cfg80211: remove enum ieee80211_band
[cascardo/linux.git] / drivers / net / wireless / intel / ipw2x00 / ipw2100.c
1 /******************************************************************************
2
3   Copyright(c) 2003 - 2006 Intel Corporation. All rights reserved.
4
5   This program is free software; you can redistribute it and/or modify it
6   under the terms of version 2 of the GNU General Public License as
7   published by the Free Software Foundation.
8
9   This program is distributed in the hope that it will be useful, but WITHOUT
10   ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11   FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
12   more details.
13
14   You should have received a copy of the GNU General Public License along with
15   this program; if not, write to the Free Software Foundation, Inc., 59
16   Temple Place - Suite 330, Boston, MA  02111-1307, USA.
17
18   The full GNU General Public License is included in this distribution in the
19   file called LICENSE.
20
21   Contact Information:
22   Intel Linux Wireless <ilw@linux.intel.com>
23   Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
24
25   Portions of this file are based on the sample_* files provided by Wireless
26   Extensions 0.26 package and copyright (c) 1997-2003 Jean Tourrilhes
27   <jt@hpl.hp.com>
28
29   Portions of this file are based on the Host AP project,
30   Copyright (c) 2001-2002, SSH Communications Security Corp and Jouni Malinen
31     <j@w1.fi>
32   Copyright (c) 2002-2003, Jouni Malinen <j@w1.fi>
33
34   Portions of ipw2100_mod_firmware_load, ipw2100_do_mod_firmware_load, and
35   ipw2100_fw_load are loosely based on drivers/sound/sound_firmware.c
36   available in the 2.4.25 kernel sources, and are copyright (c) Alan Cox
37
38 ******************************************************************************/
39 /*
40
41  Initial driver on which this is based was developed by Janusz Gorycki,
42  Maciej Urbaniak, and Maciej Sosnowski.
43
44  Promiscuous mode support added by Jacek Wysoczynski and Maciej Urbaniak.
45
46 Theory of Operation
47
48 Tx - Commands and Data
49
50 Firmware and host share a circular queue of Transmit Buffer Descriptors (TBDs)
51 Each TBD contains a pointer to the physical (dma_addr_t) address of data being
52 sent to the firmware as well as the length of the data.
53
54 The host writes to the TBD queue at the WRITE index.  The WRITE index points
55 to the _next_ packet to be written and is advanced when after the TBD has been
56 filled.
57
58 The firmware pulls from the TBD queue at the READ index.  The READ index points
59 to the currently being read entry, and is advanced once the firmware is
60 done with a packet.
61
62 When data is sent to the firmware, the first TBD is used to indicate to the
63 firmware if a Command or Data is being sent.  If it is Command, all of the
64 command information is contained within the physical address referred to by the
65 TBD.  If it is Data, the first TBD indicates the type of data packet, number
66 of fragments, etc.  The next TBD then refers to the actual packet location.
67
68 The Tx flow cycle is as follows:
69
70 1) ipw2100_tx() is called by kernel with SKB to transmit
71 2) Packet is move from the tx_free_list and appended to the transmit pending
72    list (tx_pend_list)
73 3) work is scheduled to move pending packets into the shared circular queue.
74 4) when placing packet in the circular queue, the incoming SKB is DMA mapped
75    to a physical address.  That address is entered into a TBD.  Two TBDs are
76    filled out.  The first indicating a data packet, the second referring to the
77    actual payload data.
78 5) the packet is removed from tx_pend_list and placed on the end of the
79    firmware pending list (fw_pend_list)
80 6) firmware is notified that the WRITE index has
81 7) Once the firmware has processed the TBD, INTA is triggered.
82 8) For each Tx interrupt received from the firmware, the READ index is checked
83    to see which TBDs are done being processed.
84 9) For each TBD that has been processed, the ISR pulls the oldest packet
85    from the fw_pend_list.
86 10)The packet structure contained in the fw_pend_list is then used
87    to unmap the DMA address and to free the SKB originally passed to the driver
88    from the kernel.
89 11)The packet structure is placed onto the tx_free_list
90
91 The above steps are the same for commands, only the msg_free_list/msg_pend_list
92 are used instead of tx_free_list/tx_pend_list
93
94 ...
95
96 Critical Sections / Locking :
97
98 There are two locks utilized.  The first is the low level lock (priv->low_lock)
99 that protects the following:
100
101 - Access to the Tx/Rx queue lists via priv->low_lock. The lists are as follows:
102
103   tx_free_list : Holds pre-allocated Tx buffers.
104     TAIL modified in __ipw2100_tx_process()
105     HEAD modified in ipw2100_tx()
106
107   tx_pend_list : Holds used Tx buffers waiting to go into the TBD ring
108     TAIL modified ipw2100_tx()
109     HEAD modified by ipw2100_tx_send_data()
110
111   msg_free_list : Holds pre-allocated Msg (Command) buffers
112     TAIL modified in __ipw2100_tx_process()
113     HEAD modified in ipw2100_hw_send_command()
114
115   msg_pend_list : Holds used Msg buffers waiting to go into the TBD ring
116     TAIL modified in ipw2100_hw_send_command()
117     HEAD modified in ipw2100_tx_send_commands()
118
119   The flow of data on the TX side is as follows:
120
121   MSG_FREE_LIST + COMMAND => MSG_PEND_LIST => TBD => MSG_FREE_LIST
122   TX_FREE_LIST + DATA => TX_PEND_LIST => TBD => TX_FREE_LIST
123
124   The methods that work on the TBD ring are protected via priv->low_lock.
125
126 - The internal data state of the device itself
127 - Access to the firmware read/write indexes for the BD queues
128   and associated logic
129
130 All external entry functions are locked with the priv->action_lock to ensure
131 that only one external action is invoked at a time.
132
133
134 */
135
136 #include <linux/compiler.h>
137 #include <linux/errno.h>
138 #include <linux/if_arp.h>
139 #include <linux/in6.h>
140 #include <linux/in.h>
141 #include <linux/ip.h>
142 #include <linux/kernel.h>
143 #include <linux/kmod.h>
144 #include <linux/module.h>
145 #include <linux/netdevice.h>
146 #include <linux/ethtool.h>
147 #include <linux/pci.h>
148 #include <linux/dma-mapping.h>
149 #include <linux/proc_fs.h>
150 #include <linux/skbuff.h>
151 #include <asm/uaccess.h>
152 #include <asm/io.h>
153 #include <linux/fs.h>
154 #include <linux/mm.h>
155 #include <linux/slab.h>
156 #include <linux/unistd.h>
157 #include <linux/stringify.h>
158 #include <linux/tcp.h>
159 #include <linux/types.h>
160 #include <linux/time.h>
161 #include <linux/firmware.h>
162 #include <linux/acpi.h>
163 #include <linux/ctype.h>
164 #include <linux/pm_qos.h>
165
166 #include <net/lib80211.h>
167
168 #include "ipw2100.h"
169 #include "ipw.h"
170
171 #define IPW2100_VERSION "git-1.2.2"
172
173 #define DRV_NAME        "ipw2100"
174 #define DRV_VERSION     IPW2100_VERSION
175 #define DRV_DESCRIPTION "Intel(R) PRO/Wireless 2100 Network Driver"
176 #define DRV_COPYRIGHT   "Copyright(c) 2003-2006 Intel Corporation"
177
178 static struct pm_qos_request ipw2100_pm_qos_req;
179
180 /* Debugging stuff */
181 #ifdef CONFIG_IPW2100_DEBUG
182 #define IPW2100_RX_DEBUG        /* Reception debugging */
183 #endif
184
185 MODULE_DESCRIPTION(DRV_DESCRIPTION);
186 MODULE_VERSION(DRV_VERSION);
187 MODULE_AUTHOR(DRV_COPYRIGHT);
188 MODULE_LICENSE("GPL");
189
190 static int debug = 0;
191 static int network_mode = 0;
192 static int channel = 0;
193 static int associate = 0;
194 static int disable = 0;
195 #ifdef CONFIG_PM
196 static struct ipw2100_fw ipw2100_firmware;
197 #endif
198
199 #include <linux/moduleparam.h>
200 module_param(debug, int, 0444);
201 module_param_named(mode, network_mode, int, 0444);
202 module_param(channel, int, 0444);
203 module_param(associate, int, 0444);
204 module_param(disable, int, 0444);
205
206 MODULE_PARM_DESC(debug, "debug level");
207 MODULE_PARM_DESC(mode, "network mode (0=BSS,1=IBSS,2=Monitor)");
208 MODULE_PARM_DESC(channel, "channel");
209 MODULE_PARM_DESC(associate, "auto associate when scanning (default off)");
210 MODULE_PARM_DESC(disable, "manually disable the radio (default 0 [radio on])");
211
212 static u32 ipw2100_debug_level = IPW_DL_NONE;
213
214 #ifdef CONFIG_IPW2100_DEBUG
215 #define IPW_DEBUG(level, message...) \
216 do { \
217         if (ipw2100_debug_level & (level)) { \
218                 printk(KERN_DEBUG "ipw2100: %c %s ", \
219                        in_interrupt() ? 'I' : 'U',  __func__); \
220                 printk(message); \
221         } \
222 } while (0)
223 #else
224 #define IPW_DEBUG(level, message...) do {} while (0)
225 #endif                          /* CONFIG_IPW2100_DEBUG */
226
227 #ifdef CONFIG_IPW2100_DEBUG
228 static const char *command_types[] = {
229         "undefined",
230         "unused",               /* HOST_ATTENTION */
231         "HOST_COMPLETE",
232         "unused",               /* SLEEP */
233         "unused",               /* HOST_POWER_DOWN */
234         "unused",
235         "SYSTEM_CONFIG",
236         "unused",               /* SET_IMR */
237         "SSID",
238         "MANDATORY_BSSID",
239         "AUTHENTICATION_TYPE",
240         "ADAPTER_ADDRESS",
241         "PORT_TYPE",
242         "INTERNATIONAL_MODE",
243         "CHANNEL",
244         "RTS_THRESHOLD",
245         "FRAG_THRESHOLD",
246         "POWER_MODE",
247         "TX_RATES",
248         "BASIC_TX_RATES",
249         "WEP_KEY_INFO",
250         "unused",
251         "unused",
252         "unused",
253         "unused",
254         "WEP_KEY_INDEX",
255         "WEP_FLAGS",
256         "ADD_MULTICAST",
257         "CLEAR_ALL_MULTICAST",
258         "BEACON_INTERVAL",
259         "ATIM_WINDOW",
260         "CLEAR_STATISTICS",
261         "undefined",
262         "undefined",
263         "undefined",
264         "undefined",
265         "TX_POWER_INDEX",
266         "undefined",
267         "undefined",
268         "undefined",
269         "undefined",
270         "undefined",
271         "undefined",
272         "BROADCAST_SCAN",
273         "CARD_DISABLE",
274         "PREFERRED_BSSID",
275         "SET_SCAN_OPTIONS",
276         "SCAN_DWELL_TIME",
277         "SWEEP_TABLE",
278         "AP_OR_STATION_TABLE",
279         "GROUP_ORDINALS",
280         "SHORT_RETRY_LIMIT",
281         "LONG_RETRY_LIMIT",
282         "unused",               /* SAVE_CALIBRATION */
283         "unused",               /* RESTORE_CALIBRATION */
284         "undefined",
285         "undefined",
286         "undefined",
287         "HOST_PRE_POWER_DOWN",
288         "unused",               /* HOST_INTERRUPT_COALESCING */
289         "undefined",
290         "CARD_DISABLE_PHY_OFF",
291         "MSDU_TX_RATES",
292         "undefined",
293         "SET_STATION_STAT_BITS",
294         "CLEAR_STATIONS_STAT_BITS",
295         "LEAP_ROGUE_MODE",
296         "SET_SECURITY_INFORMATION",
297         "DISASSOCIATION_BSSID",
298         "SET_WPA_ASS_IE"
299 };
300 #endif
301
302 static const long ipw2100_frequencies[] = {
303         2412, 2417, 2422, 2427,
304         2432, 2437, 2442, 2447,
305         2452, 2457, 2462, 2467,
306         2472, 2484
307 };
308
309 #define FREQ_COUNT      ARRAY_SIZE(ipw2100_frequencies)
310
311 static struct ieee80211_rate ipw2100_bg_rates[] = {
312         { .bitrate = 10 },
313         { .bitrate = 20, .flags = IEEE80211_RATE_SHORT_PREAMBLE },
314         { .bitrate = 55, .flags = IEEE80211_RATE_SHORT_PREAMBLE },
315         { .bitrate = 110, .flags = IEEE80211_RATE_SHORT_PREAMBLE },
316 };
317
318 #define RATE_COUNT ARRAY_SIZE(ipw2100_bg_rates)
319
320 /* Pre-decl until we get the code solid and then we can clean it up */
321 static void ipw2100_tx_send_commands(struct ipw2100_priv *priv);
322 static void ipw2100_tx_send_data(struct ipw2100_priv *priv);
323 static int ipw2100_adapter_setup(struct ipw2100_priv *priv);
324
325 static void ipw2100_queues_initialize(struct ipw2100_priv *priv);
326 static void ipw2100_queues_free(struct ipw2100_priv *priv);
327 static int ipw2100_queues_allocate(struct ipw2100_priv *priv);
328
329 static int ipw2100_fw_download(struct ipw2100_priv *priv,
330                                struct ipw2100_fw *fw);
331 static int ipw2100_get_firmware(struct ipw2100_priv *priv,
332                                 struct ipw2100_fw *fw);
333 static int ipw2100_get_fwversion(struct ipw2100_priv *priv, char *buf,
334                                  size_t max);
335 static int ipw2100_get_ucodeversion(struct ipw2100_priv *priv, char *buf,
336                                     size_t max);
337 static void ipw2100_release_firmware(struct ipw2100_priv *priv,
338                                      struct ipw2100_fw *fw);
339 static int ipw2100_ucode_download(struct ipw2100_priv *priv,
340                                   struct ipw2100_fw *fw);
341 static void ipw2100_wx_event_work(struct work_struct *work);
342 static struct iw_statistics *ipw2100_wx_wireless_stats(struct net_device *dev);
343 static struct iw_handler_def ipw2100_wx_handler_def;
344
345 static inline void read_register(struct net_device *dev, u32 reg, u32 * val)
346 {
347         struct ipw2100_priv *priv = libipw_priv(dev);
348
349         *val = ioread32(priv->ioaddr + reg);
350         IPW_DEBUG_IO("r: 0x%08X => 0x%08X\n", reg, *val);
351 }
352
353 static inline void write_register(struct net_device *dev, u32 reg, u32 val)
354 {
355         struct ipw2100_priv *priv = libipw_priv(dev);
356
357         iowrite32(val, priv->ioaddr + reg);
358         IPW_DEBUG_IO("w: 0x%08X <= 0x%08X\n", reg, val);
359 }
360
361 static inline void read_register_word(struct net_device *dev, u32 reg,
362                                       u16 * val)
363 {
364         struct ipw2100_priv *priv = libipw_priv(dev);
365
366         *val = ioread16(priv->ioaddr + reg);
367         IPW_DEBUG_IO("r: 0x%08X => %04X\n", reg, *val);
368 }
369
370 static inline void read_register_byte(struct net_device *dev, u32 reg, u8 * val)
371 {
372         struct ipw2100_priv *priv = libipw_priv(dev);
373
374         *val = ioread8(priv->ioaddr + reg);
375         IPW_DEBUG_IO("r: 0x%08X => %02X\n", reg, *val);
376 }
377
378 static inline void write_register_word(struct net_device *dev, u32 reg, u16 val)
379 {
380         struct ipw2100_priv *priv = libipw_priv(dev);
381
382         iowrite16(val, priv->ioaddr + reg);
383         IPW_DEBUG_IO("w: 0x%08X <= %04X\n", reg, val);
384 }
385
386 static inline void write_register_byte(struct net_device *dev, u32 reg, u8 val)
387 {
388         struct ipw2100_priv *priv = libipw_priv(dev);
389
390         iowrite8(val, priv->ioaddr + reg);
391         IPW_DEBUG_IO("w: 0x%08X =< %02X\n", reg, val);
392 }
393
394 static inline void read_nic_dword(struct net_device *dev, u32 addr, u32 * val)
395 {
396         write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS,
397                        addr & IPW_REG_INDIRECT_ADDR_MASK);
398         read_register(dev, IPW_REG_INDIRECT_ACCESS_DATA, val);
399 }
400
401 static inline void write_nic_dword(struct net_device *dev, u32 addr, u32 val)
402 {
403         write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS,
404                        addr & IPW_REG_INDIRECT_ADDR_MASK);
405         write_register(dev, IPW_REG_INDIRECT_ACCESS_DATA, val);
406 }
407
408 static inline void read_nic_word(struct net_device *dev, u32 addr, u16 * val)
409 {
410         write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS,
411                        addr & IPW_REG_INDIRECT_ADDR_MASK);
412         read_register_word(dev, IPW_REG_INDIRECT_ACCESS_DATA, val);
413 }
414
415 static inline void write_nic_word(struct net_device *dev, u32 addr, u16 val)
416 {
417         write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS,
418                        addr & IPW_REG_INDIRECT_ADDR_MASK);
419         write_register_word(dev, IPW_REG_INDIRECT_ACCESS_DATA, val);
420 }
421
422 static inline void read_nic_byte(struct net_device *dev, u32 addr, u8 * val)
423 {
424         write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS,
425                        addr & IPW_REG_INDIRECT_ADDR_MASK);
426         read_register_byte(dev, IPW_REG_INDIRECT_ACCESS_DATA, val);
427 }
428
429 static inline void write_nic_byte(struct net_device *dev, u32 addr, u8 val)
430 {
431         write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS,
432                        addr & IPW_REG_INDIRECT_ADDR_MASK);
433         write_register_byte(dev, IPW_REG_INDIRECT_ACCESS_DATA, val);
434 }
435
436 static inline void write_nic_auto_inc_address(struct net_device *dev, u32 addr)
437 {
438         write_register(dev, IPW_REG_AUTOINCREMENT_ADDRESS,
439                        addr & IPW_REG_INDIRECT_ADDR_MASK);
440 }
441
442 static inline void write_nic_dword_auto_inc(struct net_device *dev, u32 val)
443 {
444         write_register(dev, IPW_REG_AUTOINCREMENT_DATA, val);
445 }
446
447 static void write_nic_memory(struct net_device *dev, u32 addr, u32 len,
448                                     const u8 * buf)
449 {
450         u32 aligned_addr;
451         u32 aligned_len;
452         u32 dif_len;
453         u32 i;
454
455         /* read first nibble byte by byte */
456         aligned_addr = addr & (~0x3);
457         dif_len = addr - aligned_addr;
458         if (dif_len) {
459                 /* Start reading at aligned_addr + dif_len */
460                 write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS,
461                                aligned_addr);
462                 for (i = dif_len; i < 4; i++, buf++)
463                         write_register_byte(dev,
464                                             IPW_REG_INDIRECT_ACCESS_DATA + i,
465                                             *buf);
466
467                 len -= dif_len;
468                 aligned_addr += 4;
469         }
470
471         /* read DWs through autoincrement registers */
472         write_register(dev, IPW_REG_AUTOINCREMENT_ADDRESS, aligned_addr);
473         aligned_len = len & (~0x3);
474         for (i = 0; i < aligned_len; i += 4, buf += 4, aligned_addr += 4)
475                 write_register(dev, IPW_REG_AUTOINCREMENT_DATA, *(u32 *) buf);
476
477         /* copy the last nibble */
478         dif_len = len - aligned_len;
479         write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS, aligned_addr);
480         for (i = 0; i < dif_len; i++, buf++)
481                 write_register_byte(dev, IPW_REG_INDIRECT_ACCESS_DATA + i,
482                                     *buf);
483 }
484
485 static void read_nic_memory(struct net_device *dev, u32 addr, u32 len,
486                                    u8 * buf)
487 {
488         u32 aligned_addr;
489         u32 aligned_len;
490         u32 dif_len;
491         u32 i;
492
493         /* read first nibble byte by byte */
494         aligned_addr = addr & (~0x3);
495         dif_len = addr - aligned_addr;
496         if (dif_len) {
497                 /* Start reading at aligned_addr + dif_len */
498                 write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS,
499                                aligned_addr);
500                 for (i = dif_len; i < 4; i++, buf++)
501                         read_register_byte(dev,
502                                            IPW_REG_INDIRECT_ACCESS_DATA + i,
503                                            buf);
504
505                 len -= dif_len;
506                 aligned_addr += 4;
507         }
508
509         /* read DWs through autoincrement registers */
510         write_register(dev, IPW_REG_AUTOINCREMENT_ADDRESS, aligned_addr);
511         aligned_len = len & (~0x3);
512         for (i = 0; i < aligned_len; i += 4, buf += 4, aligned_addr += 4)
513                 read_register(dev, IPW_REG_AUTOINCREMENT_DATA, (u32 *) buf);
514
515         /* copy the last nibble */
516         dif_len = len - aligned_len;
517         write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS, aligned_addr);
518         for (i = 0; i < dif_len; i++, buf++)
519                 read_register_byte(dev, IPW_REG_INDIRECT_ACCESS_DATA + i, buf);
520 }
521
522 static bool ipw2100_hw_is_adapter_in_system(struct net_device *dev)
523 {
524         u32 dbg;
525
526         read_register(dev, IPW_REG_DOA_DEBUG_AREA_START, &dbg);
527
528         return dbg == IPW_DATA_DOA_DEBUG_VALUE;
529 }
530
531 static int ipw2100_get_ordinal(struct ipw2100_priv *priv, u32 ord,
532                                void *val, u32 * len)
533 {
534         struct ipw2100_ordinals *ordinals = &priv->ordinals;
535         u32 addr;
536         u32 field_info;
537         u16 field_len;
538         u16 field_count;
539         u32 total_length;
540
541         if (ordinals->table1_addr == 0) {
542                 printk(KERN_WARNING DRV_NAME ": attempt to use fw ordinals "
543                        "before they have been loaded.\n");
544                 return -EINVAL;
545         }
546
547         if (IS_ORDINAL_TABLE_ONE(ordinals, ord)) {
548                 if (*len < IPW_ORD_TAB_1_ENTRY_SIZE) {
549                         *len = IPW_ORD_TAB_1_ENTRY_SIZE;
550
551                         printk(KERN_WARNING DRV_NAME
552                                ": ordinal buffer length too small, need %zd\n",
553                                IPW_ORD_TAB_1_ENTRY_SIZE);
554
555                         return -EINVAL;
556                 }
557
558                 read_nic_dword(priv->net_dev,
559                                ordinals->table1_addr + (ord << 2), &addr);
560                 read_nic_dword(priv->net_dev, addr, val);
561
562                 *len = IPW_ORD_TAB_1_ENTRY_SIZE;
563
564                 return 0;
565         }
566
567         if (IS_ORDINAL_TABLE_TWO(ordinals, ord)) {
568
569                 ord -= IPW_START_ORD_TAB_2;
570
571                 /* get the address of statistic */
572                 read_nic_dword(priv->net_dev,
573                                ordinals->table2_addr + (ord << 3), &addr);
574
575                 /* get the second DW of statistics ;
576                  * two 16-bit words - first is length, second is count */
577                 read_nic_dword(priv->net_dev,
578                                ordinals->table2_addr + (ord << 3) + sizeof(u32),
579                                &field_info);
580
581                 /* get each entry length */
582                 field_len = *((u16 *) & field_info);
583
584                 /* get number of entries */
585                 field_count = *(((u16 *) & field_info) + 1);
586
587                 /* abort if no enough memory */
588                 total_length = field_len * field_count;
589                 if (total_length > *len) {
590                         *len = total_length;
591                         return -EINVAL;
592                 }
593
594                 *len = total_length;
595                 if (!total_length)
596                         return 0;
597
598                 /* read the ordinal data from the SRAM */
599                 read_nic_memory(priv->net_dev, addr, total_length, val);
600
601                 return 0;
602         }
603
604         printk(KERN_WARNING DRV_NAME ": ordinal %d neither in table 1 nor "
605                "in table 2\n", ord);
606
607         return -EINVAL;
608 }
609
610 static int ipw2100_set_ordinal(struct ipw2100_priv *priv, u32 ord, u32 * val,
611                                u32 * len)
612 {
613         struct ipw2100_ordinals *ordinals = &priv->ordinals;
614         u32 addr;
615
616         if (IS_ORDINAL_TABLE_ONE(ordinals, ord)) {
617                 if (*len != IPW_ORD_TAB_1_ENTRY_SIZE) {
618                         *len = IPW_ORD_TAB_1_ENTRY_SIZE;
619                         IPW_DEBUG_INFO("wrong size\n");
620                         return -EINVAL;
621                 }
622
623                 read_nic_dword(priv->net_dev,
624                                ordinals->table1_addr + (ord << 2), &addr);
625
626                 write_nic_dword(priv->net_dev, addr, *val);
627
628                 *len = IPW_ORD_TAB_1_ENTRY_SIZE;
629
630                 return 0;
631         }
632
633         IPW_DEBUG_INFO("wrong table\n");
634         if (IS_ORDINAL_TABLE_TWO(ordinals, ord))
635                 return -EINVAL;
636
637         return -EINVAL;
638 }
639
640 static char *snprint_line(char *buf, size_t count,
641                           const u8 * data, u32 len, u32 ofs)
642 {
643         int out, i, j, l;
644         char c;
645
646         out = snprintf(buf, count, "%08X", ofs);
647
648         for (l = 0, i = 0; i < 2; i++) {
649                 out += snprintf(buf + out, count - out, " ");
650                 for (j = 0; j < 8 && l < len; j++, l++)
651                         out += snprintf(buf + out, count - out, "%02X ",
652                                         data[(i * 8 + j)]);
653                 for (; j < 8; j++)
654                         out += snprintf(buf + out, count - out, "   ");
655         }
656
657         out += snprintf(buf + out, count - out, " ");
658         for (l = 0, i = 0; i < 2; i++) {
659                 out += snprintf(buf + out, count - out, " ");
660                 for (j = 0; j < 8 && l < len; j++, l++) {
661                         c = data[(i * 8 + j)];
662                         if (!isascii(c) || !isprint(c))
663                                 c = '.';
664
665                         out += snprintf(buf + out, count - out, "%c", c);
666                 }
667
668                 for (; j < 8; j++)
669                         out += snprintf(buf + out, count - out, " ");
670         }
671
672         return buf;
673 }
674
675 static void printk_buf(int level, const u8 * data, u32 len)
676 {
677         char line[81];
678         u32 ofs = 0;
679         if (!(ipw2100_debug_level & level))
680                 return;
681
682         while (len) {
683                 printk(KERN_DEBUG "%s\n",
684                        snprint_line(line, sizeof(line), &data[ofs],
685                                     min(len, 16U), ofs));
686                 ofs += 16;
687                 len -= min(len, 16U);
688         }
689 }
690
691 #define MAX_RESET_BACKOFF 10
692
693 static void schedule_reset(struct ipw2100_priv *priv)
694 {
695         unsigned long now = get_seconds();
696
697         /* If we haven't received a reset request within the backoff period,
698          * then we can reset the backoff interval so this reset occurs
699          * immediately */
700         if (priv->reset_backoff &&
701             (now - priv->last_reset > priv->reset_backoff))
702                 priv->reset_backoff = 0;
703
704         priv->last_reset = get_seconds();
705
706         if (!(priv->status & STATUS_RESET_PENDING)) {
707                 IPW_DEBUG_INFO("%s: Scheduling firmware restart (%ds).\n",
708                                priv->net_dev->name, priv->reset_backoff);
709                 netif_carrier_off(priv->net_dev);
710                 netif_stop_queue(priv->net_dev);
711                 priv->status |= STATUS_RESET_PENDING;
712                 if (priv->reset_backoff)
713                         schedule_delayed_work(&priv->reset_work,
714                                               priv->reset_backoff * HZ);
715                 else
716                         schedule_delayed_work(&priv->reset_work, 0);
717
718                 if (priv->reset_backoff < MAX_RESET_BACKOFF)
719                         priv->reset_backoff++;
720
721                 wake_up_interruptible(&priv->wait_command_queue);
722         } else
723                 IPW_DEBUG_INFO("%s: Firmware restart already in progress.\n",
724                                priv->net_dev->name);
725
726 }
727
728 #define HOST_COMPLETE_TIMEOUT (2 * HZ)
729 static int ipw2100_hw_send_command(struct ipw2100_priv *priv,
730                                    struct host_command *cmd)
731 {
732         struct list_head *element;
733         struct ipw2100_tx_packet *packet;
734         unsigned long flags;
735         int err = 0;
736
737         IPW_DEBUG_HC("Sending %s command (#%d), %d bytes\n",
738                      command_types[cmd->host_command], cmd->host_command,
739                      cmd->host_command_length);
740         printk_buf(IPW_DL_HC, (u8 *) cmd->host_command_parameters,
741                    cmd->host_command_length);
742
743         spin_lock_irqsave(&priv->low_lock, flags);
744
745         if (priv->fatal_error) {
746                 IPW_DEBUG_INFO
747                     ("Attempt to send command while hardware in fatal error condition.\n");
748                 err = -EIO;
749                 goto fail_unlock;
750         }
751
752         if (!(priv->status & STATUS_RUNNING)) {
753                 IPW_DEBUG_INFO
754                     ("Attempt to send command while hardware is not running.\n");
755                 err = -EIO;
756                 goto fail_unlock;
757         }
758
759         if (priv->status & STATUS_CMD_ACTIVE) {
760                 IPW_DEBUG_INFO
761                     ("Attempt to send command while another command is pending.\n");
762                 err = -EBUSY;
763                 goto fail_unlock;
764         }
765
766         if (list_empty(&priv->msg_free_list)) {
767                 IPW_DEBUG_INFO("no available msg buffers\n");
768                 goto fail_unlock;
769         }
770
771         priv->status |= STATUS_CMD_ACTIVE;
772         priv->messages_sent++;
773
774         element = priv->msg_free_list.next;
775
776         packet = list_entry(element, struct ipw2100_tx_packet, list);
777         packet->jiffy_start = jiffies;
778
779         /* initialize the firmware command packet */
780         packet->info.c_struct.cmd->host_command_reg = cmd->host_command;
781         packet->info.c_struct.cmd->host_command_reg1 = cmd->host_command1;
782         packet->info.c_struct.cmd->host_command_len_reg =
783             cmd->host_command_length;
784         packet->info.c_struct.cmd->sequence = cmd->host_command_sequence;
785
786         memcpy(packet->info.c_struct.cmd->host_command_params_reg,
787                cmd->host_command_parameters,
788                sizeof(packet->info.c_struct.cmd->host_command_params_reg));
789
790         list_del(element);
791         DEC_STAT(&priv->msg_free_stat);
792
793         list_add_tail(element, &priv->msg_pend_list);
794         INC_STAT(&priv->msg_pend_stat);
795
796         ipw2100_tx_send_commands(priv);
797         ipw2100_tx_send_data(priv);
798
799         spin_unlock_irqrestore(&priv->low_lock, flags);
800
801         /*
802          * We must wait for this command to complete before another
803          * command can be sent...  but if we wait more than 3 seconds
804          * then there is a problem.
805          */
806
807         err =
808             wait_event_interruptible_timeout(priv->wait_command_queue,
809                                              !(priv->
810                                                status & STATUS_CMD_ACTIVE),
811                                              HOST_COMPLETE_TIMEOUT);
812
813         if (err == 0) {
814                 IPW_DEBUG_INFO("Command completion failed out after %dms.\n",
815                                1000 * (HOST_COMPLETE_TIMEOUT / HZ));
816                 priv->fatal_error = IPW2100_ERR_MSG_TIMEOUT;
817                 priv->status &= ~STATUS_CMD_ACTIVE;
818                 schedule_reset(priv);
819                 return -EIO;
820         }
821
822         if (priv->fatal_error) {
823                 printk(KERN_WARNING DRV_NAME ": %s: firmware fatal error\n",
824                        priv->net_dev->name);
825                 return -EIO;
826         }
827
828         /* !!!!! HACK TEST !!!!!
829          * When lots of debug trace statements are enabled, the driver
830          * doesn't seem to have as many firmware restart cycles...
831          *
832          * As a test, we're sticking in a 1/100s delay here */
833         schedule_timeout_uninterruptible(msecs_to_jiffies(10));
834
835         return 0;
836
837       fail_unlock:
838         spin_unlock_irqrestore(&priv->low_lock, flags);
839
840         return err;
841 }
842
843 /*
844  * Verify the values and data access of the hardware
845  * No locks needed or used.  No functions called.
846  */
847 static int ipw2100_verify(struct ipw2100_priv *priv)
848 {
849         u32 data1, data2;
850         u32 address;
851
852         u32 val1 = 0x76543210;
853         u32 val2 = 0xFEDCBA98;
854
855         /* Domain 0 check - all values should be DOA_DEBUG */
856         for (address = IPW_REG_DOA_DEBUG_AREA_START;
857              address < IPW_REG_DOA_DEBUG_AREA_END; address += sizeof(u32)) {
858                 read_register(priv->net_dev, address, &data1);
859                 if (data1 != IPW_DATA_DOA_DEBUG_VALUE)
860                         return -EIO;
861         }
862
863         /* Domain 1 check - use arbitrary read/write compare  */
864         for (address = 0; address < 5; address++) {
865                 /* The memory area is not used now */
866                 write_register(priv->net_dev, IPW_REG_DOMAIN_1_OFFSET + 0x32,
867                                val1);
868                 write_register(priv->net_dev, IPW_REG_DOMAIN_1_OFFSET + 0x36,
869                                val2);
870                 read_register(priv->net_dev, IPW_REG_DOMAIN_1_OFFSET + 0x32,
871                               &data1);
872                 read_register(priv->net_dev, IPW_REG_DOMAIN_1_OFFSET + 0x36,
873                               &data2);
874                 if (val1 == data1 && val2 == data2)
875                         return 0;
876         }
877
878         return -EIO;
879 }
880
881 /*
882  *
883  * Loop until the CARD_DISABLED bit is the same value as the
884  * supplied parameter
885  *
886  * TODO: See if it would be more efficient to do a wait/wake
887  *       cycle and have the completion event trigger the wakeup
888  *
889  */
890 #define IPW_CARD_DISABLE_COMPLETE_WAIT              100 // 100 milli
891 static int ipw2100_wait_for_card_state(struct ipw2100_priv *priv, int state)
892 {
893         int i;
894         u32 card_state;
895         u32 len = sizeof(card_state);
896         int err;
897
898         for (i = 0; i <= IPW_CARD_DISABLE_COMPLETE_WAIT * 1000; i += 50) {
899                 err = ipw2100_get_ordinal(priv, IPW_ORD_CARD_DISABLED,
900                                           &card_state, &len);
901                 if (err) {
902                         IPW_DEBUG_INFO("Query of CARD_DISABLED ordinal "
903                                        "failed.\n");
904                         return 0;
905                 }
906
907                 /* We'll break out if either the HW state says it is
908                  * in the state we want, or if HOST_COMPLETE command
909                  * finishes */
910                 if ((card_state == state) ||
911                     ((priv->status & STATUS_ENABLED) ?
912                      IPW_HW_STATE_ENABLED : IPW_HW_STATE_DISABLED) == state) {
913                         if (state == IPW_HW_STATE_ENABLED)
914                                 priv->status |= STATUS_ENABLED;
915                         else
916                                 priv->status &= ~STATUS_ENABLED;
917
918                         return 0;
919                 }
920
921                 udelay(50);
922         }
923
924         IPW_DEBUG_INFO("ipw2100_wait_for_card_state to %s state timed out\n",
925                        state ? "DISABLED" : "ENABLED");
926         return -EIO;
927 }
928
929 /*********************************************************************
930     Procedure   :   sw_reset_and_clock
931     Purpose     :   Asserts s/w reset, asserts clock initialization
932                     and waits for clock stabilization
933  ********************************************************************/
934 static int sw_reset_and_clock(struct ipw2100_priv *priv)
935 {
936         int i;
937         u32 r;
938
939         // assert s/w reset
940         write_register(priv->net_dev, IPW_REG_RESET_REG,
941                        IPW_AUX_HOST_RESET_REG_SW_RESET);
942
943         // wait for clock stabilization
944         for (i = 0; i < 1000; i++) {
945                 udelay(IPW_WAIT_RESET_ARC_COMPLETE_DELAY);
946
947                 // check clock ready bit
948                 read_register(priv->net_dev, IPW_REG_RESET_REG, &r);
949                 if (r & IPW_AUX_HOST_RESET_REG_PRINCETON_RESET)
950                         break;
951         }
952
953         if (i == 1000)
954                 return -EIO;    // TODO: better error value
955
956         /* set "initialization complete" bit to move adapter to
957          * D0 state */
958         write_register(priv->net_dev, IPW_REG_GP_CNTRL,
959                        IPW_AUX_HOST_GP_CNTRL_BIT_INIT_DONE);
960
961         /* wait for clock stabilization */
962         for (i = 0; i < 10000; i++) {
963                 udelay(IPW_WAIT_CLOCK_STABILIZATION_DELAY * 4);
964
965                 /* check clock ready bit */
966                 read_register(priv->net_dev, IPW_REG_GP_CNTRL, &r);
967                 if (r & IPW_AUX_HOST_GP_CNTRL_BIT_CLOCK_READY)
968                         break;
969         }
970
971         if (i == 10000)
972                 return -EIO;    /* TODO: better error value */
973
974         /* set D0 standby bit */
975         read_register(priv->net_dev, IPW_REG_GP_CNTRL, &r);
976         write_register(priv->net_dev, IPW_REG_GP_CNTRL,
977                        r | IPW_AUX_HOST_GP_CNTRL_BIT_HOST_ALLOWS_STANDBY);
978
979         return 0;
980 }
981
982 /*********************************************************************
983     Procedure   :   ipw2100_download_firmware
984     Purpose     :   Initiaze adapter after power on.
985                     The sequence is:
986                     1. assert s/w reset first!
987                     2. awake clocks & wait for clock stabilization
988                     3. hold ARC (don't ask me why...)
989                     4. load Dino ucode and reset/clock init again
990                     5. zero-out shared mem
991                     6. download f/w
992  *******************************************************************/
993 static int ipw2100_download_firmware(struct ipw2100_priv *priv)
994 {
995         u32 address;
996         int err;
997
998 #ifndef CONFIG_PM
999         /* Fetch the firmware and microcode */
1000         struct ipw2100_fw ipw2100_firmware;
1001 #endif
1002
1003         if (priv->fatal_error) {
1004                 IPW_DEBUG_ERROR("%s: ipw2100_download_firmware called after "
1005                                 "fatal error %d.  Interface must be brought down.\n",
1006                                 priv->net_dev->name, priv->fatal_error);
1007                 return -EINVAL;
1008         }
1009 #ifdef CONFIG_PM
1010         if (!ipw2100_firmware.version) {
1011                 err = ipw2100_get_firmware(priv, &ipw2100_firmware);
1012                 if (err) {
1013                         IPW_DEBUG_ERROR("%s: ipw2100_get_firmware failed: %d\n",
1014                                         priv->net_dev->name, err);
1015                         priv->fatal_error = IPW2100_ERR_FW_LOAD;
1016                         goto fail;
1017                 }
1018         }
1019 #else
1020         err = ipw2100_get_firmware(priv, &ipw2100_firmware);
1021         if (err) {
1022                 IPW_DEBUG_ERROR("%s: ipw2100_get_firmware failed: %d\n",
1023                                 priv->net_dev->name, err);
1024                 priv->fatal_error = IPW2100_ERR_FW_LOAD;
1025                 goto fail;
1026         }
1027 #endif
1028         priv->firmware_version = ipw2100_firmware.version;
1029
1030         /* s/w reset and clock stabilization */
1031         err = sw_reset_and_clock(priv);
1032         if (err) {
1033                 IPW_DEBUG_ERROR("%s: sw_reset_and_clock failed: %d\n",
1034                                 priv->net_dev->name, err);
1035                 goto fail;
1036         }
1037
1038         err = ipw2100_verify(priv);
1039         if (err) {
1040                 IPW_DEBUG_ERROR("%s: ipw2100_verify failed: %d\n",
1041                                 priv->net_dev->name, err);
1042                 goto fail;
1043         }
1044
1045         /* Hold ARC */
1046         write_nic_dword(priv->net_dev,
1047                         IPW_INTERNAL_REGISTER_HALT_AND_RESET, 0x80000000);
1048
1049         /* allow ARC to run */
1050         write_register(priv->net_dev, IPW_REG_RESET_REG, 0);
1051
1052         /* load microcode */
1053         err = ipw2100_ucode_download(priv, &ipw2100_firmware);
1054         if (err) {
1055                 printk(KERN_ERR DRV_NAME ": %s: Error loading microcode: %d\n",
1056                        priv->net_dev->name, err);
1057                 goto fail;
1058         }
1059
1060         /* release ARC */
1061         write_nic_dword(priv->net_dev,
1062                         IPW_INTERNAL_REGISTER_HALT_AND_RESET, 0x00000000);
1063
1064         /* s/w reset and clock stabilization (again!!!) */
1065         err = sw_reset_and_clock(priv);
1066         if (err) {
1067                 printk(KERN_ERR DRV_NAME
1068                        ": %s: sw_reset_and_clock failed: %d\n",
1069                        priv->net_dev->name, err);
1070                 goto fail;
1071         }
1072
1073         /* load f/w */
1074         err = ipw2100_fw_download(priv, &ipw2100_firmware);
1075         if (err) {
1076                 IPW_DEBUG_ERROR("%s: Error loading firmware: %d\n",
1077                                 priv->net_dev->name, err);
1078                 goto fail;
1079         }
1080 #ifndef CONFIG_PM
1081         /*
1082          * When the .resume method of the driver is called, the other
1083          * part of the system, i.e. the ide driver could still stay in
1084          * the suspend stage. This prevents us from loading the firmware
1085          * from the disk.  --YZ
1086          */
1087
1088         /* free any storage allocated for firmware image */
1089         ipw2100_release_firmware(priv, &ipw2100_firmware);
1090 #endif
1091
1092         /* zero out Domain 1 area indirectly (Si requirement) */
1093         for (address = IPW_HOST_FW_SHARED_AREA0;
1094              address < IPW_HOST_FW_SHARED_AREA0_END; address += 4)
1095                 write_nic_dword(priv->net_dev, address, 0);
1096         for (address = IPW_HOST_FW_SHARED_AREA1;
1097              address < IPW_HOST_FW_SHARED_AREA1_END; address += 4)
1098                 write_nic_dword(priv->net_dev, address, 0);
1099         for (address = IPW_HOST_FW_SHARED_AREA2;
1100              address < IPW_HOST_FW_SHARED_AREA2_END; address += 4)
1101                 write_nic_dword(priv->net_dev, address, 0);
1102         for (address = IPW_HOST_FW_SHARED_AREA3;
1103              address < IPW_HOST_FW_SHARED_AREA3_END; address += 4)
1104                 write_nic_dword(priv->net_dev, address, 0);
1105         for (address = IPW_HOST_FW_INTERRUPT_AREA;
1106              address < IPW_HOST_FW_INTERRUPT_AREA_END; address += 4)
1107                 write_nic_dword(priv->net_dev, address, 0);
1108
1109         return 0;
1110
1111       fail:
1112         ipw2100_release_firmware(priv, &ipw2100_firmware);
1113         return err;
1114 }
1115
1116 static inline void ipw2100_enable_interrupts(struct ipw2100_priv *priv)
1117 {
1118         if (priv->status & STATUS_INT_ENABLED)
1119                 return;
1120         priv->status |= STATUS_INT_ENABLED;
1121         write_register(priv->net_dev, IPW_REG_INTA_MASK, IPW_INTERRUPT_MASK);
1122 }
1123
1124 static inline void ipw2100_disable_interrupts(struct ipw2100_priv *priv)
1125 {
1126         if (!(priv->status & STATUS_INT_ENABLED))
1127                 return;
1128         priv->status &= ~STATUS_INT_ENABLED;
1129         write_register(priv->net_dev, IPW_REG_INTA_MASK, 0x0);
1130 }
1131
1132 static void ipw2100_initialize_ordinals(struct ipw2100_priv *priv)
1133 {
1134         struct ipw2100_ordinals *ord = &priv->ordinals;
1135
1136         IPW_DEBUG_INFO("enter\n");
1137
1138         read_register(priv->net_dev, IPW_MEM_HOST_SHARED_ORDINALS_TABLE_1,
1139                       &ord->table1_addr);
1140
1141         read_register(priv->net_dev, IPW_MEM_HOST_SHARED_ORDINALS_TABLE_2,
1142                       &ord->table2_addr);
1143
1144         read_nic_dword(priv->net_dev, ord->table1_addr, &ord->table1_size);
1145         read_nic_dword(priv->net_dev, ord->table2_addr, &ord->table2_size);
1146
1147         ord->table2_size &= 0x0000FFFF;
1148
1149         IPW_DEBUG_INFO("table 1 size: %d\n", ord->table1_size);
1150         IPW_DEBUG_INFO("table 2 size: %d\n", ord->table2_size);
1151         IPW_DEBUG_INFO("exit\n");
1152 }
1153
1154 static inline void ipw2100_hw_set_gpio(struct ipw2100_priv *priv)
1155 {
1156         u32 reg = 0;
1157         /*
1158          * Set GPIO 3 writable by FW; GPIO 1 writable
1159          * by driver and enable clock
1160          */
1161         reg = (IPW_BIT_GPIO_GPIO3_MASK | IPW_BIT_GPIO_GPIO1_ENABLE |
1162                IPW_BIT_GPIO_LED_OFF);
1163         write_register(priv->net_dev, IPW_REG_GPIO, reg);
1164 }
1165
1166 static int rf_kill_active(struct ipw2100_priv *priv)
1167 {
1168 #define MAX_RF_KILL_CHECKS 5
1169 #define RF_KILL_CHECK_DELAY 40
1170
1171         unsigned short value = 0;
1172         u32 reg = 0;
1173         int i;
1174
1175         if (!(priv->hw_features & HW_FEATURE_RFKILL)) {
1176                 wiphy_rfkill_set_hw_state(priv->ieee->wdev.wiphy, false);
1177                 priv->status &= ~STATUS_RF_KILL_HW;
1178                 return 0;
1179         }
1180
1181         for (i = 0; i < MAX_RF_KILL_CHECKS; i++) {
1182                 udelay(RF_KILL_CHECK_DELAY);
1183                 read_register(priv->net_dev, IPW_REG_GPIO, &reg);
1184                 value = (value << 1) | ((reg & IPW_BIT_GPIO_RF_KILL) ? 0 : 1);
1185         }
1186
1187         if (value == 0) {
1188                 wiphy_rfkill_set_hw_state(priv->ieee->wdev.wiphy, true);
1189                 priv->status |= STATUS_RF_KILL_HW;
1190         } else {
1191                 wiphy_rfkill_set_hw_state(priv->ieee->wdev.wiphy, false);
1192                 priv->status &= ~STATUS_RF_KILL_HW;
1193         }
1194
1195         return (value == 0);
1196 }
1197
1198 static int ipw2100_get_hw_features(struct ipw2100_priv *priv)
1199 {
1200         u32 addr, len;
1201         u32 val;
1202
1203         /*
1204          * EEPROM_SRAM_DB_START_ADDRESS using ordinal in ordinal table 1
1205          */
1206         len = sizeof(addr);
1207         if (ipw2100_get_ordinal
1208             (priv, IPW_ORD_EEPROM_SRAM_DB_BLOCK_START_ADDRESS, &addr, &len)) {
1209                 IPW_DEBUG_INFO("failed querying ordinals at line %d\n",
1210                                __LINE__);
1211                 return -EIO;
1212         }
1213
1214         IPW_DEBUG_INFO("EEPROM address: %08X\n", addr);
1215
1216         /*
1217          * EEPROM version is the byte at offset 0xfd in firmware
1218          * We read 4 bytes, then shift out the byte we actually want */
1219         read_nic_dword(priv->net_dev, addr + 0xFC, &val);
1220         priv->eeprom_version = (val >> 24) & 0xFF;
1221         IPW_DEBUG_INFO("EEPROM version: %d\n", priv->eeprom_version);
1222
1223         /*
1224          *  HW RF Kill enable is bit 0 in byte at offset 0x21 in firmware
1225          *
1226          *  notice that the EEPROM bit is reverse polarity, i.e.
1227          *     bit = 0  signifies HW RF kill switch is supported
1228          *     bit = 1  signifies HW RF kill switch is NOT supported
1229          */
1230         read_nic_dword(priv->net_dev, addr + 0x20, &val);
1231         if (!((val >> 24) & 0x01))
1232                 priv->hw_features |= HW_FEATURE_RFKILL;
1233
1234         IPW_DEBUG_INFO("HW RF Kill: %ssupported.\n",
1235                        (priv->hw_features & HW_FEATURE_RFKILL) ? "" : "not ");
1236
1237         return 0;
1238 }
1239
1240 /*
1241  * Start firmware execution after power on and intialization
1242  * The sequence is:
1243  *  1. Release ARC
1244  *  2. Wait for f/w initialization completes;
1245  */
1246 static int ipw2100_start_adapter(struct ipw2100_priv *priv)
1247 {
1248         int i;
1249         u32 inta, inta_mask, gpio;
1250
1251         IPW_DEBUG_INFO("enter\n");
1252
1253         if (priv->status & STATUS_RUNNING)
1254                 return 0;
1255
1256         /*
1257          * Initialize the hw - drive adapter to DO state by setting
1258          * init_done bit. Wait for clk_ready bit and Download
1259          * fw & dino ucode
1260          */
1261         if (ipw2100_download_firmware(priv)) {
1262                 printk(KERN_ERR DRV_NAME
1263                        ": %s: Failed to power on the adapter.\n",
1264                        priv->net_dev->name);
1265                 return -EIO;
1266         }
1267
1268         /* Clear the Tx, Rx and Msg queues and the r/w indexes
1269          * in the firmware RBD and TBD ring queue */
1270         ipw2100_queues_initialize(priv);
1271
1272         ipw2100_hw_set_gpio(priv);
1273
1274         /* TODO -- Look at disabling interrupts here to make sure none
1275          * get fired during FW initialization */
1276
1277         /* Release ARC - clear reset bit */
1278         write_register(priv->net_dev, IPW_REG_RESET_REG, 0);
1279
1280         /* wait for f/w intialization complete */
1281         IPW_DEBUG_FW("Waiting for f/w initialization to complete...\n");
1282         i = 5000;
1283         do {
1284                 schedule_timeout_uninterruptible(msecs_to_jiffies(40));
1285                 /* Todo... wait for sync command ... */
1286
1287                 read_register(priv->net_dev, IPW_REG_INTA, &inta);
1288
1289                 /* check "init done" bit */
1290                 if (inta & IPW2100_INTA_FW_INIT_DONE) {
1291                         /* reset "init done" bit */
1292                         write_register(priv->net_dev, IPW_REG_INTA,
1293                                        IPW2100_INTA_FW_INIT_DONE);
1294                         break;
1295                 }
1296
1297                 /* check error conditions : we check these after the firmware
1298                  * check so that if there is an error, the interrupt handler
1299                  * will see it and the adapter will be reset */
1300                 if (inta &
1301                     (IPW2100_INTA_FATAL_ERROR | IPW2100_INTA_PARITY_ERROR)) {
1302                         /* clear error conditions */
1303                         write_register(priv->net_dev, IPW_REG_INTA,
1304                                        IPW2100_INTA_FATAL_ERROR |
1305                                        IPW2100_INTA_PARITY_ERROR);
1306                 }
1307         } while (--i);
1308
1309         /* Clear out any pending INTAs since we aren't supposed to have
1310          * interrupts enabled at this point... */
1311         read_register(priv->net_dev, IPW_REG_INTA, &inta);
1312         read_register(priv->net_dev, IPW_REG_INTA_MASK, &inta_mask);
1313         inta &= IPW_INTERRUPT_MASK;
1314         /* Clear out any pending interrupts */
1315         if (inta & inta_mask)
1316                 write_register(priv->net_dev, IPW_REG_INTA, inta);
1317
1318         IPW_DEBUG_FW("f/w initialization complete: %s\n",
1319                      i ? "SUCCESS" : "FAILED");
1320
1321         if (!i) {
1322                 printk(KERN_WARNING DRV_NAME
1323                        ": %s: Firmware did not initialize.\n",
1324                        priv->net_dev->name);
1325                 return -EIO;
1326         }
1327
1328         /* allow firmware to write to GPIO1 & GPIO3 */
1329         read_register(priv->net_dev, IPW_REG_GPIO, &gpio);
1330
1331         gpio |= (IPW_BIT_GPIO_GPIO1_MASK | IPW_BIT_GPIO_GPIO3_MASK);
1332
1333         write_register(priv->net_dev, IPW_REG_GPIO, gpio);
1334
1335         /* Ready to receive commands */
1336         priv->status |= STATUS_RUNNING;
1337
1338         /* The adapter has been reset; we are not associated */
1339         priv->status &= ~(STATUS_ASSOCIATING | STATUS_ASSOCIATED);
1340
1341         IPW_DEBUG_INFO("exit\n");
1342
1343         return 0;
1344 }
1345
1346 static inline void ipw2100_reset_fatalerror(struct ipw2100_priv *priv)
1347 {
1348         if (!priv->fatal_error)
1349                 return;
1350
1351         priv->fatal_errors[priv->fatal_index++] = priv->fatal_error;
1352         priv->fatal_index %= IPW2100_ERROR_QUEUE;
1353         priv->fatal_error = 0;
1354 }
1355
1356 /* NOTE: Our interrupt is disabled when this method is called */
1357 static int ipw2100_power_cycle_adapter(struct ipw2100_priv *priv)
1358 {
1359         u32 reg;
1360         int i;
1361
1362         IPW_DEBUG_INFO("Power cycling the hardware.\n");
1363
1364         ipw2100_hw_set_gpio(priv);
1365
1366         /* Step 1. Stop Master Assert */
1367         write_register(priv->net_dev, IPW_REG_RESET_REG,
1368                        IPW_AUX_HOST_RESET_REG_STOP_MASTER);
1369
1370         /* Step 2. Wait for stop Master Assert
1371          *         (not more than 50us, otherwise ret error */
1372         i = 5;
1373         do {
1374                 udelay(IPW_WAIT_RESET_MASTER_ASSERT_COMPLETE_DELAY);
1375                 read_register(priv->net_dev, IPW_REG_RESET_REG, &reg);
1376
1377                 if (reg & IPW_AUX_HOST_RESET_REG_MASTER_DISABLED)
1378                         break;
1379         } while (--i);
1380
1381         priv->status &= ~STATUS_RESET_PENDING;
1382
1383         if (!i) {
1384                 IPW_DEBUG_INFO
1385                     ("exit - waited too long for master assert stop\n");
1386                 return -EIO;
1387         }
1388
1389         write_register(priv->net_dev, IPW_REG_RESET_REG,
1390                        IPW_AUX_HOST_RESET_REG_SW_RESET);
1391
1392         /* Reset any fatal_error conditions */
1393         ipw2100_reset_fatalerror(priv);
1394
1395         /* At this point, the adapter is now stopped and disabled */
1396         priv->status &= ~(STATUS_RUNNING | STATUS_ASSOCIATING |
1397                           STATUS_ASSOCIATED | STATUS_ENABLED);
1398
1399         return 0;
1400 }
1401
1402 /*
1403  * Send the CARD_DISABLE_PHY_OFF command to the card to disable it
1404  *
1405  * After disabling, if the card was associated, a STATUS_ASSN_LOST will be sent.
1406  *
1407  * STATUS_CARD_DISABLE_NOTIFICATION will be sent regardless of
1408  * if STATUS_ASSN_LOST is sent.
1409  */
1410 static int ipw2100_hw_phy_off(struct ipw2100_priv *priv)
1411 {
1412
1413 #define HW_PHY_OFF_LOOP_DELAY (msecs_to_jiffies(50))
1414
1415         struct host_command cmd = {
1416                 .host_command = CARD_DISABLE_PHY_OFF,
1417                 .host_command_sequence = 0,
1418                 .host_command_length = 0,
1419         };
1420         int err, i;
1421         u32 val1, val2;
1422
1423         IPW_DEBUG_HC("CARD_DISABLE_PHY_OFF\n");
1424
1425         /* Turn off the radio */
1426         err = ipw2100_hw_send_command(priv, &cmd);
1427         if (err)
1428                 return err;
1429
1430         for (i = 0; i < 2500; i++) {
1431                 read_nic_dword(priv->net_dev, IPW2100_CONTROL_REG, &val1);
1432                 read_nic_dword(priv->net_dev, IPW2100_COMMAND, &val2);
1433
1434                 if ((val1 & IPW2100_CONTROL_PHY_OFF) &&
1435                     (val2 & IPW2100_COMMAND_PHY_OFF))
1436                         return 0;
1437
1438                 schedule_timeout_uninterruptible(HW_PHY_OFF_LOOP_DELAY);
1439         }
1440
1441         return -EIO;
1442 }
1443
1444 static int ipw2100_enable_adapter(struct ipw2100_priv *priv)
1445 {
1446         struct host_command cmd = {
1447                 .host_command = HOST_COMPLETE,
1448                 .host_command_sequence = 0,
1449                 .host_command_length = 0
1450         };
1451         int err = 0;
1452
1453         IPW_DEBUG_HC("HOST_COMPLETE\n");
1454
1455         if (priv->status & STATUS_ENABLED)
1456                 return 0;
1457
1458         mutex_lock(&priv->adapter_mutex);
1459
1460         if (rf_kill_active(priv)) {
1461                 IPW_DEBUG_HC("Command aborted due to RF kill active.\n");
1462                 goto fail_up;
1463         }
1464
1465         err = ipw2100_hw_send_command(priv, &cmd);
1466         if (err) {
1467                 IPW_DEBUG_INFO("Failed to send HOST_COMPLETE command\n");
1468                 goto fail_up;
1469         }
1470
1471         err = ipw2100_wait_for_card_state(priv, IPW_HW_STATE_ENABLED);
1472         if (err) {
1473                 IPW_DEBUG_INFO("%s: card not responding to init command.\n",
1474                                priv->net_dev->name);
1475                 goto fail_up;
1476         }
1477
1478         if (priv->stop_hang_check) {
1479                 priv->stop_hang_check = 0;
1480                 schedule_delayed_work(&priv->hang_check, HZ / 2);
1481         }
1482
1483       fail_up:
1484         mutex_unlock(&priv->adapter_mutex);
1485         return err;
1486 }
1487
1488 static int ipw2100_hw_stop_adapter(struct ipw2100_priv *priv)
1489 {
1490 #define HW_POWER_DOWN_DELAY (msecs_to_jiffies(100))
1491
1492         struct host_command cmd = {
1493                 .host_command = HOST_PRE_POWER_DOWN,
1494                 .host_command_sequence = 0,
1495                 .host_command_length = 0,
1496         };
1497         int err, i;
1498         u32 reg;
1499
1500         if (!(priv->status & STATUS_RUNNING))
1501                 return 0;
1502
1503         priv->status |= STATUS_STOPPING;
1504
1505         /* We can only shut down the card if the firmware is operational.  So,
1506          * if we haven't reset since a fatal_error, then we can not send the
1507          * shutdown commands. */
1508         if (!priv->fatal_error) {
1509                 /* First, make sure the adapter is enabled so that the PHY_OFF
1510                  * command can shut it down */
1511                 ipw2100_enable_adapter(priv);
1512
1513                 err = ipw2100_hw_phy_off(priv);
1514                 if (err)
1515                         printk(KERN_WARNING DRV_NAME
1516                                ": Error disabling radio %d\n", err);
1517
1518                 /*
1519                  * If in D0-standby mode going directly to D3 may cause a
1520                  * PCI bus violation.  Therefore we must change out of the D0
1521                  * state.
1522                  *
1523                  * Sending the PREPARE_FOR_POWER_DOWN will restrict the
1524                  * hardware from going into standby mode and will transition
1525                  * out of D0-standby if it is already in that state.
1526                  *
1527                  * STATUS_PREPARE_POWER_DOWN_COMPLETE will be sent by the
1528                  * driver upon completion.  Once received, the driver can
1529                  * proceed to the D3 state.
1530                  *
1531                  * Prepare for power down command to fw.  This command would
1532                  * take HW out of D0-standby and prepare it for D3 state.
1533                  *
1534                  * Currently FW does not support event notification for this
1535                  * event. Therefore, skip waiting for it.  Just wait a fixed
1536                  * 100ms
1537                  */
1538                 IPW_DEBUG_HC("HOST_PRE_POWER_DOWN\n");
1539
1540                 err = ipw2100_hw_send_command(priv, &cmd);
1541                 if (err)
1542                         printk(KERN_WARNING DRV_NAME ": "
1543                                "%s: Power down command failed: Error %d\n",
1544                                priv->net_dev->name, err);
1545                 else
1546                         schedule_timeout_uninterruptible(HW_POWER_DOWN_DELAY);
1547         }
1548
1549         priv->status &= ~STATUS_ENABLED;
1550
1551         /*
1552          * Set GPIO 3 writable by FW; GPIO 1 writable
1553          * by driver and enable clock
1554          */
1555         ipw2100_hw_set_gpio(priv);
1556
1557         /*
1558          * Power down adapter.  Sequence:
1559          * 1. Stop master assert (RESET_REG[9]=1)
1560          * 2. Wait for stop master (RESET_REG[8]==1)
1561          * 3. S/w reset assert (RESET_REG[7] = 1)
1562          */
1563
1564         /* Stop master assert */
1565         write_register(priv->net_dev, IPW_REG_RESET_REG,
1566                        IPW_AUX_HOST_RESET_REG_STOP_MASTER);
1567
1568         /* wait stop master not more than 50 usec.
1569          * Otherwise return error. */
1570         for (i = 5; i > 0; i--) {
1571                 udelay(10);
1572
1573                 /* Check master stop bit */
1574                 read_register(priv->net_dev, IPW_REG_RESET_REG, &reg);
1575
1576                 if (reg & IPW_AUX_HOST_RESET_REG_MASTER_DISABLED)
1577                         break;
1578         }
1579
1580         if (i == 0)
1581                 printk(KERN_WARNING DRV_NAME
1582                        ": %s: Could now power down adapter.\n",
1583                        priv->net_dev->name);
1584
1585         /* assert s/w reset */
1586         write_register(priv->net_dev, IPW_REG_RESET_REG,
1587                        IPW_AUX_HOST_RESET_REG_SW_RESET);
1588
1589         priv->status &= ~(STATUS_RUNNING | STATUS_STOPPING);
1590
1591         return 0;
1592 }
1593
1594 static int ipw2100_disable_adapter(struct ipw2100_priv *priv)
1595 {
1596         struct host_command cmd = {
1597                 .host_command = CARD_DISABLE,
1598                 .host_command_sequence = 0,
1599                 .host_command_length = 0
1600         };
1601         int err = 0;
1602
1603         IPW_DEBUG_HC("CARD_DISABLE\n");
1604
1605         if (!(priv->status & STATUS_ENABLED))
1606                 return 0;
1607
1608         /* Make sure we clear the associated state */
1609         priv->status &= ~(STATUS_ASSOCIATED | STATUS_ASSOCIATING);
1610
1611         if (!priv->stop_hang_check) {
1612                 priv->stop_hang_check = 1;
1613                 cancel_delayed_work(&priv->hang_check);
1614         }
1615
1616         mutex_lock(&priv->adapter_mutex);
1617
1618         err = ipw2100_hw_send_command(priv, &cmd);
1619         if (err) {
1620                 printk(KERN_WARNING DRV_NAME
1621                        ": exit - failed to send CARD_DISABLE command\n");
1622                 goto fail_up;
1623         }
1624
1625         err = ipw2100_wait_for_card_state(priv, IPW_HW_STATE_DISABLED);
1626         if (err) {
1627                 printk(KERN_WARNING DRV_NAME
1628                        ": exit - card failed to change to DISABLED\n");
1629                 goto fail_up;
1630         }
1631
1632         IPW_DEBUG_INFO("TODO: implement scan state machine\n");
1633
1634       fail_up:
1635         mutex_unlock(&priv->adapter_mutex);
1636         return err;
1637 }
1638
1639 static int ipw2100_set_scan_options(struct ipw2100_priv *priv)
1640 {
1641         struct host_command cmd = {
1642                 .host_command = SET_SCAN_OPTIONS,
1643                 .host_command_sequence = 0,
1644                 .host_command_length = 8
1645         };
1646         int err;
1647
1648         IPW_DEBUG_INFO("enter\n");
1649
1650         IPW_DEBUG_SCAN("setting scan options\n");
1651
1652         cmd.host_command_parameters[0] = 0;
1653
1654         if (!(priv->config & CFG_ASSOCIATE))
1655                 cmd.host_command_parameters[0] |= IPW_SCAN_NOASSOCIATE;
1656         if ((priv->ieee->sec.flags & SEC_ENABLED) && priv->ieee->sec.enabled)
1657                 cmd.host_command_parameters[0] |= IPW_SCAN_MIXED_CELL;
1658         if (priv->config & CFG_PASSIVE_SCAN)
1659                 cmd.host_command_parameters[0] |= IPW_SCAN_PASSIVE;
1660
1661         cmd.host_command_parameters[1] = priv->channel_mask;
1662
1663         err = ipw2100_hw_send_command(priv, &cmd);
1664
1665         IPW_DEBUG_HC("SET_SCAN_OPTIONS 0x%04X\n",
1666                      cmd.host_command_parameters[0]);
1667
1668         return err;
1669 }
1670
1671 static int ipw2100_start_scan(struct ipw2100_priv *priv)
1672 {
1673         struct host_command cmd = {
1674                 .host_command = BROADCAST_SCAN,
1675                 .host_command_sequence = 0,
1676                 .host_command_length = 4
1677         };
1678         int err;
1679
1680         IPW_DEBUG_HC("START_SCAN\n");
1681
1682         cmd.host_command_parameters[0] = 0;
1683
1684         /* No scanning if in monitor mode */
1685         if (priv->ieee->iw_mode == IW_MODE_MONITOR)
1686                 return 1;
1687
1688         if (priv->status & STATUS_SCANNING) {
1689                 IPW_DEBUG_SCAN("Scan requested while already in scan...\n");
1690                 return 0;
1691         }
1692
1693         IPW_DEBUG_INFO("enter\n");
1694
1695         /* Not clearing here; doing so makes iwlist always return nothing...
1696          *
1697          * We should modify the table logic to use aging tables vs. clearing
1698          * the table on each scan start.
1699          */
1700         IPW_DEBUG_SCAN("starting scan\n");
1701
1702         priv->status |= STATUS_SCANNING;
1703         err = ipw2100_hw_send_command(priv, &cmd);
1704         if (err)
1705                 priv->status &= ~STATUS_SCANNING;
1706
1707         IPW_DEBUG_INFO("exit\n");
1708
1709         return err;
1710 }
1711
1712 static const struct libipw_geo ipw_geos[] = {
1713         {                       /* Restricted */
1714          "---",
1715          .bg_channels = 14,
1716          .bg = {{2412, 1}, {2417, 2}, {2422, 3},
1717                 {2427, 4}, {2432, 5}, {2437, 6},
1718                 {2442, 7}, {2447, 8}, {2452, 9},
1719                 {2457, 10}, {2462, 11}, {2467, 12},
1720                 {2472, 13}, {2484, 14}},
1721          },
1722 };
1723
1724 static int ipw2100_up(struct ipw2100_priv *priv, int deferred)
1725 {
1726         unsigned long flags;
1727         int rc = 0;
1728         u32 lock;
1729         u32 ord_len = sizeof(lock);
1730
1731         /* Age scan list entries found before suspend */
1732         if (priv->suspend_time) {
1733                 libipw_networks_age(priv->ieee, priv->suspend_time);
1734                 priv->suspend_time = 0;
1735         }
1736
1737         /* Quiet if manually disabled. */
1738         if (priv->status & STATUS_RF_KILL_SW) {
1739                 IPW_DEBUG_INFO("%s: Radio is disabled by Manual Disable "
1740                                "switch\n", priv->net_dev->name);
1741                 return 0;
1742         }
1743
1744         /* the ipw2100 hardware really doesn't want power management delays
1745          * longer than 175usec
1746          */
1747         pm_qos_update_request(&ipw2100_pm_qos_req, 175);
1748
1749         /* If the interrupt is enabled, turn it off... */
1750         spin_lock_irqsave(&priv->low_lock, flags);
1751         ipw2100_disable_interrupts(priv);
1752
1753         /* Reset any fatal_error conditions */
1754         ipw2100_reset_fatalerror(priv);
1755         spin_unlock_irqrestore(&priv->low_lock, flags);
1756
1757         if (priv->status & STATUS_POWERED ||
1758             (priv->status & STATUS_RESET_PENDING)) {
1759                 /* Power cycle the card ... */
1760                 if (ipw2100_power_cycle_adapter(priv)) {
1761                         printk(KERN_WARNING DRV_NAME
1762                                ": %s: Could not cycle adapter.\n",
1763                                priv->net_dev->name);
1764                         rc = 1;
1765                         goto exit;
1766                 }
1767         } else
1768                 priv->status |= STATUS_POWERED;
1769
1770         /* Load the firmware, start the clocks, etc. */
1771         if (ipw2100_start_adapter(priv)) {
1772                 printk(KERN_ERR DRV_NAME
1773                        ": %s: Failed to start the firmware.\n",
1774                        priv->net_dev->name);
1775                 rc = 1;
1776                 goto exit;
1777         }
1778
1779         ipw2100_initialize_ordinals(priv);
1780
1781         /* Determine capabilities of this particular HW configuration */
1782         if (ipw2100_get_hw_features(priv)) {
1783                 printk(KERN_ERR DRV_NAME
1784                        ": %s: Failed to determine HW features.\n",
1785                        priv->net_dev->name);
1786                 rc = 1;
1787                 goto exit;
1788         }
1789
1790         /* Initialize the geo */
1791         libipw_set_geo(priv->ieee, &ipw_geos[0]);
1792         priv->ieee->freq_band = LIBIPW_24GHZ_BAND;
1793
1794         lock = LOCK_NONE;
1795         if (ipw2100_set_ordinal(priv, IPW_ORD_PERS_DB_LOCK, &lock, &ord_len)) {
1796                 printk(KERN_ERR DRV_NAME
1797                        ": %s: Failed to clear ordinal lock.\n",
1798                        priv->net_dev->name);
1799                 rc = 1;
1800                 goto exit;
1801         }
1802
1803         priv->status &= ~STATUS_SCANNING;
1804
1805         if (rf_kill_active(priv)) {
1806                 printk(KERN_INFO "%s: Radio is disabled by RF switch.\n",
1807                        priv->net_dev->name);
1808
1809                 if (priv->stop_rf_kill) {
1810                         priv->stop_rf_kill = 0;
1811                         schedule_delayed_work(&priv->rf_kill,
1812                                               round_jiffies_relative(HZ));
1813                 }
1814
1815                 deferred = 1;
1816         }
1817
1818         /* Turn on the interrupt so that commands can be processed */
1819         ipw2100_enable_interrupts(priv);
1820
1821         /* Send all of the commands that must be sent prior to
1822          * HOST_COMPLETE */
1823         if (ipw2100_adapter_setup(priv)) {
1824                 printk(KERN_ERR DRV_NAME ": %s: Failed to start the card.\n",
1825                        priv->net_dev->name);
1826                 rc = 1;
1827                 goto exit;
1828         }
1829
1830         if (!deferred) {
1831                 /* Enable the adapter - sends HOST_COMPLETE */
1832                 if (ipw2100_enable_adapter(priv)) {
1833                         printk(KERN_ERR DRV_NAME ": "
1834                                "%s: failed in call to enable adapter.\n",
1835                                priv->net_dev->name);
1836                         ipw2100_hw_stop_adapter(priv);
1837                         rc = 1;
1838                         goto exit;
1839                 }
1840
1841                 /* Start a scan . . . */
1842                 ipw2100_set_scan_options(priv);
1843                 ipw2100_start_scan(priv);
1844         }
1845
1846       exit:
1847         return rc;
1848 }
1849
1850 static void ipw2100_down(struct ipw2100_priv *priv)
1851 {
1852         unsigned long flags;
1853         union iwreq_data wrqu = {
1854                 .ap_addr = {
1855                             .sa_family = ARPHRD_ETHER}
1856         };
1857         int associated = priv->status & STATUS_ASSOCIATED;
1858
1859         /* Kill the RF switch timer */
1860         if (!priv->stop_rf_kill) {
1861                 priv->stop_rf_kill = 1;
1862                 cancel_delayed_work(&priv->rf_kill);
1863         }
1864
1865         /* Kill the firmware hang check timer */
1866         if (!priv->stop_hang_check) {
1867                 priv->stop_hang_check = 1;
1868                 cancel_delayed_work(&priv->hang_check);
1869         }
1870
1871         /* Kill any pending resets */
1872         if (priv->status & STATUS_RESET_PENDING)
1873                 cancel_delayed_work(&priv->reset_work);
1874
1875         /* Make sure the interrupt is on so that FW commands will be
1876          * processed correctly */
1877         spin_lock_irqsave(&priv->low_lock, flags);
1878         ipw2100_enable_interrupts(priv);
1879         spin_unlock_irqrestore(&priv->low_lock, flags);
1880
1881         if (ipw2100_hw_stop_adapter(priv))
1882                 printk(KERN_ERR DRV_NAME ": %s: Error stopping adapter.\n",
1883                        priv->net_dev->name);
1884
1885         /* Do not disable the interrupt until _after_ we disable
1886          * the adaptor.  Otherwise the CARD_DISABLE command will never
1887          * be ack'd by the firmware */
1888         spin_lock_irqsave(&priv->low_lock, flags);
1889         ipw2100_disable_interrupts(priv);
1890         spin_unlock_irqrestore(&priv->low_lock, flags);
1891
1892         pm_qos_update_request(&ipw2100_pm_qos_req, PM_QOS_DEFAULT_VALUE);
1893
1894         /* We have to signal any supplicant if we are disassociating */
1895         if (associated)
1896                 wireless_send_event(priv->net_dev, SIOCGIWAP, &wrqu, NULL);
1897
1898         priv->status &= ~(STATUS_ASSOCIATED | STATUS_ASSOCIATING);
1899         netif_carrier_off(priv->net_dev);
1900         netif_stop_queue(priv->net_dev);
1901 }
1902
1903 static int ipw2100_wdev_init(struct net_device *dev)
1904 {
1905         struct ipw2100_priv *priv = libipw_priv(dev);
1906         const struct libipw_geo *geo = libipw_get_geo(priv->ieee);
1907         struct wireless_dev *wdev = &priv->ieee->wdev;
1908         int i;
1909
1910         memcpy(wdev->wiphy->perm_addr, priv->mac_addr, ETH_ALEN);
1911
1912         /* fill-out priv->ieee->bg_band */
1913         if (geo->bg_channels) {
1914                 struct ieee80211_supported_band *bg_band = &priv->ieee->bg_band;
1915
1916                 bg_band->band = NL80211_BAND_2GHZ;
1917                 bg_band->n_channels = geo->bg_channels;
1918                 bg_band->channels = kcalloc(geo->bg_channels,
1919                                             sizeof(struct ieee80211_channel),
1920                                             GFP_KERNEL);
1921                 if (!bg_band->channels) {
1922                         ipw2100_down(priv);
1923                         return -ENOMEM;
1924                 }
1925                 /* translate geo->bg to bg_band.channels */
1926                 for (i = 0; i < geo->bg_channels; i++) {
1927                         bg_band->channels[i].band = NL80211_BAND_2GHZ;
1928                         bg_band->channels[i].center_freq = geo->bg[i].freq;
1929                         bg_band->channels[i].hw_value = geo->bg[i].channel;
1930                         bg_band->channels[i].max_power = geo->bg[i].max_power;
1931                         if (geo->bg[i].flags & LIBIPW_CH_PASSIVE_ONLY)
1932                                 bg_band->channels[i].flags |=
1933                                         IEEE80211_CHAN_NO_IR;
1934                         if (geo->bg[i].flags & LIBIPW_CH_NO_IBSS)
1935                                 bg_band->channels[i].flags |=
1936                                         IEEE80211_CHAN_NO_IR;
1937                         if (geo->bg[i].flags & LIBIPW_CH_RADAR_DETECT)
1938                                 bg_band->channels[i].flags |=
1939                                         IEEE80211_CHAN_RADAR;
1940                         /* No equivalent for LIBIPW_CH_80211H_RULES,
1941                            LIBIPW_CH_UNIFORM_SPREADING, or
1942                            LIBIPW_CH_B_ONLY... */
1943                 }
1944                 /* point at bitrate info */
1945                 bg_band->bitrates = ipw2100_bg_rates;
1946                 bg_band->n_bitrates = RATE_COUNT;
1947
1948                 wdev->wiphy->bands[NL80211_BAND_2GHZ] = bg_band;
1949         }
1950
1951         wdev->wiphy->cipher_suites = ipw_cipher_suites;
1952         wdev->wiphy->n_cipher_suites = ARRAY_SIZE(ipw_cipher_suites);
1953
1954         set_wiphy_dev(wdev->wiphy, &priv->pci_dev->dev);
1955         if (wiphy_register(wdev->wiphy))
1956                 return -EIO;
1957         return 0;
1958 }
1959
1960 static void ipw2100_reset_adapter(struct work_struct *work)
1961 {
1962         struct ipw2100_priv *priv =
1963                 container_of(work, struct ipw2100_priv, reset_work.work);
1964         unsigned long flags;
1965         union iwreq_data wrqu = {
1966                 .ap_addr = {
1967                             .sa_family = ARPHRD_ETHER}
1968         };
1969         int associated = priv->status & STATUS_ASSOCIATED;
1970
1971         spin_lock_irqsave(&priv->low_lock, flags);
1972         IPW_DEBUG_INFO(": %s: Restarting adapter.\n", priv->net_dev->name);
1973         priv->resets++;
1974         priv->status &= ~(STATUS_ASSOCIATED | STATUS_ASSOCIATING);
1975         priv->status |= STATUS_SECURITY_UPDATED;
1976
1977         /* Force a power cycle even if interface hasn't been opened
1978          * yet */
1979         cancel_delayed_work(&priv->reset_work);
1980         priv->status |= STATUS_RESET_PENDING;
1981         spin_unlock_irqrestore(&priv->low_lock, flags);
1982
1983         mutex_lock(&priv->action_mutex);
1984         /* stop timed checks so that they don't interfere with reset */
1985         priv->stop_hang_check = 1;
1986         cancel_delayed_work(&priv->hang_check);
1987
1988         /* We have to signal any supplicant if we are disassociating */
1989         if (associated)
1990                 wireless_send_event(priv->net_dev, SIOCGIWAP, &wrqu, NULL);
1991
1992         ipw2100_up(priv, 0);
1993         mutex_unlock(&priv->action_mutex);
1994
1995 }
1996
1997 static void isr_indicate_associated(struct ipw2100_priv *priv, u32 status)
1998 {
1999
2000 #define MAC_ASSOCIATION_READ_DELAY (HZ)
2001         int ret;
2002         unsigned int len, essid_len;
2003         char essid[IW_ESSID_MAX_SIZE];
2004         u32 txrate;
2005         u32 chan;
2006         char *txratename;
2007         u8 bssid[ETH_ALEN];
2008
2009         /*
2010          * TBD: BSSID is usually 00:00:00:00:00:00 here and not
2011          *      an actual MAC of the AP. Seems like FW sets this
2012          *      address too late. Read it later and expose through
2013          *      /proc or schedule a later task to query and update
2014          */
2015
2016         essid_len = IW_ESSID_MAX_SIZE;
2017         ret = ipw2100_get_ordinal(priv, IPW_ORD_STAT_ASSN_SSID,
2018                                   essid, &essid_len);
2019         if (ret) {
2020                 IPW_DEBUG_INFO("failed querying ordinals at line %d\n",
2021                                __LINE__);
2022                 return;
2023         }
2024
2025         len = sizeof(u32);
2026         ret = ipw2100_get_ordinal(priv, IPW_ORD_CURRENT_TX_RATE, &txrate, &len);
2027         if (ret) {
2028                 IPW_DEBUG_INFO("failed querying ordinals at line %d\n",
2029                                __LINE__);
2030                 return;
2031         }
2032
2033         len = sizeof(u32);
2034         ret = ipw2100_get_ordinal(priv, IPW_ORD_OUR_FREQ, &chan, &len);
2035         if (ret) {
2036                 IPW_DEBUG_INFO("failed querying ordinals at line %d\n",
2037                                __LINE__);
2038                 return;
2039         }
2040         len = ETH_ALEN;
2041         ret = ipw2100_get_ordinal(priv, IPW_ORD_STAT_ASSN_AP_BSSID, bssid,
2042                                   &len);
2043         if (ret) {
2044                 IPW_DEBUG_INFO("failed querying ordinals at line %d\n",
2045                                __LINE__);
2046                 return;
2047         }
2048         memcpy(priv->ieee->bssid, bssid, ETH_ALEN);
2049
2050         switch (txrate) {
2051         case TX_RATE_1_MBIT:
2052                 txratename = "1Mbps";
2053                 break;
2054         case TX_RATE_2_MBIT:
2055                 txratename = "2Mbsp";
2056                 break;
2057         case TX_RATE_5_5_MBIT:
2058                 txratename = "5.5Mbps";
2059                 break;
2060         case TX_RATE_11_MBIT:
2061                 txratename = "11Mbps";
2062                 break;
2063         default:
2064                 IPW_DEBUG_INFO("Unknown rate: %d\n", txrate);
2065                 txratename = "unknown rate";
2066                 break;
2067         }
2068
2069         IPW_DEBUG_INFO("%s: Associated with '%*pE' at %s, channel %d (BSSID=%pM)\n",
2070                        priv->net_dev->name, essid_len, essid,
2071                        txratename, chan, bssid);
2072
2073         /* now we copy read ssid into dev */
2074         if (!(priv->config & CFG_STATIC_ESSID)) {
2075                 priv->essid_len = min((u8) essid_len, (u8) IW_ESSID_MAX_SIZE);
2076                 memcpy(priv->essid, essid, priv->essid_len);
2077         }
2078         priv->channel = chan;
2079         memcpy(priv->bssid, bssid, ETH_ALEN);
2080
2081         priv->status |= STATUS_ASSOCIATING;
2082         priv->connect_start = get_seconds();
2083
2084         schedule_delayed_work(&priv->wx_event_work, HZ / 10);
2085 }
2086
2087 static int ipw2100_set_essid(struct ipw2100_priv *priv, char *essid,
2088                              int length, int batch_mode)
2089 {
2090         int ssid_len = min(length, IW_ESSID_MAX_SIZE);
2091         struct host_command cmd = {
2092                 .host_command = SSID,
2093                 .host_command_sequence = 0,
2094                 .host_command_length = ssid_len
2095         };
2096         int err;
2097
2098         IPW_DEBUG_HC("SSID: '%*pE'\n", ssid_len, essid);
2099
2100         if (ssid_len)
2101                 memcpy(cmd.host_command_parameters, essid, ssid_len);
2102
2103         if (!batch_mode) {
2104                 err = ipw2100_disable_adapter(priv);
2105                 if (err)
2106                         return err;
2107         }
2108
2109         /* Bug in FW currently doesn't honor bit 0 in SET_SCAN_OPTIONS to
2110          * disable auto association -- so we cheat by setting a bogus SSID */
2111         if (!ssid_len && !(priv->config & CFG_ASSOCIATE)) {
2112                 int i;
2113                 u8 *bogus = (u8 *) cmd.host_command_parameters;
2114                 for (i = 0; i < IW_ESSID_MAX_SIZE; i++)
2115                         bogus[i] = 0x18 + i;
2116                 cmd.host_command_length = IW_ESSID_MAX_SIZE;
2117         }
2118
2119         /* NOTE:  We always send the SSID command even if the provided ESSID is
2120          * the same as what we currently think is set. */
2121
2122         err = ipw2100_hw_send_command(priv, &cmd);
2123         if (!err) {
2124                 memset(priv->essid + ssid_len, 0, IW_ESSID_MAX_SIZE - ssid_len);
2125                 memcpy(priv->essid, essid, ssid_len);
2126                 priv->essid_len = ssid_len;
2127         }
2128
2129         if (!batch_mode) {
2130                 if (ipw2100_enable_adapter(priv))
2131                         err = -EIO;
2132         }
2133
2134         return err;
2135 }
2136
2137 static void isr_indicate_association_lost(struct ipw2100_priv *priv, u32 status)
2138 {
2139         IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE | IPW_DL_ASSOC,
2140                   "disassociated: '%*pE' %pM\n", priv->essid_len, priv->essid,
2141                   priv->bssid);
2142
2143         priv->status &= ~(STATUS_ASSOCIATED | STATUS_ASSOCIATING);
2144
2145         if (priv->status & STATUS_STOPPING) {
2146                 IPW_DEBUG_INFO("Card is stopping itself, discard ASSN_LOST.\n");
2147                 return;
2148         }
2149
2150         eth_zero_addr(priv->bssid);
2151         eth_zero_addr(priv->ieee->bssid);
2152
2153         netif_carrier_off(priv->net_dev);
2154         netif_stop_queue(priv->net_dev);
2155
2156         if (!(priv->status & STATUS_RUNNING))
2157                 return;
2158
2159         if (priv->status & STATUS_SECURITY_UPDATED)
2160                 schedule_delayed_work(&priv->security_work, 0);
2161
2162         schedule_delayed_work(&priv->wx_event_work, 0);
2163 }
2164
2165 static void isr_indicate_rf_kill(struct ipw2100_priv *priv, u32 status)
2166 {
2167         IPW_DEBUG_INFO("%s: RF Kill state changed to radio OFF.\n",
2168                        priv->net_dev->name);
2169
2170         /* RF_KILL is now enabled (else we wouldn't be here) */
2171         wiphy_rfkill_set_hw_state(priv->ieee->wdev.wiphy, true);
2172         priv->status |= STATUS_RF_KILL_HW;
2173
2174         /* Make sure the RF Kill check timer is running */
2175         priv->stop_rf_kill = 0;
2176         mod_delayed_work(system_wq, &priv->rf_kill, round_jiffies_relative(HZ));
2177 }
2178
2179 static void ipw2100_scan_event(struct work_struct *work)
2180 {
2181         struct ipw2100_priv *priv = container_of(work, struct ipw2100_priv,
2182                                                  scan_event.work);
2183         union iwreq_data wrqu;
2184
2185         wrqu.data.length = 0;
2186         wrqu.data.flags = 0;
2187         wireless_send_event(priv->net_dev, SIOCGIWSCAN, &wrqu, NULL);
2188 }
2189
2190 static void isr_scan_complete(struct ipw2100_priv *priv, u32 status)
2191 {
2192         IPW_DEBUG_SCAN("scan complete\n");
2193         /* Age the scan results... */
2194         priv->ieee->scans++;
2195         priv->status &= ~STATUS_SCANNING;
2196
2197         /* Only userspace-requested scan completion events go out immediately */
2198         if (!priv->user_requested_scan) {
2199                 schedule_delayed_work(&priv->scan_event,
2200                                       round_jiffies_relative(msecs_to_jiffies(4000)));
2201         } else {
2202                 priv->user_requested_scan = 0;
2203                 mod_delayed_work(system_wq, &priv->scan_event, 0);
2204         }
2205 }
2206
2207 #ifdef CONFIG_IPW2100_DEBUG
2208 #define IPW2100_HANDLER(v, f) { v, f, # v }
2209 struct ipw2100_status_indicator {
2210         int status;
2211         void (*cb) (struct ipw2100_priv * priv, u32 status);
2212         char *name;
2213 };
2214 #else
2215 #define IPW2100_HANDLER(v, f) { v, f }
2216 struct ipw2100_status_indicator {
2217         int status;
2218         void (*cb) (struct ipw2100_priv * priv, u32 status);
2219 };
2220 #endif                          /* CONFIG_IPW2100_DEBUG */
2221
2222 static void isr_indicate_scanning(struct ipw2100_priv *priv, u32 status)
2223 {
2224         IPW_DEBUG_SCAN("Scanning...\n");
2225         priv->status |= STATUS_SCANNING;
2226 }
2227
2228 static const struct ipw2100_status_indicator status_handlers[] = {
2229         IPW2100_HANDLER(IPW_STATE_INITIALIZED, NULL),
2230         IPW2100_HANDLER(IPW_STATE_COUNTRY_FOUND, NULL),
2231         IPW2100_HANDLER(IPW_STATE_ASSOCIATED, isr_indicate_associated),
2232         IPW2100_HANDLER(IPW_STATE_ASSN_LOST, isr_indicate_association_lost),
2233         IPW2100_HANDLER(IPW_STATE_ASSN_CHANGED, NULL),
2234         IPW2100_HANDLER(IPW_STATE_SCAN_COMPLETE, isr_scan_complete),
2235         IPW2100_HANDLER(IPW_STATE_ENTERED_PSP, NULL),
2236         IPW2100_HANDLER(IPW_STATE_LEFT_PSP, NULL),
2237         IPW2100_HANDLER(IPW_STATE_RF_KILL, isr_indicate_rf_kill),
2238         IPW2100_HANDLER(IPW_STATE_DISABLED, NULL),
2239         IPW2100_HANDLER(IPW_STATE_POWER_DOWN, NULL),
2240         IPW2100_HANDLER(IPW_STATE_SCANNING, isr_indicate_scanning),
2241         IPW2100_HANDLER(-1, NULL)
2242 };
2243
2244 static void isr_status_change(struct ipw2100_priv *priv, int status)
2245 {
2246         int i;
2247
2248         if (status == IPW_STATE_SCANNING &&
2249             priv->status & STATUS_ASSOCIATED &&
2250             !(priv->status & STATUS_SCANNING)) {
2251                 IPW_DEBUG_INFO("Scan detected while associated, with "
2252                                "no scan request.  Restarting firmware.\n");
2253
2254                 /* Wake up any sleeping jobs */
2255                 schedule_reset(priv);
2256         }
2257
2258         for (i = 0; status_handlers[i].status != -1; i++) {
2259                 if (status == status_handlers[i].status) {
2260                         IPW_DEBUG_NOTIF("Status change: %s\n",
2261                                         status_handlers[i].name);
2262                         if (status_handlers[i].cb)
2263                                 status_handlers[i].cb(priv, status);
2264                         priv->wstats.status = status;
2265                         return;
2266                 }
2267         }
2268
2269         IPW_DEBUG_NOTIF("unknown status received: %04x\n", status);
2270 }
2271
2272 static void isr_rx_complete_command(struct ipw2100_priv *priv,
2273                                     struct ipw2100_cmd_header *cmd)
2274 {
2275 #ifdef CONFIG_IPW2100_DEBUG
2276         if (cmd->host_command_reg < ARRAY_SIZE(command_types)) {
2277                 IPW_DEBUG_HC("Command completed '%s (%d)'\n",
2278                              command_types[cmd->host_command_reg],
2279                              cmd->host_command_reg);
2280         }
2281 #endif
2282         if (cmd->host_command_reg == HOST_COMPLETE)
2283                 priv->status |= STATUS_ENABLED;
2284
2285         if (cmd->host_command_reg == CARD_DISABLE)
2286                 priv->status &= ~STATUS_ENABLED;
2287
2288         priv->status &= ~STATUS_CMD_ACTIVE;
2289
2290         wake_up_interruptible(&priv->wait_command_queue);
2291 }
2292
2293 #ifdef CONFIG_IPW2100_DEBUG
2294 static const char *frame_types[] = {
2295         "COMMAND_STATUS_VAL",
2296         "STATUS_CHANGE_VAL",
2297         "P80211_DATA_VAL",
2298         "P8023_DATA_VAL",
2299         "HOST_NOTIFICATION_VAL"
2300 };
2301 #endif
2302
2303 static int ipw2100_alloc_skb(struct ipw2100_priv *priv,
2304                                     struct ipw2100_rx_packet *packet)
2305 {
2306         packet->skb = dev_alloc_skb(sizeof(struct ipw2100_rx));
2307         if (!packet->skb)
2308                 return -ENOMEM;
2309
2310         packet->rxp = (struct ipw2100_rx *)packet->skb->data;
2311         packet->dma_addr = pci_map_single(priv->pci_dev, packet->skb->data,
2312                                           sizeof(struct ipw2100_rx),
2313                                           PCI_DMA_FROMDEVICE);
2314         if (pci_dma_mapping_error(priv->pci_dev, packet->dma_addr)) {
2315                 dev_kfree_skb(packet->skb);
2316                 return -ENOMEM;
2317         }
2318
2319         return 0;
2320 }
2321
2322 #define SEARCH_ERROR   0xffffffff
2323 #define SEARCH_FAIL    0xfffffffe
2324 #define SEARCH_SUCCESS 0xfffffff0
2325 #define SEARCH_DISCARD 0
2326 #define SEARCH_SNAPSHOT 1
2327
2328 #define SNAPSHOT_ADDR(ofs) (priv->snapshot[((ofs) >> 12) & 0xff] + ((ofs) & 0xfff))
2329 static void ipw2100_snapshot_free(struct ipw2100_priv *priv)
2330 {
2331         int i;
2332         if (!priv->snapshot[0])
2333                 return;
2334         for (i = 0; i < 0x30; i++)
2335                 kfree(priv->snapshot[i]);
2336         priv->snapshot[0] = NULL;
2337 }
2338
2339 #ifdef IPW2100_DEBUG_C3
2340 static int ipw2100_snapshot_alloc(struct ipw2100_priv *priv)
2341 {
2342         int i;
2343         if (priv->snapshot[0])
2344                 return 1;
2345         for (i = 0; i < 0x30; i++) {
2346                 priv->snapshot[i] = kmalloc(0x1000, GFP_ATOMIC);
2347                 if (!priv->snapshot[i]) {
2348                         IPW_DEBUG_INFO("%s: Error allocating snapshot "
2349                                        "buffer %d\n", priv->net_dev->name, i);
2350                         while (i > 0)
2351                                 kfree(priv->snapshot[--i]);
2352                         priv->snapshot[0] = NULL;
2353                         return 0;
2354                 }
2355         }
2356
2357         return 1;
2358 }
2359
2360 static u32 ipw2100_match_buf(struct ipw2100_priv *priv, u8 * in_buf,
2361                                     size_t len, int mode)
2362 {
2363         u32 i, j;
2364         u32 tmp;
2365         u8 *s, *d;
2366         u32 ret;
2367
2368         s = in_buf;
2369         if (mode == SEARCH_SNAPSHOT) {
2370                 if (!ipw2100_snapshot_alloc(priv))
2371                         mode = SEARCH_DISCARD;
2372         }
2373
2374         for (ret = SEARCH_FAIL, i = 0; i < 0x30000; i += 4) {
2375                 read_nic_dword(priv->net_dev, i, &tmp);
2376                 if (mode == SEARCH_SNAPSHOT)
2377                         *(u32 *) SNAPSHOT_ADDR(i) = tmp;
2378                 if (ret == SEARCH_FAIL) {
2379                         d = (u8 *) & tmp;
2380                         for (j = 0; j < 4; j++) {
2381                                 if (*s != *d) {
2382                                         s = in_buf;
2383                                         continue;
2384                                 }
2385
2386                                 s++;
2387                                 d++;
2388
2389                                 if ((s - in_buf) == len)
2390                                         ret = (i + j) - len + 1;
2391                         }
2392                 } else if (mode == SEARCH_DISCARD)
2393                         return ret;
2394         }
2395
2396         return ret;
2397 }
2398 #endif
2399
2400 /*
2401  *
2402  * 0) Disconnect the SKB from the firmware (just unmap)
2403  * 1) Pack the ETH header into the SKB
2404  * 2) Pass the SKB to the network stack
2405  *
2406  * When packet is provided by the firmware, it contains the following:
2407  *
2408  * .  libipw_hdr
2409  * .  libipw_snap_hdr
2410  *
2411  * The size of the constructed ethernet
2412  *
2413  */
2414 #ifdef IPW2100_RX_DEBUG
2415 static u8 packet_data[IPW_RX_NIC_BUFFER_LENGTH];
2416 #endif
2417
2418 static void ipw2100_corruption_detected(struct ipw2100_priv *priv, int i)
2419 {
2420 #ifdef IPW2100_DEBUG_C3
2421         struct ipw2100_status *status = &priv->status_queue.drv[i];
2422         u32 match, reg;
2423         int j;
2424 #endif
2425
2426         IPW_DEBUG_INFO(": PCI latency error detected at 0x%04zX.\n",
2427                        i * sizeof(struct ipw2100_status));
2428
2429 #ifdef IPW2100_DEBUG_C3
2430         /* Halt the firmware so we can get a good image */
2431         write_register(priv->net_dev, IPW_REG_RESET_REG,
2432                        IPW_AUX_HOST_RESET_REG_STOP_MASTER);
2433         j = 5;
2434         do {
2435                 udelay(IPW_WAIT_RESET_MASTER_ASSERT_COMPLETE_DELAY);
2436                 read_register(priv->net_dev, IPW_REG_RESET_REG, &reg);
2437
2438                 if (reg & IPW_AUX_HOST_RESET_REG_MASTER_DISABLED)
2439                         break;
2440         } while (j--);
2441
2442         match = ipw2100_match_buf(priv, (u8 *) status,
2443                                   sizeof(struct ipw2100_status),
2444                                   SEARCH_SNAPSHOT);
2445         if (match < SEARCH_SUCCESS)
2446                 IPW_DEBUG_INFO("%s: DMA status match in Firmware at "
2447                                "offset 0x%06X, length %d:\n",
2448                                priv->net_dev->name, match,
2449                                sizeof(struct ipw2100_status));
2450         else
2451                 IPW_DEBUG_INFO("%s: No DMA status match in "
2452                                "Firmware.\n", priv->net_dev->name);
2453
2454         printk_buf((u8 *) priv->status_queue.drv,
2455                    sizeof(struct ipw2100_status) * RX_QUEUE_LENGTH);
2456 #endif
2457
2458         priv->fatal_error = IPW2100_ERR_C3_CORRUPTION;
2459         priv->net_dev->stats.rx_errors++;
2460         schedule_reset(priv);
2461 }
2462
2463 static void isr_rx(struct ipw2100_priv *priv, int i,
2464                           struct libipw_rx_stats *stats)
2465 {
2466         struct net_device *dev = priv->net_dev;
2467         struct ipw2100_status *status = &priv->status_queue.drv[i];
2468         struct ipw2100_rx_packet *packet = &priv->rx_buffers[i];
2469
2470         IPW_DEBUG_RX("Handler...\n");
2471
2472         if (unlikely(status->frame_size > skb_tailroom(packet->skb))) {
2473                 IPW_DEBUG_INFO("%s: frame_size (%u) > skb_tailroom (%u)!"
2474                                "  Dropping.\n",
2475                                dev->name,
2476                                status->frame_size, skb_tailroom(packet->skb));
2477                 dev->stats.rx_errors++;
2478                 return;
2479         }
2480
2481         if (unlikely(!netif_running(dev))) {
2482                 dev->stats.rx_errors++;
2483                 priv->wstats.discard.misc++;
2484                 IPW_DEBUG_DROP("Dropping packet while interface is not up.\n");
2485                 return;
2486         }
2487
2488         if (unlikely(priv->ieee->iw_mode != IW_MODE_MONITOR &&
2489                      !(priv->status & STATUS_ASSOCIATED))) {
2490                 IPW_DEBUG_DROP("Dropping packet while not associated.\n");
2491                 priv->wstats.discard.misc++;
2492                 return;
2493         }
2494
2495         pci_unmap_single(priv->pci_dev,
2496                          packet->dma_addr,
2497                          sizeof(struct ipw2100_rx), PCI_DMA_FROMDEVICE);
2498
2499         skb_put(packet->skb, status->frame_size);
2500
2501 #ifdef IPW2100_RX_DEBUG
2502         /* Make a copy of the frame so we can dump it to the logs if
2503          * libipw_rx fails */
2504         skb_copy_from_linear_data(packet->skb, packet_data,
2505                                   min_t(u32, status->frame_size,
2506                                              IPW_RX_NIC_BUFFER_LENGTH));
2507 #endif
2508
2509         if (!libipw_rx(priv->ieee, packet->skb, stats)) {
2510 #ifdef IPW2100_RX_DEBUG
2511                 IPW_DEBUG_DROP("%s: Non consumed packet:\n",
2512                                dev->name);
2513                 printk_buf(IPW_DL_DROP, packet_data, status->frame_size);
2514 #endif
2515                 dev->stats.rx_errors++;
2516
2517                 /* libipw_rx failed, so it didn't free the SKB */
2518                 dev_kfree_skb_any(packet->skb);
2519                 packet->skb = NULL;
2520         }
2521
2522         /* We need to allocate a new SKB and attach it to the RDB. */
2523         if (unlikely(ipw2100_alloc_skb(priv, packet))) {
2524                 printk(KERN_WARNING DRV_NAME ": "
2525                        "%s: Unable to allocate SKB onto RBD ring - disabling "
2526                        "adapter.\n", dev->name);
2527                 /* TODO: schedule adapter shutdown */
2528                 IPW_DEBUG_INFO("TODO: Shutdown adapter...\n");
2529         }
2530
2531         /* Update the RDB entry */
2532         priv->rx_queue.drv[i].host_addr = packet->dma_addr;
2533 }
2534
2535 #ifdef CONFIG_IPW2100_MONITOR
2536
2537 static void isr_rx_monitor(struct ipw2100_priv *priv, int i,
2538                    struct libipw_rx_stats *stats)
2539 {
2540         struct net_device *dev = priv->net_dev;
2541         struct ipw2100_status *status = &priv->status_queue.drv[i];
2542         struct ipw2100_rx_packet *packet = &priv->rx_buffers[i];
2543
2544         /* Magic struct that slots into the radiotap header -- no reason
2545          * to build this manually element by element, we can write it much
2546          * more efficiently than we can parse it. ORDER MATTERS HERE */
2547         struct ipw_rt_hdr {
2548                 struct ieee80211_radiotap_header rt_hdr;
2549                 s8 rt_dbmsignal; /* signal in dbM, kluged to signed */
2550         } *ipw_rt;
2551
2552         IPW_DEBUG_RX("Handler...\n");
2553
2554         if (unlikely(status->frame_size > skb_tailroom(packet->skb) -
2555                                 sizeof(struct ipw_rt_hdr))) {
2556                 IPW_DEBUG_INFO("%s: frame_size (%u) > skb_tailroom (%u)!"
2557                                "  Dropping.\n",
2558                                dev->name,
2559                                status->frame_size,
2560                                skb_tailroom(packet->skb));
2561                 dev->stats.rx_errors++;
2562                 return;
2563         }
2564
2565         if (unlikely(!netif_running(dev))) {
2566                 dev->stats.rx_errors++;
2567                 priv->wstats.discard.misc++;
2568                 IPW_DEBUG_DROP("Dropping packet while interface is not up.\n");
2569                 return;
2570         }
2571
2572         if (unlikely(priv->config & CFG_CRC_CHECK &&
2573                      status->flags & IPW_STATUS_FLAG_CRC_ERROR)) {
2574                 IPW_DEBUG_RX("CRC error in packet.  Dropping.\n");
2575                 dev->stats.rx_errors++;
2576                 return;
2577         }
2578
2579         pci_unmap_single(priv->pci_dev, packet->dma_addr,
2580                          sizeof(struct ipw2100_rx), PCI_DMA_FROMDEVICE);
2581         memmove(packet->skb->data + sizeof(struct ipw_rt_hdr),
2582                 packet->skb->data, status->frame_size);
2583
2584         ipw_rt = (struct ipw_rt_hdr *) packet->skb->data;
2585
2586         ipw_rt->rt_hdr.it_version = PKTHDR_RADIOTAP_VERSION;
2587         ipw_rt->rt_hdr.it_pad = 0; /* always good to zero */
2588         ipw_rt->rt_hdr.it_len = cpu_to_le16(sizeof(struct ipw_rt_hdr)); /* total hdr+data */
2589
2590         ipw_rt->rt_hdr.it_present = cpu_to_le32(1 << IEEE80211_RADIOTAP_DBM_ANTSIGNAL);
2591
2592         ipw_rt->rt_dbmsignal = status->rssi + IPW2100_RSSI_TO_DBM;
2593
2594         skb_put(packet->skb, status->frame_size + sizeof(struct ipw_rt_hdr));
2595
2596         if (!libipw_rx(priv->ieee, packet->skb, stats)) {
2597                 dev->stats.rx_errors++;
2598
2599                 /* libipw_rx failed, so it didn't free the SKB */
2600                 dev_kfree_skb_any(packet->skb);
2601                 packet->skb = NULL;
2602         }
2603
2604         /* We need to allocate a new SKB and attach it to the RDB. */
2605         if (unlikely(ipw2100_alloc_skb(priv, packet))) {
2606                 IPW_DEBUG_WARNING(
2607                         "%s: Unable to allocate SKB onto RBD ring - disabling "
2608                         "adapter.\n", dev->name);
2609                 /* TODO: schedule adapter shutdown */
2610                 IPW_DEBUG_INFO("TODO: Shutdown adapter...\n");
2611         }
2612
2613         /* Update the RDB entry */
2614         priv->rx_queue.drv[i].host_addr = packet->dma_addr;
2615 }
2616
2617 #endif
2618
2619 static int ipw2100_corruption_check(struct ipw2100_priv *priv, int i)
2620 {
2621         struct ipw2100_status *status = &priv->status_queue.drv[i];
2622         struct ipw2100_rx *u = priv->rx_buffers[i].rxp;
2623         u16 frame_type = status->status_fields & STATUS_TYPE_MASK;
2624
2625         switch (frame_type) {
2626         case COMMAND_STATUS_VAL:
2627                 return (status->frame_size != sizeof(u->rx_data.command));
2628         case STATUS_CHANGE_VAL:
2629                 return (status->frame_size != sizeof(u->rx_data.status));
2630         case HOST_NOTIFICATION_VAL:
2631                 return (status->frame_size < sizeof(u->rx_data.notification));
2632         case P80211_DATA_VAL:
2633         case P8023_DATA_VAL:
2634 #ifdef CONFIG_IPW2100_MONITOR
2635                 return 0;
2636 #else
2637                 switch (WLAN_FC_GET_TYPE(le16_to_cpu(u->rx_data.header.frame_ctl))) {
2638                 case IEEE80211_FTYPE_MGMT:
2639                 case IEEE80211_FTYPE_CTL:
2640                         return 0;
2641                 case IEEE80211_FTYPE_DATA:
2642                         return (status->frame_size >
2643                                 IPW_MAX_802_11_PAYLOAD_LENGTH);
2644                 }
2645 #endif
2646         }
2647
2648         return 1;
2649 }
2650
2651 /*
2652  * ipw2100 interrupts are disabled at this point, and the ISR
2653  * is the only code that calls this method.  So, we do not need
2654  * to play with any locks.
2655  *
2656  * RX Queue works as follows:
2657  *
2658  * Read index - firmware places packet in entry identified by the
2659  *              Read index and advances Read index.  In this manner,
2660  *              Read index will always point to the next packet to
2661  *              be filled--but not yet valid.
2662  *
2663  * Write index - driver fills this entry with an unused RBD entry.
2664  *               This entry has not filled by the firmware yet.
2665  *
2666  * In between the W and R indexes are the RBDs that have been received
2667  * but not yet processed.
2668  *
2669  * The process of handling packets will start at WRITE + 1 and advance
2670  * until it reaches the READ index.
2671  *
2672  * The WRITE index is cached in the variable 'priv->rx_queue.next'.
2673  *
2674  */
2675 static void __ipw2100_rx_process(struct ipw2100_priv *priv)
2676 {
2677         struct ipw2100_bd_queue *rxq = &priv->rx_queue;
2678         struct ipw2100_status_queue *sq = &priv->status_queue;
2679         struct ipw2100_rx_packet *packet;
2680         u16 frame_type;
2681         u32 r, w, i, s;
2682         struct ipw2100_rx *u;
2683         struct libipw_rx_stats stats = {
2684                 .mac_time = jiffies,
2685         };
2686
2687         read_register(priv->net_dev, IPW_MEM_HOST_SHARED_RX_READ_INDEX, &r);
2688         read_register(priv->net_dev, IPW_MEM_HOST_SHARED_RX_WRITE_INDEX, &w);
2689
2690         if (r >= rxq->entries) {
2691                 IPW_DEBUG_RX("exit - bad read index\n");
2692                 return;
2693         }
2694
2695         i = (rxq->next + 1) % rxq->entries;
2696         s = i;
2697         while (i != r) {
2698                 /* IPW_DEBUG_RX("r = %d : w = %d : processing = %d\n",
2699                    r, rxq->next, i); */
2700
2701                 packet = &priv->rx_buffers[i];
2702
2703                 /* Sync the DMA for the RX buffer so CPU is sure to get
2704                  * the correct values */
2705                 pci_dma_sync_single_for_cpu(priv->pci_dev, packet->dma_addr,
2706                                             sizeof(struct ipw2100_rx),
2707                                             PCI_DMA_FROMDEVICE);
2708
2709                 if (unlikely(ipw2100_corruption_check(priv, i))) {
2710                         ipw2100_corruption_detected(priv, i);
2711                         goto increment;
2712                 }
2713
2714                 u = packet->rxp;
2715                 frame_type = sq->drv[i].status_fields & STATUS_TYPE_MASK;
2716                 stats.rssi = sq->drv[i].rssi + IPW2100_RSSI_TO_DBM;
2717                 stats.len = sq->drv[i].frame_size;
2718
2719                 stats.mask = 0;
2720                 if (stats.rssi != 0)
2721                         stats.mask |= LIBIPW_STATMASK_RSSI;
2722                 stats.freq = LIBIPW_24GHZ_BAND;
2723
2724                 IPW_DEBUG_RX("%s: '%s' frame type received (%d).\n",
2725                              priv->net_dev->name, frame_types[frame_type],
2726                              stats.len);
2727
2728                 switch (frame_type) {
2729                 case COMMAND_STATUS_VAL:
2730                         /* Reset Rx watchdog */
2731                         isr_rx_complete_command(priv, &u->rx_data.command);
2732                         break;
2733
2734                 case STATUS_CHANGE_VAL:
2735                         isr_status_change(priv, u->rx_data.status);
2736                         break;
2737
2738                 case P80211_DATA_VAL:
2739                 case P8023_DATA_VAL:
2740 #ifdef CONFIG_IPW2100_MONITOR
2741                         if (priv->ieee->iw_mode == IW_MODE_MONITOR) {
2742                                 isr_rx_monitor(priv, i, &stats);
2743                                 break;
2744                         }
2745 #endif
2746                         if (stats.len < sizeof(struct libipw_hdr_3addr))
2747                                 break;
2748                         switch (WLAN_FC_GET_TYPE(le16_to_cpu(u->rx_data.header.frame_ctl))) {
2749                         case IEEE80211_FTYPE_MGMT:
2750                                 libipw_rx_mgt(priv->ieee,
2751                                                  &u->rx_data.header, &stats);
2752                                 break;
2753
2754                         case IEEE80211_FTYPE_CTL:
2755                                 break;
2756
2757                         case IEEE80211_FTYPE_DATA:
2758                                 isr_rx(priv, i, &stats);
2759                                 break;
2760
2761                         }
2762                         break;
2763                 }
2764
2765               increment:
2766                 /* clear status field associated with this RBD */
2767                 rxq->drv[i].status.info.field = 0;
2768
2769                 i = (i + 1) % rxq->entries;
2770         }
2771
2772         if (i != s) {
2773                 /* backtrack one entry, wrapping to end if at 0 */
2774                 rxq->next = (i ? i : rxq->entries) - 1;
2775
2776                 write_register(priv->net_dev,
2777                                IPW_MEM_HOST_SHARED_RX_WRITE_INDEX, rxq->next);
2778         }
2779 }
2780
2781 /*
2782  * __ipw2100_tx_process
2783  *
2784  * This routine will determine whether the next packet on
2785  * the fw_pend_list has been processed by the firmware yet.
2786  *
2787  * If not, then it does nothing and returns.
2788  *
2789  * If so, then it removes the item from the fw_pend_list, frees
2790  * any associated storage, and places the item back on the
2791  * free list of its source (either msg_free_list or tx_free_list)
2792  *
2793  * TX Queue works as follows:
2794  *
2795  * Read index - points to the next TBD that the firmware will
2796  *              process.  The firmware will read the data, and once
2797  *              done processing, it will advance the Read index.
2798  *
2799  * Write index - driver fills this entry with an constructed TBD
2800  *               entry.  The Write index is not advanced until the
2801  *               packet has been configured.
2802  *
2803  * In between the W and R indexes are the TBDs that have NOT been
2804  * processed.  Lagging behind the R index are packets that have
2805  * been processed but have not been freed by the driver.
2806  *
2807  * In order to free old storage, an internal index will be maintained
2808  * that points to the next packet to be freed.  When all used
2809  * packets have been freed, the oldest index will be the same as the
2810  * firmware's read index.
2811  *
2812  * The OLDEST index is cached in the variable 'priv->tx_queue.oldest'
2813  *
2814  * Because the TBD structure can not contain arbitrary data, the
2815  * driver must keep an internal queue of cached allocations such that
2816  * it can put that data back into the tx_free_list and msg_free_list
2817  * for use by future command and data packets.
2818  *
2819  */
2820 static int __ipw2100_tx_process(struct ipw2100_priv *priv)
2821 {
2822         struct ipw2100_bd_queue *txq = &priv->tx_queue;
2823         struct ipw2100_bd *tbd;
2824         struct list_head *element;
2825         struct ipw2100_tx_packet *packet;
2826         int descriptors_used;
2827         int e, i;
2828         u32 r, w, frag_num = 0;
2829
2830         if (list_empty(&priv->fw_pend_list))
2831                 return 0;
2832
2833         element = priv->fw_pend_list.next;
2834
2835         packet = list_entry(element, struct ipw2100_tx_packet, list);
2836         tbd = &txq->drv[packet->index];
2837
2838         /* Determine how many TBD entries must be finished... */
2839         switch (packet->type) {
2840         case COMMAND:
2841                 /* COMMAND uses only one slot; don't advance */
2842                 descriptors_used = 1;
2843                 e = txq->oldest;
2844                 break;
2845
2846         case DATA:
2847                 /* DATA uses two slots; advance and loop position. */
2848                 descriptors_used = tbd->num_fragments;
2849                 frag_num = tbd->num_fragments - 1;
2850                 e = txq->oldest + frag_num;
2851                 e %= txq->entries;
2852                 break;
2853
2854         default:
2855                 printk(KERN_WARNING DRV_NAME ": %s: Bad fw_pend_list entry!\n",
2856                        priv->net_dev->name);
2857                 return 0;
2858         }
2859
2860         /* if the last TBD is not done by NIC yet, then packet is
2861          * not ready to be released.
2862          *
2863          */
2864         read_register(priv->net_dev, IPW_MEM_HOST_SHARED_TX_QUEUE_READ_INDEX,
2865                       &r);
2866         read_register(priv->net_dev, IPW_MEM_HOST_SHARED_TX_QUEUE_WRITE_INDEX,
2867                       &w);
2868         if (w != txq->next)
2869                 printk(KERN_WARNING DRV_NAME ": %s: write index mismatch\n",
2870                        priv->net_dev->name);
2871
2872         /*
2873          * txq->next is the index of the last packet written txq->oldest is
2874          * the index of the r is the index of the next packet to be read by
2875          * firmware
2876          */
2877
2878         /*
2879          * Quick graphic to help you visualize the following
2880          * if / else statement
2881          *
2882          * ===>|                     s---->|===============
2883          *                               e>|
2884          * | a | b | c | d | e | f | g | h | i | j | k | l
2885          *       r---->|
2886          *               w
2887          *
2888          * w - updated by driver
2889          * r - updated by firmware
2890          * s - start of oldest BD entry (txq->oldest)
2891          * e - end of oldest BD entry
2892          *
2893          */
2894         if (!((r <= w && (e < r || e >= w)) || (e < r && e >= w))) {
2895                 IPW_DEBUG_TX("exit - no processed packets ready to release.\n");
2896                 return 0;
2897         }
2898
2899         list_del(element);
2900         DEC_STAT(&priv->fw_pend_stat);
2901
2902 #ifdef CONFIG_IPW2100_DEBUG
2903         {
2904                 i = txq->oldest;
2905                 IPW_DEBUG_TX("TX%d V=%p P=%04X T=%04X L=%d\n", i,
2906                              &txq->drv[i],
2907                              (u32) (txq->nic + i * sizeof(struct ipw2100_bd)),
2908                              txq->drv[i].host_addr, txq->drv[i].buf_length);
2909
2910                 if (packet->type == DATA) {
2911                         i = (i + 1) % txq->entries;
2912
2913                         IPW_DEBUG_TX("TX%d V=%p P=%04X T=%04X L=%d\n", i,
2914                                      &txq->drv[i],
2915                                      (u32) (txq->nic + i *
2916                                             sizeof(struct ipw2100_bd)),
2917                                      (u32) txq->drv[i].host_addr,
2918                                      txq->drv[i].buf_length);
2919                 }
2920         }
2921 #endif
2922
2923         switch (packet->type) {
2924         case DATA:
2925                 if (txq->drv[txq->oldest].status.info.fields.txType != 0)
2926                         printk(KERN_WARNING DRV_NAME ": %s: Queue mismatch.  "
2927                                "Expecting DATA TBD but pulled "
2928                                "something else: ids %d=%d.\n",
2929                                priv->net_dev->name, txq->oldest, packet->index);
2930
2931                 /* DATA packet; we have to unmap and free the SKB */
2932                 for (i = 0; i < frag_num; i++) {
2933                         tbd = &txq->drv[(packet->index + 1 + i) % txq->entries];
2934
2935                         IPW_DEBUG_TX("TX%d P=%08x L=%d\n",
2936                                      (packet->index + 1 + i) % txq->entries,
2937                                      tbd->host_addr, tbd->buf_length);
2938
2939                         pci_unmap_single(priv->pci_dev,
2940                                          tbd->host_addr,
2941                                          tbd->buf_length, PCI_DMA_TODEVICE);
2942                 }
2943
2944                 libipw_txb_free(packet->info.d_struct.txb);
2945                 packet->info.d_struct.txb = NULL;
2946
2947                 list_add_tail(element, &priv->tx_free_list);
2948                 INC_STAT(&priv->tx_free_stat);
2949
2950                 /* We have a free slot in the Tx queue, so wake up the
2951                  * transmit layer if it is stopped. */
2952                 if (priv->status & STATUS_ASSOCIATED)
2953                         netif_wake_queue(priv->net_dev);
2954
2955                 /* A packet was processed by the hardware, so update the
2956                  * watchdog */
2957                 priv->net_dev->trans_start = jiffies;
2958
2959                 break;
2960
2961         case COMMAND:
2962                 if (txq->drv[txq->oldest].status.info.fields.txType != 1)
2963                         printk(KERN_WARNING DRV_NAME ": %s: Queue mismatch.  "
2964                                "Expecting COMMAND TBD but pulled "
2965                                "something else: ids %d=%d.\n",
2966                                priv->net_dev->name, txq->oldest, packet->index);
2967
2968 #ifdef CONFIG_IPW2100_DEBUG
2969                 if (packet->info.c_struct.cmd->host_command_reg <
2970                     ARRAY_SIZE(command_types))
2971                         IPW_DEBUG_TX("Command '%s (%d)' processed: %d.\n",
2972                                      command_types[packet->info.c_struct.cmd->
2973                                                    host_command_reg],
2974                                      packet->info.c_struct.cmd->
2975                                      host_command_reg,
2976                                      packet->info.c_struct.cmd->cmd_status_reg);
2977 #endif
2978
2979                 list_add_tail(element, &priv->msg_free_list);
2980                 INC_STAT(&priv->msg_free_stat);
2981                 break;
2982         }
2983
2984         /* advance oldest used TBD pointer to start of next entry */
2985         txq->oldest = (e + 1) % txq->entries;
2986         /* increase available TBDs number */
2987         txq->available += descriptors_used;
2988         SET_STAT(&priv->txq_stat, txq->available);
2989
2990         IPW_DEBUG_TX("packet latency (send to process)  %ld jiffies\n",
2991                      jiffies - packet->jiffy_start);
2992
2993         return (!list_empty(&priv->fw_pend_list));
2994 }
2995
2996 static inline void __ipw2100_tx_complete(struct ipw2100_priv *priv)
2997 {
2998         int i = 0;
2999
3000         while (__ipw2100_tx_process(priv) && i < 200)
3001                 i++;
3002
3003         if (i == 200) {
3004                 printk(KERN_WARNING DRV_NAME ": "
3005                        "%s: Driver is running slow (%d iters).\n",
3006                        priv->net_dev->name, i);
3007         }
3008 }
3009
3010 static void ipw2100_tx_send_commands(struct ipw2100_priv *priv)
3011 {
3012         struct list_head *element;
3013         struct ipw2100_tx_packet *packet;
3014         struct ipw2100_bd_queue *txq = &priv->tx_queue;
3015         struct ipw2100_bd *tbd;
3016         int next = txq->next;
3017
3018         while (!list_empty(&priv->msg_pend_list)) {
3019                 /* if there isn't enough space in TBD queue, then
3020                  * don't stuff a new one in.
3021                  * NOTE: 3 are needed as a command will take one,
3022                  *       and there is a minimum of 2 that must be
3023                  *       maintained between the r and w indexes
3024                  */
3025                 if (txq->available <= 3) {
3026                         IPW_DEBUG_TX("no room in tx_queue\n");
3027                         break;
3028                 }
3029
3030                 element = priv->msg_pend_list.next;
3031                 list_del(element);
3032                 DEC_STAT(&priv->msg_pend_stat);
3033
3034                 packet = list_entry(element, struct ipw2100_tx_packet, list);
3035
3036                 IPW_DEBUG_TX("using TBD at virt=%p, phys=%04X\n",
3037                              &txq->drv[txq->next],
3038                              (u32) (txq->nic + txq->next *
3039                                       sizeof(struct ipw2100_bd)));
3040
3041                 packet->index = txq->next;
3042
3043                 tbd = &txq->drv[txq->next];
3044
3045                 /* initialize TBD */
3046                 tbd->host_addr = packet->info.c_struct.cmd_phys;
3047                 tbd->buf_length = sizeof(struct ipw2100_cmd_header);
3048                 /* not marking number of fragments causes problems
3049                  * with f/w debug version */
3050                 tbd->num_fragments = 1;
3051                 tbd->status.info.field =
3052                     IPW_BD_STATUS_TX_FRAME_COMMAND |
3053                     IPW_BD_STATUS_TX_INTERRUPT_ENABLE;
3054
3055                 /* update TBD queue counters */
3056                 txq->next++;
3057                 txq->next %= txq->entries;
3058                 txq->available--;
3059                 DEC_STAT(&priv->txq_stat);
3060
3061                 list_add_tail(element, &priv->fw_pend_list);
3062                 INC_STAT(&priv->fw_pend_stat);
3063         }
3064
3065         if (txq->next != next) {
3066                 /* kick off the DMA by notifying firmware the
3067                  * write index has moved; make sure TBD stores are sync'd */
3068                 wmb();
3069                 write_register(priv->net_dev,
3070                                IPW_MEM_HOST_SHARED_TX_QUEUE_WRITE_INDEX,
3071                                txq->next);
3072         }
3073 }
3074
3075 /*
3076  * ipw2100_tx_send_data
3077  *
3078  */
3079 static void ipw2100_tx_send_data(struct ipw2100_priv *priv)
3080 {
3081         struct list_head *element;
3082         struct ipw2100_tx_packet *packet;
3083         struct ipw2100_bd_queue *txq = &priv->tx_queue;
3084         struct ipw2100_bd *tbd;
3085         int next = txq->next;
3086         int i = 0;
3087         struct ipw2100_data_header *ipw_hdr;
3088         struct libipw_hdr_3addr *hdr;
3089
3090         while (!list_empty(&priv->tx_pend_list)) {
3091                 /* if there isn't enough space in TBD queue, then
3092                  * don't stuff a new one in.
3093                  * NOTE: 4 are needed as a data will take two,
3094                  *       and there is a minimum of 2 that must be
3095                  *       maintained between the r and w indexes
3096                  */
3097                 element = priv->tx_pend_list.next;
3098                 packet = list_entry(element, struct ipw2100_tx_packet, list);
3099
3100                 if (unlikely(1 + packet->info.d_struct.txb->nr_frags >
3101                              IPW_MAX_BDS)) {
3102                         /* TODO: Support merging buffers if more than
3103                          * IPW_MAX_BDS are used */
3104                         IPW_DEBUG_INFO("%s: Maximum BD threshold exceeded.  "
3105                                        "Increase fragmentation level.\n",
3106                                        priv->net_dev->name);
3107                 }
3108
3109                 if (txq->available <= 3 + packet->info.d_struct.txb->nr_frags) {
3110                         IPW_DEBUG_TX("no room in tx_queue\n");
3111                         break;
3112                 }
3113
3114                 list_del(element);
3115                 DEC_STAT(&priv->tx_pend_stat);
3116
3117                 tbd = &txq->drv[txq->next];
3118
3119                 packet->index = txq->next;
3120
3121                 ipw_hdr = packet->info.d_struct.data;
3122                 hdr = (struct libipw_hdr_3addr *)packet->info.d_struct.txb->
3123                     fragments[0]->data;
3124
3125                 if (priv->ieee->iw_mode == IW_MODE_INFRA) {
3126                         /* To DS: Addr1 = BSSID, Addr2 = SA,
3127                            Addr3 = DA */
3128                         memcpy(ipw_hdr->src_addr, hdr->addr2, ETH_ALEN);
3129                         memcpy(ipw_hdr->dst_addr, hdr->addr3, ETH_ALEN);
3130                 } else if (priv->ieee->iw_mode == IW_MODE_ADHOC) {
3131                         /* not From/To DS: Addr1 = DA, Addr2 = SA,
3132                            Addr3 = BSSID */
3133                         memcpy(ipw_hdr->src_addr, hdr->addr2, ETH_ALEN);
3134                         memcpy(ipw_hdr->dst_addr, hdr->addr1, ETH_ALEN);
3135                 }
3136
3137                 ipw_hdr->host_command_reg = SEND;
3138                 ipw_hdr->host_command_reg1 = 0;
3139
3140                 /* For now we only support host based encryption */
3141                 ipw_hdr->needs_encryption = 0;
3142                 ipw_hdr->encrypted = packet->info.d_struct.txb->encrypted;
3143                 if (packet->info.d_struct.txb->nr_frags > 1)
3144                         ipw_hdr->fragment_size =
3145                             packet->info.d_struct.txb->frag_size -
3146                             LIBIPW_3ADDR_LEN;
3147                 else
3148                         ipw_hdr->fragment_size = 0;
3149
3150                 tbd->host_addr = packet->info.d_struct.data_phys;
3151                 tbd->buf_length = sizeof(struct ipw2100_data_header);
3152                 tbd->num_fragments = 1 + packet->info.d_struct.txb->nr_frags;
3153                 tbd->status.info.field =
3154                     IPW_BD_STATUS_TX_FRAME_802_3 |
3155                     IPW_BD_STATUS_TX_FRAME_NOT_LAST_FRAGMENT;
3156                 txq->next++;
3157                 txq->next %= txq->entries;
3158
3159                 IPW_DEBUG_TX("data header tbd TX%d P=%08x L=%d\n",
3160                              packet->index, tbd->host_addr, tbd->buf_length);
3161 #ifdef CONFIG_IPW2100_DEBUG
3162                 if (packet->info.d_struct.txb->nr_frags > 1)
3163                         IPW_DEBUG_FRAG("fragment Tx: %d frames\n",
3164                                        packet->info.d_struct.txb->nr_frags);
3165 #endif
3166
3167                 for (i = 0; i < packet->info.d_struct.txb->nr_frags; i++) {
3168                         tbd = &txq->drv[txq->next];
3169                         if (i == packet->info.d_struct.txb->nr_frags - 1)
3170                                 tbd->status.info.field =
3171                                     IPW_BD_STATUS_TX_FRAME_802_3 |
3172                                     IPW_BD_STATUS_TX_INTERRUPT_ENABLE;
3173                         else
3174                                 tbd->status.info.field =
3175                                     IPW_BD_STATUS_TX_FRAME_802_3 |
3176                                     IPW_BD_STATUS_TX_FRAME_NOT_LAST_FRAGMENT;
3177
3178                         tbd->buf_length = packet->info.d_struct.txb->
3179                             fragments[i]->len - LIBIPW_3ADDR_LEN;
3180
3181                         tbd->host_addr = pci_map_single(priv->pci_dev,
3182                                                         packet->info.d_struct.
3183                                                         txb->fragments[i]->
3184                                                         data +
3185                                                         LIBIPW_3ADDR_LEN,
3186                                                         tbd->buf_length,
3187                                                         PCI_DMA_TODEVICE);
3188                         if (pci_dma_mapping_error(priv->pci_dev,
3189                                                   tbd->host_addr)) {
3190                                 IPW_DEBUG_TX("dma mapping error\n");
3191                                 break;
3192                         }
3193
3194                         IPW_DEBUG_TX("data frag tbd TX%d P=%08x L=%d\n",
3195                                      txq->next, tbd->host_addr,
3196                                      tbd->buf_length);
3197
3198                         pci_dma_sync_single_for_device(priv->pci_dev,
3199                                                        tbd->host_addr,
3200                                                        tbd->buf_length,
3201                                                        PCI_DMA_TODEVICE);
3202
3203                         txq->next++;
3204                         txq->next %= txq->entries;
3205                 }
3206
3207                 txq->available -= 1 + packet->info.d_struct.txb->nr_frags;
3208                 SET_STAT(&priv->txq_stat, txq->available);
3209
3210                 list_add_tail(element, &priv->fw_pend_list);
3211                 INC_STAT(&priv->fw_pend_stat);
3212         }
3213
3214         if (txq->next != next) {
3215                 /* kick off the DMA by notifying firmware the
3216                  * write index has moved; make sure TBD stores are sync'd */
3217                 write_register(priv->net_dev,
3218                                IPW_MEM_HOST_SHARED_TX_QUEUE_WRITE_INDEX,
3219                                txq->next);
3220         }
3221 }
3222
3223 static void ipw2100_irq_tasklet(struct ipw2100_priv *priv)
3224 {
3225         struct net_device *dev = priv->net_dev;
3226         unsigned long flags;
3227         u32 inta, tmp;
3228
3229         spin_lock_irqsave(&priv->low_lock, flags);
3230         ipw2100_disable_interrupts(priv);
3231
3232         read_register(dev, IPW_REG_INTA, &inta);
3233
3234         IPW_DEBUG_ISR("enter - INTA: 0x%08lX\n",
3235                       (unsigned long)inta & IPW_INTERRUPT_MASK);
3236
3237         priv->in_isr++;
3238         priv->interrupts++;
3239
3240         /* We do not loop and keep polling for more interrupts as this
3241          * is frowned upon and doesn't play nicely with other potentially
3242          * chained IRQs */
3243         IPW_DEBUG_ISR("INTA: 0x%08lX\n",
3244                       (unsigned long)inta & IPW_INTERRUPT_MASK);
3245
3246         if (inta & IPW2100_INTA_FATAL_ERROR) {
3247                 printk(KERN_WARNING DRV_NAME
3248                        ": Fatal interrupt. Scheduling firmware restart.\n");
3249                 priv->inta_other++;
3250                 write_register(dev, IPW_REG_INTA, IPW2100_INTA_FATAL_ERROR);
3251
3252                 read_nic_dword(dev, IPW_NIC_FATAL_ERROR, &priv->fatal_error);
3253                 IPW_DEBUG_INFO("%s: Fatal error value: 0x%08X\n",
3254                                priv->net_dev->name, priv->fatal_error);
3255
3256                 read_nic_dword(dev, IPW_ERROR_ADDR(priv->fatal_error), &tmp);
3257                 IPW_DEBUG_INFO("%s: Fatal error address value: 0x%08X\n",
3258                                priv->net_dev->name, tmp);
3259
3260                 /* Wake up any sleeping jobs */
3261                 schedule_reset(priv);
3262         }
3263
3264         if (inta & IPW2100_INTA_PARITY_ERROR) {
3265                 printk(KERN_ERR DRV_NAME
3266                        ": ***** PARITY ERROR INTERRUPT !!!!\n");
3267                 priv->inta_other++;
3268                 write_register(dev, IPW_REG_INTA, IPW2100_INTA_PARITY_ERROR);
3269         }
3270
3271         if (inta & IPW2100_INTA_RX_TRANSFER) {
3272                 IPW_DEBUG_ISR("RX interrupt\n");
3273
3274                 priv->rx_interrupts++;
3275
3276                 write_register(dev, IPW_REG_INTA, IPW2100_INTA_RX_TRANSFER);
3277
3278                 __ipw2100_rx_process(priv);
3279                 __ipw2100_tx_complete(priv);
3280         }
3281
3282         if (inta & IPW2100_INTA_TX_TRANSFER) {
3283                 IPW_DEBUG_ISR("TX interrupt\n");
3284
3285                 priv->tx_interrupts++;
3286
3287                 write_register(dev, IPW_REG_INTA, IPW2100_INTA_TX_TRANSFER);
3288
3289                 __ipw2100_tx_complete(priv);
3290                 ipw2100_tx_send_commands(priv);
3291                 ipw2100_tx_send_data(priv);
3292         }
3293
3294         if (inta & IPW2100_INTA_TX_COMPLETE) {
3295                 IPW_DEBUG_ISR("TX complete\n");
3296                 priv->inta_other++;
3297                 write_register(dev, IPW_REG_INTA, IPW2100_INTA_TX_COMPLETE);
3298
3299                 __ipw2100_tx_complete(priv);
3300         }
3301
3302         if (inta & IPW2100_INTA_EVENT_INTERRUPT) {
3303                 /* ipw2100_handle_event(dev); */
3304                 priv->inta_other++;
3305                 write_register(dev, IPW_REG_INTA, IPW2100_INTA_EVENT_INTERRUPT);
3306         }
3307
3308         if (inta & IPW2100_INTA_FW_INIT_DONE) {
3309                 IPW_DEBUG_ISR("FW init done interrupt\n");
3310                 priv->inta_other++;
3311
3312                 read_register(dev, IPW_REG_INTA, &tmp);
3313                 if (tmp & (IPW2100_INTA_FATAL_ERROR |
3314                            IPW2100_INTA_PARITY_ERROR)) {
3315                         write_register(dev, IPW_REG_INTA,
3316                                        IPW2100_INTA_FATAL_ERROR |
3317                                        IPW2100_INTA_PARITY_ERROR);
3318                 }
3319
3320                 write_register(dev, IPW_REG_INTA, IPW2100_INTA_FW_INIT_DONE);
3321         }
3322
3323         if (inta & IPW2100_INTA_STATUS_CHANGE) {
3324                 IPW_DEBUG_ISR("Status change interrupt\n");
3325                 priv->inta_other++;
3326                 write_register(dev, IPW_REG_INTA, IPW2100_INTA_STATUS_CHANGE);
3327         }
3328
3329         if (inta & IPW2100_INTA_SLAVE_MODE_HOST_COMMAND_DONE) {
3330                 IPW_DEBUG_ISR("slave host mode interrupt\n");
3331                 priv->inta_other++;
3332                 write_register(dev, IPW_REG_INTA,
3333                                IPW2100_INTA_SLAVE_MODE_HOST_COMMAND_DONE);
3334         }
3335
3336         priv->in_isr--;
3337         ipw2100_enable_interrupts(priv);
3338
3339         spin_unlock_irqrestore(&priv->low_lock, flags);
3340
3341         IPW_DEBUG_ISR("exit\n");
3342 }
3343
3344 static irqreturn_t ipw2100_interrupt(int irq, void *data)
3345 {
3346         struct ipw2100_priv *priv = data;
3347         u32 inta, inta_mask;
3348
3349         if (!data)
3350                 return IRQ_NONE;
3351
3352         spin_lock(&priv->low_lock);
3353
3354         /* We check to see if we should be ignoring interrupts before
3355          * we touch the hardware.  During ucode load if we try and handle
3356          * an interrupt we can cause keyboard problems as well as cause
3357          * the ucode to fail to initialize */
3358         if (!(priv->status & STATUS_INT_ENABLED)) {
3359                 /* Shared IRQ */
3360                 goto none;
3361         }
3362
3363         read_register(priv->net_dev, IPW_REG_INTA_MASK, &inta_mask);
3364         read_register(priv->net_dev, IPW_REG_INTA, &inta);
3365
3366         if (inta == 0xFFFFFFFF) {
3367                 /* Hardware disappeared */
3368                 printk(KERN_WARNING DRV_NAME ": IRQ INTA == 0xFFFFFFFF\n");
3369                 goto none;
3370         }
3371
3372         inta &= IPW_INTERRUPT_MASK;
3373
3374         if (!(inta & inta_mask)) {
3375                 /* Shared interrupt */
3376                 goto none;
3377         }
3378
3379         /* We disable the hardware interrupt here just to prevent unneeded
3380          * calls to be made.  We disable this again within the actual
3381          * work tasklet, so if another part of the code re-enables the
3382          * interrupt, that is fine */
3383         ipw2100_disable_interrupts(priv);
3384
3385         tasklet_schedule(&priv->irq_tasklet);
3386         spin_unlock(&priv->low_lock);
3387
3388         return IRQ_HANDLED;
3389       none:
3390         spin_unlock(&priv->low_lock);
3391         return IRQ_NONE;
3392 }
3393
3394 static netdev_tx_t ipw2100_tx(struct libipw_txb *txb,
3395                               struct net_device *dev, int pri)
3396 {
3397         struct ipw2100_priv *priv = libipw_priv(dev);
3398         struct list_head *element;
3399         struct ipw2100_tx_packet *packet;
3400         unsigned long flags;
3401
3402         spin_lock_irqsave(&priv->low_lock, flags);
3403
3404         if (!(priv->status & STATUS_ASSOCIATED)) {
3405                 IPW_DEBUG_INFO("Can not transmit when not connected.\n");
3406                 priv->net_dev->stats.tx_carrier_errors++;
3407                 netif_stop_queue(dev);
3408                 goto fail_unlock;
3409         }
3410
3411         if (list_empty(&priv->tx_free_list))
3412                 goto fail_unlock;
3413
3414         element = priv->tx_free_list.next;
3415         packet = list_entry(element, struct ipw2100_tx_packet, list);
3416
3417         packet->info.d_struct.txb = txb;
3418
3419         IPW_DEBUG_TX("Sending fragment (%d bytes):\n", txb->fragments[0]->len);
3420         printk_buf(IPW_DL_TX, txb->fragments[0]->data, txb->fragments[0]->len);
3421
3422         packet->jiffy_start = jiffies;
3423
3424         list_del(element);
3425         DEC_STAT(&priv->tx_free_stat);
3426
3427         list_add_tail(element, &priv->tx_pend_list);
3428         INC_STAT(&priv->tx_pend_stat);
3429
3430         ipw2100_tx_send_data(priv);
3431
3432         spin_unlock_irqrestore(&priv->low_lock, flags);
3433         return NETDEV_TX_OK;
3434
3435 fail_unlock:
3436         netif_stop_queue(dev);
3437         spin_unlock_irqrestore(&priv->low_lock, flags);
3438         return NETDEV_TX_BUSY;
3439 }
3440
3441 static int ipw2100_msg_allocate(struct ipw2100_priv *priv)
3442 {
3443         int i, j, err = -EINVAL;
3444         void *v;
3445         dma_addr_t p;
3446
3447         priv->msg_buffers =
3448             kmalloc(IPW_COMMAND_POOL_SIZE * sizeof(struct ipw2100_tx_packet),
3449                     GFP_KERNEL);
3450         if (!priv->msg_buffers)
3451                 return -ENOMEM;
3452
3453         for (i = 0; i < IPW_COMMAND_POOL_SIZE; i++) {
3454                 v = pci_zalloc_consistent(priv->pci_dev,
3455                                           sizeof(struct ipw2100_cmd_header),
3456                                           &p);
3457                 if (!v) {
3458                         printk(KERN_ERR DRV_NAME ": "
3459                                "%s: PCI alloc failed for msg "
3460                                "buffers.\n", priv->net_dev->name);
3461                         err = -ENOMEM;
3462                         break;
3463                 }
3464
3465                 priv->msg_buffers[i].type = COMMAND;
3466                 priv->msg_buffers[i].info.c_struct.cmd =
3467                     (struct ipw2100_cmd_header *)v;
3468                 priv->msg_buffers[i].info.c_struct.cmd_phys = p;
3469         }
3470
3471         if (i == IPW_COMMAND_POOL_SIZE)
3472                 return 0;
3473
3474         for (j = 0; j < i; j++) {
3475                 pci_free_consistent(priv->pci_dev,
3476                                     sizeof(struct ipw2100_cmd_header),
3477                                     priv->msg_buffers[j].info.c_struct.cmd,
3478                                     priv->msg_buffers[j].info.c_struct.
3479                                     cmd_phys);
3480         }
3481
3482         kfree(priv->msg_buffers);
3483         priv->msg_buffers = NULL;
3484
3485         return err;
3486 }
3487
3488 static int ipw2100_msg_initialize(struct ipw2100_priv *priv)
3489 {
3490         int i;
3491
3492         INIT_LIST_HEAD(&priv->msg_free_list);
3493         INIT_LIST_HEAD(&priv->msg_pend_list);
3494
3495         for (i = 0; i < IPW_COMMAND_POOL_SIZE; i++)
3496                 list_add_tail(&priv->msg_buffers[i].list, &priv->msg_free_list);
3497         SET_STAT(&priv->msg_free_stat, i);
3498
3499         return 0;
3500 }
3501
3502 static void ipw2100_msg_free(struct ipw2100_priv *priv)
3503 {
3504         int i;
3505
3506         if (!priv->msg_buffers)
3507                 return;
3508
3509         for (i = 0; i < IPW_COMMAND_POOL_SIZE; i++) {
3510                 pci_free_consistent(priv->pci_dev,
3511                                     sizeof(struct ipw2100_cmd_header),
3512                                     priv->msg_buffers[i].info.c_struct.cmd,
3513                                     priv->msg_buffers[i].info.c_struct.
3514                                     cmd_phys);
3515         }
3516
3517         kfree(priv->msg_buffers);
3518         priv->msg_buffers = NULL;
3519 }
3520
3521 static ssize_t show_pci(struct device *d, struct device_attribute *attr,
3522                         char *buf)
3523 {
3524         struct pci_dev *pci_dev = to_pci_dev(d);
3525         char *out = buf;
3526         int i, j;
3527         u32 val;
3528
3529         for (i = 0; i < 16; i++) {
3530                 out += sprintf(out, "[%08X] ", i * 16);
3531                 for (j = 0; j < 16; j += 4) {
3532                         pci_read_config_dword(pci_dev, i * 16 + j, &val);
3533                         out += sprintf(out, "%08X ", val);
3534                 }
3535                 out += sprintf(out, "\n");
3536         }
3537
3538         return out - buf;
3539 }
3540
3541 static DEVICE_ATTR(pci, S_IRUGO, show_pci, NULL);
3542
3543 static ssize_t show_cfg(struct device *d, struct device_attribute *attr,
3544                         char *buf)
3545 {
3546         struct ipw2100_priv *p = dev_get_drvdata(d);
3547         return sprintf(buf, "0x%08x\n", (int)p->config);
3548 }
3549
3550 static DEVICE_ATTR(cfg, S_IRUGO, show_cfg, NULL);
3551
3552 static ssize_t show_status(struct device *d, struct device_attribute *attr,
3553                            char *buf)
3554 {
3555         struct ipw2100_priv *p = dev_get_drvdata(d);
3556         return sprintf(buf, "0x%08x\n", (int)p->status);
3557 }
3558
3559 static DEVICE_ATTR(status, S_IRUGO, show_status, NULL);
3560
3561 static ssize_t show_capability(struct device *d, struct device_attribute *attr,
3562                                char *buf)
3563 {
3564         struct ipw2100_priv *p = dev_get_drvdata(d);
3565         return sprintf(buf, "0x%08x\n", (int)p->capability);
3566 }
3567
3568 static DEVICE_ATTR(capability, S_IRUGO, show_capability, NULL);
3569
3570 #define IPW2100_REG(x) { IPW_ ##x, #x }
3571 static const struct {
3572         u32 addr;
3573         const char *name;
3574 } hw_data[] = {
3575 IPW2100_REG(REG_GP_CNTRL),
3576             IPW2100_REG(REG_GPIO),
3577             IPW2100_REG(REG_INTA),
3578             IPW2100_REG(REG_INTA_MASK), IPW2100_REG(REG_RESET_REG),};
3579 #define IPW2100_NIC(x, s) { x, #x, s }
3580 static const struct {
3581         u32 addr;
3582         const char *name;
3583         size_t size;
3584 } nic_data[] = {
3585 IPW2100_NIC(IPW2100_CONTROL_REG, 2),
3586             IPW2100_NIC(0x210014, 1), IPW2100_NIC(0x210000, 1),};
3587 #define IPW2100_ORD(x, d) { IPW_ORD_ ##x, #x, d }
3588 static const struct {
3589         u8 index;
3590         const char *name;
3591         const char *desc;
3592 } ord_data[] = {
3593 IPW2100_ORD(STAT_TX_HOST_REQUESTS, "requested Host Tx's (MSDU)"),
3594             IPW2100_ORD(STAT_TX_HOST_COMPLETE,
3595                                 "successful Host Tx's (MSDU)"),
3596             IPW2100_ORD(STAT_TX_DIR_DATA,
3597                                 "successful Directed Tx's (MSDU)"),
3598             IPW2100_ORD(STAT_TX_DIR_DATA1,
3599                                 "successful Directed Tx's (MSDU) @ 1MB"),
3600             IPW2100_ORD(STAT_TX_DIR_DATA2,
3601                                 "successful Directed Tx's (MSDU) @ 2MB"),
3602             IPW2100_ORD(STAT_TX_DIR_DATA5_5,
3603                                 "successful Directed Tx's (MSDU) @ 5_5MB"),
3604             IPW2100_ORD(STAT_TX_DIR_DATA11,
3605                                 "successful Directed Tx's (MSDU) @ 11MB"),
3606             IPW2100_ORD(STAT_TX_NODIR_DATA1,
3607                                 "successful Non_Directed Tx's (MSDU) @ 1MB"),
3608             IPW2100_ORD(STAT_TX_NODIR_DATA2,
3609                                 "successful Non_Directed Tx's (MSDU) @ 2MB"),
3610             IPW2100_ORD(STAT_TX_NODIR_DATA5_5,
3611                                 "successful Non_Directed Tx's (MSDU) @ 5.5MB"),
3612             IPW2100_ORD(STAT_TX_NODIR_DATA11,
3613                                 "successful Non_Directed Tx's (MSDU) @ 11MB"),
3614             IPW2100_ORD(STAT_NULL_DATA, "successful NULL data Tx's"),
3615             IPW2100_ORD(STAT_TX_RTS, "successful Tx RTS"),
3616             IPW2100_ORD(STAT_TX_CTS, "successful Tx CTS"),
3617             IPW2100_ORD(STAT_TX_ACK, "successful Tx ACK"),
3618             IPW2100_ORD(STAT_TX_ASSN, "successful Association Tx's"),
3619             IPW2100_ORD(STAT_TX_ASSN_RESP,
3620                                 "successful Association response Tx's"),
3621             IPW2100_ORD(STAT_TX_REASSN,
3622                                 "successful Reassociation Tx's"),
3623             IPW2100_ORD(STAT_TX_REASSN_RESP,
3624                                 "successful Reassociation response Tx's"),
3625             IPW2100_ORD(STAT_TX_PROBE,
3626                                 "probes successfully transmitted"),
3627             IPW2100_ORD(STAT_TX_PROBE_RESP,
3628                                 "probe responses successfully transmitted"),
3629             IPW2100_ORD(STAT_TX_BEACON, "tx beacon"),
3630             IPW2100_ORD(STAT_TX_ATIM, "Tx ATIM"),
3631             IPW2100_ORD(STAT_TX_DISASSN,
3632                                 "successful Disassociation TX"),
3633             IPW2100_ORD(STAT_TX_AUTH, "successful Authentication Tx"),
3634             IPW2100_ORD(STAT_TX_DEAUTH,
3635                                 "successful Deauthentication TX"),
3636             IPW2100_ORD(STAT_TX_TOTAL_BYTES,
3637                                 "Total successful Tx data bytes"),
3638             IPW2100_ORD(STAT_TX_RETRIES, "Tx retries"),
3639             IPW2100_ORD(STAT_TX_RETRY1, "Tx retries at 1MBPS"),
3640             IPW2100_ORD(STAT_TX_RETRY2, "Tx retries at 2MBPS"),
3641             IPW2100_ORD(STAT_TX_RETRY5_5, "Tx retries at 5.5MBPS"),
3642             IPW2100_ORD(STAT_TX_RETRY11, "Tx retries at 11MBPS"),
3643             IPW2100_ORD(STAT_TX_FAILURES, "Tx Failures"),
3644             IPW2100_ORD(STAT_TX_MAX_TRIES_IN_HOP,
3645                                 "times max tries in a hop failed"),
3646             IPW2100_ORD(STAT_TX_DISASSN_FAIL,
3647                                 "times disassociation failed"),
3648             IPW2100_ORD(STAT_TX_ERR_CTS, "missed/bad CTS frames"),
3649             IPW2100_ORD(STAT_TX_ERR_ACK, "tx err due to acks"),
3650             IPW2100_ORD(STAT_RX_HOST, "packets passed to host"),
3651             IPW2100_ORD(STAT_RX_DIR_DATA, "directed packets"),
3652             IPW2100_ORD(STAT_RX_DIR_DATA1, "directed packets at 1MB"),
3653             IPW2100_ORD(STAT_RX_DIR_DATA2, "directed packets at 2MB"),
3654             IPW2100_ORD(STAT_RX_DIR_DATA5_5,
3655                                 "directed packets at 5.5MB"),
3656             IPW2100_ORD(STAT_RX_DIR_DATA11, "directed packets at 11MB"),
3657             IPW2100_ORD(STAT_RX_NODIR_DATA, "nondirected packets"),
3658             IPW2100_ORD(STAT_RX_NODIR_DATA1,
3659                                 "nondirected packets at 1MB"),
3660             IPW2100_ORD(STAT_RX_NODIR_DATA2,
3661                                 "nondirected packets at 2MB"),
3662             IPW2100_ORD(STAT_RX_NODIR_DATA5_5,
3663                                 "nondirected packets at 5.5MB"),
3664             IPW2100_ORD(STAT_RX_NODIR_DATA11,
3665                                 "nondirected packets at 11MB"),
3666             IPW2100_ORD(STAT_RX_NULL_DATA, "null data rx's"),
3667             IPW2100_ORD(STAT_RX_RTS, "Rx RTS"), IPW2100_ORD(STAT_RX_CTS,
3668                                                                     "Rx CTS"),
3669             IPW2100_ORD(STAT_RX_ACK, "Rx ACK"),
3670             IPW2100_ORD(STAT_RX_CFEND, "Rx CF End"),
3671             IPW2100_ORD(STAT_RX_CFEND_ACK, "Rx CF End + CF Ack"),
3672             IPW2100_ORD(STAT_RX_ASSN, "Association Rx's"),
3673             IPW2100_ORD(STAT_RX_ASSN_RESP, "Association response Rx's"),
3674             IPW2100_ORD(STAT_RX_REASSN, "Reassociation Rx's"),
3675             IPW2100_ORD(STAT_RX_REASSN_RESP,
3676                                 "Reassociation response Rx's"),
3677             IPW2100_ORD(STAT_RX_PROBE, "probe Rx's"),
3678             IPW2100_ORD(STAT_RX_PROBE_RESP, "probe response Rx's"),
3679             IPW2100_ORD(STAT_RX_BEACON, "Rx beacon"),
3680             IPW2100_ORD(STAT_RX_ATIM, "Rx ATIM"),
3681             IPW2100_ORD(STAT_RX_DISASSN, "disassociation Rx"),
3682             IPW2100_ORD(STAT_RX_AUTH, "authentication Rx"),
3683             IPW2100_ORD(STAT_RX_DEAUTH, "deauthentication Rx"),
3684             IPW2100_ORD(STAT_RX_TOTAL_BYTES,
3685                                 "Total rx data bytes received"),
3686             IPW2100_ORD(STAT_RX_ERR_CRC, "packets with Rx CRC error"),
3687             IPW2100_ORD(STAT_RX_ERR_CRC1, "Rx CRC errors at 1MB"),
3688             IPW2100_ORD(STAT_RX_ERR_CRC2, "Rx CRC errors at 2MB"),
3689             IPW2100_ORD(STAT_RX_ERR_CRC5_5, "Rx CRC errors at 5.5MB"),
3690             IPW2100_ORD(STAT_RX_ERR_CRC11, "Rx CRC errors at 11MB"),
3691             IPW2100_ORD(STAT_RX_DUPLICATE1,
3692                                 "duplicate rx packets at 1MB"),
3693             IPW2100_ORD(STAT_RX_DUPLICATE2,
3694                                 "duplicate rx packets at 2MB"),
3695             IPW2100_ORD(STAT_RX_DUPLICATE5_5,
3696                                 "duplicate rx packets at 5.5MB"),
3697             IPW2100_ORD(STAT_RX_DUPLICATE11,
3698                                 "duplicate rx packets at 11MB"),
3699             IPW2100_ORD(STAT_RX_DUPLICATE, "duplicate rx packets"),
3700             IPW2100_ORD(PERS_DB_LOCK, "locking fw permanent  db"),
3701             IPW2100_ORD(PERS_DB_SIZE, "size of fw permanent  db"),
3702             IPW2100_ORD(PERS_DB_ADDR, "address of fw permanent  db"),
3703             IPW2100_ORD(STAT_RX_INVALID_PROTOCOL,
3704                                 "rx frames with invalid protocol"),
3705             IPW2100_ORD(SYS_BOOT_TIME, "Boot time"),
3706             IPW2100_ORD(STAT_RX_NO_BUFFER,
3707                                 "rx frames rejected due to no buffer"),
3708             IPW2100_ORD(STAT_RX_MISSING_FRAG,
3709                                 "rx frames dropped due to missing fragment"),
3710             IPW2100_ORD(STAT_RX_ORPHAN_FRAG,
3711                                 "rx frames dropped due to non-sequential fragment"),
3712             IPW2100_ORD(STAT_RX_ORPHAN_FRAME,
3713                                 "rx frames dropped due to unmatched 1st frame"),
3714             IPW2100_ORD(STAT_RX_FRAG_AGEOUT,
3715                                 "rx frames dropped due to uncompleted frame"),
3716             IPW2100_ORD(STAT_RX_ICV_ERRORS,
3717                                 "ICV errors during decryption"),
3718             IPW2100_ORD(STAT_PSP_SUSPENSION, "times adapter suspended"),
3719             IPW2100_ORD(STAT_PSP_BCN_TIMEOUT, "beacon timeout"),
3720             IPW2100_ORD(STAT_PSP_POLL_TIMEOUT,
3721                                 "poll response timeouts"),
3722             IPW2100_ORD(STAT_PSP_NONDIR_TIMEOUT,
3723                                 "timeouts waiting for last {broad,multi}cast pkt"),
3724             IPW2100_ORD(STAT_PSP_RX_DTIMS, "PSP DTIMs received"),
3725             IPW2100_ORD(STAT_PSP_RX_TIMS, "PSP TIMs received"),
3726             IPW2100_ORD(STAT_PSP_STATION_ID, "PSP Station ID"),
3727             IPW2100_ORD(LAST_ASSN_TIME, "RTC time of last association"),
3728             IPW2100_ORD(STAT_PERCENT_MISSED_BCNS,
3729                                 "current calculation of % missed beacons"),
3730             IPW2100_ORD(STAT_PERCENT_RETRIES,
3731                                 "current calculation of % missed tx retries"),
3732             IPW2100_ORD(ASSOCIATED_AP_PTR,
3733                                 "0 if not associated, else pointer to AP table entry"),
3734             IPW2100_ORD(AVAILABLE_AP_CNT,
3735                                 "AP's decsribed in the AP table"),
3736             IPW2100_ORD(AP_LIST_PTR, "Ptr to list of available APs"),
3737             IPW2100_ORD(STAT_AP_ASSNS, "associations"),
3738             IPW2100_ORD(STAT_ASSN_FAIL, "association failures"),
3739             IPW2100_ORD(STAT_ASSN_RESP_FAIL,
3740                                 "failures due to response fail"),
3741             IPW2100_ORD(STAT_FULL_SCANS, "full scans"),
3742             IPW2100_ORD(CARD_DISABLED, "Card Disabled"),
3743             IPW2100_ORD(STAT_ROAM_INHIBIT,
3744                                 "times roaming was inhibited due to activity"),
3745             IPW2100_ORD(RSSI_AT_ASSN,
3746                                 "RSSI of associated AP at time of association"),
3747             IPW2100_ORD(STAT_ASSN_CAUSE1,
3748                                 "reassociation: no probe response or TX on hop"),
3749             IPW2100_ORD(STAT_ASSN_CAUSE2,
3750                                 "reassociation: poor tx/rx quality"),
3751             IPW2100_ORD(STAT_ASSN_CAUSE3,
3752                                 "reassociation: tx/rx quality (excessive AP load"),
3753             IPW2100_ORD(STAT_ASSN_CAUSE4,
3754                                 "reassociation: AP RSSI level"),
3755             IPW2100_ORD(STAT_ASSN_CAUSE5,
3756                                 "reassociations due to load leveling"),
3757             IPW2100_ORD(STAT_AUTH_FAIL, "times authentication failed"),
3758             IPW2100_ORD(STAT_AUTH_RESP_FAIL,
3759                                 "times authentication response failed"),
3760             IPW2100_ORD(STATION_TABLE_CNT,
3761                                 "entries in association table"),
3762             IPW2100_ORD(RSSI_AVG_CURR, "Current avg RSSI"),
3763             IPW2100_ORD(POWER_MGMT_MODE, "Power mode - 0=CAM, 1=PSP"),
3764             IPW2100_ORD(COUNTRY_CODE,
3765                                 "IEEE country code as recv'd from beacon"),
3766             IPW2100_ORD(COUNTRY_CHANNELS,
3767                                 "channels supported by country"),
3768             IPW2100_ORD(RESET_CNT, "adapter resets (warm)"),
3769             IPW2100_ORD(BEACON_INTERVAL, "Beacon interval"),
3770             IPW2100_ORD(ANTENNA_DIVERSITY,
3771                                 "TRUE if antenna diversity is disabled"),
3772             IPW2100_ORD(DTIM_PERIOD, "beacon intervals between DTIMs"),
3773             IPW2100_ORD(OUR_FREQ,
3774                                 "current radio freq lower digits - channel ID"),
3775             IPW2100_ORD(RTC_TIME, "current RTC time"),
3776             IPW2100_ORD(PORT_TYPE, "operating mode"),
3777             IPW2100_ORD(CURRENT_TX_RATE, "current tx rate"),
3778             IPW2100_ORD(SUPPORTED_RATES, "supported tx rates"),
3779             IPW2100_ORD(ATIM_WINDOW, "current ATIM Window"),
3780             IPW2100_ORD(BASIC_RATES, "basic tx rates"),
3781             IPW2100_ORD(NIC_HIGHEST_RATE, "NIC highest tx rate"),
3782             IPW2100_ORD(AP_HIGHEST_RATE, "AP highest tx rate"),
3783             IPW2100_ORD(CAPABILITIES,
3784                                 "Management frame capability field"),
3785             IPW2100_ORD(AUTH_TYPE, "Type of authentication"),
3786             IPW2100_ORD(RADIO_TYPE, "Adapter card platform type"),
3787             IPW2100_ORD(RTS_THRESHOLD,
3788                                 "Min packet length for RTS handshaking"),
3789             IPW2100_ORD(INT_MODE, "International mode"),
3790             IPW2100_ORD(FRAGMENTATION_THRESHOLD,
3791                                 "protocol frag threshold"),
3792             IPW2100_ORD(EEPROM_SRAM_DB_BLOCK_START_ADDRESS,
3793                                 "EEPROM offset in SRAM"),
3794             IPW2100_ORD(EEPROM_SRAM_DB_BLOCK_SIZE,
3795                                 "EEPROM size in SRAM"),
3796             IPW2100_ORD(EEPROM_SKU_CAPABILITY, "EEPROM SKU Capability"),
3797             IPW2100_ORD(EEPROM_IBSS_11B_CHANNELS,
3798                                 "EEPROM IBSS 11b channel set"),
3799             IPW2100_ORD(MAC_VERSION, "MAC Version"),
3800             IPW2100_ORD(MAC_REVISION, "MAC Revision"),
3801             IPW2100_ORD(RADIO_VERSION, "Radio Version"),
3802             IPW2100_ORD(NIC_MANF_DATE_TIME, "MANF Date/Time STAMP"),
3803             IPW2100_ORD(UCODE_VERSION, "Ucode Version"),};
3804
3805 static ssize_t show_registers(struct device *d, struct device_attribute *attr,
3806                               char *buf)
3807 {
3808         int i;
3809         struct ipw2100_priv *priv = dev_get_drvdata(d);
3810         struct net_device *dev = priv->net_dev;
3811         char *out = buf;
3812         u32 val = 0;
3813
3814         out += sprintf(out, "%30s [Address ] : Hex\n", "Register");
3815
3816         for (i = 0; i < ARRAY_SIZE(hw_data); i++) {
3817                 read_register(dev, hw_data[i].addr, &val);
3818                 out += sprintf(out, "%30s [%08X] : %08X\n",
3819                                hw_data[i].name, hw_data[i].addr, val);
3820         }
3821
3822         return out - buf;
3823 }
3824
3825 static DEVICE_ATTR(registers, S_IRUGO, show_registers, NULL);
3826
3827 static ssize_t show_hardware(struct device *d, struct device_attribute *attr,
3828                              char *buf)
3829 {
3830         struct ipw2100_priv *priv = dev_get_drvdata(d);
3831         struct net_device *dev = priv->net_dev;
3832         char *out = buf;
3833         int i;
3834
3835         out += sprintf(out, "%30s [Address ] : Hex\n", "NIC entry");
3836
3837         for (i = 0; i < ARRAY_SIZE(nic_data); i++) {
3838                 u8 tmp8;
3839                 u16 tmp16;
3840                 u32 tmp32;
3841
3842                 switch (nic_data[i].size) {
3843                 case 1:
3844                         read_nic_byte(dev, nic_data[i].addr, &tmp8);
3845                         out += sprintf(out, "%30s [%08X] : %02X\n",
3846                                        nic_data[i].name, nic_data[i].addr,
3847                                        tmp8);
3848                         break;
3849                 case 2:
3850                         read_nic_word(dev, nic_data[i].addr, &tmp16);
3851                         out += sprintf(out, "%30s [%08X] : %04X\n",
3852                                        nic_data[i].name, nic_data[i].addr,
3853                                        tmp16);
3854                         break;
3855                 case 4:
3856                         read_nic_dword(dev, nic_data[i].addr, &tmp32);
3857                         out += sprintf(out, "%30s [%08X] : %08X\n",
3858                                        nic_data[i].name, nic_data[i].addr,
3859                                        tmp32);
3860                         break;
3861                 }
3862         }
3863         return out - buf;
3864 }
3865
3866 static DEVICE_ATTR(hardware, S_IRUGO, show_hardware, NULL);
3867
3868 static ssize_t show_memory(struct device *d, struct device_attribute *attr,
3869                            char *buf)
3870 {
3871         struct ipw2100_priv *priv = dev_get_drvdata(d);
3872         struct net_device *dev = priv->net_dev;
3873         static unsigned long loop = 0;
3874         int len = 0;
3875         u32 buffer[4];
3876         int i;
3877         char line[81];
3878
3879         if (loop >= 0x30000)
3880                 loop = 0;
3881
3882         /* sysfs provides us PAGE_SIZE buffer */
3883         while (len < PAGE_SIZE - 128 && loop < 0x30000) {
3884
3885                 if (priv->snapshot[0])
3886                         for (i = 0; i < 4; i++)
3887                                 buffer[i] =
3888                                     *(u32 *) SNAPSHOT_ADDR(loop + i * 4);
3889                 else
3890                         for (i = 0; i < 4; i++)
3891                                 read_nic_dword(dev, loop + i * 4, &buffer[i]);
3892
3893                 if (priv->dump_raw)
3894                         len += sprintf(buf + len,
3895                                        "%c%c%c%c"
3896                                        "%c%c%c%c"
3897                                        "%c%c%c%c"
3898                                        "%c%c%c%c",
3899                                        ((u8 *) buffer)[0x0],
3900                                        ((u8 *) buffer)[0x1],
3901                                        ((u8 *) buffer)[0x2],
3902                                        ((u8 *) buffer)[0x3],
3903                                        ((u8 *) buffer)[0x4],
3904                                        ((u8 *) buffer)[0x5],
3905                                        ((u8 *) buffer)[0x6],
3906                                        ((u8 *) buffer)[0x7],
3907                                        ((u8 *) buffer)[0x8],
3908                                        ((u8 *) buffer)[0x9],
3909                                        ((u8 *) buffer)[0xa],
3910                                        ((u8 *) buffer)[0xb],
3911                                        ((u8 *) buffer)[0xc],
3912                                        ((u8 *) buffer)[0xd],
3913                                        ((u8 *) buffer)[0xe],
3914                                        ((u8 *) buffer)[0xf]);
3915                 else
3916                         len += sprintf(buf + len, "%s\n",
3917                                        snprint_line(line, sizeof(line),
3918                                                     (u8 *) buffer, 16, loop));
3919                 loop += 16;
3920         }
3921
3922         return len;
3923 }
3924
3925 static ssize_t store_memory(struct device *d, struct device_attribute *attr,
3926                             const char *buf, size_t count)
3927 {
3928         struct ipw2100_priv *priv = dev_get_drvdata(d);
3929         struct net_device *dev = priv->net_dev;
3930         const char *p = buf;
3931
3932         (void)dev;              /* kill unused-var warning for debug-only code */
3933
3934         if (count < 1)
3935                 return count;
3936
3937         if (p[0] == '1' ||
3938             (count >= 2 && tolower(p[0]) == 'o' && tolower(p[1]) == 'n')) {
3939                 IPW_DEBUG_INFO("%s: Setting memory dump to RAW mode.\n",
3940                                dev->name);
3941                 priv->dump_raw = 1;
3942
3943         } else if (p[0] == '0' || (count >= 2 && tolower(p[0]) == 'o' &&
3944                                    tolower(p[1]) == 'f')) {
3945                 IPW_DEBUG_INFO("%s: Setting memory dump to HEX mode.\n",
3946                                dev->name);
3947                 priv->dump_raw = 0;
3948
3949         } else if (tolower(p[0]) == 'r') {
3950                 IPW_DEBUG_INFO("%s: Resetting firmware snapshot.\n", dev->name);
3951                 ipw2100_snapshot_free(priv);
3952
3953         } else
3954                 IPW_DEBUG_INFO("%s: Usage: 0|on = HEX, 1|off = RAW, "
3955                                "reset = clear memory snapshot\n", dev->name);
3956
3957         return count;
3958 }
3959
3960 static DEVICE_ATTR(memory, S_IWUSR | S_IRUGO, show_memory, store_memory);
3961
3962 static ssize_t show_ordinals(struct device *d, struct device_attribute *attr,
3963                              char *buf)
3964 {
3965         struct ipw2100_priv *priv = dev_get_drvdata(d);
3966         u32 val = 0;
3967         int len = 0;
3968         u32 val_len;
3969         static int loop = 0;
3970
3971         if (priv->status & STATUS_RF_KILL_MASK)
3972                 return 0;
3973
3974         if (loop >= ARRAY_SIZE(ord_data))
3975                 loop = 0;
3976
3977         /* sysfs provides us PAGE_SIZE buffer */
3978         while (len < PAGE_SIZE - 128 && loop < ARRAY_SIZE(ord_data)) {
3979                 val_len = sizeof(u32);
3980
3981                 if (ipw2100_get_ordinal(priv, ord_data[loop].index, &val,
3982                                         &val_len))
3983                         len += sprintf(buf + len, "[0x%02X] = ERROR    %s\n",
3984                                        ord_data[loop].index,
3985                                        ord_data[loop].desc);
3986                 else
3987                         len += sprintf(buf + len, "[0x%02X] = 0x%08X %s\n",
3988                                        ord_data[loop].index, val,
3989                                        ord_data[loop].desc);
3990                 loop++;
3991         }
3992
3993         return len;
3994 }
3995
3996 static DEVICE_ATTR(ordinals, S_IRUGO, show_ordinals, NULL);
3997
3998 static ssize_t show_stats(struct device *d, struct device_attribute *attr,
3999                           char *buf)
4000 {
4001         struct ipw2100_priv *priv = dev_get_drvdata(d);
4002         char *out = buf;
4003
4004         out += sprintf(out, "interrupts: %d {tx: %d, rx: %d, other: %d}\n",
4005                        priv->interrupts, priv->tx_interrupts,
4006                        priv->rx_interrupts, priv->inta_other);
4007         out += sprintf(out, "firmware resets: %d\n", priv->resets);
4008         out += sprintf(out, "firmware hangs: %d\n", priv->hangs);
4009 #ifdef CONFIG_IPW2100_DEBUG
4010         out += sprintf(out, "packet mismatch image: %s\n",
4011                        priv->snapshot[0] ? "YES" : "NO");
4012 #endif
4013
4014         return out - buf;
4015 }
4016
4017 static DEVICE_ATTR(stats, S_IRUGO, show_stats, NULL);
4018
4019 static int ipw2100_switch_mode(struct ipw2100_priv *priv, u32 mode)
4020 {
4021         int err;
4022
4023         if (mode == priv->ieee->iw_mode)
4024                 return 0;
4025
4026         err = ipw2100_disable_adapter(priv);
4027         if (err) {
4028                 printk(KERN_ERR DRV_NAME ": %s: Could not disable adapter %d\n",
4029                        priv->net_dev->name, err);
4030                 return err;
4031         }
4032
4033         switch (mode) {
4034         case IW_MODE_INFRA:
4035                 priv->net_dev->type = ARPHRD_ETHER;
4036                 break;
4037         case IW_MODE_ADHOC:
4038                 priv->net_dev->type = ARPHRD_ETHER;
4039                 break;
4040 #ifdef CONFIG_IPW2100_MONITOR
4041         case IW_MODE_MONITOR:
4042                 priv->last_mode = priv->ieee->iw_mode;
4043                 priv->net_dev->type = ARPHRD_IEEE80211_RADIOTAP;
4044                 break;
4045 #endif                          /* CONFIG_IPW2100_MONITOR */
4046         }
4047
4048         priv->ieee->iw_mode = mode;
4049
4050 #ifdef CONFIG_PM
4051         /* Indicate ipw2100_download_firmware download firmware
4052          * from disk instead of memory. */
4053         ipw2100_firmware.version = 0;
4054 #endif
4055
4056         printk(KERN_INFO "%s: Resetting on mode change.\n", priv->net_dev->name);
4057         priv->reset_backoff = 0;
4058         schedule_reset(priv);
4059
4060         return 0;
4061 }
4062
4063 static ssize_t show_internals(struct device *d, struct device_attribute *attr,
4064                               char *buf)
4065 {
4066         struct ipw2100_priv *priv = dev_get_drvdata(d);
4067         int len = 0;
4068
4069 #define DUMP_VAR(x,y) len += sprintf(buf + len, # x ": %" y "\n", priv-> x)
4070
4071         if (priv->status & STATUS_ASSOCIATED)
4072                 len += sprintf(buf + len, "connected: %lu\n",
4073                                get_seconds() - priv->connect_start);
4074         else
4075                 len += sprintf(buf + len, "not connected\n");
4076
4077         DUMP_VAR(ieee->crypt_info.crypt[priv->ieee->crypt_info.tx_keyidx], "p");
4078         DUMP_VAR(status, "08lx");
4079         DUMP_VAR(config, "08lx");
4080         DUMP_VAR(capability, "08lx");
4081
4082         len +=
4083             sprintf(buf + len, "last_rtc: %lu\n",
4084                     (unsigned long)priv->last_rtc);
4085
4086         DUMP_VAR(fatal_error, "d");
4087         DUMP_VAR(stop_hang_check, "d");
4088         DUMP_VAR(stop_rf_kill, "d");
4089         DUMP_VAR(messages_sent, "d");
4090
4091         DUMP_VAR(tx_pend_stat.value, "d");
4092         DUMP_VAR(tx_pend_stat.hi, "d");
4093
4094         DUMP_VAR(tx_free_stat.value, "d");
4095         DUMP_VAR(tx_free_stat.lo, "d");
4096
4097         DUMP_VAR(msg_free_stat.value, "d");
4098         DUMP_VAR(msg_free_stat.lo, "d");
4099
4100         DUMP_VAR(msg_pend_stat.value, "d");
4101         DUMP_VAR(msg_pend_stat.hi, "d");
4102
4103         DUMP_VAR(fw_pend_stat.value, "d");
4104         DUMP_VAR(fw_pend_stat.hi, "d");
4105
4106         DUMP_VAR(txq_stat.value, "d");
4107         DUMP_VAR(txq_stat.lo, "d");
4108
4109         DUMP_VAR(ieee->scans, "d");
4110         DUMP_VAR(reset_backoff, "d");
4111
4112         return len;
4113 }
4114
4115 static DEVICE_ATTR(internals, S_IRUGO, show_internals, NULL);
4116
4117 static ssize_t show_bssinfo(struct device *d, struct device_attribute *attr,
4118                             char *buf)
4119 {
4120         struct ipw2100_priv *priv = dev_get_drvdata(d);
4121         char essid[IW_ESSID_MAX_SIZE + 1];
4122         u8 bssid[ETH_ALEN];
4123         u32 chan = 0;
4124         char *out = buf;
4125         unsigned int length;
4126         int ret;
4127
4128         if (priv->status & STATUS_RF_KILL_MASK)
4129                 return 0;
4130
4131         memset(essid, 0, sizeof(essid));
4132         memset(bssid, 0, sizeof(bssid));
4133
4134         length = IW_ESSID_MAX_SIZE;
4135         ret = ipw2100_get_ordinal(priv, IPW_ORD_STAT_ASSN_SSID, essid, &length);
4136         if (ret)
4137                 IPW_DEBUG_INFO("failed querying ordinals at line %d\n",
4138                                __LINE__);
4139
4140         length = sizeof(bssid);
4141         ret = ipw2100_get_ordinal(priv, IPW_ORD_STAT_ASSN_AP_BSSID,
4142                                   bssid, &length);
4143         if (ret)
4144                 IPW_DEBUG_INFO("failed querying ordinals at line %d\n",
4145                                __LINE__);
4146
4147         length = sizeof(u32);
4148         ret = ipw2100_get_ordinal(priv, IPW_ORD_OUR_FREQ, &chan, &length);
4149         if (ret)
4150                 IPW_DEBUG_INFO("failed querying ordinals at line %d\n",
4151                                __LINE__);
4152
4153         out += sprintf(out, "ESSID: %s\n", essid);
4154         out += sprintf(out, "BSSID:   %pM\n", bssid);
4155         out += sprintf(out, "Channel: %d\n", chan);
4156
4157         return out - buf;
4158 }
4159
4160 static DEVICE_ATTR(bssinfo, S_IRUGO, show_bssinfo, NULL);
4161
4162 #ifdef CONFIG_IPW2100_DEBUG
4163 static ssize_t show_debug_level(struct device_driver *d, char *buf)
4164 {
4165         return sprintf(buf, "0x%08X\n", ipw2100_debug_level);
4166 }
4167
4168 static ssize_t store_debug_level(struct device_driver *d,
4169                                  const char *buf, size_t count)
4170 {
4171         u32 val;
4172         int ret;
4173
4174         ret = kstrtou32(buf, 0, &val);
4175         if (ret)
4176                 IPW_DEBUG_INFO(": %s is not in hex or decimal form.\n", buf);
4177         else
4178                 ipw2100_debug_level = val;
4179
4180         return strnlen(buf, count);
4181 }
4182
4183 static DRIVER_ATTR(debug_level, S_IWUSR | S_IRUGO, show_debug_level,
4184                    store_debug_level);
4185 #endif                          /* CONFIG_IPW2100_DEBUG */
4186
4187 static ssize_t show_fatal_error(struct device *d,
4188                                 struct device_attribute *attr, char *buf)
4189 {
4190         struct ipw2100_priv *priv = dev_get_drvdata(d);
4191         char *out = buf;
4192         int i;
4193
4194         if (priv->fatal_error)
4195                 out += sprintf(out, "0x%08X\n", priv->fatal_error);
4196         else
4197                 out += sprintf(out, "0\n");
4198
4199         for (i = 1; i <= IPW2100_ERROR_QUEUE; i++) {
4200                 if (!priv->fatal_errors[(priv->fatal_index - i) %
4201                                         IPW2100_ERROR_QUEUE])
4202                         continue;
4203
4204                 out += sprintf(out, "%d. 0x%08X\n", i,
4205                                priv->fatal_errors[(priv->fatal_index - i) %
4206                                                   IPW2100_ERROR_QUEUE]);
4207         }
4208
4209         return out - buf;
4210 }
4211
4212 static ssize_t store_fatal_error(struct device *d,
4213                                  struct device_attribute *attr, const char *buf,
4214                                  size_t count)
4215 {
4216         struct ipw2100_priv *priv = dev_get_drvdata(d);
4217         schedule_reset(priv);
4218         return count;
4219 }
4220
4221 static DEVICE_ATTR(fatal_error, S_IWUSR | S_IRUGO, show_fatal_error,
4222                    store_fatal_error);
4223
4224 static ssize_t show_scan_age(struct device *d, struct device_attribute *attr,
4225                              char *buf)
4226 {
4227         struct ipw2100_priv *priv = dev_get_drvdata(d);
4228         return sprintf(buf, "%d\n", priv->ieee->scan_age);
4229 }
4230
4231 static ssize_t store_scan_age(struct device *d, struct device_attribute *attr,
4232                               const char *buf, size_t count)
4233 {
4234         struct ipw2100_priv *priv = dev_get_drvdata(d);
4235         struct net_device *dev = priv->net_dev;
4236         unsigned long val;
4237         int ret;
4238
4239         (void)dev;              /* kill unused-var warning for debug-only code */
4240
4241         IPW_DEBUG_INFO("enter\n");
4242
4243         ret = kstrtoul(buf, 0, &val);
4244         if (ret) {
4245                 IPW_DEBUG_INFO("%s: user supplied invalid value.\n", dev->name);
4246         } else {
4247                 priv->ieee->scan_age = val;
4248                 IPW_DEBUG_INFO("set scan_age = %u\n", priv->ieee->scan_age);
4249         }
4250
4251         IPW_DEBUG_INFO("exit\n");
4252         return strnlen(buf, count);
4253 }
4254
4255 static DEVICE_ATTR(scan_age, S_IWUSR | S_IRUGO, show_scan_age, store_scan_age);
4256
4257 static ssize_t show_rf_kill(struct device *d, struct device_attribute *attr,
4258                             char *buf)
4259 {
4260         /* 0 - RF kill not enabled
4261            1 - SW based RF kill active (sysfs)
4262            2 - HW based RF kill active
4263            3 - Both HW and SW baed RF kill active */
4264         struct ipw2100_priv *priv = dev_get_drvdata(d);
4265         int val = ((priv->status & STATUS_RF_KILL_SW) ? 0x1 : 0x0) |
4266             (rf_kill_active(priv) ? 0x2 : 0x0);
4267         return sprintf(buf, "%i\n", val);
4268 }
4269
4270 static int ipw_radio_kill_sw(struct ipw2100_priv *priv, int disable_radio)
4271 {
4272         if ((disable_radio ? 1 : 0) ==
4273             (priv->status & STATUS_RF_KILL_SW ? 1 : 0))
4274                 return 0;
4275
4276         IPW_DEBUG_RF_KILL("Manual SW RF Kill set to: RADIO  %s\n",
4277                           disable_radio ? "OFF" : "ON");
4278
4279         mutex_lock(&priv->action_mutex);
4280
4281         if (disable_radio) {
4282                 priv->status |= STATUS_RF_KILL_SW;
4283                 ipw2100_down(priv);
4284         } else {
4285                 priv->status &= ~STATUS_RF_KILL_SW;
4286                 if (rf_kill_active(priv)) {
4287                         IPW_DEBUG_RF_KILL("Can not turn radio back on - "
4288                                           "disabled by HW switch\n");
4289                         /* Make sure the RF_KILL check timer is running */
4290                         priv->stop_rf_kill = 0;
4291                         mod_delayed_work(system_wq, &priv->rf_kill,
4292                                          round_jiffies_relative(HZ));
4293                 } else
4294                         schedule_reset(priv);
4295         }
4296
4297         mutex_unlock(&priv->action_mutex);
4298         return 1;
4299 }
4300
4301 static ssize_t store_rf_kill(struct device *d, struct device_attribute *attr,
4302                              const char *buf, size_t count)
4303 {
4304         struct ipw2100_priv *priv = dev_get_drvdata(d);
4305         ipw_radio_kill_sw(priv, buf[0] == '1');
4306         return count;
4307 }
4308
4309 static DEVICE_ATTR(rf_kill, S_IWUSR | S_IRUGO, show_rf_kill, store_rf_kill);
4310
4311 static struct attribute *ipw2100_sysfs_entries[] = {
4312         &dev_attr_hardware.attr,
4313         &dev_attr_registers.attr,
4314         &dev_attr_ordinals.attr,
4315         &dev_attr_pci.attr,
4316         &dev_attr_stats.attr,
4317         &dev_attr_internals.attr,
4318         &dev_attr_bssinfo.attr,
4319         &dev_attr_memory.attr,
4320         &dev_attr_scan_age.attr,
4321         &dev_attr_fatal_error.attr,
4322         &dev_attr_rf_kill.attr,
4323         &dev_attr_cfg.attr,
4324         &dev_attr_status.attr,
4325         &dev_attr_capability.attr,
4326         NULL,
4327 };
4328
4329 static struct attribute_group ipw2100_attribute_group = {
4330         .attrs = ipw2100_sysfs_entries,
4331 };
4332
4333 static int status_queue_allocate(struct ipw2100_priv *priv, int entries)
4334 {
4335         struct ipw2100_status_queue *q = &priv->status_queue;
4336
4337         IPW_DEBUG_INFO("enter\n");
4338
4339         q->size = entries * sizeof(struct ipw2100_status);
4340         q->drv = pci_zalloc_consistent(priv->pci_dev, q->size, &q->nic);
4341         if (!q->drv) {
4342                 IPW_DEBUG_WARNING("Can not allocate status queue.\n");
4343                 return -ENOMEM;
4344         }
4345
4346         IPW_DEBUG_INFO("exit\n");
4347
4348         return 0;
4349 }
4350
4351 static void status_queue_free(struct ipw2100_priv *priv)
4352 {
4353         IPW_DEBUG_INFO("enter\n");
4354
4355         if (priv->status_queue.drv) {
4356                 pci_free_consistent(priv->pci_dev, priv->status_queue.size,
4357                                     priv->status_queue.drv,
4358                                     priv->status_queue.nic);
4359                 priv->status_queue.drv = NULL;
4360         }
4361
4362         IPW_DEBUG_INFO("exit\n");
4363 }
4364
4365 static int bd_queue_allocate(struct ipw2100_priv *priv,
4366                              struct ipw2100_bd_queue *q, int entries)
4367 {
4368         IPW_DEBUG_INFO("enter\n");
4369
4370         memset(q, 0, sizeof(struct ipw2100_bd_queue));
4371
4372         q->entries = entries;
4373         q->size = entries * sizeof(struct ipw2100_bd);
4374         q->drv = pci_zalloc_consistent(priv->pci_dev, q->size, &q->nic);
4375         if (!q->drv) {
4376                 IPW_DEBUG_INFO
4377                     ("can't allocate shared memory for buffer descriptors\n");
4378                 return -ENOMEM;
4379         }
4380
4381         IPW_DEBUG_INFO("exit\n");
4382
4383         return 0;
4384 }
4385
4386 static void bd_queue_free(struct ipw2100_priv *priv, struct ipw2100_bd_queue *q)
4387 {
4388         IPW_DEBUG_INFO("enter\n");
4389
4390         if (!q)
4391                 return;
4392
4393         if (q->drv) {
4394                 pci_free_consistent(priv->pci_dev, q->size, q->drv, q->nic);
4395                 q->drv = NULL;
4396         }
4397
4398         IPW_DEBUG_INFO("exit\n");
4399 }
4400
4401 static void bd_queue_initialize(struct ipw2100_priv *priv,
4402                                 struct ipw2100_bd_queue *q, u32 base, u32 size,
4403                                 u32 r, u32 w)
4404 {
4405         IPW_DEBUG_INFO("enter\n");
4406
4407         IPW_DEBUG_INFO("initializing bd queue at virt=%p, phys=%08x\n", q->drv,
4408                        (u32) q->nic);
4409
4410         write_register(priv->net_dev, base, q->nic);
4411         write_register(priv->net_dev, size, q->entries);
4412         write_register(priv->net_dev, r, q->oldest);
4413         write_register(priv->net_dev, w, q->next);
4414
4415         IPW_DEBUG_INFO("exit\n");
4416 }
4417
4418 static void ipw2100_kill_works(struct ipw2100_priv *priv)
4419 {
4420         priv->stop_rf_kill = 1;
4421         priv->stop_hang_check = 1;
4422         cancel_delayed_work_sync(&priv->reset_work);
4423         cancel_delayed_work_sync(&priv->security_work);
4424         cancel_delayed_work_sync(&priv->wx_event_work);
4425         cancel_delayed_work_sync(&priv->hang_check);
4426         cancel_delayed_work_sync(&priv->rf_kill);
4427         cancel_delayed_work_sync(&priv->scan_event);
4428 }
4429
4430 static int ipw2100_tx_allocate(struct ipw2100_priv *priv)
4431 {
4432         int i, j, err = -EINVAL;
4433         void *v;
4434         dma_addr_t p;
4435
4436         IPW_DEBUG_INFO("enter\n");
4437
4438         err = bd_queue_allocate(priv, &priv->tx_queue, TX_QUEUE_LENGTH);
4439         if (err) {
4440                 IPW_DEBUG_ERROR("%s: failed bd_queue_allocate\n",
4441                                 priv->net_dev->name);
4442                 return err;
4443         }
4444
4445         priv->tx_buffers = kmalloc_array(TX_PENDED_QUEUE_LENGTH,
4446                                          sizeof(struct ipw2100_tx_packet),
4447                                          GFP_ATOMIC);
4448         if (!priv->tx_buffers) {
4449                 bd_queue_free(priv, &priv->tx_queue);
4450                 return -ENOMEM;
4451         }
4452
4453         for (i = 0; i < TX_PENDED_QUEUE_LENGTH; i++) {
4454                 v = pci_alloc_consistent(priv->pci_dev,
4455                                          sizeof(struct ipw2100_data_header),
4456                                          &p);
4457                 if (!v) {
4458                         printk(KERN_ERR DRV_NAME
4459                                ": %s: PCI alloc failed for tx " "buffers.\n",
4460                                priv->net_dev->name);
4461                         err = -ENOMEM;
4462                         break;
4463                 }
4464
4465                 priv->tx_buffers[i].type = DATA;
4466                 priv->tx_buffers[i].info.d_struct.data =
4467                     (struct ipw2100_data_header *)v;
4468                 priv->tx_buffers[i].info.d_struct.data_phys = p;
4469                 priv->tx_buffers[i].info.d_struct.txb = NULL;
4470         }
4471
4472         if (i == TX_PENDED_QUEUE_LENGTH)
4473                 return 0;
4474
4475         for (j = 0; j < i; j++) {
4476                 pci_free_consistent(priv->pci_dev,
4477                                     sizeof(struct ipw2100_data_header),
4478                                     priv->tx_buffers[j].info.d_struct.data,
4479                                     priv->tx_buffers[j].info.d_struct.
4480                                     data_phys);
4481         }
4482
4483         kfree(priv->tx_buffers);
4484         priv->tx_buffers = NULL;
4485
4486         return err;
4487 }
4488
4489 static void ipw2100_tx_initialize(struct ipw2100_priv *priv)
4490 {
4491         int i;
4492
4493         IPW_DEBUG_INFO("enter\n");
4494
4495         /*
4496          * reinitialize packet info lists
4497          */
4498         INIT_LIST_HEAD(&priv->fw_pend_list);
4499         INIT_STAT(&priv->fw_pend_stat);
4500
4501         /*
4502          * reinitialize lists
4503          */
4504         INIT_LIST_HEAD(&priv->tx_pend_list);
4505         INIT_LIST_HEAD(&priv->tx_free_list);
4506         INIT_STAT(&priv->tx_pend_stat);
4507         INIT_STAT(&priv->tx_free_stat);
4508
4509         for (i = 0; i < TX_PENDED_QUEUE_LENGTH; i++) {
4510                 /* We simply drop any SKBs that have been queued for
4511                  * transmit */
4512                 if (priv->tx_buffers[i].info.d_struct.txb) {
4513                         libipw_txb_free(priv->tx_buffers[i].info.d_struct.
4514                                            txb);
4515                         priv->tx_buffers[i].info.d_struct.txb = NULL;
4516                 }
4517
4518                 list_add_tail(&priv->tx_buffers[i].list, &priv->tx_free_list);
4519         }
4520
4521         SET_STAT(&priv->tx_free_stat, i);
4522
4523         priv->tx_queue.oldest = 0;
4524         priv->tx_queue.available = priv->tx_queue.entries;
4525         priv->tx_queue.next = 0;
4526         INIT_STAT(&priv->txq_stat);
4527         SET_STAT(&priv->txq_stat, priv->tx_queue.available);
4528
4529         bd_queue_initialize(priv, &priv->tx_queue,
4530                             IPW_MEM_HOST_SHARED_TX_QUEUE_BD_BASE,
4531                             IPW_MEM_HOST_SHARED_TX_QUEUE_BD_SIZE,
4532                             IPW_MEM_HOST_SHARED_TX_QUEUE_READ_INDEX,
4533                             IPW_MEM_HOST_SHARED_TX_QUEUE_WRITE_INDEX);
4534
4535         IPW_DEBUG_INFO("exit\n");
4536
4537 }
4538
4539 static void ipw2100_tx_free(struct ipw2100_priv *priv)
4540 {
4541         int i;
4542
4543         IPW_DEBUG_INFO("enter\n");
4544
4545         bd_queue_free(priv, &priv->tx_queue);
4546
4547         if (!priv->tx_buffers)
4548                 return;
4549
4550         for (i = 0; i < TX_PENDED_QUEUE_LENGTH; i++) {
4551                 if (priv->tx_buffers[i].info.d_struct.txb) {
4552                         libipw_txb_free(priv->tx_buffers[i].info.d_struct.
4553                                            txb);
4554                         priv->tx_buffers[i].info.d_struct.txb = NULL;
4555                 }
4556                 if (priv->tx_buffers[i].info.d_struct.data)
4557                         pci_free_consistent(priv->pci_dev,
4558                                             sizeof(struct ipw2100_data_header),
4559                                             priv->tx_buffers[i].info.d_struct.
4560                                             data,
4561                                             priv->tx_buffers[i].info.d_struct.
4562                                             data_phys);
4563         }
4564
4565         kfree(priv->tx_buffers);
4566         priv->tx_buffers = NULL;
4567
4568         IPW_DEBUG_INFO("exit\n");
4569 }
4570
4571 static int ipw2100_rx_allocate(struct ipw2100_priv *priv)
4572 {
4573         int i, j, err = -EINVAL;
4574
4575         IPW_DEBUG_INFO("enter\n");
4576
4577         err = bd_queue_allocate(priv, &priv->rx_queue, RX_QUEUE_LENGTH);
4578         if (err) {
4579                 IPW_DEBUG_INFO("failed bd_queue_allocate\n");
4580                 return err;
4581         }
4582
4583         err = status_queue_allocate(priv, RX_QUEUE_LENGTH);
4584         if (err) {
4585                 IPW_DEBUG_INFO("failed status_queue_allocate\n");
4586                 bd_queue_free(priv, &priv->rx_queue);
4587                 return err;
4588         }
4589
4590         /*
4591          * allocate packets
4592          */
4593         priv->rx_buffers = kmalloc(RX_QUEUE_LENGTH *
4594                                    sizeof(struct ipw2100_rx_packet),
4595                                    GFP_KERNEL);
4596         if (!priv->rx_buffers) {
4597                 IPW_DEBUG_INFO("can't allocate rx packet buffer table\n");
4598
4599                 bd_queue_free(priv, &priv->rx_queue);
4600
4601                 status_queue_free(priv);
4602
4603                 return -ENOMEM;
4604         }
4605
4606         for (i = 0; i < RX_QUEUE_LENGTH; i++) {
4607                 struct ipw2100_rx_packet *packet = &priv->rx_buffers[i];
4608
4609                 err = ipw2100_alloc_skb(priv, packet);
4610                 if (unlikely(err)) {
4611                         err = -ENOMEM;
4612                         break;
4613                 }
4614
4615                 /* The BD holds the cache aligned address */
4616                 priv->rx_queue.drv[i].host_addr = packet->dma_addr;
4617                 priv->rx_queue.drv[i].buf_length = IPW_RX_NIC_BUFFER_LENGTH;
4618                 priv->status_queue.drv[i].status_fields = 0;
4619         }
4620
4621         if (i == RX_QUEUE_LENGTH)
4622                 return 0;
4623
4624         for (j = 0; j < i; j++) {
4625                 pci_unmap_single(priv->pci_dev, priv->rx_buffers[j].dma_addr,
4626                                  sizeof(struct ipw2100_rx_packet),
4627                                  PCI_DMA_FROMDEVICE);
4628                 dev_kfree_skb(priv->rx_buffers[j].skb);
4629         }
4630
4631         kfree(priv->rx_buffers);
4632         priv->rx_buffers = NULL;
4633
4634         bd_queue_free(priv, &priv->rx_queue);
4635
4636         status_queue_free(priv);
4637
4638         return err;
4639 }
4640
4641 static void ipw2100_rx_initialize(struct ipw2100_priv *priv)
4642 {
4643         IPW_DEBUG_INFO("enter\n");
4644
4645         priv->rx_queue.oldest = 0;
4646         priv->rx_queue.available = priv->rx_queue.entries - 1;
4647         priv->rx_queue.next = priv->rx_queue.entries - 1;
4648
4649         INIT_STAT(&priv->rxq_stat);
4650         SET_STAT(&priv->rxq_stat, priv->rx_queue.available);
4651
4652         bd_queue_initialize(priv, &priv->rx_queue,
4653                             IPW_MEM_HOST_SHARED_RX_BD_BASE,
4654                             IPW_MEM_HOST_SHARED_RX_BD_SIZE,
4655                             IPW_MEM_HOST_SHARED_RX_READ_INDEX,
4656                             IPW_MEM_HOST_SHARED_RX_WRITE_INDEX);
4657
4658         /* set up the status queue */
4659         write_register(priv->net_dev, IPW_MEM_HOST_SHARED_RX_STATUS_BASE,
4660                        priv->status_queue.nic);
4661
4662         IPW_DEBUG_INFO("exit\n");
4663 }
4664
4665 static void ipw2100_rx_free(struct ipw2100_priv *priv)
4666 {
4667         int i;
4668
4669         IPW_DEBUG_INFO("enter\n");
4670
4671         bd_queue_free(priv, &priv->rx_queue);
4672         status_queue_free(priv);
4673
4674         if (!priv->rx_buffers)
4675                 return;
4676
4677         for (i = 0; i < RX_QUEUE_LENGTH; i++) {
4678                 if (priv->rx_buffers[i].rxp) {
4679                         pci_unmap_single(priv->pci_dev,
4680                                          priv->rx_buffers[i].dma_addr,
4681                                          sizeof(struct ipw2100_rx),
4682                                          PCI_DMA_FROMDEVICE);
4683                         dev_kfree_skb(priv->rx_buffers[i].skb);
4684                 }
4685         }
4686
4687         kfree(priv->rx_buffers);
4688         priv->rx_buffers = NULL;
4689
4690         IPW_DEBUG_INFO("exit\n");
4691 }
4692
4693 static int ipw2100_read_mac_address(struct ipw2100_priv *priv)
4694 {
4695         u32 length = ETH_ALEN;
4696         u8 addr[ETH_ALEN];
4697
4698         int err;
4699
4700         err = ipw2100_get_ordinal(priv, IPW_ORD_STAT_ADAPTER_MAC, addr, &length);
4701         if (err) {
4702                 IPW_DEBUG_INFO("MAC address read failed\n");
4703                 return -EIO;
4704         }
4705
4706         memcpy(priv->net_dev->dev_addr, addr, ETH_ALEN);
4707         IPW_DEBUG_INFO("card MAC is %pM\n", priv->net_dev->dev_addr);
4708
4709         return 0;
4710 }
4711
4712 /********************************************************************
4713  *
4714  * Firmware Commands
4715  *
4716  ********************************************************************/
4717
4718 static int ipw2100_set_mac_address(struct ipw2100_priv *priv, int batch_mode)
4719 {
4720         struct host_command cmd = {
4721                 .host_command = ADAPTER_ADDRESS,
4722                 .host_command_sequence = 0,
4723                 .host_command_length = ETH_ALEN
4724         };
4725         int err;
4726
4727         IPW_DEBUG_HC("SET_MAC_ADDRESS\n");
4728
4729         IPW_DEBUG_INFO("enter\n");
4730
4731         if (priv->config & CFG_CUSTOM_MAC) {
4732                 memcpy(cmd.host_command_parameters, priv->mac_addr, ETH_ALEN);
4733                 memcpy(priv->net_dev->dev_addr, priv->mac_addr, ETH_ALEN);
4734         } else
4735                 memcpy(cmd.host_command_parameters, priv->net_dev->dev_addr,
4736                        ETH_ALEN);
4737
4738         err = ipw2100_hw_send_command(priv, &cmd);
4739
4740         IPW_DEBUG_INFO("exit\n");
4741         return err;
4742 }
4743
4744 static int ipw2100_set_port_type(struct ipw2100_priv *priv, u32 port_type,
4745                                  int batch_mode)
4746 {
4747         struct host_command cmd = {
4748                 .host_command = PORT_TYPE,
4749                 .host_command_sequence = 0,
4750                 .host_command_length = sizeof(u32)
4751         };
4752         int err;
4753
4754         switch (port_type) {
4755         case IW_MODE_INFRA:
4756                 cmd.host_command_parameters[0] = IPW_BSS;
4757                 break;
4758         case IW_MODE_ADHOC:
4759                 cmd.host_command_parameters[0] = IPW_IBSS;
4760                 break;
4761         }
4762
4763         IPW_DEBUG_HC("PORT_TYPE: %s\n",
4764                      port_type == IPW_IBSS ? "Ad-Hoc" : "Managed");
4765
4766         if (!batch_mode) {
4767                 err = ipw2100_disable_adapter(priv);
4768                 if (err) {
4769                         printk(KERN_ERR DRV_NAME
4770                                ": %s: Could not disable adapter %d\n",
4771                                priv->net_dev->name, err);
4772                         return err;
4773                 }
4774         }
4775
4776         /* send cmd to firmware */
4777         err = ipw2100_hw_send_command(priv, &cmd);
4778
4779         if (!batch_mode)
4780                 ipw2100_enable_adapter(priv);
4781
4782         return err;
4783 }
4784
4785 static int ipw2100_set_channel(struct ipw2100_priv *priv, u32 channel,
4786                                int batch_mode)
4787 {
4788         struct host_command cmd = {
4789                 .host_command = CHANNEL,
4790                 .host_command_sequence = 0,
4791                 .host_command_length = sizeof(u32)
4792         };
4793         int err;
4794
4795         cmd.host_command_parameters[0] = channel;
4796
4797         IPW_DEBUG_HC("CHANNEL: %d\n", channel);
4798
4799         /* If BSS then we don't support channel selection */
4800         if (priv->ieee->iw_mode == IW_MODE_INFRA)
4801                 return 0;
4802
4803         if ((channel != 0) &&
4804             ((channel < REG_MIN_CHANNEL) || (channel > REG_MAX_CHANNEL)))
4805                 return -EINVAL;
4806
4807         if (!batch_mode) {
4808                 err = ipw2100_disable_adapter(priv);
4809                 if (err)
4810                         return err;
4811         }
4812
4813         err = ipw2100_hw_send_command(priv, &cmd);
4814         if (err) {
4815                 IPW_DEBUG_INFO("Failed to set channel to %d", channel);
4816                 return err;
4817         }
4818
4819         if (channel)
4820                 priv->config |= CFG_STATIC_CHANNEL;
4821         else
4822                 priv->config &= ~CFG_STATIC_CHANNEL;
4823
4824         priv->channel = channel;
4825
4826         if (!batch_mode) {
4827                 err = ipw2100_enable_adapter(priv);
4828                 if (err)
4829                         return err;
4830         }
4831
4832         return 0;
4833 }
4834
4835 static int ipw2100_system_config(struct ipw2100_priv *priv, int batch_mode)
4836 {
4837         struct host_command cmd = {
4838                 .host_command = SYSTEM_CONFIG,
4839                 .host_command_sequence = 0,
4840                 .host_command_length = 12,
4841         };
4842         u32 ibss_mask, len = sizeof(u32);
4843         int err;
4844
4845         /* Set system configuration */
4846
4847         if (!batch_mode) {
4848                 err = ipw2100_disable_adapter(priv);
4849                 if (err)
4850                         return err;
4851         }
4852
4853         if (priv->ieee->iw_mode == IW_MODE_ADHOC)
4854                 cmd.host_command_parameters[0] |= IPW_CFG_IBSS_AUTO_START;
4855
4856         cmd.host_command_parameters[0] |= IPW_CFG_IBSS_MASK |
4857             IPW_CFG_BSS_MASK | IPW_CFG_802_1x_ENABLE;
4858
4859         if (!(priv->config & CFG_LONG_PREAMBLE))
4860                 cmd.host_command_parameters[0] |= IPW_CFG_PREAMBLE_AUTO;
4861
4862         err = ipw2100_get_ordinal(priv,
4863                                   IPW_ORD_EEPROM_IBSS_11B_CHANNELS,
4864                                   &ibss_mask, &len);
4865         if (err)
4866                 ibss_mask = IPW_IBSS_11B_DEFAULT_MASK;
4867
4868         cmd.host_command_parameters[1] = REG_CHANNEL_MASK;
4869         cmd.host_command_parameters[2] = REG_CHANNEL_MASK & ibss_mask;
4870
4871         /* 11b only */
4872         /*cmd.host_command_parameters[0] |= DIVERSITY_ANTENNA_A; */
4873
4874         err = ipw2100_hw_send_command(priv, &cmd);
4875         if (err)
4876                 return err;
4877
4878 /* If IPv6 is configured in the kernel then we don't want to filter out all
4879  * of the multicast packets as IPv6 needs some. */
4880 #if !defined(CONFIG_IPV6) && !defined(CONFIG_IPV6_MODULE)
4881         cmd.host_command = ADD_MULTICAST;
4882         cmd.host_command_sequence = 0;
4883         cmd.host_command_length = 0;
4884
4885         ipw2100_hw_send_command(priv, &cmd);
4886 #endif
4887         if (!batch_mode) {
4888                 err = ipw2100_enable_adapter(priv);
4889                 if (err)
4890                         return err;
4891         }
4892
4893         return 0;
4894 }
4895
4896 static int ipw2100_set_tx_rates(struct ipw2100_priv *priv, u32 rate,
4897                                 int batch_mode)
4898 {
4899         struct host_command cmd = {
4900                 .host_command = BASIC_TX_RATES,
4901                 .host_command_sequence = 0,
4902                 .host_command_length = 4
4903         };
4904         int err;
4905
4906         cmd.host_command_parameters[0] = rate & TX_RATE_MASK;
4907
4908         if (!batch_mode) {
4909                 err = ipw2100_disable_adapter(priv);
4910                 if (err)
4911                         return err;
4912         }
4913
4914         /* Set BASIC TX Rate first */
4915         ipw2100_hw_send_command(priv, &cmd);
4916
4917         /* Set TX Rate */
4918         cmd.host_command = TX_RATES;
4919         ipw2100_hw_send_command(priv, &cmd);
4920
4921         /* Set MSDU TX Rate */
4922         cmd.host_command = MSDU_TX_RATES;
4923         ipw2100_hw_send_command(priv, &cmd);
4924
4925         if (!batch_mode) {
4926                 err = ipw2100_enable_adapter(priv);
4927                 if (err)
4928                         return err;
4929         }
4930
4931         priv->tx_rates = rate;
4932
4933         return 0;
4934 }
4935
4936 static int ipw2100_set_power_mode(struct ipw2100_priv *priv, int power_level)
4937 {
4938         struct host_command cmd = {
4939                 .host_command = POWER_MODE,
4940                 .host_command_sequence = 0,
4941                 .host_command_length = 4
4942         };
4943         int err;
4944
4945         cmd.host_command_parameters[0] = power_level;
4946
4947         err = ipw2100_hw_send_command(priv, &cmd);
4948         if (err)
4949                 return err;
4950
4951         if (power_level == IPW_POWER_MODE_CAM)
4952                 priv->power_mode = IPW_POWER_LEVEL(priv->power_mode);
4953         else
4954                 priv->power_mode = IPW_POWER_ENABLED | power_level;
4955
4956 #ifdef IPW2100_TX_POWER
4957         if (priv->port_type == IBSS && priv->adhoc_power != DFTL_IBSS_TX_POWER) {
4958                 /* Set beacon interval */
4959                 cmd.host_command = TX_POWER_INDEX;
4960                 cmd.host_command_parameters[0] = (u32) priv->adhoc_power;
4961
4962                 err = ipw2100_hw_send_command(priv, &cmd);
4963                 if (err)
4964                         return err;
4965         }
4966 #endif
4967
4968         return 0;
4969 }
4970
4971 static int ipw2100_set_rts_threshold(struct ipw2100_priv *priv, u32 threshold)
4972 {
4973         struct host_command cmd = {
4974                 .host_command = RTS_THRESHOLD,
4975                 .host_command_sequence = 0,
4976                 .host_command_length = 4
4977         };
4978         int err;
4979
4980         if (threshold & RTS_DISABLED)
4981                 cmd.host_command_parameters[0] = MAX_RTS_THRESHOLD;
4982         else
4983                 cmd.host_command_parameters[0] = threshold & ~RTS_DISABLED;
4984
4985         err = ipw2100_hw_send_command(priv, &cmd);
4986         if (err)
4987                 return err;
4988
4989         priv->rts_threshold = threshold;
4990
4991         return 0;
4992 }
4993
4994 #if 0
4995 int ipw2100_set_fragmentation_threshold(struct ipw2100_priv *priv,
4996                                         u32 threshold, int batch_mode)
4997 {
4998         struct host_command cmd = {
4999                 .host_command = FRAG_THRESHOLD,
5000                 .host_command_sequence = 0,
5001                 .host_command_length = 4,
5002                 .host_command_parameters[0] = 0,
5003         };
5004         int err;
5005
5006         if (!batch_mode) {
5007                 err = ipw2100_disable_adapter(priv);
5008                 if (err)
5009                         return err;
5010         }
5011
5012         if (threshold == 0)
5013                 threshold = DEFAULT_FRAG_THRESHOLD;
5014         else {
5015                 threshold = max(threshold, MIN_FRAG_THRESHOLD);
5016                 threshold = min(threshold, MAX_FRAG_THRESHOLD);
5017         }
5018
5019         cmd.host_command_parameters[0] = threshold;
5020
5021         IPW_DEBUG_HC("FRAG_THRESHOLD: %u\n", threshold);
5022
5023         err = ipw2100_hw_send_command(priv, &cmd);
5024
5025         if (!batch_mode)
5026                 ipw2100_enable_adapter(priv);
5027
5028         if (!err)
5029                 priv->frag_threshold = threshold;
5030
5031         return err;
5032 }
5033 #endif
5034
5035 static int ipw2100_set_short_retry(struct ipw2100_priv *priv, u32 retry)
5036 {
5037         struct host_command cmd = {
5038                 .host_command = SHORT_RETRY_LIMIT,
5039                 .host_command_sequence = 0,
5040                 .host_command_length = 4
5041         };
5042         int err;
5043
5044         cmd.host_command_parameters[0] = retry;
5045
5046         err = ipw2100_hw_send_command(priv, &cmd);
5047         if (err)
5048                 return err;
5049
5050         priv->short_retry_limit = retry;
5051
5052         return 0;
5053 }
5054
5055 static int ipw2100_set_long_retry(struct ipw2100_priv *priv, u32 retry)
5056 {
5057         struct host_command cmd = {
5058                 .host_command = LONG_RETRY_LIMIT,
5059                 .host_command_sequence = 0,
5060                 .host_command_length = 4
5061         };
5062         int err;
5063
5064         cmd.host_command_parameters[0] = retry;
5065
5066         err = ipw2100_hw_send_command(priv, &cmd);
5067         if (err)
5068                 return err;
5069
5070         priv->long_retry_limit = retry;
5071
5072         return 0;
5073 }
5074
5075 static int ipw2100_set_mandatory_bssid(struct ipw2100_priv *priv, u8 * bssid,
5076                                        int batch_mode)
5077 {
5078         struct host_command cmd = {
5079                 .host_command = MANDATORY_BSSID,
5080                 .host_command_sequence = 0,
5081                 .host_command_length = (bssid == NULL) ? 0 : ETH_ALEN
5082         };
5083         int err;
5084
5085 #ifdef CONFIG_IPW2100_DEBUG
5086         if (bssid != NULL)
5087                 IPW_DEBUG_HC("MANDATORY_BSSID: %pM\n", bssid);
5088         else
5089                 IPW_DEBUG_HC("MANDATORY_BSSID: <clear>\n");
5090 #endif
5091         /* if BSSID is empty then we disable mandatory bssid mode */
5092         if (bssid != NULL)
5093                 memcpy(cmd.host_command_parameters, bssid, ETH_ALEN);
5094
5095         if (!batch_mode) {
5096                 err = ipw2100_disable_adapter(priv);
5097                 if (err)
5098                         return err;
5099         }
5100
5101         err = ipw2100_hw_send_command(priv, &cmd);
5102
5103         if (!batch_mode)
5104                 ipw2100_enable_adapter(priv);
5105
5106         return err;
5107 }
5108
5109 static int ipw2100_disassociate_bssid(struct ipw2100_priv *priv)
5110 {
5111         struct host_command cmd = {
5112                 .host_command = DISASSOCIATION_BSSID,
5113                 .host_command_sequence = 0,
5114                 .host_command_length = ETH_ALEN
5115         };
5116         int err;
5117         int len;
5118
5119         IPW_DEBUG_HC("DISASSOCIATION_BSSID\n");
5120
5121         len = ETH_ALEN;
5122         /* The Firmware currently ignores the BSSID and just disassociates from
5123          * the currently associated AP -- but in the off chance that a future
5124          * firmware does use the BSSID provided here, we go ahead and try and
5125          * set it to the currently associated AP's BSSID */
5126         memcpy(cmd.host_command_parameters, priv->bssid, ETH_ALEN);
5127
5128         err = ipw2100_hw_send_command(priv, &cmd);
5129
5130         return err;
5131 }
5132
5133 static int ipw2100_set_wpa_ie(struct ipw2100_priv *,
5134                               struct ipw2100_wpa_assoc_frame *, int)
5135     __attribute__ ((unused));
5136
5137 static int ipw2100_set_wpa_ie(struct ipw2100_priv *priv,
5138                               struct ipw2100_wpa_assoc_frame *wpa_frame,
5139                               int batch_mode)
5140 {
5141         struct host_command cmd = {
5142                 .host_command = SET_WPA_IE,
5143                 .host_command_sequence = 0,
5144                 .host_command_length = sizeof(struct ipw2100_wpa_assoc_frame),
5145         };
5146         int err;
5147
5148         IPW_DEBUG_HC("SET_WPA_IE\n");
5149
5150         if (!batch_mode) {
5151                 err = ipw2100_disable_adapter(priv);
5152                 if (err)
5153                         return err;
5154         }
5155
5156         memcpy(cmd.host_command_parameters, wpa_frame,
5157                sizeof(struct ipw2100_wpa_assoc_frame));
5158
5159         err = ipw2100_hw_send_command(priv, &cmd);
5160
5161         if (!batch_mode) {
5162                 if (ipw2100_enable_adapter(priv))
5163                         err = -EIO;
5164         }
5165
5166         return err;
5167 }
5168
5169 struct security_info_params {
5170         u32 allowed_ciphers;
5171         u16 version;
5172         u8 auth_mode;
5173         u8 replay_counters_number;
5174         u8 unicast_using_group;
5175 } __packed;
5176
5177 static int ipw2100_set_security_information(struct ipw2100_priv *priv,
5178                                             int auth_mode,
5179                                             int security_level,
5180                                             int unicast_using_group,
5181                                             int batch_mode)
5182 {
5183         struct host_command cmd = {
5184                 .host_command = SET_SECURITY_INFORMATION,
5185                 .host_command_sequence = 0,
5186                 .host_command_length = sizeof(struct security_info_params)
5187         };
5188         struct security_info_params *security =
5189             (struct security_info_params *)&cmd.host_command_parameters;
5190         int err;
5191         memset(security, 0, sizeof(*security));
5192
5193         /* If shared key AP authentication is turned on, then we need to
5194          * configure the firmware to try and use it.
5195          *
5196          * Actual data encryption/decryption is handled by the host. */
5197         security->auth_mode = auth_mode;
5198         security->unicast_using_group = unicast_using_group;
5199
5200         switch (security_level) {
5201         default:
5202         case SEC_LEVEL_0:
5203                 security->allowed_ciphers = IPW_NONE_CIPHER;
5204                 break;
5205         case SEC_LEVEL_1:
5206                 security->allowed_ciphers = IPW_WEP40_CIPHER |
5207                     IPW_WEP104_CIPHER;
5208                 break;
5209         case SEC_LEVEL_2:
5210                 security->allowed_ciphers = IPW_WEP40_CIPHER |
5211                     IPW_WEP104_CIPHER | IPW_TKIP_CIPHER;
5212                 break;
5213         case SEC_LEVEL_2_CKIP:
5214                 security->allowed_ciphers = IPW_WEP40_CIPHER |
5215                     IPW_WEP104_CIPHER | IPW_CKIP_CIPHER;
5216                 break;
5217         case SEC_LEVEL_3:
5218                 security->allowed_ciphers = IPW_WEP40_CIPHER |
5219                     IPW_WEP104_CIPHER | IPW_TKIP_CIPHER | IPW_CCMP_CIPHER;
5220                 break;
5221         }
5222
5223         IPW_DEBUG_HC
5224             ("SET_SECURITY_INFORMATION: auth:%d cipher:0x%02X (level %d)\n",
5225              security->auth_mode, security->allowed_ciphers, security_level);
5226
5227         security->replay_counters_number = 0;
5228
5229         if (!batch_mode) {
5230                 err = ipw2100_disable_adapter(priv);
5231                 if (err)
5232                         return err;
5233         }
5234
5235         err = ipw2100_hw_send_command(priv, &cmd);
5236
5237         if (!batch_mode)
5238                 ipw2100_enable_adapter(priv);
5239
5240         return err;
5241 }
5242
5243 static int ipw2100_set_tx_power(struct ipw2100_priv *priv, u32 tx_power)
5244 {
5245         struct host_command cmd = {
5246                 .host_command = TX_POWER_INDEX,
5247                 .host_command_sequence = 0,
5248                 .host_command_length = 4
5249         };
5250         int err = 0;
5251         u32 tmp = tx_power;
5252
5253         if (tx_power != IPW_TX_POWER_DEFAULT)
5254                 tmp = (tx_power - IPW_TX_POWER_MIN_DBM) * 16 /
5255                       (IPW_TX_POWER_MAX_DBM - IPW_TX_POWER_MIN_DBM);
5256
5257         cmd.host_command_parameters[0] = tmp;
5258
5259         if (priv->ieee->iw_mode == IW_MODE_ADHOC)
5260                 err = ipw2100_hw_send_command(priv, &cmd);
5261         if (!err)
5262                 priv->tx_power = tx_power;
5263
5264         return 0;
5265 }
5266
5267 static int ipw2100_set_ibss_beacon_interval(struct ipw2100_priv *priv,
5268                                             u32 interval, int batch_mode)
5269 {
5270         struct host_command cmd = {
5271                 .host_command = BEACON_INTERVAL,
5272                 .host_command_sequence = 0,
5273                 .host_command_length = 4
5274         };
5275         int err;
5276
5277         cmd.host_command_parameters[0] = interval;
5278
5279         IPW_DEBUG_INFO("enter\n");
5280
5281         if (priv->ieee->iw_mode == IW_MODE_ADHOC) {
5282                 if (!batch_mode) {
5283                         err = ipw2100_disable_adapter(priv);
5284                         if (err)
5285                                 return err;
5286                 }
5287
5288                 ipw2100_hw_send_command(priv, &cmd);
5289
5290                 if (!batch_mode) {
5291                         err = ipw2100_enable_adapter(priv);
5292                         if (err)
5293                                 return err;
5294                 }
5295         }
5296
5297         IPW_DEBUG_INFO("exit\n");
5298
5299         return 0;
5300 }
5301
5302 static void ipw2100_queues_initialize(struct ipw2100_priv *priv)
5303 {
5304         ipw2100_tx_initialize(priv);
5305         ipw2100_rx_initialize(priv);
5306         ipw2100_msg_initialize(priv);
5307 }
5308
5309 static void ipw2100_queues_free(struct ipw2100_priv *priv)
5310 {
5311         ipw2100_tx_free(priv);
5312         ipw2100_rx_free(priv);
5313         ipw2100_msg_free(priv);
5314 }
5315
5316 static int ipw2100_queues_allocate(struct ipw2100_priv *priv)
5317 {
5318         if (ipw2100_tx_allocate(priv) ||
5319             ipw2100_rx_allocate(priv) || ipw2100_msg_allocate(priv))
5320                 goto fail;
5321
5322         return 0;
5323
5324       fail:
5325         ipw2100_tx_free(priv);
5326         ipw2100_rx_free(priv);
5327         ipw2100_msg_free(priv);
5328         return -ENOMEM;
5329 }
5330
5331 #define IPW_PRIVACY_CAPABLE 0x0008
5332
5333 static int ipw2100_set_wep_flags(struct ipw2100_priv *priv, u32 flags,
5334                                  int batch_mode)
5335 {
5336         struct host_command cmd = {
5337                 .host_command = WEP_FLAGS,
5338                 .host_command_sequence = 0,
5339                 .host_command_length = 4
5340         };
5341         int err;
5342
5343         cmd.host_command_parameters[0] = flags;
5344
5345         IPW_DEBUG_HC("WEP_FLAGS: flags = 0x%08X\n", flags);
5346
5347         if (!batch_mode) {
5348                 err = ipw2100_disable_adapter(priv);
5349                 if (err) {
5350                         printk(KERN_ERR DRV_NAME
5351                                ": %s: Could not disable adapter %d\n",
5352                                priv->net_dev->name, err);
5353                         return err;
5354                 }
5355         }
5356
5357         /* send cmd to firmware */
5358         err = ipw2100_hw_send_command(priv, &cmd);
5359
5360         if (!batch_mode)
5361                 ipw2100_enable_adapter(priv);
5362
5363         return err;
5364 }
5365
5366 struct ipw2100_wep_key {
5367         u8 idx;
5368         u8 len;
5369         u8 key[13];
5370 };
5371
5372 /* Macros to ease up priting WEP keys */
5373 #define WEP_FMT_64  "%02X%02X%02X%02X-%02X"
5374 #define WEP_FMT_128 "%02X%02X%02X%02X-%02X%02X%02X%02X-%02X%02X%02X"
5375 #define WEP_STR_64(x) x[0],x[1],x[2],x[3],x[4]
5376 #define WEP_STR_128(x) x[0],x[1],x[2],x[3],x[4],x[5],x[6],x[7],x[8],x[9],x[10]
5377
5378 /**
5379  * Set a the wep key
5380  *
5381  * @priv: struct to work on
5382  * @idx: index of the key we want to set
5383  * @key: ptr to the key data to set
5384  * @len: length of the buffer at @key
5385  * @batch_mode: FIXME perform the operation in batch mode, not
5386  *              disabling the device.
5387  *
5388  * @returns 0 if OK, < 0 errno code on error.
5389  *
5390  * Fill out a command structure with the new wep key, length an
5391  * index and send it down the wire.
5392  */
5393 static int ipw2100_set_key(struct ipw2100_priv *priv,
5394                            int idx, char *key, int len, int batch_mode)
5395 {
5396         int keylen = len ? (len <= 5 ? 5 : 13) : 0;
5397         struct host_command cmd = {
5398                 .host_command = WEP_KEY_INFO,
5399                 .host_command_sequence = 0,
5400                 .host_command_length = sizeof(struct ipw2100_wep_key),
5401         };
5402         struct ipw2100_wep_key *wep_key = (void *)cmd.host_command_parameters;
5403         int err;
5404
5405         IPW_DEBUG_HC("WEP_KEY_INFO: index = %d, len = %d/%d\n",
5406                      idx, keylen, len);
5407
5408         /* NOTE: We don't check cached values in case the firmware was reset
5409          * or some other problem is occurring.  If the user is setting the key,
5410          * then we push the change */
5411
5412         wep_key->idx = idx;
5413         wep_key->len = keylen;
5414
5415         if (keylen) {
5416                 memcpy(wep_key->key, key, len);
5417                 memset(wep_key->key + len, 0, keylen - len);
5418         }
5419
5420         /* Will be optimized out on debug not being configured in */
5421         if (keylen == 0)
5422                 IPW_DEBUG_WEP("%s: Clearing key %d\n",
5423                               priv->net_dev->name, wep_key->idx);
5424         else if (keylen == 5)
5425                 IPW_DEBUG_WEP("%s: idx: %d, len: %d key: " WEP_FMT_64 "\n",
5426                               priv->net_dev->name, wep_key->idx, wep_key->len,
5427                               WEP_STR_64(wep_key->key));
5428         else
5429                 IPW_DEBUG_WEP("%s: idx: %d, len: %d key: " WEP_FMT_128
5430                               "\n",
5431                               priv->net_dev->name, wep_key->idx, wep_key->len,
5432                               WEP_STR_128(wep_key->key));
5433
5434         if (!batch_mode) {
5435                 err = ipw2100_disable_adapter(priv);
5436                 /* FIXME: IPG: shouldn't this prink be in _disable_adapter()? */
5437                 if (err) {
5438                         printk(KERN_ERR DRV_NAME
5439                                ": %s: Could not disable adapter %d\n",
5440                                priv->net_dev->name, err);
5441                         return err;
5442                 }
5443         }
5444
5445         /* send cmd to firmware */
5446         err = ipw2100_hw_send_command(priv, &cmd);
5447
5448         if (!batch_mode) {
5449                 int err2 = ipw2100_enable_adapter(priv);
5450                 if (err == 0)
5451                         err = err2;
5452         }
5453         return err;
5454 }
5455
5456 static int ipw2100_set_key_index(struct ipw2100_priv *priv,
5457                                  int idx, int batch_mode)
5458 {
5459         struct host_command cmd = {
5460                 .host_command = WEP_KEY_INDEX,
5461                 .host_command_sequence = 0,
5462                 .host_command_length = 4,
5463                 .host_command_parameters = {idx},
5464         };
5465         int err;
5466
5467         IPW_DEBUG_HC("WEP_KEY_INDEX: index = %d\n", idx);
5468
5469         if (idx < 0 || idx > 3)
5470                 return -EINVAL;
5471
5472         if (!batch_mode) {
5473                 err = ipw2100_disable_adapter(priv);
5474                 if (err) {
5475                         printk(KERN_ERR DRV_NAME
5476                                ": %s: Could not disable adapter %d\n",
5477                                priv->net_dev->name, err);
5478                         return err;
5479                 }
5480         }
5481
5482         /* send cmd to firmware */
5483         err = ipw2100_hw_send_command(priv, &cmd);
5484
5485         if (!batch_mode)
5486                 ipw2100_enable_adapter(priv);
5487
5488         return err;
5489 }
5490
5491 static int ipw2100_configure_security(struct ipw2100_priv *priv, int batch_mode)
5492 {
5493         int i, err, auth_mode, sec_level, use_group;
5494
5495         if (!(priv->status & STATUS_RUNNING))
5496                 return 0;
5497
5498         if (!batch_mode) {
5499                 err = ipw2100_disable_adapter(priv);
5500                 if (err)
5501                         return err;
5502         }
5503
5504         if (!priv->ieee->sec.enabled) {
5505                 err =
5506                     ipw2100_set_security_information(priv, IPW_AUTH_OPEN,
5507                                                      SEC_LEVEL_0, 0, 1);
5508         } else {
5509                 auth_mode = IPW_AUTH_OPEN;
5510                 if (priv->ieee->sec.flags & SEC_AUTH_MODE) {
5511                         if (priv->ieee->sec.auth_mode == WLAN_AUTH_SHARED_KEY)
5512                                 auth_mode = IPW_AUTH_SHARED;
5513                         else if (priv->ieee->sec.auth_mode == WLAN_AUTH_LEAP)
5514                                 auth_mode = IPW_AUTH_LEAP_CISCO_ID;
5515                 }
5516
5517                 sec_level = SEC_LEVEL_0;
5518                 if (priv->ieee->sec.flags & SEC_LEVEL)
5519                         sec_level = priv->ieee->sec.level;
5520
5521                 use_group = 0;
5522                 if (priv->ieee->sec.flags & SEC_UNICAST_GROUP)
5523                         use_group = priv->ieee->sec.unicast_uses_group;
5524
5525                 err =
5526                     ipw2100_set_security_information(priv, auth_mode, sec_level,
5527                                                      use_group, 1);
5528         }
5529
5530         if (err)
5531                 goto exit;
5532
5533         if (priv->ieee->sec.enabled) {
5534                 for (i = 0; i < 4; i++) {
5535                         if (!(priv->ieee->sec.flags & (1 << i))) {
5536                                 memset(priv->ieee->sec.keys[i], 0, WEP_KEY_LEN);
5537                                 priv->ieee->sec.key_sizes[i] = 0;
5538                         } else {
5539                                 err = ipw2100_set_key(priv, i,
5540                                                       priv->ieee->sec.keys[i],
5541                                                       priv->ieee->sec.
5542                                                       key_sizes[i], 1);
5543                                 if (err)
5544                                         goto exit;
5545                         }
5546                 }
5547
5548                 ipw2100_set_key_index(priv, priv->ieee->crypt_info.tx_keyidx, 1);
5549         }
5550
5551         /* Always enable privacy so the Host can filter WEP packets if
5552          * encrypted data is sent up */
5553         err =
5554             ipw2100_set_wep_flags(priv,
5555                                   priv->ieee->sec.
5556                                   enabled ? IPW_PRIVACY_CAPABLE : 0, 1);
5557         if (err)
5558                 goto exit;
5559
5560         priv->status &= ~STATUS_SECURITY_UPDATED;
5561
5562       exit:
5563         if (!batch_mode)
5564                 ipw2100_enable_adapter(priv);
5565
5566         return err;
5567 }
5568
5569 static void ipw2100_security_work(struct work_struct *work)
5570 {
5571         struct ipw2100_priv *priv =
5572                 container_of(work, struct ipw2100_priv, security_work.work);
5573
5574         /* If we happen to have reconnected before we get a chance to
5575          * process this, then update the security settings--which causes
5576          * a disassociation to occur */
5577         if (!(priv->status & STATUS_ASSOCIATED) &&
5578             priv->status & STATUS_SECURITY_UPDATED)
5579                 ipw2100_configure_security(priv, 0);
5580 }
5581
5582 static void shim__set_security(struct net_device *dev,
5583                                struct libipw_security *sec)
5584 {
5585         struct ipw2100_priv *priv = libipw_priv(dev);
5586         int i, force_update = 0;
5587
5588         mutex_lock(&priv->action_mutex);
5589         if (!(priv->status & STATUS_INITIALIZED))
5590                 goto done;
5591
5592         for (i = 0; i < 4; i++) {
5593                 if (sec->flags & (1 << i)) {
5594                         priv->ieee->sec.key_sizes[i] = sec->key_sizes[i];
5595                         if (sec->key_sizes[i] == 0)
5596                                 priv->ieee->sec.flags &= ~(1 << i);
5597                         else
5598                                 memcpy(priv->ieee->sec.keys[i], sec->keys[i],
5599                                        sec->key_sizes[i]);
5600                         if (sec->level == SEC_LEVEL_1) {
5601                                 priv->ieee->sec.flags |= (1 << i);
5602                                 priv->status |= STATUS_SECURITY_UPDATED;
5603                         } else
5604                                 priv->ieee->sec.flags &= ~(1 << i);
5605                 }
5606         }
5607
5608         if ((sec->flags & SEC_ACTIVE_KEY) &&
5609             priv->ieee->sec.active_key != sec->active_key) {
5610                 if (sec->active_key <= 3) {
5611                         priv->ieee->sec.active_key = sec->active_key;
5612                         priv->ieee->sec.flags |= SEC_ACTIVE_KEY;
5613                 } else
5614                         priv->ieee->sec.flags &= ~SEC_ACTIVE_KEY;
5615
5616                 priv->status |= STATUS_SECURITY_UPDATED;
5617         }
5618
5619         if ((sec->flags & SEC_AUTH_MODE) &&
5620             (priv->ieee->sec.auth_mode != sec->auth_mode)) {
5621                 priv->ieee->sec.auth_mode = sec->auth_mode;
5622                 priv->ieee->sec.flags |= SEC_AUTH_MODE;
5623                 priv->status |= STATUS_SECURITY_UPDATED;
5624         }
5625
5626         if (sec->flags & SEC_ENABLED && priv->ieee->sec.enabled != sec->enabled) {
5627                 priv->ieee->sec.flags |= SEC_ENABLED;
5628                 priv->ieee->sec.enabled = sec->enabled;
5629                 priv->status |= STATUS_SECURITY_UPDATED;
5630                 force_update = 1;
5631         }
5632
5633         if (sec->flags & SEC_ENCRYPT)
5634                 priv->ieee->sec.encrypt = sec->encrypt;
5635
5636         if (sec->flags & SEC_LEVEL && priv->ieee->sec.level != sec->level) {
5637                 priv->ieee->sec.level = sec->level;
5638                 priv->ieee->sec.flags |= SEC_LEVEL;
5639                 priv->status |= STATUS_SECURITY_UPDATED;
5640         }
5641
5642         IPW_DEBUG_WEP("Security flags: %c %c%c%c%c %c%c%c%c\n",
5643                       priv->ieee->sec.flags & (1 << 8) ? '1' : '0',
5644                       priv->ieee->sec.flags & (1 << 7) ? '1' : '0',
5645                       priv->ieee->sec.flags & (1 << 6) ? '1' : '0',
5646                       priv->ieee->sec.flags & (1 << 5) ? '1' : '0',
5647                       priv->ieee->sec.flags & (1 << 4) ? '1' : '0',
5648                       priv->ieee->sec.flags & (1 << 3) ? '1' : '0',
5649                       priv->ieee->sec.flags & (1 << 2) ? '1' : '0',
5650                       priv->ieee->sec.flags & (1 << 1) ? '1' : '0',
5651                       priv->ieee->sec.flags & (1 << 0) ? '1' : '0');
5652
5653 /* As a temporary work around to enable WPA until we figure out why
5654  * wpa_supplicant toggles the security capability of the driver, which
5655  * forces a disassocation with force_update...
5656  *
5657  *      if (force_update || !(priv->status & STATUS_ASSOCIATED))*/
5658         if (!(priv->status & (STATUS_ASSOCIATED | STATUS_ASSOCIATING)))
5659                 ipw2100_configure_security(priv, 0);
5660       done:
5661         mutex_unlock(&priv->action_mutex);
5662 }
5663
5664 static int ipw2100_adapter_setup(struct ipw2100_priv *priv)
5665 {
5666         int err;
5667         int batch_mode = 1;
5668         u8 *bssid;
5669
5670         IPW_DEBUG_INFO("enter\n");
5671
5672         err = ipw2100_disable_adapter(priv);
5673         if (err)
5674                 return err;
5675 #ifdef CONFIG_IPW2100_MONITOR
5676         if (priv->ieee->iw_mode == IW_MODE_MONITOR) {
5677                 err = ipw2100_set_channel(priv, priv->channel, batch_mode);
5678                 if (err)
5679                         return err;
5680
5681                 IPW_DEBUG_INFO("exit\n");
5682
5683                 return 0;
5684         }
5685 #endif                          /* CONFIG_IPW2100_MONITOR */
5686
5687         err = ipw2100_read_mac_address(priv);
5688         if (err)
5689                 return -EIO;
5690
5691         err = ipw2100_set_mac_address(priv, batch_mode);
5692         if (err)
5693                 return err;
5694
5695         err = ipw2100_set_port_type(priv, priv->ieee->iw_mode, batch_mode);
5696         if (err)
5697                 return err;
5698
5699         if (priv->ieee->iw_mode == IW_MODE_ADHOC) {
5700                 err = ipw2100_set_channel(priv, priv->channel, batch_mode);
5701                 if (err)
5702                         return err;
5703         }
5704
5705         err = ipw2100_system_config(priv, batch_mode);
5706         if (err)
5707                 return err;
5708
5709         err = ipw2100_set_tx_rates(priv, priv->tx_rates, batch_mode);
5710         if (err)
5711                 return err;
5712
5713         /* Default to power mode OFF */
5714         err = ipw2100_set_power_mode(priv, IPW_POWER_MODE_CAM);
5715         if (err)
5716                 return err;
5717
5718         err = ipw2100_set_rts_threshold(priv, priv->rts_threshold);
5719         if (err)
5720                 return err;
5721
5722         if (priv->config & CFG_STATIC_BSSID)
5723                 bssid = priv->bssid;
5724         else
5725                 bssid = NULL;
5726         err = ipw2100_set_mandatory_bssid(priv, bssid, batch_mode);
5727         if (err)
5728                 return err;
5729
5730         if (priv->config & CFG_STATIC_ESSID)
5731                 err = ipw2100_set_essid(priv, priv->essid, priv->essid_len,
5732                                         batch_mode);
5733         else
5734                 err = ipw2100_set_essid(priv, NULL, 0, batch_mode);
5735         if (err)
5736                 return err;
5737
5738         err = ipw2100_configure_security(priv, batch_mode);
5739         if (err)
5740                 return err;
5741
5742         if (priv->ieee->iw_mode == IW_MODE_ADHOC) {
5743                 err =
5744                     ipw2100_set_ibss_beacon_interval(priv,
5745                                                      priv->beacon_interval,
5746                                                      batch_mode);
5747                 if (err)
5748                         return err;
5749
5750                 err = ipw2100_set_tx_power(priv, priv->tx_power);
5751                 if (err)
5752                         return err;
5753         }
5754
5755         /*
5756            err = ipw2100_set_fragmentation_threshold(
5757            priv, priv->frag_threshold, batch_mode);
5758            if (err)
5759            return err;
5760          */
5761
5762         IPW_DEBUG_INFO("exit\n");
5763
5764         return 0;
5765 }
5766
5767 /*************************************************************************
5768  *
5769  * EXTERNALLY CALLED METHODS
5770  *
5771  *************************************************************************/
5772
5773 /* This method is called by the network layer -- not to be confused with
5774  * ipw2100_set_mac_address() declared above called by this driver (and this
5775  * method as well) to talk to the firmware */
5776 static int ipw2100_set_address(struct net_device *dev, void *p)
5777 {
5778         struct ipw2100_priv *priv = libipw_priv(dev);
5779         struct sockaddr *addr = p;
5780         int err = 0;
5781
5782         if (!is_valid_ether_addr(addr->sa_data))
5783                 return -EADDRNOTAVAIL;
5784
5785         mutex_lock(&priv->action_mutex);
5786
5787         priv->config |= CFG_CUSTOM_MAC;
5788         memcpy(priv->mac_addr, addr->sa_data, ETH_ALEN);
5789
5790         err = ipw2100_set_mac_address(priv, 0);
5791         if (err)
5792                 goto done;
5793
5794         priv->reset_backoff = 0;
5795         mutex_unlock(&priv->action_mutex);
5796         ipw2100_reset_adapter(&priv->reset_work.work);
5797         return 0;
5798
5799       done:
5800         mutex_unlock(&priv->action_mutex);
5801         return err;
5802 }
5803
5804 static int ipw2100_open(struct net_device *dev)
5805 {
5806         struct ipw2100_priv *priv = libipw_priv(dev);
5807         unsigned long flags;
5808         IPW_DEBUG_INFO("dev->open\n");
5809
5810         spin_lock_irqsave(&priv->low_lock, flags);
5811         if (priv->status & STATUS_ASSOCIATED) {
5812                 netif_carrier_on(dev);
5813                 netif_start_queue(dev);
5814         }
5815         spin_unlock_irqrestore(&priv->low_lock, flags);
5816
5817         return 0;
5818 }
5819
5820 static int ipw2100_close(struct net_device *dev)
5821 {
5822         struct ipw2100_priv *priv = libipw_priv(dev);
5823         unsigned long flags;
5824         struct list_head *element;
5825         struct ipw2100_tx_packet *packet;
5826
5827         IPW_DEBUG_INFO("enter\n");
5828
5829         spin_lock_irqsave(&priv->low_lock, flags);
5830
5831         if (priv->status & STATUS_ASSOCIATED)
5832                 netif_carrier_off(dev);
5833         netif_stop_queue(dev);
5834
5835         /* Flush the TX queue ... */
5836         while (!list_empty(&priv->tx_pend_list)) {
5837                 element = priv->tx_pend_list.next;
5838                 packet = list_entry(element, struct ipw2100_tx_packet, list);
5839
5840                 list_del(element);
5841                 DEC_STAT(&priv->tx_pend_stat);
5842
5843                 libipw_txb_free(packet->info.d_struct.txb);
5844                 packet->info.d_struct.txb = NULL;
5845
5846                 list_add_tail(element, &priv->tx_free_list);
5847                 INC_STAT(&priv->tx_free_stat);
5848         }
5849         spin_unlock_irqrestore(&priv->low_lock, flags);
5850
5851         IPW_DEBUG_INFO("exit\n");
5852
5853         return 0;
5854 }
5855
5856 /*
5857  * TODO:  Fix this function... its just wrong
5858  */
5859 static void ipw2100_tx_timeout(struct net_device *dev)
5860 {
5861         struct ipw2100_priv *priv = libipw_priv(dev);
5862
5863         dev->stats.tx_errors++;
5864
5865 #ifdef CONFIG_IPW2100_MONITOR
5866         if (priv->ieee->iw_mode == IW_MODE_MONITOR)
5867                 return;
5868 #endif
5869
5870         IPW_DEBUG_INFO("%s: TX timed out.  Scheduling firmware restart.\n",
5871                        dev->name);
5872         schedule_reset(priv);
5873 }
5874
5875 static int ipw2100_wpa_enable(struct ipw2100_priv *priv, int value)
5876 {
5877         /* This is called when wpa_supplicant loads and closes the driver
5878          * interface. */
5879         priv->ieee->wpa_enabled = value;
5880         return 0;
5881 }
5882
5883 static int ipw2100_wpa_set_auth_algs(struct ipw2100_priv *priv, int value)
5884 {
5885
5886         struct libipw_device *ieee = priv->ieee;
5887         struct libipw_security sec = {
5888                 .flags = SEC_AUTH_MODE,
5889         };
5890         int ret = 0;
5891
5892         if (value & IW_AUTH_ALG_SHARED_KEY) {
5893                 sec.auth_mode = WLAN_AUTH_SHARED_KEY;
5894                 ieee->open_wep = 0;
5895         } else if (value & IW_AUTH_ALG_OPEN_SYSTEM) {
5896                 sec.auth_mode = WLAN_AUTH_OPEN;
5897                 ieee->open_wep = 1;
5898         } else if (value & IW_AUTH_ALG_LEAP) {
5899                 sec.auth_mode = WLAN_AUTH_LEAP;
5900                 ieee->open_wep = 1;
5901         } else
5902                 return -EINVAL;
5903
5904         if (ieee->set_security)
5905                 ieee->set_security(ieee->dev, &sec);
5906         else
5907                 ret = -EOPNOTSUPP;
5908
5909         return ret;
5910 }
5911
5912 static void ipw2100_wpa_assoc_frame(struct ipw2100_priv *priv,
5913                                     char *wpa_ie, int wpa_ie_len)
5914 {
5915
5916         struct ipw2100_wpa_assoc_frame frame;
5917
5918         frame.fixed_ie_mask = 0;
5919
5920         /* copy WPA IE */
5921         memcpy(frame.var_ie, wpa_ie, wpa_ie_len);
5922         frame.var_ie_len = wpa_ie_len;
5923
5924         /* make sure WPA is enabled */
5925         ipw2100_wpa_enable(priv, 1);
5926         ipw2100_set_wpa_ie(priv, &frame, 0);
5927 }
5928
5929 static void ipw_ethtool_get_drvinfo(struct net_device *dev,
5930                                     struct ethtool_drvinfo *info)
5931 {
5932         struct ipw2100_priv *priv = libipw_priv(dev);
5933         char fw_ver[64], ucode_ver[64];
5934
5935         strlcpy(info->driver, DRV_NAME, sizeof(info->driver));
5936         strlcpy(info->version, DRV_VERSION, sizeof(info->version));
5937
5938         ipw2100_get_fwversion(priv, fw_ver, sizeof(fw_ver));
5939         ipw2100_get_ucodeversion(priv, ucode_ver, sizeof(ucode_ver));
5940
5941         snprintf(info->fw_version, sizeof(info->fw_version), "%s:%d:%s",
5942                  fw_ver, priv->eeprom_version, ucode_ver);
5943
5944         strlcpy(info->bus_info, pci_name(priv->pci_dev),
5945                 sizeof(info->bus_info));
5946 }
5947
5948 static u32 ipw2100_ethtool_get_link(struct net_device *dev)
5949 {
5950         struct ipw2100_priv *priv = libipw_priv(dev);
5951         return (priv->status & STATUS_ASSOCIATED) ? 1 : 0;
5952 }
5953
5954 static const struct ethtool_ops ipw2100_ethtool_ops = {
5955         .get_link = ipw2100_ethtool_get_link,
5956         .get_drvinfo = ipw_ethtool_get_drvinfo,
5957 };
5958
5959 static void ipw2100_hang_check(struct work_struct *work)
5960 {
5961         struct ipw2100_priv *priv =
5962                 container_of(work, struct ipw2100_priv, hang_check.work);
5963         unsigned long flags;
5964         u32 rtc = 0xa5a5a5a5;
5965         u32 len = sizeof(rtc);
5966         int restart = 0;
5967
5968         spin_lock_irqsave(&priv->low_lock, flags);
5969
5970         if (priv->fatal_error != 0) {
5971                 /* If fatal_error is set then we need to restart */
5972                 IPW_DEBUG_INFO("%s: Hardware fatal error detected.\n",
5973                                priv->net_dev->name);
5974
5975                 restart = 1;
5976         } else if (ipw2100_get_ordinal(priv, IPW_ORD_RTC_TIME, &rtc, &len) ||
5977                    (rtc == priv->last_rtc)) {
5978                 /* Check if firmware is hung */
5979                 IPW_DEBUG_INFO("%s: Firmware RTC stalled.\n",
5980                                priv->net_dev->name);
5981
5982                 restart = 1;
5983         }
5984
5985         if (restart) {
5986                 /* Kill timer */
5987                 priv->stop_hang_check = 1;
5988                 priv->hangs++;
5989
5990                 /* Restart the NIC */
5991                 schedule_reset(priv);
5992         }
5993
5994         priv->last_rtc = rtc;
5995
5996         if (!priv->stop_hang_check)
5997                 schedule_delayed_work(&priv->hang_check, HZ / 2);
5998
5999         spin_unlock_irqrestore(&priv->low_lock, flags);
6000 }
6001
6002 static void ipw2100_rf_kill(struct work_struct *work)
6003 {
6004         struct ipw2100_priv *priv =
6005                 container_of(work, struct ipw2100_priv, rf_kill.work);
6006         unsigned long flags;
6007
6008         spin_lock_irqsave(&priv->low_lock, flags);
6009
6010         if (rf_kill_active(priv)) {
6011                 IPW_DEBUG_RF_KILL("RF Kill active, rescheduling GPIO check\n");
6012                 if (!priv->stop_rf_kill)
6013                         schedule_delayed_work(&priv->rf_kill,
6014                                               round_jiffies_relative(HZ));
6015                 goto exit_unlock;
6016         }
6017
6018         /* RF Kill is now disabled, so bring the device back up */
6019
6020         if (!(priv->status & STATUS_RF_KILL_MASK)) {
6021                 IPW_DEBUG_RF_KILL("HW RF Kill no longer active, restarting "
6022                                   "device\n");
6023                 schedule_reset(priv);
6024         } else
6025                 IPW_DEBUG_RF_KILL("HW RF Kill deactivated.  SW RF Kill still "
6026                                   "enabled\n");
6027
6028       exit_unlock:
6029         spin_unlock_irqrestore(&priv->low_lock, flags);
6030 }
6031
6032 static void ipw2100_irq_tasklet(struct ipw2100_priv *priv);
6033
6034 static const struct net_device_ops ipw2100_netdev_ops = {
6035         .ndo_open               = ipw2100_open,
6036         .ndo_stop               = ipw2100_close,
6037         .ndo_start_xmit         = libipw_xmit,
6038         .ndo_change_mtu         = libipw_change_mtu,
6039         .ndo_tx_timeout         = ipw2100_tx_timeout,
6040         .ndo_set_mac_address    = ipw2100_set_address,
6041         .ndo_validate_addr      = eth_validate_addr,
6042 };
6043
6044 /* Look into using netdev destructor to shutdown libipw? */
6045
6046 static struct net_device *ipw2100_alloc_device(struct pci_dev *pci_dev,
6047                                                void __iomem * ioaddr)
6048 {
6049         struct ipw2100_priv *priv;
6050         struct net_device *dev;
6051
6052         dev = alloc_libipw(sizeof(struct ipw2100_priv), 0);
6053         if (!dev)
6054                 return NULL;
6055         priv = libipw_priv(dev);
6056         priv->ieee = netdev_priv(dev);
6057         priv->pci_dev = pci_dev;
6058         priv->net_dev = dev;
6059         priv->ioaddr = ioaddr;
6060
6061         priv->ieee->hard_start_xmit = ipw2100_tx;
6062         priv->ieee->set_security = shim__set_security;
6063
6064         priv->ieee->perfect_rssi = -20;
6065         priv->ieee->worst_rssi = -85;
6066
6067         dev->netdev_ops = &ipw2100_netdev_ops;
6068         dev->ethtool_ops = &ipw2100_ethtool_ops;
6069         dev->wireless_handlers = &ipw2100_wx_handler_def;
6070         priv->wireless_data.libipw = priv->ieee;
6071         dev->wireless_data = &priv->wireless_data;
6072         dev->watchdog_timeo = 3 * HZ;
6073         dev->irq = 0;
6074
6075         /* NOTE: We don't use the wireless_handlers hook
6076          * in dev as the system will start throwing WX requests
6077          * to us before we're actually initialized and it just
6078          * ends up causing problems.  So, we just handle
6079          * the WX extensions through the ipw2100_ioctl interface */
6080
6081         /* memset() puts everything to 0, so we only have explicitly set
6082          * those values that need to be something else */
6083
6084         /* If power management is turned on, default to AUTO mode */
6085         priv->power_mode = IPW_POWER_AUTO;
6086
6087 #ifdef CONFIG_IPW2100_MONITOR
6088         priv->config |= CFG_CRC_CHECK;
6089 #endif
6090         priv->ieee->wpa_enabled = 0;
6091         priv->ieee->drop_unencrypted = 0;
6092         priv->ieee->privacy_invoked = 0;
6093         priv->ieee->ieee802_1x = 1;
6094
6095         /* Set module parameters */
6096         switch (network_mode) {
6097         case 1:
6098                 priv->ieee->iw_mode = IW_MODE_ADHOC;
6099                 break;
6100 #ifdef CONFIG_IPW2100_MONITOR
6101         case 2:
6102                 priv->ieee->iw_mode = IW_MODE_MONITOR;
6103                 break;
6104 #endif
6105         default:
6106         case 0:
6107                 priv->ieee->iw_mode = IW_MODE_INFRA;
6108                 break;
6109         }
6110
6111         if (disable == 1)
6112                 priv->status |= STATUS_RF_KILL_SW;
6113
6114         if (channel != 0 &&
6115             ((channel >= REG_MIN_CHANNEL) && (channel <= REG_MAX_CHANNEL))) {
6116                 priv->config |= CFG_STATIC_CHANNEL;
6117                 priv->channel = channel;
6118         }
6119
6120         if (associate)
6121                 priv->config |= CFG_ASSOCIATE;
6122
6123         priv->beacon_interval = DEFAULT_BEACON_INTERVAL;
6124         priv->short_retry_limit = DEFAULT_SHORT_RETRY_LIMIT;
6125         priv->long_retry_limit = DEFAULT_LONG_RETRY_LIMIT;
6126         priv->rts_threshold = DEFAULT_RTS_THRESHOLD | RTS_DISABLED;
6127         priv->frag_threshold = DEFAULT_FTS | FRAG_DISABLED;
6128         priv->tx_power = IPW_TX_POWER_DEFAULT;
6129         priv->tx_rates = DEFAULT_TX_RATES;
6130
6131         strcpy(priv->nick, "ipw2100");
6132
6133         spin_lock_init(&priv->low_lock);
6134         mutex_init(&priv->action_mutex);
6135         mutex_init(&priv->adapter_mutex);
6136
6137         init_waitqueue_head(&priv->wait_command_queue);
6138
6139         netif_carrier_off(dev);
6140
6141         INIT_LIST_HEAD(&priv->msg_free_list);
6142         INIT_LIST_HEAD(&priv->msg_pend_list);
6143         INIT_STAT(&priv->msg_free_stat);
6144         INIT_STAT(&priv->msg_pend_stat);
6145
6146         INIT_LIST_HEAD(&priv->tx_free_list);
6147         INIT_LIST_HEAD(&priv->tx_pend_list);
6148         INIT_STAT(&priv->tx_free_stat);
6149         INIT_STAT(&priv->tx_pend_stat);
6150
6151         INIT_LIST_HEAD(&priv->fw_pend_list);
6152         INIT_STAT(&priv->fw_pend_stat);
6153
6154         INIT_DELAYED_WORK(&priv->reset_work, ipw2100_reset_adapter);
6155         INIT_DELAYED_WORK(&priv->security_work, ipw2100_security_work);
6156         INIT_DELAYED_WORK(&priv->wx_event_work, ipw2100_wx_event_work);
6157         INIT_DELAYED_WORK(&priv->hang_check, ipw2100_hang_check);
6158         INIT_DELAYED_WORK(&priv->rf_kill, ipw2100_rf_kill);
6159         INIT_DELAYED_WORK(&priv->scan_event, ipw2100_scan_event);
6160
6161         tasklet_init(&priv->irq_tasklet, (void (*)(unsigned long))
6162                      ipw2100_irq_tasklet, (unsigned long)priv);
6163
6164         /* NOTE:  We do not start the deferred work for status checks yet */
6165         priv->stop_rf_kill = 1;
6166         priv->stop_hang_check = 1;
6167
6168         return dev;
6169 }
6170
6171 static int ipw2100_pci_init_one(struct pci_dev *pci_dev,
6172                                 const struct pci_device_id *ent)
6173 {
6174         void __iomem *ioaddr;
6175         struct net_device *dev = NULL;
6176         struct ipw2100_priv *priv = NULL;
6177         int err = 0;
6178         int registered = 0;
6179         u32 val;
6180
6181         IPW_DEBUG_INFO("enter\n");
6182
6183         if (!(pci_resource_flags(pci_dev, 0) & IORESOURCE_MEM)) {
6184                 IPW_DEBUG_INFO("weird - resource type is not memory\n");
6185                 err = -ENODEV;
6186                 goto out;
6187         }
6188
6189         ioaddr = pci_iomap(pci_dev, 0, 0);
6190         if (!ioaddr) {
6191                 printk(KERN_WARNING DRV_NAME
6192                        "Error calling ioremap_nocache.\n");
6193                 err = -EIO;
6194                 goto fail;
6195         }
6196
6197         /* allocate and initialize our net_device */
6198         dev = ipw2100_alloc_device(pci_dev, ioaddr);
6199         if (!dev) {
6200                 printk(KERN_WARNING DRV_NAME
6201                        "Error calling ipw2100_alloc_device.\n");
6202                 err = -ENOMEM;
6203                 goto fail;
6204         }
6205
6206         /* set up PCI mappings for device */
6207         err = pci_enable_device(pci_dev);
6208         if (err) {
6209                 printk(KERN_WARNING DRV_NAME
6210                        "Error calling pci_enable_device.\n");
6211                 return err;
6212         }
6213
6214         priv = libipw_priv(dev);
6215
6216         pci_set_master(pci_dev);
6217         pci_set_drvdata(pci_dev, priv);
6218
6219         err = pci_set_dma_mask(pci_dev, DMA_BIT_MASK(32));
6220         if (err) {
6221                 printk(KERN_WARNING DRV_NAME
6222                        "Error calling pci_set_dma_mask.\n");
6223                 pci_disable_device(pci_dev);
6224                 return err;
6225         }
6226
6227         err = pci_request_regions(pci_dev, DRV_NAME);
6228         if (err) {
6229                 printk(KERN_WARNING DRV_NAME
6230                        "Error calling pci_request_regions.\n");
6231                 pci_disable_device(pci_dev);
6232                 return err;
6233         }
6234
6235         /* We disable the RETRY_TIMEOUT register (0x41) to keep
6236          * PCI Tx retries from interfering with C3 CPU state */
6237         pci_read_config_dword(pci_dev, 0x40, &val);
6238         if ((val & 0x0000ff00) != 0)
6239                 pci_write_config_dword(pci_dev, 0x40, val & 0xffff00ff);
6240
6241         if (!ipw2100_hw_is_adapter_in_system(dev)) {
6242                 printk(KERN_WARNING DRV_NAME
6243                        "Device not found via register read.\n");
6244                 err = -ENODEV;
6245                 goto fail;
6246         }
6247
6248         SET_NETDEV_DEV(dev, &pci_dev->dev);
6249
6250         /* Force interrupts to be shut off on the device */
6251         priv->status |= STATUS_INT_ENABLED;
6252         ipw2100_disable_interrupts(priv);
6253
6254         /* Allocate and initialize the Tx/Rx queues and lists */
6255         if (ipw2100_queues_allocate(priv)) {
6256                 printk(KERN_WARNING DRV_NAME
6257                        "Error calling ipw2100_queues_allocate.\n");
6258                 err = -ENOMEM;
6259                 goto fail;
6260         }
6261         ipw2100_queues_initialize(priv);
6262
6263         err = request_irq(pci_dev->irq,
6264                           ipw2100_interrupt, IRQF_SHARED, dev->name, priv);
6265         if (err) {
6266                 printk(KERN_WARNING DRV_NAME
6267                        "Error calling request_irq: %d.\n", pci_dev->irq);
6268                 goto fail;
6269         }
6270         dev->irq = pci_dev->irq;
6271
6272         IPW_DEBUG_INFO("Attempting to register device...\n");
6273
6274         printk(KERN_INFO DRV_NAME
6275                ": Detected Intel PRO/Wireless 2100 Network Connection\n");
6276
6277         err = ipw2100_up(priv, 1);
6278         if (err)
6279                 goto fail;
6280
6281         err = ipw2100_wdev_init(dev);
6282         if (err)
6283                 goto fail;
6284         registered = 1;
6285
6286         /* Bring up the interface.  Pre 0.46, after we registered the
6287          * network device we would call ipw2100_up.  This introduced a race
6288          * condition with newer hotplug configurations (network was coming
6289          * up and making calls before the device was initialized).
6290          */
6291         err = register_netdev(dev);
6292         if (err) {
6293                 printk(KERN_WARNING DRV_NAME
6294                        "Error calling register_netdev.\n");
6295                 goto fail;
6296         }
6297         registered = 2;
6298
6299         mutex_lock(&priv->action_mutex);
6300
6301         IPW_DEBUG_INFO("%s: Bound to %s\n", dev->name, pci_name(pci_dev));
6302
6303         /* perform this after register_netdev so that dev->name is set */
6304         err = sysfs_create_group(&pci_dev->dev.kobj, &ipw2100_attribute_group);
6305         if (err)
6306                 goto fail_unlock;
6307
6308         /* If the RF Kill switch is disabled, go ahead and complete the
6309          * startup sequence */
6310         if (!(priv->status & STATUS_RF_KILL_MASK)) {
6311                 /* Enable the adapter - sends HOST_COMPLETE */
6312                 if (ipw2100_enable_adapter(priv)) {
6313                         printk(KERN_WARNING DRV_NAME
6314                                ": %s: failed in call to enable adapter.\n",
6315                                priv->net_dev->name);
6316                         ipw2100_hw_stop_adapter(priv);
6317                         err = -EIO;
6318                         goto fail_unlock;
6319                 }
6320
6321                 /* Start a scan . . . */
6322                 ipw2100_set_scan_options(priv);
6323                 ipw2100_start_scan(priv);
6324         }
6325
6326         IPW_DEBUG_INFO("exit\n");
6327
6328         priv->status |= STATUS_INITIALIZED;
6329
6330         mutex_unlock(&priv->action_mutex);
6331 out:
6332         return err;
6333
6334       fail_unlock:
6335         mutex_unlock(&priv->action_mutex);
6336       fail:
6337         if (dev) {
6338                 if (registered >= 2)
6339                         unregister_netdev(dev);
6340
6341                 if (registered) {
6342                         wiphy_unregister(priv->ieee->wdev.wiphy);
6343                         kfree(priv->ieee->bg_band.channels);
6344                 }
6345
6346                 ipw2100_hw_stop_adapter(priv);
6347
6348                 ipw2100_disable_interrupts(priv);
6349
6350                 if (dev->irq)
6351                         free_irq(dev->irq, priv);
6352
6353                 ipw2100_kill_works(priv);
6354
6355                 /* These are safe to call even if they weren't allocated */
6356                 ipw2100_queues_free(priv);
6357                 sysfs_remove_group(&pci_dev->dev.kobj,
6358                                    &ipw2100_attribute_group);
6359
6360                 free_libipw(dev, 0);
6361         }
6362
6363         pci_iounmap(pci_dev, ioaddr);
6364
6365         pci_release_regions(pci_dev);
6366         pci_disable_device(pci_dev);
6367         goto out;
6368 }
6369
6370 static void ipw2100_pci_remove_one(struct pci_dev *pci_dev)
6371 {
6372         struct ipw2100_priv *priv = pci_get_drvdata(pci_dev);
6373         struct net_device *dev = priv->net_dev;
6374
6375         mutex_lock(&priv->action_mutex);
6376
6377         priv->status &= ~STATUS_INITIALIZED;
6378
6379         sysfs_remove_group(&pci_dev->dev.kobj, &ipw2100_attribute_group);
6380
6381 #ifdef CONFIG_PM
6382         if (ipw2100_firmware.version)
6383                 ipw2100_release_firmware(priv, &ipw2100_firmware);
6384 #endif
6385         /* Take down the hardware */
6386         ipw2100_down(priv);
6387
6388         /* Release the mutex so that the network subsystem can
6389          * complete any needed calls into the driver... */
6390         mutex_unlock(&priv->action_mutex);
6391
6392         /* Unregister the device first - this results in close()
6393          * being called if the device is open.  If we free storage
6394          * first, then close() will crash.
6395          * FIXME: remove the comment above. */
6396         unregister_netdev(dev);
6397
6398         ipw2100_kill_works(priv);
6399
6400         ipw2100_queues_free(priv);
6401
6402         /* Free potential debugging firmware snapshot */
6403         ipw2100_snapshot_free(priv);
6404
6405         free_irq(dev->irq, priv);
6406
6407         pci_iounmap(pci_dev, priv->ioaddr);
6408
6409         /* wiphy_unregister needs to be here, before free_libipw */
6410         wiphy_unregister(priv->ieee->wdev.wiphy);
6411         kfree(priv->ieee->bg_band.channels);
6412         free_libipw(dev, 0);
6413
6414         pci_release_regions(pci_dev);
6415         pci_disable_device(pci_dev);
6416
6417         IPW_DEBUG_INFO("exit\n");
6418 }
6419
6420 #ifdef CONFIG_PM
6421 static int ipw2100_suspend(struct pci_dev *pci_dev, pm_message_t state)
6422 {
6423         struct ipw2100_priv *priv = pci_get_drvdata(pci_dev);
6424         struct net_device *dev = priv->net_dev;
6425
6426         IPW_DEBUG_INFO("%s: Going into suspend...\n", dev->name);
6427
6428         mutex_lock(&priv->action_mutex);
6429         if (priv->status & STATUS_INITIALIZED) {
6430                 /* Take down the device; powers it off, etc. */
6431                 ipw2100_down(priv);
6432         }
6433
6434         /* Remove the PRESENT state of the device */
6435         netif_device_detach(dev);
6436
6437         pci_save_state(pci_dev);
6438         pci_disable_device(pci_dev);
6439         pci_set_power_state(pci_dev, PCI_D3hot);
6440
6441         priv->suspend_at = get_seconds();
6442
6443         mutex_unlock(&priv->action_mutex);
6444
6445         return 0;
6446 }
6447
6448 static int ipw2100_resume(struct pci_dev *pci_dev)
6449 {
6450         struct ipw2100_priv *priv = pci_get_drvdata(pci_dev);
6451         struct net_device *dev = priv->net_dev;
6452         int err;
6453         u32 val;
6454
6455         if (IPW2100_PM_DISABLED)
6456                 return 0;
6457
6458         mutex_lock(&priv->action_mutex);
6459
6460         IPW_DEBUG_INFO("%s: Coming out of suspend...\n", dev->name);
6461
6462         pci_set_power_state(pci_dev, PCI_D0);
6463         err = pci_enable_device(pci_dev);
6464         if (err) {
6465                 printk(KERN_ERR "%s: pci_enable_device failed on resume\n",
6466                        dev->name);
6467                 mutex_unlock(&priv->action_mutex);
6468                 return err;
6469         }
6470         pci_restore_state(pci_dev);
6471
6472         /*
6473          * Suspend/Resume resets the PCI configuration space, so we have to
6474          * re-disable the RETRY_TIMEOUT register (0x41) to keep PCI Tx retries
6475          * from interfering with C3 CPU state. pci_restore_state won't help
6476          * here since it only restores the first 64 bytes pci config header.
6477          */
6478         pci_read_config_dword(pci_dev, 0x40, &val);
6479         if ((val & 0x0000ff00) != 0)
6480                 pci_write_config_dword(pci_dev, 0x40, val & 0xffff00ff);
6481
6482         /* Set the device back into the PRESENT state; this will also wake
6483          * the queue of needed */
6484         netif_device_attach(dev);
6485
6486         priv->suspend_time = get_seconds() - priv->suspend_at;
6487
6488         /* Bring the device back up */
6489         if (!(priv->status & STATUS_RF_KILL_SW))
6490                 ipw2100_up(priv, 0);
6491
6492         mutex_unlock(&priv->action_mutex);
6493
6494         return 0;
6495 }
6496 #endif
6497
6498 static void ipw2100_shutdown(struct pci_dev *pci_dev)
6499 {
6500         struct ipw2100_priv *priv = pci_get_drvdata(pci_dev);
6501
6502         /* Take down the device; powers it off, etc. */
6503         ipw2100_down(priv);
6504
6505         pci_disable_device(pci_dev);
6506 }
6507
6508 #define IPW2100_DEV_ID(x) { PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, x }
6509
6510 static const struct pci_device_id ipw2100_pci_id_table[] = {
6511         IPW2100_DEV_ID(0x2520), /* IN 2100A mPCI 3A */
6512         IPW2100_DEV_ID(0x2521), /* IN 2100A mPCI 3B */
6513         IPW2100_DEV_ID(0x2524), /* IN 2100A mPCI 3B */
6514         IPW2100_DEV_ID(0x2525), /* IN 2100A mPCI 3B */
6515         IPW2100_DEV_ID(0x2526), /* IN 2100A mPCI Gen A3 */
6516         IPW2100_DEV_ID(0x2522), /* IN 2100 mPCI 3B */
6517         IPW2100_DEV_ID(0x2523), /* IN 2100 mPCI 3A */
6518         IPW2100_DEV_ID(0x2527), /* IN 2100 mPCI 3B */
6519         IPW2100_DEV_ID(0x2528), /* IN 2100 mPCI 3B */
6520         IPW2100_DEV_ID(0x2529), /* IN 2100 mPCI 3B */
6521         IPW2100_DEV_ID(0x252B), /* IN 2100 mPCI 3A */
6522         IPW2100_DEV_ID(0x252C), /* IN 2100 mPCI 3A */
6523         IPW2100_DEV_ID(0x252D), /* IN 2100 mPCI 3A */
6524
6525         IPW2100_DEV_ID(0x2550), /* IB 2100A mPCI 3B */
6526         IPW2100_DEV_ID(0x2551), /* IB 2100 mPCI 3B */
6527         IPW2100_DEV_ID(0x2553), /* IB 2100 mPCI 3B */
6528         IPW2100_DEV_ID(0x2554), /* IB 2100 mPCI 3B */
6529         IPW2100_DEV_ID(0x2555), /* IB 2100 mPCI 3B */
6530
6531         IPW2100_DEV_ID(0x2560), /* DE 2100A mPCI 3A */
6532         IPW2100_DEV_ID(0x2562), /* DE 2100A mPCI 3A */
6533         IPW2100_DEV_ID(0x2563), /* DE 2100A mPCI 3A */
6534         IPW2100_DEV_ID(0x2561), /* DE 2100 mPCI 3A */
6535         IPW2100_DEV_ID(0x2565), /* DE 2100 mPCI 3A */
6536         IPW2100_DEV_ID(0x2566), /* DE 2100 mPCI 3A */
6537         IPW2100_DEV_ID(0x2567), /* DE 2100 mPCI 3A */
6538
6539         IPW2100_DEV_ID(0x2570), /* GA 2100 mPCI 3B */
6540
6541         IPW2100_DEV_ID(0x2580), /* TO 2100A mPCI 3B */
6542         IPW2100_DEV_ID(0x2582), /* TO 2100A mPCI 3B */
6543         IPW2100_DEV_ID(0x2583), /* TO 2100A mPCI 3B */
6544         IPW2100_DEV_ID(0x2581), /* TO 2100 mPCI 3B */
6545         IPW2100_DEV_ID(0x2585), /* TO 2100 mPCI 3B */
6546         IPW2100_DEV_ID(0x2586), /* TO 2100 mPCI 3B */
6547         IPW2100_DEV_ID(0x2587), /* TO 2100 mPCI 3B */
6548
6549         IPW2100_DEV_ID(0x2590), /* SO 2100A mPCI 3B */
6550         IPW2100_DEV_ID(0x2592), /* SO 2100A mPCI 3B */
6551         IPW2100_DEV_ID(0x2591), /* SO 2100 mPCI 3B */
6552         IPW2100_DEV_ID(0x2593), /* SO 2100 mPCI 3B */
6553         IPW2100_DEV_ID(0x2596), /* SO 2100 mPCI 3B */
6554         IPW2100_DEV_ID(0x2598), /* SO 2100 mPCI 3B */
6555
6556         IPW2100_DEV_ID(0x25A0), /* HP 2100 mPCI 3B */
6557         {0,},
6558 };
6559
6560 MODULE_DEVICE_TABLE(pci, ipw2100_pci_id_table);
6561
6562 static struct pci_driver ipw2100_pci_driver = {
6563         .name = DRV_NAME,
6564         .id_table = ipw2100_pci_id_table,
6565         .probe = ipw2100_pci_init_one,
6566         .remove = ipw2100_pci_remove_one,
6567 #ifdef CONFIG_PM
6568         .suspend = ipw2100_suspend,
6569         .resume = ipw2100_resume,
6570 #endif
6571         .shutdown = ipw2100_shutdown,
6572 };
6573
6574 /**
6575  * Initialize the ipw2100 driver/module
6576  *
6577  * @returns 0 if ok, < 0 errno node con error.
6578  *
6579  * Note: we cannot init the /proc stuff until the PCI driver is there,
6580  * or we risk an unlikely race condition on someone accessing
6581  * uninitialized data in the PCI dev struct through /proc.
6582  */
6583 static int __init ipw2100_init(void)
6584 {
6585         int ret;
6586
6587         printk(KERN_INFO DRV_NAME ": %s, %s\n", DRV_DESCRIPTION, DRV_VERSION);
6588         printk(KERN_INFO DRV_NAME ": %s\n", DRV_COPYRIGHT);
6589
6590         pm_qos_add_request(&ipw2100_pm_qos_req, PM_QOS_CPU_DMA_LATENCY,
6591                            PM_QOS_DEFAULT_VALUE);
6592
6593         ret = pci_register_driver(&ipw2100_pci_driver);
6594         if (ret)
6595                 goto out;
6596
6597 #ifdef CONFIG_IPW2100_DEBUG
6598         ipw2100_debug_level = debug;
6599         ret = driver_create_file(&ipw2100_pci_driver.driver,
6600                                  &driver_attr_debug_level);
6601 #endif
6602
6603 out:
6604         return ret;
6605 }
6606
6607 /**
6608  * Cleanup ipw2100 driver registration
6609  */
6610 static void __exit ipw2100_exit(void)
6611 {
6612         /* FIXME: IPG: check that we have no instances of the devices open */
6613 #ifdef CONFIG_IPW2100_DEBUG
6614         driver_remove_file(&ipw2100_pci_driver.driver,
6615                            &driver_attr_debug_level);
6616 #endif
6617         pci_unregister_driver(&ipw2100_pci_driver);
6618         pm_qos_remove_request(&ipw2100_pm_qos_req);
6619 }
6620
6621 module_init(ipw2100_init);
6622 module_exit(ipw2100_exit);
6623
6624 static int ipw2100_wx_get_name(struct net_device *dev,
6625                                struct iw_request_info *info,
6626                                union iwreq_data *wrqu, char *extra)
6627 {
6628         /*
6629          * This can be called at any time.  No action lock required
6630          */
6631
6632         struct ipw2100_priv *priv = libipw_priv(dev);
6633         if (!(priv->status & STATUS_ASSOCIATED))
6634                 strcpy(wrqu->name, "unassociated");
6635         else
6636                 snprintf(wrqu->name, IFNAMSIZ, "IEEE 802.11b");
6637
6638         IPW_DEBUG_WX("Name: %s\n", wrqu->name);
6639         return 0;
6640 }
6641
6642 static int ipw2100_wx_set_freq(struct net_device *dev,
6643                                struct iw_request_info *info,
6644                                union iwreq_data *wrqu, char *extra)
6645 {
6646         struct ipw2100_priv *priv = libipw_priv(dev);
6647         struct iw_freq *fwrq = &wrqu->freq;
6648         int err = 0;
6649
6650         if (priv->ieee->iw_mode == IW_MODE_INFRA)
6651                 return -EOPNOTSUPP;
6652
6653         mutex_lock(&priv->action_mutex);
6654         if (!(priv->status & STATUS_INITIALIZED)) {
6655                 err = -EIO;
6656                 goto done;
6657         }
6658
6659         /* if setting by freq convert to channel */
6660         if (fwrq->e == 1) {
6661                 if ((fwrq->m >= (int)2.412e8 && fwrq->m <= (int)2.487e8)) {
6662                         int f = fwrq->m / 100000;
6663                         int c = 0;
6664
6665                         while ((c < REG_MAX_CHANNEL) &&
6666                                (f != ipw2100_frequencies[c]))
6667                                 c++;
6668
6669                         /* hack to fall through */
6670                         fwrq->e = 0;
6671                         fwrq->m = c + 1;
6672                 }
6673         }
6674
6675         if (fwrq->e > 0 || fwrq->m > 1000) {
6676                 err = -EOPNOTSUPP;
6677                 goto done;
6678         } else {                /* Set the channel */
6679                 IPW_DEBUG_WX("SET Freq/Channel -> %d\n", fwrq->m);
6680                 err = ipw2100_set_channel(priv, fwrq->m, 0);
6681         }
6682
6683       done:
6684         mutex_unlock(&priv->action_mutex);
6685         return err;
6686 }
6687
6688 static int ipw2100_wx_get_freq(struct net_device *dev,
6689                                struct iw_request_info *info,
6690                                union iwreq_data *wrqu, char *extra)
6691 {
6692         /*
6693          * This can be called at any time.  No action lock required
6694          */
6695
6696         struct ipw2100_priv *priv = libipw_priv(dev);
6697
6698         wrqu->freq.e = 0;
6699
6700         /* If we are associated, trying to associate, or have a statically
6701          * configured CHANNEL then return that; otherwise return ANY */
6702         if (priv->config & CFG_STATIC_CHANNEL ||
6703             priv->status & STATUS_ASSOCIATED)
6704                 wrqu->freq.m = priv->channel;
6705         else
6706                 wrqu->freq.m = 0;
6707
6708         IPW_DEBUG_WX("GET Freq/Channel -> %d\n", priv->channel);
6709         return 0;
6710
6711 }
6712
6713 static int ipw2100_wx_set_mode(struct net_device *dev,
6714                                struct iw_request_info *info,
6715                                union iwreq_data *wrqu, char *extra)
6716 {
6717         struct ipw2100_priv *priv = libipw_priv(dev);
6718         int err = 0;
6719
6720         IPW_DEBUG_WX("SET Mode -> %d\n", wrqu->mode);
6721
6722         if (wrqu->mode == priv->ieee->iw_mode)
6723                 return 0;
6724
6725         mutex_lock(&priv->action_mutex);
6726         if (!(priv->status & STATUS_INITIALIZED)) {
6727                 err = -EIO;
6728                 goto done;
6729         }
6730
6731         switch (wrqu->mode) {
6732 #ifdef CONFIG_IPW2100_MONITOR
6733         case IW_MODE_MONITOR:
6734                 err = ipw2100_switch_mode(priv, IW_MODE_MONITOR);
6735                 break;
6736 #endif                          /* CONFIG_IPW2100_MONITOR */
6737         case IW_MODE_ADHOC:
6738                 err = ipw2100_switch_mode(priv, IW_MODE_ADHOC);
6739                 break;
6740         case IW_MODE_INFRA:
6741         case IW_MODE_AUTO:
6742         default:
6743                 err = ipw2100_switch_mode(priv, IW_MODE_INFRA);
6744                 break;
6745         }
6746
6747       done:
6748         mutex_unlock(&priv->action_mutex);
6749         return err;
6750 }
6751
6752 static int ipw2100_wx_get_mode(struct net_device *dev,
6753                                struct iw_request_info *info,
6754                                union iwreq_data *wrqu, char *extra)
6755 {
6756         /*
6757          * This can be called at any time.  No action lock required
6758          */
6759
6760         struct ipw2100_priv *priv = libipw_priv(dev);
6761
6762         wrqu->mode = priv->ieee->iw_mode;
6763         IPW_DEBUG_WX("GET Mode -> %d\n", wrqu->mode);
6764
6765         return 0;
6766 }
6767
6768 #define POWER_MODES 5
6769
6770 /* Values are in microsecond */
6771 static const s32 timeout_duration[POWER_MODES] = {
6772         350000,
6773         250000,
6774         75000,
6775         37000,
6776         25000,
6777 };
6778
6779 static const s32 period_duration[POWER_MODES] = {
6780         400000,
6781         700000,
6782         1000000,
6783         1000000,
6784         1000000
6785 };
6786
6787 static int ipw2100_wx_get_range(struct net_device *dev,
6788                                 struct iw_request_info *info,
6789                                 union iwreq_data *wrqu, char *extra)
6790 {
6791         /*
6792          * This can be called at any time.  No action lock required
6793          */
6794
6795         struct ipw2100_priv *priv = libipw_priv(dev);
6796         struct iw_range *range = (struct iw_range *)extra;
6797         u16 val;
6798         int i, level;
6799
6800         wrqu->data.length = sizeof(*range);
6801         memset(range, 0, sizeof(*range));
6802
6803         /* Let's try to keep this struct in the same order as in
6804          * linux/include/wireless.h
6805          */
6806
6807         /* TODO: See what values we can set, and remove the ones we can't
6808          * set, or fill them with some default data.
6809          */
6810
6811         /* ~5 Mb/s real (802.11b) */
6812         range->throughput = 5 * 1000 * 1000;
6813
6814 //      range->sensitivity;     /* signal level threshold range */
6815
6816         range->max_qual.qual = 100;
6817         /* TODO: Find real max RSSI and stick here */
6818         range->max_qual.level = 0;
6819         range->max_qual.noise = 0;
6820         range->max_qual.updated = 7;    /* Updated all three */
6821
6822         range->avg_qual.qual = 70;      /* > 8% missed beacons is 'bad' */
6823         /* TODO: Find real 'good' to 'bad' threshold value for RSSI */
6824         range->avg_qual.level = 20 + IPW2100_RSSI_TO_DBM;
6825         range->avg_qual.noise = 0;
6826         range->avg_qual.updated = 7;    /* Updated all three */
6827
6828         range->num_bitrates = RATE_COUNT;
6829
6830         for (i = 0; i < RATE_COUNT && i < IW_MAX_BITRATES; i++) {
6831                 range->bitrate[i] = ipw2100_bg_rates[i].bitrate * 100 * 1000;
6832         }
6833
6834         range->min_rts = MIN_RTS_THRESHOLD;
6835         range->max_rts = MAX_RTS_THRESHOLD;
6836         range->min_frag = MIN_FRAG_THRESHOLD;
6837         range->max_frag = MAX_FRAG_THRESHOLD;
6838
6839         range->min_pmp = period_duration[0];    /* Minimal PM period */
6840         range->max_pmp = period_duration[POWER_MODES - 1];      /* Maximal PM period */
6841         range->min_pmt = timeout_duration[POWER_MODES - 1];     /* Minimal PM timeout */
6842         range->max_pmt = timeout_duration[0];   /* Maximal PM timeout */
6843
6844         /* How to decode max/min PM period */
6845         range->pmp_flags = IW_POWER_PERIOD;
6846         /* How to decode max/min PM period */
6847         range->pmt_flags = IW_POWER_TIMEOUT;
6848         /* What PM options are supported */
6849         range->pm_capa = IW_POWER_TIMEOUT | IW_POWER_PERIOD;
6850
6851         range->encoding_size[0] = 5;
6852         range->encoding_size[1] = 13;   /* Different token sizes */
6853         range->num_encoding_sizes = 2;  /* Number of entry in the list */
6854         range->max_encoding_tokens = WEP_KEYS;  /* Max number of tokens */
6855 //      range->encoding_login_index;            /* token index for login token */
6856
6857         if (priv->ieee->iw_mode == IW_MODE_ADHOC) {
6858                 range->txpower_capa = IW_TXPOW_DBM;
6859                 range->num_txpower = IW_MAX_TXPOWER;
6860                 for (i = 0, level = (IPW_TX_POWER_MAX_DBM * 16);
6861                      i < IW_MAX_TXPOWER;
6862                      i++, level -=
6863                      ((IPW_TX_POWER_MAX_DBM -
6864                        IPW_TX_POWER_MIN_DBM) * 16) / (IW_MAX_TXPOWER - 1))
6865                         range->txpower[i] = level / 16;
6866         } else {
6867                 range->txpower_capa = 0;
6868                 range->num_txpower = 0;
6869         }
6870
6871         /* Set the Wireless Extension versions */
6872         range->we_version_compiled = WIRELESS_EXT;
6873         range->we_version_source = 18;
6874
6875 //      range->retry_capa;      /* What retry options are supported */
6876 //      range->retry_flags;     /* How to decode max/min retry limit */
6877 //      range->r_time_flags;    /* How to decode max/min retry life */
6878 //      range->min_retry;       /* Minimal number of retries */
6879 //      range->max_retry;       /* Maximal number of retries */
6880 //      range->min_r_time;      /* Minimal retry lifetime */
6881 //      range->max_r_time;      /* Maximal retry lifetime */
6882
6883         range->num_channels = FREQ_COUNT;
6884
6885         val = 0;
6886         for (i = 0; i < FREQ_COUNT; i++) {
6887                 // TODO: Include only legal frequencies for some countries
6888 //              if (local->channel_mask & (1 << i)) {
6889                 range->freq[val].i = i + 1;
6890                 range->freq[val].m = ipw2100_frequencies[i] * 100000;
6891                 range->freq[val].e = 1;
6892                 val++;
6893 //              }
6894                 if (val == IW_MAX_FREQUENCIES)
6895                         break;
6896         }
6897         range->num_frequency = val;
6898
6899         /* Event capability (kernel + driver) */
6900         range->event_capa[0] = (IW_EVENT_CAPA_K_0 |
6901                                 IW_EVENT_CAPA_MASK(SIOCGIWAP));
6902         range->event_capa[1] = IW_EVENT_CAPA_K_1;
6903
6904         range->enc_capa = IW_ENC_CAPA_WPA | IW_ENC_CAPA_WPA2 |
6905                 IW_ENC_CAPA_CIPHER_TKIP | IW_ENC_CAPA_CIPHER_CCMP;
6906
6907         IPW_DEBUG_WX("GET Range\n");
6908
6909         return 0;
6910 }
6911
6912 static int ipw2100_wx_set_wap(struct net_device *dev,
6913                               struct iw_request_info *info,
6914                               union iwreq_data *wrqu, char *extra)
6915 {
6916         struct ipw2100_priv *priv = libipw_priv(dev);
6917         int err = 0;
6918
6919         // sanity checks
6920         if (wrqu->ap_addr.sa_family != ARPHRD_ETHER)
6921                 return -EINVAL;
6922
6923         mutex_lock(&priv->action_mutex);
6924         if (!(priv->status & STATUS_INITIALIZED)) {
6925                 err = -EIO;
6926                 goto done;
6927         }
6928
6929         if (is_broadcast_ether_addr(wrqu->ap_addr.sa_data) ||
6930             is_zero_ether_addr(wrqu->ap_addr.sa_data)) {
6931                 /* we disable mandatory BSSID association */
6932                 IPW_DEBUG_WX("exit - disable mandatory BSSID\n");
6933                 priv->config &= ~CFG_STATIC_BSSID;
6934                 err = ipw2100_set_mandatory_bssid(priv, NULL, 0);
6935                 goto done;
6936         }
6937
6938         priv->config |= CFG_STATIC_BSSID;
6939         memcpy(priv->mandatory_bssid_mac, wrqu->ap_addr.sa_data, ETH_ALEN);
6940
6941         err = ipw2100_set_mandatory_bssid(priv, wrqu->ap_addr.sa_data, 0);
6942
6943         IPW_DEBUG_WX("SET BSSID -> %pM\n", wrqu->ap_addr.sa_data);
6944
6945       done:
6946         mutex_unlock(&priv->action_mutex);
6947         return err;
6948 }
6949
6950 static int ipw2100_wx_get_wap(struct net_device *dev,
6951                               struct iw_request_info *info,
6952                               union iwreq_data *wrqu, char *extra)
6953 {
6954         /*
6955          * This can be called at any time.  No action lock required
6956          */
6957
6958         struct ipw2100_priv *priv = libipw_priv(dev);
6959
6960         /* If we are associated, trying to associate, or have a statically
6961          * configured BSSID then return that; otherwise return ANY */
6962         if (priv->config & CFG_STATIC_BSSID || priv->status & STATUS_ASSOCIATED) {
6963                 wrqu->ap_addr.sa_family = ARPHRD_ETHER;
6964                 memcpy(wrqu->ap_addr.sa_data, priv->bssid, ETH_ALEN);
6965         } else
6966                 eth_zero_addr(wrqu->ap_addr.sa_data);
6967
6968         IPW_DEBUG_WX("Getting WAP BSSID: %pM\n", wrqu->ap_addr.sa_data);
6969         return 0;
6970 }
6971
6972 static int ipw2100_wx_set_essid(struct net_device *dev,
6973                                 struct iw_request_info *info,
6974                                 union iwreq_data *wrqu, char *extra)
6975 {
6976         struct ipw2100_priv *priv = libipw_priv(dev);
6977         char *essid = "";       /* ANY */
6978         int length = 0;
6979         int err = 0;
6980
6981         mutex_lock(&priv->action_mutex);
6982         if (!(priv->status & STATUS_INITIALIZED)) {
6983                 err = -EIO;
6984                 goto done;
6985         }
6986
6987         if (wrqu->essid.flags && wrqu->essid.length) {
6988                 length = wrqu->essid.length;
6989                 essid = extra;
6990         }
6991
6992         if (length == 0) {
6993                 IPW_DEBUG_WX("Setting ESSID to ANY\n");
6994                 priv->config &= ~CFG_STATIC_ESSID;
6995                 err = ipw2100_set_essid(priv, NULL, 0, 0);
6996                 goto done;
6997         }
6998
6999         length = min(length, IW_ESSID_MAX_SIZE);
7000
7001         priv->config |= CFG_STATIC_ESSID;
7002
7003         if (priv->essid_len == length && !memcmp(priv->essid, extra, length)) {
7004                 IPW_DEBUG_WX("ESSID set to current ESSID.\n");
7005                 err = 0;
7006                 goto done;
7007         }
7008
7009         IPW_DEBUG_WX("Setting ESSID: '%*pE' (%d)\n", length, essid, length);
7010
7011         priv->essid_len = length;
7012         memcpy(priv->essid, essid, priv->essid_len);
7013
7014         err = ipw2100_set_essid(priv, essid, length, 0);
7015
7016       done:
7017         mutex_unlock(&priv->action_mutex);
7018         return err;
7019 }
7020
7021 static int ipw2100_wx_get_essid(struct net_device *dev,
7022                                 struct iw_request_info *info,
7023                                 union iwreq_data *wrqu, char *extra)
7024 {
7025         /*
7026          * This can be called at any time.  No action lock required
7027          */
7028
7029         struct ipw2100_priv *priv = libipw_priv(dev);
7030
7031         /* If we are associated, trying to associate, or have a statically
7032          * configured ESSID then return that; otherwise return ANY */
7033         if (priv->config & CFG_STATIC_ESSID || priv->status & STATUS_ASSOCIATED) {
7034                 IPW_DEBUG_WX("Getting essid: '%*pE'\n",
7035                              priv->essid_len, priv->essid);
7036                 memcpy(extra, priv->essid, priv->essid_len);
7037                 wrqu->essid.length = priv->essid_len;
7038                 wrqu->essid.flags = 1;  /* active */
7039         } else {
7040                 IPW_DEBUG_WX("Getting essid: ANY\n");
7041                 wrqu->essid.length = 0;
7042                 wrqu->essid.flags = 0;  /* active */
7043         }
7044
7045         return 0;
7046 }
7047
7048 static int ipw2100_wx_set_nick(struct net_device *dev,
7049                                struct iw_request_info *info,
7050                                union iwreq_data *wrqu, char *extra)
7051 {
7052         /*
7053          * This can be called at any time.  No action lock required
7054          */
7055
7056         struct ipw2100_priv *priv = libipw_priv(dev);
7057
7058         if (wrqu->data.length > IW_ESSID_MAX_SIZE)
7059                 return -E2BIG;
7060
7061         wrqu->data.length = min_t(size_t, wrqu->data.length, sizeof(priv->nick));
7062         memset(priv->nick, 0, sizeof(priv->nick));
7063         memcpy(priv->nick, extra, wrqu->data.length);
7064
7065         IPW_DEBUG_WX("SET Nickname -> %s\n", priv->nick);
7066
7067         return 0;
7068 }
7069
7070 static int ipw2100_wx_get_nick(struct net_device *dev,
7071                                struct iw_request_info *info,
7072                                union iwreq_data *wrqu, char *extra)
7073 {
7074         /*
7075          * This can be called at any time.  No action lock required
7076          */
7077
7078         struct ipw2100_priv *priv = libipw_priv(dev);
7079
7080         wrqu->data.length = strlen(priv->nick);
7081         memcpy(extra, priv->nick, wrqu->data.length);
7082         wrqu->data.flags = 1;   /* active */
7083
7084         IPW_DEBUG_WX("GET Nickname -> %s\n", extra);
7085
7086         return 0;
7087 }
7088
7089 static int ipw2100_wx_set_rate(struct net_device *dev,
7090                                struct iw_request_info *info,
7091                                union iwreq_data *wrqu, char *extra)
7092 {
7093         struct ipw2100_priv *priv = libipw_priv(dev);
7094         u32 target_rate = wrqu->bitrate.value;
7095         u32 rate;
7096         int err = 0;
7097
7098         mutex_lock(&priv->action_mutex);
7099         if (!(priv->status & STATUS_INITIALIZED)) {
7100                 err = -EIO;
7101                 goto done;
7102         }
7103
7104         rate = 0;
7105
7106         if (target_rate == 1000000 ||
7107             (!wrqu->bitrate.fixed && target_rate > 1000000))
7108                 rate |= TX_RATE_1_MBIT;
7109         if (target_rate == 2000000 ||
7110             (!wrqu->bitrate.fixed && target_rate > 2000000))
7111                 rate |= TX_RATE_2_MBIT;
7112         if (target_rate == 5500000 ||
7113             (!wrqu->bitrate.fixed && target_rate > 5500000))
7114                 rate |= TX_RATE_5_5_MBIT;
7115         if (target_rate == 11000000 ||
7116             (!wrqu->bitrate.fixed && target_rate > 11000000))
7117                 rate |= TX_RATE_11_MBIT;
7118         if (rate == 0)
7119                 rate = DEFAULT_TX_RATES;
7120
7121         err = ipw2100_set_tx_rates(priv, rate, 0);
7122
7123         IPW_DEBUG_WX("SET Rate -> %04X\n", rate);
7124       done:
7125         mutex_unlock(&priv->action_mutex);
7126         return err;
7127 }
7128
7129 static int ipw2100_wx_get_rate(struct net_device *dev,
7130                                struct iw_request_info *info,
7131                                union iwreq_data *wrqu, char *extra)
7132 {
7133         struct ipw2100_priv *priv = libipw_priv(dev);
7134         int val;
7135         unsigned int len = sizeof(val);
7136         int err = 0;
7137
7138         if (!(priv->status & STATUS_ENABLED) ||
7139             priv->status & STATUS_RF_KILL_MASK ||
7140             !(priv->status & STATUS_ASSOCIATED)) {
7141                 wrqu->bitrate.value = 0;
7142                 return 0;
7143         }
7144
7145         mutex_lock(&priv->action_mutex);
7146         if (!(priv->status & STATUS_INITIALIZED)) {
7147                 err = -EIO;
7148                 goto done;
7149         }
7150
7151         err = ipw2100_get_ordinal(priv, IPW_ORD_CURRENT_TX_RATE, &val, &len);
7152         if (err) {
7153                 IPW_DEBUG_WX("failed querying ordinals.\n");
7154                 goto done;
7155         }
7156
7157         switch (val & TX_RATE_MASK) {
7158         case TX_RATE_1_MBIT:
7159                 wrqu->bitrate.value = 1000000;
7160                 break;
7161         case TX_RATE_2_MBIT:
7162                 wrqu->bitrate.value = 2000000;
7163                 break;
7164         case TX_RATE_5_5_MBIT:
7165                 wrqu->bitrate.value = 5500000;
7166                 break;
7167         case TX_RATE_11_MBIT:
7168                 wrqu->bitrate.value = 11000000;
7169                 break;
7170         default:
7171                 wrqu->bitrate.value = 0;
7172         }
7173
7174         IPW_DEBUG_WX("GET Rate -> %d\n", wrqu->bitrate.value);
7175
7176       done:
7177         mutex_unlock(&priv->action_mutex);
7178         return err;
7179 }
7180
7181 static int ipw2100_wx_set_rts(struct net_device *dev,
7182                               struct iw_request_info *info,
7183                               union iwreq_data *wrqu, char *extra)
7184 {
7185         struct ipw2100_priv *priv = libipw_priv(dev);
7186         int value, err;
7187
7188         /* Auto RTS not yet supported */
7189         if (wrqu->rts.fixed == 0)
7190                 return -EINVAL;
7191
7192         mutex_lock(&priv->action_mutex);
7193         if (!(priv->status & STATUS_INITIALIZED)) {
7194                 err = -EIO;
7195                 goto done;
7196         }
7197
7198         if (wrqu->rts.disabled)
7199                 value = priv->rts_threshold | RTS_DISABLED;
7200         else {
7201                 if (wrqu->rts.value < 1 || wrqu->rts.value > 2304) {
7202                         err = -EINVAL;
7203                         goto done;
7204                 }
7205                 value = wrqu->rts.value;
7206         }
7207
7208         err = ipw2100_set_rts_threshold(priv, value);
7209
7210         IPW_DEBUG_WX("SET RTS Threshold -> 0x%08X\n", value);
7211       done:
7212         mutex_unlock(&priv->action_mutex);
7213         return err;
7214 }
7215
7216 static int ipw2100_wx_get_rts(struct net_device *dev,
7217                               struct iw_request_info *info,
7218                               union iwreq_data *wrqu, char *extra)
7219 {
7220         /*
7221          * This can be called at any time.  No action lock required
7222          */
7223
7224         struct ipw2100_priv *priv = libipw_priv(dev);
7225
7226         wrqu->rts.value = priv->rts_threshold & ~RTS_DISABLED;
7227         wrqu->rts.fixed = 1;    /* no auto select */
7228
7229         /* If RTS is set to the default value, then it is disabled */
7230         wrqu->rts.disabled = (priv->rts_threshold & RTS_DISABLED) ? 1 : 0;
7231
7232         IPW_DEBUG_WX("GET RTS Threshold -> 0x%08X\n", wrqu->rts.value);
7233
7234         return 0;
7235 }
7236
7237 static int ipw2100_wx_set_txpow(struct net_device *dev,
7238                                 struct iw_request_info *info,
7239                                 union iwreq_data *wrqu, char *extra)
7240 {
7241         struct ipw2100_priv *priv = libipw_priv(dev);
7242         int err = 0, value;
7243         
7244         if (ipw_radio_kill_sw(priv, wrqu->txpower.disabled))
7245                 return -EINPROGRESS;
7246
7247         if (priv->ieee->iw_mode != IW_MODE_ADHOC)
7248                 return 0;
7249
7250         if ((wrqu->txpower.flags & IW_TXPOW_TYPE) != IW_TXPOW_DBM)
7251                 return -EINVAL;
7252
7253         if (wrqu->txpower.fixed == 0)
7254                 value = IPW_TX_POWER_DEFAULT;
7255         else {
7256                 if (wrqu->txpower.value < IPW_TX_POWER_MIN_DBM ||
7257                     wrqu->txpower.value > IPW_TX_POWER_MAX_DBM)
7258                         return -EINVAL;
7259
7260                 value = wrqu->txpower.value;
7261         }
7262
7263         mutex_lock(&priv->action_mutex);
7264         if (!(priv->status & STATUS_INITIALIZED)) {
7265                 err = -EIO;
7266                 goto done;
7267         }
7268
7269         err = ipw2100_set_tx_power(priv, value);
7270
7271         IPW_DEBUG_WX("SET TX Power -> %d\n", value);
7272
7273       done:
7274         mutex_unlock(&priv->action_mutex);
7275         return err;
7276 }
7277
7278 static int ipw2100_wx_get_txpow(struct net_device *dev,
7279                                 struct iw_request_info *info,
7280                                 union iwreq_data *wrqu, char *extra)
7281 {
7282         /*
7283          * This can be called at any time.  No action lock required
7284          */
7285
7286         struct ipw2100_priv *priv = libipw_priv(dev);
7287
7288         wrqu->txpower.disabled = (priv->status & STATUS_RF_KILL_MASK) ? 1 : 0;
7289
7290         if (priv->tx_power == IPW_TX_POWER_DEFAULT) {
7291                 wrqu->txpower.fixed = 0;
7292                 wrqu->txpower.value = IPW_TX_POWER_MAX_DBM;
7293         } else {
7294                 wrqu->txpower.fixed = 1;
7295                 wrqu->txpower.value = priv->tx_power;
7296         }
7297
7298         wrqu->txpower.flags = IW_TXPOW_DBM;
7299
7300         IPW_DEBUG_WX("GET TX Power -> %d\n", wrqu->txpower.value);
7301
7302         return 0;
7303 }
7304
7305 static int ipw2100_wx_set_frag(struct net_device *dev,
7306                                struct iw_request_info *info,
7307                                union iwreq_data *wrqu, char *extra)
7308 {
7309         /*
7310          * This can be called at any time.  No action lock required
7311          */
7312
7313         struct ipw2100_priv *priv = libipw_priv(dev);
7314
7315         if (!wrqu->frag.fixed)
7316                 return -EINVAL;
7317
7318         if (wrqu->frag.disabled) {
7319                 priv->frag_threshold |= FRAG_DISABLED;
7320                 priv->ieee->fts = DEFAULT_FTS;
7321         } else {
7322                 if (wrqu->frag.value < MIN_FRAG_THRESHOLD ||
7323                     wrqu->frag.value > MAX_FRAG_THRESHOLD)
7324                         return -EINVAL;
7325
7326                 priv->ieee->fts = wrqu->frag.value & ~0x1;
7327                 priv->frag_threshold = priv->ieee->fts;
7328         }
7329
7330         IPW_DEBUG_WX("SET Frag Threshold -> %d\n", priv->ieee->fts);
7331
7332         return 0;
7333 }
7334
7335 static int ipw2100_wx_get_frag(struct net_device *dev,
7336                                struct iw_request_info *info,
7337                                union iwreq_data *wrqu, char *extra)
7338 {
7339         /*
7340          * This can be called at any time.  No action lock required
7341          */
7342
7343         struct ipw2100_priv *priv = libipw_priv(dev);
7344         wrqu->frag.value = priv->frag_threshold & ~FRAG_DISABLED;
7345         wrqu->frag.fixed = 0;   /* no auto select */
7346         wrqu->frag.disabled = (priv->frag_threshold & FRAG_DISABLED) ? 1 : 0;
7347
7348         IPW_DEBUG_WX("GET Frag Threshold -> %d\n", wrqu->frag.value);
7349
7350         return 0;
7351 }
7352
7353 static int ipw2100_wx_set_retry(struct net_device *dev,
7354                                 struct iw_request_info *info,
7355                                 union iwreq_data *wrqu, char *extra)
7356 {
7357         struct ipw2100_priv *priv = libipw_priv(dev);
7358         int err = 0;
7359
7360         if (wrqu->retry.flags & IW_RETRY_LIFETIME || wrqu->retry.disabled)
7361                 return -EINVAL;
7362
7363         if (!(wrqu->retry.flags & IW_RETRY_LIMIT))
7364                 return 0;
7365
7366         mutex_lock(&priv->action_mutex);
7367         if (!(priv->status & STATUS_INITIALIZED)) {
7368                 err = -EIO;
7369                 goto done;
7370         }
7371
7372         if (wrqu->retry.flags & IW_RETRY_SHORT) {
7373                 err = ipw2100_set_short_retry(priv, wrqu->retry.value);
7374                 IPW_DEBUG_WX("SET Short Retry Limit -> %d\n",
7375                              wrqu->retry.value);
7376                 goto done;
7377         }
7378
7379         if (wrqu->retry.flags & IW_RETRY_LONG) {
7380                 err = ipw2100_set_long_retry(priv, wrqu->retry.value);
7381                 IPW_DEBUG_WX("SET Long Retry Limit -> %d\n",
7382                              wrqu->retry.value);
7383                 goto done;
7384         }
7385
7386         err = ipw2100_set_short_retry(priv, wrqu->retry.value);
7387         if (!err)
7388                 err = ipw2100_set_long_retry(priv, wrqu->retry.value);
7389
7390         IPW_DEBUG_WX("SET Both Retry Limits -> %d\n", wrqu->retry.value);
7391
7392       done:
7393         mutex_unlock(&priv->action_mutex);
7394         return err;
7395 }
7396
7397 static int ipw2100_wx_get_retry(struct net_device *dev,
7398                                 struct iw_request_info *info,
7399                                 union iwreq_data *wrqu, char *extra)
7400 {
7401         /*
7402          * This can be called at any time.  No action lock required
7403          */
7404
7405         struct ipw2100_priv *priv = libipw_priv(dev);
7406
7407         wrqu->retry.disabled = 0;       /* can't be disabled */
7408
7409         if ((wrqu->retry.flags & IW_RETRY_TYPE) == IW_RETRY_LIFETIME)
7410                 return -EINVAL;
7411
7412         if (wrqu->retry.flags & IW_RETRY_LONG) {
7413                 wrqu->retry.flags = IW_RETRY_LIMIT | IW_RETRY_LONG;
7414                 wrqu->retry.value = priv->long_retry_limit;
7415         } else {
7416                 wrqu->retry.flags =
7417                     (priv->short_retry_limit !=
7418                      priv->long_retry_limit) ?
7419                     IW_RETRY_LIMIT | IW_RETRY_SHORT : IW_RETRY_LIMIT;
7420
7421                 wrqu->retry.value = priv->short_retry_limit;
7422         }
7423
7424         IPW_DEBUG_WX("GET Retry -> %d\n", wrqu->retry.value);
7425
7426         return 0;
7427 }
7428
7429 static int ipw2100_wx_set_scan(struct net_device *dev,
7430                                struct iw_request_info *info,
7431                                union iwreq_data *wrqu, char *extra)
7432 {
7433         struct ipw2100_priv *priv = libipw_priv(dev);
7434         int err = 0;
7435
7436         mutex_lock(&priv->action_mutex);
7437         if (!(priv->status & STATUS_INITIALIZED)) {
7438                 err = -EIO;
7439                 goto done;
7440         }
7441
7442         IPW_DEBUG_WX("Initiating scan...\n");
7443
7444         priv->user_requested_scan = 1;
7445         if (ipw2100_set_scan_options(priv) || ipw2100_start_scan(priv)) {
7446                 IPW_DEBUG_WX("Start scan failed.\n");
7447
7448                 /* TODO: Mark a scan as pending so when hardware initialized
7449                  *       a scan starts */
7450         }
7451
7452       done:
7453         mutex_unlock(&priv->action_mutex);
7454         return err;
7455 }
7456
7457 static int ipw2100_wx_get_scan(struct net_device *dev,
7458                                struct iw_request_info *info,
7459                                union iwreq_data *wrqu, char *extra)
7460 {
7461         /*
7462          * This can be called at any time.  No action lock required
7463          */
7464
7465         struct ipw2100_priv *priv = libipw_priv(dev);
7466         return libipw_wx_get_scan(priv->ieee, info, wrqu, extra);
7467 }
7468
7469 /*
7470  * Implementation based on code in hostap-driver v0.1.3 hostap_ioctl.c
7471  */
7472 static int ipw2100_wx_set_encode(struct net_device *dev,
7473                                  struct iw_request_info *info,
7474                                  union iwreq_data *wrqu, char *key)
7475 {
7476         /*
7477          * No check of STATUS_INITIALIZED required
7478          */
7479
7480         struct ipw2100_priv *priv = libipw_priv(dev);
7481         return libipw_wx_set_encode(priv->ieee, info, wrqu, key);
7482 }
7483
7484 static int ipw2100_wx_get_encode(struct net_device *dev,
7485                                  struct iw_request_info *info,
7486                                  union iwreq_data *wrqu, char *key)
7487 {
7488         /*
7489          * This can be called at any time.  No action lock required
7490          */
7491
7492         struct ipw2100_priv *priv = libipw_priv(dev);
7493         return libipw_wx_get_encode(priv->ieee, info, wrqu, key);
7494 }
7495
7496 static int ipw2100_wx_set_power(struct net_device *dev,
7497                                 struct iw_request_info *info,
7498                                 union iwreq_data *wrqu, char *extra)
7499 {
7500         struct ipw2100_priv *priv = libipw_priv(dev);
7501         int err = 0;
7502
7503         mutex_lock(&priv->action_mutex);
7504         if (!(priv->status & STATUS_INITIALIZED)) {
7505                 err = -EIO;
7506                 goto done;
7507         }
7508
7509         if (wrqu->power.disabled) {
7510                 priv->power_mode = IPW_POWER_LEVEL(priv->power_mode);
7511                 err = ipw2100_set_power_mode(priv, IPW_POWER_MODE_CAM);
7512                 IPW_DEBUG_WX("SET Power Management Mode -> off\n");
7513                 goto done;
7514         }
7515
7516         switch (wrqu->power.flags & IW_POWER_MODE) {
7517         case IW_POWER_ON:       /* If not specified */
7518         case IW_POWER_MODE:     /* If set all mask */
7519         case IW_POWER_ALL_R:    /* If explicitly state all */
7520                 break;
7521         default:                /* Otherwise we don't support it */
7522                 IPW_DEBUG_WX("SET PM Mode: %X not supported.\n",
7523                              wrqu->power.flags);
7524                 err = -EOPNOTSUPP;
7525                 goto done;
7526         }
7527
7528         /* If the user hasn't specified a power management mode yet, default
7529          * to BATTERY */
7530         priv->power_mode = IPW_POWER_ENABLED | priv->power_mode;
7531         err = ipw2100_set_power_mode(priv, IPW_POWER_LEVEL(priv->power_mode));
7532
7533         IPW_DEBUG_WX("SET Power Management Mode -> 0x%02X\n", priv->power_mode);
7534
7535       done:
7536         mutex_unlock(&priv->action_mutex);
7537         return err;
7538
7539 }
7540
7541 static int ipw2100_wx_get_power(struct net_device *dev,
7542                                 struct iw_request_info *info,
7543                                 union iwreq_data *wrqu, char *extra)
7544 {
7545         /*
7546          * This can be called at any time.  No action lock required
7547          */
7548
7549         struct ipw2100_priv *priv = libipw_priv(dev);
7550
7551         if (!(priv->power_mode & IPW_POWER_ENABLED))
7552                 wrqu->power.disabled = 1;
7553         else {
7554                 wrqu->power.disabled = 0;
7555                 wrqu->power.flags = 0;
7556         }
7557
7558         IPW_DEBUG_WX("GET Power Management Mode -> %02X\n", priv->power_mode);
7559
7560         return 0;
7561 }
7562
7563 /*
7564  * WE-18 WPA support
7565  */
7566
7567 /* SIOCSIWGENIE */
7568 static int ipw2100_wx_set_genie(struct net_device *dev,
7569                                 struct iw_request_info *info,
7570                                 union iwreq_data *wrqu, char *extra)
7571 {
7572
7573         struct ipw2100_priv *priv = libipw_priv(dev);
7574         struct libipw_device *ieee = priv->ieee;
7575         u8 *buf;
7576
7577         if (!ieee->wpa_enabled)
7578                 return -EOPNOTSUPP;
7579
7580         if (wrqu->data.length > MAX_WPA_IE_LEN ||
7581             (wrqu->data.length && extra == NULL))
7582                 return -EINVAL;
7583
7584         if (wrqu->data.length) {
7585                 buf = kmemdup(extra, wrqu->data.length, GFP_KERNEL);
7586                 if (buf == NULL)
7587                         return -ENOMEM;
7588
7589                 kfree(ieee->wpa_ie);
7590                 ieee->wpa_ie = buf;
7591                 ieee->wpa_ie_len = wrqu->data.length;
7592         } else {
7593                 kfree(ieee->wpa_ie);
7594                 ieee->wpa_ie = NULL;
7595                 ieee->wpa_ie_len = 0;
7596         }
7597
7598         ipw2100_wpa_assoc_frame(priv, ieee->wpa_ie, ieee->wpa_ie_len);
7599
7600         return 0;
7601 }
7602
7603 /* SIOCGIWGENIE */
7604 static int ipw2100_wx_get_genie(struct net_device *dev,
7605                                 struct iw_request_info *info,
7606                                 union iwreq_data *wrqu, char *extra)
7607 {
7608         struct ipw2100_priv *priv = libipw_priv(dev);
7609         struct libipw_device *ieee = priv->ieee;
7610
7611         if (ieee->wpa_ie_len == 0 || ieee->wpa_ie == NULL) {
7612                 wrqu->data.length = 0;
7613                 return 0;
7614         }
7615
7616         if (wrqu->data.length < ieee->wpa_ie_len)
7617                 return -E2BIG;
7618
7619         wrqu->data.length = ieee->wpa_ie_len;
7620         memcpy(extra, ieee->wpa_ie, ieee->wpa_ie_len);
7621
7622         return 0;
7623 }
7624
7625 /* SIOCSIWAUTH */
7626 static int ipw2100_wx_set_auth(struct net_device *dev,
7627                                struct iw_request_info *info,
7628                                union iwreq_data *wrqu, char *extra)
7629 {
7630         struct ipw2100_priv *priv = libipw_priv(dev);
7631         struct libipw_device *ieee = priv->ieee;
7632         struct iw_param *param = &wrqu->param;
7633         struct lib80211_crypt_data *crypt;
7634         unsigned long flags;
7635         int ret = 0;
7636
7637         switch (param->flags & IW_AUTH_INDEX) {
7638         case IW_AUTH_WPA_VERSION:
7639         case IW_AUTH_CIPHER_PAIRWISE:
7640         case IW_AUTH_CIPHER_GROUP:
7641         case IW_AUTH_KEY_MGMT:
7642                 /*
7643                  * ipw2200 does not use these parameters
7644                  */
7645                 break;
7646
7647         case IW_AUTH_TKIP_COUNTERMEASURES:
7648                 crypt = priv->ieee->crypt_info.crypt[priv->ieee->crypt_info.tx_keyidx];
7649                 if (!crypt || !crypt->ops->set_flags || !crypt->ops->get_flags)
7650                         break;
7651
7652                 flags = crypt->ops->get_flags(crypt->priv);
7653
7654                 if (param->value)
7655                         flags |= IEEE80211_CRYPTO_TKIP_COUNTERMEASURES;
7656                 else
7657                         flags &= ~IEEE80211_CRYPTO_TKIP_COUNTERMEASURES;
7658
7659                 crypt->ops->set_flags(flags, crypt->priv);
7660
7661                 break;
7662
7663         case IW_AUTH_DROP_UNENCRYPTED:{
7664                         /* HACK:
7665                          *
7666                          * wpa_supplicant calls set_wpa_enabled when the driver
7667                          * is loaded and unloaded, regardless of if WPA is being
7668                          * used.  No other calls are made which can be used to
7669                          * determine if encryption will be used or not prior to
7670                          * association being expected.  If encryption is not being
7671                          * used, drop_unencrypted is set to false, else true -- we
7672                          * can use this to determine if the CAP_PRIVACY_ON bit should
7673                          * be set.
7674                          */
7675                         struct libipw_security sec = {
7676                                 .flags = SEC_ENABLED,
7677                                 .enabled = param->value,
7678                         };
7679                         priv->ieee->drop_unencrypted = param->value;
7680                         /* We only change SEC_LEVEL for open mode. Others
7681                          * are set by ipw_wpa_set_encryption.
7682                          */
7683                         if (!param->value) {
7684                                 sec.flags |= SEC_LEVEL;
7685                                 sec.level = SEC_LEVEL_0;
7686                         } else {
7687                                 sec.flags |= SEC_LEVEL;
7688                                 sec.level = SEC_LEVEL_1;
7689                         }
7690                         if (priv->ieee->set_security)
7691                                 priv->ieee->set_security(priv->ieee->dev, &sec);
7692                         break;
7693                 }
7694
7695         case IW_AUTH_80211_AUTH_ALG:
7696                 ret = ipw2100_wpa_set_auth_algs(priv, param->value);
7697                 break;
7698
7699         case IW_AUTH_WPA_ENABLED:
7700                 ret = ipw2100_wpa_enable(priv, param->value);
7701                 break;
7702
7703         case IW_AUTH_RX_UNENCRYPTED_EAPOL:
7704                 ieee->ieee802_1x = param->value;
7705                 break;
7706
7707                 //case IW_AUTH_ROAMING_CONTROL:
7708         case IW_AUTH_PRIVACY_INVOKED:
7709                 ieee->privacy_invoked = param->value;
7710                 break;
7711
7712         default:
7713                 return -EOPNOTSUPP;
7714         }
7715         return ret;
7716 }
7717
7718 /* SIOCGIWAUTH */
7719 static int ipw2100_wx_get_auth(struct net_device *dev,
7720                                struct iw_request_info *info,
7721                                union iwreq_data *wrqu, char *extra)
7722 {
7723         struct ipw2100_priv *priv = libipw_priv(dev);
7724         struct libipw_device *ieee = priv->ieee;
7725         struct lib80211_crypt_data *crypt;
7726         struct iw_param *param = &wrqu->param;
7727         int ret = 0;
7728
7729         switch (param->flags & IW_AUTH_INDEX) {
7730         case IW_AUTH_WPA_VERSION:
7731         case IW_AUTH_CIPHER_PAIRWISE:
7732         case IW_AUTH_CIPHER_GROUP:
7733         case IW_AUTH_KEY_MGMT:
7734                 /*
7735                  * wpa_supplicant will control these internally
7736                  */
7737                 ret = -EOPNOTSUPP;
7738                 break;
7739
7740         case IW_AUTH_TKIP_COUNTERMEASURES:
7741                 crypt = priv->ieee->crypt_info.crypt[priv->ieee->crypt_info.tx_keyidx];
7742                 if (!crypt || !crypt->ops->get_flags) {
7743                         IPW_DEBUG_WARNING("Can't get TKIP countermeasures: "
7744                                           "crypt not set!\n");
7745                         break;
7746                 }
7747
7748                 param->value = (crypt->ops->get_flags(crypt->priv) &
7749                                 IEEE80211_CRYPTO_TKIP_COUNTERMEASURES) ? 1 : 0;
7750
7751                 break;
7752
7753         case IW_AUTH_DROP_UNENCRYPTED:
7754                 param->value = ieee->drop_unencrypted;
7755                 break;
7756
7757         case IW_AUTH_80211_AUTH_ALG:
7758                 param->value = priv->ieee->sec.auth_mode;
7759                 break;
7760
7761         case IW_AUTH_WPA_ENABLED:
7762                 param->value = ieee->wpa_enabled;
7763                 break;
7764
7765         case IW_AUTH_RX_UNENCRYPTED_EAPOL:
7766                 param->value = ieee->ieee802_1x;
7767                 break;
7768
7769         case IW_AUTH_ROAMING_CONTROL:
7770         case IW_AUTH_PRIVACY_INVOKED:
7771                 param->value = ieee->privacy_invoked;
7772                 break;
7773
7774         default:
7775                 return -EOPNOTSUPP;
7776         }
7777         return 0;
7778 }
7779
7780 /* SIOCSIWENCODEEXT */
7781 static int ipw2100_wx_set_encodeext(struct net_device *dev,
7782                                     struct iw_request_info *info,
7783                                     union iwreq_data *wrqu, char *extra)
7784 {
7785         struct ipw2100_priv *priv = libipw_priv(dev);
7786         return libipw_wx_set_encodeext(priv->ieee, info, wrqu, extra);
7787 }
7788
7789 /* SIOCGIWENCODEEXT */
7790 static int ipw2100_wx_get_encodeext(struct net_device *dev,
7791                                     struct iw_request_info *info,
7792                                     union iwreq_data *wrqu, char *extra)
7793 {
7794         struct ipw2100_priv *priv = libipw_priv(dev);
7795         return libipw_wx_get_encodeext(priv->ieee, info, wrqu, extra);
7796 }
7797
7798 /* SIOCSIWMLME */
7799 static int ipw2100_wx_set_mlme(struct net_device *dev,
7800                                struct iw_request_info *info,
7801                                union iwreq_data *wrqu, char *extra)
7802 {
7803         struct ipw2100_priv *priv = libipw_priv(dev);
7804         struct iw_mlme *mlme = (struct iw_mlme *)extra;
7805         __le16 reason;
7806
7807         reason = cpu_to_le16(mlme->reason_code);
7808
7809         switch (mlme->cmd) {
7810         case IW_MLME_DEAUTH:
7811                 // silently ignore
7812                 break;
7813
7814         case IW_MLME_DISASSOC:
7815                 ipw2100_disassociate_bssid(priv);
7816                 break;
7817
7818         default:
7819                 return -EOPNOTSUPP;
7820         }
7821         return 0;
7822 }
7823
7824 /*
7825  *
7826  * IWPRIV handlers
7827  *
7828  */
7829 #ifdef CONFIG_IPW2100_MONITOR
7830 static int ipw2100_wx_set_promisc(struct net_device *dev,
7831                                   struct iw_request_info *info,
7832                                   union iwreq_data *wrqu, char *extra)
7833 {
7834         struct ipw2100_priv *priv = libipw_priv(dev);
7835         int *parms = (int *)extra;
7836         int enable = (parms[0] > 0);
7837         int err = 0;
7838
7839         mutex_lock(&priv->action_mutex);
7840         if (!(priv->status & STATUS_INITIALIZED)) {
7841                 err = -EIO;
7842                 goto done;
7843         }
7844
7845         if (enable) {
7846                 if (priv->ieee->iw_mode == IW_MODE_MONITOR) {
7847                         err = ipw2100_set_channel(priv, parms[1], 0);
7848                         goto done;
7849                 }
7850                 priv->channel = parms[1];
7851                 err = ipw2100_switch_mode(priv, IW_MODE_MONITOR);
7852         } else {
7853                 if (priv->ieee->iw_mode == IW_MODE_MONITOR)
7854                         err = ipw2100_switch_mode(priv, priv->last_mode);
7855         }
7856       done:
7857         mutex_unlock(&priv->action_mutex);
7858         return err;
7859 }
7860
7861 static int ipw2100_wx_reset(struct net_device *dev,
7862                             struct iw_request_info *info,
7863                             union iwreq_data *wrqu, char *extra)
7864 {
7865         struct ipw2100_priv *priv = libipw_priv(dev);
7866         if (priv->status & STATUS_INITIALIZED)
7867                 schedule_reset(priv);
7868         return 0;
7869 }
7870
7871 #endif
7872
7873 static int ipw2100_wx_set_powermode(struct net_device *dev,
7874                                     struct iw_request_info *info,
7875                                     union iwreq_data *wrqu, char *extra)
7876 {
7877         struct ipw2100_priv *priv = libipw_priv(dev);
7878         int err = 0, mode = *(int *)extra;
7879
7880         mutex_lock(&priv->action_mutex);
7881         if (!(priv->status & STATUS_INITIALIZED)) {
7882                 err = -EIO;
7883                 goto done;
7884         }
7885
7886         if ((mode < 0) || (mode > POWER_MODES))
7887                 mode = IPW_POWER_AUTO;
7888
7889         if (IPW_POWER_LEVEL(priv->power_mode) != mode)
7890                 err = ipw2100_set_power_mode(priv, mode);
7891       done:
7892         mutex_unlock(&priv->action_mutex);
7893         return err;
7894 }
7895
7896 #define MAX_POWER_STRING 80
7897 static int ipw2100_wx_get_powermode(struct net_device *dev,
7898                                     struct iw_request_info *info,
7899                                     union iwreq_data *wrqu, char *extra)
7900 {
7901         /*
7902          * This can be called at any time.  No action lock required
7903          */
7904
7905         struct ipw2100_priv *priv = libipw_priv(dev);
7906         int level = IPW_POWER_LEVEL(priv->power_mode);
7907         s32 timeout, period;
7908
7909         if (!(priv->power_mode & IPW_POWER_ENABLED)) {
7910                 snprintf(extra, MAX_POWER_STRING,
7911                          "Power save level: %d (Off)", level);
7912         } else {
7913                 switch (level) {
7914                 case IPW_POWER_MODE_CAM:
7915                         snprintf(extra, MAX_POWER_STRING,
7916                                  "Power save level: %d (None)", level);
7917                         break;
7918                 case IPW_POWER_AUTO:
7919                         snprintf(extra, MAX_POWER_STRING,
7920                                  "Power save level: %d (Auto)", level);
7921                         break;
7922                 default:
7923                         timeout = timeout_duration[level - 1] / 1000;
7924                         period = period_duration[level - 1] / 1000;
7925                         snprintf(extra, MAX_POWER_STRING,
7926                                  "Power save level: %d "
7927                                  "(Timeout %dms, Period %dms)",
7928                                  level, timeout, period);
7929                 }
7930         }
7931
7932         wrqu->data.length = strlen(extra) + 1;
7933
7934         return 0;
7935 }
7936
7937 static int ipw2100_wx_set_preamble(struct net_device *dev,
7938                                    struct iw_request_info *info,
7939                                    union iwreq_data *wrqu, char *extra)
7940 {
7941         struct ipw2100_priv *priv = libipw_priv(dev);
7942         int err, mode = *(int *)extra;
7943
7944         mutex_lock(&priv->action_mutex);
7945         if (!(priv->status & STATUS_INITIALIZED)) {
7946                 err = -EIO;
7947                 goto done;
7948         }
7949
7950         if (mode == 1)
7951                 priv->config |= CFG_LONG_PREAMBLE;
7952         else if (mode == 0)
7953                 priv->config &= ~CFG_LONG_PREAMBLE;
7954         else {
7955                 err = -EINVAL;
7956                 goto done;
7957         }
7958
7959         err = ipw2100_system_config(priv, 0);
7960
7961       done:
7962         mutex_unlock(&priv->action_mutex);
7963         return err;
7964 }
7965
7966 static int ipw2100_wx_get_preamble(struct net_device *dev,
7967                                    struct iw_request_info *info,
7968                                    union iwreq_data *wrqu, char *extra)
7969 {
7970         /*
7971          * This can be called at any time.  No action lock required
7972          */
7973
7974         struct ipw2100_priv *priv = libipw_priv(dev);
7975
7976         if (priv->config & CFG_LONG_PREAMBLE)
7977                 snprintf(wrqu->name, IFNAMSIZ, "long (1)");
7978         else
7979                 snprintf(wrqu->name, IFNAMSIZ, "auto (0)");
7980
7981         return 0;
7982 }
7983
7984 #ifdef CONFIG_IPW2100_MONITOR
7985 static int ipw2100_wx_set_crc_check(struct net_device *dev,
7986                                     struct iw_request_info *info,
7987                                     union iwreq_data *wrqu, char *extra)
7988 {
7989         struct ipw2100_priv *priv = libipw_priv(dev);
7990         int err, mode = *(int *)extra;
7991
7992         mutex_lock(&priv->action_mutex);
7993         if (!(priv->status & STATUS_INITIALIZED)) {
7994                 err = -EIO;
7995                 goto done;
7996         }
7997
7998         if (mode == 1)
7999                 priv->config |= CFG_CRC_CHECK;
8000         else if (mode == 0)
8001                 priv->config &= ~CFG_CRC_CHECK;
8002         else {
8003                 err = -EINVAL;
8004                 goto done;
8005         }
8006         err = 0;
8007
8008       done:
8009         mutex_unlock(&priv->action_mutex);
8010         return err;
8011 }
8012
8013 static int ipw2100_wx_get_crc_check(struct net_device *dev,
8014                                     struct iw_request_info *info,
8015                                     union iwreq_data *wrqu, char *extra)
8016 {
8017         /*
8018          * This can be called at any time.  No action lock required
8019          */
8020
8021         struct ipw2100_priv *priv = libipw_priv(dev);
8022
8023         if (priv->config & CFG_CRC_CHECK)
8024                 snprintf(wrqu->name, IFNAMSIZ, "CRC checked (1)");
8025         else
8026                 snprintf(wrqu->name, IFNAMSIZ, "CRC ignored (0)");
8027
8028         return 0;
8029 }
8030 #endif                          /* CONFIG_IPW2100_MONITOR */
8031
8032 static iw_handler ipw2100_wx_handlers[] = {
8033         IW_HANDLER(SIOCGIWNAME, ipw2100_wx_get_name),
8034         IW_HANDLER(SIOCSIWFREQ, ipw2100_wx_set_freq),
8035         IW_HANDLER(SIOCGIWFREQ, ipw2100_wx_get_freq),
8036         IW_HANDLER(SIOCSIWMODE, ipw2100_wx_set_mode),
8037         IW_HANDLER(SIOCGIWMODE, ipw2100_wx_get_mode),
8038         IW_HANDLER(SIOCGIWRANGE, ipw2100_wx_get_range),
8039         IW_HANDLER(SIOCSIWAP, ipw2100_wx_set_wap),
8040         IW_HANDLER(SIOCGIWAP, ipw2100_wx_get_wap),
8041         IW_HANDLER(SIOCSIWMLME, ipw2100_wx_set_mlme),
8042         IW_HANDLER(SIOCSIWSCAN, ipw2100_wx_set_scan),
8043         IW_HANDLER(SIOCGIWSCAN, ipw2100_wx_get_scan),
8044         IW_HANDLER(SIOCSIWESSID, ipw2100_wx_set_essid),
8045         IW_HANDLER(SIOCGIWESSID, ipw2100_wx_get_essid),
8046         IW_HANDLER(SIOCSIWNICKN, ipw2100_wx_set_nick),
8047         IW_HANDLER(SIOCGIWNICKN, ipw2100_wx_get_nick),
8048         IW_HANDLER(SIOCSIWRATE, ipw2100_wx_set_rate),
8049         IW_HANDLER(SIOCGIWRATE, ipw2100_wx_get_rate),
8050         IW_HANDLER(SIOCSIWRTS, ipw2100_wx_set_rts),
8051         IW_HANDLER(SIOCGIWRTS, ipw2100_wx_get_rts),
8052         IW_HANDLER(SIOCSIWFRAG, ipw2100_wx_set_frag),
8053         IW_HANDLER(SIOCGIWFRAG, ipw2100_wx_get_frag),
8054         IW_HANDLER(SIOCSIWTXPOW, ipw2100_wx_set_txpow),
8055         IW_HANDLER(SIOCGIWTXPOW, ipw2100_wx_get_txpow),
8056         IW_HANDLER(SIOCSIWRETRY, ipw2100_wx_set_retry),
8057         IW_HANDLER(SIOCGIWRETRY, ipw2100_wx_get_retry),
8058         IW_HANDLER(SIOCSIWENCODE, ipw2100_wx_set_encode),
8059         IW_HANDLER(SIOCGIWENCODE, ipw2100_wx_get_encode),
8060         IW_HANDLER(SIOCSIWPOWER, ipw2100_wx_set_power),
8061         IW_HANDLER(SIOCGIWPOWER, ipw2100_wx_get_power),
8062         IW_HANDLER(SIOCSIWGENIE, ipw2100_wx_set_genie),
8063         IW_HANDLER(SIOCGIWGENIE, ipw2100_wx_get_genie),
8064         IW_HANDLER(SIOCSIWAUTH, ipw2100_wx_set_auth),
8065         IW_HANDLER(SIOCGIWAUTH, ipw2100_wx_get_auth),
8066         IW_HANDLER(SIOCSIWENCODEEXT, ipw2100_wx_set_encodeext),
8067         IW_HANDLER(SIOCGIWENCODEEXT, ipw2100_wx_get_encodeext),
8068 };
8069
8070 #define IPW2100_PRIV_SET_MONITOR        SIOCIWFIRSTPRIV
8071 #define IPW2100_PRIV_RESET              SIOCIWFIRSTPRIV+1
8072 #define IPW2100_PRIV_SET_POWER          SIOCIWFIRSTPRIV+2
8073 #define IPW2100_PRIV_GET_POWER          SIOCIWFIRSTPRIV+3
8074 #define IPW2100_PRIV_SET_LONGPREAMBLE   SIOCIWFIRSTPRIV+4
8075 #define IPW2100_PRIV_GET_LONGPREAMBLE   SIOCIWFIRSTPRIV+5
8076 #define IPW2100_PRIV_SET_CRC_CHECK      SIOCIWFIRSTPRIV+6
8077 #define IPW2100_PRIV_GET_CRC_CHECK      SIOCIWFIRSTPRIV+7
8078
8079 static const struct iw_priv_args ipw2100_private_args[] = {
8080
8081 #ifdef CONFIG_IPW2100_MONITOR
8082         {
8083          IPW2100_PRIV_SET_MONITOR,
8084          IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 2, 0, "monitor"},
8085         {
8086          IPW2100_PRIV_RESET,
8087          IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 0, 0, "reset"},
8088 #endif                          /* CONFIG_IPW2100_MONITOR */
8089
8090         {
8091          IPW2100_PRIV_SET_POWER,
8092          IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 1, 0, "set_power"},
8093         {
8094          IPW2100_PRIV_GET_POWER,
8095          0, IW_PRIV_TYPE_CHAR | IW_PRIV_SIZE_FIXED | MAX_POWER_STRING,
8096          "get_power"},
8097         {
8098          IPW2100_PRIV_SET_LONGPREAMBLE,
8099          IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 1, 0, "set_preamble"},
8100         {
8101          IPW2100_PRIV_GET_LONGPREAMBLE,
8102          0, IW_PRIV_TYPE_CHAR | IW_PRIV_SIZE_FIXED | IFNAMSIZ, "get_preamble"},
8103 #ifdef CONFIG_IPW2100_MONITOR
8104         {
8105          IPW2100_PRIV_SET_CRC_CHECK,
8106          IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 1, 0, "set_crc_check"},
8107         {
8108          IPW2100_PRIV_GET_CRC_CHECK,
8109          0, IW_PRIV_TYPE_CHAR | IW_PRIV_SIZE_FIXED | IFNAMSIZ, "get_crc_check"},
8110 #endif                          /* CONFIG_IPW2100_MONITOR */
8111 };
8112
8113 static iw_handler ipw2100_private_handler[] = {
8114 #ifdef CONFIG_IPW2100_MONITOR
8115         ipw2100_wx_set_promisc,
8116         ipw2100_wx_reset,
8117 #else                           /* CONFIG_IPW2100_MONITOR */
8118         NULL,
8119         NULL,
8120 #endif                          /* CONFIG_IPW2100_MONITOR */
8121         ipw2100_wx_set_powermode,
8122         ipw2100_wx_get_powermode,
8123         ipw2100_wx_set_preamble,
8124         ipw2100_wx_get_preamble,
8125 #ifdef CONFIG_IPW2100_MONITOR
8126         ipw2100_wx_set_crc_check,
8127         ipw2100_wx_get_crc_check,
8128 #else                           /* CONFIG_IPW2100_MONITOR */
8129         NULL,
8130         NULL,
8131 #endif                          /* CONFIG_IPW2100_MONITOR */
8132 };
8133
8134 /*
8135  * Get wireless statistics.
8136  * Called by /proc/net/wireless
8137  * Also called by SIOCGIWSTATS
8138  */
8139 static struct iw_statistics *ipw2100_wx_wireless_stats(struct net_device *dev)
8140 {
8141         enum {
8142                 POOR = 30,
8143                 FAIR = 60,
8144                 GOOD = 80,
8145                 VERY_GOOD = 90,
8146                 EXCELLENT = 95,
8147                 PERFECT = 100
8148         };
8149         int rssi_qual;
8150         int tx_qual;
8151         int beacon_qual;
8152         int quality;
8153
8154         struct ipw2100_priv *priv = libipw_priv(dev);
8155         struct iw_statistics *wstats;
8156         u32 rssi, tx_retries, missed_beacons, tx_failures;
8157         u32 ord_len = sizeof(u32);
8158
8159         if (!priv)
8160                 return (struct iw_statistics *)NULL;
8161
8162         wstats = &priv->wstats;
8163
8164         /* if hw is disabled, then ipw2100_get_ordinal() can't be called.
8165          * ipw2100_wx_wireless_stats seems to be called before fw is
8166          * initialized.  STATUS_ASSOCIATED will only be set if the hw is up
8167          * and associated; if not associcated, the values are all meaningless
8168          * anyway, so set them all to NULL and INVALID */
8169         if (!(priv->status & STATUS_ASSOCIATED)) {
8170                 wstats->miss.beacon = 0;
8171                 wstats->discard.retries = 0;
8172                 wstats->qual.qual = 0;
8173                 wstats->qual.level = 0;
8174                 wstats->qual.noise = 0;
8175                 wstats->qual.updated = 7;
8176                 wstats->qual.updated |= IW_QUAL_NOISE_INVALID |
8177                     IW_QUAL_QUAL_INVALID | IW_QUAL_LEVEL_INVALID;
8178                 return wstats;
8179         }
8180
8181         if (ipw2100_get_ordinal(priv, IPW_ORD_STAT_PERCENT_MISSED_BCNS,
8182                                 &missed_beacons, &ord_len))
8183                 goto fail_get_ordinal;
8184
8185         /* If we don't have a connection the quality and level is 0 */
8186         if (!(priv->status & STATUS_ASSOCIATED)) {
8187                 wstats->qual.qual = 0;
8188                 wstats->qual.level = 0;
8189         } else {
8190                 if (ipw2100_get_ordinal(priv, IPW_ORD_RSSI_AVG_CURR,
8191                                         &rssi, &ord_len))
8192                         goto fail_get_ordinal;
8193                 wstats->qual.level = rssi + IPW2100_RSSI_TO_DBM;
8194                 if (rssi < 10)
8195                         rssi_qual = rssi * POOR / 10;
8196                 else if (rssi < 15)
8197                         rssi_qual = (rssi - 10) * (FAIR - POOR) / 5 + POOR;
8198                 else if (rssi < 20)
8199                         rssi_qual = (rssi - 15) * (GOOD - FAIR) / 5 + FAIR;
8200                 else if (rssi < 30)
8201                         rssi_qual = (rssi - 20) * (VERY_GOOD - GOOD) /
8202                             10 + GOOD;
8203                 else
8204                         rssi_qual = (rssi - 30) * (PERFECT - VERY_GOOD) /
8205                             10 + VERY_GOOD;
8206
8207                 if (ipw2100_get_ordinal(priv, IPW_ORD_STAT_PERCENT_RETRIES,
8208                                         &tx_retries, &ord_len))
8209                         goto fail_get_ordinal;
8210
8211                 if (tx_retries > 75)
8212                         tx_qual = (90 - tx_retries) * POOR / 15;
8213                 else if (tx_retries > 70)
8214                         tx_qual = (75 - tx_retries) * (FAIR - POOR) / 5 + POOR;
8215                 else if (tx_retries > 65)
8216                         tx_qual = (70 - tx_retries) * (GOOD - FAIR) / 5 + FAIR;
8217                 else if (tx_retries > 50)
8218                         tx_qual = (65 - tx_retries) * (VERY_GOOD - GOOD) /
8219                             15 + GOOD;
8220                 else
8221                         tx_qual = (50 - tx_retries) *
8222                             (PERFECT - VERY_GOOD) / 50 + VERY_GOOD;
8223
8224                 if (missed_beacons > 50)
8225                         beacon_qual = (60 - missed_beacons) * POOR / 10;
8226                 else if (missed_beacons > 40)
8227                         beacon_qual = (50 - missed_beacons) * (FAIR - POOR) /
8228                             10 + POOR;
8229                 else if (missed_beacons > 32)
8230                         beacon_qual = (40 - missed_beacons) * (GOOD - FAIR) /
8231                             18 + FAIR;
8232                 else if (missed_beacons > 20)
8233                         beacon_qual = (32 - missed_beacons) *
8234                             (VERY_GOOD - GOOD) / 20 + GOOD;
8235                 else
8236                         beacon_qual = (20 - missed_beacons) *
8237                             (PERFECT - VERY_GOOD) / 20 + VERY_GOOD;
8238
8239                 quality = min(tx_qual, rssi_qual);
8240                 quality = min(beacon_qual, quality);
8241
8242 #ifdef CONFIG_IPW2100_DEBUG
8243                 if (beacon_qual == quality)
8244                         IPW_DEBUG_WX("Quality clamped by Missed Beacons\n");
8245                 else if (tx_qual == quality)
8246                         IPW_DEBUG_WX("Quality clamped by Tx Retries\n");
8247                 else if (quality != 100)
8248                         IPW_DEBUG_WX("Quality clamped by Signal Strength\n");
8249                 else
8250                         IPW_DEBUG_WX("Quality not clamped.\n");
8251 #endif
8252
8253                 wstats->qual.qual = quality;
8254                 wstats->qual.level = rssi + IPW2100_RSSI_TO_DBM;
8255         }
8256
8257         wstats->qual.noise = 0;
8258         wstats->qual.updated = 7;
8259         wstats->qual.updated |= IW_QUAL_NOISE_INVALID;
8260
8261         /* FIXME: this is percent and not a # */
8262         wstats->miss.beacon = missed_beacons;
8263
8264         if (ipw2100_get_ordinal(priv, IPW_ORD_STAT_TX_FAILURES,
8265                                 &tx_failures, &ord_len))
8266                 goto fail_get_ordinal;
8267         wstats->discard.retries = tx_failures;
8268
8269         return wstats;
8270
8271       fail_get_ordinal:
8272         IPW_DEBUG_WX("failed querying ordinals.\n");
8273
8274         return (struct iw_statistics *)NULL;
8275 }
8276
8277 static struct iw_handler_def ipw2100_wx_handler_def = {
8278         .standard = ipw2100_wx_handlers,
8279         .num_standard = ARRAY_SIZE(ipw2100_wx_handlers),
8280         .num_private = ARRAY_SIZE(ipw2100_private_handler),
8281         .num_private_args = ARRAY_SIZE(ipw2100_private_args),
8282         .private = (iw_handler *) ipw2100_private_handler,
8283         .private_args = (struct iw_priv_args *)ipw2100_private_args,
8284         .get_wireless_stats = ipw2100_wx_wireless_stats,
8285 };
8286
8287 static void ipw2100_wx_event_work(struct work_struct *work)
8288 {
8289         struct ipw2100_priv *priv =
8290                 container_of(work, struct ipw2100_priv, wx_event_work.work);
8291         union iwreq_data wrqu;
8292         unsigned int len = ETH_ALEN;
8293
8294         if (priv->status & STATUS_STOPPING)
8295                 return;
8296
8297         mutex_lock(&priv->action_mutex);
8298
8299         IPW_DEBUG_WX("enter\n");
8300
8301         mutex_unlock(&priv->action_mutex);
8302
8303         wrqu.ap_addr.sa_family = ARPHRD_ETHER;
8304
8305         /* Fetch BSSID from the hardware */
8306         if (!(priv->status & (STATUS_ASSOCIATING | STATUS_ASSOCIATED)) ||
8307             priv->status & STATUS_RF_KILL_MASK ||
8308             ipw2100_get_ordinal(priv, IPW_ORD_STAT_ASSN_AP_BSSID,
8309                                 &priv->bssid, &len)) {
8310                 eth_zero_addr(wrqu.ap_addr.sa_data);
8311         } else {
8312                 /* We now have the BSSID, so can finish setting to the full
8313                  * associated state */
8314                 memcpy(wrqu.ap_addr.sa_data, priv->bssid, ETH_ALEN);
8315                 memcpy(priv->ieee->bssid, priv->bssid, ETH_ALEN);
8316                 priv->status &= ~STATUS_ASSOCIATING;
8317                 priv->status |= STATUS_ASSOCIATED;
8318                 netif_carrier_on(priv->net_dev);
8319                 netif_wake_queue(priv->net_dev);
8320         }
8321
8322         if (!(priv->status & STATUS_ASSOCIATED)) {
8323                 IPW_DEBUG_WX("Configuring ESSID\n");
8324                 mutex_lock(&priv->action_mutex);
8325                 /* This is a disassociation event, so kick the firmware to
8326                  * look for another AP */
8327                 if (priv->config & CFG_STATIC_ESSID)
8328                         ipw2100_set_essid(priv, priv->essid, priv->essid_len,
8329                                           0);
8330                 else
8331                         ipw2100_set_essid(priv, NULL, 0, 0);
8332                 mutex_unlock(&priv->action_mutex);
8333         }
8334
8335         wireless_send_event(priv->net_dev, SIOCGIWAP, &wrqu, NULL);
8336 }
8337
8338 #define IPW2100_FW_MAJOR_VERSION 1
8339 #define IPW2100_FW_MINOR_VERSION 3
8340
8341 #define IPW2100_FW_MINOR(x) ((x & 0xff) >> 8)
8342 #define IPW2100_FW_MAJOR(x) (x & 0xff)
8343
8344 #define IPW2100_FW_VERSION ((IPW2100_FW_MINOR_VERSION << 8) | \
8345                              IPW2100_FW_MAJOR_VERSION)
8346
8347 #define IPW2100_FW_PREFIX "ipw2100-" __stringify(IPW2100_FW_MAJOR_VERSION) \
8348 "." __stringify(IPW2100_FW_MINOR_VERSION)
8349
8350 #define IPW2100_FW_NAME(x) IPW2100_FW_PREFIX "" x ".fw"
8351
8352 /*
8353
8354 BINARY FIRMWARE HEADER FORMAT
8355
8356 offset      length   desc
8357 0           2        version
8358 2           2        mode == 0:BSS,1:IBSS,2:MONITOR
8359 4           4        fw_len
8360 8           4        uc_len
8361 C           fw_len   firmware data
8362 12 + fw_len uc_len   microcode data
8363
8364 */
8365
8366 struct ipw2100_fw_header {
8367         short version;
8368         short mode;
8369         unsigned int fw_size;
8370         unsigned int uc_size;
8371 } __packed;
8372
8373 static int ipw2100_mod_firmware_load(struct ipw2100_fw *fw)
8374 {
8375         struct ipw2100_fw_header *h =
8376             (struct ipw2100_fw_header *)fw->fw_entry->data;
8377
8378         if (IPW2100_FW_MAJOR(h->version) != IPW2100_FW_MAJOR_VERSION) {
8379                 printk(KERN_WARNING DRV_NAME ": Firmware image not compatible "
8380                        "(detected version id of %u). "
8381                        "See Documentation/networking/README.ipw2100\n",
8382                        h->version);
8383                 return 1;
8384         }
8385
8386         fw->version = h->version;
8387         fw->fw.data = fw->fw_entry->data + sizeof(struct ipw2100_fw_header);
8388         fw->fw.size = h->fw_size;
8389         fw->uc.data = fw->fw.data + h->fw_size;
8390         fw->uc.size = h->uc_size;
8391
8392         return 0;
8393 }
8394
8395 static int ipw2100_get_firmware(struct ipw2100_priv *priv,
8396                                 struct ipw2100_fw *fw)
8397 {
8398         char *fw_name;
8399         int rc;
8400
8401         IPW_DEBUG_INFO("%s: Using hotplug firmware load.\n",
8402                        priv->net_dev->name);
8403
8404         switch (priv->ieee->iw_mode) {
8405         case IW_MODE_ADHOC:
8406                 fw_name = IPW2100_FW_NAME("-i");
8407                 break;
8408 #ifdef CONFIG_IPW2100_MONITOR
8409         case IW_MODE_MONITOR:
8410                 fw_name = IPW2100_FW_NAME("-p");
8411                 break;
8412 #endif
8413         case IW_MODE_INFRA:
8414         default:
8415                 fw_name = IPW2100_FW_NAME("");
8416                 break;
8417         }
8418
8419         rc = request_firmware(&fw->fw_entry, fw_name, &priv->pci_dev->dev);
8420
8421         if (rc < 0) {
8422                 printk(KERN_ERR DRV_NAME ": "
8423                        "%s: Firmware '%s' not available or load failed.\n",
8424                        priv->net_dev->name, fw_name);
8425                 return rc;
8426         }
8427         IPW_DEBUG_INFO("firmware data %p size %zd\n", fw->fw_entry->data,
8428                        fw->fw_entry->size);
8429
8430         ipw2100_mod_firmware_load(fw);
8431
8432         return 0;
8433 }
8434
8435 MODULE_FIRMWARE(IPW2100_FW_NAME("-i"));
8436 #ifdef CONFIG_IPW2100_MONITOR
8437 MODULE_FIRMWARE(IPW2100_FW_NAME("-p"));
8438 #endif
8439 MODULE_FIRMWARE(IPW2100_FW_NAME(""));
8440
8441 static void ipw2100_release_firmware(struct ipw2100_priv *priv,
8442                                      struct ipw2100_fw *fw)
8443 {
8444         fw->version = 0;
8445         release_firmware(fw->fw_entry);
8446         fw->fw_entry = NULL;
8447 }
8448
8449 static int ipw2100_get_fwversion(struct ipw2100_priv *priv, char *buf,
8450                                  size_t max)
8451 {
8452         char ver[MAX_FW_VERSION_LEN];
8453         u32 len = MAX_FW_VERSION_LEN;
8454         u32 tmp;
8455         int i;
8456         /* firmware version is an ascii string (max len of 14) */
8457         if (ipw2100_get_ordinal(priv, IPW_ORD_STAT_FW_VER_NUM, ver, &len))
8458                 return -EIO;
8459         tmp = max;
8460         if (len >= max)
8461                 len = max - 1;
8462         for (i = 0; i < len; i++)
8463                 buf[i] = ver[i];
8464         buf[i] = '\0';
8465         return tmp;
8466 }
8467
8468 static int ipw2100_get_ucodeversion(struct ipw2100_priv *priv, char *buf,
8469                                     size_t max)
8470 {
8471         u32 ver;
8472         u32 len = sizeof(ver);
8473         /* microcode version is a 32 bit integer */
8474         if (ipw2100_get_ordinal(priv, IPW_ORD_UCODE_VERSION, &ver, &len))
8475                 return -EIO;
8476         return snprintf(buf, max, "%08X", ver);
8477 }
8478
8479 /*
8480  * On exit, the firmware will have been freed from the fw list
8481  */
8482 static int ipw2100_fw_download(struct ipw2100_priv *priv, struct ipw2100_fw *fw)
8483 {
8484         /* firmware is constructed of N contiguous entries, each entry is
8485          * structured as:
8486          *
8487          * offset    sie         desc
8488          * 0         4           address to write to
8489          * 4         2           length of data run
8490          * 6         length      data
8491          */
8492         unsigned int addr;
8493         unsigned short len;
8494
8495         const unsigned char *firmware_data = fw->fw.data;
8496         unsigned int firmware_data_left = fw->fw.size;
8497
8498         while (firmware_data_left > 0) {
8499                 addr = *(u32 *) (firmware_data);
8500                 firmware_data += 4;
8501                 firmware_data_left -= 4;
8502
8503                 len = *(u16 *) (firmware_data);
8504                 firmware_data += 2;
8505                 firmware_data_left -= 2;
8506
8507                 if (len > 32) {
8508                         printk(KERN_ERR DRV_NAME ": "
8509                                "Invalid firmware run-length of %d bytes\n",
8510                                len);
8511                         return -EINVAL;
8512                 }
8513
8514                 write_nic_memory(priv->net_dev, addr, len, firmware_data);
8515                 firmware_data += len;
8516                 firmware_data_left -= len;
8517         }
8518
8519         return 0;
8520 }
8521
8522 struct symbol_alive_response {
8523         u8 cmd_id;
8524         u8 seq_num;
8525         u8 ucode_rev;
8526         u8 eeprom_valid;
8527         u16 valid_flags;
8528         u8 IEEE_addr[6];
8529         u16 flags;
8530         u16 pcb_rev;
8531         u16 clock_settle_time;  // 1us LSB
8532         u16 powerup_settle_time;        // 1us LSB
8533         u16 hop_settle_time;    // 1us LSB
8534         u8 date[3];             // month, day, year
8535         u8 time[2];             // hours, minutes
8536         u8 ucode_valid;
8537 };
8538
8539 static int ipw2100_ucode_download(struct ipw2100_priv *priv,
8540                                   struct ipw2100_fw *fw)
8541 {
8542         struct net_device *dev = priv->net_dev;
8543         const unsigned char *microcode_data = fw->uc.data;
8544         unsigned int microcode_data_left = fw->uc.size;
8545         void __iomem *reg = priv->ioaddr;
8546
8547         struct symbol_alive_response response;
8548         int i, j;
8549         u8 data;
8550
8551         /* Symbol control */
8552         write_nic_word(dev, IPW2100_CONTROL_REG, 0x703);
8553         readl(reg);
8554         write_nic_word(dev, IPW2100_CONTROL_REG, 0x707);
8555         readl(reg);
8556
8557         /* HW config */
8558         write_nic_byte(dev, 0x210014, 0x72);    /* fifo width =16 */
8559         readl(reg);
8560         write_nic_byte(dev, 0x210014, 0x72);    /* fifo width =16 */
8561         readl(reg);
8562
8563         /* EN_CS_ACCESS bit to reset control store pointer */
8564         write_nic_byte(dev, 0x210000, 0x40);
8565         readl(reg);
8566         write_nic_byte(dev, 0x210000, 0x0);
8567         readl(reg);
8568         write_nic_byte(dev, 0x210000, 0x40);
8569         readl(reg);
8570
8571         /* copy microcode from buffer into Symbol */
8572
8573         while (microcode_data_left > 0) {
8574                 write_nic_byte(dev, 0x210010, *microcode_data++);
8575                 write_nic_byte(dev, 0x210010, *microcode_data++);
8576                 microcode_data_left -= 2;
8577         }
8578
8579         /* EN_CS_ACCESS bit to reset the control store pointer */
8580         write_nic_byte(dev, 0x210000, 0x0);
8581         readl(reg);
8582
8583         /* Enable System (Reg 0)
8584          * first enable causes garbage in RX FIFO */
8585         write_nic_byte(dev, 0x210000, 0x0);
8586         readl(reg);
8587         write_nic_byte(dev, 0x210000, 0x80);
8588         readl(reg);
8589
8590         /* Reset External Baseband Reg */
8591         write_nic_word(dev, IPW2100_CONTROL_REG, 0x703);
8592         readl(reg);
8593         write_nic_word(dev, IPW2100_CONTROL_REG, 0x707);
8594         readl(reg);
8595
8596         /* HW Config (Reg 5) */
8597         write_nic_byte(dev, 0x210014, 0x72);    // fifo width =16
8598         readl(reg);
8599         write_nic_byte(dev, 0x210014, 0x72);    // fifo width =16
8600         readl(reg);
8601
8602         /* Enable System (Reg 0)
8603          * second enable should be OK */
8604         write_nic_byte(dev, 0x210000, 0x00);    // clear enable system
8605         readl(reg);
8606         write_nic_byte(dev, 0x210000, 0x80);    // set enable system
8607
8608         /* check Symbol is enabled - upped this from 5 as it wasn't always
8609          * catching the update */
8610         for (i = 0; i < 10; i++) {
8611                 udelay(10);
8612
8613                 /* check Dino is enabled bit */
8614                 read_nic_byte(dev, 0x210000, &data);
8615                 if (data & 0x1)
8616                         break;
8617         }
8618
8619         if (i == 10) {
8620                 printk(KERN_ERR DRV_NAME ": %s: Error initializing Symbol\n",
8621                        dev->name);
8622                 return -EIO;
8623         }
8624
8625         /* Get Symbol alive response */
8626         for (i = 0; i < 30; i++) {
8627                 /* Read alive response structure */
8628                 for (j = 0;
8629                      j < (sizeof(struct symbol_alive_response) >> 1); j++)
8630                         read_nic_word(dev, 0x210004, ((u16 *) & response) + j);
8631
8632                 if ((response.cmd_id == 1) && (response.ucode_valid == 0x1))
8633                         break;
8634                 udelay(10);
8635         }
8636
8637         if (i == 30) {
8638                 printk(KERN_ERR DRV_NAME
8639                        ": %s: No response from Symbol - hw not alive\n",
8640                        dev->name);
8641                 printk_buf(IPW_DL_ERROR, (u8 *) & response, sizeof(response));
8642                 return -EIO;
8643         }
8644
8645         return 0;
8646 }