Merge git://git.kernel.org/pub/scm/linux/kernel/git/davem/sparc-next
[cascardo/linux.git] / drivers / net / wireless / ath / ath9k / eeprom_def.c
1 /*
2  * Copyright (c) 2008-2011 Atheros Communications Inc.
3  *
4  * Permission to use, copy, modify, and/or distribute this software for any
5  * purpose with or without fee is hereby granted, provided that the above
6  * copyright notice and this permission notice appear in all copies.
7  *
8  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
9  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
10  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
11  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
12  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
13  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
14  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
15  */
16
17 #include <asm/unaligned.h>
18 #include "hw.h"
19 #include "ar9002_phy.h"
20
21 static void ath9k_get_txgain_index(struct ath_hw *ah,
22                 struct ath9k_channel *chan,
23                 struct calDataPerFreqOpLoop *rawDatasetOpLoop,
24                 u8 *calChans,  u16 availPiers, u8 *pwr, u8 *pcdacIdx)
25 {
26         u8 pcdac, i = 0;
27         u16 idxL = 0, idxR = 0, numPiers;
28         bool match;
29         struct chan_centers centers;
30
31         ath9k_hw_get_channel_centers(ah, chan, &centers);
32
33         for (numPiers = 0; numPiers < availPiers; numPiers++)
34                 if (calChans[numPiers] == AR5416_BCHAN_UNUSED)
35                         break;
36
37         match = ath9k_hw_get_lower_upper_index(
38                         (u8)FREQ2FBIN(centers.synth_center, IS_CHAN_2GHZ(chan)),
39                         calChans, numPiers, &idxL, &idxR);
40         if (match) {
41                 pcdac = rawDatasetOpLoop[idxL].pcdac[0][0];
42                 *pwr = rawDatasetOpLoop[idxL].pwrPdg[0][0];
43         } else {
44                 pcdac = rawDatasetOpLoop[idxR].pcdac[0][0];
45                 *pwr = (rawDatasetOpLoop[idxL].pwrPdg[0][0] +
46                                 rawDatasetOpLoop[idxR].pwrPdg[0][0])/2;
47         }
48
49         while (pcdac > ah->originalGain[i] &&
50                         i < (AR9280_TX_GAIN_TABLE_SIZE - 1))
51                 i++;
52
53         *pcdacIdx = i;
54 }
55
56 static void ath9k_olc_get_pdadcs(struct ath_hw *ah,
57                                 u32 initTxGain,
58                                 int txPower,
59                                 u8 *pPDADCValues)
60 {
61         u32 i;
62         u32 offset;
63
64         REG_RMW_FIELD(ah, AR_PHY_TX_PWRCTRL6_0,
65                         AR_PHY_TX_PWRCTRL_ERR_EST_MODE, 3);
66         REG_RMW_FIELD(ah, AR_PHY_TX_PWRCTRL6_1,
67                         AR_PHY_TX_PWRCTRL_ERR_EST_MODE, 3);
68
69         REG_RMW_FIELD(ah, AR_PHY_TX_PWRCTRL7,
70                         AR_PHY_TX_PWRCTRL_INIT_TX_GAIN, initTxGain);
71
72         offset = txPower;
73         for (i = 0; i < AR5416_NUM_PDADC_VALUES; i++)
74                 if (i < offset)
75                         pPDADCValues[i] = 0x0;
76                 else
77                         pPDADCValues[i] = 0xFF;
78 }
79
80 static int ath9k_hw_def_get_eeprom_ver(struct ath_hw *ah)
81 {
82         return ((ah->eeprom.def.baseEepHeader.version >> 12) & 0xF);
83 }
84
85 static int ath9k_hw_def_get_eeprom_rev(struct ath_hw *ah)
86 {
87         return ((ah->eeprom.def.baseEepHeader.version) & 0xFFF);
88 }
89
90 #define SIZE_EEPROM_DEF (sizeof(struct ar5416_eeprom_def) / sizeof(u16))
91
92 static bool __ath9k_hw_def_fill_eeprom(struct ath_hw *ah)
93 {
94         u16 *eep_data = (u16 *)&ah->eeprom.def;
95         int addr, ar5416_eep_start_loc = 0x100;
96
97         for (addr = 0; addr < SIZE_EEPROM_DEF; addr++) {
98                 if (!ath9k_hw_nvram_read(ah, addr + ar5416_eep_start_loc,
99                                          eep_data))
100                         return false;
101                 eep_data++;
102         }
103         return true;
104 }
105
106 static bool __ath9k_hw_usb_def_fill_eeprom(struct ath_hw *ah)
107 {
108         u16 *eep_data = (u16 *)&ah->eeprom.def;
109
110         ath9k_hw_usb_gen_fill_eeprom(ah, eep_data,
111                                      0x100, SIZE_EEPROM_DEF);
112         return true;
113 }
114
115 static bool ath9k_hw_def_fill_eeprom(struct ath_hw *ah)
116 {
117         struct ath_common *common = ath9k_hw_common(ah);
118
119         if (!ath9k_hw_use_flash(ah)) {
120                 ath_dbg(common, EEPROM, "Reading from EEPROM, not flash\n");
121         }
122
123         if (common->bus_ops->ath_bus_type == ATH_USB)
124                 return __ath9k_hw_usb_def_fill_eeprom(ah);
125         else
126                 return __ath9k_hw_def_fill_eeprom(ah);
127 }
128
129 #undef SIZE_EEPROM_DEF
130
131 #if defined(CONFIG_ATH9K_DEBUGFS) || defined(CONFIG_ATH9K_HTC_DEBUGFS)
132 static u32 ath9k_def_dump_modal_eeprom(char *buf, u32 len, u32 size,
133                                        struct modal_eep_header *modal_hdr)
134 {
135         PR_EEP("Chain0 Ant. Control", modal_hdr->antCtrlChain[0]);
136         PR_EEP("Chain1 Ant. Control", modal_hdr->antCtrlChain[1]);
137         PR_EEP("Chain2 Ant. Control", modal_hdr->antCtrlChain[2]);
138         PR_EEP("Ant. Common Control", modal_hdr->antCtrlCommon);
139         PR_EEP("Chain0 Ant. Gain", modal_hdr->antennaGainCh[0]);
140         PR_EEP("Chain1 Ant. Gain", modal_hdr->antennaGainCh[1]);
141         PR_EEP("Chain2 Ant. Gain", modal_hdr->antennaGainCh[2]);
142         PR_EEP("Switch Settle", modal_hdr->switchSettling);
143         PR_EEP("Chain0 TxRxAtten", modal_hdr->txRxAttenCh[0]);
144         PR_EEP("Chain1 TxRxAtten", modal_hdr->txRxAttenCh[1]);
145         PR_EEP("Chain2 TxRxAtten", modal_hdr->txRxAttenCh[2]);
146         PR_EEP("Chain0 RxTxMargin", modal_hdr->rxTxMarginCh[0]);
147         PR_EEP("Chain1 RxTxMargin", modal_hdr->rxTxMarginCh[1]);
148         PR_EEP("Chain2 RxTxMargin", modal_hdr->rxTxMarginCh[2]);
149         PR_EEP("ADC Desired size", modal_hdr->adcDesiredSize);
150         PR_EEP("PGA Desired size", modal_hdr->pgaDesiredSize);
151         PR_EEP("Chain0 xlna Gain", modal_hdr->xlnaGainCh[0]);
152         PR_EEP("Chain1 xlna Gain", modal_hdr->xlnaGainCh[1]);
153         PR_EEP("Chain2 xlna Gain", modal_hdr->xlnaGainCh[2]);
154         PR_EEP("txEndToXpaOff", modal_hdr->txEndToXpaOff);
155         PR_EEP("txEndToRxOn", modal_hdr->txEndToRxOn);
156         PR_EEP("txFrameToXpaOn", modal_hdr->txFrameToXpaOn);
157         PR_EEP("CCA Threshold)", modal_hdr->thresh62);
158         PR_EEP("Chain0 NF Threshold", modal_hdr->noiseFloorThreshCh[0]);
159         PR_EEP("Chain1 NF Threshold", modal_hdr->noiseFloorThreshCh[1]);
160         PR_EEP("Chain2 NF Threshold", modal_hdr->noiseFloorThreshCh[2]);
161         PR_EEP("xpdGain", modal_hdr->xpdGain);
162         PR_EEP("External PD", modal_hdr->xpd);
163         PR_EEP("Chain0 I Coefficient", modal_hdr->iqCalICh[0]);
164         PR_EEP("Chain1 I Coefficient", modal_hdr->iqCalICh[1]);
165         PR_EEP("Chain2 I Coefficient", modal_hdr->iqCalICh[2]);
166         PR_EEP("Chain0 Q Coefficient", modal_hdr->iqCalQCh[0]);
167         PR_EEP("Chain1 Q Coefficient", modal_hdr->iqCalQCh[1]);
168         PR_EEP("Chain2 Q Coefficient", modal_hdr->iqCalQCh[2]);
169         PR_EEP("pdGainOverlap", modal_hdr->pdGainOverlap);
170         PR_EEP("Chain0 OutputBias", modal_hdr->ob);
171         PR_EEP("Chain0 DriverBias", modal_hdr->db);
172         PR_EEP("xPA Bias Level", modal_hdr->xpaBiasLvl);
173         PR_EEP("2chain pwr decrease", modal_hdr->pwrDecreaseFor2Chain);
174         PR_EEP("3chain pwr decrease", modal_hdr->pwrDecreaseFor3Chain);
175         PR_EEP("txFrameToDataStart", modal_hdr->txFrameToDataStart);
176         PR_EEP("txFrameToPaOn", modal_hdr->txFrameToPaOn);
177         PR_EEP("HT40 Power Inc.", modal_hdr->ht40PowerIncForPdadc);
178         PR_EEP("Chain0 bswAtten", modal_hdr->bswAtten[0]);
179         PR_EEP("Chain1 bswAtten", modal_hdr->bswAtten[1]);
180         PR_EEP("Chain2 bswAtten", modal_hdr->bswAtten[2]);
181         PR_EEP("Chain0 bswMargin", modal_hdr->bswMargin[0]);
182         PR_EEP("Chain1 bswMargin", modal_hdr->bswMargin[1]);
183         PR_EEP("Chain2 bswMargin", modal_hdr->bswMargin[2]);
184         PR_EEP("HT40 Switch Settle", modal_hdr->swSettleHt40);
185         PR_EEP("Chain0 xatten2Db", modal_hdr->xatten2Db[0]);
186         PR_EEP("Chain1 xatten2Db", modal_hdr->xatten2Db[1]);
187         PR_EEP("Chain2 xatten2Db", modal_hdr->xatten2Db[2]);
188         PR_EEP("Chain0 xatten2Margin", modal_hdr->xatten2Margin[0]);
189         PR_EEP("Chain1 xatten2Margin", modal_hdr->xatten2Margin[1]);
190         PR_EEP("Chain2 xatten2Margin", modal_hdr->xatten2Margin[2]);
191         PR_EEP("Chain1 OutputBias", modal_hdr->ob_ch1);
192         PR_EEP("Chain1 DriverBias", modal_hdr->db_ch1);
193         PR_EEP("LNA Control", modal_hdr->lna_ctl);
194         PR_EEP("XPA Bias Freq0", modal_hdr->xpaBiasLvlFreq[0]);
195         PR_EEP("XPA Bias Freq1", modal_hdr->xpaBiasLvlFreq[1]);
196         PR_EEP("XPA Bias Freq2", modal_hdr->xpaBiasLvlFreq[2]);
197
198         return len;
199 }
200
201 static u32 ath9k_hw_def_dump_eeprom(struct ath_hw *ah, bool dump_base_hdr,
202                                     u8 *buf, u32 len, u32 size)
203 {
204         struct ar5416_eeprom_def *eep = &ah->eeprom.def;
205         struct base_eep_header *pBase = &eep->baseEepHeader;
206
207         if (!dump_base_hdr) {
208                 len += scnprintf(buf + len, size - len,
209                                  "%20s :\n", "2GHz modal Header");
210                 len = ath9k_def_dump_modal_eeprom(buf, len, size,
211                                                    &eep->modalHeader[0]);
212                 len += scnprintf(buf + len, size - len,
213                                  "%20s :\n", "5GHz modal Header");
214                 len = ath9k_def_dump_modal_eeprom(buf, len, size,
215                                                    &eep->modalHeader[1]);
216                 goto out;
217         }
218
219         PR_EEP("Major Version", pBase->version >> 12);
220         PR_EEP("Minor Version", pBase->version & 0xFFF);
221         PR_EEP("Checksum", pBase->checksum);
222         PR_EEP("Length", pBase->length);
223         PR_EEP("RegDomain1", pBase->regDmn[0]);
224         PR_EEP("RegDomain2", pBase->regDmn[1]);
225         PR_EEP("TX Mask", pBase->txMask);
226         PR_EEP("RX Mask", pBase->rxMask);
227         PR_EEP("Allow 5GHz", !!(pBase->opCapFlags & AR5416_OPFLAGS_11A));
228         PR_EEP("Allow 2GHz", !!(pBase->opCapFlags & AR5416_OPFLAGS_11G));
229         PR_EEP("Disable 2GHz HT20", !!(pBase->opCapFlags &
230                                         AR5416_OPFLAGS_N_2G_HT20));
231         PR_EEP("Disable 2GHz HT40", !!(pBase->opCapFlags &
232                                         AR5416_OPFLAGS_N_2G_HT40));
233         PR_EEP("Disable 5Ghz HT20", !!(pBase->opCapFlags &
234                                         AR5416_OPFLAGS_N_5G_HT20));
235         PR_EEP("Disable 5Ghz HT40", !!(pBase->opCapFlags &
236                                         AR5416_OPFLAGS_N_5G_HT40));
237         PR_EEP("Big Endian", !!(pBase->eepMisc & 0x01));
238         PR_EEP("Cal Bin Major Ver", (pBase->binBuildNumber >> 24) & 0xFF);
239         PR_EEP("Cal Bin Minor Ver", (pBase->binBuildNumber >> 16) & 0xFF);
240         PR_EEP("Cal Bin Build", (pBase->binBuildNumber >> 8) & 0xFF);
241         PR_EEP("OpenLoop Power Ctrl", pBase->openLoopPwrCntl);
242
243         len += scnprintf(buf + len, size - len, "%20s : %pM\n", "MacAddress",
244                          pBase->macAddr);
245
246 out:
247         if (len > size)
248                 len = size;
249
250         return len;
251 }
252 #else
253 static u32 ath9k_hw_def_dump_eeprom(struct ath_hw *ah, bool dump_base_hdr,
254                                     u8 *buf, u32 len, u32 size)
255 {
256         return 0;
257 }
258 #endif
259
260
261 static int ath9k_hw_def_check_eeprom(struct ath_hw *ah)
262 {
263         struct ar5416_eeprom_def *eep = &ah->eeprom.def;
264         struct ath_common *common = ath9k_hw_common(ah);
265         u16 *eepdata, temp, magic, magic2;
266         u32 sum = 0, el;
267         bool need_swap = false;
268         int i, addr, size;
269
270         if (!ath9k_hw_nvram_read(ah, AR5416_EEPROM_MAGIC_OFFSET, &magic)) {
271                 ath_err(common, "Reading Magic # failed\n");
272                 return false;
273         }
274
275         if (!ath9k_hw_use_flash(ah)) {
276                 ath_dbg(common, EEPROM, "Read Magic = 0x%04X\n", magic);
277
278                 if (magic != AR5416_EEPROM_MAGIC) {
279                         magic2 = swab16(magic);
280
281                         if (magic2 == AR5416_EEPROM_MAGIC) {
282                                 size = sizeof(struct ar5416_eeprom_def);
283                                 need_swap = true;
284                                 eepdata = (u16 *) (&ah->eeprom);
285
286                                 for (addr = 0; addr < size / sizeof(u16); addr++) {
287                                         temp = swab16(*eepdata);
288                                         *eepdata = temp;
289                                         eepdata++;
290                                 }
291                         } else {
292                                 ath_err(common,
293                                         "Invalid EEPROM Magic. Endianness mismatch.\n");
294                                 return -EINVAL;
295                         }
296                 }
297         }
298
299         ath_dbg(common, EEPROM, "need_swap = %s\n",
300                 need_swap ? "True" : "False");
301
302         if (need_swap)
303                 el = swab16(ah->eeprom.def.baseEepHeader.length);
304         else
305                 el = ah->eeprom.def.baseEepHeader.length;
306
307         if (el > sizeof(struct ar5416_eeprom_def))
308                 el = sizeof(struct ar5416_eeprom_def) / sizeof(u16);
309         else
310                 el = el / sizeof(u16);
311
312         eepdata = (u16 *)(&ah->eeprom);
313
314         for (i = 0; i < el; i++)
315                 sum ^= *eepdata++;
316
317         if (need_swap) {
318                 u32 integer, j;
319                 u16 word;
320
321                 ath_dbg(common, EEPROM,
322                         "EEPROM Endianness is not native.. Changing.\n");
323
324                 word = swab16(eep->baseEepHeader.length);
325                 eep->baseEepHeader.length = word;
326
327                 word = swab16(eep->baseEepHeader.checksum);
328                 eep->baseEepHeader.checksum = word;
329
330                 word = swab16(eep->baseEepHeader.version);
331                 eep->baseEepHeader.version = word;
332
333                 word = swab16(eep->baseEepHeader.regDmn[0]);
334                 eep->baseEepHeader.regDmn[0] = word;
335
336                 word = swab16(eep->baseEepHeader.regDmn[1]);
337                 eep->baseEepHeader.regDmn[1] = word;
338
339                 word = swab16(eep->baseEepHeader.rfSilent);
340                 eep->baseEepHeader.rfSilent = word;
341
342                 word = swab16(eep->baseEepHeader.blueToothOptions);
343                 eep->baseEepHeader.blueToothOptions = word;
344
345                 word = swab16(eep->baseEepHeader.deviceCap);
346                 eep->baseEepHeader.deviceCap = word;
347
348                 for (j = 0; j < ARRAY_SIZE(eep->modalHeader); j++) {
349                         struct modal_eep_header *pModal =
350                                 &eep->modalHeader[j];
351                         integer = swab32(pModal->antCtrlCommon);
352                         pModal->antCtrlCommon = integer;
353
354                         for (i = 0; i < AR5416_MAX_CHAINS; i++) {
355                                 integer = swab32(pModal->antCtrlChain[i]);
356                                 pModal->antCtrlChain[i] = integer;
357                         }
358                         for (i = 0; i < 3; i++) {
359                                 word = swab16(pModal->xpaBiasLvlFreq[i]);
360                                 pModal->xpaBiasLvlFreq[i] = word;
361                         }
362
363                         for (i = 0; i < AR_EEPROM_MODAL_SPURS; i++) {
364                                 word = swab16(pModal->spurChans[i].spurChan);
365                                 pModal->spurChans[i].spurChan = word;
366                         }
367                 }
368         }
369
370         if (sum != 0xffff || ah->eep_ops->get_eeprom_ver(ah) != AR5416_EEP_VER ||
371             ah->eep_ops->get_eeprom_rev(ah) < AR5416_EEP_NO_BACK_VER) {
372                 ath_err(common, "Bad EEPROM checksum 0x%x or revision 0x%04x\n",
373                         sum, ah->eep_ops->get_eeprom_ver(ah));
374                 return -EINVAL;
375         }
376
377         /* Enable fixup for AR_AN_TOP2 if necessary */
378         if ((ah->hw_version.devid == AR9280_DEVID_PCI) &&
379             ((eep->baseEepHeader.version & 0xff) > 0x0a) &&
380             (eep->baseEepHeader.pwdclkind == 0))
381                 ah->need_an_top2_fixup = true;
382
383         if ((common->bus_ops->ath_bus_type == ATH_USB) &&
384             (AR_SREV_9280(ah)))
385                 eep->modalHeader[0].xpaBiasLvl = 0;
386
387         return 0;
388 }
389
390 static u32 ath9k_hw_def_get_eeprom(struct ath_hw *ah,
391                                    enum eeprom_param param)
392 {
393         struct ar5416_eeprom_def *eep = &ah->eeprom.def;
394         struct modal_eep_header *pModal = eep->modalHeader;
395         struct base_eep_header *pBase = &eep->baseEepHeader;
396         int band = 0;
397
398         switch (param) {
399         case EEP_NFTHRESH_5:
400                 return pModal[0].noiseFloorThreshCh[0];
401         case EEP_NFTHRESH_2:
402                 return pModal[1].noiseFloorThreshCh[0];
403         case EEP_MAC_LSW:
404                 return get_unaligned_be16(pBase->macAddr);
405         case EEP_MAC_MID:
406                 return get_unaligned_be16(pBase->macAddr + 2);
407         case EEP_MAC_MSW:
408                 return get_unaligned_be16(pBase->macAddr + 4);
409         case EEP_REG_0:
410                 return pBase->regDmn[0];
411         case EEP_OP_CAP:
412                 return pBase->deviceCap;
413         case EEP_OP_MODE:
414                 return pBase->opCapFlags;
415         case EEP_RF_SILENT:
416                 return pBase->rfSilent;
417         case EEP_OB_5:
418                 return pModal[0].ob;
419         case EEP_DB_5:
420                 return pModal[0].db;
421         case EEP_OB_2:
422                 return pModal[1].ob;
423         case EEP_DB_2:
424                 return pModal[1].db;
425         case EEP_MINOR_REV:
426                 return AR5416_VER_MASK;
427         case EEP_TX_MASK:
428                 return pBase->txMask;
429         case EEP_RX_MASK:
430                 return pBase->rxMask;
431         case EEP_FSTCLK_5G:
432                 return pBase->fastClk5g;
433         case EEP_RXGAIN_TYPE:
434                 return pBase->rxGainType;
435         case EEP_TXGAIN_TYPE:
436                 return pBase->txGainType;
437         case EEP_OL_PWRCTRL:
438                 if (AR5416_VER_MASK >= AR5416_EEP_MINOR_VER_19)
439                         return pBase->openLoopPwrCntl ? true : false;
440                 else
441                         return false;
442         case EEP_RC_CHAIN_MASK:
443                 if (AR5416_VER_MASK >= AR5416_EEP_MINOR_VER_19)
444                         return pBase->rcChainMask;
445                 else
446                         return 0;
447         case EEP_DAC_HPWR_5G:
448                 if (AR5416_VER_MASK >= AR5416_EEP_MINOR_VER_20)
449                         return pBase->dacHiPwrMode_5G;
450                 else
451                         return 0;
452         case EEP_FRAC_N_5G:
453                 if (AR5416_VER_MASK >= AR5416_EEP_MINOR_VER_22)
454                         return pBase->frac_n_5g;
455                 else
456                         return 0;
457         case EEP_PWR_TABLE_OFFSET:
458                 if (AR5416_VER_MASK >= AR5416_EEP_MINOR_VER_21)
459                         return pBase->pwr_table_offset;
460                 else
461                         return AR5416_PWR_TABLE_OFFSET_DB;
462         case EEP_ANTENNA_GAIN_2G:
463                 band = 1;
464                 /* fall through */
465         case EEP_ANTENNA_GAIN_5G:
466                 return max_t(u8, max_t(u8,
467                         pModal[band].antennaGainCh[0],
468                         pModal[band].antennaGainCh[1]),
469                         pModal[band].antennaGainCh[2]);
470         default:
471                 return 0;
472         }
473 }
474
475 static void ath9k_hw_def_set_gain(struct ath_hw *ah,
476                                   struct modal_eep_header *pModal,
477                                   struct ar5416_eeprom_def *eep,
478                                   u8 txRxAttenLocal, int regChainOffset, int i)
479 {
480         if (AR5416_VER_MASK >= AR5416_EEP_MINOR_VER_3) {
481                 txRxAttenLocal = pModal->txRxAttenCh[i];
482
483                 if (AR_SREV_9280_20_OR_LATER(ah)) {
484                         REG_RMW_FIELD(ah, AR_PHY_GAIN_2GHZ + regChainOffset,
485                               AR_PHY_GAIN_2GHZ_XATTEN1_MARGIN,
486                               pModal->bswMargin[i]);
487                         REG_RMW_FIELD(ah, AR_PHY_GAIN_2GHZ + regChainOffset,
488                               AR_PHY_GAIN_2GHZ_XATTEN1_DB,
489                               pModal->bswAtten[i]);
490                         REG_RMW_FIELD(ah, AR_PHY_GAIN_2GHZ + regChainOffset,
491                               AR_PHY_GAIN_2GHZ_XATTEN2_MARGIN,
492                               pModal->xatten2Margin[i]);
493                         REG_RMW_FIELD(ah, AR_PHY_GAIN_2GHZ + regChainOffset,
494                               AR_PHY_GAIN_2GHZ_XATTEN2_DB,
495                               pModal->xatten2Db[i]);
496                 } else {
497                         REG_WRITE(ah, AR_PHY_GAIN_2GHZ + regChainOffset,
498                           (REG_READ(ah, AR_PHY_GAIN_2GHZ + regChainOffset) &
499                            ~AR_PHY_GAIN_2GHZ_BSW_MARGIN)
500                           | SM(pModal-> bswMargin[i],
501                                AR_PHY_GAIN_2GHZ_BSW_MARGIN));
502                         REG_WRITE(ah, AR_PHY_GAIN_2GHZ + regChainOffset,
503                           (REG_READ(ah, AR_PHY_GAIN_2GHZ + regChainOffset) &
504                            ~AR_PHY_GAIN_2GHZ_BSW_ATTEN)
505                           | SM(pModal->bswAtten[i],
506                                AR_PHY_GAIN_2GHZ_BSW_ATTEN));
507                 }
508         }
509
510         if (AR_SREV_9280_20_OR_LATER(ah)) {
511                 REG_RMW_FIELD(ah,
512                       AR_PHY_RXGAIN + regChainOffset,
513                       AR9280_PHY_RXGAIN_TXRX_ATTEN, txRxAttenLocal);
514                 REG_RMW_FIELD(ah,
515                       AR_PHY_RXGAIN + regChainOffset,
516                       AR9280_PHY_RXGAIN_TXRX_MARGIN, pModal->rxTxMarginCh[i]);
517         } else {
518                 REG_WRITE(ah,
519                           AR_PHY_RXGAIN + regChainOffset,
520                           (REG_READ(ah, AR_PHY_RXGAIN + regChainOffset) &
521                            ~AR_PHY_RXGAIN_TXRX_ATTEN)
522                           | SM(txRxAttenLocal, AR_PHY_RXGAIN_TXRX_ATTEN));
523                 REG_WRITE(ah,
524                           AR_PHY_GAIN_2GHZ + regChainOffset,
525                           (REG_READ(ah, AR_PHY_GAIN_2GHZ + regChainOffset) &
526                            ~AR_PHY_GAIN_2GHZ_RXTX_MARGIN) |
527                           SM(pModal->rxTxMarginCh[i], AR_PHY_GAIN_2GHZ_RXTX_MARGIN));
528         }
529 }
530
531 static void ath9k_hw_def_set_board_values(struct ath_hw *ah,
532                                           struct ath9k_channel *chan)
533 {
534         struct modal_eep_header *pModal;
535         struct ar5416_eeprom_def *eep = &ah->eeprom.def;
536         int i, regChainOffset;
537         u8 txRxAttenLocal;
538
539         pModal = &(eep->modalHeader[IS_CHAN_2GHZ(chan)]);
540         txRxAttenLocal = IS_CHAN_2GHZ(chan) ? 23 : 44;
541
542         REG_WRITE(ah, AR_PHY_SWITCH_COM, pModal->antCtrlCommon & 0xffff);
543
544         for (i = 0; i < AR5416_MAX_CHAINS; i++) {
545                 if (AR_SREV_9280(ah)) {
546                         if (i >= 2)
547                                 break;
548                 }
549
550                 if ((ah->rxchainmask == 5 || ah->txchainmask == 5) && (i != 0))
551                         regChainOffset = (i == 1) ? 0x2000 : 0x1000;
552                 else
553                         regChainOffset = i * 0x1000;
554
555                 REG_WRITE(ah, AR_PHY_SWITCH_CHAIN_0 + regChainOffset,
556                           pModal->antCtrlChain[i]);
557
558                 REG_WRITE(ah, AR_PHY_TIMING_CTRL4(0) + regChainOffset,
559                           (REG_READ(ah, AR_PHY_TIMING_CTRL4(0) + regChainOffset) &
560                            ~(AR_PHY_TIMING_CTRL4_IQCORR_Q_Q_COFF |
561                              AR_PHY_TIMING_CTRL4_IQCORR_Q_I_COFF)) |
562                           SM(pModal->iqCalICh[i],
563                              AR_PHY_TIMING_CTRL4_IQCORR_Q_I_COFF) |
564                           SM(pModal->iqCalQCh[i],
565                              AR_PHY_TIMING_CTRL4_IQCORR_Q_Q_COFF));
566
567                 ath9k_hw_def_set_gain(ah, pModal, eep, txRxAttenLocal,
568                                       regChainOffset, i);
569         }
570
571         if (AR_SREV_9280_20_OR_LATER(ah)) {
572                 if (IS_CHAN_2GHZ(chan)) {
573                         ath9k_hw_analog_shift_rmw(ah, AR_AN_RF2G1_CH0,
574                                                   AR_AN_RF2G1_CH0_OB,
575                                                   AR_AN_RF2G1_CH0_OB_S,
576                                                   pModal->ob);
577                         ath9k_hw_analog_shift_rmw(ah, AR_AN_RF2G1_CH0,
578                                                   AR_AN_RF2G1_CH0_DB,
579                                                   AR_AN_RF2G1_CH0_DB_S,
580                                                   pModal->db);
581                         ath9k_hw_analog_shift_rmw(ah, AR_AN_RF2G1_CH1,
582                                                   AR_AN_RF2G1_CH1_OB,
583                                                   AR_AN_RF2G1_CH1_OB_S,
584                                                   pModal->ob_ch1);
585                         ath9k_hw_analog_shift_rmw(ah, AR_AN_RF2G1_CH1,
586                                                   AR_AN_RF2G1_CH1_DB,
587                                                   AR_AN_RF2G1_CH1_DB_S,
588                                                   pModal->db_ch1);
589                 } else {
590                         ath9k_hw_analog_shift_rmw(ah, AR_AN_RF5G1_CH0,
591                                                   AR_AN_RF5G1_CH0_OB5,
592                                                   AR_AN_RF5G1_CH0_OB5_S,
593                                                   pModal->ob);
594                         ath9k_hw_analog_shift_rmw(ah, AR_AN_RF5G1_CH0,
595                                                   AR_AN_RF5G1_CH0_DB5,
596                                                   AR_AN_RF5G1_CH0_DB5_S,
597                                                   pModal->db);
598                         ath9k_hw_analog_shift_rmw(ah, AR_AN_RF5G1_CH1,
599                                                   AR_AN_RF5G1_CH1_OB5,
600                                                   AR_AN_RF5G1_CH1_OB5_S,
601                                                   pModal->ob_ch1);
602                         ath9k_hw_analog_shift_rmw(ah, AR_AN_RF5G1_CH1,
603                                                   AR_AN_RF5G1_CH1_DB5,
604                                                   AR_AN_RF5G1_CH1_DB5_S,
605                                                   pModal->db_ch1);
606                 }
607                 ath9k_hw_analog_shift_rmw(ah, AR_AN_TOP2,
608                                           AR_AN_TOP2_XPABIAS_LVL,
609                                           AR_AN_TOP2_XPABIAS_LVL_S,
610                                           pModal->xpaBiasLvl);
611                 ath9k_hw_analog_shift_rmw(ah, AR_AN_TOP2,
612                                           AR_AN_TOP2_LOCALBIAS,
613                                           AR_AN_TOP2_LOCALBIAS_S,
614                                           !!(pModal->lna_ctl &
615                                              LNA_CTL_LOCAL_BIAS));
616                 REG_RMW_FIELD(ah, AR_PHY_XPA_CFG, AR_PHY_FORCE_XPA_CFG,
617                               !!(pModal->lna_ctl & LNA_CTL_FORCE_XPA));
618         }
619
620         REG_RMW_FIELD(ah, AR_PHY_SETTLING, AR_PHY_SETTLING_SWITCH,
621                       pModal->switchSettling);
622         REG_RMW_FIELD(ah, AR_PHY_DESIRED_SZ, AR_PHY_DESIRED_SZ_ADC,
623                       pModal->adcDesiredSize);
624
625         if (!AR_SREV_9280_20_OR_LATER(ah))
626                 REG_RMW_FIELD(ah, AR_PHY_DESIRED_SZ,
627                               AR_PHY_DESIRED_SZ_PGA,
628                               pModal->pgaDesiredSize);
629
630         REG_WRITE(ah, AR_PHY_RF_CTL4,
631                   SM(pModal->txEndToXpaOff, AR_PHY_RF_CTL4_TX_END_XPAA_OFF)
632                   | SM(pModal->txEndToXpaOff,
633                        AR_PHY_RF_CTL4_TX_END_XPAB_OFF)
634                   | SM(pModal->txFrameToXpaOn,
635                        AR_PHY_RF_CTL4_FRAME_XPAA_ON)
636                   | SM(pModal->txFrameToXpaOn,
637                        AR_PHY_RF_CTL4_FRAME_XPAB_ON));
638
639         REG_RMW_FIELD(ah, AR_PHY_RF_CTL3, AR_PHY_TX_END_TO_A2_RX_ON,
640                       pModal->txEndToRxOn);
641
642         if (AR_SREV_9280_20_OR_LATER(ah)) {
643                 REG_RMW_FIELD(ah, AR_PHY_CCA, AR9280_PHY_CCA_THRESH62,
644                               pModal->thresh62);
645                 REG_RMW_FIELD(ah, AR_PHY_EXT_CCA0,
646                               AR_PHY_EXT_CCA0_THRESH62,
647                               pModal->thresh62);
648         } else {
649                 REG_RMW_FIELD(ah, AR_PHY_CCA, AR_PHY_CCA_THRESH62,
650                               pModal->thresh62);
651                 REG_RMW_FIELD(ah, AR_PHY_EXT_CCA,
652                               AR_PHY_EXT_CCA_THRESH62,
653                               pModal->thresh62);
654         }
655
656         if (AR5416_VER_MASK >= AR5416_EEP_MINOR_VER_2) {
657                 REG_RMW_FIELD(ah, AR_PHY_RF_CTL2,
658                               AR_PHY_TX_END_DATA_START,
659                               pModal->txFrameToDataStart);
660                 REG_RMW_FIELD(ah, AR_PHY_RF_CTL2, AR_PHY_TX_END_PA_ON,
661                               pModal->txFrameToPaOn);
662         }
663
664         if (AR5416_VER_MASK >= AR5416_EEP_MINOR_VER_3) {
665                 if (IS_CHAN_HT40(chan))
666                         REG_RMW_FIELD(ah, AR_PHY_SETTLING,
667                                       AR_PHY_SETTLING_SWITCH,
668                                       pModal->swSettleHt40);
669         }
670
671         if (AR_SREV_9280_20_OR_LATER(ah) &&
672             AR5416_VER_MASK >= AR5416_EEP_MINOR_VER_19)
673                 REG_RMW_FIELD(ah, AR_PHY_CCK_TX_CTRL,
674                               AR_PHY_CCK_TX_CTRL_TX_DAC_SCALE_CCK,
675                               pModal->miscBits);
676
677
678         if (AR_SREV_9280_20(ah) && AR5416_VER_MASK >= AR5416_EEP_MINOR_VER_20) {
679                 if (IS_CHAN_2GHZ(chan))
680                         REG_RMW_FIELD(ah, AR_AN_TOP1, AR_AN_TOP1_DACIPMODE,
681                                         eep->baseEepHeader.dacLpMode);
682                 else if (eep->baseEepHeader.dacHiPwrMode_5G)
683                         REG_RMW_FIELD(ah, AR_AN_TOP1, AR_AN_TOP1_DACIPMODE, 0);
684                 else
685                         REG_RMW_FIELD(ah, AR_AN_TOP1, AR_AN_TOP1_DACIPMODE,
686                                       eep->baseEepHeader.dacLpMode);
687
688                 udelay(100);
689
690                 REG_RMW_FIELD(ah, AR_PHY_FRAME_CTL, AR_PHY_FRAME_CTL_TX_CLIP,
691                               pModal->miscBits >> 2);
692
693                 REG_RMW_FIELD(ah, AR_PHY_TX_PWRCTRL9,
694                               AR_PHY_TX_DESIRED_SCALE_CCK,
695                               eep->baseEepHeader.desiredScaleCCK);
696         }
697 }
698
699 static void ath9k_hw_def_set_addac(struct ath_hw *ah,
700                                    struct ath9k_channel *chan)
701 {
702 #define XPA_LVL_FREQ(cnt) (pModal->xpaBiasLvlFreq[cnt])
703         struct modal_eep_header *pModal;
704         struct ar5416_eeprom_def *eep = &ah->eeprom.def;
705         u8 biaslevel;
706
707         if (ah->hw_version.macVersion != AR_SREV_VERSION_9160)
708                 return;
709
710         if (ah->eep_ops->get_eeprom_rev(ah) < AR5416_EEP_MINOR_VER_7)
711                 return;
712
713         pModal = &(eep->modalHeader[IS_CHAN_2GHZ(chan)]);
714
715         if (pModal->xpaBiasLvl != 0xff) {
716                 biaslevel = pModal->xpaBiasLvl;
717         } else {
718                 u16 resetFreqBin, freqBin, freqCount = 0;
719                 struct chan_centers centers;
720
721                 ath9k_hw_get_channel_centers(ah, chan, &centers);
722
723                 resetFreqBin = FREQ2FBIN(centers.synth_center,
724                                          IS_CHAN_2GHZ(chan));
725                 freqBin = XPA_LVL_FREQ(0) & 0xff;
726                 biaslevel = (u8) (XPA_LVL_FREQ(0) >> 14);
727
728                 freqCount++;
729
730                 while (freqCount < 3) {
731                         if (XPA_LVL_FREQ(freqCount) == 0x0)
732                                 break;
733
734                         freqBin = XPA_LVL_FREQ(freqCount) & 0xff;
735                         if (resetFreqBin >= freqBin)
736                                 biaslevel = (u8)(XPA_LVL_FREQ(freqCount) >> 14);
737                         else
738                                 break;
739                         freqCount++;
740                 }
741         }
742
743         if (IS_CHAN_2GHZ(chan)) {
744                 INI_RA(&ah->iniAddac, 7, 1) = (INI_RA(&ah->iniAddac,
745                                         7, 1) & (~0x18)) | biaslevel << 3;
746         } else {
747                 INI_RA(&ah->iniAddac, 6, 1) = (INI_RA(&ah->iniAddac,
748                                         6, 1) & (~0xc0)) | biaslevel << 6;
749         }
750 #undef XPA_LVL_FREQ
751 }
752
753 static int16_t ath9k_change_gain_boundary_setting(struct ath_hw *ah,
754                                 u16 *gb,
755                                 u16 numXpdGain,
756                                 u16 pdGainOverlap_t2,
757                                 int8_t pwr_table_offset,
758                                 int16_t *diff)
759
760 {
761         u16 k;
762
763         /* Prior to writing the boundaries or the pdadc vs. power table
764          * into the chip registers the default starting point on the pdadc
765          * vs. power table needs to be checked and the curve boundaries
766          * adjusted accordingly
767          */
768         if (AR_SREV_9280_20_OR_LATER(ah)) {
769                 u16 gb_limit;
770
771                 if (AR5416_PWR_TABLE_OFFSET_DB != pwr_table_offset) {
772                         /* get the difference in dB */
773                         *diff = (u16)(pwr_table_offset - AR5416_PWR_TABLE_OFFSET_DB);
774                         /* get the number of half dB steps */
775                         *diff *= 2;
776                         /* change the original gain boundary settings
777                          * by the number of half dB steps
778                          */
779                         for (k = 0; k < numXpdGain; k++)
780                                 gb[k] = (u16)(gb[k] - *diff);
781                 }
782                 /* Because of a hardware limitation, ensure the gain boundary
783                  * is not larger than (63 - overlap)
784                  */
785                 gb_limit = (u16)(MAX_RATE_POWER - pdGainOverlap_t2);
786
787                 for (k = 0; k < numXpdGain; k++)
788                         gb[k] = (u16)min(gb_limit, gb[k]);
789         }
790
791         return *diff;
792 }
793
794 static void ath9k_adjust_pdadc_values(struct ath_hw *ah,
795                                       int8_t pwr_table_offset,
796                                       int16_t diff,
797                                       u8 *pdadcValues)
798 {
799 #define NUM_PDADC(diff) (AR5416_NUM_PDADC_VALUES - diff)
800         u16 k;
801
802         /* If this is a board that has a pwrTableOffset that differs from
803          * the default AR5416_PWR_TABLE_OFFSET_DB then the start of the
804          * pdadc vs pwr table needs to be adjusted prior to writing to the
805          * chip.
806          */
807         if (AR_SREV_9280_20_OR_LATER(ah)) {
808                 if (AR5416_PWR_TABLE_OFFSET_DB != pwr_table_offset) {
809                         /* shift the table to start at the new offset */
810                         for (k = 0; k < (u16)NUM_PDADC(diff); k++ ) {
811                                 pdadcValues[k] = pdadcValues[k + diff];
812                         }
813
814                         /* fill the back of the table */
815                         for (k = (u16)NUM_PDADC(diff); k < NUM_PDADC(0); k++) {
816                                 pdadcValues[k] = pdadcValues[NUM_PDADC(diff)];
817                         }
818                 }
819         }
820 #undef NUM_PDADC
821 }
822
823 static void ath9k_hw_set_def_power_cal_table(struct ath_hw *ah,
824                                   struct ath9k_channel *chan)
825 {
826 #define SM_PD_GAIN(x) SM(0x38, AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_##x)
827 #define SM_PDGAIN_B(x, y) \
828                 SM((gainBoundaries[x]), AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_##y)
829         struct ath_common *common = ath9k_hw_common(ah);
830         struct ar5416_eeprom_def *pEepData = &ah->eeprom.def;
831         struct cal_data_per_freq *pRawDataset;
832         u8 *pCalBChans = NULL;
833         u16 pdGainOverlap_t2;
834         static u8 pdadcValues[AR5416_NUM_PDADC_VALUES];
835         u16 gainBoundaries[AR5416_PD_GAINS_IN_MASK];
836         u16 numPiers, i, j;
837         int16_t diff = 0;
838         u16 numXpdGain, xpdMask;
839         u16 xpdGainValues[AR5416_NUM_PD_GAINS] = { 0, 0, 0, 0 };
840         u32 reg32, regOffset, regChainOffset;
841         int16_t modalIdx;
842         int8_t pwr_table_offset;
843
844         modalIdx = IS_CHAN_2GHZ(chan) ? 1 : 0;
845         xpdMask = pEepData->modalHeader[modalIdx].xpdGain;
846
847         pwr_table_offset = ah->eep_ops->get_eeprom(ah, EEP_PWR_TABLE_OFFSET);
848
849         if ((pEepData->baseEepHeader.version & AR5416_EEP_VER_MINOR_MASK) >=
850             AR5416_EEP_MINOR_VER_2) {
851                 pdGainOverlap_t2 =
852                         pEepData->modalHeader[modalIdx].pdGainOverlap;
853         } else {
854                 pdGainOverlap_t2 = (u16)(MS(REG_READ(ah, AR_PHY_TPCRG5),
855                                             AR_PHY_TPCRG5_PD_GAIN_OVERLAP));
856         }
857
858         if (IS_CHAN_2GHZ(chan)) {
859                 pCalBChans = pEepData->calFreqPier2G;
860                 numPiers = AR5416_NUM_2G_CAL_PIERS;
861         } else {
862                 pCalBChans = pEepData->calFreqPier5G;
863                 numPiers = AR5416_NUM_5G_CAL_PIERS;
864         }
865
866         if (OLC_FOR_AR9280_20_LATER && IS_CHAN_2GHZ(chan)) {
867                 pRawDataset = pEepData->calPierData2G[0];
868                 ah->initPDADC = ((struct calDataPerFreqOpLoop *)
869                                  pRawDataset)->vpdPdg[0][0];
870         }
871
872         numXpdGain = 0;
873
874         for (i = 1; i <= AR5416_PD_GAINS_IN_MASK; i++) {
875                 if ((xpdMask >> (AR5416_PD_GAINS_IN_MASK - i)) & 1) {
876                         if (numXpdGain >= AR5416_NUM_PD_GAINS)
877                                 break;
878                         xpdGainValues[numXpdGain] =
879                                 (u16)(AR5416_PD_GAINS_IN_MASK - i);
880                         numXpdGain++;
881                 }
882         }
883
884         REG_RMW_FIELD(ah, AR_PHY_TPCRG1, AR_PHY_TPCRG1_NUM_PD_GAIN,
885                       (numXpdGain - 1) & 0x3);
886         REG_RMW_FIELD(ah, AR_PHY_TPCRG1, AR_PHY_TPCRG1_PD_GAIN_1,
887                       xpdGainValues[0]);
888         REG_RMW_FIELD(ah, AR_PHY_TPCRG1, AR_PHY_TPCRG1_PD_GAIN_2,
889                       xpdGainValues[1]);
890         REG_RMW_FIELD(ah, AR_PHY_TPCRG1, AR_PHY_TPCRG1_PD_GAIN_3,
891                       xpdGainValues[2]);
892
893         for (i = 0; i < AR5416_MAX_CHAINS; i++) {
894                 if ((ah->rxchainmask == 5 || ah->txchainmask == 5) &&
895                     (i != 0)) {
896                         regChainOffset = (i == 1) ? 0x2000 : 0x1000;
897                 } else
898                         regChainOffset = i * 0x1000;
899
900                 if (pEepData->baseEepHeader.txMask & (1 << i)) {
901                         if (IS_CHAN_2GHZ(chan))
902                                 pRawDataset = pEepData->calPierData2G[i];
903                         else
904                                 pRawDataset = pEepData->calPierData5G[i];
905
906
907                         if (OLC_FOR_AR9280_20_LATER) {
908                                 u8 pcdacIdx;
909                                 u8 txPower;
910
911                                 ath9k_get_txgain_index(ah, chan,
912                                 (struct calDataPerFreqOpLoop *)pRawDataset,
913                                 pCalBChans, numPiers, &txPower, &pcdacIdx);
914                                 ath9k_olc_get_pdadcs(ah, pcdacIdx,
915                                                      txPower/2, pdadcValues);
916                         } else {
917                                 ath9k_hw_get_gain_boundaries_pdadcs(ah,
918                                                         chan, pRawDataset,
919                                                         pCalBChans, numPiers,
920                                                         pdGainOverlap_t2,
921                                                         gainBoundaries,
922                                                         pdadcValues,
923                                                         numXpdGain);
924                         }
925
926                         diff = ath9k_change_gain_boundary_setting(ah,
927                                                            gainBoundaries,
928                                                            numXpdGain,
929                                                            pdGainOverlap_t2,
930                                                            pwr_table_offset,
931                                                            &diff);
932
933                         ENABLE_REGWRITE_BUFFER(ah);
934
935                         if (OLC_FOR_AR9280_20_LATER) {
936                                 REG_WRITE(ah,
937                                         AR_PHY_TPCRG5 + regChainOffset,
938                                         SM(0x6,
939                                         AR_PHY_TPCRG5_PD_GAIN_OVERLAP) |
940                                         SM_PD_GAIN(1) | SM_PD_GAIN(2) |
941                                         SM_PD_GAIN(3) | SM_PD_GAIN(4));
942                         } else {
943                                 REG_WRITE(ah,
944                                         AR_PHY_TPCRG5 + regChainOffset,
945                                         SM(pdGainOverlap_t2,
946                                         AR_PHY_TPCRG5_PD_GAIN_OVERLAP)|
947                                         SM_PDGAIN_B(0, 1) |
948                                         SM_PDGAIN_B(1, 2) |
949                                         SM_PDGAIN_B(2, 3) |
950                                         SM_PDGAIN_B(3, 4));
951                         }
952
953                         ath9k_adjust_pdadc_values(ah, pwr_table_offset,
954                                                   diff, pdadcValues);
955
956                         regOffset = AR_PHY_BASE + (672 << 2) + regChainOffset;
957                         for (j = 0; j < 32; j++) {
958                                 reg32 = get_unaligned_le32(&pdadcValues[4 * j]);
959                                 REG_WRITE(ah, regOffset, reg32);
960
961                                 ath_dbg(common, EEPROM,
962                                         "PDADC (%d,%4x): %4.4x %8.8x\n",
963                                         i, regChainOffset, regOffset,
964                                         reg32);
965                                 ath_dbg(common, EEPROM,
966                                         "PDADC: Chain %d | PDADC %3d Value %3d | PDADC %3d Value %3d | PDADC %3d Value %3d | PDADC %3d Value %3d |\n",
967                                         i, 4 * j, pdadcValues[4 * j],
968                                         4 * j + 1, pdadcValues[4 * j + 1],
969                                         4 * j + 2, pdadcValues[4 * j + 2],
970                                         4 * j + 3, pdadcValues[4 * j + 3]);
971
972                                 regOffset += 4;
973                         }
974                         REGWRITE_BUFFER_FLUSH(ah);
975                 }
976         }
977
978 #undef SM_PD_GAIN
979 #undef SM_PDGAIN_B
980 }
981
982 static void ath9k_hw_set_def_power_per_rate_table(struct ath_hw *ah,
983                                                   struct ath9k_channel *chan,
984                                                   int16_t *ratesArray,
985                                                   u16 cfgCtl,
986                                                   u16 antenna_reduction,
987                                                   u16 powerLimit)
988 {
989         struct ar5416_eeprom_def *pEepData = &ah->eeprom.def;
990         u16 twiceMaxEdgePower;
991         int i;
992         struct cal_ctl_data *rep;
993         struct cal_target_power_leg targetPowerOfdm, targetPowerCck = {
994                 0, { 0, 0, 0, 0}
995         };
996         struct cal_target_power_leg targetPowerOfdmExt = {
997                 0, { 0, 0, 0, 0} }, targetPowerCckExt = {
998                 0, { 0, 0, 0, 0 }
999         };
1000         struct cal_target_power_ht targetPowerHt20, targetPowerHt40 = {
1001                 0, {0, 0, 0, 0}
1002         };
1003         u16 scaledPower = 0, minCtlPower;
1004         static const u16 ctlModesFor11a[] = {
1005                 CTL_11A, CTL_5GHT20, CTL_11A_EXT, CTL_5GHT40
1006         };
1007         static const u16 ctlModesFor11g[] = {
1008                 CTL_11B, CTL_11G, CTL_2GHT20,
1009                 CTL_11B_EXT, CTL_11G_EXT, CTL_2GHT40
1010         };
1011         u16 numCtlModes;
1012         const u16 *pCtlMode;
1013         u16 ctlMode, freq;
1014         struct chan_centers centers;
1015         int tx_chainmask;
1016         u16 twiceMinEdgePower;
1017
1018         tx_chainmask = ah->txchainmask;
1019
1020         ath9k_hw_get_channel_centers(ah, chan, &centers);
1021
1022         scaledPower = ath9k_hw_get_scaled_power(ah, powerLimit,
1023                                                 antenna_reduction);
1024
1025         if (IS_CHAN_2GHZ(chan)) {
1026                 numCtlModes = ARRAY_SIZE(ctlModesFor11g) -
1027                         SUB_NUM_CTL_MODES_AT_2G_40;
1028                 pCtlMode = ctlModesFor11g;
1029
1030                 ath9k_hw_get_legacy_target_powers(ah, chan,
1031                         pEepData->calTargetPowerCck,
1032                         AR5416_NUM_2G_CCK_TARGET_POWERS,
1033                         &targetPowerCck, 4, false);
1034                 ath9k_hw_get_legacy_target_powers(ah, chan,
1035                         pEepData->calTargetPower2G,
1036                         AR5416_NUM_2G_20_TARGET_POWERS,
1037                         &targetPowerOfdm, 4, false);
1038                 ath9k_hw_get_target_powers(ah, chan,
1039                         pEepData->calTargetPower2GHT20,
1040                         AR5416_NUM_2G_20_TARGET_POWERS,
1041                         &targetPowerHt20, 8, false);
1042
1043                 if (IS_CHAN_HT40(chan)) {
1044                         numCtlModes = ARRAY_SIZE(ctlModesFor11g);
1045                         ath9k_hw_get_target_powers(ah, chan,
1046                                 pEepData->calTargetPower2GHT40,
1047                                 AR5416_NUM_2G_40_TARGET_POWERS,
1048                                 &targetPowerHt40, 8, true);
1049                         ath9k_hw_get_legacy_target_powers(ah, chan,
1050                                 pEepData->calTargetPowerCck,
1051                                 AR5416_NUM_2G_CCK_TARGET_POWERS,
1052                                 &targetPowerCckExt, 4, true);
1053                         ath9k_hw_get_legacy_target_powers(ah, chan,
1054                                 pEepData->calTargetPower2G,
1055                                 AR5416_NUM_2G_20_TARGET_POWERS,
1056                                 &targetPowerOfdmExt, 4, true);
1057                 }
1058         } else {
1059                 numCtlModes = ARRAY_SIZE(ctlModesFor11a) -
1060                         SUB_NUM_CTL_MODES_AT_5G_40;
1061                 pCtlMode = ctlModesFor11a;
1062
1063                 ath9k_hw_get_legacy_target_powers(ah, chan,
1064                         pEepData->calTargetPower5G,
1065                         AR5416_NUM_5G_20_TARGET_POWERS,
1066                         &targetPowerOfdm, 4, false);
1067                 ath9k_hw_get_target_powers(ah, chan,
1068                         pEepData->calTargetPower5GHT20,
1069                         AR5416_NUM_5G_20_TARGET_POWERS,
1070                         &targetPowerHt20, 8, false);
1071
1072                 if (IS_CHAN_HT40(chan)) {
1073                         numCtlModes = ARRAY_SIZE(ctlModesFor11a);
1074                         ath9k_hw_get_target_powers(ah, chan,
1075                                 pEepData->calTargetPower5GHT40,
1076                                 AR5416_NUM_5G_40_TARGET_POWERS,
1077                                 &targetPowerHt40, 8, true);
1078                         ath9k_hw_get_legacy_target_powers(ah, chan,
1079                                 pEepData->calTargetPower5G,
1080                                 AR5416_NUM_5G_20_TARGET_POWERS,
1081                                 &targetPowerOfdmExt, 4, true);
1082                 }
1083         }
1084
1085         for (ctlMode = 0; ctlMode < numCtlModes; ctlMode++) {
1086                 bool isHt40CtlMode = (pCtlMode[ctlMode] == CTL_5GHT40) ||
1087                         (pCtlMode[ctlMode] == CTL_2GHT40);
1088                 if (isHt40CtlMode)
1089                         freq = centers.synth_center;
1090                 else if (pCtlMode[ctlMode] & EXT_ADDITIVE)
1091                         freq = centers.ext_center;
1092                 else
1093                         freq = centers.ctl_center;
1094
1095                 twiceMaxEdgePower = MAX_RATE_POWER;
1096
1097                 for (i = 0; (i < AR5416_NUM_CTLS) && pEepData->ctlIndex[i]; i++) {
1098                         if ((((cfgCtl & ~CTL_MODE_M) |
1099                               (pCtlMode[ctlMode] & CTL_MODE_M)) ==
1100                              pEepData->ctlIndex[i]) ||
1101                             (((cfgCtl & ~CTL_MODE_M) |
1102                               (pCtlMode[ctlMode] & CTL_MODE_M)) ==
1103                              ((pEepData->ctlIndex[i] & CTL_MODE_M) | SD_NO_CTL))) {
1104                                 rep = &(pEepData->ctlData[i]);
1105
1106                                 twiceMinEdgePower = ath9k_hw_get_max_edge_power(freq,
1107                                 rep->ctlEdges[ar5416_get_ntxchains(tx_chainmask) - 1],
1108                                 IS_CHAN_2GHZ(chan), AR5416_NUM_BAND_EDGES);
1109
1110                                 if ((cfgCtl & ~CTL_MODE_M) == SD_NO_CTL) {
1111                                         twiceMaxEdgePower = min(twiceMaxEdgePower,
1112                                                                 twiceMinEdgePower);
1113                                 } else {
1114                                         twiceMaxEdgePower = twiceMinEdgePower;
1115                                         break;
1116                                 }
1117                         }
1118                 }
1119
1120                 minCtlPower = min(twiceMaxEdgePower, scaledPower);
1121
1122                 switch (pCtlMode[ctlMode]) {
1123                 case CTL_11B:
1124                         for (i = 0; i < ARRAY_SIZE(targetPowerCck.tPow2x); i++) {
1125                                 targetPowerCck.tPow2x[i] =
1126                                         min((u16)targetPowerCck.tPow2x[i],
1127                                             minCtlPower);
1128                         }
1129                         break;
1130                 case CTL_11A:
1131                 case CTL_11G:
1132                         for (i = 0; i < ARRAY_SIZE(targetPowerOfdm.tPow2x); i++) {
1133                                 targetPowerOfdm.tPow2x[i] =
1134                                         min((u16)targetPowerOfdm.tPow2x[i],
1135                                             minCtlPower);
1136                         }
1137                         break;
1138                 case CTL_5GHT20:
1139                 case CTL_2GHT20:
1140                         for (i = 0; i < ARRAY_SIZE(targetPowerHt20.tPow2x); i++) {
1141                                 targetPowerHt20.tPow2x[i] =
1142                                         min((u16)targetPowerHt20.tPow2x[i],
1143                                             minCtlPower);
1144                         }
1145                         break;
1146                 case CTL_11B_EXT:
1147                         targetPowerCckExt.tPow2x[0] = min((u16)
1148                                         targetPowerCckExt.tPow2x[0],
1149                                         minCtlPower);
1150                         break;
1151                 case CTL_11A_EXT:
1152                 case CTL_11G_EXT:
1153                         targetPowerOfdmExt.tPow2x[0] = min((u16)
1154                                         targetPowerOfdmExt.tPow2x[0],
1155                                         minCtlPower);
1156                         break;
1157                 case CTL_5GHT40:
1158                 case CTL_2GHT40:
1159                         for (i = 0; i < ARRAY_SIZE(targetPowerHt40.tPow2x); i++) {
1160                                 targetPowerHt40.tPow2x[i] =
1161                                         min((u16)targetPowerHt40.tPow2x[i],
1162                                             minCtlPower);
1163                         }
1164                         break;
1165                 default:
1166                         break;
1167                 }
1168         }
1169
1170         ratesArray[rate6mb] = ratesArray[rate9mb] = ratesArray[rate12mb] =
1171                 ratesArray[rate18mb] = ratesArray[rate24mb] =
1172                 targetPowerOfdm.tPow2x[0];
1173         ratesArray[rate36mb] = targetPowerOfdm.tPow2x[1];
1174         ratesArray[rate48mb] = targetPowerOfdm.tPow2x[2];
1175         ratesArray[rate54mb] = targetPowerOfdm.tPow2x[3];
1176         ratesArray[rateXr] = targetPowerOfdm.tPow2x[0];
1177
1178         for (i = 0; i < ARRAY_SIZE(targetPowerHt20.tPow2x); i++)
1179                 ratesArray[rateHt20_0 + i] = targetPowerHt20.tPow2x[i];
1180
1181         if (IS_CHAN_2GHZ(chan)) {
1182                 ratesArray[rate1l] = targetPowerCck.tPow2x[0];
1183                 ratesArray[rate2s] = ratesArray[rate2l] =
1184                         targetPowerCck.tPow2x[1];
1185                 ratesArray[rate5_5s] = ratesArray[rate5_5l] =
1186                         targetPowerCck.tPow2x[2];
1187                 ratesArray[rate11s] = ratesArray[rate11l] =
1188                         targetPowerCck.tPow2x[3];
1189         }
1190         if (IS_CHAN_HT40(chan)) {
1191                 for (i = 0; i < ARRAY_SIZE(targetPowerHt40.tPow2x); i++) {
1192                         ratesArray[rateHt40_0 + i] =
1193                                 targetPowerHt40.tPow2x[i];
1194                 }
1195                 ratesArray[rateDupOfdm] = targetPowerHt40.tPow2x[0];
1196                 ratesArray[rateDupCck] = targetPowerHt40.tPow2x[0];
1197                 ratesArray[rateExtOfdm] = targetPowerOfdmExt.tPow2x[0];
1198                 if (IS_CHAN_2GHZ(chan)) {
1199                         ratesArray[rateExtCck] =
1200                                 targetPowerCckExt.tPow2x[0];
1201                 }
1202         }
1203 }
1204
1205 static void ath9k_hw_def_set_txpower(struct ath_hw *ah,
1206                                     struct ath9k_channel *chan,
1207                                     u16 cfgCtl,
1208                                     u8 twiceAntennaReduction,
1209                                     u8 powerLimit, bool test)
1210 {
1211 #define RT_AR_DELTA(x) (ratesArray[x] - cck_ofdm_delta)
1212         struct ath_regulatory *regulatory = ath9k_hw_regulatory(ah);
1213         struct ar5416_eeprom_def *pEepData = &ah->eeprom.def;
1214         struct modal_eep_header *pModal =
1215                 &(pEepData->modalHeader[IS_CHAN_2GHZ(chan)]);
1216         int16_t ratesArray[Ar5416RateSize];
1217         u8 ht40PowerIncForPdadc = 2;
1218         int i, cck_ofdm_delta = 0;
1219
1220         memset(ratesArray, 0, sizeof(ratesArray));
1221
1222         if ((pEepData->baseEepHeader.version & AR5416_EEP_VER_MINOR_MASK) >=
1223             AR5416_EEP_MINOR_VER_2) {
1224                 ht40PowerIncForPdadc = pModal->ht40PowerIncForPdadc;
1225         }
1226
1227         ath9k_hw_set_def_power_per_rate_table(ah, chan,
1228                                                &ratesArray[0], cfgCtl,
1229                                                twiceAntennaReduction,
1230                                                powerLimit);
1231
1232         ath9k_hw_set_def_power_cal_table(ah, chan);
1233
1234         regulatory->max_power_level = 0;
1235         for (i = 0; i < ARRAY_SIZE(ratesArray); i++) {
1236                 if (ratesArray[i] > MAX_RATE_POWER)
1237                         ratesArray[i] = MAX_RATE_POWER;
1238                 if (ratesArray[i] > regulatory->max_power_level)
1239                         regulatory->max_power_level = ratesArray[i];
1240         }
1241
1242         ath9k_hw_update_regulatory_maxpower(ah);
1243
1244         if (test)
1245                 return;
1246
1247         if (AR_SREV_9280_20_OR_LATER(ah)) {
1248                 for (i = 0; i < Ar5416RateSize; i++) {
1249                         int8_t pwr_table_offset;
1250
1251                         pwr_table_offset = ah->eep_ops->get_eeprom(ah,
1252                                                         EEP_PWR_TABLE_OFFSET);
1253                         ratesArray[i] -= pwr_table_offset * 2;
1254                 }
1255         }
1256
1257         ENABLE_REGWRITE_BUFFER(ah);
1258
1259         REG_WRITE(ah, AR_PHY_POWER_TX_RATE1,
1260                   ATH9K_POW_SM(ratesArray[rate18mb], 24)
1261                   | ATH9K_POW_SM(ratesArray[rate12mb], 16)
1262                   | ATH9K_POW_SM(ratesArray[rate9mb], 8)
1263                   | ATH9K_POW_SM(ratesArray[rate6mb], 0));
1264         REG_WRITE(ah, AR_PHY_POWER_TX_RATE2,
1265                   ATH9K_POW_SM(ratesArray[rate54mb], 24)
1266                   | ATH9K_POW_SM(ratesArray[rate48mb], 16)
1267                   | ATH9K_POW_SM(ratesArray[rate36mb], 8)
1268                   | ATH9K_POW_SM(ratesArray[rate24mb], 0));
1269
1270         if (IS_CHAN_2GHZ(chan)) {
1271                 if (OLC_FOR_AR9280_20_LATER) {
1272                         cck_ofdm_delta = 2;
1273                         REG_WRITE(ah, AR_PHY_POWER_TX_RATE3,
1274                                 ATH9K_POW_SM(RT_AR_DELTA(rate2s), 24)
1275                                 | ATH9K_POW_SM(RT_AR_DELTA(rate2l), 16)
1276                                 | ATH9K_POW_SM(ratesArray[rateXr], 8)
1277                                 | ATH9K_POW_SM(RT_AR_DELTA(rate1l), 0));
1278                         REG_WRITE(ah, AR_PHY_POWER_TX_RATE4,
1279                                 ATH9K_POW_SM(RT_AR_DELTA(rate11s), 24)
1280                                 | ATH9K_POW_SM(RT_AR_DELTA(rate11l), 16)
1281                                 | ATH9K_POW_SM(RT_AR_DELTA(rate5_5s), 8)
1282                                 | ATH9K_POW_SM(RT_AR_DELTA(rate5_5l), 0));
1283                 } else {
1284                         REG_WRITE(ah, AR_PHY_POWER_TX_RATE3,
1285                                 ATH9K_POW_SM(ratesArray[rate2s], 24)
1286                                 | ATH9K_POW_SM(ratesArray[rate2l], 16)
1287                                 | ATH9K_POW_SM(ratesArray[rateXr], 8)
1288                                 | ATH9K_POW_SM(ratesArray[rate1l], 0));
1289                         REG_WRITE(ah, AR_PHY_POWER_TX_RATE4,
1290                                 ATH9K_POW_SM(ratesArray[rate11s], 24)
1291                                 | ATH9K_POW_SM(ratesArray[rate11l], 16)
1292                                 | ATH9K_POW_SM(ratesArray[rate5_5s], 8)
1293                                 | ATH9K_POW_SM(ratesArray[rate5_5l], 0));
1294                 }
1295         }
1296
1297         REG_WRITE(ah, AR_PHY_POWER_TX_RATE5,
1298                   ATH9K_POW_SM(ratesArray[rateHt20_3], 24)
1299                   | ATH9K_POW_SM(ratesArray[rateHt20_2], 16)
1300                   | ATH9K_POW_SM(ratesArray[rateHt20_1], 8)
1301                   | ATH9K_POW_SM(ratesArray[rateHt20_0], 0));
1302         REG_WRITE(ah, AR_PHY_POWER_TX_RATE6,
1303                   ATH9K_POW_SM(ratesArray[rateHt20_7], 24)
1304                   | ATH9K_POW_SM(ratesArray[rateHt20_6], 16)
1305                   | ATH9K_POW_SM(ratesArray[rateHt20_5], 8)
1306                   | ATH9K_POW_SM(ratesArray[rateHt20_4], 0));
1307
1308         if (IS_CHAN_HT40(chan)) {
1309                 REG_WRITE(ah, AR_PHY_POWER_TX_RATE7,
1310                           ATH9K_POW_SM(ratesArray[rateHt40_3] +
1311                                        ht40PowerIncForPdadc, 24)
1312                           | ATH9K_POW_SM(ratesArray[rateHt40_2] +
1313                                          ht40PowerIncForPdadc, 16)
1314                           | ATH9K_POW_SM(ratesArray[rateHt40_1] +
1315                                          ht40PowerIncForPdadc, 8)
1316                           | ATH9K_POW_SM(ratesArray[rateHt40_0] +
1317                                          ht40PowerIncForPdadc, 0));
1318                 REG_WRITE(ah, AR_PHY_POWER_TX_RATE8,
1319                           ATH9K_POW_SM(ratesArray[rateHt40_7] +
1320                                        ht40PowerIncForPdadc, 24)
1321                           | ATH9K_POW_SM(ratesArray[rateHt40_6] +
1322                                          ht40PowerIncForPdadc, 16)
1323                           | ATH9K_POW_SM(ratesArray[rateHt40_5] +
1324                                          ht40PowerIncForPdadc, 8)
1325                           | ATH9K_POW_SM(ratesArray[rateHt40_4] +
1326                                          ht40PowerIncForPdadc, 0));
1327                 if (OLC_FOR_AR9280_20_LATER) {
1328                         REG_WRITE(ah, AR_PHY_POWER_TX_RATE9,
1329                                 ATH9K_POW_SM(ratesArray[rateExtOfdm], 24)
1330                                 | ATH9K_POW_SM(RT_AR_DELTA(rateExtCck), 16)
1331                                 | ATH9K_POW_SM(ratesArray[rateDupOfdm], 8)
1332                                 | ATH9K_POW_SM(RT_AR_DELTA(rateDupCck), 0));
1333                 } else {
1334                         REG_WRITE(ah, AR_PHY_POWER_TX_RATE9,
1335                                 ATH9K_POW_SM(ratesArray[rateExtOfdm], 24)
1336                                 | ATH9K_POW_SM(ratesArray[rateExtCck], 16)
1337                                 | ATH9K_POW_SM(ratesArray[rateDupOfdm], 8)
1338                                 | ATH9K_POW_SM(ratesArray[rateDupCck], 0));
1339                 }
1340         }
1341
1342         REG_WRITE(ah, AR_PHY_POWER_TX_SUB,
1343                   ATH9K_POW_SM(pModal->pwrDecreaseFor3Chain, 6)
1344                   | ATH9K_POW_SM(pModal->pwrDecreaseFor2Chain, 0));
1345
1346         REGWRITE_BUFFER_FLUSH(ah);
1347 }
1348
1349 static u16 ath9k_hw_def_get_spur_channel(struct ath_hw *ah, u16 i, bool is2GHz)
1350 {
1351 #define EEP_DEF_SPURCHAN \
1352         (ah->eeprom.def.modalHeader[is2GHz].spurChans[i].spurChan)
1353         struct ath_common *common = ath9k_hw_common(ah);
1354
1355         u16 spur_val = AR_NO_SPUR;
1356
1357         ath_dbg(common, ANI, "Getting spur idx:%d is2Ghz:%d val:%x\n",
1358                 i, is2GHz, ah->config.spurchans[i][is2GHz]);
1359
1360         switch (ah->config.spurmode) {
1361         case SPUR_DISABLE:
1362                 break;
1363         case SPUR_ENABLE_IOCTL:
1364                 spur_val = ah->config.spurchans[i][is2GHz];
1365                 ath_dbg(common, ANI, "Getting spur val from new loc. %d\n",
1366                         spur_val);
1367                 break;
1368         case SPUR_ENABLE_EEPROM:
1369                 spur_val = EEP_DEF_SPURCHAN;
1370                 break;
1371         }
1372
1373         return spur_val;
1374
1375 #undef EEP_DEF_SPURCHAN
1376 }
1377
1378 const struct eeprom_ops eep_def_ops = {
1379         .check_eeprom           = ath9k_hw_def_check_eeprom,
1380         .get_eeprom             = ath9k_hw_def_get_eeprom,
1381         .fill_eeprom            = ath9k_hw_def_fill_eeprom,
1382         .dump_eeprom            = ath9k_hw_def_dump_eeprom,
1383         .get_eeprom_ver         = ath9k_hw_def_get_eeprom_ver,
1384         .get_eeprom_rev         = ath9k_hw_def_get_eeprom_rev,
1385         .set_board_values       = ath9k_hw_def_set_board_values,
1386         .set_addac              = ath9k_hw_def_set_addac,
1387         .set_txpower            = ath9k_hw_def_set_txpower,
1388         .get_spur_channel       = ath9k_hw_def_get_spur_channel
1389 };