ASoC: davinci: Kconfig: Update the edma-pcm section's dependency and help
[cascardo/linux.git] / drivers / net / wireless / ath / ath9k / eeprom.c
1 /*
2  * Copyright (c) 2008-2011 Atheros Communications Inc.
3  *
4  * Permission to use, copy, modify, and/or distribute this software for any
5  * purpose with or without fee is hereby granted, provided that the above
6  * copyright notice and this permission notice appear in all copies.
7  *
8  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
9  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
10  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
11  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
12  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
13  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
14  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
15  */
16
17 #include "hw.h"
18
19 void ath9k_hw_analog_shift_regwrite(struct ath_hw *ah, u32 reg, u32 val)
20 {
21         REG_WRITE(ah, reg, val);
22
23         if (ah->config.analog_shiftreg)
24                 udelay(100);
25 }
26
27 void ath9k_hw_analog_shift_rmw(struct ath_hw *ah, u32 reg, u32 mask,
28                                u32 shift, u32 val)
29 {
30         REG_RMW(ah, reg, ((val << shift) & mask), mask);
31
32         if (ah->config.analog_shiftreg)
33                 udelay(100);
34 }
35
36 int16_t ath9k_hw_interpolate(u16 target, u16 srcLeft, u16 srcRight,
37                              int16_t targetLeft, int16_t targetRight)
38 {
39         int16_t rv;
40
41         if (srcRight == srcLeft) {
42                 rv = targetLeft;
43         } else {
44                 rv = (int16_t) (((target - srcLeft) * targetRight +
45                                  (srcRight - target) * targetLeft) /
46                                 (srcRight - srcLeft));
47         }
48         return rv;
49 }
50
51 bool ath9k_hw_get_lower_upper_index(u8 target, u8 *pList, u16 listSize,
52                                     u16 *indexL, u16 *indexR)
53 {
54         u16 i;
55
56         if (target <= pList[0]) {
57                 *indexL = *indexR = 0;
58                 return true;
59         }
60         if (target >= pList[listSize - 1]) {
61                 *indexL = *indexR = (u16) (listSize - 1);
62                 return true;
63         }
64
65         for (i = 0; i < listSize - 1; i++) {
66                 if (pList[i] == target) {
67                         *indexL = *indexR = i;
68                         return true;
69                 }
70                 if (target < pList[i + 1]) {
71                         *indexL = i;
72                         *indexR = (u16) (i + 1);
73                         return false;
74                 }
75         }
76         return false;
77 }
78
79 void ath9k_hw_usb_gen_fill_eeprom(struct ath_hw *ah, u16 *eep_data,
80                                   int eep_start_loc, int size)
81 {
82         int i = 0, j, addr;
83         u32 addrdata[8];
84         u32 data[8];
85
86         for (addr = 0; addr < size; addr++) {
87                 addrdata[i] = AR5416_EEPROM_OFFSET +
88                         ((addr + eep_start_loc) << AR5416_EEPROM_S);
89                 i++;
90                 if (i == 8) {
91                         REG_READ_MULTI(ah, addrdata, data, i);
92
93                         for (j = 0; j < i; j++) {
94                                 *eep_data = data[j];
95                                 eep_data++;
96                         }
97                         i = 0;
98                 }
99         }
100
101         if (i != 0) {
102                 REG_READ_MULTI(ah, addrdata, data, i);
103
104                 for (j = 0; j < i; j++) {
105                         *eep_data = data[j];
106                         eep_data++;
107                 }
108         }
109 }
110
111 static bool ath9k_hw_nvram_read_blob(struct ath_hw *ah, u32 off,
112                                      u16 *data)
113 {
114         u16 *blob_data;
115
116         if (off * sizeof(u16) > ah->eeprom_blob->size)
117                 return false;
118
119         blob_data = (u16 *)ah->eeprom_blob->data;
120         *data =  blob_data[off];
121         return true;
122 }
123
124 bool ath9k_hw_nvram_read(struct ath_hw *ah, u32 off, u16 *data)
125 {
126         struct ath_common *common = ath9k_hw_common(ah);
127         bool ret;
128
129         if (ah->eeprom_blob)
130                 ret = ath9k_hw_nvram_read_blob(ah, off, data);
131         else
132                 ret = common->bus_ops->eeprom_read(common, off, data);
133
134         if (!ret)
135                 ath_dbg(common, EEPROM,
136                         "unable to read eeprom region at offset %u\n", off);
137
138         return ret;
139 }
140
141 int ath9k_hw_nvram_swap_data(struct ath_hw *ah, bool *swap_needed, int size)
142 {
143         u16 magic;
144         u16 *eepdata;
145         int i;
146         struct ath_common *common = ath9k_hw_common(ah);
147
148         if (!ath9k_hw_nvram_read(ah, AR5416_EEPROM_MAGIC_OFFSET, &magic)) {
149                 ath_err(common, "Reading Magic # failed\n");
150                 return -EIO;
151         }
152
153         if (magic == AR5416_EEPROM_MAGIC) {
154                 *swap_needed = false;
155         } else if (swab16(magic) == AR5416_EEPROM_MAGIC) {
156                 if (ah->ah_flags & AH_NO_EEP_SWAP) {
157                         ath_info(common,
158                                  "Ignoring endianness difference in EEPROM magic bytes.\n");
159
160                         *swap_needed = false;
161                 } else {
162                         *swap_needed = true;
163                 }
164         } else {
165                 ath_err(common,
166                         "Invalid EEPROM Magic (0x%04x).\n", magic);
167                 return -EINVAL;
168         }
169
170         eepdata = (u16 *)(&ah->eeprom);
171
172         if (*swap_needed) {
173                 ath_dbg(common, EEPROM,
174                         "EEPROM Endianness is not native.. Changing.\n");
175
176                 for (i = 0; i < size; i++)
177                         eepdata[i] = swab16(eepdata[i]);
178         }
179
180         return 0;
181 }
182
183 bool ath9k_hw_nvram_validate_checksum(struct ath_hw *ah, int size)
184 {
185         u32 i, sum = 0;
186         u16 *eepdata = (u16 *)(&ah->eeprom);
187         struct ath_common *common = ath9k_hw_common(ah);
188
189         for (i = 0; i < size; i++)
190                 sum ^= eepdata[i];
191
192         if (sum != 0xffff) {
193                 ath_err(common, "Bad EEPROM checksum 0x%x\n", sum);
194                 return false;
195         }
196
197         return true;
198 }
199
200 bool ath9k_hw_nvram_check_version(struct ath_hw *ah, int version, int minrev)
201 {
202         struct ath_common *common = ath9k_hw_common(ah);
203
204         if (ah->eep_ops->get_eeprom_ver(ah) != version ||
205             ah->eep_ops->get_eeprom_rev(ah) < minrev) {
206                 ath_err(common, "Bad EEPROM VER 0x%04x or REV 0x%04x\n",
207                         ah->eep_ops->get_eeprom_ver(ah),
208                         ah->eep_ops->get_eeprom_rev(ah));
209                 return false;
210         }
211
212         return true;
213 }
214
215 void ath9k_hw_fill_vpd_table(u8 pwrMin, u8 pwrMax, u8 *pPwrList,
216                              u8 *pVpdList, u16 numIntercepts,
217                              u8 *pRetVpdList)
218 {
219         u16 i, k;
220         u8 currPwr = pwrMin;
221         u16 idxL = 0, idxR = 0;
222
223         for (i = 0; i <= (pwrMax - pwrMin) / 2; i++) {
224                 ath9k_hw_get_lower_upper_index(currPwr, pPwrList,
225                                                numIntercepts, &(idxL),
226                                                &(idxR));
227                 if (idxR < 1)
228                         idxR = 1;
229                 if (idxL == numIntercepts - 1)
230                         idxL = (u16) (numIntercepts - 2);
231                 if (pPwrList[idxL] == pPwrList[idxR])
232                         k = pVpdList[idxL];
233                 else
234                         k = (u16)(((currPwr - pPwrList[idxL]) * pVpdList[idxR] +
235                                    (pPwrList[idxR] - currPwr) * pVpdList[idxL]) /
236                                   (pPwrList[idxR] - pPwrList[idxL]));
237                 pRetVpdList[i] = (u8) k;
238                 currPwr += 2;
239         }
240 }
241
242 void ath9k_hw_get_legacy_target_powers(struct ath_hw *ah,
243                                        struct ath9k_channel *chan,
244                                        struct cal_target_power_leg *powInfo,
245                                        u16 numChannels,
246                                        struct cal_target_power_leg *pNewPower,
247                                        u16 numRates, bool isExtTarget)
248 {
249         struct chan_centers centers;
250         u16 clo, chi;
251         int i;
252         int matchIndex = -1, lowIndex = -1;
253         u16 freq;
254
255         ath9k_hw_get_channel_centers(ah, chan, &centers);
256         freq = (isExtTarget) ? centers.ext_center : centers.ctl_center;
257
258         if (freq <= ath9k_hw_fbin2freq(powInfo[0].bChannel,
259                                        IS_CHAN_2GHZ(chan))) {
260                 matchIndex = 0;
261         } else {
262                 for (i = 0; (i < numChannels) &&
263                              (powInfo[i].bChannel != AR5416_BCHAN_UNUSED); i++) {
264                         if (freq == ath9k_hw_fbin2freq(powInfo[i].bChannel,
265                                                        IS_CHAN_2GHZ(chan))) {
266                                 matchIndex = i;
267                                 break;
268                         } else if (freq < ath9k_hw_fbin2freq(powInfo[i].bChannel,
269                                                 IS_CHAN_2GHZ(chan)) && i > 0 &&
270                                    freq > ath9k_hw_fbin2freq(powInfo[i - 1].bChannel,
271                                                 IS_CHAN_2GHZ(chan))) {
272                                 lowIndex = i - 1;
273                                 break;
274                         }
275                 }
276                 if ((matchIndex == -1) && (lowIndex == -1))
277                         matchIndex = i - 1;
278         }
279
280         if (matchIndex != -1) {
281                 *pNewPower = powInfo[matchIndex];
282         } else {
283                 clo = ath9k_hw_fbin2freq(powInfo[lowIndex].bChannel,
284                                          IS_CHAN_2GHZ(chan));
285                 chi = ath9k_hw_fbin2freq(powInfo[lowIndex + 1].bChannel,
286                                          IS_CHAN_2GHZ(chan));
287
288                 for (i = 0; i < numRates; i++) {
289                         pNewPower->tPow2x[i] =
290                                 (u8)ath9k_hw_interpolate(freq, clo, chi,
291                                                 powInfo[lowIndex].tPow2x[i],
292                                                 powInfo[lowIndex + 1].tPow2x[i]);
293                 }
294         }
295 }
296
297 void ath9k_hw_get_target_powers(struct ath_hw *ah,
298                                 struct ath9k_channel *chan,
299                                 struct cal_target_power_ht *powInfo,
300                                 u16 numChannels,
301                                 struct cal_target_power_ht *pNewPower,
302                                 u16 numRates, bool isHt40Target)
303 {
304         struct chan_centers centers;
305         u16 clo, chi;
306         int i;
307         int matchIndex = -1, lowIndex = -1;
308         u16 freq;
309
310         ath9k_hw_get_channel_centers(ah, chan, &centers);
311         freq = isHt40Target ? centers.synth_center : centers.ctl_center;
312
313         if (freq <= ath9k_hw_fbin2freq(powInfo[0].bChannel, IS_CHAN_2GHZ(chan))) {
314                 matchIndex = 0;
315         } else {
316                 for (i = 0; (i < numChannels) &&
317                              (powInfo[i].bChannel != AR5416_BCHAN_UNUSED); i++) {
318                         if (freq == ath9k_hw_fbin2freq(powInfo[i].bChannel,
319                                                        IS_CHAN_2GHZ(chan))) {
320                                 matchIndex = i;
321                                 break;
322                         } else
323                                 if (freq < ath9k_hw_fbin2freq(powInfo[i].bChannel,
324                                                 IS_CHAN_2GHZ(chan)) && i > 0 &&
325                                     freq > ath9k_hw_fbin2freq(powInfo[i - 1].bChannel,
326                                                 IS_CHAN_2GHZ(chan))) {
327                                         lowIndex = i - 1;
328                                         break;
329                                 }
330                 }
331                 if ((matchIndex == -1) && (lowIndex == -1))
332                         matchIndex = i - 1;
333         }
334
335         if (matchIndex != -1) {
336                 *pNewPower = powInfo[matchIndex];
337         } else {
338                 clo = ath9k_hw_fbin2freq(powInfo[lowIndex].bChannel,
339                                          IS_CHAN_2GHZ(chan));
340                 chi = ath9k_hw_fbin2freq(powInfo[lowIndex + 1].bChannel,
341                                          IS_CHAN_2GHZ(chan));
342
343                 for (i = 0; i < numRates; i++) {
344                         pNewPower->tPow2x[i] = (u8)ath9k_hw_interpolate(freq,
345                                                 clo, chi,
346                                                 powInfo[lowIndex].tPow2x[i],
347                                                 powInfo[lowIndex + 1].tPow2x[i]);
348                 }
349         }
350 }
351
352 u16 ath9k_hw_get_max_edge_power(u16 freq, struct cal_ctl_edges *pRdEdgesPower,
353                                 bool is2GHz, int num_band_edges)
354 {
355         u16 twiceMaxEdgePower = MAX_RATE_POWER;
356         int i;
357
358         for (i = 0; (i < num_band_edges) &&
359                      (pRdEdgesPower[i].bChannel != AR5416_BCHAN_UNUSED); i++) {
360                 if (freq == ath9k_hw_fbin2freq(pRdEdgesPower[i].bChannel, is2GHz)) {
361                         twiceMaxEdgePower = CTL_EDGE_TPOWER(pRdEdgesPower[i].ctl);
362                         break;
363                 } else if ((i > 0) &&
364                            (freq < ath9k_hw_fbin2freq(pRdEdgesPower[i].bChannel,
365                                                       is2GHz))) {
366                         if (ath9k_hw_fbin2freq(pRdEdgesPower[i - 1].bChannel,
367                                                is2GHz) < freq &&
368                             CTL_EDGE_FLAGS(pRdEdgesPower[i - 1].ctl)) {
369                                 twiceMaxEdgePower =
370                                         CTL_EDGE_TPOWER(pRdEdgesPower[i - 1].ctl);
371                         }
372                         break;
373                 }
374         }
375
376         return twiceMaxEdgePower;
377 }
378
379 u16 ath9k_hw_get_scaled_power(struct ath_hw *ah, u16 power_limit,
380                               u8 antenna_reduction)
381 {
382         u16 reduction = antenna_reduction;
383
384         /*
385          * Reduce scaled Power by number of chains active
386          * to get the per chain tx power level.
387          */
388         switch (ar5416_get_ntxchains(ah->txchainmask)) {
389         case 1:
390                 break;
391         case 2:
392                 reduction += POWER_CORRECTION_FOR_TWO_CHAIN;
393                 break;
394         case 3:
395                 reduction += POWER_CORRECTION_FOR_THREE_CHAIN;
396                 break;
397         }
398
399         if (power_limit > reduction)
400                 power_limit -= reduction;
401         else
402                 power_limit = 0;
403
404         return power_limit;
405 }
406
407 void ath9k_hw_update_regulatory_maxpower(struct ath_hw *ah)
408 {
409         struct ath_common *common = ath9k_hw_common(ah);
410         struct ath_regulatory *regulatory = ath9k_hw_regulatory(ah);
411
412         switch (ar5416_get_ntxchains(ah->txchainmask)) {
413         case 1:
414                 break;
415         case 2:
416                 regulatory->max_power_level += POWER_CORRECTION_FOR_TWO_CHAIN;
417                 break;
418         case 3:
419                 regulatory->max_power_level += POWER_CORRECTION_FOR_THREE_CHAIN;
420                 break;
421         default:
422                 ath_dbg(common, EEPROM, "Invalid chainmask configuration\n");
423                 break;
424         }
425 }
426
427 void ath9k_hw_get_gain_boundaries_pdadcs(struct ath_hw *ah,
428                                 struct ath9k_channel *chan,
429                                 void *pRawDataSet,
430                                 u8 *bChans, u16 availPiers,
431                                 u16 tPdGainOverlap,
432                                 u16 *pPdGainBoundaries, u8 *pPDADCValues,
433                                 u16 numXpdGains)
434 {
435         int i, j, k;
436         int16_t ss;
437         u16 idxL = 0, idxR = 0, numPiers;
438         static u8 vpdTableL[AR5416_NUM_PD_GAINS]
439                 [AR5416_MAX_PWR_RANGE_IN_HALF_DB];
440         static u8 vpdTableR[AR5416_NUM_PD_GAINS]
441                 [AR5416_MAX_PWR_RANGE_IN_HALF_DB];
442         static u8 vpdTableI[AR5416_NUM_PD_GAINS]
443                 [AR5416_MAX_PWR_RANGE_IN_HALF_DB];
444
445         u8 *pVpdL, *pVpdR, *pPwrL, *pPwrR;
446         u8 minPwrT4[AR5416_NUM_PD_GAINS];
447         u8 maxPwrT4[AR5416_NUM_PD_GAINS];
448         int16_t vpdStep;
449         int16_t tmpVal;
450         u16 sizeCurrVpdTable, maxIndex, tgtIndex;
451         bool match;
452         int16_t minDelta = 0;
453         struct chan_centers centers;
454         int pdgain_boundary_default;
455         struct cal_data_per_freq *data_def = pRawDataSet;
456         struct cal_data_per_freq_4k *data_4k = pRawDataSet;
457         struct cal_data_per_freq_ar9287 *data_9287 = pRawDataSet;
458         bool eeprom_4k = AR_SREV_9285(ah) || AR_SREV_9271(ah);
459         int intercepts;
460
461         if (AR_SREV_9287(ah))
462                 intercepts = AR9287_PD_GAIN_ICEPTS;
463         else
464                 intercepts = AR5416_PD_GAIN_ICEPTS;
465
466         memset(&minPwrT4, 0, AR5416_NUM_PD_GAINS);
467         ath9k_hw_get_channel_centers(ah, chan, &centers);
468
469         for (numPiers = 0; numPiers < availPiers; numPiers++) {
470                 if (bChans[numPiers] == AR5416_BCHAN_UNUSED)
471                         break;
472         }
473
474         match = ath9k_hw_get_lower_upper_index((u8)FREQ2FBIN(centers.synth_center,
475                                                              IS_CHAN_2GHZ(chan)),
476                                                bChans, numPiers, &idxL, &idxR);
477
478         if (match) {
479                 if (AR_SREV_9287(ah)) {
480                         /* FIXME: array overrun? */
481                         for (i = 0; i < numXpdGains; i++) {
482                                 minPwrT4[i] = data_9287[idxL].pwrPdg[i][0];
483                                 maxPwrT4[i] = data_9287[idxL].pwrPdg[i][4];
484                                 ath9k_hw_fill_vpd_table(minPwrT4[i], maxPwrT4[i],
485                                                 data_9287[idxL].pwrPdg[i],
486                                                 data_9287[idxL].vpdPdg[i],
487                                                 intercepts,
488                                                 vpdTableI[i]);
489                         }
490                 } else if (eeprom_4k) {
491                         for (i = 0; i < numXpdGains; i++) {
492                                 minPwrT4[i] = data_4k[idxL].pwrPdg[i][0];
493                                 maxPwrT4[i] = data_4k[idxL].pwrPdg[i][4];
494                                 ath9k_hw_fill_vpd_table(minPwrT4[i], maxPwrT4[i],
495                                                 data_4k[idxL].pwrPdg[i],
496                                                 data_4k[idxL].vpdPdg[i],
497                                                 intercepts,
498                                                 vpdTableI[i]);
499                         }
500                 } else {
501                         for (i = 0; i < numXpdGains; i++) {
502                                 minPwrT4[i] = data_def[idxL].pwrPdg[i][0];
503                                 maxPwrT4[i] = data_def[idxL].pwrPdg[i][4];
504                                 ath9k_hw_fill_vpd_table(minPwrT4[i], maxPwrT4[i],
505                                                 data_def[idxL].pwrPdg[i],
506                                                 data_def[idxL].vpdPdg[i],
507                                                 intercepts,
508                                                 vpdTableI[i]);
509                         }
510                 }
511         } else {
512                 for (i = 0; i < numXpdGains; i++) {
513                         if (AR_SREV_9287(ah)) {
514                                 pVpdL = data_9287[idxL].vpdPdg[i];
515                                 pPwrL = data_9287[idxL].pwrPdg[i];
516                                 pVpdR = data_9287[idxR].vpdPdg[i];
517                                 pPwrR = data_9287[idxR].pwrPdg[i];
518                         } else if (eeprom_4k) {
519                                 pVpdL = data_4k[idxL].vpdPdg[i];
520                                 pPwrL = data_4k[idxL].pwrPdg[i];
521                                 pVpdR = data_4k[idxR].vpdPdg[i];
522                                 pPwrR = data_4k[idxR].pwrPdg[i];
523                         } else {
524                                 pVpdL = data_def[idxL].vpdPdg[i];
525                                 pPwrL = data_def[idxL].pwrPdg[i];
526                                 pVpdR = data_def[idxR].vpdPdg[i];
527                                 pPwrR = data_def[idxR].pwrPdg[i];
528                         }
529
530                         minPwrT4[i] = max(pPwrL[0], pPwrR[0]);
531
532                         maxPwrT4[i] =
533                                 min(pPwrL[intercepts - 1],
534                                     pPwrR[intercepts - 1]);
535
536
537                         ath9k_hw_fill_vpd_table(minPwrT4[i], maxPwrT4[i],
538                                                 pPwrL, pVpdL,
539                                                 intercepts,
540                                                 vpdTableL[i]);
541                         ath9k_hw_fill_vpd_table(minPwrT4[i], maxPwrT4[i],
542                                                 pPwrR, pVpdR,
543                                                 intercepts,
544                                                 vpdTableR[i]);
545
546                         for (j = 0; j <= (maxPwrT4[i] - minPwrT4[i]) / 2; j++) {
547                                 vpdTableI[i][j] =
548                                         (u8)(ath9k_hw_interpolate((u16)
549                                              FREQ2FBIN(centers.
550                                                        synth_center,
551                                                        IS_CHAN_2GHZ
552                                                        (chan)),
553                                              bChans[idxL], bChans[idxR],
554                                              vpdTableL[i][j], vpdTableR[i][j]));
555                         }
556                 }
557         }
558
559         k = 0;
560
561         for (i = 0; i < numXpdGains; i++) {
562                 if (i == (numXpdGains - 1))
563                         pPdGainBoundaries[i] =
564                                 (u16)(maxPwrT4[i] / 2);
565                 else
566                         pPdGainBoundaries[i] =
567                                 (u16)((maxPwrT4[i] + minPwrT4[i + 1]) / 4);
568
569                 pPdGainBoundaries[i] =
570                         min((u16)MAX_RATE_POWER, pPdGainBoundaries[i]);
571
572                 minDelta = 0;
573
574                 if (i == 0) {
575                         if (AR_SREV_9280_20_OR_LATER(ah))
576                                 ss = (int16_t)(0 - (minPwrT4[i] / 2));
577                         else
578                                 ss = 0;
579                 } else {
580                         ss = (int16_t)((pPdGainBoundaries[i - 1] -
581                                         (minPwrT4[i] / 2)) -
582                                        tPdGainOverlap + 1 + minDelta);
583                 }
584                 vpdStep = (int16_t)(vpdTableI[i][1] - vpdTableI[i][0]);
585                 vpdStep = (int16_t)((vpdStep < 1) ? 1 : vpdStep);
586
587                 while ((ss < 0) && (k < (AR5416_NUM_PDADC_VALUES - 1))) {
588                         tmpVal = (int16_t)(vpdTableI[i][0] + ss * vpdStep);
589                         pPDADCValues[k++] = (u8)((tmpVal < 0) ? 0 : tmpVal);
590                         ss++;
591                 }
592
593                 sizeCurrVpdTable = (u8) ((maxPwrT4[i] - minPwrT4[i]) / 2 + 1);
594                 tgtIndex = (u8)(pPdGainBoundaries[i] + tPdGainOverlap -
595                                 (minPwrT4[i] / 2));
596                 maxIndex = (tgtIndex < sizeCurrVpdTable) ?
597                         tgtIndex : sizeCurrVpdTable;
598
599                 while ((ss < maxIndex) && (k < (AR5416_NUM_PDADC_VALUES - 1))) {
600                         pPDADCValues[k++] = vpdTableI[i][ss++];
601                 }
602
603                 vpdStep = (int16_t)(vpdTableI[i][sizeCurrVpdTable - 1] -
604                                     vpdTableI[i][sizeCurrVpdTable - 2]);
605                 vpdStep = (int16_t)((vpdStep < 1) ? 1 : vpdStep);
606
607                 if (tgtIndex >= maxIndex) {
608                         while ((ss <= tgtIndex) &&
609                                (k < (AR5416_NUM_PDADC_VALUES - 1))) {
610                                 tmpVal = (int16_t)((vpdTableI[i][sizeCurrVpdTable - 1] +
611                                                     (ss - maxIndex + 1) * vpdStep));
612                                 pPDADCValues[k++] = (u8)((tmpVal > 255) ?
613                                                          255 : tmpVal);
614                                 ss++;
615                         }
616                 }
617         }
618
619         if (eeprom_4k)
620                 pdgain_boundary_default = 58;
621         else
622                 pdgain_boundary_default = pPdGainBoundaries[i - 1];
623
624         while (i < AR5416_PD_GAINS_IN_MASK) {
625                 pPdGainBoundaries[i] = pdgain_boundary_default;
626                 i++;
627         }
628
629         while (k < AR5416_NUM_PDADC_VALUES) {
630                 pPDADCValues[k] = pPDADCValues[k - 1];
631                 k++;
632         }
633 }
634
635 int ath9k_hw_eeprom_init(struct ath_hw *ah)
636 {
637         int status;
638
639         if (AR_SREV_9300_20_OR_LATER(ah))
640                 ah->eep_ops = &eep_ar9300_ops;
641         else if (AR_SREV_9287(ah)) {
642                 ah->eep_ops = &eep_ar9287_ops;
643         } else if (AR_SREV_9285(ah) || AR_SREV_9271(ah)) {
644                 ah->eep_ops = &eep_4k_ops;
645         } else {
646                 ah->eep_ops = &eep_def_ops;
647         }
648
649         if (!ah->eep_ops->fill_eeprom(ah))
650                 return -EIO;
651
652         status = ah->eep_ops->check_eeprom(ah);
653
654         return status;
655 }