_id = __cpu_to_le32(param_id);
1908         cmd->param_value = __cpu_to_le32(value);
1909         memcpy(&cmd->peer_macaddr, mac, ETH_ALEN);
1910
1911         ath10k_dbg(ATH10K_DBG_WMI,
1912                    "wmi ap ps param vdev_id 0x%X param %d value %d mac_addr %pM\n",
1913                    vdev_id, param_id, value, mac);
1914
1915         return ath10k_wmi_cmd_send(ar, skb, WMI_AP_PS_PEER_PARAM_CMDID);
1916 }
1917
1918 int ath10k_wmi_scan_chan_list(struct ath10k *ar,
1919                               const struct wmi_scan_chan_list_arg *arg)
1920 {
1921         struct wmi_scan_chan_list_cmd *cmd;
1922         struct sk_buff *skb;
1923         struct wmi_channel_arg *ch;
1924         struct wmi_channel *ci;
1925         int len;
1926         int i;
1927
1928         len = sizeof(*cmd) + arg->n_channels * sizeof(struct wmi_channel);
1929
1930         skb = ath10k_wmi_alloc_skb(len);
1931         if (!skb)
1932                 return -EINVAL;
1933
1934         cmd = (struct wmi_scan_chan_list_cmd *)skb->data;
1935         cmd->num_scan_chans = __cpu_to_le32(arg->n_channels);
1936
1937         for (i = 0; i < arg->n_channels; i++) {
1938                 u32 flags = 0;
1939
1940                 ch = &arg->channels[i];
1941                 ci = &cmd->chan_info[i];
1942
1943                 if (ch->passive)
1944                         flags |= WMI_CHAN_FLAG_PASSIVE;
1945                 if (ch->allow_ibss)
1946                         flags |= WMI_CHAN_FLAG_ADHOC_ALLOWED;
1947                 if (ch->allow_ht)
1948                         flags |= WMI_CHAN_FLAG_ALLOW_HT;
1949                 if (ch->allow_vht)
1950                         flags |= WMI_CHAN_FLAG_ALLOW_VHT;
1951                 if (ch->ht40plus)
1952                         flags |= WMI_CHAN_FLAG_HT40_PLUS;
1953
1954                 ci->mhz               = __cpu_to_le32(ch->freq);
1955                 ci->band_center_freq1 = __cpu_to_le32(ch->freq);
1956                 ci->band_center_freq2 = 0;
1957                 ci->min_power         = ch->min_power;
1958                 ci->max_power         = ch->max_power;
1959                 ci->reg_power         = ch->max_reg_power;
1960                 ci->antenna_max       = ch->max_antenna_gain;
1961                 ci->antenna_max       = 0;
1962
1963                 /* mode & flags share storage */
1964                 ci->mode              = ch->mode;
1965                 ci->flags            |= __cpu_to_le32(flags);
1966         }
1967
1968         return ath10k_wmi_cmd_send(ar, skb, WMI_SCAN_CHAN_LIST_CMDID);
1969 }
1970
1971 int ath10k_wmi_peer_assoc(struct ath10k *ar,
1972                           const struct wmi_peer_assoc_complete_arg *arg)
1973 {
1974         struct wmi_peer_assoc_complete_cmd *cmd;
1975         struct sk_buff *skb;
1976
1977         if (arg->peer_mpdu_density > 16)
1978                 return -EINVAL;
1979         if (arg->peer_legacy_rates.num_rates > MAX_SUPPORTED_RATES)
1980                 return -EINVAL;
1981         if (arg->peer_ht_rates.num_rates > MAX_SUPPORTED_RATES)
1982                 return -EINVAL;
1983
1984         skb = ath10k_wmi_alloc_skb(sizeof(*cmd));
1985         if (!skb)
1986                 return -ENOMEM;
1987
1988         cmd = (struct wmi_peer_assoc_complete_cmd *)skb->data;
1989         cmd->vdev_id            = __cpu_to_le32(arg->vdev_id);
1990         cmd->peer_new_assoc     = __cpu_to_le32(arg->peer_reassoc ? 0 : 1);
1991         cmd->peer_associd       = __cpu_to_le32(arg->peer_aid);
1992         cmd->peer_flags         = __cpu_to_le32(arg->peer_flags);
1993         cmd->peer_caps          = __cpu_to_le32(arg->peer_caps);
1994         cmd->peer_listen_intval = __cpu_to_le32(arg->peer_listen_intval);
1995         cmd->peer_ht_caps       = __cpu_to_le32(arg->peer_ht_caps);
1996         cmd->peer_max_mpdu      = __cpu_to_le32(arg->peer_max_mpdu);
1997         cmd->peer_mpdu_density  = __cpu_to_le32(arg->peer_mpdu_density);
1998         cmd->peer_rate_caps     = __cpu_to_le32(arg->peer_rate_caps);
1999         cmd->peer_nss           = __cpu_to_le32(arg->peer_num_spatial_streams);
2000         cmd->peer_vht_caps      = __cpu_to_le32(arg->peer_vht_caps);
2001         cmd->peer_phymode       = __cpu_to_le32(arg->peer_phymode);
2002
2003         memcpy(cmd->peer_macaddr.addr, arg->addr, ETH_ALEN);
2004
2005         cmd->peer_legacy_rates.num_rates =
2006                 __cpu_to_le32(arg->peer_legacy_rates.num_rates);
2007         memcpy(cmd->peer_legacy_rates.rates, arg->peer_legacy_rates.rates,
2008                arg->peer_legacy_rates.num_rates);
2009
2010         cmd->peer_ht_rates.num_rates =
2011                 __cpu_to_le32(arg->peer_ht_rates.num_rates);
2012         memcpy(cmd->peer_ht_rates.rates, arg->peer_ht_rates.rates,
2013                arg->peer_ht_rates.num_rates);
2014
2015         cmd->peer_vht_rates.rx_max_rate =
2016                 __cpu_to_le32(arg->peer_vht_rates.rx_max_rate);
2017         cmd->peer_vht_rates.rx_mcs_set =
2018                 __cpu_to_le32(arg->peer_vht_rates.rx_mcs_set);
2019         cmd->peer_vht_rates.tx_max_rate =
2020                 __cpu_to_le32(arg->peer_vht_rates.tx_max_rate);
2021         cmd->peer_vht_rates.tx_mcs_set =
2022                 __cpu_to_le32(arg->peer_vht_rates.tx_mcs_set);
2023
2024         ath10k_dbg(ATH10K_DBG_WMI,
2025                    "wmi peer assoc vdev %d addr %pM\n",
2026                    arg->vdev_id, arg->addr);
2027         return ath10k_wmi_cmd_send(ar, skb, WMI_PEER_ASSOC_CMDID);
2028 }
2029
2030 int ath10k_wmi_beacon_send(struct ath10k *ar, const struct wmi_bcn_tx_arg *arg)
2031 {
2032         struct wmi_bcn_tx_cmd *cmd;
2033         struct sk_buff *skb;
2034
2035         skb = ath10k_wmi_alloc_skb(sizeof(*cmd) + arg->bcn_len);
2036         if (!skb)
2037                 return -ENOMEM;
2038
2039         cmd = (struct wmi_bcn_tx_cmd *)skb->data;
2040         cmd->hdr.vdev_id  = __cpu_to_le32(arg->vdev_id);
2041         cmd->hdr.tx_rate  = __cpu_to_le32(arg->tx_rate);
2042         cmd->hdr.tx_power = __cpu_to_le32(arg->tx_power);
2043         cmd->hdr.bcn_len  = __cpu_to_le32(arg->bcn_len);
2044         memcpy(cmd->bcn, arg->bcn, arg->bcn_len);
2045
2046         return ath10k_wmi_cmd_send(ar, skb, WMI_BCN_TX_CMDID);
2047 }
2048
2049 static void ath10k_wmi_pdev_set_wmm_param(struct wmi_wmm_params *params,
2050                                           const struct wmi_wmm_params_arg *arg)
2051 {
2052         params->cwmin  = __cpu_to_le32(arg->cwmin);
2053         params->cwmax  = __cpu_to_le32(arg->cwmax);
2054         params->aifs   = __cpu_to_le32(arg->aifs);
2055         params->txop   = __cpu_to_le32(arg->txop);
2056         params->acm    = __cpu_to_le32(arg->acm);
2057         params->no_ack = __cpu_to_le32(arg->no_ack);
2058 }
2059
2060 int ath10k_wmi_pdev_set_wmm_params(struct ath10k *ar,
2061                         const struct wmi_pdev_set_wmm_params_arg *arg)
2062 {
2063         struct wmi_pdev_set_wmm_params *cmd;
2064         struct sk_buff *skb;
2065
2066         skb = ath10k_wmi_alloc_skb(sizeof(*cmd));
2067         if (!skb)
2068                 return -ENOMEM;
2069
2070         cmd = (struct wmi_pdev_set_wmm_params *)skb->data;
2071         ath10k_wmi_pdev_set_wmm_param(&cmd->ac_be, &arg->ac_be);
2072         ath10k_wmi_pdev_set_wmm_param(&cmd->ac_bk, &arg->ac_bk);
2073         ath10k_wmi_pdev_set_wmm_param(&cmd->ac_vi, &arg->ac_vi);
2074         ath10k_wmi_pdev_set_wmm_param(&cmd->ac_vo, &arg->ac_vo);
2075
2076         ath10k_dbg(ATH10K_DBG_WMI, "wmi pdev set wmm params\n");
2077         return ath10k_wmi_cmd_send(ar, skb, WMI_PDEV_SET_WMM_PARAMS_CMDID);
2078 }
2079
2080 int ath10k_wmi_request_stats(struct ath10k *ar, enum wmi_stats_id stats_id)
2081 {
2082         struct wmi_request_stats_cmd *cmd;
2083         struct sk_buff *skb;
2084
2085         skb = ath10k_wmi_alloc_skb(sizeof(*cmd));
2086         if (!skb)
2087                 return -ENOMEM;
2088
2089         cmd = (struct wmi_request_stats_cmd *)skb->data;
2090         cmd->stats_id = __cpu_to_le32(stats_id);
2091
2092         ath10k_dbg(ATH10K_DBG_WMI, "wmi request stats %d\n", (int)stats_id);
2093         return ath10k_wmi_cmd_send(ar, skb, WMI_REQUEST_STATS_CMDID);
2094 }