cfg80211: remove enum ieee80211_band
[cascardo/linux.git] / drivers / net / wireless / ath / carl9170 / main.c
1 /*
2  * Atheros CARL9170 driver
3  *
4  * mac80211 interaction code
5  *
6  * Copyright 2008, Johannes Berg <johannes@sipsolutions.net>
7  * Copyright 2009, 2010, Christian Lamparter <chunkeey@googlemail.com>
8  *
9  * This program is free software; you can redistribute it and/or modify
10  * it under the terms of the GNU General Public License as published by
11  * the Free Software Foundation; either version 2 of the License, or
12  * (at your option) any later version.
13  *
14  * This program is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
17  * GNU General Public License for more details.
18  *
19  * You should have received a copy of the GNU General Public License
20  * along with this program; see the file COPYING.  If not, see
21  * http://www.gnu.org/licenses/.
22  *
23  * This file incorporates work covered by the following copyright and
24  * permission notice:
25  *    Copyright (c) 2007-2008 Atheros Communications, Inc.
26  *
27  *    Permission to use, copy, modify, and/or distribute this software for any
28  *    purpose with or without fee is hereby granted, provided that the above
29  *    copyright notice and this permission notice appear in all copies.
30  *
31  *    THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
32  *    WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
33  *    MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
34  *    ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
35  *    WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
36  *    ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
37  *    OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
38  */
39
40 #include <linux/slab.h>
41 #include <linux/module.h>
42 #include <linux/etherdevice.h>
43 #include <linux/random.h>
44 #include <net/mac80211.h>
45 #include <net/cfg80211.h>
46 #include "hw.h"
47 #include "carl9170.h"
48 #include "cmd.h"
49
50 static bool modparam_nohwcrypt;
51 module_param_named(nohwcrypt, modparam_nohwcrypt, bool, S_IRUGO);
52 MODULE_PARM_DESC(nohwcrypt, "Disable hardware crypto offload.");
53
54 int modparam_noht;
55 module_param_named(noht, modparam_noht, int, S_IRUGO);
56 MODULE_PARM_DESC(noht, "Disable MPDU aggregation.");
57
58 #define RATE(_bitrate, _hw_rate, _txpidx, _flags) {     \
59         .bitrate        = (_bitrate),                   \
60         .flags          = (_flags),                     \
61         .hw_value       = (_hw_rate) | (_txpidx) << 4,  \
62 }
63
64 struct ieee80211_rate __carl9170_ratetable[] = {
65         RATE(10, 0, 0, 0),
66         RATE(20, 1, 1, IEEE80211_RATE_SHORT_PREAMBLE),
67         RATE(55, 2, 2, IEEE80211_RATE_SHORT_PREAMBLE),
68         RATE(110, 3, 3, IEEE80211_RATE_SHORT_PREAMBLE),
69         RATE(60, 0xb, 0, 0),
70         RATE(90, 0xf, 0, 0),
71         RATE(120, 0xa, 0, 0),
72         RATE(180, 0xe, 0, 0),
73         RATE(240, 0x9, 0, 0),
74         RATE(360, 0xd, 1, 0),
75         RATE(480, 0x8, 2, 0),
76         RATE(540, 0xc, 3, 0),
77 };
78 #undef RATE
79
80 #define carl9170_g_ratetable    (__carl9170_ratetable + 0)
81 #define carl9170_g_ratetable_size       12
82 #define carl9170_a_ratetable    (__carl9170_ratetable + 4)
83 #define carl9170_a_ratetable_size       8
84
85 /*
86  * NB: The hw_value is used as an index into the carl9170_phy_freq_params
87  *     array in phy.c so that we don't have to do frequency lookups!
88  */
89 #define CHAN(_freq, _idx) {             \
90         .center_freq    = (_freq),      \
91         .hw_value       = (_idx),       \
92         .max_power      = 18, /* XXX */ \
93 }
94
95 static struct ieee80211_channel carl9170_2ghz_chantable[] = {
96         CHAN(2412,  0),
97         CHAN(2417,  1),
98         CHAN(2422,  2),
99         CHAN(2427,  3),
100         CHAN(2432,  4),
101         CHAN(2437,  5),
102         CHAN(2442,  6),
103         CHAN(2447,  7),
104         CHAN(2452,  8),
105         CHAN(2457,  9),
106         CHAN(2462, 10),
107         CHAN(2467, 11),
108         CHAN(2472, 12),
109         CHAN(2484, 13),
110 };
111
112 static struct ieee80211_channel carl9170_5ghz_chantable[] = {
113         CHAN(4920, 14),
114         CHAN(4940, 15),
115         CHAN(4960, 16),
116         CHAN(4980, 17),
117         CHAN(5040, 18),
118         CHAN(5060, 19),
119         CHAN(5080, 20),
120         CHAN(5180, 21),
121         CHAN(5200, 22),
122         CHAN(5220, 23),
123         CHAN(5240, 24),
124         CHAN(5260, 25),
125         CHAN(5280, 26),
126         CHAN(5300, 27),
127         CHAN(5320, 28),
128         CHAN(5500, 29),
129         CHAN(5520, 30),
130         CHAN(5540, 31),
131         CHAN(5560, 32),
132         CHAN(5580, 33),
133         CHAN(5600, 34),
134         CHAN(5620, 35),
135         CHAN(5640, 36),
136         CHAN(5660, 37),
137         CHAN(5680, 38),
138         CHAN(5700, 39),
139         CHAN(5745, 40),
140         CHAN(5765, 41),
141         CHAN(5785, 42),
142         CHAN(5805, 43),
143         CHAN(5825, 44),
144         CHAN(5170, 45),
145         CHAN(5190, 46),
146         CHAN(5210, 47),
147         CHAN(5230, 48),
148 };
149 #undef CHAN
150
151 #define CARL9170_HT_CAP                                                 \
152 {                                                                       \
153         .ht_supported   = true,                                         \
154         .cap            = IEEE80211_HT_CAP_MAX_AMSDU |                  \
155                           IEEE80211_HT_CAP_SUP_WIDTH_20_40 |            \
156                           IEEE80211_HT_CAP_SGI_40 |                     \
157                           IEEE80211_HT_CAP_DSSSCCK40 |                  \
158                           IEEE80211_HT_CAP_SM_PS,                       \
159         .ampdu_factor   = IEEE80211_HT_MAX_AMPDU_64K,                   \
160         .ampdu_density  = IEEE80211_HT_MPDU_DENSITY_8,                  \
161         .mcs            = {                                             \
162                 .rx_mask = { 0xff, 0xff, 0, 0, 0x1, 0, 0, 0, 0, 0, },   \
163                 .rx_highest = cpu_to_le16(300),                         \
164                 .tx_params = IEEE80211_HT_MCS_TX_DEFINED,               \
165         },                                                              \
166 }
167
168 static struct ieee80211_supported_band carl9170_band_2GHz = {
169         .channels       = carl9170_2ghz_chantable,
170         .n_channels     = ARRAY_SIZE(carl9170_2ghz_chantable),
171         .bitrates       = carl9170_g_ratetable,
172         .n_bitrates     = carl9170_g_ratetable_size,
173         .ht_cap         = CARL9170_HT_CAP,
174 };
175
176 static struct ieee80211_supported_band carl9170_band_5GHz = {
177         .channels       = carl9170_5ghz_chantable,
178         .n_channels     = ARRAY_SIZE(carl9170_5ghz_chantable),
179         .bitrates       = carl9170_a_ratetable,
180         .n_bitrates     = carl9170_a_ratetable_size,
181         .ht_cap         = CARL9170_HT_CAP,
182 };
183
184 static void carl9170_ampdu_gc(struct ar9170 *ar)
185 {
186         struct carl9170_sta_tid *tid_info;
187         LIST_HEAD(tid_gc);
188
189         rcu_read_lock();
190         list_for_each_entry_rcu(tid_info, &ar->tx_ampdu_list, list) {
191                 spin_lock_bh(&ar->tx_ampdu_list_lock);
192                 if (tid_info->state == CARL9170_TID_STATE_SHUTDOWN) {
193                         tid_info->state = CARL9170_TID_STATE_KILLED;
194                         list_del_rcu(&tid_info->list);
195                         ar->tx_ampdu_list_len--;
196                         list_add_tail(&tid_info->tmp_list, &tid_gc);
197                 }
198                 spin_unlock_bh(&ar->tx_ampdu_list_lock);
199
200         }
201         rcu_assign_pointer(ar->tx_ampdu_iter, tid_info);
202         rcu_read_unlock();
203
204         synchronize_rcu();
205
206         while (!list_empty(&tid_gc)) {
207                 struct sk_buff *skb;
208                 tid_info = list_first_entry(&tid_gc, struct carl9170_sta_tid,
209                                             tmp_list);
210
211                 while ((skb = __skb_dequeue(&tid_info->queue)))
212                         carl9170_tx_status(ar, skb, false);
213
214                 list_del_init(&tid_info->tmp_list);
215                 kfree(tid_info);
216         }
217 }
218
219 static void carl9170_flush(struct ar9170 *ar, bool drop_queued)
220 {
221         if (drop_queued) {
222                 int i;
223
224                 /*
225                  * We can only drop frames which have not been uploaded
226                  * to the device yet.
227                  */
228
229                 for (i = 0; i < ar->hw->queues; i++) {
230                         struct sk_buff *skb;
231
232                         while ((skb = skb_dequeue(&ar->tx_pending[i]))) {
233                                 struct ieee80211_tx_info *info;
234
235                                 info = IEEE80211_SKB_CB(skb);
236                                 if (info->flags & IEEE80211_TX_CTL_AMPDU)
237                                         atomic_dec(&ar->tx_ampdu_upload);
238
239                                 carl9170_tx_status(ar, skb, false);
240                         }
241                 }
242         }
243
244         /* Wait for all other outstanding frames to timeout. */
245         if (atomic_read(&ar->tx_total_queued))
246                 WARN_ON(wait_for_completion_timeout(&ar->tx_flush, HZ) == 0);
247 }
248
249 static void carl9170_flush_ba(struct ar9170 *ar)
250 {
251         struct sk_buff_head free;
252         struct carl9170_sta_tid *tid_info;
253         struct sk_buff *skb;
254
255         __skb_queue_head_init(&free);
256
257         rcu_read_lock();
258         spin_lock_bh(&ar->tx_ampdu_list_lock);
259         list_for_each_entry_rcu(tid_info, &ar->tx_ampdu_list, list) {
260                 if (tid_info->state > CARL9170_TID_STATE_SUSPEND) {
261                         tid_info->state = CARL9170_TID_STATE_SUSPEND;
262
263                         spin_lock(&tid_info->lock);
264                         while ((skb = __skb_dequeue(&tid_info->queue)))
265                                 __skb_queue_tail(&free, skb);
266                         spin_unlock(&tid_info->lock);
267                 }
268         }
269         spin_unlock_bh(&ar->tx_ampdu_list_lock);
270         rcu_read_unlock();
271
272         while ((skb = __skb_dequeue(&free)))
273                 carl9170_tx_status(ar, skb, false);
274 }
275
276 static void carl9170_zap_queues(struct ar9170 *ar)
277 {
278         struct carl9170_vif_info *cvif;
279         unsigned int i;
280
281         carl9170_ampdu_gc(ar);
282
283         carl9170_flush_ba(ar);
284         carl9170_flush(ar, true);
285
286         for (i = 0; i < ar->hw->queues; i++) {
287                 spin_lock_bh(&ar->tx_status[i].lock);
288                 while (!skb_queue_empty(&ar->tx_status[i])) {
289                         struct sk_buff *skb;
290
291                         skb = skb_peek(&ar->tx_status[i]);
292                         carl9170_tx_get_skb(skb);
293                         spin_unlock_bh(&ar->tx_status[i].lock);
294                         carl9170_tx_drop(ar, skb);
295                         spin_lock_bh(&ar->tx_status[i].lock);
296                         carl9170_tx_put_skb(skb);
297                 }
298                 spin_unlock_bh(&ar->tx_status[i].lock);
299         }
300
301         BUILD_BUG_ON(CARL9170_NUM_TX_LIMIT_SOFT < 1);
302         BUILD_BUG_ON(CARL9170_NUM_TX_LIMIT_HARD < CARL9170_NUM_TX_LIMIT_SOFT);
303         BUILD_BUG_ON(CARL9170_NUM_TX_LIMIT_HARD >= CARL9170_BAW_BITS);
304
305         /* reinitialize queues statistics */
306         memset(&ar->tx_stats, 0, sizeof(ar->tx_stats));
307         for (i = 0; i < ar->hw->queues; i++)
308                 ar->tx_stats[i].limit = CARL9170_NUM_TX_LIMIT_HARD;
309
310         for (i = 0; i < DIV_ROUND_UP(ar->fw.mem_blocks, BITS_PER_LONG); i++)
311                 ar->mem_bitmap[i] = 0;
312
313         rcu_read_lock();
314         list_for_each_entry_rcu(cvif, &ar->vif_list, list) {
315                 spin_lock_bh(&ar->beacon_lock);
316                 dev_kfree_skb_any(cvif->beacon);
317                 cvif->beacon = NULL;
318                 spin_unlock_bh(&ar->beacon_lock);
319         }
320         rcu_read_unlock();
321
322         atomic_set(&ar->tx_ampdu_upload, 0);
323         atomic_set(&ar->tx_ampdu_scheduler, 0);
324         atomic_set(&ar->tx_total_pending, 0);
325         atomic_set(&ar->tx_total_queued, 0);
326         atomic_set(&ar->mem_free_blocks, ar->fw.mem_blocks);
327 }
328
329 #define CARL9170_FILL_QUEUE(queue, ai_fs, cwmin, cwmax, _txop)          \
330 do {                                                                    \
331         queue.aifs = ai_fs;                                             \
332         queue.cw_min = cwmin;                                           \
333         queue.cw_max = cwmax;                                           \
334         queue.txop = _txop;                                             \
335 } while (0)
336
337 static int carl9170_op_start(struct ieee80211_hw *hw)
338 {
339         struct ar9170 *ar = hw->priv;
340         int err, i;
341
342         mutex_lock(&ar->mutex);
343
344         carl9170_zap_queues(ar);
345
346         /* reset QoS defaults */
347         CARL9170_FILL_QUEUE(ar->edcf[AR9170_TXQ_VO], 2, 3,     7, 47);
348         CARL9170_FILL_QUEUE(ar->edcf[AR9170_TXQ_VI], 2, 7,    15, 94);
349         CARL9170_FILL_QUEUE(ar->edcf[AR9170_TXQ_BE], 3, 15, 1023,  0);
350         CARL9170_FILL_QUEUE(ar->edcf[AR9170_TXQ_BK], 7, 15, 1023,  0);
351         CARL9170_FILL_QUEUE(ar->edcf[AR9170_TXQ_SPECIAL], 2, 3, 7, 0);
352
353         ar->current_factor = ar->current_density = -1;
354         /* "The first key is unique." */
355         ar->usedkeys = 1;
356         ar->filter_state = 0;
357         ar->ps.last_action = jiffies;
358         ar->ps.last_slept = jiffies;
359         ar->erp_mode = CARL9170_ERP_AUTO;
360
361         /* Set "disable hw crypto offload" whenever the module parameter
362          * nohwcrypt is true or if the firmware does not support it.
363          */
364         ar->disable_offload = modparam_nohwcrypt |
365                 ar->fw.disable_offload_fw;
366         ar->rx_software_decryption = ar->disable_offload;
367
368         for (i = 0; i < ar->hw->queues; i++) {
369                 ar->queue_stop_timeout[i] = jiffies;
370                 ar->max_queue_stop_timeout[i] = 0;
371         }
372
373         atomic_set(&ar->mem_allocs, 0);
374
375         err = carl9170_usb_open(ar);
376         if (err)
377                 goto out;
378
379         err = carl9170_init_mac(ar);
380         if (err)
381                 goto out;
382
383         err = carl9170_set_qos(ar);
384         if (err)
385                 goto out;
386
387         if (ar->fw.rx_filter) {
388                 err = carl9170_rx_filter(ar, CARL9170_RX_FILTER_OTHER_RA |
389                         CARL9170_RX_FILTER_CTL_OTHER | CARL9170_RX_FILTER_BAD);
390                 if (err)
391                         goto out;
392         }
393
394         err = carl9170_write_reg(ar, AR9170_MAC_REG_DMA_TRIGGER,
395                                  AR9170_DMA_TRIGGER_RXQ);
396         if (err)
397                 goto out;
398
399         /* Clear key-cache */
400         for (i = 0; i < AR9170_CAM_MAX_USER + 4; i++) {
401                 err = carl9170_upload_key(ar, i, NULL, AR9170_ENC_ALG_NONE,
402                                           0, NULL, 0);
403                 if (err)
404                         goto out;
405
406                 err = carl9170_upload_key(ar, i, NULL, AR9170_ENC_ALG_NONE,
407                                           1, NULL, 0);
408                 if (err)
409                         goto out;
410
411                 if (i < AR9170_CAM_MAX_USER) {
412                         err = carl9170_disable_key(ar, i);
413                         if (err)
414                                 goto out;
415                 }
416         }
417
418         carl9170_set_state_when(ar, CARL9170_IDLE, CARL9170_STARTED);
419
420         ieee80211_queue_delayed_work(ar->hw, &ar->stat_work,
421                 round_jiffies(msecs_to_jiffies(CARL9170_STAT_WORK)));
422
423         ieee80211_wake_queues(ar->hw);
424         err = 0;
425
426 out:
427         mutex_unlock(&ar->mutex);
428         return err;
429 }
430
431 static void carl9170_cancel_worker(struct ar9170 *ar)
432 {
433         cancel_delayed_work_sync(&ar->stat_work);
434         cancel_delayed_work_sync(&ar->tx_janitor);
435 #ifdef CONFIG_CARL9170_LEDS
436         cancel_delayed_work_sync(&ar->led_work);
437 #endif /* CONFIG_CARL9170_LEDS */
438         cancel_work_sync(&ar->ps_work);
439         cancel_work_sync(&ar->ping_work);
440         cancel_work_sync(&ar->ampdu_work);
441 }
442
443 static void carl9170_op_stop(struct ieee80211_hw *hw)
444 {
445         struct ar9170 *ar = hw->priv;
446
447         carl9170_set_state_when(ar, CARL9170_STARTED, CARL9170_IDLE);
448
449         ieee80211_stop_queues(ar->hw);
450
451         mutex_lock(&ar->mutex);
452         if (IS_ACCEPTING_CMD(ar)) {
453                 RCU_INIT_POINTER(ar->beacon_iter, NULL);
454
455                 carl9170_led_set_state(ar, 0);
456
457                 /* stop DMA */
458                 carl9170_write_reg(ar, AR9170_MAC_REG_DMA_TRIGGER, 0);
459                 carl9170_usb_stop(ar);
460         }
461
462         carl9170_zap_queues(ar);
463         mutex_unlock(&ar->mutex);
464
465         carl9170_cancel_worker(ar);
466 }
467
468 static void carl9170_restart_work(struct work_struct *work)
469 {
470         struct ar9170 *ar = container_of(work, struct ar9170,
471                                          restart_work);
472         int err = -EIO;
473
474         ar->usedkeys = 0;
475         ar->filter_state = 0;
476         carl9170_cancel_worker(ar);
477
478         mutex_lock(&ar->mutex);
479         if (!ar->force_usb_reset) {
480                 err = carl9170_usb_restart(ar);
481                 if (net_ratelimit()) {
482                         if (err)
483                                 dev_err(&ar->udev->dev, "Failed to restart device (%d).\n", err);
484                         else
485                                 dev_info(&ar->udev->dev, "device restarted successfully.\n");
486                 }
487         }
488         carl9170_zap_queues(ar);
489         mutex_unlock(&ar->mutex);
490
491         if (!err && !ar->force_usb_reset) {
492                 ar->restart_counter++;
493                 atomic_set(&ar->pending_restarts, 0);
494
495                 ieee80211_restart_hw(ar->hw);
496         } else {
497                 /*
498                  * The reset was unsuccessful and the device seems to
499                  * be dead. But there's still one option: a low-level
500                  * usb subsystem reset...
501                  */
502
503                 carl9170_usb_reset(ar);
504         }
505 }
506
507 void carl9170_restart(struct ar9170 *ar, const enum carl9170_restart_reasons r)
508 {
509         carl9170_set_state_when(ar, CARL9170_STARTED, CARL9170_IDLE);
510
511         /*
512          * Sometimes, an error can trigger several different reset events.
513          * By ignoring these *surplus* reset events, the device won't be
514          * killed again, right after it has recovered.
515          */
516         if (atomic_inc_return(&ar->pending_restarts) > 1) {
517                 dev_dbg(&ar->udev->dev, "ignoring restart (%d)\n", r);
518                 return;
519         }
520
521         ieee80211_stop_queues(ar->hw);
522
523         dev_err(&ar->udev->dev, "restart device (%d)\n", r);
524
525         if (!WARN_ON(r == CARL9170_RR_NO_REASON) ||
526             !WARN_ON(r >= __CARL9170_RR_LAST))
527                 ar->last_reason = r;
528
529         if (!ar->registered)
530                 return;
531
532         if (!IS_ACCEPTING_CMD(ar) || ar->needs_full_reset)
533                 ar->force_usb_reset = true;
534
535         ieee80211_queue_work(ar->hw, &ar->restart_work);
536
537         /*
538          * At this point, the device instance might have vanished/disabled.
539          * So, don't put any code which access the ar9170 struct
540          * without proper protection.
541          */
542 }
543
544 static void carl9170_ping_work(struct work_struct *work)
545 {
546         struct ar9170 *ar = container_of(work, struct ar9170, ping_work);
547         int err;
548
549         if (!IS_STARTED(ar))
550                 return;
551
552         mutex_lock(&ar->mutex);
553         err = carl9170_echo_test(ar, 0xdeadbeef);
554         if (err)
555                 carl9170_restart(ar, CARL9170_RR_UNRESPONSIVE_DEVICE);
556         mutex_unlock(&ar->mutex);
557 }
558
559 static int carl9170_init_interface(struct ar9170 *ar,
560                                    struct ieee80211_vif *vif)
561 {
562         struct ath_common *common = &ar->common;
563         int err;
564
565         if (!vif) {
566                 WARN_ON_ONCE(IS_STARTED(ar));
567                 return 0;
568         }
569
570         memcpy(common->macaddr, vif->addr, ETH_ALEN);
571
572         /* We have to fall back to software crypto, whenever
573          * the user choose to participates in an IBSS. HW
574          * offload for IBSS RSN is not supported by this driver.
575          *
576          * NOTE: If the previous main interface has already
577          * disabled hw crypto offload, we have to keep this
578          * previous disable_offload setting as it was.
579          * Altough ideally, we should notify mac80211 and tell
580          * it to forget about any HW crypto offload for now.
581          */
582         ar->disable_offload |= ((vif->type != NL80211_IFTYPE_STATION) &&
583             (vif->type != NL80211_IFTYPE_AP));
584
585         /* While the driver supports HW offload in a single
586          * P2P client configuration, it doesn't support HW
587          * offload in the favourit, concurrent P2P GO+CLIENT
588          * configuration. Hence, HW offload will always be
589          * disabled for P2P.
590          */
591         ar->disable_offload |= vif->p2p;
592
593         ar->rx_software_decryption = ar->disable_offload;
594
595         err = carl9170_set_operating_mode(ar);
596         return err;
597 }
598
599 static int carl9170_op_add_interface(struct ieee80211_hw *hw,
600                                      struct ieee80211_vif *vif)
601 {
602         struct carl9170_vif_info *vif_priv = (void *) vif->drv_priv;
603         struct ieee80211_vif *main_vif, *old_main = NULL;
604         struct ar9170 *ar = hw->priv;
605         int vif_id = -1, err = 0;
606
607         mutex_lock(&ar->mutex);
608         rcu_read_lock();
609         if (vif_priv->active) {
610                 /*
611                  * Skip the interface structure initialization,
612                  * if the vif survived the _restart call.
613                  */
614                 vif_id = vif_priv->id;
615                 vif_priv->enable_beacon = false;
616
617                 spin_lock_bh(&ar->beacon_lock);
618                 dev_kfree_skb_any(vif_priv->beacon);
619                 vif_priv->beacon = NULL;
620                 spin_unlock_bh(&ar->beacon_lock);
621
622                 goto init;
623         }
624
625         /* Because the AR9170 HW's MAC doesn't provide full support for
626          * multiple, independent interfaces [of different operation modes].
627          * We have to select ONE main interface [main mode of HW], but we
628          * can have multiple slaves [AKA: entry in the ACK-table].
629          *
630          * The first (from HEAD/TOP) interface in the ar->vif_list is
631          * always the main intf. All following intfs in this list
632          * are considered to be slave intfs.
633          */
634         main_vif = carl9170_get_main_vif(ar);
635
636         if (main_vif) {
637                 switch (main_vif->type) {
638                 case NL80211_IFTYPE_STATION:
639                         if (vif->type == NL80211_IFTYPE_STATION)
640                                 break;
641
642                         /* P2P GO [master] use-case
643                          * Because the P2P GO station is selected dynamically
644                          * by all participating peers of a WIFI Direct network,
645                          * the driver has be able to change the main interface
646                          * operating mode on the fly.
647                          */
648                         if (main_vif->p2p && vif->p2p &&
649                             vif->type == NL80211_IFTYPE_AP) {
650                                 old_main = main_vif;
651                                 break;
652                         }
653
654                         err = -EBUSY;
655                         rcu_read_unlock();
656
657                         goto unlock;
658
659                 case NL80211_IFTYPE_MESH_POINT:
660                 case NL80211_IFTYPE_AP:
661                         if ((vif->type == NL80211_IFTYPE_STATION) ||
662                             (vif->type == NL80211_IFTYPE_WDS) ||
663                             (vif->type == NL80211_IFTYPE_AP) ||
664                             (vif->type == NL80211_IFTYPE_MESH_POINT))
665                                 break;
666
667                         err = -EBUSY;
668                         rcu_read_unlock();
669                         goto unlock;
670
671                 default:
672                         rcu_read_unlock();
673                         goto unlock;
674                 }
675         }
676
677         vif_id = bitmap_find_free_region(&ar->vif_bitmap, ar->fw.vif_num, 0);
678
679         if (vif_id < 0) {
680                 rcu_read_unlock();
681
682                 err = -ENOSPC;
683                 goto unlock;
684         }
685
686         BUG_ON(ar->vif_priv[vif_id].id != vif_id);
687
688         vif_priv->active = true;
689         vif_priv->id = vif_id;
690         vif_priv->enable_beacon = false;
691         ar->vifs++;
692         if (old_main) {
693                 /* We end up in here, if the main interface is being replaced.
694                  * Put the new main interface at the HEAD of the list and the
695                  * previous inteface will automatically become second in line.
696                  */
697                 list_add_rcu(&vif_priv->list, &ar->vif_list);
698         } else {
699                 /* Add new inteface. If the list is empty, it will become the
700                  * main inteface, otherwise it will be slave.
701                  */
702                 list_add_tail_rcu(&vif_priv->list, &ar->vif_list);
703         }
704         rcu_assign_pointer(ar->vif_priv[vif_id].vif, vif);
705
706 init:
707         main_vif = carl9170_get_main_vif(ar);
708
709         if (main_vif == vif) {
710                 rcu_assign_pointer(ar->beacon_iter, vif_priv);
711                 rcu_read_unlock();
712
713                 if (old_main) {
714                         struct carl9170_vif_info *old_main_priv =
715                                 (void *) old_main->drv_priv;
716                         /* downgrade old main intf to slave intf.
717                          * NOTE: We are no longer under rcu_read_lock.
718                          * But we are still holding ar->mutex, so the
719                          * vif data [id, addr] is safe.
720                          */
721                         err = carl9170_mod_virtual_mac(ar, old_main_priv->id,
722                                                        old_main->addr);
723                         if (err)
724                                 goto unlock;
725                 }
726
727                 err = carl9170_init_interface(ar, vif);
728                 if (err)
729                         goto unlock;
730         } else {
731                 rcu_read_unlock();
732                 err = carl9170_mod_virtual_mac(ar, vif_id, vif->addr);
733
734                 if (err)
735                         goto unlock;
736         }
737
738         if (ar->fw.tx_seq_table) {
739                 err = carl9170_write_reg(ar, ar->fw.tx_seq_table + vif_id * 4,
740                                          0);
741                 if (err)
742                         goto unlock;
743         }
744
745 unlock:
746         if (err && (vif_id >= 0)) {
747                 vif_priv->active = false;
748                 bitmap_release_region(&ar->vif_bitmap, vif_id, 0);
749                 ar->vifs--;
750                 RCU_INIT_POINTER(ar->vif_priv[vif_id].vif, NULL);
751                 list_del_rcu(&vif_priv->list);
752                 mutex_unlock(&ar->mutex);
753                 synchronize_rcu();
754         } else {
755                 if (ar->vifs > 1)
756                         ar->ps.off_override |= PS_OFF_VIF;
757
758                 mutex_unlock(&ar->mutex);
759         }
760
761         return err;
762 }
763
764 static void carl9170_op_remove_interface(struct ieee80211_hw *hw,
765                                          struct ieee80211_vif *vif)
766 {
767         struct carl9170_vif_info *vif_priv = (void *) vif->drv_priv;
768         struct ieee80211_vif *main_vif;
769         struct ar9170 *ar = hw->priv;
770         unsigned int id;
771
772         mutex_lock(&ar->mutex);
773
774         if (WARN_ON_ONCE(!vif_priv->active))
775                 goto unlock;
776
777         ar->vifs--;
778
779         rcu_read_lock();
780         main_vif = carl9170_get_main_vif(ar);
781
782         id = vif_priv->id;
783
784         vif_priv->active = false;
785         WARN_ON(vif_priv->enable_beacon);
786         vif_priv->enable_beacon = false;
787         list_del_rcu(&vif_priv->list);
788         RCU_INIT_POINTER(ar->vif_priv[id].vif, NULL);
789
790         if (vif == main_vif) {
791                 rcu_read_unlock();
792
793                 if (ar->vifs) {
794                         WARN_ON(carl9170_init_interface(ar,
795                                         carl9170_get_main_vif(ar)));
796                 } else {
797                         carl9170_set_operating_mode(ar);
798                 }
799         } else {
800                 rcu_read_unlock();
801
802                 WARN_ON(carl9170_mod_virtual_mac(ar, id, NULL));
803         }
804
805         carl9170_update_beacon(ar, false);
806         carl9170_flush_cab(ar, id);
807
808         spin_lock_bh(&ar->beacon_lock);
809         dev_kfree_skb_any(vif_priv->beacon);
810         vif_priv->beacon = NULL;
811         spin_unlock_bh(&ar->beacon_lock);
812
813         bitmap_release_region(&ar->vif_bitmap, id, 0);
814
815         carl9170_set_beacon_timers(ar);
816
817         if (ar->vifs == 1)
818                 ar->ps.off_override &= ~PS_OFF_VIF;
819
820 unlock:
821         mutex_unlock(&ar->mutex);
822
823         synchronize_rcu();
824 }
825
826 void carl9170_ps_check(struct ar9170 *ar)
827 {
828         ieee80211_queue_work(ar->hw, &ar->ps_work);
829 }
830
831 /* caller must hold ar->mutex */
832 static int carl9170_ps_update(struct ar9170 *ar)
833 {
834         bool ps = false;
835         int err = 0;
836
837         if (!ar->ps.off_override)
838                 ps = (ar->hw->conf.flags & IEEE80211_CONF_PS);
839
840         if (ps != ar->ps.state) {
841                 err = carl9170_powersave(ar, ps);
842                 if (err)
843                         return err;
844
845                 if (ar->ps.state && !ps) {
846                         ar->ps.sleep_ms = jiffies_to_msecs(jiffies -
847                                 ar->ps.last_action);
848                 }
849
850                 if (ps)
851                         ar->ps.last_slept = jiffies;
852
853                 ar->ps.last_action = jiffies;
854                 ar->ps.state = ps;
855         }
856
857         return 0;
858 }
859
860 static void carl9170_ps_work(struct work_struct *work)
861 {
862         struct ar9170 *ar = container_of(work, struct ar9170,
863                                          ps_work);
864         mutex_lock(&ar->mutex);
865         if (IS_STARTED(ar))
866                 WARN_ON_ONCE(carl9170_ps_update(ar) != 0);
867         mutex_unlock(&ar->mutex);
868 }
869
870 static int carl9170_update_survey(struct ar9170 *ar, bool flush, bool noise)
871 {
872         int err;
873
874         if (noise) {
875                 err = carl9170_get_noisefloor(ar);
876                 if (err)
877                         return err;
878         }
879
880         if (ar->fw.hw_counters) {
881                 err = carl9170_collect_tally(ar);
882                 if (err)
883                         return err;
884         }
885
886         if (flush)
887                 memset(&ar->tally, 0, sizeof(ar->tally));
888
889         return 0;
890 }
891
892 static void carl9170_stat_work(struct work_struct *work)
893 {
894         struct ar9170 *ar = container_of(work, struct ar9170, stat_work.work);
895         int err;
896
897         mutex_lock(&ar->mutex);
898         err = carl9170_update_survey(ar, false, true);
899         mutex_unlock(&ar->mutex);
900
901         if (err)
902                 return;
903
904         ieee80211_queue_delayed_work(ar->hw, &ar->stat_work,
905                 round_jiffies(msecs_to_jiffies(CARL9170_STAT_WORK)));
906 }
907
908 static int carl9170_op_config(struct ieee80211_hw *hw, u32 changed)
909 {
910         struct ar9170 *ar = hw->priv;
911         int err = 0;
912
913         mutex_lock(&ar->mutex);
914         if (changed & IEEE80211_CONF_CHANGE_LISTEN_INTERVAL) {
915                 /* TODO */
916                 err = 0;
917         }
918
919         if (changed & IEEE80211_CONF_CHANGE_PS) {
920                 err = carl9170_ps_update(ar);
921                 if (err)
922                         goto out;
923         }
924
925         if (changed & IEEE80211_CONF_CHANGE_SMPS) {
926                 /* TODO */
927                 err = 0;
928         }
929
930         if (changed & IEEE80211_CONF_CHANGE_CHANNEL) {
931                 enum nl80211_channel_type channel_type =
932                         cfg80211_get_chandef_type(&hw->conf.chandef);
933
934                 /* adjust slot time for 5 GHz */
935                 err = carl9170_set_slot_time(ar);
936                 if (err)
937                         goto out;
938
939                 err = carl9170_update_survey(ar, true, false);
940                 if (err)
941                         goto out;
942
943                 err = carl9170_set_channel(ar, hw->conf.chandef.chan,
944                                            channel_type);
945                 if (err)
946                         goto out;
947
948                 err = carl9170_update_survey(ar, false, true);
949                 if (err)
950                         goto out;
951
952                 err = carl9170_set_dyn_sifs_ack(ar);
953                 if (err)
954                         goto out;
955
956                 err = carl9170_set_rts_cts_rate(ar);
957                 if (err)
958                         goto out;
959         }
960
961         if (changed & IEEE80211_CONF_CHANGE_POWER) {
962                 err = carl9170_set_mac_tpc(ar, ar->hw->conf.chandef.chan);
963                 if (err)
964                         goto out;
965         }
966
967 out:
968         mutex_unlock(&ar->mutex);
969         return err;
970 }
971
972 static u64 carl9170_op_prepare_multicast(struct ieee80211_hw *hw,
973                                          struct netdev_hw_addr_list *mc_list)
974 {
975         struct netdev_hw_addr *ha;
976         u64 mchash;
977
978         /* always get broadcast frames */
979         mchash = 1ULL << (0xff >> 2);
980
981         netdev_hw_addr_list_for_each(ha, mc_list)
982                 mchash |= 1ULL << (ha->addr[5] >> 2);
983
984         return mchash;
985 }
986
987 static void carl9170_op_configure_filter(struct ieee80211_hw *hw,
988                                          unsigned int changed_flags,
989                                          unsigned int *new_flags,
990                                          u64 multicast)
991 {
992         struct ar9170 *ar = hw->priv;
993
994         /* mask supported flags */
995         *new_flags &= FIF_ALLMULTI | ar->rx_filter_caps;
996
997         if (!IS_ACCEPTING_CMD(ar))
998                 return;
999
1000         mutex_lock(&ar->mutex);
1001
1002         ar->filter_state = *new_flags;
1003         /*
1004          * We can support more by setting the sniffer bit and
1005          * then checking the error flags, later.
1006          */
1007
1008         if (*new_flags & FIF_ALLMULTI)
1009                 multicast = ~0ULL;
1010
1011         if (multicast != ar->cur_mc_hash)
1012                 WARN_ON(carl9170_update_multicast(ar, multicast));
1013
1014         if (changed_flags & FIF_OTHER_BSS) {
1015                 ar->sniffer_enabled = !!(*new_flags & FIF_OTHER_BSS);
1016
1017                 WARN_ON(carl9170_set_operating_mode(ar));
1018         }
1019
1020         if (ar->fw.rx_filter && changed_flags & ar->rx_filter_caps) {
1021                 u32 rx_filter = 0;
1022
1023                 if (!ar->fw.ba_filter)
1024                         rx_filter |= CARL9170_RX_FILTER_CTL_OTHER;
1025
1026                 if (!(*new_flags & (FIF_FCSFAIL | FIF_PLCPFAIL)))
1027                         rx_filter |= CARL9170_RX_FILTER_BAD;
1028
1029                 if (!(*new_flags & FIF_CONTROL))
1030                         rx_filter |= CARL9170_RX_FILTER_CTL_OTHER;
1031
1032                 if (!(*new_flags & FIF_PSPOLL))
1033                         rx_filter |= CARL9170_RX_FILTER_CTL_PSPOLL;
1034
1035                 if (!(*new_flags & FIF_OTHER_BSS)) {
1036                         rx_filter |= CARL9170_RX_FILTER_OTHER_RA;
1037                         rx_filter |= CARL9170_RX_FILTER_DECRY_FAIL;
1038                 }
1039
1040                 WARN_ON(carl9170_rx_filter(ar, rx_filter));
1041         }
1042
1043         mutex_unlock(&ar->mutex);
1044 }
1045
1046
1047 static void carl9170_op_bss_info_changed(struct ieee80211_hw *hw,
1048                                          struct ieee80211_vif *vif,
1049                                          struct ieee80211_bss_conf *bss_conf,
1050                                          u32 changed)
1051 {
1052         struct ar9170 *ar = hw->priv;
1053         struct ath_common *common = &ar->common;
1054         int err = 0;
1055         struct carl9170_vif_info *vif_priv;
1056         struct ieee80211_vif *main_vif;
1057
1058         mutex_lock(&ar->mutex);
1059         vif_priv = (void *) vif->drv_priv;
1060         main_vif = carl9170_get_main_vif(ar);
1061         if (WARN_ON(!main_vif))
1062                 goto out;
1063
1064         if (changed & BSS_CHANGED_BEACON_ENABLED) {
1065                 struct carl9170_vif_info *iter;
1066                 int i = 0;
1067
1068                 vif_priv->enable_beacon = bss_conf->enable_beacon;
1069                 rcu_read_lock();
1070                 list_for_each_entry_rcu(iter, &ar->vif_list, list) {
1071                         if (iter->active && iter->enable_beacon)
1072                                 i++;
1073
1074                 }
1075                 rcu_read_unlock();
1076
1077                 ar->beacon_enabled = i;
1078         }
1079
1080         if (changed & BSS_CHANGED_BEACON) {
1081                 err = carl9170_update_beacon(ar, false);
1082                 if (err)
1083                         goto out;
1084         }
1085
1086         if (changed & (BSS_CHANGED_BEACON_ENABLED | BSS_CHANGED_BEACON |
1087                        BSS_CHANGED_BEACON_INT)) {
1088
1089                 if (main_vif != vif) {
1090                         bss_conf->beacon_int = main_vif->bss_conf.beacon_int;
1091                         bss_conf->dtim_period = main_vif->bss_conf.dtim_period;
1092                 }
1093
1094                 /*
1095                  * Therefore a hard limit for the broadcast traffic should
1096                  * prevent false alarms.
1097                  */
1098                 if (vif->type != NL80211_IFTYPE_STATION &&
1099                     (bss_conf->beacon_int * bss_conf->dtim_period >=
1100                      (CARL9170_QUEUE_STUCK_TIMEOUT / 2))) {
1101                         err = -EINVAL;
1102                         goto out;
1103                 }
1104
1105                 err = carl9170_set_beacon_timers(ar);
1106                 if (err)
1107                         goto out;
1108         }
1109
1110         if (changed & BSS_CHANGED_HT) {
1111                 /* TODO */
1112                 err = 0;
1113                 if (err)
1114                         goto out;
1115         }
1116
1117         if (main_vif != vif)
1118                 goto out;
1119
1120         /*
1121          * The following settings can only be changed by the
1122          * master interface.
1123          */
1124
1125         if (changed & BSS_CHANGED_BSSID) {
1126                 memcpy(common->curbssid, bss_conf->bssid, ETH_ALEN);
1127                 err = carl9170_set_operating_mode(ar);
1128                 if (err)
1129                         goto out;
1130         }
1131
1132         if (changed & BSS_CHANGED_ASSOC) {
1133                 ar->common.curaid = bss_conf->aid;
1134                 err = carl9170_set_beacon_timers(ar);
1135                 if (err)
1136                         goto out;
1137         }
1138
1139         if (changed & BSS_CHANGED_ERP_SLOT) {
1140                 err = carl9170_set_slot_time(ar);
1141                 if (err)
1142                         goto out;
1143         }
1144
1145         if (changed & BSS_CHANGED_BASIC_RATES) {
1146                 err = carl9170_set_mac_rates(ar);
1147                 if (err)
1148                         goto out;
1149         }
1150
1151 out:
1152         WARN_ON_ONCE(err && IS_STARTED(ar));
1153         mutex_unlock(&ar->mutex);
1154 }
1155
1156 static u64 carl9170_op_get_tsf(struct ieee80211_hw *hw,
1157                                struct ieee80211_vif *vif)
1158 {
1159         struct ar9170 *ar = hw->priv;
1160         struct carl9170_tsf_rsp tsf;
1161         int err;
1162
1163         mutex_lock(&ar->mutex);
1164         err = carl9170_exec_cmd(ar, CARL9170_CMD_READ_TSF,
1165                                 0, NULL, sizeof(tsf), &tsf);
1166         mutex_unlock(&ar->mutex);
1167         if (WARN_ON(err))
1168                 return 0;
1169
1170         return le64_to_cpu(tsf.tsf_64);
1171 }
1172
1173 static int carl9170_op_set_key(struct ieee80211_hw *hw, enum set_key_cmd cmd,
1174                                struct ieee80211_vif *vif,
1175                                struct ieee80211_sta *sta,
1176                                struct ieee80211_key_conf *key)
1177 {
1178         struct ar9170 *ar = hw->priv;
1179         int err = 0, i;
1180         u8 ktype;
1181
1182         if (ar->disable_offload || !vif)
1183                 return -EOPNOTSUPP;
1184
1185         /* Fall back to software encryption whenever the driver is connected
1186          * to more than one network.
1187          *
1188          * This is very unfortunate, because some machines cannot handle
1189          * the high througput speed in 802.11n networks.
1190          */
1191
1192         if (!is_main_vif(ar, vif)) {
1193                 mutex_lock(&ar->mutex);
1194                 goto err_softw;
1195         }
1196
1197         /*
1198          * While the hardware supports *catch-all* key, for offloading
1199          * group-key en-/de-cryption. The way of how the hardware
1200          * decides which keyId maps to which key, remains a mystery...
1201          */
1202         if ((vif->type != NL80211_IFTYPE_STATION &&
1203              vif->type != NL80211_IFTYPE_ADHOC) &&
1204             !(key->flags & IEEE80211_KEY_FLAG_PAIRWISE))
1205                 return -EOPNOTSUPP;
1206
1207         switch (key->cipher) {
1208         case WLAN_CIPHER_SUITE_WEP40:
1209                 ktype = AR9170_ENC_ALG_WEP64;
1210                 break;
1211         case WLAN_CIPHER_SUITE_WEP104:
1212                 ktype = AR9170_ENC_ALG_WEP128;
1213                 break;
1214         case WLAN_CIPHER_SUITE_TKIP:
1215                 ktype = AR9170_ENC_ALG_TKIP;
1216                 break;
1217         case WLAN_CIPHER_SUITE_CCMP:
1218                 ktype = AR9170_ENC_ALG_AESCCMP;
1219                 key->flags |= IEEE80211_KEY_FLAG_SW_MGMT_TX;
1220                 break;
1221         default:
1222                 return -EOPNOTSUPP;
1223         }
1224
1225         mutex_lock(&ar->mutex);
1226         if (cmd == SET_KEY) {
1227                 if (!IS_STARTED(ar)) {
1228                         err = -EOPNOTSUPP;
1229                         goto out;
1230                 }
1231
1232                 if (!(key->flags & IEEE80211_KEY_FLAG_PAIRWISE)) {
1233                         sta = NULL;
1234
1235                         i = 64 + key->keyidx;
1236                 } else {
1237                         for (i = 0; i < 64; i++)
1238                                 if (!(ar->usedkeys & BIT(i)))
1239                                         break;
1240                         if (i == 64)
1241                                 goto err_softw;
1242                 }
1243
1244                 key->hw_key_idx = i;
1245
1246                 err = carl9170_upload_key(ar, i, sta ? sta->addr : NULL,
1247                                           ktype, 0, key->key,
1248                                           min_t(u8, 16, key->keylen));
1249                 if (err)
1250                         goto out;
1251
1252                 if (key->cipher == WLAN_CIPHER_SUITE_TKIP) {
1253                         err = carl9170_upload_key(ar, i, sta ? sta->addr :
1254                                                   NULL, ktype, 1,
1255                                                   key->key + 16, 16);
1256                         if (err)
1257                                 goto out;
1258
1259                         /*
1260                          * hardware is not capable generating MMIC
1261                          * of fragmented frames!
1262                          */
1263                         key->flags |= IEEE80211_KEY_FLAG_GENERATE_MMIC;
1264                 }
1265
1266                 if (i < 64)
1267                         ar->usedkeys |= BIT(i);
1268
1269                 key->flags |= IEEE80211_KEY_FLAG_GENERATE_IV;
1270         } else {
1271                 if (!IS_STARTED(ar)) {
1272                         /* The device is gone... together with the key ;-) */
1273                         err = 0;
1274                         goto out;
1275                 }
1276
1277                 if (key->hw_key_idx < 64) {
1278                         ar->usedkeys &= ~BIT(key->hw_key_idx);
1279                 } else {
1280                         err = carl9170_upload_key(ar, key->hw_key_idx, NULL,
1281                                                   AR9170_ENC_ALG_NONE, 0,
1282                                                   NULL, 0);
1283                         if (err)
1284                                 goto out;
1285
1286                         if (key->cipher == WLAN_CIPHER_SUITE_TKIP) {
1287                                 err = carl9170_upload_key(ar, key->hw_key_idx,
1288                                                           NULL,
1289                                                           AR9170_ENC_ALG_NONE,
1290                                                           1, NULL, 0);
1291                                 if (err)
1292                                         goto out;
1293                         }
1294
1295                 }
1296
1297                 err = carl9170_disable_key(ar, key->hw_key_idx);
1298                 if (err)
1299                         goto out;
1300         }
1301
1302 out:
1303         mutex_unlock(&ar->mutex);
1304         return err;
1305
1306 err_softw:
1307         if (!ar->rx_software_decryption) {
1308                 ar->rx_software_decryption = true;
1309                 carl9170_set_operating_mode(ar);
1310         }
1311         mutex_unlock(&ar->mutex);
1312         return -ENOSPC;
1313 }
1314
1315 static int carl9170_op_sta_add(struct ieee80211_hw *hw,
1316                                struct ieee80211_vif *vif,
1317                                struct ieee80211_sta *sta)
1318 {
1319         struct carl9170_sta_info *sta_info = (void *) sta->drv_priv;
1320         unsigned int i;
1321
1322         atomic_set(&sta_info->pending_frames, 0);
1323
1324         if (sta->ht_cap.ht_supported) {
1325                 if (sta->ht_cap.ampdu_density > 6) {
1326                         /*
1327                          * HW does support 16us AMPDU density.
1328                          * No HT-Xmit for station.
1329                          */
1330
1331                         return 0;
1332                 }
1333
1334                 for (i = 0; i < ARRAY_SIZE(sta_info->agg); i++)
1335                         RCU_INIT_POINTER(sta_info->agg[i], NULL);
1336
1337                 sta_info->ampdu_max_len = 1 << (3 + sta->ht_cap.ampdu_factor);
1338                 sta_info->ht_sta = true;
1339         }
1340
1341         return 0;
1342 }
1343
1344 static int carl9170_op_sta_remove(struct ieee80211_hw *hw,
1345                                 struct ieee80211_vif *vif,
1346                                 struct ieee80211_sta *sta)
1347 {
1348         struct ar9170 *ar = hw->priv;
1349         struct carl9170_sta_info *sta_info = (void *) sta->drv_priv;
1350         unsigned int i;
1351         bool cleanup = false;
1352
1353         if (sta->ht_cap.ht_supported) {
1354
1355                 sta_info->ht_sta = false;
1356
1357                 rcu_read_lock();
1358                 for (i = 0; i < ARRAY_SIZE(sta_info->agg); i++) {
1359                         struct carl9170_sta_tid *tid_info;
1360
1361                         tid_info = rcu_dereference(sta_info->agg[i]);
1362                         RCU_INIT_POINTER(sta_info->agg[i], NULL);
1363
1364                         if (!tid_info)
1365                                 continue;
1366
1367                         spin_lock_bh(&ar->tx_ampdu_list_lock);
1368                         if (tid_info->state > CARL9170_TID_STATE_SHUTDOWN)
1369                                 tid_info->state = CARL9170_TID_STATE_SHUTDOWN;
1370                         spin_unlock_bh(&ar->tx_ampdu_list_lock);
1371                         cleanup = true;
1372                 }
1373                 rcu_read_unlock();
1374
1375                 if (cleanup)
1376                         carl9170_ampdu_gc(ar);
1377         }
1378
1379         return 0;
1380 }
1381
1382 static int carl9170_op_conf_tx(struct ieee80211_hw *hw,
1383                                struct ieee80211_vif *vif, u16 queue,
1384                                const struct ieee80211_tx_queue_params *param)
1385 {
1386         struct ar9170 *ar = hw->priv;
1387         int ret;
1388
1389         mutex_lock(&ar->mutex);
1390         if (queue < ar->hw->queues) {
1391                 memcpy(&ar->edcf[ar9170_qmap[queue]], param, sizeof(*param));
1392                 ret = carl9170_set_qos(ar);
1393         } else {
1394                 ret = -EINVAL;
1395         }
1396
1397         mutex_unlock(&ar->mutex);
1398         return ret;
1399 }
1400
1401 static void carl9170_ampdu_work(struct work_struct *work)
1402 {
1403         struct ar9170 *ar = container_of(work, struct ar9170,
1404                                          ampdu_work);
1405
1406         if (!IS_STARTED(ar))
1407                 return;
1408
1409         mutex_lock(&ar->mutex);
1410         carl9170_ampdu_gc(ar);
1411         mutex_unlock(&ar->mutex);
1412 }
1413
1414 static int carl9170_op_ampdu_action(struct ieee80211_hw *hw,
1415                                     struct ieee80211_vif *vif,
1416                                     struct ieee80211_ampdu_params *params)
1417 {
1418         struct ieee80211_sta *sta = params->sta;
1419         enum ieee80211_ampdu_mlme_action action = params->action;
1420         u16 tid = params->tid;
1421         u16 *ssn = &params->ssn;
1422         struct ar9170 *ar = hw->priv;
1423         struct carl9170_sta_info *sta_info = (void *) sta->drv_priv;
1424         struct carl9170_sta_tid *tid_info;
1425
1426         if (modparam_noht)
1427                 return -EOPNOTSUPP;
1428
1429         switch (action) {
1430         case IEEE80211_AMPDU_TX_START:
1431                 if (!sta_info->ht_sta)
1432                         return -EOPNOTSUPP;
1433
1434                 tid_info = kzalloc(sizeof(struct carl9170_sta_tid),
1435                                    GFP_ATOMIC);
1436                 if (!tid_info)
1437                         return -ENOMEM;
1438
1439                 tid_info->hsn = tid_info->bsn = tid_info->snx = (*ssn);
1440                 tid_info->state = CARL9170_TID_STATE_PROGRESS;
1441                 tid_info->tid = tid;
1442                 tid_info->max = sta_info->ampdu_max_len;
1443                 tid_info->sta = sta;
1444                 tid_info->vif = vif;
1445
1446                 INIT_LIST_HEAD(&tid_info->list);
1447                 INIT_LIST_HEAD(&tid_info->tmp_list);
1448                 skb_queue_head_init(&tid_info->queue);
1449                 spin_lock_init(&tid_info->lock);
1450
1451                 spin_lock_bh(&ar->tx_ampdu_list_lock);
1452                 ar->tx_ampdu_list_len++;
1453                 list_add_tail_rcu(&tid_info->list, &ar->tx_ampdu_list);
1454                 rcu_assign_pointer(sta_info->agg[tid], tid_info);
1455                 spin_unlock_bh(&ar->tx_ampdu_list_lock);
1456
1457                 ieee80211_start_tx_ba_cb_irqsafe(vif, sta->addr, tid);
1458                 break;
1459
1460         case IEEE80211_AMPDU_TX_STOP_CONT:
1461         case IEEE80211_AMPDU_TX_STOP_FLUSH:
1462         case IEEE80211_AMPDU_TX_STOP_FLUSH_CONT:
1463                 rcu_read_lock();
1464                 tid_info = rcu_dereference(sta_info->agg[tid]);
1465                 if (tid_info) {
1466                         spin_lock_bh(&ar->tx_ampdu_list_lock);
1467                         if (tid_info->state > CARL9170_TID_STATE_SHUTDOWN)
1468                                 tid_info->state = CARL9170_TID_STATE_SHUTDOWN;
1469                         spin_unlock_bh(&ar->tx_ampdu_list_lock);
1470                 }
1471
1472                 RCU_INIT_POINTER(sta_info->agg[tid], NULL);
1473                 rcu_read_unlock();
1474
1475                 ieee80211_stop_tx_ba_cb_irqsafe(vif, sta->addr, tid);
1476                 ieee80211_queue_work(ar->hw, &ar->ampdu_work);
1477                 break;
1478
1479         case IEEE80211_AMPDU_TX_OPERATIONAL:
1480                 rcu_read_lock();
1481                 tid_info = rcu_dereference(sta_info->agg[tid]);
1482
1483                 sta_info->stats[tid].clear = true;
1484                 sta_info->stats[tid].req = false;
1485
1486                 if (tid_info) {
1487                         bitmap_zero(tid_info->bitmap, CARL9170_BAW_SIZE);
1488                         tid_info->state = CARL9170_TID_STATE_IDLE;
1489                 }
1490                 rcu_read_unlock();
1491
1492                 if (WARN_ON_ONCE(!tid_info))
1493                         return -EFAULT;
1494
1495                 break;
1496
1497         case IEEE80211_AMPDU_RX_START:
1498         case IEEE80211_AMPDU_RX_STOP:
1499                 /* Handled by hardware */
1500                 break;
1501
1502         default:
1503                 return -EOPNOTSUPP;
1504         }
1505
1506         return 0;
1507 }
1508
1509 #ifdef CONFIG_CARL9170_WPC
1510 static int carl9170_register_wps_button(struct ar9170 *ar)
1511 {
1512         struct input_dev *input;
1513         int err;
1514
1515         if (!(ar->features & CARL9170_WPS_BUTTON))
1516                 return 0;
1517
1518         input = input_allocate_device();
1519         if (!input)
1520                 return -ENOMEM;
1521
1522         snprintf(ar->wps.name, sizeof(ar->wps.name), "%s WPS Button",
1523                  wiphy_name(ar->hw->wiphy));
1524
1525         snprintf(ar->wps.phys, sizeof(ar->wps.phys),
1526                  "ieee80211/%s/input0", wiphy_name(ar->hw->wiphy));
1527
1528         input->name = ar->wps.name;
1529         input->phys = ar->wps.phys;
1530         input->id.bustype = BUS_USB;
1531         input->dev.parent = &ar->hw->wiphy->dev;
1532
1533         input_set_capability(input, EV_KEY, KEY_WPS_BUTTON);
1534
1535         err = input_register_device(input);
1536         if (err) {
1537                 input_free_device(input);
1538                 return err;
1539         }
1540
1541         ar->wps.pbc = input;
1542         return 0;
1543 }
1544 #endif /* CONFIG_CARL9170_WPC */
1545
1546 #ifdef CONFIG_CARL9170_HWRNG
1547 static int carl9170_rng_get(struct ar9170 *ar)
1548 {
1549
1550 #define RW      (CARL9170_MAX_CMD_PAYLOAD_LEN / sizeof(u32))
1551 #define RB      (CARL9170_MAX_CMD_PAYLOAD_LEN)
1552
1553         static const __le32 rng_load[RW] = {
1554                 [0 ... (RW - 1)] = cpu_to_le32(AR9170_RAND_REG_NUM)};
1555
1556         u32 buf[RW];
1557
1558         unsigned int i, off = 0, transfer, count;
1559         int err;
1560
1561         BUILD_BUG_ON(RB > CARL9170_MAX_CMD_PAYLOAD_LEN);
1562
1563         if (!IS_ACCEPTING_CMD(ar) || !ar->rng.initialized)
1564                 return -EAGAIN;
1565
1566         count = ARRAY_SIZE(ar->rng.cache);
1567         while (count) {
1568                 err = carl9170_exec_cmd(ar, CARL9170_CMD_RREG,
1569                                         RB, (u8 *) rng_load,
1570                                         RB, (u8 *) buf);
1571                 if (err)
1572                         return err;
1573
1574                 transfer = min_t(unsigned int, count, RW);
1575                 for (i = 0; i < transfer; i++)
1576                         ar->rng.cache[off + i] = buf[i];
1577
1578                 off += transfer;
1579                 count -= transfer;
1580         }
1581
1582         ar->rng.cache_idx = 0;
1583
1584 #undef RW
1585 #undef RB
1586         return 0;
1587 }
1588
1589 static int carl9170_rng_read(struct hwrng *rng, u32 *data)
1590 {
1591         struct ar9170 *ar = (struct ar9170 *)rng->priv;
1592         int ret = -EIO;
1593
1594         mutex_lock(&ar->mutex);
1595         if (ar->rng.cache_idx >= ARRAY_SIZE(ar->rng.cache)) {
1596                 ret = carl9170_rng_get(ar);
1597                 if (ret) {
1598                         mutex_unlock(&ar->mutex);
1599                         return ret;
1600                 }
1601         }
1602
1603         *data = ar->rng.cache[ar->rng.cache_idx++];
1604         mutex_unlock(&ar->mutex);
1605
1606         return sizeof(u16);
1607 }
1608
1609 static void carl9170_unregister_hwrng(struct ar9170 *ar)
1610 {
1611         if (ar->rng.initialized) {
1612                 hwrng_unregister(&ar->rng.rng);
1613                 ar->rng.initialized = false;
1614         }
1615 }
1616
1617 static int carl9170_register_hwrng(struct ar9170 *ar)
1618 {
1619         int err;
1620
1621         snprintf(ar->rng.name, ARRAY_SIZE(ar->rng.name),
1622                  "%s_%s", KBUILD_MODNAME, wiphy_name(ar->hw->wiphy));
1623         ar->rng.rng.name = ar->rng.name;
1624         ar->rng.rng.data_read = carl9170_rng_read;
1625         ar->rng.rng.priv = (unsigned long)ar;
1626
1627         if (WARN_ON(ar->rng.initialized))
1628                 return -EALREADY;
1629
1630         err = hwrng_register(&ar->rng.rng);
1631         if (err) {
1632                 dev_err(&ar->udev->dev, "Failed to register the random "
1633                         "number generator (%d)\n", err);
1634                 return err;
1635         }
1636
1637         ar->rng.initialized = true;
1638
1639         err = carl9170_rng_get(ar);
1640         if (err) {
1641                 carl9170_unregister_hwrng(ar);
1642                 return err;
1643         }
1644
1645         return 0;
1646 }
1647 #endif /* CONFIG_CARL9170_HWRNG */
1648
1649 static int carl9170_op_get_survey(struct ieee80211_hw *hw, int idx,
1650                                 struct survey_info *survey)
1651 {
1652         struct ar9170 *ar = hw->priv;
1653         struct ieee80211_channel *chan;
1654         struct ieee80211_supported_band *band;
1655         int err, b, i;
1656
1657         chan = ar->channel;
1658         if (!chan)
1659                 return -ENODEV;
1660
1661         if (idx == chan->hw_value) {
1662                 mutex_lock(&ar->mutex);
1663                 err = carl9170_update_survey(ar, false, true);
1664                 mutex_unlock(&ar->mutex);
1665                 if (err)
1666                         return err;
1667         }
1668
1669         for (b = 0; b < NUM_NL80211_BANDS; b++) {
1670                 band = ar->hw->wiphy->bands[b];
1671
1672                 if (!band)
1673                         continue;
1674
1675                 for (i = 0; i < band->n_channels; i++) {
1676                         if (band->channels[i].hw_value == idx) {
1677                                 chan = &band->channels[i];
1678                                 goto found;
1679                         }
1680                 }
1681         }
1682         return -ENOENT;
1683
1684 found:
1685         memcpy(survey, &ar->survey[idx], sizeof(*survey));
1686
1687         survey->channel = chan;
1688         survey->filled = SURVEY_INFO_NOISE_DBM;
1689
1690         if (ar->channel == chan)
1691                 survey->filled |= SURVEY_INFO_IN_USE;
1692
1693         if (ar->fw.hw_counters) {
1694                 survey->filled |= SURVEY_INFO_TIME |
1695                                   SURVEY_INFO_TIME_BUSY |
1696                                   SURVEY_INFO_TIME_TX;
1697         }
1698
1699         return 0;
1700 }
1701
1702 static void carl9170_op_flush(struct ieee80211_hw *hw,
1703                               struct ieee80211_vif *vif,
1704                               u32 queues, bool drop)
1705 {
1706         struct ar9170 *ar = hw->priv;
1707         unsigned int vid;
1708
1709         mutex_lock(&ar->mutex);
1710         for_each_set_bit(vid, &ar->vif_bitmap, ar->fw.vif_num)
1711                 carl9170_flush_cab(ar, vid);
1712
1713         carl9170_flush(ar, drop);
1714         mutex_unlock(&ar->mutex);
1715 }
1716
1717 static int carl9170_op_get_stats(struct ieee80211_hw *hw,
1718                                  struct ieee80211_low_level_stats *stats)
1719 {
1720         struct ar9170 *ar = hw->priv;
1721
1722         memset(stats, 0, sizeof(*stats));
1723         stats->dot11ACKFailureCount = ar->tx_ack_failures;
1724         stats->dot11FCSErrorCount = ar->tx_fcs_errors;
1725         return 0;
1726 }
1727
1728 static void carl9170_op_sta_notify(struct ieee80211_hw *hw,
1729                                    struct ieee80211_vif *vif,
1730                                    enum sta_notify_cmd cmd,
1731                                    struct ieee80211_sta *sta)
1732 {
1733         struct carl9170_sta_info *sta_info = (void *) sta->drv_priv;
1734
1735         switch (cmd) {
1736         case STA_NOTIFY_SLEEP:
1737                 sta_info->sleeping = true;
1738                 if (atomic_read(&sta_info->pending_frames))
1739                         ieee80211_sta_block_awake(hw, sta, true);
1740                 break;
1741
1742         case STA_NOTIFY_AWAKE:
1743                 sta_info->sleeping = false;
1744                 break;
1745         }
1746 }
1747
1748 static bool carl9170_tx_frames_pending(struct ieee80211_hw *hw)
1749 {
1750         struct ar9170 *ar = hw->priv;
1751
1752         return !!atomic_read(&ar->tx_total_queued);
1753 }
1754
1755 static const struct ieee80211_ops carl9170_ops = {
1756         .start                  = carl9170_op_start,
1757         .stop                   = carl9170_op_stop,
1758         .tx                     = carl9170_op_tx,
1759         .flush                  = carl9170_op_flush,
1760         .add_interface          = carl9170_op_add_interface,
1761         .remove_interface       = carl9170_op_remove_interface,
1762         .config                 = carl9170_op_config,
1763         .prepare_multicast      = carl9170_op_prepare_multicast,
1764         .configure_filter       = carl9170_op_configure_filter,
1765         .conf_tx                = carl9170_op_conf_tx,
1766         .bss_info_changed       = carl9170_op_bss_info_changed,
1767         .get_tsf                = carl9170_op_get_tsf,
1768         .set_key                = carl9170_op_set_key,
1769         .sta_add                = carl9170_op_sta_add,
1770         .sta_remove             = carl9170_op_sta_remove,
1771         .sta_notify             = carl9170_op_sta_notify,
1772         .get_survey             = carl9170_op_get_survey,
1773         .get_stats              = carl9170_op_get_stats,
1774         .ampdu_action           = carl9170_op_ampdu_action,
1775         .tx_frames_pending      = carl9170_tx_frames_pending,
1776 };
1777
1778 void *carl9170_alloc(size_t priv_size)
1779 {
1780         struct ieee80211_hw *hw;
1781         struct ar9170 *ar;
1782         struct sk_buff *skb;
1783         int i;
1784
1785         /*
1786          * this buffer is used for rx stream reconstruction.
1787          * Under heavy load this device (or the transport layer?)
1788          * tends to split the streams into separate rx descriptors.
1789          */
1790
1791         skb = __dev_alloc_skb(AR9170_RX_STREAM_MAX_SIZE, GFP_KERNEL);
1792         if (!skb)
1793                 goto err_nomem;
1794
1795         hw = ieee80211_alloc_hw(priv_size, &carl9170_ops);
1796         if (!hw)
1797                 goto err_nomem;
1798
1799         ar = hw->priv;
1800         ar->hw = hw;
1801         ar->rx_failover = skb;
1802
1803         memset(&ar->rx_plcp, 0, sizeof(struct ar9170_rx_head));
1804         ar->rx_has_plcp = false;
1805
1806         /*
1807          * Here's a hidden pitfall!
1808          *
1809          * All 4 AC queues work perfectly well under _legacy_ operation.
1810          * However as soon as aggregation is enabled, the traffic flow
1811          * gets very bumpy. Therefore we have to _switch_ to a
1812          * software AC with a single HW queue.
1813          */
1814         hw->queues = __AR9170_NUM_TXQ;
1815
1816         mutex_init(&ar->mutex);
1817         spin_lock_init(&ar->beacon_lock);
1818         spin_lock_init(&ar->cmd_lock);
1819         spin_lock_init(&ar->tx_stats_lock);
1820         spin_lock_init(&ar->tx_ampdu_list_lock);
1821         spin_lock_init(&ar->mem_lock);
1822         spin_lock_init(&ar->state_lock);
1823         atomic_set(&ar->pending_restarts, 0);
1824         ar->vifs = 0;
1825         for (i = 0; i < ar->hw->queues; i++) {
1826                 skb_queue_head_init(&ar->tx_status[i]);
1827                 skb_queue_head_init(&ar->tx_pending[i]);
1828
1829                 INIT_LIST_HEAD(&ar->bar_list[i]);
1830                 spin_lock_init(&ar->bar_list_lock[i]);
1831         }
1832         INIT_WORK(&ar->ps_work, carl9170_ps_work);
1833         INIT_WORK(&ar->ping_work, carl9170_ping_work);
1834         INIT_WORK(&ar->restart_work, carl9170_restart_work);
1835         INIT_WORK(&ar->ampdu_work, carl9170_ampdu_work);
1836         INIT_DELAYED_WORK(&ar->stat_work, carl9170_stat_work);
1837         INIT_DELAYED_WORK(&ar->tx_janitor, carl9170_tx_janitor);
1838         INIT_LIST_HEAD(&ar->tx_ampdu_list);
1839         rcu_assign_pointer(ar->tx_ampdu_iter,
1840                            (struct carl9170_sta_tid *) &ar->tx_ampdu_list);
1841
1842         bitmap_zero(&ar->vif_bitmap, ar->fw.vif_num);
1843         INIT_LIST_HEAD(&ar->vif_list);
1844         init_completion(&ar->tx_flush);
1845
1846         /* firmware decides which modes we support */
1847         hw->wiphy->interface_modes = 0;
1848
1849         ieee80211_hw_set(hw, RX_INCLUDES_FCS);
1850         ieee80211_hw_set(hw, MFP_CAPABLE);
1851         ieee80211_hw_set(hw, REPORTS_TX_ACK_STATUS);
1852         ieee80211_hw_set(hw, SUPPORTS_PS);
1853         ieee80211_hw_set(hw, PS_NULLFUNC_STACK);
1854         ieee80211_hw_set(hw, NEED_DTIM_BEFORE_ASSOC);
1855         ieee80211_hw_set(hw, SUPPORTS_RC_TABLE);
1856         ieee80211_hw_set(hw, SIGNAL_DBM);
1857         ieee80211_hw_set(hw, SUPPORTS_HT_CCK_RATES);
1858
1859         if (!modparam_noht) {
1860                 /*
1861                  * see the comment above, why we allow the user
1862                  * to disable HT by a module parameter.
1863                  */
1864                 ieee80211_hw_set(hw, AMPDU_AGGREGATION);
1865         }
1866
1867         hw->extra_tx_headroom = sizeof(struct _carl9170_tx_superframe);
1868         hw->sta_data_size = sizeof(struct carl9170_sta_info);
1869         hw->vif_data_size = sizeof(struct carl9170_vif_info);
1870
1871         hw->max_rates = CARL9170_TX_MAX_RATES;
1872         hw->max_rate_tries = CARL9170_TX_USER_RATE_TRIES;
1873
1874         for (i = 0; i < ARRAY_SIZE(ar->noise); i++)
1875                 ar->noise[i] = -95; /* ATH_DEFAULT_NOISE_FLOOR */
1876
1877         return ar;
1878
1879 err_nomem:
1880         kfree_skb(skb);
1881         return ERR_PTR(-ENOMEM);
1882 }
1883
1884 static int carl9170_read_eeprom(struct ar9170 *ar)
1885 {
1886 #define RW      8       /* number of words to read at once */
1887 #define RB      (sizeof(u32) * RW)
1888         u8 *eeprom = (void *)&ar->eeprom;
1889         __le32 offsets[RW];
1890         int i, j, err;
1891
1892         BUILD_BUG_ON(sizeof(ar->eeprom) & 3);
1893
1894         BUILD_BUG_ON(RB > CARL9170_MAX_CMD_LEN - 4);
1895 #ifndef __CHECKER__
1896         /* don't want to handle trailing remains */
1897         BUILD_BUG_ON(sizeof(ar->eeprom) % RB);
1898 #endif
1899
1900         for (i = 0; i < sizeof(ar->eeprom) / RB; i++) {
1901                 for (j = 0; j < RW; j++)
1902                         offsets[j] = cpu_to_le32(AR9170_EEPROM_START +
1903                                                  RB * i + 4 * j);
1904
1905                 err = carl9170_exec_cmd(ar, CARL9170_CMD_RREG,
1906                                         RB, (u8 *) &offsets,
1907                                         RB, eeprom + RB * i);
1908                 if (err)
1909                         return err;
1910         }
1911
1912 #undef RW
1913 #undef RB
1914         return 0;
1915 }
1916
1917 static int carl9170_parse_eeprom(struct ar9170 *ar)
1918 {
1919         struct ath_regulatory *regulatory = &ar->common.regulatory;
1920         unsigned int rx_streams, tx_streams, tx_params = 0;
1921         int bands = 0;
1922         int chans = 0;
1923
1924         if (ar->eeprom.length == cpu_to_le16(0xffff))
1925                 return -ENODATA;
1926
1927         rx_streams = hweight8(ar->eeprom.rx_mask);
1928         tx_streams = hweight8(ar->eeprom.tx_mask);
1929
1930         if (rx_streams != tx_streams) {
1931                 tx_params = IEEE80211_HT_MCS_TX_RX_DIFF;
1932
1933                 WARN_ON(!(tx_streams >= 1 && tx_streams <=
1934                         IEEE80211_HT_MCS_TX_MAX_STREAMS));
1935
1936                 tx_params = (tx_streams - 1) <<
1937                             IEEE80211_HT_MCS_TX_MAX_STREAMS_SHIFT;
1938
1939                 carl9170_band_2GHz.ht_cap.mcs.tx_params |= tx_params;
1940                 carl9170_band_5GHz.ht_cap.mcs.tx_params |= tx_params;
1941         }
1942
1943         if (ar->eeprom.operating_flags & AR9170_OPFLAG_2GHZ) {
1944                 ar->hw->wiphy->bands[NL80211_BAND_2GHZ] =
1945                         &carl9170_band_2GHz;
1946                 chans += carl9170_band_2GHz.n_channels;
1947                 bands++;
1948         }
1949         if (ar->eeprom.operating_flags & AR9170_OPFLAG_5GHZ) {
1950                 ar->hw->wiphy->bands[NL80211_BAND_5GHZ] =
1951                         &carl9170_band_5GHz;
1952                 chans += carl9170_band_5GHz.n_channels;
1953                 bands++;
1954         }
1955
1956         if (!bands)
1957                 return -EINVAL;
1958
1959         ar->survey = kzalloc(sizeof(struct survey_info) * chans, GFP_KERNEL);
1960         if (!ar->survey)
1961                 return -ENOMEM;
1962         ar->num_channels = chans;
1963
1964         regulatory->current_rd = le16_to_cpu(ar->eeprom.reg_domain[0]);
1965
1966         /* second part of wiphy init */
1967         SET_IEEE80211_PERM_ADDR(ar->hw, ar->eeprom.mac_address);
1968
1969         return 0;
1970 }
1971
1972 static void carl9170_reg_notifier(struct wiphy *wiphy,
1973                                   struct regulatory_request *request)
1974 {
1975         struct ieee80211_hw *hw = wiphy_to_ieee80211_hw(wiphy);
1976         struct ar9170 *ar = hw->priv;
1977
1978         ath_reg_notifier_apply(wiphy, request, &ar->common.regulatory);
1979 }
1980
1981 int carl9170_register(struct ar9170 *ar)
1982 {
1983         struct ath_regulatory *regulatory = &ar->common.regulatory;
1984         int err = 0, i;
1985
1986         if (WARN_ON(ar->mem_bitmap))
1987                 return -EINVAL;
1988
1989         ar->mem_bitmap = kzalloc(roundup(ar->fw.mem_blocks, BITS_PER_LONG) *
1990                                  sizeof(unsigned long), GFP_KERNEL);
1991
1992         if (!ar->mem_bitmap)
1993                 return -ENOMEM;
1994
1995         /* try to read EEPROM, init MAC addr */
1996         err = carl9170_read_eeprom(ar);
1997         if (err)
1998                 return err;
1999
2000         err = carl9170_parse_eeprom(ar);
2001         if (err)
2002                 return err;
2003
2004         err = ath_regd_init(regulatory, ar->hw->wiphy,
2005                             carl9170_reg_notifier);
2006         if (err)
2007                 return err;
2008
2009         if (modparam_noht) {
2010                 carl9170_band_2GHz.ht_cap.ht_supported = false;
2011                 carl9170_band_5GHz.ht_cap.ht_supported = false;
2012         }
2013
2014         for (i = 0; i < ar->fw.vif_num; i++) {
2015                 ar->vif_priv[i].id = i;
2016                 ar->vif_priv[i].vif = NULL;
2017         }
2018
2019         err = ieee80211_register_hw(ar->hw);
2020         if (err)
2021                 return err;
2022
2023         /* mac80211 interface is now registered */
2024         ar->registered = true;
2025
2026         if (!ath_is_world_regd(regulatory))
2027                 regulatory_hint(ar->hw->wiphy, regulatory->alpha2);
2028
2029 #ifdef CONFIG_CARL9170_DEBUGFS
2030         carl9170_debugfs_register(ar);
2031 #endif /* CONFIG_CARL9170_DEBUGFS */
2032
2033         err = carl9170_led_init(ar);
2034         if (err)
2035                 goto err_unreg;
2036
2037 #ifdef CONFIG_CARL9170_LEDS
2038         err = carl9170_led_register(ar);
2039         if (err)
2040                 goto err_unreg;
2041 #endif /* CONFIG_CARL9170_LEDS */
2042
2043 #ifdef CONFIG_CARL9170_WPC
2044         err = carl9170_register_wps_button(ar);
2045         if (err)
2046                 goto err_unreg;
2047 #endif /* CONFIG_CARL9170_WPC */
2048
2049 #ifdef CONFIG_CARL9170_HWRNG
2050         err = carl9170_register_hwrng(ar);
2051         if (err)
2052                 goto err_unreg;
2053 #endif /* CONFIG_CARL9170_HWRNG */
2054
2055         dev_info(&ar->udev->dev, "Atheros AR9170 is registered as '%s'\n",
2056                  wiphy_name(ar->hw->wiphy));
2057
2058         return 0;
2059
2060 err_unreg:
2061         carl9170_unregister(ar);
2062         return err;
2063 }
2064
2065 void carl9170_unregister(struct ar9170 *ar)
2066 {
2067         if (!ar->registered)
2068                 return;
2069
2070         ar->registered = false;
2071
2072 #ifdef CONFIG_CARL9170_LEDS
2073         carl9170_led_unregister(ar);
2074 #endif /* CONFIG_CARL9170_LEDS */
2075
2076 #ifdef CONFIG_CARL9170_DEBUGFS
2077         carl9170_debugfs_unregister(ar);
2078 #endif /* CONFIG_CARL9170_DEBUGFS */
2079
2080 #ifdef CONFIG_CARL9170_WPC
2081         if (ar->wps.pbc) {
2082                 input_unregister_device(ar->wps.pbc);
2083                 ar->wps.pbc = NULL;
2084         }
2085 #endif /* CONFIG_CARL9170_WPC */
2086
2087 #ifdef CONFIG_CARL9170_HWRNG
2088         carl9170_unregister_hwrng(ar);
2089 #endif /* CONFIG_CARL9170_HWRNG */
2090
2091         carl9170_cancel_worker(ar);
2092         cancel_work_sync(&ar->restart_work);
2093
2094         ieee80211_unregister_hw(ar->hw);
2095 }
2096
2097 void carl9170_free(struct ar9170 *ar)
2098 {
2099         WARN_ON(ar->registered);
2100         WARN_ON(IS_INITIALIZED(ar));
2101
2102         kfree_skb(ar->rx_failover);
2103         ar->rx_failover = NULL;
2104
2105         kfree(ar->mem_bitmap);
2106         ar->mem_bitmap = NULL;
2107
2108         kfree(ar->survey);
2109         ar->survey = NULL;
2110
2111         mutex_destroy(&ar->mutex);
2112
2113         ieee80211_free_hw(ar->hw);
2114 }