ath10k: add support for firmware newer than 636
[cascardo/linux.git] / drivers / net / wireless / ath / ath10k / wmi.c
1 /*
2  * Copyright (c) 2005-2011 Atheros Communications Inc.
3  * Copyright (c) 2011-2013 Qualcomm Atheros, Inc.
4  *
5  * Permission to use, copy, modify, and/or distribute this software for any
6  * purpose with or without fee is hereby granted, provided that the above
7  * copyright notice and this permission notice appear in all copies.
8  *
9  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
10  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
11  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
12  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
13  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
14  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
15  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
16  */
17
18 #include <linux/skbuff.h>
19
20 #include "core.h"
21 #include "htc.h"
22 #include "debug.h"
23 #include "wmi.h"
24 #include "mac.h"
25
26 void ath10k_wmi_flush_tx(struct ath10k *ar)
27 {
28         int ret;
29
30         lockdep_assert_held(&ar->conf_mutex);
31
32         if (ar->state == ATH10K_STATE_WEDGED) {
33                 ath10k_warn("wmi flush skipped - device is wedged anyway\n");
34                 return;
35         }
36
37         ret = wait_event_timeout(ar->wmi.wq,
38                                  atomic_read(&ar->wmi.pending_tx_count) == 0,
39                                  5*HZ);
40         if (atomic_read(&ar->wmi.pending_tx_count) == 0)
41                 return;
42
43         if (ret == 0)
44                 ret = -ETIMEDOUT;
45
46         if (ret < 0)
47                 ath10k_warn("wmi flush failed (%d)\n", ret);
48 }
49
50 int ath10k_wmi_wait_for_service_ready(struct ath10k *ar)
51 {
52         int ret;
53         ret = wait_for_completion_timeout(&ar->wmi.service_ready,
54                                           WMI_SERVICE_READY_TIMEOUT_HZ);
55         return ret;
56 }
57
58 int ath10k_wmi_wait_for_unified_ready(struct ath10k *ar)
59 {
60         int ret;
61         ret = wait_for_completion_timeout(&ar->wmi.unified_ready,
62                                           WMI_UNIFIED_READY_TIMEOUT_HZ);
63         return ret;
64 }
65
66 static struct sk_buff *ath10k_wmi_alloc_skb(u32 len)
67 {
68         struct sk_buff *skb;
69         u32 round_len = roundup(len, 4);
70
71         skb = ath10k_htc_alloc_skb(WMI_SKB_HEADROOM + round_len);
72         if (!skb)
73                 return NULL;
74
75         skb_reserve(skb, WMI_SKB_HEADROOM);
76         if (!IS_ALIGNED((unsigned long)skb->data, 4))
77                 ath10k_warn("Unaligned WMI skb\n");
78
79         skb_put(skb, round_len);
80         memset(skb->data, 0, round_len);
81
82         return skb;
83 }
84
85 static void ath10k_wmi_htc_tx_complete(struct ath10k *ar, struct sk_buff *skb)
86 {
87         dev_kfree_skb(skb);
88
89         if (atomic_sub_return(1, &ar->wmi.pending_tx_count) == 0)
90                 wake_up(&ar->wmi.wq);
91 }
92
93 /* WMI command API */
94 static int ath10k_wmi_cmd_send(struct ath10k *ar, struct sk_buff *skb,
95                                enum wmi_cmd_id cmd_id)
96 {
97         struct ath10k_skb_cb *skb_cb = ATH10K_SKB_CB(skb);
98         struct wmi_cmd_hdr *cmd_hdr;
99         int status;
100         u32 cmd = 0;
101
102         if (skb_push(skb, sizeof(struct wmi_cmd_hdr)) == NULL)
103                 return -ENOMEM;
104
105         cmd |= SM(cmd_id, WMI_CMD_HDR_CMD_ID);
106
107         cmd_hdr = (struct wmi_cmd_hdr *)skb->data;
108         cmd_hdr->cmd_id = __cpu_to_le32(cmd);
109
110         if (atomic_add_return(1, &ar->wmi.pending_tx_count) >
111             WMI_MAX_PENDING_TX_COUNT) {
112                 /* avoid using up memory when FW hangs */
113                 dev_kfree_skb(skb);
114                 atomic_dec(&ar->wmi.pending_tx_count);
115                 return -EBUSY;
116         }
117
118         memset(skb_cb, 0, sizeof(*skb_cb));
119
120         trace_ath10k_wmi_cmd(cmd_id, skb->data, skb->len);
121
122         status = ath10k_htc_send(&ar->htc, ar->wmi.eid, skb);
123         if (status) {
124                 dev_kfree_skb_any(skb);
125                 atomic_dec(&ar->wmi.pending_tx_count);
126                 return status;
127         }
128
129         return 0;
130 }
131
132 static int ath10k_wmi_event_scan(struct ath10k *ar, struct sk_buff *skb)
133 {
134         struct wmi_scan_event *event = (struct wmi_scan_event *)skb->data;
135         enum wmi_scan_event_type event_type;
136         enum wmi_scan_completion_reason reason;
137         u32 freq;
138         u32 req_id;
139         u32 scan_id;
140         u32 vdev_id;
141
142         event_type = __le32_to_cpu(event->event_type);
143         reason     = __le32_to_cpu(event->reason);
144         freq       = __le32_to_cpu(event->channel_freq);
145         req_id     = __le32_to_cpu(event->scan_req_id);
146         scan_id    = __le32_to_cpu(event->scan_id);
147         vdev_id    = __le32_to_cpu(event->vdev_id);
148
149         ath10k_dbg(ATH10K_DBG_WMI, "WMI_SCAN_EVENTID\n");
150         ath10k_dbg(ATH10K_DBG_WMI,
151                    "scan event type %d reason %d freq %d req_id %d "
152                    "scan_id %d vdev_id %d\n",
153                    event_type, reason, freq, req_id, scan_id, vdev_id);
154
155         spin_lock_bh(&ar->data_lock);
156
157         switch (event_type) {
158         case WMI_SCAN_EVENT_STARTED:
159                 ath10k_dbg(ATH10K_DBG_WMI, "SCAN_EVENT_STARTED\n");
160                 if (ar->scan.in_progress && ar->scan.is_roc)
161                         ieee80211_ready_on_channel(ar->hw);
162
163                 complete(&ar->scan.started);
164                 break;
165         case WMI_SCAN_EVENT_COMPLETED:
166                 ath10k_dbg(ATH10K_DBG_WMI, "SCAN_EVENT_COMPLETED\n");
167                 switch (reason) {
168                 case WMI_SCAN_REASON_COMPLETED:
169                         ath10k_dbg(ATH10K_DBG_WMI, "SCAN_REASON_COMPLETED\n");
170                         break;
171                 case WMI_SCAN_REASON_CANCELLED:
172                         ath10k_dbg(ATH10K_DBG_WMI, "SCAN_REASON_CANCELED\n");
173                         break;
174                 case WMI_SCAN_REASON_PREEMPTED:
175                         ath10k_dbg(ATH10K_DBG_WMI, "SCAN_REASON_PREEMPTED\n");
176                         break;
177                 case WMI_SCAN_REASON_TIMEDOUT:
178                         ath10k_dbg(ATH10K_DBG_WMI, "SCAN_REASON_TIMEDOUT\n");
179                         break;
180                 default:
181                         break;
182                 }
183
184                 ar->scan_channel = NULL;
185                 if (!ar->scan.in_progress) {
186                         ath10k_warn("no scan requested, ignoring\n");
187                         break;
188                 }
189
190                 if (ar->scan.is_roc) {
191                         ath10k_offchan_tx_purge(ar);
192
193                         if (!ar->scan.aborting)
194                                 ieee80211_remain_on_channel_expired(ar->hw);
195                 } else {
196                         ieee80211_scan_completed(ar->hw, ar->scan.aborting);
197                 }
198
199                 del_timer(&ar->scan.timeout);
200                 complete_all(&ar->scan.completed);
201                 ar->scan.in_progress = false;
202                 break;
203         case WMI_SCAN_EVENT_BSS_CHANNEL:
204                 ath10k_dbg(ATH10K_DBG_WMI, "SCAN_EVENT_BSS_CHANNEL\n");
205                 ar->scan_channel = NULL;
206                 break;
207         case WMI_SCAN_EVENT_FOREIGN_CHANNEL:
208                 ath10k_dbg(ATH10K_DBG_WMI, "SCAN_EVENT_FOREIGN_CHANNEL\n");
209                 ar->scan_channel = ieee80211_get_channel(ar->hw->wiphy, freq);
210                 if (ar->scan.in_progress && ar->scan.is_roc &&
211                     ar->scan.roc_freq == freq) {
212                         complete(&ar->scan.on_channel);
213                 }
214                 break;
215         case WMI_SCAN_EVENT_DEQUEUED:
216                 ath10k_dbg(ATH10K_DBG_WMI, "SCAN_EVENT_DEQUEUED\n");
217                 break;
218         case WMI_SCAN_EVENT_PREEMPTED:
219                 ath10k_dbg(ATH10K_DBG_WMI, "WMI_SCAN_EVENT_PREEMPTED\n");
220                 break;
221         case WMI_SCAN_EVENT_START_FAILED:
222                 ath10k_dbg(ATH10K_DBG_WMI, "WMI_SCAN_EVENT_START_FAILED\n");
223                 break;
224         default:
225                 break;
226         }
227
228         spin_unlock_bh(&ar->data_lock);
229         return 0;
230 }
231
232 static inline enum ieee80211_band phy_mode_to_band(u32 phy_mode)
233 {
234         enum ieee80211_band band;
235
236         switch (phy_mode) {
237         case MODE_11A:
238         case MODE_11NA_HT20:
239         case MODE_11NA_HT40:
240         case MODE_11AC_VHT20:
241         case MODE_11AC_VHT40:
242         case MODE_11AC_VHT80:
243                 band = IEEE80211_BAND_5GHZ;
244                 break;
245         case MODE_11G:
246         case MODE_11B:
247         case MODE_11GONLY:
248         case MODE_11NG_HT20:
249         case MODE_11NG_HT40:
250         case MODE_11AC_VHT20_2G:
251         case MODE_11AC_VHT40_2G:
252         case MODE_11AC_VHT80_2G:
253         default:
254                 band = IEEE80211_BAND_2GHZ;
255         }
256
257         return band;
258 }
259
260 static inline u8 get_rate_idx(u32 rate, enum ieee80211_band band)
261 {
262         u8 rate_idx = 0;
263
264         /* rate in Kbps */
265         switch (rate) {
266         case 1000:
267                 rate_idx = 0;
268                 break;
269         case 2000:
270                 rate_idx = 1;
271                 break;
272         case 5500:
273                 rate_idx = 2;
274                 break;
275         case 11000:
276                 rate_idx = 3;
277                 break;
278         case 6000:
279                 rate_idx = 4;
280                 break;
281         case 9000:
282                 rate_idx = 5;
283                 break;
284         case 12000:
285                 rate_idx = 6;
286                 break;
287         case 18000:
288                 rate_idx = 7;
289                 break;
290         case 24000:
291                 rate_idx = 8;
292                 break;
293         case 36000:
294                 rate_idx = 9;
295                 break;
296         case 48000:
297                 rate_idx = 10;
298                 break;
299         case 54000:
300                 rate_idx = 11;
301                 break;
302         default:
303                 break;
304         }
305
306         if (band == IEEE80211_BAND_5GHZ) {
307                 if (rate_idx > 3)
308                         /* Omit CCK rates */
309                         rate_idx -= 4;
310                 else
311                         rate_idx = 0;
312         }
313
314         return rate_idx;
315 }
316
317 static int ath10k_wmi_event_mgmt_rx(struct ath10k *ar, struct sk_buff *skb)
318 {
319         struct wmi_mgmt_rx_event_v1 *ev_v1;
320         struct wmi_mgmt_rx_event_v2 *ev_v2;
321         struct wmi_mgmt_rx_hdr_v1 *ev_hdr;
322         struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
323         struct ieee80211_hdr *hdr;
324         u32 rx_status;
325         u32 channel;
326         u32 phy_mode;
327         u32 snr;
328         u32 rate;
329         u32 buf_len;
330         u16 fc;
331         int pull_len;
332
333         if (test_bit(ATH10K_FW_FEATURE_EXT_WMI_MGMT_RX, ar->fw_features)) {
334                 ev_v2 = (struct wmi_mgmt_rx_event_v2 *)skb->data;
335                 ev_hdr = &ev_v2->hdr.v1;
336                 pull_len = sizeof(*ev_v2);
337         } else {
338                 ev_v1 = (struct wmi_mgmt_rx_event_v1 *)skb->data;
339                 ev_hdr = &ev_v1->hdr;
340                 pull_len = sizeof(*ev_v1);
341         }
342
343         channel   = __le32_to_cpu(ev_hdr->channel);
344         buf_len   = __le32_to_cpu(ev_hdr->buf_len);
345         rx_status = __le32_to_cpu(ev_hdr->status);
346         snr       = __le32_to_cpu(ev_hdr->snr);
347         phy_mode  = __le32_to_cpu(ev_hdr->phy_mode);
348         rate      = __le32_to_cpu(ev_hdr->rate);
349
350         memset(status, 0, sizeof(*status));
351
352         ath10k_dbg(ATH10K_DBG_MGMT,
353                    "event mgmt rx status %08x\n", rx_status);
354
355         if (rx_status & WMI_RX_STATUS_ERR_DECRYPT) {
356                 dev_kfree_skb(skb);
357                 return 0;
358         }
359
360         if (rx_status & WMI_RX_STATUS_ERR_KEY_CACHE_MISS) {
361                 dev_kfree_skb(skb);
362                 return 0;
363         }
364
365         if (rx_status & WMI_RX_STATUS_ERR_CRC)
366                 status->flag |= RX_FLAG_FAILED_FCS_CRC;
367         if (rx_status & WMI_RX_STATUS_ERR_MIC)
368                 status->flag |= RX_FLAG_MMIC_ERROR;
369
370         status->band = phy_mode_to_band(phy_mode);
371         status->freq = ieee80211_channel_to_frequency(channel, status->band);
372         status->signal = snr + ATH10K_DEFAULT_NOISE_FLOOR;
373         status->rate_idx = get_rate_idx(rate, status->band);
374
375         skb_pull(skb, pull_len);
376
377         hdr = (struct ieee80211_hdr *)skb->data;
378         fc = le16_to_cpu(hdr->frame_control);
379
380         if (fc & IEEE80211_FCTL_PROTECTED) {
381                 status->flag |= RX_FLAG_DECRYPTED | RX_FLAG_IV_STRIPPED |
382                                 RX_FLAG_MMIC_STRIPPED;
383                 hdr->frame_control = __cpu_to_le16(fc &
384                                         ~IEEE80211_FCTL_PROTECTED);
385         }
386
387         ath10k_dbg(ATH10K_DBG_MGMT,
388                    "event mgmt rx skb %p len %d ftype %02x stype %02x\n",
389                    skb, skb->len,
390                    fc & IEEE80211_FCTL_FTYPE, fc & IEEE80211_FCTL_STYPE);
391
392         ath10k_dbg(ATH10K_DBG_MGMT,
393                    "event mgmt rx freq %d band %d snr %d, rate_idx %d\n",
394                    status->freq, status->band, status->signal,
395                    status->rate_idx);
396
397         /*
398          * packets from HTC come aligned to 4byte boundaries
399          * because they can originally come in along with a trailer
400          */
401         skb_trim(skb, buf_len);
402
403         ieee80211_rx(ar->hw, skb);
404         return 0;
405 }
406
407 static int freq_to_idx(struct ath10k *ar, int freq)
408 {
409         struct ieee80211_supported_band *sband;
410         int band, ch, idx = 0;
411
412         for (band = IEEE80211_BAND_2GHZ; band < IEEE80211_NUM_BANDS; band++) {
413                 sband = ar->hw->wiphy->bands[band];
414                 if (!sband)
415                         continue;
416
417                 for (ch = 0; ch < sband->n_channels; ch++, idx++)
418                         if (sband->channels[ch].center_freq == freq)
419                                 goto exit;
420         }
421
422 exit:
423         return idx;
424 }
425
426 static void ath10k_wmi_event_chan_info(struct ath10k *ar, struct sk_buff *skb)
427 {
428         struct wmi_chan_info_event *ev;
429         struct survey_info *survey;
430         u32 err_code, freq, cmd_flags, noise_floor, rx_clear_count, cycle_count;
431         int idx;
432
433         ev = (struct wmi_chan_info_event *)skb->data;
434
435         err_code = __le32_to_cpu(ev->err_code);
436         freq = __le32_to_cpu(ev->freq);
437         cmd_flags = __le32_to_cpu(ev->cmd_flags);
438         noise_floor = __le32_to_cpu(ev->noise_floor);
439         rx_clear_count = __le32_to_cpu(ev->rx_clear_count);
440         cycle_count = __le32_to_cpu(ev->cycle_count);
441
442         ath10k_dbg(ATH10K_DBG_WMI,
443                    "chan info err_code %d freq %d cmd_flags %d noise_floor %d rx_clear_count %d cycle_count %d\n",
444                    err_code, freq, cmd_flags, noise_floor, rx_clear_count,
445                    cycle_count);
446
447         spin_lock_bh(&ar->data_lock);
448
449         if (!ar->scan.in_progress) {
450                 ath10k_warn("chan info event without a scan request?\n");
451                 goto exit;
452         }
453
454         idx = freq_to_idx(ar, freq);
455         if (idx >= ARRAY_SIZE(ar->survey)) {
456                 ath10k_warn("chan info: invalid frequency %d (idx %d out of bounds)\n",
457                             freq, idx);
458                 goto exit;
459         }
460
461         if (cmd_flags & WMI_CHAN_INFO_FLAG_COMPLETE) {
462                 /* During scanning chan info is reported twice for each
463                  * visited channel. The reported cycle count is global
464                  * and per-channel cycle count must be calculated */
465
466                 cycle_count -= ar->survey_last_cycle_count;
467                 rx_clear_count -= ar->survey_last_rx_clear_count;
468
469                 survey = &ar->survey[idx];
470                 survey->channel_time = WMI_CHAN_INFO_MSEC(cycle_count);
471                 survey->channel_time_rx = WMI_CHAN_INFO_MSEC(rx_clear_count);
472                 survey->noise = noise_floor;
473                 survey->filled = SURVEY_INFO_CHANNEL_TIME |
474                                  SURVEY_INFO_CHANNEL_TIME_RX |
475                                  SURVEY_INFO_NOISE_DBM;
476         }
477
478         ar->survey_last_rx_clear_count = rx_clear_count;
479         ar->survey_last_cycle_count = cycle_count;
480
481 exit:
482         spin_unlock_bh(&ar->data_lock);
483 }
484
485 static void ath10k_wmi_event_echo(struct ath10k *ar, struct sk_buff *skb)
486 {
487         ath10k_dbg(ATH10K_DBG_WMI, "WMI_ECHO_EVENTID\n");
488 }
489
490 static void ath10k_wmi_event_debug_mesg(struct ath10k *ar, struct sk_buff *skb)
491 {
492         ath10k_dbg(ATH10K_DBG_WMI, "WMI_DEBUG_MESG_EVENTID\n");
493 }
494
495 static void ath10k_wmi_event_update_stats(struct ath10k *ar,
496                                           struct sk_buff *skb)
497 {
498         struct wmi_stats_event *ev = (struct wmi_stats_event *)skb->data;
499
500         ath10k_dbg(ATH10K_DBG_WMI, "WMI_UPDATE_STATS_EVENTID\n");
501
502         ath10k_debug_read_target_stats(ar, ev);
503 }
504
505 static void ath10k_wmi_event_vdev_start_resp(struct ath10k *ar,
506                                              struct sk_buff *skb)
507 {
508         struct wmi_vdev_start_response_event *ev;
509
510         ath10k_dbg(ATH10K_DBG_WMI, "WMI_VDEV_START_RESP_EVENTID\n");
511
512         ev = (struct wmi_vdev_start_response_event *)skb->data;
513
514         if (WARN_ON(__le32_to_cpu(ev->status)))
515                 return;
516
517         complete(&ar->vdev_setup_done);
518 }
519
520 static void ath10k_wmi_event_vdev_stopped(struct ath10k *ar,
521                                           struct sk_buff *skb)
522 {
523         ath10k_dbg(ATH10K_DBG_WMI, "WMI_VDEV_STOPPED_EVENTID\n");
524         complete(&ar->vdev_setup_done);
525 }
526
527 static void ath10k_wmi_event_peer_sta_kickout(struct ath10k *ar,
528                                               struct sk_buff *skb)
529 {
530         ath10k_dbg(ATH10K_DBG_WMI, "WMI_PEER_STA_KICKOUT_EVENTID\n");
531 }
532
533 /*
534  * FIXME
535  *
536  * We don't report to mac80211 sleep state of connected
537  * stations. Due to this mac80211 can't fill in TIM IE
538  * correctly.
539  *
540  * I know of no way of getting nullfunc frames that contain
541  * sleep transition from connected stations - these do not
542  * seem to be sent from the target to the host. There also
543  * doesn't seem to be a dedicated event for that. So the
544  * only way left to do this would be to read tim_bitmap
545  * during SWBA.
546  *
547  * We could probably try using tim_bitmap from SWBA to tell
548  * mac80211 which stations are asleep and which are not. The
549  * problem here is calling mac80211 functions so many times
550  * could take too long and make us miss the time to submit
551  * the beacon to the target.
552  *
553  * So as a workaround we try to extend the TIM IE if there
554  * is unicast buffered for stations with aid > 7 and fill it
555  * in ourselves.
556  */
557 static void ath10k_wmi_update_tim(struct ath10k *ar,
558                                   struct ath10k_vif *arvif,
559                                   struct sk_buff *bcn,
560                                   struct wmi_bcn_info *bcn_info)
561 {
562         struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)bcn->data;
563         struct ieee80211_tim_ie *tim;
564         u8 *ies, *ie;
565         u8 ie_len, pvm_len;
566
567         /* if next SWBA has no tim_changed the tim_bitmap is garbage.
568          * we must copy the bitmap upon change and reuse it later */
569         if (__le32_to_cpu(bcn_info->tim_info.tim_changed)) {
570                 int i;
571
572                 BUILD_BUG_ON(sizeof(arvif->u.ap.tim_bitmap) !=
573                              sizeof(bcn_info->tim_info.tim_bitmap));
574
575                 for (i = 0; i < sizeof(arvif->u.ap.tim_bitmap); i++) {
576                         __le32 t = bcn_info->tim_info.tim_bitmap[i / 4];
577                         u32 v = __le32_to_cpu(t);
578                         arvif->u.ap.tim_bitmap[i] = (v >> ((i % 4) * 8)) & 0xFF;
579                 }
580
581                 /* FW reports either length 0 or 16
582                  * so we calculate this on our own */
583                 arvif->u.ap.tim_len = 0;
584                 for (i = 0; i < sizeof(arvif->u.ap.tim_bitmap); i++)
585                         if (arvif->u.ap.tim_bitmap[i])
586                                 arvif->u.ap.tim_len = i;
587
588                 arvif->u.ap.tim_len++;
589         }
590
591         ies = bcn->data;
592         ies += ieee80211_hdrlen(hdr->frame_control);
593         ies += 12; /* fixed parameters */
594
595         ie = (u8 *)cfg80211_find_ie(WLAN_EID_TIM, ies,
596                                     (u8 *)skb_tail_pointer(bcn) - ies);
597         if (!ie) {
598                 if (arvif->vdev_type != WMI_VDEV_TYPE_IBSS)
599                         ath10k_warn("no tim ie found;\n");
600                 return;
601         }
602
603         tim = (void *)ie + 2;
604         ie_len = ie[1];
605         pvm_len = ie_len - 3; /* exclude dtim count, dtim period, bmap ctl */
606
607         if (pvm_len < arvif->u.ap.tim_len) {
608                 int expand_size = sizeof(arvif->u.ap.tim_bitmap) - pvm_len;
609                 int move_size = skb_tail_pointer(bcn) - (ie + 2 + ie_len);
610                 void *next_ie = ie + 2 + ie_len;
611
612                 if (skb_put(bcn, expand_size)) {
613                         memmove(next_ie + expand_size, next_ie, move_size);
614
615                         ie[1] += expand_size;
616                         ie_len += expand_size;
617                         pvm_len += expand_size;
618                 } else {
619                         ath10k_warn("tim expansion failed\n");
620                 }
621         }
622
623         if (pvm_len > sizeof(arvif->u.ap.tim_bitmap)) {
624                 ath10k_warn("tim pvm length is too great (%d)\n", pvm_len);
625                 return;
626         }
627
628         tim->bitmap_ctrl = !!__le32_to_cpu(bcn_info->tim_info.tim_mcast);
629         memcpy(tim->virtual_map, arvif->u.ap.tim_bitmap, pvm_len);
630
631         ath10k_dbg(ATH10K_DBG_MGMT, "dtim %d/%d mcast %d pvmlen %d\n",
632                    tim->dtim_count, tim->dtim_period,
633                    tim->bitmap_ctrl, pvm_len);
634 }
635
636 static void ath10k_p2p_fill_noa_ie(u8 *data, u32 len,
637                                    struct wmi_p2p_noa_info *noa)
638 {
639         struct ieee80211_p2p_noa_attr *noa_attr;
640         u8  ctwindow_oppps = noa->ctwindow_oppps;
641         u8 ctwindow = ctwindow_oppps >> WMI_P2P_OPPPS_CTWINDOW_OFFSET;
642         bool oppps = !!(ctwindow_oppps & WMI_P2P_OPPPS_ENABLE_BIT);
643         __le16 *noa_attr_len;
644         u16 attr_len;
645         u8 noa_descriptors = noa->num_descriptors;
646         int i;
647
648         /* P2P IE */
649         data[0] = WLAN_EID_VENDOR_SPECIFIC;
650         data[1] = len - 2;
651         data[2] = (WLAN_OUI_WFA >> 16) & 0xff;
652         data[3] = (WLAN_OUI_WFA >> 8) & 0xff;
653         data[4] = (WLAN_OUI_WFA >> 0) & 0xff;
654         data[5] = WLAN_OUI_TYPE_WFA_P2P;
655
656         /* NOA ATTR */
657         data[6] = IEEE80211_P2P_ATTR_ABSENCE_NOTICE;
658         noa_attr_len = (__le16 *)&data[7]; /* 2 bytes */
659         noa_attr = (struct ieee80211_p2p_noa_attr *)&data[9];
660
661         noa_attr->index = noa->index;
662         noa_attr->oppps_ctwindow = ctwindow;
663         if (oppps)
664                 noa_attr->oppps_ctwindow |= IEEE80211_P2P_OPPPS_ENABLE_BIT;
665
666         for (i = 0; i < noa_descriptors; i++) {
667                 noa_attr->desc[i].count =
668                         __le32_to_cpu(noa->descriptors[i].type_count);
669                 noa_attr->desc[i].duration = noa->descriptors[i].duration;
670                 noa_attr->desc[i].interval = noa->descriptors[i].interval;
671                 noa_attr->desc[i].start_time = noa->descriptors[i].start_time;
672         }
673
674         attr_len = 2; /* index + oppps_ctwindow */
675         attr_len += noa_descriptors * sizeof(struct ieee80211_p2p_noa_desc);
676         *noa_attr_len = __cpu_to_le16(attr_len);
677 }
678
679 static u32 ath10k_p2p_calc_noa_ie_len(struct wmi_p2p_noa_info *noa)
680 {
681         u32 len = 0;
682         u8 noa_descriptors = noa->num_descriptors;
683         u8 opp_ps_info = noa->ctwindow_oppps;
684         bool opps_enabled = !!(opp_ps_info & WMI_P2P_OPPPS_ENABLE_BIT);
685
686
687         if (!noa_descriptors && !opps_enabled)
688                 return len;
689
690         len += 1 + 1 + 4; /* EID + len + OUI */
691         len += 1 + 2; /* noa attr  + attr len */
692         len += 1 + 1; /* index + oppps_ctwindow */
693         len += noa_descriptors * sizeof(struct ieee80211_p2p_noa_desc);
694
695         return len;
696 }
697
698 static void ath10k_wmi_update_noa(struct ath10k *ar, struct ath10k_vif *arvif,
699                                   struct sk_buff *bcn,
700                                   struct wmi_bcn_info *bcn_info)
701 {
702         struct wmi_p2p_noa_info *noa = &bcn_info->p2p_noa_info;
703         u8 *new_data, *old_data = arvif->u.ap.noa_data;
704         u32 new_len;
705
706         if (arvif->vdev_subtype != WMI_VDEV_SUBTYPE_P2P_GO)
707                 return;
708
709         ath10k_dbg(ATH10K_DBG_MGMT, "noa changed: %d\n", noa->changed);
710         if (noa->changed & WMI_P2P_NOA_CHANGED_BIT) {
711                 new_len = ath10k_p2p_calc_noa_ie_len(noa);
712                 if (!new_len)
713                         goto cleanup;
714
715                 new_data = kmalloc(new_len, GFP_ATOMIC);
716                 if (!new_data)
717                         goto cleanup;
718
719                 ath10k_p2p_fill_noa_ie(new_data, new_len, noa);
720
721                 spin_lock_bh(&ar->data_lock);
722                 arvif->u.ap.noa_data = new_data;
723                 arvif->u.ap.noa_len = new_len;
724                 spin_unlock_bh(&ar->data_lock);
725                 kfree(old_data);
726         }
727
728         if (arvif->u.ap.noa_data)
729                 if (!pskb_expand_head(bcn, 0, arvif->u.ap.noa_len, GFP_ATOMIC))
730                         memcpy(skb_put(bcn, arvif->u.ap.noa_len),
731                                arvif->u.ap.noa_data,
732                                arvif->u.ap.noa_len);
733         return;
734
735 cleanup:
736         spin_lock_bh(&ar->data_lock);
737         arvif->u.ap.noa_data = NULL;
738         arvif->u.ap.noa_len = 0;
739         spin_unlock_bh(&ar->data_lock);
740         kfree(old_data);
741 }
742
743
744 static void ath10k_wmi_event_host_swba(struct ath10k *ar, struct sk_buff *skb)
745 {
746         struct wmi_host_swba_event *ev;
747         u32 map;
748         int i = -1;
749         struct wmi_bcn_info *bcn_info;
750         struct ath10k_vif *arvif;
751         struct wmi_bcn_tx_arg arg;
752         struct sk_buff *bcn;
753         int vdev_id = 0;
754         int ret;
755
756         ath10k_dbg(ATH10K_DBG_MGMT, "WMI_HOST_SWBA_EVENTID\n");
757
758         ev = (struct wmi_host_swba_event *)skb->data;
759         map = __le32_to_cpu(ev->vdev_map);
760
761         ath10k_dbg(ATH10K_DBG_MGMT, "host swba:\n"
762                    "-vdev map 0x%x\n",
763                    ev->vdev_map);
764
765         for (; map; map >>= 1, vdev_id++) {
766                 if (!(map & 0x1))
767                         continue;
768
769                 i++;
770
771                 if (i >= WMI_MAX_AP_VDEV) {
772                         ath10k_warn("swba has corrupted vdev map\n");
773                         break;
774                 }
775
776                 bcn_info = &ev->bcn_info[i];
777
778                 ath10k_dbg(ATH10K_DBG_MGMT,
779                            "-bcn_info[%d]:\n"
780                            "--tim_len %d\n"
781                            "--tim_mcast %d\n"
782                            "--tim_changed %d\n"
783                            "--tim_num_ps_pending %d\n"
784                            "--tim_bitmap 0x%08x%08x%08x%08x\n",
785                            i,
786                            __le32_to_cpu(bcn_info->tim_info.tim_len),
787                            __le32_to_cpu(bcn_info->tim_info.tim_mcast),
788                            __le32_to_cpu(bcn_info->tim_info.tim_changed),
789                            __le32_to_cpu(bcn_info->tim_info.tim_num_ps_pending),
790                            __le32_to_cpu(bcn_info->tim_info.tim_bitmap[3]),
791                            __le32_to_cpu(bcn_info->tim_info.tim_bitmap[2]),
792                            __le32_to_cpu(bcn_info->tim_info.tim_bitmap[1]),
793                            __le32_to_cpu(bcn_info->tim_info.tim_bitmap[0]));
794
795                 arvif = ath10k_get_arvif(ar, vdev_id);
796                 if (arvif == NULL) {
797                         ath10k_warn("no vif for vdev_id %d found\n", vdev_id);
798                         continue;
799                 }
800
801                 bcn = ieee80211_beacon_get(ar->hw, arvif->vif);
802                 if (!bcn) {
803                         ath10k_warn("could not get mac80211 beacon\n");
804                         continue;
805                 }
806
807                 ath10k_tx_h_seq_no(bcn);
808                 ath10k_wmi_update_tim(ar, arvif, bcn, bcn_info);
809                 ath10k_wmi_update_noa(ar, arvif, bcn, bcn_info);
810
811                 arg.vdev_id = arvif->vdev_id;
812                 arg.tx_rate = 0;
813                 arg.tx_power = 0;
814                 arg.bcn = bcn->data;
815                 arg.bcn_len = bcn->len;
816
817                 ret = ath10k_wmi_beacon_send(ar, &arg);
818                 if (ret)
819                         ath10k_warn("could not send beacon (%d)\n", ret);
820
821                 dev_kfree_skb_any(bcn);
822         }
823 }
824
825 static void ath10k_wmi_event_tbttoffset_update(struct ath10k *ar,
826                                                struct sk_buff *skb)
827 {
828         ath10k_dbg(ATH10K_DBG_WMI, "WMI_TBTTOFFSET_UPDATE_EVENTID\n");
829 }
830
831 static void ath10k_wmi_event_phyerr(struct ath10k *ar, struct sk_buff *skb)
832 {
833         ath10k_dbg(ATH10K_DBG_WMI, "WMI_PHYERR_EVENTID\n");
834 }
835
836 static void ath10k_wmi_event_roam(struct ath10k *ar, struct sk_buff *skb)
837 {
838         ath10k_dbg(ATH10K_DBG_WMI, "WMI_ROAM_EVENTID\n");
839 }
840
841 static void ath10k_wmi_event_profile_match(struct ath10k *ar,
842                                     struct sk_buff *skb)
843 {
844         ath10k_dbg(ATH10K_DBG_WMI, "WMI_PROFILE_MATCH\n");
845 }
846
847 static void ath10k_wmi_event_debug_print(struct ath10k *ar,
848                                   struct sk_buff *skb)
849 {
850         ath10k_dbg(ATH10K_DBG_WMI, "WMI_DEBUG_PRINT_EVENTID\n");
851 }
852
853 static void ath10k_wmi_event_pdev_qvit(struct ath10k *ar, struct sk_buff *skb)
854 {
855         ath10k_dbg(ATH10K_DBG_WMI, "WMI_PDEV_QVIT_EVENTID\n");
856 }
857
858 static void ath10k_wmi_event_wlan_profile_data(struct ath10k *ar,
859                                                struct sk_buff *skb)
860 {
861         ath10k_dbg(ATH10K_DBG_WMI, "WMI_WLAN_PROFILE_DATA_EVENTID\n");
862 }
863
864 static void ath10k_wmi_event_rtt_measurement_report(struct ath10k *ar,
865                                              struct sk_buff *skb)
866 {
867         ath10k_dbg(ATH10K_DBG_WMI, "WMI_RTT_MEASUREMENT_REPORT_EVENTID\n");
868 }
869
870 static void ath10k_wmi_event_tsf_measurement_report(struct ath10k *ar,
871                                              struct sk_buff *skb)
872 {
873         ath10k_dbg(ATH10K_DBG_WMI, "WMI_TSF_MEASUREMENT_REPORT_EVENTID\n");
874 }
875
876 static void ath10k_wmi_event_rtt_error_report(struct ath10k *ar,
877                                               struct sk_buff *skb)
878 {
879         ath10k_dbg(ATH10K_DBG_WMI, "WMI_RTT_ERROR_REPORT_EVENTID\n");
880 }
881
882 static void ath10k_wmi_event_wow_wakeup_host(struct ath10k *ar,
883                                              struct sk_buff *skb)
884 {
885         ath10k_dbg(ATH10K_DBG_WMI, "WMI_WOW_WAKEUP_HOST_EVENTID\n");
886 }
887
888 static void ath10k_wmi_event_dcs_interference(struct ath10k *ar,
889                                               struct sk_buff *skb)
890 {
891         ath10k_dbg(ATH10K_DBG_WMI, "WMI_DCS_INTERFERENCE_EVENTID\n");
892 }
893
894 static void ath10k_wmi_event_pdev_tpc_config(struct ath10k *ar,
895                                              struct sk_buff *skb)
896 {
897         ath10k_dbg(ATH10K_DBG_WMI, "WMI_PDEV_TPC_CONFIG_EVENTID\n");
898 }
899
900 static void ath10k_wmi_event_pdev_ftm_intg(struct ath10k *ar,
901                                            struct sk_buff *skb)
902 {
903         ath10k_dbg(ATH10K_DBG_WMI, "WMI_PDEV_FTM_INTG_EVENTID\n");
904 }
905
906 static void ath10k_wmi_event_gtk_offload_status(struct ath10k *ar,
907                                          struct sk_buff *skb)
908 {
909         ath10k_dbg(ATH10K_DBG_WMI, "WMI_GTK_OFFLOAD_STATUS_EVENTID\n");
910 }
911
912 static void ath10k_wmi_event_gtk_rekey_fail(struct ath10k *ar,
913                                             struct sk_buff *skb)
914 {
915         ath10k_dbg(ATH10K_DBG_WMI, "WMI_GTK_REKEY_FAIL_EVENTID\n");
916 }
917
918 static void ath10k_wmi_event_delba_complete(struct ath10k *ar,
919                                             struct sk_buff *skb)
920 {
921         ath10k_dbg(ATH10K_DBG_WMI, "WMI_TX_DELBA_COMPLETE_EVENTID\n");
922 }
923
924 static void ath10k_wmi_event_addba_complete(struct ath10k *ar,
925                                             struct sk_buff *skb)
926 {
927         ath10k_dbg(ATH10K_DBG_WMI, "WMI_TX_ADDBA_COMPLETE_EVENTID\n");
928 }
929
930 static void ath10k_wmi_event_vdev_install_key_complete(struct ath10k *ar,
931                                                 struct sk_buff *skb)
932 {
933         ath10k_dbg(ATH10K_DBG_WMI, "WMI_VDEV_INSTALL_KEY_COMPLETE_EVENTID\n");
934 }
935
936 static void ath10k_wmi_service_ready_event_rx(struct ath10k *ar,
937                                               struct sk_buff *skb)
938 {
939         struct wmi_service_ready_event *ev = (void *)skb->data;
940
941         if (skb->len < sizeof(*ev)) {
942                 ath10k_warn("Service ready event was %d B but expected %zu B. Wrong firmware version?\n",
943                             skb->len, sizeof(*ev));
944                 return;
945         }
946
947         ar->hw_min_tx_power = __le32_to_cpu(ev->hw_min_tx_power);
948         ar->hw_max_tx_power = __le32_to_cpu(ev->hw_max_tx_power);
949         ar->ht_cap_info = __le32_to_cpu(ev->ht_cap_info);
950         ar->vht_cap_info = __le32_to_cpu(ev->vht_cap_info);
951         ar->fw_version_major =
952                 (__le32_to_cpu(ev->sw_version) & 0xff000000) >> 24;
953         ar->fw_version_minor = (__le32_to_cpu(ev->sw_version) & 0x00ffffff);
954         ar->fw_version_release =
955                 (__le32_to_cpu(ev->sw_version_1) & 0xffff0000) >> 16;
956         ar->fw_version_build = (__le32_to_cpu(ev->sw_version_1) & 0x0000ffff);
957         ar->phy_capability = __le32_to_cpu(ev->phy_capability);
958         ar->num_rf_chains = __le32_to_cpu(ev->num_rf_chains);
959
960         if (ar->fw_version_build > 636)
961                 set_bit(ATH10K_FW_FEATURE_EXT_WMI_MGMT_RX, ar->fw_features);
962
963         if (ar->num_rf_chains > WMI_MAX_SPATIAL_STREAM) {
964                 ath10k_warn("hardware advertises support for more spatial streams than it should (%d > %d)\n",
965                             ar->num_rf_chains, WMI_MAX_SPATIAL_STREAM);
966                 ar->num_rf_chains = WMI_MAX_SPATIAL_STREAM;
967         }
968
969         ar->ath_common.regulatory.current_rd =
970                 __le32_to_cpu(ev->hal_reg_capabilities.eeprom_rd);
971
972         ath10k_debug_read_service_map(ar, ev->wmi_service_bitmap,
973                                       sizeof(ev->wmi_service_bitmap));
974
975         if (strlen(ar->hw->wiphy->fw_version) == 0) {
976                 snprintf(ar->hw->wiphy->fw_version,
977                          sizeof(ar->hw->wiphy->fw_version),
978                          "%u.%u.%u.%u",
979                          ar->fw_version_major,
980                          ar->fw_version_minor,
981                          ar->fw_version_release,
982                          ar->fw_version_build);
983         }
984
985         /* FIXME: it probably should be better to support this */
986         if (__le32_to_cpu(ev->num_mem_reqs) > 0) {
987                 ath10k_warn("target requested %d memory chunks; ignoring\n",
988                             __le32_to_cpu(ev->num_mem_reqs));
989         }
990
991         ath10k_dbg(ATH10K_DBG_WMI,
992                    "wmi event service ready sw_ver 0x%08x sw_ver1 0x%08x abi_ver %u phy_cap 0x%08x ht_cap 0x%08x vht_cap 0x%08x vht_supp_msc 0x%08x sys_cap_info 0x%08x mem_reqs %u num_rf_chains %u\n",
993                    __le32_to_cpu(ev->sw_version),
994                    __le32_to_cpu(ev->sw_version_1),
995                    __le32_to_cpu(ev->abi_version),
996                    __le32_to_cpu(ev->phy_capability),
997                    __le32_to_cpu(ev->ht_cap_info),
998                    __le32_to_cpu(ev->vht_cap_info),
999                    __le32_to_cpu(ev->vht_supp_mcs),
1000                    __le32_to_cpu(ev->sys_cap_info),
1001                    __le32_to_cpu(ev->num_mem_reqs),
1002                    __le32_to_cpu(ev->num_rf_chains));
1003
1004         complete(&ar->wmi.service_ready);
1005 }
1006
1007 static int ath10k_wmi_ready_event_rx(struct ath10k *ar, struct sk_buff *skb)
1008 {
1009         struct wmi_ready_event *ev = (struct wmi_ready_event *)skb->data;
1010
1011         if (WARN_ON(skb->len < sizeof(*ev)))
1012                 return -EINVAL;
1013
1014         memcpy(ar->mac_addr, ev->mac_addr.addr, ETH_ALEN);
1015
1016         ath10k_dbg(ATH10K_DBG_WMI,
1017                    "wmi event ready sw_version %u abi_version %u mac_addr %pM status %d\n",
1018                    __le32_to_cpu(ev->sw_version),
1019                    __le32_to_cpu(ev->abi_version),
1020                    ev->mac_addr.addr,
1021                    __le32_to_cpu(ev->status));
1022
1023         complete(&ar->wmi.unified_ready);
1024         return 0;
1025 }
1026
1027 static void ath10k_wmi_event_process(struct ath10k *ar, struct sk_buff *skb)
1028 {
1029         struct wmi_cmd_hdr *cmd_hdr;
1030         enum wmi_event_id id;
1031         u16 len;
1032
1033         cmd_hdr = (struct wmi_cmd_hdr *)skb->data;
1034         id = MS(__le32_to_cpu(cmd_hdr->cmd_id), WMI_CMD_HDR_CMD_ID);
1035
1036         if (skb_pull(skb, sizeof(struct wmi_cmd_hdr)) == NULL)
1037                 return;
1038
1039         len = skb->len;
1040
1041         trace_ath10k_wmi_event(id, skb->data, skb->len);
1042
1043         switch (id) {
1044         case WMI_MGMT_RX_EVENTID:
1045                 ath10k_wmi_event_mgmt_rx(ar, skb);
1046                 /* mgmt_rx() owns the skb now! */
1047                 return;
1048         case WMI_SCAN_EVENTID:
1049                 ath10k_wmi_event_scan(ar, skb);
1050                 break;
1051         case WMI_CHAN_INFO_EVENTID:
1052                 ath10k_wmi_event_chan_info(ar, skb);
1053                 break;
1054         case WMI_ECHO_EVENTID:
1055                 ath10k_wmi_event_echo(ar, skb);
1056                 break;
1057         case WMI_DEBUG_MESG_EVENTID:
1058                 ath10k_wmi_event_debug_mesg(ar, skb);
1059                 break;
1060         case WMI_UPDATE_STATS_EVENTID:
1061                 ath10k_wmi_event_update_stats(ar, skb);
1062                 break;
1063         case WMI_VDEV_START_RESP_EVENTID:
1064                 ath10k_wmi_event_vdev_start_resp(ar, skb);
1065                 break;
1066         case WMI_VDEV_STOPPED_EVENTID:
1067                 ath10k_wmi_event_vdev_stopped(ar, skb);
1068                 break;
1069         case WMI_PEER_STA_KICKOUT_EVENTID:
1070                 ath10k_wmi_event_peer_sta_kickout(ar, skb);
1071                 break;
1072         case WMI_HOST_SWBA_EVENTID:
1073                 ath10k_wmi_event_host_swba(ar, skb);
1074                 break;
1075         case WMI_TBTTOFFSET_UPDATE_EVENTID:
1076                 ath10k_wmi_event_tbttoffset_update(ar, skb);
1077                 break;
1078         case WMI_PHYERR_EVENTID:
1079                 ath10k_wmi_event_phyerr(ar, skb);
1080                 break;
1081         case WMI_ROAM_EVENTID:
1082                 ath10k_wmi_event_roam(ar, skb);
1083                 break;
1084         case WMI_PROFILE_MATCH:
1085                 ath10k_wmi_event_profile_match(ar, skb);
1086                 break;
1087         case WMI_DEBUG_PRINT_EVENTID:
1088                 ath10k_wmi_event_debug_print(ar, skb);
1089                 break;
1090         case WMI_PDEV_QVIT_EVENTID:
1091                 ath10k_wmi_event_pdev_qvit(ar, skb);
1092                 break;
1093         case WMI_WLAN_PROFILE_DATA_EVENTID:
1094                 ath10k_wmi_event_wlan_profile_data(ar, skb);
1095                 break;
1096         case WMI_RTT_MEASUREMENT_REPORT_EVENTID:
1097                 ath10k_wmi_event_rtt_measurement_report(ar, skb);
1098                 break;
1099         case WMI_TSF_MEASUREMENT_REPORT_EVENTID:
1100                 ath10k_wmi_event_tsf_measurement_report(ar, skb);
1101                 break;
1102         case WMI_RTT_ERROR_REPORT_EVENTID:
1103                 ath10k_wmi_event_rtt_error_report(ar, skb);
1104                 break;
1105         case WMI_WOW_WAKEUP_HOST_EVENTID:
1106                 ath10k_wmi_event_wow_wakeup_host(ar, skb);
1107                 break;
1108         case WMI_DCS_INTERFERENCE_EVENTID:
1109                 ath10k_wmi_event_dcs_interference(ar, skb);
1110                 break;
1111         case WMI_PDEV_TPC_CONFIG_EVENTID:
1112                 ath10k_wmi_event_pdev_tpc_config(ar, skb);
1113                 break;
1114         case WMI_PDEV_FTM_INTG_EVENTID:
1115                 ath10k_wmi_event_pdev_ftm_intg(ar, skb);
1116                 break;
1117         case WMI_GTK_OFFLOAD_STATUS_EVENTID:
1118                 ath10k_wmi_event_gtk_offload_status(ar, skb);
1119                 break;
1120         case WMI_GTK_REKEY_FAIL_EVENTID:
1121                 ath10k_wmi_event_gtk_rekey_fail(ar, skb);
1122                 break;
1123         case WMI_TX_DELBA_COMPLETE_EVENTID:
1124                 ath10k_wmi_event_delba_complete(ar, skb);
1125                 break;
1126         case WMI_TX_ADDBA_COMPLETE_EVENTID:
1127                 ath10k_wmi_event_addba_complete(ar, skb);
1128                 break;
1129         case WMI_VDEV_INSTALL_KEY_COMPLETE_EVENTID:
1130                 ath10k_wmi_event_vdev_install_key_complete(ar, skb);
1131                 break;
1132         case WMI_SERVICE_READY_EVENTID:
1133                 ath10k_wmi_service_ready_event_rx(ar, skb);
1134                 break;
1135         case WMI_READY_EVENTID:
1136                 ath10k_wmi_ready_event_rx(ar, skb);
1137                 break;
1138         default:
1139                 ath10k_warn("Unknown eventid: %d\n", id);
1140                 break;
1141         }
1142
1143         dev_kfree_skb(skb);
1144 }
1145
1146 static void ath10k_wmi_event_work(struct work_struct *work)
1147 {
1148         struct ath10k *ar = container_of(work, struct ath10k,
1149                                          wmi.wmi_event_work);
1150         struct sk_buff *skb;
1151
1152         for (;;) {
1153                 skb = skb_dequeue(&ar->wmi.wmi_event_list);
1154                 if (!skb)
1155                         break;
1156
1157                 ath10k_wmi_event_process(ar, skb);
1158         }
1159 }
1160
1161 static void ath10k_wmi_process_rx(struct ath10k *ar, struct sk_buff *skb)
1162 {
1163         struct wmi_cmd_hdr *cmd_hdr = (struct wmi_cmd_hdr *)skb->data;
1164         enum wmi_event_id event_id;
1165
1166         event_id = MS(__le32_to_cpu(cmd_hdr->cmd_id), WMI_CMD_HDR_CMD_ID);
1167
1168         /* some events require to be handled ASAP
1169          * thus can't be defered to a worker thread */
1170         switch (event_id) {
1171         case WMI_HOST_SWBA_EVENTID:
1172         case WMI_MGMT_RX_EVENTID:
1173                 ath10k_wmi_event_process(ar, skb);
1174                 return;
1175         default:
1176                 break;
1177         }
1178
1179         skb_queue_tail(&ar->wmi.wmi_event_list, skb);
1180         queue_work(ar->workqueue, &ar->wmi.wmi_event_work);
1181 }
1182
1183 /* WMI Initialization functions */
1184 int ath10k_wmi_attach(struct ath10k *ar)
1185 {
1186         init_completion(&ar->wmi.service_ready);
1187         init_completion(&ar->wmi.unified_ready);
1188         init_waitqueue_head(&ar->wmi.wq);
1189
1190         skb_queue_head_init(&ar->wmi.wmi_event_list);
1191         INIT_WORK(&ar->wmi.wmi_event_work, ath10k_wmi_event_work);
1192
1193         return 0;
1194 }
1195
1196 void ath10k_wmi_detach(struct ath10k *ar)
1197 {
1198         /* HTC should've drained the packets already */
1199         if (WARN_ON(atomic_read(&ar->wmi.pending_tx_count) > 0))
1200                 ath10k_warn("there are still pending packets\n");
1201
1202         cancel_work_sync(&ar->wmi.wmi_event_work);
1203         skb_queue_purge(&ar->wmi.wmi_event_list);
1204 }
1205
1206 int ath10k_wmi_connect_htc_service(struct ath10k *ar)
1207 {
1208         int status;
1209         struct ath10k_htc_svc_conn_req conn_req;
1210         struct ath10k_htc_svc_conn_resp conn_resp;
1211
1212         memset(&conn_req, 0, sizeof(conn_req));
1213         memset(&conn_resp, 0, sizeof(conn_resp));
1214
1215         /* these fields are the same for all service endpoints */
1216         conn_req.ep_ops.ep_tx_complete = ath10k_wmi_htc_tx_complete;
1217         conn_req.ep_ops.ep_rx_complete = ath10k_wmi_process_rx;
1218
1219         /* connect to control service */
1220         conn_req.service_id = ATH10K_HTC_SVC_ID_WMI_CONTROL;
1221
1222         status = ath10k_htc_connect_service(&ar->htc, &conn_req, &conn_resp);
1223         if (status) {
1224                 ath10k_warn("failed to connect to WMI CONTROL service status: %d\n",
1225                             status);
1226                 return status;
1227         }
1228
1229         ar->wmi.eid = conn_resp.eid;
1230         return 0;
1231 }
1232
1233 int ath10k_wmi_pdev_set_regdomain(struct ath10k *ar, u16 rd, u16 rd2g,
1234                                   u16 rd5g, u16 ctl2g, u16 ctl5g)
1235 {
1236         struct wmi_pdev_set_regdomain_cmd *cmd;
1237         struct sk_buff *skb;
1238
1239         skb = ath10k_wmi_alloc_skb(sizeof(*cmd));
1240         if (!skb)
1241                 return -ENOMEM;
1242
1243         cmd = (struct wmi_pdev_set_regdomain_cmd *)skb->data;
1244         cmd->reg_domain = __cpu_to_le32(rd);
1245         cmd->reg_domain_2G = __cpu_to_le32(rd2g);
1246         cmd->reg_domain_5G = __cpu_to_le32(rd5g);
1247         cmd->conformance_test_limit_2G = __cpu_to_le32(ctl2g);
1248         cmd->conformance_test_limit_5G = __cpu_to_le32(ctl5g);
1249
1250         ath10k_dbg(ATH10K_DBG_WMI,
1251                    "wmi pdev regdomain rd %x rd2g %x rd5g %x ctl2g %x ctl5g %x\n",
1252                    rd, rd2g, rd5g, ctl2g, ctl5g);
1253
1254         return ath10k_wmi_cmd_send(ar, skb, WMI_PDEV_SET_REGDOMAIN_CMDID);
1255 }
1256
1257 int ath10k_wmi_pdev_set_channel(struct ath10k *ar,
1258                                 const struct wmi_channel_arg *arg)
1259 {
1260         struct wmi_set_channel_cmd *cmd;
1261         struct sk_buff *skb;
1262
1263         if (arg->passive)
1264                 return -EINVAL;
1265
1266         skb = ath10k_wmi_alloc_skb(sizeof(*cmd));
1267         if (!skb)
1268                 return -ENOMEM;
1269
1270         cmd = (struct wmi_set_channel_cmd *)skb->data;
1271         cmd->chan.mhz               = __cpu_to_le32(arg->freq);
1272         cmd->chan.band_center_freq1 = __cpu_to_le32(arg->freq);
1273         cmd->chan.mode              = arg->mode;
1274         cmd->chan.min_power         = arg->min_power;
1275         cmd->chan.max_power         = arg->max_power;
1276         cmd->chan.reg_power         = arg->max_reg_power;
1277         cmd->chan.reg_classid       = arg->reg_class_id;
1278         cmd->chan.antenna_max       = arg->max_antenna_gain;
1279
1280         ath10k_dbg(ATH10K_DBG_WMI,
1281                    "wmi set channel mode %d freq %d\n",
1282                    arg->mode, arg->freq);
1283
1284         return ath10k_wmi_cmd_send(ar, skb, WMI_PDEV_SET_CHANNEL_CMDID);
1285 }
1286
1287 int ath10k_wmi_pdev_suspend_target(struct ath10k *ar)
1288 {
1289         struct wmi_pdev_suspend_cmd *cmd;
1290         struct sk_buff *skb;
1291
1292         skb = ath10k_wmi_alloc_skb(sizeof(*cmd));
1293         if (!skb)
1294                 return -ENOMEM;
1295
1296         cmd = (struct wmi_pdev_suspend_cmd *)skb->data;
1297         cmd->suspend_opt = WMI_PDEV_SUSPEND;
1298
1299         return ath10k_wmi_cmd_send(ar, skb, WMI_PDEV_SUSPEND_CMDID);
1300 }
1301
1302 int ath10k_wmi_pdev_resume_target(struct ath10k *ar)
1303 {
1304         struct sk_buff *skb;
1305
1306         skb = ath10k_wmi_alloc_skb(0);
1307         if (skb == NULL)
1308                 return -ENOMEM;
1309
1310         return ath10k_wmi_cmd_send(ar, skb, WMI_PDEV_RESUME_CMDID);
1311 }
1312
1313 int ath10k_wmi_pdev_set_param(struct ath10k *ar, enum wmi_pdev_param id,
1314                               u32 value)
1315 {
1316         struct wmi_pdev_set_param_cmd *cmd;
1317         struct sk_buff *skb;
1318
1319         skb = ath10k_wmi_alloc_skb(sizeof(*cmd));
1320         if (!skb)
1321                 return -ENOMEM;
1322
1323         cmd = (struct wmi_pdev_set_param_cmd *)skb->data;
1324         cmd->param_id    = __cpu_to_le32(id);
1325         cmd->param_value = __cpu_to_le32(value);
1326
1327         ath10k_dbg(ATH10K_DBG_WMI, "wmi pdev set param %d value %d\n",
1328                    id, value);
1329         return ath10k_wmi_cmd_send(ar, skb, WMI_PDEV_SET_PARAM_CMDID);
1330 }
1331
1332 int ath10k_wmi_cmd_init(struct ath10k *ar)
1333 {
1334         struct wmi_init_cmd *cmd;
1335         struct sk_buff *buf;
1336         struct wmi_resource_config config = {};
1337         u32 val;
1338
1339         config.num_vdevs = __cpu_to_le32(TARGET_NUM_VDEVS);
1340         config.num_peers = __cpu_to_le32(TARGET_NUM_PEERS + TARGET_NUM_VDEVS);
1341         config.num_offload_peers = __cpu_to_le32(TARGET_NUM_OFFLOAD_PEERS);
1342
1343         config.num_offload_reorder_bufs =
1344                 __cpu_to_le32(TARGET_NUM_OFFLOAD_REORDER_BUFS);
1345
1346         config.num_peer_keys = __cpu_to_le32(TARGET_NUM_PEER_KEYS);
1347         config.num_tids = __cpu_to_le32(TARGET_NUM_TIDS);
1348         config.ast_skid_limit = __cpu_to_le32(TARGET_AST_SKID_LIMIT);
1349         config.tx_chain_mask = __cpu_to_le32(TARGET_TX_CHAIN_MASK);
1350         config.rx_chain_mask = __cpu_to_le32(TARGET_RX_CHAIN_MASK);
1351         config.rx_timeout_pri_vo = __cpu_to_le32(TARGET_RX_TIMEOUT_LO_PRI);
1352         config.rx_timeout_pri_vi = __cpu_to_le32(TARGET_RX_TIMEOUT_LO_PRI);
1353         config.rx_timeout_pri_be = __cpu_to_le32(TARGET_RX_TIMEOUT_LO_PRI);
1354         config.rx_timeout_pri_bk = __cpu_to_le32(TARGET_RX_TIMEOUT_HI_PRI);
1355         config.rx_decap_mode = __cpu_to_le32(TARGET_RX_DECAP_MODE);
1356
1357         config.scan_max_pending_reqs =
1358                 __cpu_to_le32(TARGET_SCAN_MAX_PENDING_REQS);
1359
1360         config.bmiss_offload_max_vdev =
1361                 __cpu_to_le32(TARGET_BMISS_OFFLOAD_MAX_VDEV);
1362
1363         config.roam_offload_max_vdev =
1364                 __cpu_to_le32(TARGET_ROAM_OFFLOAD_MAX_VDEV);
1365
1366         config.roam_offload_max_ap_profiles =
1367                 __cpu_to_le32(TARGET_ROAM_OFFLOAD_MAX_AP_PROFILES);
1368
1369         config.num_mcast_groups = __cpu_to_le32(TARGET_NUM_MCAST_GROUPS);
1370         config.num_mcast_table_elems =
1371                 __cpu_to_le32(TARGET_NUM_MCAST_TABLE_ELEMS);
1372
1373         config.mcast2ucast_mode = __cpu_to_le32(TARGET_MCAST2UCAST_MODE);
1374         config.tx_dbg_log_size = __cpu_to_le32(TARGET_TX_DBG_LOG_SIZE);
1375         config.num_wds_entries = __cpu_to_le32(TARGET_NUM_WDS_ENTRIES);
1376         config.dma_burst_size = __cpu_to_le32(TARGET_DMA_BURST_SIZE);
1377         config.mac_aggr_delim = __cpu_to_le32(TARGET_MAC_AGGR_DELIM);
1378
1379         val = TARGET_RX_SKIP_DEFRAG_TIMEOUT_DUP_DETECTION_CHECK;
1380         config.rx_skip_defrag_timeout_dup_detection_check = __cpu_to_le32(val);
1381
1382         config.vow_config = __cpu_to_le32(TARGET_VOW_CONFIG);
1383
1384         config.gtk_offload_max_vdev =
1385                 __cpu_to_le32(TARGET_GTK_OFFLOAD_MAX_VDEV);
1386
1387         config.num_msdu_desc = __cpu_to_le32(TARGET_NUM_MSDU_DESC);
1388         config.max_frag_entries = __cpu_to_le32(TARGET_MAX_FRAG_ENTRIES);
1389
1390         buf = ath10k_wmi_alloc_skb(sizeof(*cmd));
1391         if (!buf)
1392                 return -ENOMEM;
1393
1394         cmd = (struct wmi_init_cmd *)buf->data;
1395         cmd->num_host_mem_chunks = 0;
1396         memcpy(&cmd->resource_config, &config, sizeof(config));
1397
1398         ath10k_dbg(ATH10K_DBG_WMI, "wmi init\n");
1399         return ath10k_wmi_cmd_send(ar, buf, WMI_INIT_CMDID);
1400 }
1401
1402 static int ath10k_wmi_start_scan_calc_len(const struct wmi_start_scan_arg *arg)
1403 {
1404         int len;
1405
1406         len = sizeof(struct wmi_start_scan_cmd);
1407
1408         if (arg->ie_len) {
1409                 if (!arg->ie)
1410                         return -EINVAL;
1411                 if (arg->ie_len > WLAN_SCAN_PARAMS_MAX_IE_LEN)
1412                         return -EINVAL;
1413
1414                 len += sizeof(struct wmi_ie_data);
1415                 len += roundup(arg->ie_len, 4);
1416         }
1417
1418         if (arg->n_channels) {
1419                 if (!arg->channels)
1420                         return -EINVAL;
1421                 if (arg->n_channels > ARRAY_SIZE(arg->channels))
1422                         return -EINVAL;
1423
1424                 len += sizeof(struct wmi_chan_list);
1425                 len += sizeof(__le32) * arg->n_channels;
1426         }
1427
1428         if (arg->n_ssids) {
1429                 if (!arg->ssids)
1430                         return -EINVAL;
1431                 if (arg->n_ssids > WLAN_SCAN_PARAMS_MAX_SSID)
1432                         return -EINVAL;
1433
1434                 len += sizeof(struct wmi_ssid_list);
1435                 len += sizeof(struct wmi_ssid) * arg->n_ssids;
1436         }
1437
1438         if (arg->n_bssids) {
1439                 if (!arg->bssids)
1440                         return -EINVAL;
1441                 if (arg->n_bssids > WLAN_SCAN_PARAMS_MAX_BSSID)
1442                         return -EINVAL;
1443
1444                 len += sizeof(struct wmi_bssid_list);
1445                 len += sizeof(struct wmi_mac_addr) * arg->n_bssids;
1446         }
1447
1448         return len;
1449 }
1450
1451 int ath10k_wmi_start_scan(struct ath10k *ar,
1452                           const struct wmi_start_scan_arg *arg)
1453 {
1454         struct wmi_start_scan_cmd *cmd;
1455         struct sk_buff *skb;
1456         struct wmi_ie_data *ie;
1457         struct wmi_chan_list *channels;
1458         struct wmi_ssid_list *ssids;
1459         struct wmi_bssid_list *bssids;
1460         u32 scan_id;
1461         u32 scan_req_id;
1462         int off;
1463         int len = 0;
1464         int i;
1465
1466         len = ath10k_wmi_start_scan_calc_len(arg);
1467         if (len < 0)
1468                 return len; /* len contains error code here */
1469
1470         skb = ath10k_wmi_alloc_skb(len);
1471         if (!skb)
1472                 return -ENOMEM;
1473
1474         scan_id  = WMI_HOST_SCAN_REQ_ID_PREFIX;
1475         scan_id |= arg->scan_id;
1476
1477         scan_req_id  = WMI_HOST_SCAN_REQUESTOR_ID_PREFIX;
1478         scan_req_id |= arg->scan_req_id;
1479
1480         cmd = (struct wmi_start_scan_cmd *)skb->data;
1481         cmd->scan_id            = __cpu_to_le32(scan_id);
1482         cmd->scan_req_id        = __cpu_to_le32(scan_req_id);
1483         cmd->vdev_id            = __cpu_to_le32(arg->vdev_id);
1484         cmd->scan_priority      = __cpu_to_le32(arg->scan_priority);
1485         cmd->notify_scan_events = __cpu_to_le32(arg->notify_scan_events);
1486         cmd->dwell_time_active  = __cpu_to_le32(arg->dwell_time_active);
1487         cmd->dwell_time_passive = __cpu_to_le32(arg->dwell_time_passive);
1488         cmd->min_rest_time      = __cpu_to_le32(arg->min_rest_time);
1489         cmd->max_rest_time      = __cpu_to_le32(arg->max_rest_time);
1490         cmd->repeat_probe_time  = __cpu_to_le32(arg->repeat_probe_time);
1491         cmd->probe_spacing_time = __cpu_to_le32(arg->probe_spacing_time);
1492         cmd->idle_time          = __cpu_to_le32(arg->idle_time);
1493         cmd->max_scan_time      = __cpu_to_le32(arg->max_scan_time);
1494         cmd->probe_delay        = __cpu_to_le32(arg->probe_delay);
1495         cmd->scan_ctrl_flags    = __cpu_to_le32(arg->scan_ctrl_flags);
1496
1497         /* TLV list starts after fields included in the struct */
1498         off = sizeof(*cmd);
1499
1500         if (arg->n_channels) {
1501                 channels = (void *)skb->data + off;
1502                 channels->tag = __cpu_to_le32(WMI_CHAN_LIST_TAG);
1503                 channels->num_chan = __cpu_to_le32(arg->n_channels);
1504
1505                 for (i = 0; i < arg->n_channels; i++)
1506                         channels->channel_list[i] =
1507                                 __cpu_to_le32(arg->channels[i]);
1508
1509                 off += sizeof(*channels);
1510                 off += sizeof(__le32) * arg->n_channels;
1511         }
1512
1513         if (arg->n_ssids) {
1514                 ssids = (void *)skb->data + off;
1515                 ssids->tag = __cpu_to_le32(WMI_SSID_LIST_TAG);
1516                 ssids->num_ssids = __cpu_to_le32(arg->n_ssids);
1517
1518                 for (i = 0; i < arg->n_ssids; i++) {
1519                         ssids->ssids[i].ssid_len =
1520                                 __cpu_to_le32(arg->ssids[i].len);
1521                         memcpy(&ssids->ssids[i].ssid,
1522                                arg->ssids[i].ssid,
1523                                arg->ssids[i].len);
1524                 }
1525
1526                 off += sizeof(*ssids);
1527                 off += sizeof(struct wmi_ssid) * arg->n_ssids;
1528         }
1529
1530         if (arg->n_bssids) {
1531                 bssids = (void *)skb->data + off;
1532                 bssids->tag = __cpu_to_le32(WMI_BSSID_LIST_TAG);
1533                 bssids->num_bssid = __cpu_to_le32(arg->n_bssids);
1534
1535                 for (i = 0; i < arg->n_bssids; i++)
1536                         memcpy(&bssids->bssid_list[i],
1537                                arg->bssids[i].bssid,
1538                                ETH_ALEN);
1539
1540                 off += sizeof(*bssids);
1541                 off += sizeof(struct wmi_mac_addr) * arg->n_bssids;
1542         }
1543
1544         if (arg->ie_len) {
1545                 ie = (void *)skb->data + off;
1546                 ie->tag = __cpu_to_le32(WMI_IE_TAG);
1547                 ie->ie_len = __cpu_to_le32(arg->ie_len);
1548                 memcpy(ie->ie_data, arg->ie, arg->ie_len);
1549
1550                 off += sizeof(*ie);
1551                 off += roundup(arg->ie_len, 4);
1552         }
1553
1554         if (off != skb->len) {
1555                 dev_kfree_skb(skb);
1556                 return -EINVAL;
1557         }
1558
1559         ath10k_dbg(ATH10K_DBG_WMI, "wmi start scan\n");
1560         return ath10k_wmi_cmd_send(ar, skb, WMI_START_SCAN_CMDID);
1561 }
1562
1563 void ath10k_wmi_start_scan_init(struct ath10k *ar,
1564                                 struct wmi_start_scan_arg *arg)
1565 {
1566         /* setup commonly used values */
1567         arg->scan_req_id = 1;
1568         arg->scan_priority = WMI_SCAN_PRIORITY_LOW;
1569         arg->dwell_time_active = 50;
1570         arg->dwell_time_passive = 150;
1571         arg->min_rest_time = 50;
1572         arg->max_rest_time = 500;
1573         arg->repeat_probe_time = 0;
1574         arg->probe_spacing_time = 0;
1575         arg->idle_time = 0;
1576         arg->max_scan_time = 5000;
1577         arg->probe_delay = 5;
1578         arg->notify_scan_events = WMI_SCAN_EVENT_STARTED
1579                 | WMI_SCAN_EVENT_COMPLETED
1580                 | WMI_SCAN_EVENT_BSS_CHANNEL
1581                 | WMI_SCAN_EVENT_FOREIGN_CHANNEL
1582                 | WMI_SCAN_EVENT_DEQUEUED;
1583         arg->scan_ctrl_flags |= WMI_SCAN_ADD_OFDM_RATES;
1584         arg->scan_ctrl_flags |= WMI_SCAN_CHAN_STAT_EVENT;
1585         arg->n_bssids = 1;
1586         arg->bssids[0].bssid = "\xFF\xFF\xFF\xFF\xFF\xFF";
1587 }
1588
1589 int ath10k_wmi_stop_scan(struct ath10k *ar, const struct wmi_stop_scan_arg *arg)
1590 {
1591         struct wmi_stop_scan_cmd *cmd;
1592         struct sk_buff *skb;
1593         u32 scan_id;
1594         u32 req_id;
1595
1596         if (arg->req_id > 0xFFF)
1597                 return -EINVAL;
1598         if (arg->req_type == WMI_SCAN_STOP_ONE && arg->u.scan_id > 0xFFF)
1599                 return -EINVAL;
1600
1601         skb = ath10k_wmi_alloc_skb(sizeof(*cmd));
1602         if (!skb)
1603                 return -ENOMEM;
1604
1605         scan_id = arg->u.scan_id;
1606         scan_id |= WMI_HOST_SCAN_REQ_ID_PREFIX;
1607
1608         req_id = arg->req_id;
1609         req_id |= WMI_HOST_SCAN_REQUESTOR_ID_PREFIX;
1610
1611         cmd = (struct wmi_stop_scan_cmd *)skb->data;
1612         cmd->req_type    = __cpu_to_le32(arg->req_type);
1613         cmd->vdev_id     = __cpu_to_le32(arg->u.vdev_id);
1614         cmd->scan_id     = __cpu_to_le32(scan_id);
1615         cmd->scan_req_id = __cpu_to_le32(req_id);
1616
1617         ath10k_dbg(ATH10K_DBG_WMI,
1618                    "wmi stop scan reqid %d req_type %d vdev/scan_id %d\n",
1619                    arg->req_id, arg->req_type, arg->u.scan_id);
1620         return ath10k_wmi_cmd_send(ar, skb, WMI_STOP_SCAN_CMDID);
1621 }
1622
1623 int ath10k_wmi_vdev_create(struct ath10k *ar, u32 vdev_id,
1624                            enum wmi_vdev_type type,
1625                            enum wmi_vdev_subtype subtype,
1626                            const u8 macaddr[ETH_ALEN])
1627 {
1628         struct wmi_vdev_create_cmd *cmd;
1629         struct sk_buff *skb;
1630
1631         skb = ath10k_wmi_alloc_skb(sizeof(*cmd));
1632         if (!skb)
1633                 return -ENOMEM;
1634
1635         cmd = (struct wmi_vdev_create_cmd *)skb->data;
1636         cmd->vdev_id      = __cpu_to_le32(vdev_id);
1637         cmd->vdev_type    = __cpu_to_le32(type);
1638         cmd->vdev_subtype = __cpu_to_le32(subtype);
1639         memcpy(cmd->vdev_macaddr.addr, macaddr, ETH_ALEN);
1640
1641         ath10k_dbg(ATH10K_DBG_WMI,
1642                    "WMI vdev create: id %d type %d subtype %d macaddr %pM\n",
1643                    vdev_id, type, subtype, macaddr);
1644
1645         return ath10k_wmi_cmd_send(ar, skb, WMI_VDEV_CREATE_CMDID);
1646 }
1647
1648 int ath10k_wmi_vdev_delete(struct ath10k *ar, u32 vdev_id)
1649 {
1650         struct wmi_vdev_delete_cmd *cmd;
1651         struct sk_buff *skb;
1652
1653         skb = ath10k_wmi_alloc_skb(sizeof(*cmd));
1654         if (!skb)
1655                 return -ENOMEM;
1656
1657         cmd = (struct wmi_vdev_delete_cmd *)skb->data;
1658         cmd->vdev_id = __cpu_to_le32(vdev_id);
1659
1660         ath10k_dbg(ATH10K_DBG_WMI,
1661                    "WMI vdev delete id %d\n", vdev_id);
1662
1663         return ath10k_wmi_cmd_send(ar, skb, WMI_VDEV_DELETE_CMDID);
1664 }
1665
1666 static int ath10k_wmi_vdev_start_restart(struct ath10k *ar,
1667                                 const struct wmi_vdev_start_request_arg *arg,
1668                                 enum wmi_cmd_id cmd_id)
1669 {
1670         struct wmi_vdev_start_request_cmd *cmd;
1671         struct sk_buff *skb;
1672         const char *cmdname;
1673         u32 flags = 0;
1674
1675         if (cmd_id != WMI_VDEV_START_REQUEST_CMDID &&
1676             cmd_id != WMI_VDEV_RESTART_REQUEST_CMDID)
1677                 return -EINVAL;
1678         if (WARN_ON(arg->ssid && arg->ssid_len == 0))
1679                 return -EINVAL;
1680         if (WARN_ON(arg->hidden_ssid && !arg->ssid))
1681                 return -EINVAL;
1682         if (WARN_ON(arg->ssid_len > sizeof(cmd->ssid.ssid)))
1683                 return -EINVAL;
1684
1685         if (cmd_id == WMI_VDEV_START_REQUEST_CMDID)
1686                 cmdname = "start";
1687         else if (cmd_id == WMI_VDEV_RESTART_REQUEST_CMDID)
1688                 cmdname = "restart";
1689         else
1690                 return -EINVAL; /* should not happen, we already check cmd_id */
1691
1692         skb = ath10k_wmi_alloc_skb(sizeof(*cmd));
1693         if (!skb)
1694                 return -ENOMEM;
1695
1696         if (arg->hidden_ssid)
1697                 flags |= WMI_VDEV_START_HIDDEN_SSID;
1698         if (arg->pmf_enabled)
1699                 flags |= WMI_VDEV_START_PMF_ENABLED;
1700
1701         cmd = (struct wmi_vdev_start_request_cmd *)skb->data;
1702         cmd->vdev_id         = __cpu_to_le32(arg->vdev_id);
1703         cmd->disable_hw_ack  = __cpu_to_le32(arg->disable_hw_ack);
1704         cmd->beacon_interval = __cpu_to_le32(arg->bcn_intval);
1705         cmd->dtim_period     = __cpu_to_le32(arg->dtim_period);
1706         cmd->flags           = __cpu_to_le32(flags);
1707         cmd->bcn_tx_rate     = __cpu_to_le32(arg->bcn_tx_rate);
1708         cmd->bcn_tx_power    = __cpu_to_le32(arg->bcn_tx_power);
1709
1710         if (arg->ssid) {
1711                 cmd->ssid.ssid_len = __cpu_to_le32(arg->ssid_len);
1712                 memcpy(cmd->ssid.ssid, arg->ssid, arg->ssid_len);
1713         }
1714
1715         cmd->chan.mhz = __cpu_to_le32(arg->channel.freq);
1716
1717         cmd->chan.band_center_freq1 =
1718                 __cpu_to_le32(arg->channel.band_center_freq1);
1719
1720         cmd->chan.mode = arg->channel.mode;
1721         cmd->chan.min_power = arg->channel.min_power;
1722         cmd->chan.max_power = arg->channel.max_power;
1723         cmd->chan.reg_power = arg->channel.max_reg_power;
1724         cmd->chan.reg_classid = arg->channel.reg_class_id;
1725         cmd->chan.antenna_max = arg->channel.max_antenna_gain;
1726
1727         ath10k_dbg(ATH10K_DBG_WMI,
1728                    "wmi vdev %s id 0x%x freq %d, mode %d, ch_flags: 0x%0X,"
1729                    "max_power: %d\n", cmdname, arg->vdev_id, arg->channel.freq,
1730                    arg->channel.mode, flags, arg->channel.max_power);
1731
1732         return ath10k_wmi_cmd_send(ar, skb, cmd_id);
1733 }
1734
1735 int ath10k_wmi_vdev_start(struct ath10k *ar,
1736                           const struct wmi_vdev_start_request_arg *arg)
1737 {
1738         return ath10k_wmi_vdev_start_restart(ar, arg,
1739                                              WMI_VDEV_START_REQUEST_CMDID);
1740 }
1741
1742 int ath10k_wmi_vdev_restart(struct ath10k *ar,
1743                      const struct wmi_vdev_start_request_arg *arg)
1744 {
1745         return ath10k_wmi_vdev_start_restart(ar, arg,
1746                                              WMI_VDEV_RESTART_REQUEST_CMDID);
1747 }
1748
1749 int ath10k_wmi_vdev_stop(struct ath10k *ar, u32 vdev_id)
1750 {
1751         struct wmi_vdev_stop_cmd *cmd;
1752         struct sk_buff *skb;
1753
1754         skb = ath10k_wmi_alloc_skb(sizeof(*cmd));
1755         if (!skb)
1756                 return -ENOMEM;
1757
1758         cmd = (struct wmi_vdev_stop_cmd *)skb->data;
1759         cmd->vdev_id = __cpu_to_le32(vdev_id);
1760
1761         ath10k_dbg(ATH10K_DBG_WMI, "wmi vdev stop id 0x%x\n", vdev_id);
1762
1763         return ath10k_wmi_cmd_send(ar, skb, WMI_VDEV_STOP_CMDID);
1764 }
1765
1766 int ath10k_wmi_vdev_up(struct ath10k *ar, u32 vdev_id, u32 aid, const u8 *bssid)
1767 {
1768         struct wmi_vdev_up_cmd *cmd;
1769         struct sk_buff *skb;
1770
1771         skb = ath10k_wmi_alloc_skb(sizeof(*cmd));
1772         if (!skb)
1773                 return -ENOMEM;
1774
1775         cmd = (struct wmi_vdev_up_cmd *)skb->data;
1776         cmd->vdev_id       = __cpu_to_le32(vdev_id);
1777         cmd->vdev_assoc_id = __cpu_to_le32(aid);
1778         memcpy(&cmd->vdev_bssid.addr, bssid, 6);
1779
1780         ath10k_dbg(ATH10K_DBG_WMI,
1781                    "wmi mgmt vdev up id 0x%x assoc id %d bssid %pM\n",
1782                    vdev_id, aid, bssid);
1783
1784         return ath10k_wmi_cmd_send(ar, skb, WMI_VDEV_UP_CMDID);
1785 }
1786
1787 int ath10k_wmi_vdev_down(struct ath10k *ar, u32 vdev_id)
1788 {
1789         struct wmi_vdev_down_cmd *cmd;
1790         struct sk_buff *skb;
1791
1792         skb = ath10k_wmi_alloc_skb(sizeof(*cmd));
1793         if (!skb)
1794                 return -ENOMEM;
1795
1796         cmd = (struct wmi_vdev_down_cmd *)skb->data;
1797         cmd->vdev_id = __cpu_to_le32(vdev_id);
1798
1799         ath10k_dbg(ATH10K_DBG_WMI,
1800                    "wmi mgmt vdev down id 0x%x\n", vdev_id);
1801
1802         return ath10k_wmi_cmd_send(ar, skb, WMI_VDEV_DOWN_CMDID);
1803 }
1804
1805 int ath10k_wmi_vdev_set_param(struct ath10k *ar, u32 vdev_id,
1806                               enum wmi_vdev_param param_id, u32 param_value)
1807 {
1808         struct wmi_vdev_set_param_cmd *cmd;
1809         struct sk_buff *skb;
1810
1811         skb = ath10k_wmi_alloc_skb(sizeof(*cmd));
1812         if (!skb)
1813                 return -ENOMEM;
1814
1815         cmd = (struct wmi_vdev_set_param_cmd *)skb->data;
1816         cmd->vdev_id     = __cpu_to_le32(vdev_id);
1817         cmd->param_id    = __cpu_to_le32(param_id);
1818         cmd->param_value = __cpu_to_le32(param_value);
1819
1820         ath10k_dbg(ATH10K_DBG_WMI,
1821                    "wmi vdev id 0x%x set param %d value %d\n",
1822                    vdev_id, param_id, param_value);
1823
1824         return ath10k_wmi_cmd_send(ar, skb, WMI_VDEV_SET_PARAM_CMDID);
1825 }
1826
1827 int ath10k_wmi_vdev_install_key(struct ath10k *ar,
1828                                 const struct wmi_vdev_install_key_arg *arg)
1829 {
1830         struct wmi_vdev_install_key_cmd *cmd;
1831         struct sk_buff *skb;
1832
1833         if (arg->key_cipher == WMI_CIPHER_NONE && arg->key_data != NULL)
1834                 return -EINVAL;
1835         if (arg->key_cipher != WMI_CIPHER_NONE && arg->key_data == NULL)
1836                 return -EINVAL;
1837
1838         skb = ath10k_wmi_alloc_skb(sizeof(*cmd) + arg->key_len);
1839         if (!skb)
1840                 return -ENOMEM;
1841
1842         cmd = (struct wmi_vdev_install_key_cmd *)skb->data;
1843         cmd->vdev_id       = __cpu_to_le32(arg->vdev_id);
1844         cmd->key_idx       = __cpu_to_le32(arg->key_idx);
1845         cmd->key_flags     = __cpu_to_le32(arg->key_flags);
1846         cmd->key_cipher    = __cpu_to_le32(arg->key_cipher);
1847         cmd->key_len       = __cpu_to_le32(arg->key_len);
1848         cmd->key_txmic_len = __cpu_to_le32(arg->key_txmic_len);
1849         cmd->key_rxmic_len = __cpu_to_le32(arg->key_rxmic_len);
1850
1851         if (arg->macaddr)
1852                 memcpy(cmd->peer_macaddr.addr, arg->macaddr, ETH_ALEN);
1853         if (arg->key_data)
1854                 memcpy(cmd->key_data, arg->key_data, arg->key_len);
1855
1856         ath10k_dbg(ATH10K_DBG_WMI,
1857                    "wmi vdev install key idx %d cipher %d len %d\n",
1858                    arg->key_idx, arg->key_cipher, arg->key_len);
1859         return ath10k_wmi_cmd_send(ar, skb, WMI_VDEV_INSTALL_KEY_CMDID);
1860 }
1861
1862 int ath10k_wmi_peer_create(struct ath10k *ar, u32 vdev_id,
1863                            const u8 peer_addr[ETH_ALEN])
1864 {
1865         struct wmi_peer_create_cmd *cmd;
1866         struct sk_buff *skb;
1867
1868         skb = ath10k_wmi_alloc_skb(sizeof(*cmd));
1869         if (!skb)
1870                 return -ENOMEM;
1871
1872         cmd = (struct wmi_peer_create_cmd *)skb->data;
1873         cmd->vdev_id = __cpu_to_le32(vdev_id);
1874         memcpy(cmd->peer_macaddr.addr, peer_addr, ETH_ALEN);
1875
1876         ath10k_dbg(ATH10K_DBG_WMI,
1877                    "wmi peer create vdev_id %d peer_addr %pM\n",
1878                    vdev_id, peer_addr);
1879         return ath10k_wmi_cmd_send(ar, skb, WMI_PEER_CREATE_CMDID);
1880 }
1881
1882 int ath10k_wmi_peer_delete(struct ath10k *ar, u32 vdev_id,
1883                            const u8 peer_addr[ETH_ALEN])
1884 {
1885         struct wmi_peer_delete_cmd *cmd;
1886         struct sk_buff *skb;
1887
1888         skb = ath10k_wmi_alloc_skb(sizeof(*cmd));
1889         if (!skb)
1890                 return -ENOMEM;
1891
1892         cmd = (struct wmi_peer_delete_cmd *)skb->data;
1893         cmd->vdev_id = __cpu_to_le32(vdev_id);
1894         memcpy(cmd->peer_macaddr.addr, peer_addr, ETH_ALEN);
1895
1896         ath10k_dbg(ATH10K_DBG_WMI,
1897                    "wmi peer delete vdev_id %d peer_addr %pM\n",
1898                    vdev_id, peer_addr);
1899         return ath10k_wmi_cmd_send(ar, skb, WMI_PEER_DELETE_CMDID);
1900 }
1901
1902 int ath10k_wmi_peer_flush(struct ath10k *ar, u32 vdev_id,
1903                           const u8 peer_addr[ETH_ALEN], u32 tid_bitmap)
1904 {
1905         struct wmi_peer_flush_tids_cmd *cmd;
1906         struct sk_buff *skb;
1907
1908         skb = ath10k_wmi_alloc_skb(sizeof(*cmd));
1909         if (!skb)
1910                 return -ENOMEM;
1911
1912         cmd = (struct wmi_peer_flush_tids_cmd *)skb->data;
1913         cmd->vdev_id         = __cpu_to_le32(vdev_id);
1914         cmd->peer_tid_bitmap = __cpu_to_le32(tid_bitmap);
1915         memcpy(cmd->peer_macaddr.addr, peer_addr, ETH_ALEN);
1916
1917         ath10k_dbg(ATH10K_DBG_WMI,
1918                    "wmi peer flush vdev_id %d peer_addr %pM tids %08x\n",
1919                    vdev_id, peer_addr, tid_bitmap);
1920         return ath10k_wmi_cmd_send(ar, skb, WMI_PEER_FLUSH_TIDS_CMDID);
1921 }
1922
1923 int ath10k_wmi_peer_set_param(struct ath10k *ar, u32 vdev_id,
1924                               const u8 *peer_addr, enum wmi_peer_param param_id,
1925                               u32 param_value)
1926 {
1927         struct wmi_peer_set_param_cmd *cmd;
1928         struct sk_buff *skb;
1929
1930         skb = ath10k_wmi_alloc_skb(sizeof(*cmd));
1931         if (!skb)
1932                 return -ENOMEM;
1933
1934         cmd = (struct wmi_peer_set_param_cmd *)skb->data;
1935         cmd->vdev_id     = __cpu_to_le32(vdev_id);
1936         cmd->param_id    = __cpu_to_le32(param_id);
1937         cmd->param_value = __cpu_to_le32(param_value);
1938         memcpy(&cmd->peer_macaddr.addr, peer_addr, 6);
1939
1940         ath10k_dbg(ATH10K_DBG_WMI,
1941                    "wmi vdev %d peer 0x%pM set param %d value %d\n",
1942                    vdev_id, peer_addr, param_id, param_value);
1943
1944         return ath10k_wmi_cmd_send(ar, skb, WMI_PEER_SET_PARAM_CMDID);
1945 }
1946
1947 int ath10k_wmi_set_psmode(struct ath10k *ar, u32 vdev_id,
1948                           enum wmi_sta_ps_mode psmode)
1949 {
1950         struct wmi_sta_powersave_mode_cmd *cmd;
1951         struct sk_buff *skb;
1952
1953         skb = ath10k_wmi_alloc_skb(sizeof(*cmd));
1954         if (!skb)
1955                 return -ENOMEM;
1956
1957         cmd = (struct wmi_sta_powersave_mode_cmd *)skb->data;
1958         cmd->vdev_id     = __cpu_to_le32(vdev_id);
1959         cmd->sta_ps_mode = __cpu_to_le32(psmode);
1960
1961         ath10k_dbg(ATH10K_DBG_WMI,
1962                    "wmi set powersave id 0x%x mode %d\n",
1963                    vdev_id, psmode);
1964
1965         return ath10k_wmi_cmd_send(ar, skb, WMI_STA_POWERSAVE_MODE_CMDID);
1966 }
1967
1968 int ath10k_wmi_set_sta_ps_param(struct ath10k *ar, u32 vdev_id,
1969                                 enum wmi_sta_powersave_param param_id,
1970                                 u32 value)
1971 {
1972         struct wmi_sta_powersave_param_cmd *cmd;
1973         struct sk_buff *skb;
1974
1975         skb = ath10k_wmi_alloc_skb(sizeof(*cmd));
1976         if (!skb)
1977                 return -ENOMEM;
1978
1979         cmd = (struct wmi_sta_powersave_param_cmd *)skb->data;
1980         cmd->vdev_id     = __cpu_to_le32(vdev_id);
1981         cmd->param_id    = __cpu_to_le32(param_id);
1982         cmd->param_value = __cpu_to_le32(value);
1983
1984         ath10k_dbg(ATH10K_DBG_WMI,
1985                    "wmi sta ps param vdev_id 0x%x param %d value %d\n",
1986                    vdev_id, param_id, value);
1987         return ath10k_wmi_cmd_send(ar, skb, WMI_STA_POWERSAVE_PARAM_CMDID);
1988 }
1989
1990 int ath10k_wmi_set_ap_ps_param(struct ath10k *ar, u32 vdev_id, const u8 *mac,
1991                                enum wmi_ap_ps_peer_param param_id, u32 value)
1992 {
1993         struct wmi_ap_ps_peer_cmd *cmd;
1994         struct sk_buff *skb;
1995
1996         if (!mac)
1997                 return -EINVAL;
1998
1999         skb = ath10k_wmi_alloc_skb(sizeof(*cmd));
2000         if (!skb)
2001                 return -ENOMEM;
2002
2003         cmd = (struct wmi_ap_ps_peer_cmd *)skb->data;
2004         cmd->vdev_id = __cpu_to_le32(vdev_id);
2005         cmd->param_id = __cpu_to_le32(param_id);
2006         cmd->param_value = __cpu_to_le32(value);
2007         memcpy(&cmd->peer_macaddr, mac, ETH_ALEN);
2008
2009         ath10k_dbg(ATH10K_DBG_WMI,
2010                    "wmi ap ps param vdev_id 0x%X param %d value %d mac_addr %pM\n",
2011                    vdev_id, param_id, value, mac);
2012
2013         return ath10k_wmi_cmd_send(ar, skb, WMI_AP_PS_PEER_PARAM_CMDID);
2014 }
2015
2016 int ath10k_wmi_scan_chan_list(struct ath10k *ar,
2017                               const struct wmi_scan_chan_list_arg *arg)
2018 {
2019         struct wmi_scan_chan_list_cmd *cmd;
2020         struct sk_buff *skb;
2021         struct wmi_channel_arg *ch;
2022         struct wmi_channel *ci;
2023         int len;
2024         int i;
2025
2026         len = sizeof(*cmd) + arg->n_channels * sizeof(struct wmi_channel);
2027
2028         skb = ath10k_wmi_alloc_skb(len);
2029         if (!skb)
2030                 return -EINVAL;
2031
2032         cmd = (struct wmi_scan_chan_list_cmd *)skb->data;
2033         cmd->num_scan_chans = __cpu_to_le32(arg->n_channels);
2034
2035         for (i = 0; i < arg->n_channels; i++) {
2036                 u32 flags = 0;
2037
2038                 ch = &arg->channels[i];
2039                 ci = &cmd->chan_info[i];
2040
2041                 if (ch->passive)
2042                         flags |= WMI_CHAN_FLAG_PASSIVE;
2043                 if (ch->allow_ibss)
2044                         flags |= WMI_CHAN_FLAG_ADHOC_ALLOWED;
2045                 if (ch->allow_ht)
2046                         flags |= WMI_CHAN_FLAG_ALLOW_HT;
2047                 if (ch->allow_vht)
2048                         flags |= WMI_CHAN_FLAG_ALLOW_VHT;
2049                 if (ch->ht40plus)
2050                         flags |= WMI_CHAN_FLAG_HT40_PLUS;
2051
2052                 ci->mhz               = __cpu_to_le32(ch->freq);
2053                 ci->band_center_freq1 = __cpu_to_le32(ch->freq);
2054                 ci->band_center_freq2 = 0;
2055                 ci->min_power         = ch->min_power;
2056                 ci->max_power         = ch->max_power;
2057                 ci->reg_power         = ch->max_reg_power;
2058                 ci->antenna_max       = ch->max_antenna_gain;
2059                 ci->antenna_max       = 0;
2060
2061                 /* mode & flags share storage */
2062                 ci->mode              = ch->mode;
2063                 ci->flags            |= __cpu_to_le32(flags);
2064         }
2065
2066         return ath10k_wmi_cmd_send(ar, skb, WMI_SCAN_CHAN_LIST_CMDID);
2067 }
2068
2069 int ath10k_wmi_peer_assoc(struct ath10k *ar,
2070                           const struct wmi_peer_assoc_complete_arg *arg)
2071 {
2072         struct wmi_peer_assoc_complete_cmd *cmd;
2073         struct sk_buff *skb;
2074
2075         if (arg->peer_mpdu_density > 16)
2076                 return -EINVAL;
2077         if (arg->peer_legacy_rates.num_rates > MAX_SUPPORTED_RATES)
2078                 return -EINVAL;
2079         if (arg->peer_ht_rates.num_rates > MAX_SUPPORTED_RATES)
2080                 return -EINVAL;
2081
2082         skb = ath10k_wmi_alloc_skb(sizeof(*cmd));
2083         if (!skb)
2084                 return -ENOMEM;
2085
2086         cmd = (struct wmi_peer_assoc_complete_cmd *)skb->data;
2087         cmd->vdev_id            = __cpu_to_le32(arg->vdev_id);
2088         cmd->peer_new_assoc     = __cpu_to_le32(arg->peer_reassoc ? 0 : 1);
2089         cmd->peer_associd       = __cpu_to_le32(arg->peer_aid);
2090         cmd->peer_flags         = __cpu_to_le32(arg->peer_flags);
2091         cmd->peer_caps          = __cpu_to_le32(arg->peer_caps);
2092         cmd->peer_listen_intval = __cpu_to_le32(arg->peer_listen_intval);
2093         cmd->peer_ht_caps       = __cpu_to_le32(arg->peer_ht_caps);
2094         cmd->peer_max_mpdu      = __cpu_to_le32(arg->peer_max_mpdu);
2095         cmd->peer_mpdu_density  = __cpu_to_le32(arg->peer_mpdu_density);
2096         cmd->peer_rate_caps     = __cpu_to_le32(arg->peer_rate_caps);
2097         cmd->peer_nss           = __cpu_to_le32(arg->peer_num_spatial_streams);
2098         cmd->peer_vht_caps      = __cpu_to_le32(arg->peer_vht_caps);
2099         cmd->peer_phymode       = __cpu_to_le32(arg->peer_phymode);
2100
2101         memcpy(cmd->peer_macaddr.addr, arg->addr, ETH_ALEN);
2102
2103         cmd->peer_legacy_rates.num_rates =
2104                 __cpu_to_le32(arg->peer_legacy_rates.num_rates);
2105         memcpy(cmd->peer_legacy_rates.rates, arg->peer_legacy_rates.rates,
2106                arg->peer_legacy_rates.num_rates);
2107
2108         cmd->peer_ht_rates.num_rates =
2109                 __cpu_to_le32(arg->peer_ht_rates.num_rates);
2110         memcpy(cmd->peer_ht_rates.rates, arg->peer_ht_rates.rates,
2111                arg->peer_ht_rates.num_rates);
2112
2113         cmd->peer_vht_rates.rx_max_rate =
2114                 __cpu_to_le32(arg->peer_vht_rates.rx_max_rate);
2115         cmd->peer_vht_rates.rx_mcs_set =
2116                 __cpu_to_le32(arg->peer_vht_rates.rx_mcs_set);
2117         cmd->peer_vht_rates.tx_max_rate =
2118                 __cpu_to_le32(arg->peer_vht_rates.tx_max_rate);
2119         cmd->peer_vht_rates.tx_mcs_set =
2120                 __cpu_to_le32(arg->peer_vht_rates.tx_mcs_set);
2121
2122         ath10k_dbg(ATH10K_DBG_WMI,
2123                    "wmi peer assoc vdev %d addr %pM\n",
2124                    arg->vdev_id, arg->addr);
2125         return ath10k_wmi_cmd_send(ar, skb, WMI_PEER_ASSOC_CMDID);
2126 }
2127
2128 int ath10k_wmi_beacon_send(struct ath10k *ar, const struct wmi_bcn_tx_arg *arg)
2129 {
2130         struct wmi_bcn_tx_cmd *cmd;
2131         struct sk_buff *skb;
2132
2133         skb = ath10k_wmi_alloc_skb(sizeof(*cmd) + arg->bcn_len);
2134         if (!skb)
2135                 return -ENOMEM;
2136
2137         cmd = (struct wmi_bcn_tx_cmd *)skb->data;
2138         cmd->hdr.vdev_id  = __cpu_to_le32(arg->vdev_id);
2139         cmd->hdr.tx_rate  = __cpu_to_le32(arg->tx_rate);
2140         cmd->hdr.tx_power = __cpu_to_le32(arg->tx_power);
2141         cmd->hdr.bcn_len  = __cpu_to_le32(arg->bcn_len);
2142         memcpy(cmd->bcn, arg->bcn, arg->bcn_len);
2143
2144         return ath10k_wmi_cmd_send(ar, skb, WMI_BCN_TX_CMDID);
2145 }
2146
2147 static void ath10k_wmi_pdev_set_wmm_param(struct wmi_wmm_params *params,
2148                                           const struct wmi_wmm_params_arg *arg)
2149 {
2150         params->cwmin  = __cpu_to_le32(arg->cwmin);
2151         params->cwmax  = __cpu_to_le32(arg->cwmax);
2152         params->aifs   = __cpu_to_le32(arg->aifs);
2153         params->txop   = __cpu_to_le32(arg->txop);
2154         params->acm    = __cpu_to_le32(arg->acm);
2155         params->no_ack = __cpu_to_le32(arg->no_ack);
2156 }
2157
2158 int ath10k_wmi_pdev_set_wmm_params(struct ath10k *ar,
2159                         const struct wmi_pdev_set_wmm_params_arg *arg)
2160 {
2161         struct wmi_pdev_set_wmm_params *cmd;
2162         struct sk_buff *skb;
2163
2164         skb = ath10k_wmi_alloc_skb(sizeof(*cmd));
2165         if (!skb)
2166                 return -ENOMEM;
2167
2168         cmd = (struct wmi_pdev_set_wmm_params *)skb->data;
2169         ath10k_wmi_pdev_set_wmm_param(&cmd->ac_be, &arg->ac_be);
2170         ath10k_wmi_pdev_set_wmm_param(&cmd->ac_bk, &arg->ac_bk);
2171         ath10k_wmi_pdev_set_wmm_param(&cmd->ac_vi, &arg->ac_vi);
2172         ath10k_wmi_pdev_set_wmm_param(&cmd->ac_vo, &arg->ac_vo);
2173
2174         ath10k_dbg(ATH10K_DBG_WMI, "wmi pdev set wmm params\n");
2175         return ath10k_wmi_cmd_send(ar, skb, WMI_PDEV_SET_WMM_PARAMS_CMDID);
2176 }
2177
2178 int ath10k_wmi_request_stats(struct ath10k *ar, enum wmi_stats_id stats_id)
2179 {
2180         struct wmi_request_stats_cmd *cmd;
2181         struct sk_buff *skb;
2182
2183         skb = ath10k_wmi_alloc_skb(sizeof(*cmd));
2184         if (!skb)
2185                 return -ENOMEM;
2186
2187         cmd = (struct wmi_request_stats_cmd *)skb->data;
2188         cmd->stats_id = __cpu_to_le32(stats_id);
2189
2190         ath10k_dbg(ATH10K_DBG_WMI, "wmi request stats %d\n", (int)stats_id);
2191         return ath10k_wmi_cmd_send(ar, skb, WMI_REQUEST_STATS_CMDID);
2192 }
2193
2194 int ath10k_wmi_force_fw_hang(struct ath10k *ar,
2195                              enum wmi_force_fw_hang_type type, u32 delay_ms)
2196 {
2197         struct wmi_force_fw_hang_cmd *cmd;
2198         struct sk_buff *skb;
2199
2200         skb = ath10k_wmi_alloc_skb(sizeof(*cmd));
2201         if (!skb)
2202                 return -ENOMEM;
2203
2204         cmd = (struct wmi_force_fw_hang_cmd *)skb->data;
2205         cmd->type = __cpu_to_le32(type);
2206         cmd->delay_ms = __cpu_to_le32(delay_ms);
2207
2208         ath10k_dbg(ATH10K_DBG_WMI, "wmi force fw hang %d delay %d\n",
2209                    type, delay_ms);
2210         return ath10k_wmi_cmd_send(ar, skb, WMI_FORCE_FW_HANG_CMDID);
2211 }