Merge tag 'upstream-3.13-rc1' of git://git.infradead.org/linux-ubi
[cascardo/linux.git] / drivers / net / wireless / ath / ath10k / wmi.c
1 /*
2  * Copyright (c) 2005-2011 Atheros Communications Inc.
3  * Copyright (c) 2011-2013 Qualcomm Atheros, Inc.
4  *
5  * Permission to use, copy, modify, and/or distribute this software for any
6  * purpose with or without fee is hereby granted, provided that the above
7  * copyright notice and this permission notice appear in all copies.
8  *
9  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
10  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
11  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
12  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
13  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
14  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
15  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
16  */
17
18 #include <linux/skbuff.h>
19
20 #include "core.h"
21 #include "htc.h"
22 #include "debug.h"
23 #include "wmi.h"
24 #include "mac.h"
25
26 void ath10k_wmi_flush_tx(struct ath10k *ar)
27 {
28         int ret;
29
30         lockdep_assert_held(&ar->conf_mutex);
31
32         if (ar->state == ATH10K_STATE_WEDGED) {
33                 ath10k_warn("wmi flush skipped - device is wedged anyway\n");
34                 return;
35         }
36
37         ret = wait_event_timeout(ar->wmi.wq,
38                                  atomic_read(&ar->wmi.pending_tx_count) == 0,
39                                  5*HZ);
40         if (atomic_read(&ar->wmi.pending_tx_count) == 0)
41                 return;
42
43         if (ret == 0)
44                 ret = -ETIMEDOUT;
45
46         if (ret < 0)
47                 ath10k_warn("wmi flush failed (%d)\n", ret);
48 }
49
50 int ath10k_wmi_wait_for_service_ready(struct ath10k *ar)
51 {
52         int ret;
53         ret = wait_for_completion_timeout(&ar->wmi.service_ready,
54                                           WMI_SERVICE_READY_TIMEOUT_HZ);
55         return ret;
56 }
57
58 int ath10k_wmi_wait_for_unified_ready(struct ath10k *ar)
59 {
60         int ret;
61         ret = wait_for_completion_timeout(&ar->wmi.unified_ready,
62                                           WMI_UNIFIED_READY_TIMEOUT_HZ);
63         return ret;
64 }
65
66 static struct sk_buff *ath10k_wmi_alloc_skb(u32 len)
67 {
68         struct sk_buff *skb;
69         u32 round_len = roundup(len, 4);
70
71         skb = ath10k_htc_alloc_skb(WMI_SKB_HEADROOM + round_len);
72         if (!skb)
73                 return NULL;
74
75         skb_reserve(skb, WMI_SKB_HEADROOM);
76         if (!IS_ALIGNED((unsigned long)skb->data, 4))
77                 ath10k_warn("Unaligned WMI skb\n");
78
79         skb_put(skb, round_len);
80         memset(skb->data, 0, round_len);
81
82         return skb;
83 }
84
85 static void ath10k_wmi_htc_tx_complete(struct ath10k *ar, struct sk_buff *skb)
86 {
87         dev_kfree_skb(skb);
88
89         if (atomic_sub_return(1, &ar->wmi.pending_tx_count) == 0)
90                 wake_up(&ar->wmi.wq);
91 }
92
93 /* WMI command API */
94 static int ath10k_wmi_cmd_send(struct ath10k *ar, struct sk_buff *skb,
95                                enum wmi_cmd_id cmd_id)
96 {
97         struct ath10k_skb_cb *skb_cb = ATH10K_SKB_CB(skb);
98         struct wmi_cmd_hdr *cmd_hdr;
99         int status;
100         u32 cmd = 0;
101
102         if (skb_push(skb, sizeof(struct wmi_cmd_hdr)) == NULL)
103                 return -ENOMEM;
104
105         cmd |= SM(cmd_id, WMI_CMD_HDR_CMD_ID);
106
107         cmd_hdr = (struct wmi_cmd_hdr *)skb->data;
108         cmd_hdr->cmd_id = __cpu_to_le32(cmd);
109
110         if (atomic_add_return(1, &ar->wmi.pending_tx_count) >
111             WMI_MAX_PENDING_TX_COUNT) {
112                 /* avoid using up memory when FW hangs */
113                 atomic_dec(&ar->wmi.pending_tx_count);
114                 return -EBUSY;
115         }
116
117         memset(skb_cb, 0, sizeof(*skb_cb));
118
119         trace_ath10k_wmi_cmd(cmd_id, skb->data, skb->len);
120
121         status = ath10k_htc_send(&ar->htc, ar->wmi.eid, skb);
122         if (status) {
123                 dev_kfree_skb_any(skb);
124                 atomic_dec(&ar->wmi.pending_tx_count);
125                 return status;
126         }
127
128         return 0;
129 }
130
131 static int ath10k_wmi_event_scan(struct ath10k *ar, struct sk_buff *skb)
132 {
133         struct wmi_scan_event *event = (struct wmi_scan_event *)skb->data;
134         enum wmi_scan_event_type event_type;
135         enum wmi_scan_completion_reason reason;
136         u32 freq;
137         u32 req_id;
138         u32 scan_id;
139         u32 vdev_id;
140
141         event_type = __le32_to_cpu(event->event_type);
142         reason     = __le32_to_cpu(event->reason);
143         freq       = __le32_to_cpu(event->channel_freq);
144         req_id     = __le32_to_cpu(event->scan_req_id);
145         scan_id    = __le32_to_cpu(event->scan_id);
146         vdev_id    = __le32_to_cpu(event->vdev_id);
147
148         ath10k_dbg(ATH10K_DBG_WMI, "WMI_SCAN_EVENTID\n");
149         ath10k_dbg(ATH10K_DBG_WMI,
150                    "scan event type %d reason %d freq %d req_id %d "
151                    "scan_id %d vdev_id %d\n",
152                    event_type, reason, freq, req_id, scan_id, vdev_id);
153
154         spin_lock_bh(&ar->data_lock);
155
156         switch (event_type) {
157         case WMI_SCAN_EVENT_STARTED:
158                 ath10k_dbg(ATH10K_DBG_WMI, "SCAN_EVENT_STARTED\n");
159                 if (ar->scan.in_progress && ar->scan.is_roc)
160                         ieee80211_ready_on_channel(ar->hw);
161
162                 complete(&ar->scan.started);
163                 break;
164         case WMI_SCAN_EVENT_COMPLETED:
165                 ath10k_dbg(ATH10K_DBG_WMI, "SCAN_EVENT_COMPLETED\n");
166                 switch (reason) {
167                 case WMI_SCAN_REASON_COMPLETED:
168                         ath10k_dbg(ATH10K_DBG_WMI, "SCAN_REASON_COMPLETED\n");
169                         break;
170                 case WMI_SCAN_REASON_CANCELLED:
171                         ath10k_dbg(ATH10K_DBG_WMI, "SCAN_REASON_CANCELED\n");
172                         break;
173                 case WMI_SCAN_REASON_PREEMPTED:
174                         ath10k_dbg(ATH10K_DBG_WMI, "SCAN_REASON_PREEMPTED\n");
175                         break;
176                 case WMI_SCAN_REASON_TIMEDOUT:
177                         ath10k_dbg(ATH10K_DBG_WMI, "SCAN_REASON_TIMEDOUT\n");
178                         break;
179                 default:
180                         break;
181                 }
182
183                 ar->scan_channel = NULL;
184                 if (!ar->scan.in_progress) {
185                         ath10k_warn("no scan requested, ignoring\n");
186                         break;
187                 }
188
189                 if (ar->scan.is_roc) {
190                         ath10k_offchan_tx_purge(ar);
191
192                         if (!ar->scan.aborting)
193                                 ieee80211_remain_on_channel_expired(ar->hw);
194                 } else {
195                         ieee80211_scan_completed(ar->hw, ar->scan.aborting);
196                 }
197
198                 del_timer(&ar->scan.timeout);
199                 complete_all(&ar->scan.completed);
200                 ar->scan.in_progress = false;
201                 break;
202         case WMI_SCAN_EVENT_BSS_CHANNEL:
203                 ath10k_dbg(ATH10K_DBG_WMI, "SCAN_EVENT_BSS_CHANNEL\n");
204                 ar->scan_channel = NULL;
205                 break;
206         case WMI_SCAN_EVENT_FOREIGN_CHANNEL:
207                 ath10k_dbg(ATH10K_DBG_WMI, "SCAN_EVENT_FOREIGN_CHANNEL\n");
208                 ar->scan_channel = ieee80211_get_channel(ar->hw->wiphy, freq);
209                 if (ar->scan.in_progress && ar->scan.is_roc &&
210                     ar->scan.roc_freq == freq) {
211                         complete(&ar->scan.on_channel);
212                 }
213                 break;
214         case WMI_SCAN_EVENT_DEQUEUED:
215                 ath10k_dbg(ATH10K_DBG_WMI, "SCAN_EVENT_DEQUEUED\n");
216                 break;
217         case WMI_SCAN_EVENT_PREEMPTED:
218                 ath10k_dbg(ATH10K_DBG_WMI, "WMI_SCAN_EVENT_PREEMPTED\n");
219                 break;
220         case WMI_SCAN_EVENT_START_FAILED:
221                 ath10k_dbg(ATH10K_DBG_WMI, "WMI_SCAN_EVENT_START_FAILED\n");
222                 break;
223         default:
224                 break;
225         }
226
227         spin_unlock_bh(&ar->data_lock);
228         return 0;
229 }
230
231 static inline enum ieee80211_band phy_mode_to_band(u32 phy_mode)
232 {
233         enum ieee80211_band band;
234
235         switch (phy_mode) {
236         case MODE_11A:
237         case MODE_11NA_HT20:
238         case MODE_11NA_HT40:
239         case MODE_11AC_VHT20:
240         case MODE_11AC_VHT40:
241         case MODE_11AC_VHT80:
242                 band = IEEE80211_BAND_5GHZ;
243                 break;
244         case MODE_11G:
245         case MODE_11B:
246         case MODE_11GONLY:
247         case MODE_11NG_HT20:
248         case MODE_11NG_HT40:
249         case MODE_11AC_VHT20_2G:
250         case MODE_11AC_VHT40_2G:
251         case MODE_11AC_VHT80_2G:
252         default:
253                 band = IEEE80211_BAND_2GHZ;
254         }
255
256         return band;
257 }
258
259 static inline u8 get_rate_idx(u32 rate, enum ieee80211_band band)
260 {
261         u8 rate_idx = 0;
262
263         /* rate in Kbps */
264         switch (rate) {
265         case 1000:
266                 rate_idx = 0;
267                 break;
268         case 2000:
269                 rate_idx = 1;
270                 break;
271         case 5500:
272                 rate_idx = 2;
273                 break;
274         case 11000:
275                 rate_idx = 3;
276                 break;
277         case 6000:
278                 rate_idx = 4;
279                 break;
280         case 9000:
281                 rate_idx = 5;
282                 break;
283         case 12000:
284                 rate_idx = 6;
285                 break;
286         case 18000:
287                 rate_idx = 7;
288                 break;
289         case 24000:
290                 rate_idx = 8;
291                 break;
292         case 36000:
293                 rate_idx = 9;
294                 break;
295         case 48000:
296                 rate_idx = 10;
297                 break;
298         case 54000:
299                 rate_idx = 11;
300                 break;
301         default:
302                 break;
303         }
304
305         if (band == IEEE80211_BAND_5GHZ) {
306                 if (rate_idx > 3)
307                         /* Omit CCK rates */
308                         rate_idx -= 4;
309                 else
310                         rate_idx = 0;
311         }
312
313         return rate_idx;
314 }
315
316 static int ath10k_wmi_event_mgmt_rx(struct ath10k *ar, struct sk_buff *skb)
317 {
318         struct wmi_mgmt_rx_event *event = (struct wmi_mgmt_rx_event *)skb->data;
319         struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
320         struct ieee80211_hdr *hdr;
321         u32 rx_status;
322         u32 channel;
323         u32 phy_mode;
324         u32 snr;
325         u32 rate;
326         u32 buf_len;
327         u16 fc;
328
329         channel   = __le32_to_cpu(event->hdr.channel);
330         buf_len   = __le32_to_cpu(event->hdr.buf_len);
331         rx_status = __le32_to_cpu(event->hdr.status);
332         snr       = __le32_to_cpu(event->hdr.snr);
333         phy_mode  = __le32_to_cpu(event->hdr.phy_mode);
334         rate      = __le32_to_cpu(event->hdr.rate);
335
336         memset(status, 0, sizeof(*status));
337
338         ath10k_dbg(ATH10K_DBG_MGMT,
339                    "event mgmt rx status %08x\n", rx_status);
340
341         if (rx_status & WMI_RX_STATUS_ERR_DECRYPT) {
342                 dev_kfree_skb(skb);
343                 return 0;
344         }
345
346         if (rx_status & WMI_RX_STATUS_ERR_KEY_CACHE_MISS) {
347                 dev_kfree_skb(skb);
348                 return 0;
349         }
350
351         if (rx_status & WMI_RX_STATUS_ERR_CRC)
352                 status->flag |= RX_FLAG_FAILED_FCS_CRC;
353         if (rx_status & WMI_RX_STATUS_ERR_MIC)
354                 status->flag |= RX_FLAG_MMIC_ERROR;
355
356         status->band = phy_mode_to_band(phy_mode);
357         status->freq = ieee80211_channel_to_frequency(channel, status->band);
358         status->signal = snr + ATH10K_DEFAULT_NOISE_FLOOR;
359         status->rate_idx = get_rate_idx(rate, status->band);
360
361         skb_pull(skb, sizeof(event->hdr));
362
363         hdr = (struct ieee80211_hdr *)skb->data;
364         fc = le16_to_cpu(hdr->frame_control);
365
366         if (fc & IEEE80211_FCTL_PROTECTED) {
367                 status->flag |= RX_FLAG_DECRYPTED | RX_FLAG_IV_STRIPPED |
368                                 RX_FLAG_MMIC_STRIPPED;
369                 hdr->frame_control = __cpu_to_le16(fc &
370                                         ~IEEE80211_FCTL_PROTECTED);
371         }
372
373         ath10k_dbg(ATH10K_DBG_MGMT,
374                    "event mgmt rx skb %p len %d ftype %02x stype %02x\n",
375                    skb, skb->len,
376                    fc & IEEE80211_FCTL_FTYPE, fc & IEEE80211_FCTL_STYPE);
377
378         ath10k_dbg(ATH10K_DBG_MGMT,
379                    "event mgmt rx freq %d band %d snr %d, rate_idx %d\n",
380                    status->freq, status->band, status->signal,
381                    status->rate_idx);
382
383         /*
384          * packets from HTC come aligned to 4byte boundaries
385          * because they can originally come in along with a trailer
386          */
387         skb_trim(skb, buf_len);
388
389         ieee80211_rx(ar->hw, skb);
390         return 0;
391 }
392
393 static int freq_to_idx(struct ath10k *ar, int freq)
394 {
395         struct ieee80211_supported_band *sband;
396         int band, ch, idx = 0;
397
398         for (band = IEEE80211_BAND_2GHZ; band < IEEE80211_NUM_BANDS; band++) {
399                 sband = ar->hw->wiphy->bands[band];
400                 if (!sband)
401                         continue;
402
403                 for (ch = 0; ch < sband->n_channels; ch++, idx++)
404                         if (sband->channels[ch].center_freq == freq)
405                                 goto exit;
406         }
407
408 exit:
409         return idx;
410 }
411
412 static void ath10k_wmi_event_chan_info(struct ath10k *ar, struct sk_buff *skb)
413 {
414         struct wmi_chan_info_event *ev;
415         struct survey_info *survey;
416         u32 err_code, freq, cmd_flags, noise_floor, rx_clear_count, cycle_count;
417         int idx;
418
419         ev = (struct wmi_chan_info_event *)skb->data;
420
421         err_code = __le32_to_cpu(ev->err_code);
422         freq = __le32_to_cpu(ev->freq);
423         cmd_flags = __le32_to_cpu(ev->cmd_flags);
424         noise_floor = __le32_to_cpu(ev->noise_floor);
425         rx_clear_count = __le32_to_cpu(ev->rx_clear_count);
426         cycle_count = __le32_to_cpu(ev->cycle_count);
427
428         ath10k_dbg(ATH10K_DBG_WMI,
429                    "chan info err_code %d freq %d cmd_flags %d noise_floor %d rx_clear_count %d cycle_count %d\n",
430                    err_code, freq, cmd_flags, noise_floor, rx_clear_count,
431                    cycle_count);
432
433         spin_lock_bh(&ar->data_lock);
434
435         if (!ar->scan.in_progress) {
436                 ath10k_warn("chan info event without a scan request?\n");
437                 goto exit;
438         }
439
440         idx = freq_to_idx(ar, freq);
441         if (idx >= ARRAY_SIZE(ar->survey)) {
442                 ath10k_warn("chan info: invalid frequency %d (idx %d out of bounds)\n",
443                             freq, idx);
444                 goto exit;
445         }
446
447         if (cmd_flags & WMI_CHAN_INFO_FLAG_COMPLETE) {
448                 /* During scanning chan info is reported twice for each
449                  * visited channel. The reported cycle count is global
450                  * and per-channel cycle count must be calculated */
451
452                 cycle_count -= ar->survey_last_cycle_count;
453                 rx_clear_count -= ar->survey_last_rx_clear_count;
454
455                 survey = &ar->survey[idx];
456                 survey->channel_time = WMI_CHAN_INFO_MSEC(cycle_count);
457                 survey->channel_time_rx = WMI_CHAN_INFO_MSEC(rx_clear_count);
458                 survey->noise = noise_floor;
459                 survey->filled = SURVEY_INFO_CHANNEL_TIME |
460                                  SURVEY_INFO_CHANNEL_TIME_RX |
461                                  SURVEY_INFO_NOISE_DBM;
462         }
463
464         ar->survey_last_rx_clear_count = rx_clear_count;
465         ar->survey_last_cycle_count = cycle_count;
466
467 exit:
468         spin_unlock_bh(&ar->data_lock);
469 }
470
471 static void ath10k_wmi_event_echo(struct ath10k *ar, struct sk_buff *skb)
472 {
473         ath10k_dbg(ATH10K_DBG_WMI, "WMI_ECHO_EVENTID\n");
474 }
475
476 static void ath10k_wmi_event_debug_mesg(struct ath10k *ar, struct sk_buff *skb)
477 {
478         ath10k_dbg(ATH10K_DBG_WMI, "WMI_DEBUG_MESG_EVENTID\n");
479 }
480
481 static void ath10k_wmi_event_update_stats(struct ath10k *ar,
482                                           struct sk_buff *skb)
483 {
484         struct wmi_stats_event *ev = (struct wmi_stats_event *)skb->data;
485
486         ath10k_dbg(ATH10K_DBG_WMI, "WMI_UPDATE_STATS_EVENTID\n");
487
488         ath10k_debug_read_target_stats(ar, ev);
489 }
490
491 static void ath10k_wmi_event_vdev_start_resp(struct ath10k *ar,
492                                              struct sk_buff *skb)
493 {
494         struct wmi_vdev_start_response_event *ev;
495
496         ath10k_dbg(ATH10K_DBG_WMI, "WMI_VDEV_START_RESP_EVENTID\n");
497
498         ev = (struct wmi_vdev_start_response_event *)skb->data;
499
500         if (WARN_ON(__le32_to_cpu(ev->status)))
501                 return;
502
503         complete(&ar->vdev_setup_done);
504 }
505
506 static void ath10k_wmi_event_vdev_stopped(struct ath10k *ar,
507                                           struct sk_buff *skb)
508 {
509         ath10k_dbg(ATH10K_DBG_WMI, "WMI_VDEV_STOPPED_EVENTID\n");
510         complete(&ar->vdev_setup_done);
511 }
512
513 static void ath10k_wmi_event_peer_sta_kickout(struct ath10k *ar,
514                                               struct sk_buff *skb)
515 {
516         ath10k_dbg(ATH10K_DBG_WMI, "WMI_PEER_STA_KICKOUT_EVENTID\n");
517 }
518
519 /*
520  * FIXME
521  *
522  * We don't report to mac80211 sleep state of connected
523  * stations. Due to this mac80211 can't fill in TIM IE
524  * correctly.
525  *
526  * I know of no way of getting nullfunc frames that contain
527  * sleep transition from connected stations - these do not
528  * seem to be sent from the target to the host. There also
529  * doesn't seem to be a dedicated event for that. So the
530  * only way left to do this would be to read tim_bitmap
531  * during SWBA.
532  *
533  * We could probably try using tim_bitmap from SWBA to tell
534  * mac80211 which stations are asleep and which are not. The
535  * problem here is calling mac80211 functions so many times
536  * could take too long and make us miss the time to submit
537  * the beacon to the target.
538  *
539  * So as a workaround we try to extend the TIM IE if there
540  * is unicast buffered for stations with aid > 7 and fill it
541  * in ourselves.
542  */
543 static void ath10k_wmi_update_tim(struct ath10k *ar,
544                                   struct ath10k_vif *arvif,
545                                   struct sk_buff *bcn,
546                                   struct wmi_bcn_info *bcn_info)
547 {
548         struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)bcn->data;
549         struct ieee80211_tim_ie *tim;
550         u8 *ies, *ie;
551         u8 ie_len, pvm_len;
552
553         /* if next SWBA has no tim_changed the tim_bitmap is garbage.
554          * we must copy the bitmap upon change and reuse it later */
555         if (__le32_to_cpu(bcn_info->tim_info.tim_changed)) {
556                 int i;
557
558                 BUILD_BUG_ON(sizeof(arvif->u.ap.tim_bitmap) !=
559                              sizeof(bcn_info->tim_info.tim_bitmap));
560
561                 for (i = 0; i < sizeof(arvif->u.ap.tim_bitmap); i++) {
562                         __le32 t = bcn_info->tim_info.tim_bitmap[i / 4];
563                         u32 v = __le32_to_cpu(t);
564                         arvif->u.ap.tim_bitmap[i] = (v >> ((i % 4) * 8)) & 0xFF;
565                 }
566
567                 /* FW reports either length 0 or 16
568                  * so we calculate this on our own */
569                 arvif->u.ap.tim_len = 0;
570                 for (i = 0; i < sizeof(arvif->u.ap.tim_bitmap); i++)
571                         if (arvif->u.ap.tim_bitmap[i])
572                                 arvif->u.ap.tim_len = i;
573
574                 arvif->u.ap.tim_len++;
575         }
576
577         ies = bcn->data;
578         ies += ieee80211_hdrlen(hdr->frame_control);
579         ies += 12; /* fixed parameters */
580
581         ie = (u8 *)cfg80211_find_ie(WLAN_EID_TIM, ies,
582                                     (u8 *)skb_tail_pointer(bcn) - ies);
583         if (!ie) {
584                 if (arvif->vdev_type != WMI_VDEV_TYPE_IBSS)
585                         ath10k_warn("no tim ie found;\n");
586                 return;
587         }
588
589         tim = (void *)ie + 2;
590         ie_len = ie[1];
591         pvm_len = ie_len - 3; /* exclude dtim count, dtim period, bmap ctl */
592
593         if (pvm_len < arvif->u.ap.tim_len) {
594                 int expand_size = sizeof(arvif->u.ap.tim_bitmap) - pvm_len;
595                 int move_size = skb_tail_pointer(bcn) - (ie + 2 + ie_len);
596                 void *next_ie = ie + 2 + ie_len;
597
598                 if (skb_put(bcn, expand_size)) {
599                         memmove(next_ie + expand_size, next_ie, move_size);
600
601                         ie[1] += expand_size;
602                         ie_len += expand_size;
603                         pvm_len += expand_size;
604                 } else {
605                         ath10k_warn("tim expansion failed\n");
606                 }
607         }
608
609         if (pvm_len > sizeof(arvif->u.ap.tim_bitmap)) {
610                 ath10k_warn("tim pvm length is too great (%d)\n", pvm_len);
611                 return;
612         }
613
614         tim->bitmap_ctrl = !!__le32_to_cpu(bcn_info->tim_info.tim_mcast);
615         memcpy(tim->virtual_map, arvif->u.ap.tim_bitmap, pvm_len);
616
617         ath10k_dbg(ATH10K_DBG_MGMT, "dtim %d/%d mcast %d pvmlen %d\n",
618                    tim->dtim_count, tim->dtim_period,
619                    tim->bitmap_ctrl, pvm_len);
620 }
621
622 static void ath10k_p2p_fill_noa_ie(u8 *data, u32 len,
623                                    struct wmi_p2p_noa_info *noa)
624 {
625         struct ieee80211_p2p_noa_attr *noa_attr;
626         u8  ctwindow_oppps = noa->ctwindow_oppps;
627         u8 ctwindow = ctwindow_oppps >> WMI_P2P_OPPPS_CTWINDOW_OFFSET;
628         bool oppps = !!(ctwindow_oppps & WMI_P2P_OPPPS_ENABLE_BIT);
629         __le16 *noa_attr_len;
630         u16 attr_len;
631         u8 noa_descriptors = noa->num_descriptors;
632         int i;
633
634         /* P2P IE */
635         data[0] = WLAN_EID_VENDOR_SPECIFIC;
636         data[1] = len - 2;
637         data[2] = (WLAN_OUI_WFA >> 16) & 0xff;
638         data[3] = (WLAN_OUI_WFA >> 8) & 0xff;
639         data[4] = (WLAN_OUI_WFA >> 0) & 0xff;
640         data[5] = WLAN_OUI_TYPE_WFA_P2P;
641
642         /* NOA ATTR */
643         data[6] = IEEE80211_P2P_ATTR_ABSENCE_NOTICE;
644         noa_attr_len = (__le16 *)&data[7]; /* 2 bytes */
645         noa_attr = (struct ieee80211_p2p_noa_attr *)&data[9];
646
647         noa_attr->index = noa->index;
648         noa_attr->oppps_ctwindow = ctwindow;
649         if (oppps)
650                 noa_attr->oppps_ctwindow |= IEEE80211_P2P_OPPPS_ENABLE_BIT;
651
652         for (i = 0; i < noa_descriptors; i++) {
653                 noa_attr->desc[i].count =
654                         __le32_to_cpu(noa->descriptors[i].type_count);
655                 noa_attr->desc[i].duration = noa->descriptors[i].duration;
656                 noa_attr->desc[i].interval = noa->descriptors[i].interval;
657                 noa_attr->desc[i].start_time = noa->descriptors[i].start_time;
658         }
659
660         attr_len = 2; /* index + oppps_ctwindow */
661         attr_len += noa_descriptors * sizeof(struct ieee80211_p2p_noa_desc);
662         *noa_attr_len = __cpu_to_le16(attr_len);
663 }
664
665 static u32 ath10k_p2p_calc_noa_ie_len(struct wmi_p2p_noa_info *noa)
666 {
667         u32 len = 0;
668         u8 noa_descriptors = noa->num_descriptors;
669         u8 opp_ps_info = noa->ctwindow_oppps;
670         bool opps_enabled = !!(opp_ps_info & WMI_P2P_OPPPS_ENABLE_BIT);
671
672
673         if (!noa_descriptors && !opps_enabled)
674                 return len;
675
676         len += 1 + 1 + 4; /* EID + len + OUI */
677         len += 1 + 2; /* noa attr  + attr len */
678         len += 1 + 1; /* index + oppps_ctwindow */
679         len += noa_descriptors * sizeof(struct ieee80211_p2p_noa_desc);
680
681         return len;
682 }
683
684 static void ath10k_wmi_update_noa(struct ath10k *ar, struct ath10k_vif *arvif,
685                                   struct sk_buff *bcn,
686                                   struct wmi_bcn_info *bcn_info)
687 {
688         struct wmi_p2p_noa_info *noa = &bcn_info->p2p_noa_info;
689         u8 *new_data, *old_data = arvif->u.ap.noa_data;
690         u32 new_len;
691
692         if (arvif->vdev_subtype != WMI_VDEV_SUBTYPE_P2P_GO)
693                 return;
694
695         ath10k_dbg(ATH10K_DBG_MGMT, "noa changed: %d\n", noa->changed);
696         if (noa->changed & WMI_P2P_NOA_CHANGED_BIT) {
697                 new_len = ath10k_p2p_calc_noa_ie_len(noa);
698                 if (!new_len)
699                         goto cleanup;
700
701                 new_data = kmalloc(new_len, GFP_ATOMIC);
702                 if (!new_data)
703                         goto cleanup;
704
705                 ath10k_p2p_fill_noa_ie(new_data, new_len, noa);
706
707                 spin_lock_bh(&ar->data_lock);
708                 arvif->u.ap.noa_data = new_data;
709                 arvif->u.ap.noa_len = new_len;
710                 spin_unlock_bh(&ar->data_lock);
711                 kfree(old_data);
712         }
713
714         if (arvif->u.ap.noa_data)
715                 if (!pskb_expand_head(bcn, 0, arvif->u.ap.noa_len, GFP_ATOMIC))
716                         memcpy(skb_put(bcn, arvif->u.ap.noa_len),
717                                arvif->u.ap.noa_data,
718                                arvif->u.ap.noa_len);
719         return;
720
721 cleanup:
722         spin_lock_bh(&ar->data_lock);
723         arvif->u.ap.noa_data = NULL;
724         arvif->u.ap.noa_len = 0;
725         spin_unlock_bh(&ar->data_lock);
726         kfree(old_data);
727 }
728
729
730 static void ath10k_wmi_event_host_swba(struct ath10k *ar, struct sk_buff *skb)
731 {
732         struct wmi_host_swba_event *ev;
733         u32 map;
734         int i = -1;
735         struct wmi_bcn_info *bcn_info;
736         struct ath10k_vif *arvif;
737         struct wmi_bcn_tx_arg arg;
738         struct sk_buff *bcn;
739         int vdev_id = 0;
740         int ret;
741
742         ath10k_dbg(ATH10K_DBG_MGMT, "WMI_HOST_SWBA_EVENTID\n");
743
744         ev = (struct wmi_host_swba_event *)skb->data;
745         map = __le32_to_cpu(ev->vdev_map);
746
747         ath10k_dbg(ATH10K_DBG_MGMT, "host swba:\n"
748                    "-vdev map 0x%x\n",
749                    ev->vdev_map);
750
751         for (; map; map >>= 1, vdev_id++) {
752                 if (!(map & 0x1))
753                         continue;
754
755                 i++;
756
757                 if (i >= WMI_MAX_AP_VDEV) {
758                         ath10k_warn("swba has corrupted vdev map\n");
759                         break;
760                 }
761
762                 bcn_info = &ev->bcn_info[i];
763
764                 ath10k_dbg(ATH10K_DBG_MGMT,
765                            "-bcn_info[%d]:\n"
766                            "--tim_len %d\n"
767                            "--tim_mcast %d\n"
768                            "--tim_changed %d\n"
769                            "--tim_num_ps_pending %d\n"
770                            "--tim_bitmap 0x%08x%08x%08x%08x\n",
771                            i,
772                            __le32_to_cpu(bcn_info->tim_info.tim_len),
773                            __le32_to_cpu(bcn_info->tim_info.tim_mcast),
774                            __le32_to_cpu(bcn_info->tim_info.tim_changed),
775                            __le32_to_cpu(bcn_info->tim_info.tim_num_ps_pending),
776                            __le32_to_cpu(bcn_info->tim_info.tim_bitmap[3]),
777                            __le32_to_cpu(bcn_info->tim_info.tim_bitmap[2]),
778                            __le32_to_cpu(bcn_info->tim_info.tim_bitmap[1]),
779                            __le32_to_cpu(bcn_info->tim_info.tim_bitmap[0]));
780
781                 arvif = ath10k_get_arvif(ar, vdev_id);
782                 if (arvif == NULL) {
783                         ath10k_warn("no vif for vdev_id %d found\n", vdev_id);
784                         continue;
785                 }
786
787                 bcn = ieee80211_beacon_get(ar->hw, arvif->vif);
788                 if (!bcn) {
789                         ath10k_warn("could not get mac80211 beacon\n");
790                         continue;
791                 }
792
793                 ath10k_tx_h_seq_no(bcn);
794                 ath10k_wmi_update_tim(ar, arvif, bcn, bcn_info);
795                 ath10k_wmi_update_noa(ar, arvif, bcn, bcn_info);
796
797                 arg.vdev_id = arvif->vdev_id;
798                 arg.tx_rate = 0;
799                 arg.tx_power = 0;
800                 arg.bcn = bcn->data;
801                 arg.bcn_len = bcn->len;
802
803                 ret = ath10k_wmi_beacon_send(ar, &arg);
804                 if (ret)
805                         ath10k_warn("could not send beacon (%d)\n", ret);
806
807                 dev_kfree_skb_any(bcn);
808         }
809 }
810
811 static void ath10k_wmi_event_tbttoffset_update(struct ath10k *ar,
812                                                struct sk_buff *skb)
813 {
814         ath10k_dbg(ATH10K_DBG_WMI, "WMI_TBTTOFFSET_UPDATE_EVENTID\n");
815 }
816
817 static void ath10k_wmi_event_phyerr(struct ath10k *ar, struct sk_buff *skb)
818 {
819         ath10k_dbg(ATH10K_DBG_WMI, "WMI_PHYERR_EVENTID\n");
820 }
821
822 static void ath10k_wmi_event_roam(struct ath10k *ar, struct sk_buff *skb)
823 {
824         ath10k_dbg(ATH10K_DBG_WMI, "WMI_ROAM_EVENTID\n");
825 }
826
827 static void ath10k_wmi_event_profile_match(struct ath10k *ar,
828                                     struct sk_buff *skb)
829 {
830         ath10k_dbg(ATH10K_DBG_WMI, "WMI_PROFILE_MATCH\n");
831 }
832
833 static void ath10k_wmi_event_debug_print(struct ath10k *ar,
834                                   struct sk_buff *skb)
835 {
836         ath10k_dbg(ATH10K_DBG_WMI, "WMI_DEBUG_PRINT_EVENTID\n");
837 }
838
839 static void ath10k_wmi_event_pdev_qvit(struct ath10k *ar, struct sk_buff *skb)
840 {
841         ath10k_dbg(ATH10K_DBG_WMI, "WMI_PDEV_QVIT_EVENTID\n");
842 }
843
844 static void ath10k_wmi_event_wlan_profile_data(struct ath10k *ar,
845                                                struct sk_buff *skb)
846 {
847         ath10k_dbg(ATH10K_DBG_WMI, "WMI_WLAN_PROFILE_DATA_EVENTID\n");
848 }
849
850 static void ath10k_wmi_event_rtt_measurement_report(struct ath10k *ar,
851                                              struct sk_buff *skb)
852 {
853         ath10k_dbg(ATH10K_DBG_WMI, "WMI_RTT_MEASUREMENT_REPORT_EVENTID\n");
854 }
855
856 static void ath10k_wmi_event_tsf_measurement_report(struct ath10k *ar,
857                                              struct sk_buff *skb)
858 {
859         ath10k_dbg(ATH10K_DBG_WMI, "WMI_TSF_MEASUREMENT_REPORT_EVENTID\n");
860 }
861
862 static void ath10k_wmi_event_rtt_error_report(struct ath10k *ar,
863                                               struct sk_buff *skb)
864 {
865         ath10k_dbg(ATH10K_DBG_WMI, "WMI_RTT_ERROR_REPORT_EVENTID\n");
866 }
867
868 static void ath10k_wmi_event_wow_wakeup_host(struct ath10k *ar,
869                                              struct sk_buff *skb)
870 {
871         ath10k_dbg(ATH10K_DBG_WMI, "WMI_WOW_WAKEUP_HOST_EVENTID\n");
872 }
873
874 static void ath10k_wmi_event_dcs_interference(struct ath10k *ar,
875                                               struct sk_buff *skb)
876 {
877         ath10k_dbg(ATH10K_DBG_WMI, "WMI_DCS_INTERFERENCE_EVENTID\n");
878 }
879
880 static void ath10k_wmi_event_pdev_tpc_config(struct ath10k *ar,
881                                              struct sk_buff *skb)
882 {
883         ath10k_dbg(ATH10K_DBG_WMI, "WMI_PDEV_TPC_CONFIG_EVENTID\n");
884 }
885
886 static void ath10k_wmi_event_pdev_ftm_intg(struct ath10k *ar,
887                                            struct sk_buff *skb)
888 {
889         ath10k_dbg(ATH10K_DBG_WMI, "WMI_PDEV_FTM_INTG_EVENTID\n");
890 }
891
892 static void ath10k_wmi_event_gtk_offload_status(struct ath10k *ar,
893                                          struct sk_buff *skb)
894 {
895         ath10k_dbg(ATH10K_DBG_WMI, "WMI_GTK_OFFLOAD_STATUS_EVENTID\n");
896 }
897
898 static void ath10k_wmi_event_gtk_rekey_fail(struct ath10k *ar,
899                                             struct sk_buff *skb)
900 {
901         ath10k_dbg(ATH10K_DBG_WMI, "WMI_GTK_REKEY_FAIL_EVENTID\n");
902 }
903
904 static void ath10k_wmi_event_delba_complete(struct ath10k *ar,
905                                             struct sk_buff *skb)
906 {
907         ath10k_dbg(ATH10K_DBG_WMI, "WMI_TX_DELBA_COMPLETE_EVENTID\n");
908 }
909
910 static void ath10k_wmi_event_addba_complete(struct ath10k *ar,
911                                             struct sk_buff *skb)
912 {
913         ath10k_dbg(ATH10K_DBG_WMI, "WMI_TX_ADDBA_COMPLETE_EVENTID\n");
914 }
915
916 static void ath10k_wmi_event_vdev_install_key_complete(struct ath10k *ar,
917                                                 struct sk_buff *skb)
918 {
919         ath10k_dbg(ATH10K_DBG_WMI, "WMI_VDEV_INSTALL_KEY_COMPLETE_EVENTID\n");
920 }
921
922 static void ath10k_wmi_service_ready_event_rx(struct ath10k *ar,
923                                               struct sk_buff *skb)
924 {
925         struct wmi_service_ready_event *ev = (void *)skb->data;
926
927         if (skb->len < sizeof(*ev)) {
928                 ath10k_warn("Service ready event was %d B but expected %zu B. Wrong firmware version?\n",
929                             skb->len, sizeof(*ev));
930                 return;
931         }
932
933         ar->hw_min_tx_power = __le32_to_cpu(ev->hw_min_tx_power);
934         ar->hw_max_tx_power = __le32_to_cpu(ev->hw_max_tx_power);
935         ar->ht_cap_info = __le32_to_cpu(ev->ht_cap_info);
936         ar->vht_cap_info = __le32_to_cpu(ev->vht_cap_info);
937         ar->fw_version_major =
938                 (__le32_to_cpu(ev->sw_version) & 0xff000000) >> 24;
939         ar->fw_version_minor = (__le32_to_cpu(ev->sw_version) & 0x00ffffff);
940         ar->fw_version_release =
941                 (__le32_to_cpu(ev->sw_version_1) & 0xffff0000) >> 16;
942         ar->fw_version_build = (__le32_to_cpu(ev->sw_version_1) & 0x0000ffff);
943         ar->phy_capability = __le32_to_cpu(ev->phy_capability);
944         ar->num_rf_chains = __le32_to_cpu(ev->num_rf_chains);
945
946         if (ar->num_rf_chains > WMI_MAX_SPATIAL_STREAM) {
947                 ath10k_warn("hardware advertises support for more spatial streams than it should (%d > %d)\n",
948                             ar->num_rf_chains, WMI_MAX_SPATIAL_STREAM);
949                 ar->num_rf_chains = WMI_MAX_SPATIAL_STREAM;
950         }
951
952         ar->ath_common.regulatory.current_rd =
953                 __le32_to_cpu(ev->hal_reg_capabilities.eeprom_rd);
954
955         ath10k_debug_read_service_map(ar, ev->wmi_service_bitmap,
956                                       sizeof(ev->wmi_service_bitmap));
957
958         if (strlen(ar->hw->wiphy->fw_version) == 0) {
959                 snprintf(ar->hw->wiphy->fw_version,
960                          sizeof(ar->hw->wiphy->fw_version),
961                          "%u.%u.%u.%u",
962                          ar->fw_version_major,
963                          ar->fw_version_minor,
964                          ar->fw_version_release,
965                          ar->fw_version_build);
966         }
967
968         /* FIXME: it probably should be better to support this */
969         if (__le32_to_cpu(ev->num_mem_reqs) > 0) {
970                 ath10k_warn("target requested %d memory chunks; ignoring\n",
971                             __le32_to_cpu(ev->num_mem_reqs));
972         }
973
974         ath10k_dbg(ATH10K_DBG_WMI,
975                    "wmi event service ready sw_ver 0x%08x sw_ver1 0x%08x abi_ver %u phy_cap 0x%08x ht_cap 0x%08x vht_cap 0x%08x vht_supp_msc 0x%08x sys_cap_info 0x%08x mem_reqs %u num_rf_chains %u\n",
976                    __le32_to_cpu(ev->sw_version),
977                    __le32_to_cpu(ev->sw_version_1),
978                    __le32_to_cpu(ev->abi_version),
979                    __le32_to_cpu(ev->phy_capability),
980                    __le32_to_cpu(ev->ht_cap_info),
981                    __le32_to_cpu(ev->vht_cap_info),
982                    __le32_to_cpu(ev->vht_supp_mcs),
983                    __le32_to_cpu(ev->sys_cap_info),
984                    __le32_to_cpu(ev->num_mem_reqs),
985                    __le32_to_cpu(ev->num_rf_chains));
986
987         complete(&ar->wmi.service_ready);
988 }
989
990 static int ath10k_wmi_ready_event_rx(struct ath10k *ar, struct sk_buff *skb)
991 {
992         struct wmi_ready_event *ev = (struct wmi_ready_event *)skb->data;
993
994         if (WARN_ON(skb->len < sizeof(*ev)))
995                 return -EINVAL;
996
997         memcpy(ar->mac_addr, ev->mac_addr.addr, ETH_ALEN);
998
999         ath10k_dbg(ATH10K_DBG_WMI,
1000                    "wmi event ready sw_version %u abi_version %u mac_addr %pM status %d\n",
1001                    __le32_to_cpu(ev->sw_version),
1002                    __le32_to_cpu(ev->abi_version),
1003                    ev->mac_addr.addr,
1004                    __le32_to_cpu(ev->status));
1005
1006         complete(&ar->wmi.unified_ready);
1007         return 0;
1008 }
1009
1010 static void ath10k_wmi_event_process(struct ath10k *ar, struct sk_buff *skb)
1011 {
1012         struct wmi_cmd_hdr *cmd_hdr;
1013         enum wmi_event_id id;
1014         u16 len;
1015
1016         cmd_hdr = (struct wmi_cmd_hdr *)skb->data;
1017         id = MS(__le32_to_cpu(cmd_hdr->cmd_id), WMI_CMD_HDR_CMD_ID);
1018
1019         if (skb_pull(skb, sizeof(struct wmi_cmd_hdr)) == NULL)
1020                 return;
1021
1022         len = skb->len;
1023
1024         trace_ath10k_wmi_event(id, skb->data, skb->len);
1025
1026         switch (id) {
1027         case WMI_MGMT_RX_EVENTID:
1028                 ath10k_wmi_event_mgmt_rx(ar, skb);
1029                 /* mgmt_rx() owns the skb now! */
1030                 return;
1031         case WMI_SCAN_EVENTID:
1032                 ath10k_wmi_event_scan(ar, skb);
1033                 break;
1034         case WMI_CHAN_INFO_EVENTID:
1035                 ath10k_wmi_event_chan_info(ar, skb);
1036                 break;
1037         case WMI_ECHO_EVENTID:
1038                 ath10k_wmi_event_echo(ar, skb);
1039                 break;
1040         case WMI_DEBUG_MESG_EVENTID:
1041                 ath10k_wmi_event_debug_mesg(ar, skb);
1042                 break;
1043         case WMI_UPDATE_STATS_EVENTID:
1044                 ath10k_wmi_event_update_stats(ar, skb);
1045                 break;
1046         case WMI_VDEV_START_RESP_EVENTID:
1047                 ath10k_wmi_event_vdev_start_resp(ar, skb);
1048                 break;
1049         case WMI_VDEV_STOPPED_EVENTID:
1050                 ath10k_wmi_event_vdev_stopped(ar, skb);
1051                 break;
1052         case WMI_PEER_STA_KICKOUT_EVENTID:
1053                 ath10k_wmi_event_peer_sta_kickout(ar, skb);
1054                 break;
1055         case WMI_HOST_SWBA_EVENTID:
1056                 ath10k_wmi_event_host_swba(ar, skb);
1057                 break;
1058         case WMI_TBTTOFFSET_UPDATE_EVENTID:
1059                 ath10k_wmi_event_tbttoffset_update(ar, skb);
1060                 break;
1061         case WMI_PHYERR_EVENTID:
1062                 ath10k_wmi_event_phyerr(ar, skb);
1063                 break;
1064         case WMI_ROAM_EVENTID:
1065                 ath10k_wmi_event_roam(ar, skb);
1066                 break;
1067         case WMI_PROFILE_MATCH:
1068                 ath10k_wmi_event_profile_match(ar, skb);
1069                 break;
1070         case WMI_DEBUG_PRINT_EVENTID:
1071                 ath10k_wmi_event_debug_print(ar, skb);
1072                 break;
1073         case WMI_PDEV_QVIT_EVENTID:
1074                 ath10k_wmi_event_pdev_qvit(ar, skb);
1075                 break;
1076         case WMI_WLAN_PROFILE_DATA_EVENTID:
1077                 ath10k_wmi_event_wlan_profile_data(ar, skb);
1078                 break;
1079         case WMI_RTT_MEASUREMENT_REPORT_EVENTID:
1080                 ath10k_wmi_event_rtt_measurement_report(ar, skb);
1081                 break;
1082         case WMI_TSF_MEASUREMENT_REPORT_EVENTID:
1083                 ath10k_wmi_event_tsf_measurement_report(ar, skb);
1084                 break;
1085         case WMI_RTT_ERROR_REPORT_EVENTID:
1086                 ath10k_wmi_event_rtt_error_report(ar, skb);
1087                 break;
1088         case WMI_WOW_WAKEUP_HOST_EVENTID:
1089                 ath10k_wmi_event_wow_wakeup_host(ar, skb);
1090                 break;
1091         case WMI_DCS_INTERFERENCE_EVENTID:
1092                 ath10k_wmi_event_dcs_interference(ar, skb);
1093                 break;
1094         case WMI_PDEV_TPC_CONFIG_EVENTID:
1095                 ath10k_wmi_event_pdev_tpc_config(ar, skb);
1096                 break;
1097         case WMI_PDEV_FTM_INTG_EVENTID:
1098                 ath10k_wmi_event_pdev_ftm_intg(ar, skb);
1099                 break;
1100         case WMI_GTK_OFFLOAD_STATUS_EVENTID:
1101                 ath10k_wmi_event_gtk_offload_status(ar, skb);
1102                 break;
1103         case WMI_GTK_REKEY_FAIL_EVENTID:
1104                 ath10k_wmi_event_gtk_rekey_fail(ar, skb);
1105                 break;
1106         case WMI_TX_DELBA_COMPLETE_EVENTID:
1107                 ath10k_wmi_event_delba_complete(ar, skb);
1108                 break;
1109         case WMI_TX_ADDBA_COMPLETE_EVENTID:
1110                 ath10k_wmi_event_addba_complete(ar, skb);
1111                 break;
1112         case WMI_VDEV_INSTALL_KEY_COMPLETE_EVENTID:
1113                 ath10k_wmi_event_vdev_install_key_complete(ar, skb);
1114                 break;
1115         case WMI_SERVICE_READY_EVENTID:
1116                 ath10k_wmi_service_ready_event_rx(ar, skb);
1117                 break;
1118         case WMI_READY_EVENTID:
1119                 ath10k_wmi_ready_event_rx(ar, skb);
1120                 break;
1121         default:
1122                 ath10k_warn("Unknown eventid: %d\n", id);
1123                 break;
1124         }
1125
1126         dev_kfree_skb(skb);
1127 }
1128
1129 static void ath10k_wmi_event_work(struct work_struct *work)
1130 {
1131         struct ath10k *ar = container_of(work, struct ath10k,
1132                                          wmi.wmi_event_work);
1133         struct sk_buff *skb;
1134
1135         for (;;) {
1136                 skb = skb_dequeue(&ar->wmi.wmi_event_list);
1137                 if (!skb)
1138                         break;
1139
1140                 ath10k_wmi_event_process(ar, skb);
1141         }
1142 }
1143
1144 static void ath10k_wmi_process_rx(struct ath10k *ar, struct sk_buff *skb)
1145 {
1146         struct wmi_cmd_hdr *cmd_hdr = (struct wmi_cmd_hdr *)skb->data;
1147         enum wmi_event_id event_id;
1148
1149         event_id = MS(__le32_to_cpu(cmd_hdr->cmd_id), WMI_CMD_HDR_CMD_ID);
1150
1151         /* some events require to be handled ASAP
1152          * thus can't be defered to a worker thread */
1153         switch (event_id) {
1154         case WMI_HOST_SWBA_EVENTID:
1155         case WMI_MGMT_RX_EVENTID:
1156                 ath10k_wmi_event_process(ar, skb);
1157                 return;
1158         default:
1159                 break;
1160         }
1161
1162         skb_queue_tail(&ar->wmi.wmi_event_list, skb);
1163         queue_work(ar->workqueue, &ar->wmi.wmi_event_work);
1164 }
1165
1166 /* WMI Initialization functions */
1167 int ath10k_wmi_attach(struct ath10k *ar)
1168 {
1169         init_completion(&ar->wmi.service_ready);
1170         init_completion(&ar->wmi.unified_ready);
1171         init_waitqueue_head(&ar->wmi.wq);
1172
1173         skb_queue_head_init(&ar->wmi.wmi_event_list);
1174         INIT_WORK(&ar->wmi.wmi_event_work, ath10k_wmi_event_work);
1175
1176         return 0;
1177 }
1178
1179 void ath10k_wmi_detach(struct ath10k *ar)
1180 {
1181         /* HTC should've drained the packets already */
1182         if (WARN_ON(atomic_read(&ar->wmi.pending_tx_count) > 0))
1183                 ath10k_warn("there are still pending packets\n");
1184
1185         cancel_work_sync(&ar->wmi.wmi_event_work);
1186         skb_queue_purge(&ar->wmi.wmi_event_list);
1187 }
1188
1189 int ath10k_wmi_connect_htc_service(struct ath10k *ar)
1190 {
1191         int status;
1192         struct ath10k_htc_svc_conn_req conn_req;
1193         struct ath10k_htc_svc_conn_resp conn_resp;
1194
1195         memset(&conn_req, 0, sizeof(conn_req));
1196         memset(&conn_resp, 0, sizeof(conn_resp));
1197
1198         /* these fields are the same for all service endpoints */
1199         conn_req.ep_ops.ep_tx_complete = ath10k_wmi_htc_tx_complete;
1200         conn_req.ep_ops.ep_rx_complete = ath10k_wmi_process_rx;
1201
1202         /* connect to control service */
1203         conn_req.service_id = ATH10K_HTC_SVC_ID_WMI_CONTROL;
1204
1205         status = ath10k_htc_connect_service(&ar->htc, &conn_req, &conn_resp);
1206         if (status) {
1207                 ath10k_warn("failed to connect to WMI CONTROL service status: %d\n",
1208                             status);
1209                 return status;
1210         }
1211
1212         ar->wmi.eid = conn_resp.eid;
1213         return 0;
1214 }
1215
1216 int ath10k_wmi_pdev_set_regdomain(struct ath10k *ar, u16 rd, u16 rd2g,
1217                                   u16 rd5g, u16 ctl2g, u16 ctl5g)
1218 {
1219         struct wmi_pdev_set_regdomain_cmd *cmd;
1220         struct sk_buff *skb;
1221
1222         skb = ath10k_wmi_alloc_skb(sizeof(*cmd));
1223         if (!skb)
1224                 return -ENOMEM;
1225
1226         cmd = (struct wmi_pdev_set_regdomain_cmd *)skb->data;
1227         cmd->reg_domain = __cpu_to_le32(rd);
1228         cmd->reg_domain_2G = __cpu_to_le32(rd2g);
1229         cmd->reg_domain_5G = __cpu_to_le32(rd5g);
1230         cmd->conformance_test_limit_2G = __cpu_to_le32(ctl2g);
1231         cmd->conformance_test_limit_5G = __cpu_to_le32(ctl5g);
1232
1233         ath10k_dbg(ATH10K_DBG_WMI,
1234                    "wmi pdev regdomain rd %x rd2g %x rd5g %x ctl2g %x ctl5g %x\n",
1235                    rd, rd2g, rd5g, ctl2g, ctl5g);
1236
1237         return ath10k_wmi_cmd_send(ar, skb, WMI_PDEV_SET_REGDOMAIN_CMDID);
1238 }
1239
1240 int ath10k_wmi_pdev_set_channel(struct ath10k *ar,
1241                                 const struct wmi_channel_arg *arg)
1242 {
1243         struct wmi_set_channel_cmd *cmd;
1244         struct sk_buff *skb;
1245
1246         if (arg->passive)
1247                 return -EINVAL;
1248
1249         skb = ath10k_wmi_alloc_skb(sizeof(*cmd));
1250         if (!skb)
1251                 return -ENOMEM;
1252
1253         cmd = (struct wmi_set_channel_cmd *)skb->data;
1254         cmd->chan.mhz               = __cpu_to_le32(arg->freq);
1255         cmd->chan.band_center_freq1 = __cpu_to_le32(arg->freq);
1256         cmd->chan.mode              = arg->mode;
1257         cmd->chan.min_power         = arg->min_power;
1258         cmd->chan.max_power         = arg->max_power;
1259         cmd->chan.reg_power         = arg->max_reg_power;
1260         cmd->chan.reg_classid       = arg->reg_class_id;
1261         cmd->chan.antenna_max       = arg->max_antenna_gain;
1262
1263         ath10k_dbg(ATH10K_DBG_WMI,
1264                    "wmi set channel mode %d freq %d\n",
1265                    arg->mode, arg->freq);
1266
1267         return ath10k_wmi_cmd_send(ar, skb, WMI_PDEV_SET_CHANNEL_CMDID);
1268 }
1269
1270 int ath10k_wmi_pdev_suspend_target(struct ath10k *ar)
1271 {
1272         struct wmi_pdev_suspend_cmd *cmd;
1273         struct sk_buff *skb;
1274
1275         skb = ath10k_wmi_alloc_skb(sizeof(*cmd));
1276         if (!skb)
1277                 return -ENOMEM;
1278
1279         cmd = (struct wmi_pdev_suspend_cmd *)skb->data;
1280         cmd->suspend_opt = WMI_PDEV_SUSPEND;
1281
1282         return ath10k_wmi_cmd_send(ar, skb, WMI_PDEV_SUSPEND_CMDID);
1283 }
1284
1285 int ath10k_wmi_pdev_resume_target(struct ath10k *ar)
1286 {
1287         struct sk_buff *skb;
1288
1289         skb = ath10k_wmi_alloc_skb(0);
1290         if (skb == NULL)
1291                 return -ENOMEM;
1292
1293         return ath10k_wmi_cmd_send(ar, skb, WMI_PDEV_RESUME_CMDID);
1294 }
1295
1296 int ath10k_wmi_pdev_set_param(struct ath10k *ar, enum wmi_pdev_param id,
1297                               u32 value)
1298 {
1299         struct wmi_pdev_set_param_cmd *cmd;
1300         struct sk_buff *skb;
1301
1302         skb = ath10k_wmi_alloc_skb(sizeof(*cmd));
1303         if (!skb)
1304                 return -ENOMEM;
1305
1306         cmd = (struct wmi_pdev_set_param_cmd *)skb->data;
1307         cmd->param_id    = __cpu_to_le32(id);
1308         cmd->param_value = __cpu_to_le32(value);
1309
1310         ath10k_dbg(ATH10K_DBG_WMI, "wmi pdev set param %d value %d\n",
1311                    id, value);
1312         return ath10k_wmi_cmd_send(ar, skb, WMI_PDEV_SET_PARAM_CMDID);
1313 }
1314
1315 int ath10k_wmi_cmd_init(struct ath10k *ar)
1316 {
1317         struct wmi_init_cmd *cmd;
1318         struct sk_buff *buf;
1319         struct wmi_resource_config config = {};
1320         u32 val;
1321
1322         config.num_vdevs = __cpu_to_le32(TARGET_NUM_VDEVS);
1323         config.num_peers = __cpu_to_le32(TARGET_NUM_PEERS + TARGET_NUM_VDEVS);
1324         config.num_offload_peers = __cpu_to_le32(TARGET_NUM_OFFLOAD_PEERS);
1325
1326         config.num_offload_reorder_bufs =
1327                 __cpu_to_le32(TARGET_NUM_OFFLOAD_REORDER_BUFS);
1328
1329         config.num_peer_keys = __cpu_to_le32(TARGET_NUM_PEER_KEYS);
1330         config.num_tids = __cpu_to_le32(TARGET_NUM_TIDS);
1331         config.ast_skid_limit = __cpu_to_le32(TARGET_AST_SKID_LIMIT);
1332         config.tx_chain_mask = __cpu_to_le32(TARGET_TX_CHAIN_MASK);
1333         config.rx_chain_mask = __cpu_to_le32(TARGET_RX_CHAIN_MASK);
1334         config.rx_timeout_pri_vo = __cpu_to_le32(TARGET_RX_TIMEOUT_LO_PRI);
1335         config.rx_timeout_pri_vi = __cpu_to_le32(TARGET_RX_TIMEOUT_LO_PRI);
1336         config.rx_timeout_pri_be = __cpu_to_le32(TARGET_RX_TIMEOUT_LO_PRI);
1337         config.rx_timeout_pri_bk = __cpu_to_le32(TARGET_RX_TIMEOUT_HI_PRI);
1338         config.rx_decap_mode = __cpu_to_le32(TARGET_RX_DECAP_MODE);
1339
1340         config.scan_max_pending_reqs =
1341                 __cpu_to_le32(TARGET_SCAN_MAX_PENDING_REQS);
1342
1343         config.bmiss_offload_max_vdev =
1344                 __cpu_to_le32(TARGET_BMISS_OFFLOAD_MAX_VDEV);
1345
1346         config.roam_offload_max_vdev =
1347                 __cpu_to_le32(TARGET_ROAM_OFFLOAD_MAX_VDEV);
1348
1349         config.roam_offload_max_ap_profiles =
1350                 __cpu_to_le32(TARGET_ROAM_OFFLOAD_MAX_AP_PROFILES);
1351
1352         config.num_mcast_groups = __cpu_to_le32(TARGET_NUM_MCAST_GROUPS);
1353         config.num_mcast_table_elems =
1354                 __cpu_to_le32(TARGET_NUM_MCAST_TABLE_ELEMS);
1355
1356         config.mcast2ucast_mode = __cpu_to_le32(TARGET_MCAST2UCAST_MODE);
1357         config.tx_dbg_log_size = __cpu_to_le32(TARGET_TX_DBG_LOG_SIZE);
1358         config.num_wds_entries = __cpu_to_le32(TARGET_NUM_WDS_ENTRIES);
1359         config.dma_burst_size = __cpu_to_le32(TARGET_DMA_BURST_SIZE);
1360         config.mac_aggr_delim = __cpu_to_le32(TARGET_MAC_AGGR_DELIM);
1361
1362         val = TARGET_RX_SKIP_DEFRAG_TIMEOUT_DUP_DETECTION_CHECK;
1363         config.rx_skip_defrag_timeout_dup_detection_check = __cpu_to_le32(val);
1364
1365         config.vow_config = __cpu_to_le32(TARGET_VOW_CONFIG);
1366
1367         config.gtk_offload_max_vdev =
1368                 __cpu_to_le32(TARGET_GTK_OFFLOAD_MAX_VDEV);
1369
1370         config.num_msdu_desc = __cpu_to_le32(TARGET_NUM_MSDU_DESC);
1371         config.max_frag_entries = __cpu_to_le32(TARGET_MAX_FRAG_ENTRIES);
1372
1373         buf = ath10k_wmi_alloc_skb(sizeof(*cmd));
1374         if (!buf)
1375                 return -ENOMEM;
1376
1377         cmd = (struct wmi_init_cmd *)buf->data;
1378         cmd->num_host_mem_chunks = 0;
1379         memcpy(&cmd->resource_config, &config, sizeof(config));
1380
1381         ath10k_dbg(ATH10K_DBG_WMI, "wmi init\n");
1382         return ath10k_wmi_cmd_send(ar, buf, WMI_INIT_CMDID);
1383 }
1384
1385 static int ath10k_wmi_start_scan_calc_len(const struct wmi_start_scan_arg *arg)
1386 {
1387         int len;
1388
1389         len = sizeof(struct wmi_start_scan_cmd);
1390
1391         if (arg->ie_len) {
1392                 if (!arg->ie)
1393                         return -EINVAL;
1394                 if (arg->ie_len > WLAN_SCAN_PARAMS_MAX_IE_LEN)
1395                         return -EINVAL;
1396
1397                 len += sizeof(struct wmi_ie_data);
1398                 len += roundup(arg->ie_len, 4);
1399         }
1400
1401         if (arg->n_channels) {
1402                 if (!arg->channels)
1403                         return -EINVAL;
1404                 if (arg->n_channels > ARRAY_SIZE(arg->channels))
1405                         return -EINVAL;
1406
1407                 len += sizeof(struct wmi_chan_list);
1408                 len += sizeof(__le32) * arg->n_channels;
1409         }
1410
1411         if (arg->n_ssids) {
1412                 if (!arg->ssids)
1413                         return -EINVAL;
1414                 if (arg->n_ssids > WLAN_SCAN_PARAMS_MAX_SSID)
1415                         return -EINVAL;
1416
1417                 len += sizeof(struct wmi_ssid_list);
1418                 len += sizeof(struct wmi_ssid) * arg->n_ssids;
1419         }
1420
1421         if (arg->n_bssids) {
1422                 if (!arg->bssids)
1423                         return -EINVAL;
1424                 if (arg->n_bssids > WLAN_SCAN_PARAMS_MAX_BSSID)
1425                         return -EINVAL;
1426
1427                 len += sizeof(struct wmi_bssid_list);
1428                 len += sizeof(struct wmi_mac_addr) * arg->n_bssids;
1429         }
1430
1431         return len;
1432 }
1433
1434 int ath10k_wmi_start_scan(struct ath10k *ar,
1435                           const struct wmi_start_scan_arg *arg)
1436 {
1437         struct wmi_start_scan_cmd *cmd;
1438         struct sk_buff *skb;
1439         struct wmi_ie_data *ie;
1440         struct wmi_chan_list *channels;
1441         struct wmi_ssid_list *ssids;
1442         struct wmi_bssid_list *bssids;
1443         u32 scan_id;
1444         u32 scan_req_id;
1445         int off;
1446         int len = 0;
1447         int i;
1448
1449         len = ath10k_wmi_start_scan_calc_len(arg);
1450         if (len < 0)
1451                 return len; /* len contains error code here */
1452
1453         skb = ath10k_wmi_alloc_skb(len);
1454         if (!skb)
1455                 return -ENOMEM;
1456
1457         scan_id  = WMI_HOST_SCAN_REQ_ID_PREFIX;
1458         scan_id |= arg->scan_id;
1459
1460         scan_req_id  = WMI_HOST_SCAN_REQUESTOR_ID_PREFIX;
1461         scan_req_id |= arg->scan_req_id;
1462
1463         cmd = (struct wmi_start_scan_cmd *)skb->data;
1464         cmd->scan_id            = __cpu_to_le32(scan_id);
1465         cmd->scan_req_id        = __cpu_to_le32(scan_req_id);
1466         cmd->vdev_id            = __cpu_to_le32(arg->vdev_id);
1467         cmd->scan_priority      = __cpu_to_le32(arg->scan_priority);
1468         cmd->notify_scan_events = __cpu_to_le32(arg->notify_scan_events);
1469         cmd->dwell_time_active  = __cpu_to_le32(arg->dwell_time_active);
1470         cmd->dwell_time_passive = __cpu_to_le32(arg->dwell_time_passive);
1471         cmd->min_rest_time      = __cpu_to_le32(arg->min_rest_time);
1472         cmd->max_rest_time      = __cpu_to_le32(arg->max_rest_time);
1473         cmd->repeat_probe_time  = __cpu_to_le32(arg->repeat_probe_time);
1474         cmd->probe_spacing_time = __cpu_to_le32(arg->probe_spacing_time);
1475         cmd->idle_time          = __cpu_to_le32(arg->idle_time);
1476         cmd->max_scan_time      = __cpu_to_le32(arg->max_scan_time);
1477         cmd->probe_delay        = __cpu_to_le32(arg->probe_delay);
1478         cmd->scan_ctrl_flags    = __cpu_to_le32(arg->scan_ctrl_flags);
1479
1480         /* TLV list starts after fields included in the struct */
1481         off = sizeof(*cmd);
1482
1483         if (arg->n_channels) {
1484                 channels = (void *)skb->data + off;
1485                 channels->tag = __cpu_to_le32(WMI_CHAN_LIST_TAG);
1486                 channels->num_chan = __cpu_to_le32(arg->n_channels);
1487
1488                 for (i = 0; i < arg->n_channels; i++)
1489                         channels->channel_list[i] =
1490                                 __cpu_to_le32(arg->channels[i]);
1491
1492                 off += sizeof(*channels);
1493                 off += sizeof(__le32) * arg->n_channels;
1494         }
1495
1496         if (arg->n_ssids) {
1497                 ssids = (void *)skb->data + off;
1498                 ssids->tag = __cpu_to_le32(WMI_SSID_LIST_TAG);
1499                 ssids->num_ssids = __cpu_to_le32(arg->n_ssids);
1500
1501                 for (i = 0; i < arg->n_ssids; i++) {
1502                         ssids->ssids[i].ssid_len =
1503                                 __cpu_to_le32(arg->ssids[i].len);
1504                         memcpy(&ssids->ssids[i].ssid,
1505                                arg->ssids[i].ssid,
1506                                arg->ssids[i].len);
1507                 }
1508
1509                 off += sizeof(*ssids);
1510                 off += sizeof(struct wmi_ssid) * arg->n_ssids;
1511         }
1512
1513         if (arg->n_bssids) {
1514                 bssids = (void *)skb->data + off;
1515                 bssids->tag = __cpu_to_le32(WMI_BSSID_LIST_TAG);
1516                 bssids->num_bssid = __cpu_to_le32(arg->n_bssids);
1517
1518                 for (i = 0; i < arg->n_bssids; i++)
1519                         memcpy(&bssids->bssid_list[i],
1520                                arg->bssids[i].bssid,
1521                                ETH_ALEN);
1522
1523                 off += sizeof(*bssids);
1524                 off += sizeof(struct wmi_mac_addr) * arg->n_bssids;
1525         }
1526
1527         if (arg->ie_len) {
1528                 ie = (void *)skb->data + off;
1529                 ie->tag = __cpu_to_le32(WMI_IE_TAG);
1530                 ie->ie_len = __cpu_to_le32(arg->ie_len);
1531                 memcpy(ie->ie_data, arg->ie, arg->ie_len);
1532
1533                 off += sizeof(*ie);
1534                 off += roundup(arg->ie_len, 4);
1535         }
1536
1537         if (off != skb->len) {
1538                 dev_kfree_skb(skb);
1539                 return -EINVAL;
1540         }
1541
1542         ath10k_dbg(ATH10K_DBG_WMI, "wmi start scan\n");
1543         return ath10k_wmi_cmd_send(ar, skb, WMI_START_SCAN_CMDID);
1544 }
1545
1546 void ath10k_wmi_start_scan_init(struct ath10k *ar,
1547                                 struct wmi_start_scan_arg *arg)
1548 {
1549         /* setup commonly used values */
1550         arg->scan_req_id = 1;
1551         arg->scan_priority = WMI_SCAN_PRIORITY_LOW;
1552         arg->dwell_time_active = 50;
1553         arg->dwell_time_passive = 150;
1554         arg->min_rest_time = 50;
1555         arg->max_rest_time = 500;
1556         arg->repeat_probe_time = 0;
1557         arg->probe_spacing_time = 0;
1558         arg->idle_time = 0;
1559         arg->max_scan_time = 5000;
1560         arg->probe_delay = 5;
1561         arg->notify_scan_events = WMI_SCAN_EVENT_STARTED
1562                 | WMI_SCAN_EVENT_COMPLETED
1563                 | WMI_SCAN_EVENT_BSS_CHANNEL
1564                 | WMI_SCAN_EVENT_FOREIGN_CHANNEL
1565                 | WMI_SCAN_EVENT_DEQUEUED;
1566         arg->scan_ctrl_flags |= WMI_SCAN_ADD_OFDM_RATES;
1567         arg->scan_ctrl_flags |= WMI_SCAN_CHAN_STAT_EVENT;
1568         arg->n_bssids = 1;
1569         arg->bssids[0].bssid = "\xFF\xFF\xFF\xFF\xFF\xFF";
1570 }
1571
1572 int ath10k_wmi_stop_scan(struct ath10k *ar, const struct wmi_stop_scan_arg *arg)
1573 {
1574         struct wmi_stop_scan_cmd *cmd;
1575         struct sk_buff *skb;
1576         u32 scan_id;
1577         u32 req_id;
1578
1579         if (arg->req_id > 0xFFF)
1580                 return -EINVAL;
1581         if (arg->req_type == WMI_SCAN_STOP_ONE && arg->u.scan_id > 0xFFF)
1582                 return -EINVAL;
1583
1584         skb = ath10k_wmi_alloc_skb(sizeof(*cmd));
1585         if (!skb)
1586                 return -ENOMEM;
1587
1588         scan_id = arg->u.scan_id;
1589         scan_id |= WMI_HOST_SCAN_REQ_ID_PREFIX;
1590
1591         req_id = arg->req_id;
1592         req_id |= WMI_HOST_SCAN_REQUESTOR_ID_PREFIX;
1593
1594         cmd = (struct wmi_stop_scan_cmd *)skb->data;
1595         cmd->req_type    = __cpu_to_le32(arg->req_type);
1596         cmd->vdev_id     = __cpu_to_le32(arg->u.vdev_id);
1597         cmd->scan_id     = __cpu_to_le32(scan_id);
1598         cmd->scan_req_id = __cpu_to_le32(req_id);
1599
1600         ath10k_dbg(ATH10K_DBG_WMI,
1601                    "wmi stop scan reqid %d req_type %d vdev/scan_id %d\n",
1602                    arg->req_id, arg->req_type, arg->u.scan_id);
1603         return ath10k_wmi_cmd_send(ar, skb, WMI_STOP_SCAN_CMDID);
1604 }
1605
1606 int ath10k_wmi_vdev_create(struct ath10k *ar, u32 vdev_id,
1607                            enum wmi_vdev_type type,
1608                            enum wmi_vdev_subtype subtype,
1609                            const u8 macaddr[ETH_ALEN])
1610 {
1611         struct wmi_vdev_create_cmd *cmd;
1612         struct sk_buff *skb;
1613
1614         skb = ath10k_wmi_alloc_skb(sizeof(*cmd));
1615         if (!skb)
1616                 return -ENOMEM;
1617
1618         cmd = (struct wmi_vdev_create_cmd *)skb->data;
1619         cmd->vdev_id      = __cpu_to_le32(vdev_id);
1620         cmd->vdev_type    = __cpu_to_le32(type);
1621         cmd->vdev_subtype = __cpu_to_le32(subtype);
1622         memcpy(cmd->vdev_macaddr.addr, macaddr, ETH_ALEN);
1623
1624         ath10k_dbg(ATH10K_DBG_WMI,
1625                    "WMI vdev create: id %d type %d subtype %d macaddr %pM\n",
1626                    vdev_id, type, subtype, macaddr);
1627
1628         return ath10k_wmi_cmd_send(ar, skb, WMI_VDEV_CREATE_CMDID);
1629 }
1630
1631 int ath10k_wmi_vdev_delete(struct ath10k *ar, u32 vdev_id)
1632 {
1633         struct wmi_vdev_delete_cmd *cmd;
1634         struct sk_buff *skb;
1635
1636         skb = ath10k_wmi_alloc_skb(sizeof(*cmd));
1637         if (!skb)
1638                 return -ENOMEM;
1639
1640         cmd = (struct wmi_vdev_delete_cmd *)skb->data;
1641         cmd->vdev_id = __cpu_to_le32(vdev_id);
1642
1643         ath10k_dbg(ATH10K_DBG_WMI,
1644                    "WMI vdev delete id %d\n", vdev_id);
1645
1646         return ath10k_wmi_cmd_send(ar, skb, WMI_VDEV_DELETE_CMDID);
1647 }
1648
1649 static int ath10k_wmi_vdev_start_restart(struct ath10k *ar,
1650                                 const struct wmi_vdev_start_request_arg *arg,
1651                                 enum wmi_cmd_id cmd_id)
1652 {
1653         struct wmi_vdev_start_request_cmd *cmd;
1654         struct sk_buff *skb;
1655         const char *cmdname;
1656         u32 flags = 0;
1657
1658         if (cmd_id != WMI_VDEV_START_REQUEST_CMDID &&
1659             cmd_id != WMI_VDEV_RESTART_REQUEST_CMDID)
1660                 return -EINVAL;
1661         if (WARN_ON(arg->ssid && arg->ssid_len == 0))
1662                 return -EINVAL;
1663         if (WARN_ON(arg->hidden_ssid && !arg->ssid))
1664                 return -EINVAL;
1665         if (WARN_ON(arg->ssid_len > sizeof(cmd->ssid.ssid)))
1666                 return -EINVAL;
1667
1668         if (cmd_id == WMI_VDEV_START_REQUEST_CMDID)
1669                 cmdname = "start";
1670         else if (cmd_id == WMI_VDEV_RESTART_REQUEST_CMDID)
1671                 cmdname = "restart";
1672         else
1673                 return -EINVAL; /* should not happen, we already check cmd_id */
1674
1675         skb = ath10k_wmi_alloc_skb(sizeof(*cmd));
1676         if (!skb)
1677                 return -ENOMEM;
1678
1679         if (arg->hidden_ssid)
1680                 flags |= WMI_VDEV_START_HIDDEN_SSID;
1681         if (arg->pmf_enabled)
1682                 flags |= WMI_VDEV_START_PMF_ENABLED;
1683
1684         cmd = (struct wmi_vdev_start_request_cmd *)skb->data;
1685         cmd->vdev_id         = __cpu_to_le32(arg->vdev_id);
1686         cmd->disable_hw_ack  = __cpu_to_le32(arg->disable_hw_ack);
1687         cmd->beacon_interval = __cpu_to_le32(arg->bcn_intval);
1688         cmd->dtim_period     = __cpu_to_le32(arg->dtim_period);
1689         cmd->flags           = __cpu_to_le32(flags);
1690         cmd->bcn_tx_rate     = __cpu_to_le32(arg->bcn_tx_rate);
1691         cmd->bcn_tx_power    = __cpu_to_le32(arg->bcn_tx_power);
1692
1693         if (arg->ssid) {
1694                 cmd->ssid.ssid_len = __cpu_to_le32(arg->ssid_len);
1695                 memcpy(cmd->ssid.ssid, arg->ssid, arg->ssid_len);
1696         }
1697
1698         cmd->chan.mhz = __cpu_to_le32(arg->channel.freq);
1699
1700         cmd->chan.band_center_freq1 =
1701                 __cpu_to_le32(arg->channel.band_center_freq1);
1702
1703         cmd->chan.mode = arg->channel.mode;
1704         cmd->chan.min_power = arg->channel.min_power;
1705         cmd->chan.max_power = arg->channel.max_power;
1706         cmd->chan.reg_power = arg->channel.max_reg_power;
1707         cmd->chan.reg_classid = arg->channel.reg_class_id;
1708         cmd->chan.antenna_max = arg->channel.max_antenna_gain;
1709
1710         ath10k_dbg(ATH10K_DBG_WMI,
1711                    "wmi vdev %s id 0x%x freq %d, mode %d, ch_flags: 0x%0X,"
1712                    "max_power: %d\n", cmdname, arg->vdev_id, arg->channel.freq,
1713                    arg->channel.mode, flags, arg->channel.max_power);
1714
1715         return ath10k_wmi_cmd_send(ar, skb, cmd_id);
1716 }
1717
1718 int ath10k_wmi_vdev_start(struct ath10k *ar,
1719                           const struct wmi_vdev_start_request_arg *arg)
1720 {
1721         return ath10k_wmi_vdev_start_restart(ar, arg,
1722                                              WMI_VDEV_START_REQUEST_CMDID);
1723 }
1724
1725 int ath10k_wmi_vdev_restart(struct ath10k *ar,
1726                      const struct wmi_vdev_start_request_arg *arg)
1727 {
1728         return ath10k_wmi_vdev_start_restart(ar, arg,
1729                                              WMI_VDEV_RESTART_REQUEST_CMDID);
1730 }
1731
1732 int ath10k_wmi_vdev_stop(struct ath10k *ar, u32 vdev_id)
1733 {
1734         struct wmi_vdev_stop_cmd *cmd;
1735         struct sk_buff *skb;
1736
1737         skb = ath10k_wmi_alloc_skb(sizeof(*cmd));
1738         if (!skb)
1739                 return -ENOMEM;
1740
1741         cmd = (struct wmi_vdev_stop_cmd *)skb->data;
1742         cmd->vdev_id = __cpu_to_le32(vdev_id);
1743
1744         ath10k_dbg(ATH10K_DBG_WMI, "wmi vdev stop id 0x%x\n", vdev_id);
1745
1746         return ath10k_wmi_cmd_send(ar, skb, WMI_VDEV_STOP_CMDID);
1747 }
1748
1749 int ath10k_wmi_vdev_up(struct ath10k *ar, u32 vdev_id, u32 aid, const u8 *bssid)
1750 {
1751         struct wmi_vdev_up_cmd *cmd;
1752         struct sk_buff *skb;
1753
1754         skb = ath10k_wmi_alloc_skb(sizeof(*cmd));
1755         if (!skb)
1756                 return -ENOMEM;
1757
1758         cmd = (struct wmi_vdev_up_cmd *)skb->data;
1759         cmd->vdev_id       = __cpu_to_le32(vdev_id);
1760         cmd->vdev_assoc_id = __cpu_to_le32(aid);
1761         memcpy(&cmd->vdev_bssid.addr, bssid, 6);
1762
1763         ath10k_dbg(ATH10K_DBG_WMI,
1764                    "wmi mgmt vdev up id 0x%x assoc id %d bssid %pM\n",
1765                    vdev_id, aid, bssid);
1766
1767         return ath10k_wmi_cmd_send(ar, skb, WMI_VDEV_UP_CMDID);
1768 }
1769
1770 int ath10k_wmi_vdev_down(struct ath10k *ar, u32 vdev_id)
1771 {
1772         struct wmi_vdev_down_cmd *cmd;
1773         struct sk_buff *skb;
1774
1775         skb = ath10k_wmi_alloc_skb(sizeof(*cmd));
1776         if (!skb)
1777                 return -ENOMEM;
1778
1779         cmd = (struct wmi_vdev_down_cmd *)skb->data;
1780         cmd->vdev_id = __cpu_to_le32(vdev_id);
1781
1782         ath10k_dbg(ATH10K_DBG_WMI,
1783                    "wmi mgmt vdev down id 0x%x\n", vdev_id);
1784
1785         return ath10k_wmi_cmd_send(ar, skb, WMI_VDEV_DOWN_CMDID);
1786 }
1787
1788 int ath10k_wmi_vdev_set_param(struct ath10k *ar, u32 vdev_id,
1789                               enum wmi_vdev_param param_id, u32 param_value)
1790 {
1791         struct wmi_vdev_set_param_cmd *cmd;
1792         struct sk_buff *skb;
1793
1794         skb = ath10k_wmi_alloc_skb(sizeof(*cmd));
1795         if (!skb)
1796                 return -ENOMEM;
1797
1798         cmd = (struct wmi_vdev_set_param_cmd *)skb->data;
1799         cmd->vdev_id     = __cpu_to_le32(vdev_id);
1800         cmd->param_id    = __cpu_to_le32(param_id);
1801         cmd->param_value = __cpu_to_le32(param_value);
1802
1803         ath10k_dbg(ATH10K_DBG_WMI,
1804                    "wmi vdev id 0x%x set param %d value %d\n",
1805                    vdev_id, param_id, param_value);
1806
1807         return ath10k_wmi_cmd_send(ar, skb, WMI_VDEV_SET_PARAM_CMDID);
1808 }
1809
1810 int ath10k_wmi_vdev_install_key(struct ath10k *ar,
1811                                 const struct wmi_vdev_install_key_arg *arg)
1812 {
1813         struct wmi_vdev_install_key_cmd *cmd;
1814         struct sk_buff *skb;
1815
1816         if (arg->key_cipher == WMI_CIPHER_NONE && arg->key_data != NULL)
1817                 return -EINVAL;
1818         if (arg->key_cipher != WMI_CIPHER_NONE && arg->key_data == NULL)
1819                 return -EINVAL;
1820
1821         skb = ath10k_wmi_alloc_skb(sizeof(*cmd) + arg->key_len);
1822         if (!skb)
1823                 return -ENOMEM;
1824
1825         cmd = (struct wmi_vdev_install_key_cmd *)skb->data;
1826         cmd->vdev_id       = __cpu_to_le32(arg->vdev_id);
1827         cmd->key_idx       = __cpu_to_le32(arg->key_idx);
1828         cmd->key_flags     = __cpu_to_le32(arg->key_flags);
1829         cmd->key_cipher    = __cpu_to_le32(arg->key_cipher);
1830         cmd->key_len       = __cpu_to_le32(arg->key_len);
1831         cmd->key_txmic_len = __cpu_to_le32(arg->key_txmic_len);
1832         cmd->key_rxmic_len = __cpu_to_le32(arg->key_rxmic_len);
1833
1834         if (arg->macaddr)
1835                 memcpy(cmd->peer_macaddr.addr, arg->macaddr, ETH_ALEN);
1836         if (arg->key_data)
1837                 memcpy(cmd->key_data, arg->key_data, arg->key_len);
1838
1839         ath10k_dbg(ATH10K_DBG_WMI,
1840                    "wmi vdev install key idx %d cipher %d len %d\n",
1841                    arg->key_idx, arg->key_cipher, arg->key_len);
1842         return ath10k_wmi_cmd_send(ar, skb, WMI_VDEV_INSTALL_KEY_CMDID);
1843 }
1844
1845 int ath10k_wmi_peer_create(struct ath10k *ar, u32 vdev_id,
1846                            const u8 peer_addr[ETH_ALEN])
1847 {
1848         struct wmi_peer_create_cmd *cmd;
1849         struct sk_buff *skb;
1850
1851         skb = ath10k_wmi_alloc_skb(sizeof(*cmd));
1852         if (!skb)
1853                 return -ENOMEM;
1854
1855         cmd = (struct wmi_peer_create_cmd *)skb->data;
1856         cmd->vdev_id = __cpu_to_le32(vdev_id);
1857         memcpy(cmd->peer_macaddr.addr, peer_addr, ETH_ALEN);
1858
1859         ath10k_dbg(ATH10K_DBG_WMI,
1860                    "wmi peer create vdev_id %d peer_addr %pM\n",
1861                    vdev_id, peer_addr);
1862         return ath10k_wmi_cmd_send(ar, skb, WMI_PEER_CREATE_CMDID);
1863 }
1864
1865 int ath10k_wmi_peer_delete(struct ath10k *ar, u32 vdev_id,
1866                            const u8 peer_addr[ETH_ALEN])
1867 {
1868         struct wmi_peer_delete_cmd *cmd;
1869         struct sk_buff *skb;
1870
1871         skb = ath10k_wmi_alloc_skb(sizeof(*cmd));
1872         if (!skb)
1873                 return -ENOMEM;
1874
1875         cmd = (struct wmi_peer_delete_cmd *)skb->data;
1876         cmd->vdev_id = __cpu_to_le32(vdev_id);
1877         memcpy(cmd->peer_macaddr.addr, peer_addr, ETH_ALEN);
1878
1879         ath10k_dbg(ATH10K_DBG_WMI,
1880                    "wmi peer delete vdev_id %d peer_addr %pM\n",
1881                    vdev_id, peer_addr);
1882         return ath10k_wmi_cmd_send(ar, skb, WMI_PEER_DELETE_CMDID);
1883 }
1884
1885 int ath10k_wmi_peer_flush(struct ath10k *ar, u32 vdev_id,
1886                           const u8 peer_addr[ETH_ALEN], u32 tid_bitmap)
1887 {
1888         struct wmi_peer_flush_tids_cmd *cmd;
1889         struct sk_buff *skb;
1890
1891         skb = ath10k_wmi_alloc_skb(sizeof(*cmd));
1892         if (!skb)
1893                 return -ENOMEM;
1894
1895         cmd = (struct wmi_peer_flush_tids_cmd *)skb->data;
1896         cmd->vdev_id         = __cpu_to_le32(vdev_id);
1897         cmd->peer_tid_bitmap = __cpu_to_le32(tid_bitmap);
1898         memcpy(cmd->peer_macaddr.addr, peer_addr, ETH_ALEN);
1899
1900         ath10k_dbg(ATH10K_DBG_WMI,
1901                    "wmi peer flush vdev_id %d peer_addr %pM tids %08x\n",
1902                    vdev_id, peer_addr, tid_bitmap);
1903         return ath10k_wmi_cmd_send(ar, skb, WMI_PEER_FLUSH_TIDS_CMDID);
1904 }
1905
1906 int ath10k_wmi_peer_set_param(struct ath10k *ar, u32 vdev_id,
1907                               const u8 *peer_addr, enum wmi_peer_param param_id,
1908                               u32 param_value)
1909 {
1910         struct wmi_peer_set_param_cmd *cmd;
1911         struct sk_buff *skb;
1912
1913         skb = ath10k_wmi_alloc_skb(sizeof(*cmd));
1914         if (!skb)
1915                 return -ENOMEM;
1916
1917         cmd = (struct wmi_peer_set_param_cmd *)skb->data;
1918         cmd->vdev_id     = __cpu_to_le32(vdev_id);
1919         cmd->param_id    = __cpu_to_le32(param_id);
1920         cmd->param_value = __cpu_to_le32(param_value);
1921         memcpy(&cmd->peer_macaddr.addr, peer_addr, 6);
1922
1923         ath10k_dbg(ATH10K_DBG_WMI,
1924                    "wmi vdev %d peer 0x%pM set param %d value %d\n",
1925                    vdev_id, peer_addr, param_id, param_value);
1926
1927         return ath10k_wmi_cmd_send(ar, skb, WMI_PEER_SET_PARAM_CMDID);
1928 }
1929
1930 int ath10k_wmi_set_psmode(struct ath10k *ar, u32 vdev_id,
1931                           enum wmi_sta_ps_mode psmode)
1932 {
1933         struct wmi_sta_powersave_mode_cmd *cmd;
1934         struct sk_buff *skb;
1935
1936         skb = ath10k_wmi_alloc_skb(sizeof(*cmd));
1937         if (!skb)
1938                 return -ENOMEM;
1939
1940         cmd = (struct wmi_sta_powersave_mode_cmd *)skb->data;
1941         cmd->vdev_id     = __cpu_to_le32(vdev_id);
1942         cmd->sta_ps_mode = __cpu_to_le32(psmode);
1943
1944         ath10k_dbg(ATH10K_DBG_WMI,
1945                    "wmi set powersave id 0x%x mode %d\n",
1946                    vdev_id, psmode);
1947
1948         return ath10k_wmi_cmd_send(ar, skb, WMI_STA_POWERSAVE_MODE_CMDID);
1949 }
1950
1951 int ath10k_wmi_set_sta_ps_param(struct ath10k *ar, u32 vdev_id,
1952                                 enum wmi_sta_powersave_param param_id,
1953                                 u32 value)
1954 {
1955         struct wmi_sta_powersave_param_cmd *cmd;
1956         struct sk_buff *skb;
1957
1958         skb = ath10k_wmi_alloc_skb(sizeof(*cmd));
1959         if (!skb)
1960                 return -ENOMEM;
1961
1962         cmd = (struct wmi_sta_powersave_param_cmd *)skb->data;
1963         cmd->vdev_id     = __cpu_to_le32(vdev_id);
1964         cmd->param_id    = __cpu_to_le32(param_id);
1965         cmd->param_value = __cpu_to_le32(value);
1966
1967         ath10k_dbg(ATH10K_DBG_WMI,
1968                    "wmi sta ps param vdev_id 0x%x param %d value %d\n",
1969                    vdev_id, param_id, value);
1970         return ath10k_wmi_cmd_send(ar, skb, WMI_STA_POWERSAVE_PARAM_CMDID);
1971 }
1972
1973 int ath10k_wmi_set_ap_ps_param(struct ath10k *ar, u32 vdev_id, const u8 *mac,
1974                                enum wmi_ap_ps_peer_param param_id, u32 value)
1975 {
1976         struct wmi_ap_ps_peer_cmd *cmd;
1977         struct sk_buff *skb;
1978
1979         if (!mac)
1980                 return -EINVAL;
1981
1982         skb = ath10k_wmi_alloc_skb(sizeof(*cmd));
1983         if (!skb)
1984                 return -ENOMEM;
1985
1986         cmd = (struct wmi_ap_ps_peer_cmd *)skb->data;
1987         cmd->vdev_id = __cpu_to_le32(vdev_id);
1988         cmd->param_id = __cpu_to_le32(param_id);
1989         cmd->param_value = __cpu_to_le32(value);
1990         memcpy(&cmd->peer_macaddr, mac, ETH_ALEN);
1991
1992         ath10k_dbg(ATH10K_DBG_WMI,
1993                    "wmi ap ps param vdev_id 0x%X param %d value %d mac_addr %pM\n",
1994                    vdev_id, param_id, value, mac);
1995
1996         return ath10k_wmi_cmd_send(ar, skb, WMI_AP_PS_PEER_PARAM_CMDID);
1997 }
1998
1999 int ath10k_wmi_scan_chan_list(struct ath10k *ar,
2000                               const struct wmi_scan_chan_list_arg *arg)
2001 {
2002         struct wmi_scan_chan_list_cmd *cmd;
2003         struct sk_buff *skb;
2004         struct wmi_channel_arg *ch;
2005         struct wmi_channel *ci;
2006         int len;
2007         int i;
2008
2009         len = sizeof(*cmd) + arg->n_channels * sizeof(struct wmi_channel);
2010
2011         skb = ath10k_wmi_alloc_skb(len);
2012         if (!skb)
2013                 return -EINVAL;
2014
2015         cmd = (struct wmi_scan_chan_list_cmd *)skb->data;
2016         cmd->num_scan_chans = __cpu_to_le32(arg->n_channels);
2017
2018         for (i = 0; i < arg->n_channels; i++) {
2019                 u32 flags = 0;
2020
2021                 ch = &arg->channels[i];
2022                 ci = &cmd->chan_info[i];
2023
2024                 if (ch->passive)
2025                         flags |= WMI_CHAN_FLAG_PASSIVE;
2026                 if (ch->allow_ibss)
2027                         flags |= WMI_CHAN_FLAG_ADHOC_ALLOWED;
2028                 if (ch->allow_ht)
2029                         flags |= WMI_CHAN_FLAG_ALLOW_HT;
2030                 if (ch->allow_vht)
2031                         flags |= WMI_CHAN_FLAG_ALLOW_VHT;
2032                 if (ch->ht40plus)
2033                         flags |= WMI_CHAN_FLAG_HT40_PLUS;
2034
2035                 ci->mhz               = __cpu_to_le32(ch->freq);
2036                 ci->band_center_freq1 = __cpu_to_le32(ch->freq);
2037                 ci->band_center_freq2 = 0;
2038                 ci->min_power         = ch->min_power;
2039                 ci->max_power         = ch->max_power;
2040                 ci->reg_power         = ch->max_reg_power;
2041                 ci->antenna_max       = ch->max_antenna_gain;
2042                 ci->antenna_max       = 0;
2043
2044                 /* mode & flags share storage */
2045                 ci->mode              = ch->mode;
2046                 ci->flags            |= __cpu_to_le32(flags);
2047         }
2048
2049         return ath10k_wmi_cmd_send(ar, skb, WMI_SCAN_CHAN_LIST_CMDID);
2050 }
2051
2052 int ath10k_wmi_peer_assoc(struct ath10k *ar,
2053                           const struct wmi_peer_assoc_complete_arg *arg)
2054 {
2055         struct wmi_peer_assoc_complete_cmd *cmd;
2056         struct sk_buff *skb;
2057
2058         if (arg->peer_mpdu_density > 16)
2059                 return -EINVAL;
2060         if (arg->peer_legacy_rates.num_rates > MAX_SUPPORTED_RATES)
2061                 return -EINVAL;
2062         if (arg->peer_ht_rates.num_rates > MAX_SUPPORTED_RATES)
2063                 return -EINVAL;
2064
2065         skb = ath10k_wmi_alloc_skb(sizeof(*cmd));
2066         if (!skb)
2067                 return -ENOMEM;
2068
2069         cmd = (struct wmi_peer_assoc_complete_cmd *)skb->data;
2070         cmd->vdev_id            = __cpu_to_le32(arg->vdev_id);
2071         cmd->peer_new_assoc     = __cpu_to_le32(arg->peer_reassoc ? 0 : 1);
2072         cmd->peer_associd       = __cpu_to_le32(arg->peer_aid);
2073         cmd->peer_flags         = __cpu_to_le32(arg->peer_flags);
2074         cmd->peer_caps          = __cpu_to_le32(arg->peer_caps);
2075         cmd->peer_listen_intval = __cpu_to_le32(arg->peer_listen_intval);
2076         cmd->peer_ht_caps       = __cpu_to_le32(arg->peer_ht_caps);
2077         cmd->peer_max_mpdu      = __cpu_to_le32(arg->peer_max_mpdu);
2078         cmd->peer_mpdu_density  = __cpu_to_le32(arg->peer_mpdu_density);
2079         cmd->peer_rate_caps     = __cpu_to_le32(arg->peer_rate_caps);
2080         cmd->peer_nss           = __cpu_to_le32(arg->peer_num_spatial_streams);
2081         cmd->peer_vht_caps      = __cpu_to_le32(arg->peer_vht_caps);
2082         cmd->peer_phymode       = __cpu_to_le32(arg->peer_phymode);
2083
2084         memcpy(cmd->peer_macaddr.addr, arg->addr, ETH_ALEN);
2085
2086         cmd->peer_legacy_rates.num_rates =
2087                 __cpu_to_le32(arg->peer_legacy_rates.num_rates);
2088         memcpy(cmd->peer_legacy_rates.rates, arg->peer_legacy_rates.rates,
2089                arg->peer_legacy_rates.num_rates);
2090
2091         cmd->peer_ht_rates.num_rates =
2092                 __cpu_to_le32(arg->peer_ht_rates.num_rates);
2093         memcpy(cmd->peer_ht_rates.rates, arg->peer_ht_rates.rates,
2094                arg->peer_ht_rates.num_rates);
2095
2096         cmd->peer_vht_rates.rx_max_rate =
2097                 __cpu_to_le32(arg->peer_vht_rates.rx_max_rate);
2098         cmd->peer_vht_rates.rx_mcs_set =
2099                 __cpu_to_le32(arg->peer_vht_rates.rx_mcs_set);
2100         cmd->peer_vht_rates.tx_max_rate =
2101                 __cpu_to_le32(arg->peer_vht_rates.tx_max_rate);
2102         cmd->peer_vht_rates.tx_mcs_set =
2103                 __cpu_to_le32(arg->peer_vht_rates.tx_mcs_set);
2104
2105         ath10k_dbg(ATH10K_DBG_WMI,
2106                    "wmi peer assoc vdev %d addr %pM\n",
2107                    arg->vdev_id, arg->addr);
2108         return ath10k_wmi_cmd_send(ar, skb, WMI_PEER_ASSOC_CMDID);
2109 }
2110
2111 int ath10k_wmi_beacon_send(struct ath10k *ar, const struct wmi_bcn_tx_arg *arg)
2112 {
2113         struct wmi_bcn_tx_cmd *cmd;
2114         struct sk_buff *skb;
2115
2116         skb = ath10k_wmi_alloc_skb(sizeof(*cmd) + arg->bcn_len);
2117         if (!skb)
2118                 return -ENOMEM;
2119
2120         cmd = (struct wmi_bcn_tx_cmd *)skb->data;
2121         cmd->hdr.vdev_id  = __cpu_to_le32(arg->vdev_id);
2122         cmd->hdr.tx_rate  = __cpu_to_le32(arg->tx_rate);
2123         cmd->hdr.tx_power = __cpu_to_le32(arg->tx_power);
2124         cmd->hdr.bcn_len  = __cpu_to_le32(arg->bcn_len);
2125         memcpy(cmd->bcn, arg->bcn, arg->bcn_len);
2126
2127         return ath10k_wmi_cmd_send(ar, skb, WMI_BCN_TX_CMDID);
2128 }
2129
2130 static void ath10k_wmi_pdev_set_wmm_param(struct wmi_wmm_params *params,
2131                                           const struct wmi_wmm_params_arg *arg)
2132 {
2133         params->cwmin  = __cpu_to_le32(arg->cwmin);
2134         params->cwmax  = __cpu_to_le32(arg->cwmax);
2135         params->aifs   = __cpu_to_le32(arg->aifs);
2136         params->txop   = __cpu_to_le32(arg->txop);
2137         params->acm    = __cpu_to_le32(arg->acm);
2138         params->no_ack = __cpu_to_le32(arg->no_ack);
2139 }
2140
2141 int ath10k_wmi_pdev_set_wmm_params(struct ath10k *ar,
2142                         const struct wmi_pdev_set_wmm_params_arg *arg)
2143 {
2144         struct wmi_pdev_set_wmm_params *cmd;
2145         struct sk_buff *skb;
2146
2147         skb = ath10k_wmi_alloc_skb(sizeof(*cmd));
2148         if (!skb)
2149                 return -ENOMEM;
2150
2151         cmd = (struct wmi_pdev_set_wmm_params *)skb->data;
2152         ath10k_wmi_pdev_set_wmm_param(&cmd->ac_be, &arg->ac_be);
2153         ath10k_wmi_pdev_set_wmm_param(&cmd->ac_bk, &arg->ac_bk);
2154         ath10k_wmi_pdev_set_wmm_param(&cmd->ac_vi, &arg->ac_vi);
2155         ath10k_wmi_pdev_set_wmm_param(&cmd->ac_vo, &arg->ac_vo);
2156
2157         ath10k_dbg(ATH10K_DBG_WMI, "wmi pdev set wmm params\n");
2158         return ath10k_wmi_cmd_send(ar, skb, WMI_PDEV_SET_WMM_PARAMS_CMDID);
2159 }
2160
2161 int ath10k_wmi_request_stats(struct ath10k *ar, enum wmi_stats_id stats_id)
2162 {
2163         struct wmi_request_stats_cmd *cmd;
2164         struct sk_buff *skb;
2165
2166         skb = ath10k_wmi_alloc_skb(sizeof(*cmd));
2167         if (!skb)
2168                 return -ENOMEM;
2169
2170         cmd = (struct wmi_request_stats_cmd *)skb->data;
2171         cmd->stats_id = __cpu_to_le32(stats_id);
2172
2173         ath10k_dbg(ATH10K_DBG_WMI, "wmi request stats %d\n", (int)stats_id);
2174         return ath10k_wmi_cmd_send(ar, skb, WMI_REQUEST_STATS_CMDID);
2175 }
2176
2177 int ath10k_wmi_force_fw_hang(struct ath10k *ar,
2178                              enum wmi_force_fw_hang_type type, u32 delay_ms)
2179 {
2180         struct wmi_force_fw_hang_cmd *cmd;
2181         struct sk_buff *skb;
2182
2183         skb = ath10k_wmi_alloc_skb(sizeof(*cmd));
2184         if (!skb)
2185                 return -ENOMEM;
2186
2187         cmd = (struct wmi_force_fw_hang_cmd *)skb->data;
2188         cmd->type = __cpu_to_le32(type);
2189         cmd->delay_ms = __cpu_to_le32(delay_ms);
2190
2191         ath10k_dbg(ATH10K_DBG_WMI, "wmi force fw hang %d delay %d\n",
2192                    type, delay_ms);
2193         return ath10k_wmi_cmd_send(ar, skb, WMI_FORCE_FW_HANG_CMDID);
2194 }