Merge branch 'parisc-4.6-2' of git://git.kernel.org/pub/scm/linux/kernel/git/deller...
[cascardo/linux.git] / drivers / net / wireless / intel / iwlwifi / iwl-nvm-parse.c
1 /******************************************************************************
2  *
3  * This file is provided under a dual BSD/GPLv2 license.  When using or
4  * redistributing this file, you may do so under either license.
5  *
6  * GPL LICENSE SUMMARY
7  *
8  * Copyright(c) 2008 - 2014 Intel Corporation. All rights reserved.
9  * Copyright(c) 2013 - 2015 Intel Mobile Communications GmbH
10  * Copyright(c) 2016 Intel Deutschland GmbH
11  *
12  * This program is free software; you can redistribute it and/or modify
13  * it under the terms of version 2 of the GNU General Public License as
14  * published by the Free Software Foundation.
15  *
16  * This program is distributed in the hope that it will be useful, but
17  * WITHOUT ANY WARRANTY; without even the implied warranty of
18  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
19  * General Public License for more details.
20  *
21  * You should have received a copy of the GNU General Public License
22  * along with this program; if not, write to the Free Software
23  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110,
24  * USA
25  *
26  * The full GNU General Public License is included in this distribution
27  * in the file called COPYING.
28  *
29  * Contact Information:
30  *  Intel Linux Wireless <linuxwifi@intel.com>
31  * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
32  *
33  * BSD LICENSE
34  *
35  * Copyright(c) 2005 - 2014 Intel Corporation. All rights reserved.
36  * Copyright(c) 2013 - 2015 Intel Mobile Communications GmbH
37  * All rights reserved.
38  *
39  * Redistribution and use in source and binary forms, with or without
40  * modification, are permitted provided that the following conditions
41  * are met:
42  *
43  *  * Redistributions of source code must retain the above copyright
44  *    notice, this list of conditions and the following disclaimer.
45  *  * Redistributions in binary form must reproduce the above copyright
46  *    notice, this list of conditions and the following disclaimer in
47  *    the documentation and/or other materials provided with the
48  *    distribution.
49  *  * Neither the name Intel Corporation nor the names of its
50  *    contributors may be used to endorse or promote products derived
51  *    from this software without specific prior written permission.
52  *
53  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
54  * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
55  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
56  * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
57  * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
58  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
59  * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
60  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
61  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
62  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
63  * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
64  *****************************************************************************/
65 #include <linux/types.h>
66 #include <linux/slab.h>
67 #include <linux/export.h>
68 #include <linux/etherdevice.h>
69 #include <linux/pci.h>
70 #include "iwl-drv.h"
71 #include "iwl-modparams.h"
72 #include "iwl-nvm-parse.h"
73 #include "iwl-prph.h"
74 #include "iwl-io.h"
75 #include "iwl-csr.h"
76
77 /* NVM offsets (in words) definitions */
78 enum wkp_nvm_offsets {
79         /* NVM HW-Section offset (in words) definitions */
80         HW_ADDR = 0x15,
81
82         /* NVM SW-Section offset (in words) definitions */
83         NVM_SW_SECTION = 0x1C0,
84         NVM_VERSION = 0,
85         RADIO_CFG = 1,
86         SKU = 2,
87         N_HW_ADDRS = 3,
88         NVM_CHANNELS = 0x1E0 - NVM_SW_SECTION,
89
90         /* NVM calibration section offset (in words) definitions */
91         NVM_CALIB_SECTION = 0x2B8,
92         XTAL_CALIB = 0x316 - NVM_CALIB_SECTION
93 };
94
95 enum family_8000_nvm_offsets {
96         /* NVM HW-Section offset (in words) definitions */
97         HW_ADDR0_WFPM_FAMILY_8000 = 0x12,
98         HW_ADDR1_WFPM_FAMILY_8000 = 0x16,
99         HW_ADDR0_PCIE_FAMILY_8000 = 0x8A,
100         HW_ADDR1_PCIE_FAMILY_8000 = 0x8E,
101         MAC_ADDRESS_OVERRIDE_FAMILY_8000 = 1,
102
103         /* NVM SW-Section offset (in words) definitions */
104         NVM_SW_SECTION_FAMILY_8000 = 0x1C0,
105         NVM_VERSION_FAMILY_8000 = 0,
106         RADIO_CFG_FAMILY_8000 = 0,
107         SKU_FAMILY_8000 = 2,
108         N_HW_ADDRS_FAMILY_8000 = 3,
109
110         /* NVM REGULATORY -Section offset (in words) definitions */
111         NVM_CHANNELS_FAMILY_8000 = 0,
112         NVM_LAR_OFFSET_FAMILY_8000_OLD = 0x4C7,
113         NVM_LAR_OFFSET_FAMILY_8000 = 0x507,
114         NVM_LAR_ENABLED_FAMILY_8000 = 0x7,
115
116         /* NVM calibration section offset (in words) definitions */
117         NVM_CALIB_SECTION_FAMILY_8000 = 0x2B8,
118         XTAL_CALIB_FAMILY_8000 = 0x316 - NVM_CALIB_SECTION_FAMILY_8000
119 };
120
121 /* SKU Capabilities (actual values from NVM definition) */
122 enum nvm_sku_bits {
123         NVM_SKU_CAP_BAND_24GHZ          = BIT(0),
124         NVM_SKU_CAP_BAND_52GHZ          = BIT(1),
125         NVM_SKU_CAP_11N_ENABLE          = BIT(2),
126         NVM_SKU_CAP_11AC_ENABLE         = BIT(3),
127         NVM_SKU_CAP_MIMO_DISABLE        = BIT(5),
128 };
129
130 /*
131  * These are the channel numbers in the order that they are stored in the NVM
132  */
133 static const u8 iwl_nvm_channels[] = {
134         /* 2.4 GHz */
135         1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14,
136         /* 5 GHz */
137         36, 40, 44 , 48, 52, 56, 60, 64,
138         100, 104, 108, 112, 116, 120, 124, 128, 132, 136, 140, 144,
139         149, 153, 157, 161, 165
140 };
141
142 static const u8 iwl_nvm_channels_family_8000[] = {
143         /* 2.4 GHz */
144         1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14,
145         /* 5 GHz */
146         36, 40, 44, 48, 52, 56, 60, 64, 68, 72, 76, 80, 84, 88, 92,
147         96, 100, 104, 108, 112, 116, 120, 124, 128, 132, 136, 140, 144,
148         149, 153, 157, 161, 165, 169, 173, 177, 181
149 };
150
151 #define IWL_NUM_CHANNELS                ARRAY_SIZE(iwl_nvm_channels)
152 #define IWL_NUM_CHANNELS_FAMILY_8000    ARRAY_SIZE(iwl_nvm_channels_family_8000)
153 #define NUM_2GHZ_CHANNELS               14
154 #define NUM_2GHZ_CHANNELS_FAMILY_8000   14
155 #define FIRST_2GHZ_HT_MINUS             5
156 #define LAST_2GHZ_HT_PLUS               9
157 #define LAST_5GHZ_HT                    165
158 #define LAST_5GHZ_HT_FAMILY_8000        181
159 #define N_HW_ADDR_MASK                  0xF
160
161 /* rate data (static) */
162 static struct ieee80211_rate iwl_cfg80211_rates[] = {
163         { .bitrate = 1 * 10, .hw_value = 0, .hw_value_short = 0, },
164         { .bitrate = 2 * 10, .hw_value = 1, .hw_value_short = 1,
165           .flags = IEEE80211_RATE_SHORT_PREAMBLE, },
166         { .bitrate = 5.5 * 10, .hw_value = 2, .hw_value_short = 2,
167           .flags = IEEE80211_RATE_SHORT_PREAMBLE, },
168         { .bitrate = 11 * 10, .hw_value = 3, .hw_value_short = 3,
169           .flags = IEEE80211_RATE_SHORT_PREAMBLE, },
170         { .bitrate = 6 * 10, .hw_value = 4, .hw_value_short = 4, },
171         { .bitrate = 9 * 10, .hw_value = 5, .hw_value_short = 5, },
172         { .bitrate = 12 * 10, .hw_value = 6, .hw_value_short = 6, },
173         { .bitrate = 18 * 10, .hw_value = 7, .hw_value_short = 7, },
174         { .bitrate = 24 * 10, .hw_value = 8, .hw_value_short = 8, },
175         { .bitrate = 36 * 10, .hw_value = 9, .hw_value_short = 9, },
176         { .bitrate = 48 * 10, .hw_value = 10, .hw_value_short = 10, },
177         { .bitrate = 54 * 10, .hw_value = 11, .hw_value_short = 11, },
178 };
179 #define RATES_24_OFFS   0
180 #define N_RATES_24      ARRAY_SIZE(iwl_cfg80211_rates)
181 #define RATES_52_OFFS   4
182 #define N_RATES_52      (N_RATES_24 - RATES_52_OFFS)
183
184 /**
185  * enum iwl_nvm_channel_flags - channel flags in NVM
186  * @NVM_CHANNEL_VALID: channel is usable for this SKU/geo
187  * @NVM_CHANNEL_IBSS: usable as an IBSS channel
188  * @NVM_CHANNEL_ACTIVE: active scanning allowed
189  * @NVM_CHANNEL_RADAR: radar detection required
190  * @NVM_CHANNEL_INDOOR_ONLY: only indoor use is allowed
191  * @NVM_CHANNEL_GO_CONCURRENT: GO operation is allowed when connected to BSS
192  *      on same channel on 2.4 or same UNII band on 5.2
193  * @NVM_CHANNEL_WIDE: 20 MHz channel okay (?)
194  * @NVM_CHANNEL_40MHZ: 40 MHz channel okay (?)
195  * @NVM_CHANNEL_80MHZ: 80 MHz channel okay (?)
196  * @NVM_CHANNEL_160MHZ: 160 MHz channel okay (?)
197  */
198 enum iwl_nvm_channel_flags {
199         NVM_CHANNEL_VALID = BIT(0),
200         NVM_CHANNEL_IBSS = BIT(1),
201         NVM_CHANNEL_ACTIVE = BIT(3),
202         NVM_CHANNEL_RADAR = BIT(4),
203         NVM_CHANNEL_INDOOR_ONLY = BIT(5),
204         NVM_CHANNEL_GO_CONCURRENT = BIT(6),
205         NVM_CHANNEL_WIDE = BIT(8),
206         NVM_CHANNEL_40MHZ = BIT(9),
207         NVM_CHANNEL_80MHZ = BIT(10),
208         NVM_CHANNEL_160MHZ = BIT(11),
209 };
210
211 #define CHECK_AND_PRINT_I(x)    \
212         ((ch_flags & NVM_CHANNEL_##x) ? # x " " : "")
213
214 static u32 iwl_get_channel_flags(u8 ch_num, int ch_idx, bool is_5ghz,
215                                  u16 nvm_flags, const struct iwl_cfg *cfg)
216 {
217         u32 flags = IEEE80211_CHAN_NO_HT40;
218         u32 last_5ghz_ht = LAST_5GHZ_HT;
219
220         if (cfg->device_family == IWL_DEVICE_FAMILY_8000)
221                 last_5ghz_ht = LAST_5GHZ_HT_FAMILY_8000;
222
223         if (!is_5ghz && (nvm_flags & NVM_CHANNEL_40MHZ)) {
224                 if (ch_num <= LAST_2GHZ_HT_PLUS)
225                         flags &= ~IEEE80211_CHAN_NO_HT40PLUS;
226                 if (ch_num >= FIRST_2GHZ_HT_MINUS)
227                         flags &= ~IEEE80211_CHAN_NO_HT40MINUS;
228         } else if (ch_num <= last_5ghz_ht && (nvm_flags & NVM_CHANNEL_40MHZ)) {
229                 if ((ch_idx - NUM_2GHZ_CHANNELS) % 2 == 0)
230                         flags &= ~IEEE80211_CHAN_NO_HT40PLUS;
231                 else
232                         flags &= ~IEEE80211_CHAN_NO_HT40MINUS;
233         }
234         if (!(nvm_flags & NVM_CHANNEL_80MHZ))
235                 flags |= IEEE80211_CHAN_NO_80MHZ;
236         if (!(nvm_flags & NVM_CHANNEL_160MHZ))
237                 flags |= IEEE80211_CHAN_NO_160MHZ;
238
239         if (!(nvm_flags & NVM_CHANNEL_IBSS))
240                 flags |= IEEE80211_CHAN_NO_IR;
241
242         if (!(nvm_flags & NVM_CHANNEL_ACTIVE))
243                 flags |= IEEE80211_CHAN_NO_IR;
244
245         if (nvm_flags & NVM_CHANNEL_RADAR)
246                 flags |= IEEE80211_CHAN_RADAR;
247
248         if (nvm_flags & NVM_CHANNEL_INDOOR_ONLY)
249                 flags |= IEEE80211_CHAN_INDOOR_ONLY;
250
251         /* Set the GO concurrent flag only in case that NO_IR is set.
252          * Otherwise it is meaningless
253          */
254         if ((nvm_flags & NVM_CHANNEL_GO_CONCURRENT) &&
255             (flags & IEEE80211_CHAN_NO_IR))
256                 flags |= IEEE80211_CHAN_IR_CONCURRENT;
257
258         return flags;
259 }
260
261 static int iwl_init_channel_map(struct device *dev, const struct iwl_cfg *cfg,
262                                 struct iwl_nvm_data *data,
263                                 const __le16 * const nvm_ch_flags,
264                                 bool lar_supported)
265 {
266         int ch_idx;
267         int n_channels = 0;
268         struct ieee80211_channel *channel;
269         u16 ch_flags;
270         bool is_5ghz;
271         int num_of_ch, num_2ghz_channels;
272         const u8 *nvm_chan;
273
274         if (cfg->device_family != IWL_DEVICE_FAMILY_8000) {
275                 num_of_ch = IWL_NUM_CHANNELS;
276                 nvm_chan = &iwl_nvm_channels[0];
277                 num_2ghz_channels = NUM_2GHZ_CHANNELS;
278         } else {
279                 num_of_ch = IWL_NUM_CHANNELS_FAMILY_8000;
280                 nvm_chan = &iwl_nvm_channels_family_8000[0];
281                 num_2ghz_channels = NUM_2GHZ_CHANNELS_FAMILY_8000;
282         }
283
284         for (ch_idx = 0; ch_idx < num_of_ch; ch_idx++) {
285                 ch_flags = __le16_to_cpup(nvm_ch_flags + ch_idx);
286
287                 if (ch_idx >= num_2ghz_channels &&
288                     !data->sku_cap_band_52GHz_enable)
289                         continue;
290
291                 if (!lar_supported && !(ch_flags & NVM_CHANNEL_VALID)) {
292                         /*
293                          * Channels might become valid later if lar is
294                          * supported, hence we still want to add them to
295                          * the list of supported channels to cfg80211.
296                          */
297                         IWL_DEBUG_EEPROM(dev,
298                                          "Ch. %d Flags %x [%sGHz] - No traffic\n",
299                                          nvm_chan[ch_idx],
300                                          ch_flags,
301                                          (ch_idx >= num_2ghz_channels) ?
302                                          "5.2" : "2.4");
303                         continue;
304                 }
305
306                 channel = &data->channels[n_channels];
307                 n_channels++;
308
309                 channel->hw_value = nvm_chan[ch_idx];
310                 channel->band = (ch_idx < num_2ghz_channels) ?
311                                 IEEE80211_BAND_2GHZ : IEEE80211_BAND_5GHZ;
312                 channel->center_freq =
313                         ieee80211_channel_to_frequency(
314                                 channel->hw_value, channel->band);
315
316                 /* Initialize regulatory-based run-time data */
317
318                 /*
319                  * Default value - highest tx power value.  max_power
320                  * is not used in mvm, and is used for backwards compatibility
321                  */
322                 channel->max_power = IWL_DEFAULT_MAX_TX_POWER;
323                 is_5ghz = channel->band == IEEE80211_BAND_5GHZ;
324
325                 /* don't put limitations in case we're using LAR */
326                 if (!lar_supported)
327                         channel->flags = iwl_get_channel_flags(nvm_chan[ch_idx],
328                                                                ch_idx, is_5ghz,
329                                                                ch_flags, cfg);
330                 else
331                         channel->flags = 0;
332
333                 IWL_DEBUG_EEPROM(dev,
334                                  "Ch. %d [%sGHz] %s%s%s%s%s%s%s(0x%02x %ddBm): Ad-Hoc %ssupported\n",
335                                  channel->hw_value,
336                                  is_5ghz ? "5.2" : "2.4",
337                                  CHECK_AND_PRINT_I(VALID),
338                                  CHECK_AND_PRINT_I(IBSS),
339                                  CHECK_AND_PRINT_I(ACTIVE),
340                                  CHECK_AND_PRINT_I(RADAR),
341                                  CHECK_AND_PRINT_I(WIDE),
342                                  CHECK_AND_PRINT_I(INDOOR_ONLY),
343                                  CHECK_AND_PRINT_I(GO_CONCURRENT),
344                                  ch_flags,
345                                  channel->max_power,
346                                  ((ch_flags & NVM_CHANNEL_IBSS) &&
347                                   !(ch_flags & NVM_CHANNEL_RADAR))
348                                         ? "" : "not ");
349         }
350
351         return n_channels;
352 }
353
354 static void iwl_init_vht_hw_capab(const struct iwl_cfg *cfg,
355                                   struct iwl_nvm_data *data,
356                                   struct ieee80211_sta_vht_cap *vht_cap,
357                                   u8 tx_chains, u8 rx_chains)
358 {
359         int num_rx_ants = num_of_ant(rx_chains);
360         int num_tx_ants = num_of_ant(tx_chains);
361         unsigned int max_ampdu_exponent = (cfg->max_vht_ampdu_exponent ?:
362                                            IEEE80211_VHT_MAX_AMPDU_1024K);
363
364         vht_cap->vht_supported = true;
365
366         vht_cap->cap = IEEE80211_VHT_CAP_SHORT_GI_80 |
367                        IEEE80211_VHT_CAP_RXSTBC_1 |
368                        IEEE80211_VHT_CAP_SU_BEAMFORMEE_CAPABLE |
369                        3 << IEEE80211_VHT_CAP_BEAMFORMEE_STS_SHIFT |
370                        max_ampdu_exponent <<
371                        IEEE80211_VHT_CAP_MAX_A_MPDU_LENGTH_EXPONENT_SHIFT;
372
373         if (cfg->vht_mu_mimo_supported)
374                 vht_cap->cap |= IEEE80211_VHT_CAP_MU_BEAMFORMEE_CAPABLE;
375
376         if (cfg->ht_params->ldpc)
377                 vht_cap->cap |= IEEE80211_VHT_CAP_RXLDPC;
378
379         if (data->sku_cap_mimo_disabled) {
380                 num_rx_ants = 1;
381                 num_tx_ants = 1;
382         }
383
384         if (num_tx_ants > 1)
385                 vht_cap->cap |= IEEE80211_VHT_CAP_TXSTBC;
386         else
387                 vht_cap->cap |= IEEE80211_VHT_CAP_TX_ANTENNA_PATTERN;
388
389         switch (iwlwifi_mod_params.amsdu_size) {
390         case IWL_AMSDU_4K:
391                 vht_cap->cap |= IEEE80211_VHT_CAP_MAX_MPDU_LENGTH_3895;
392                 break;
393         case IWL_AMSDU_8K:
394                 vht_cap->cap |= IEEE80211_VHT_CAP_MAX_MPDU_LENGTH_7991;
395                 break;
396         case IWL_AMSDU_12K:
397                 vht_cap->cap |= IEEE80211_VHT_CAP_MAX_MPDU_LENGTH_11454;
398                 break;
399         default:
400                 break;
401         }
402
403         vht_cap->vht_mcs.rx_mcs_map =
404                 cpu_to_le16(IEEE80211_VHT_MCS_SUPPORT_0_9 << 0 |
405                             IEEE80211_VHT_MCS_SUPPORT_0_9 << 2 |
406                             IEEE80211_VHT_MCS_NOT_SUPPORTED << 4 |
407                             IEEE80211_VHT_MCS_NOT_SUPPORTED << 6 |
408                             IEEE80211_VHT_MCS_NOT_SUPPORTED << 8 |
409                             IEEE80211_VHT_MCS_NOT_SUPPORTED << 10 |
410                             IEEE80211_VHT_MCS_NOT_SUPPORTED << 12 |
411                             IEEE80211_VHT_MCS_NOT_SUPPORTED << 14);
412
413         if (num_rx_ants == 1 || cfg->rx_with_siso_diversity) {
414                 vht_cap->cap |= IEEE80211_VHT_CAP_RX_ANTENNA_PATTERN;
415                 /* this works because NOT_SUPPORTED == 3 */
416                 vht_cap->vht_mcs.rx_mcs_map |=
417                         cpu_to_le16(IEEE80211_VHT_MCS_NOT_SUPPORTED << 2);
418         }
419
420         vht_cap->vht_mcs.tx_mcs_map = vht_cap->vht_mcs.rx_mcs_map;
421 }
422
423 static void iwl_init_sbands(struct device *dev, const struct iwl_cfg *cfg,
424                             struct iwl_nvm_data *data,
425                             const __le16 *ch_section,
426                             u8 tx_chains, u8 rx_chains, bool lar_supported)
427 {
428         int n_channels;
429         int n_used = 0;
430         struct ieee80211_supported_band *sband;
431
432         if (cfg->device_family != IWL_DEVICE_FAMILY_8000)
433                 n_channels = iwl_init_channel_map(
434                                 dev, cfg, data,
435                                 &ch_section[NVM_CHANNELS], lar_supported);
436         else
437                 n_channels = iwl_init_channel_map(
438                                 dev, cfg, data,
439                                 &ch_section[NVM_CHANNELS_FAMILY_8000],
440                                 lar_supported);
441
442         sband = &data->bands[IEEE80211_BAND_2GHZ];
443         sband->band = IEEE80211_BAND_2GHZ;
444         sband->bitrates = &iwl_cfg80211_rates[RATES_24_OFFS];
445         sband->n_bitrates = N_RATES_24;
446         n_used += iwl_init_sband_channels(data, sband, n_channels,
447                                           IEEE80211_BAND_2GHZ);
448         iwl_init_ht_hw_capab(cfg, data, &sband->ht_cap, IEEE80211_BAND_2GHZ,
449                              tx_chains, rx_chains);
450
451         sband = &data->bands[IEEE80211_BAND_5GHZ];
452         sband->band = IEEE80211_BAND_5GHZ;
453         sband->bitrates = &iwl_cfg80211_rates[RATES_52_OFFS];
454         sband->n_bitrates = N_RATES_52;
455         n_used += iwl_init_sband_channels(data, sband, n_channels,
456                                           IEEE80211_BAND_5GHZ);
457         iwl_init_ht_hw_capab(cfg, data, &sband->ht_cap, IEEE80211_BAND_5GHZ,
458                              tx_chains, rx_chains);
459         if (data->sku_cap_11ac_enable && !iwlwifi_mod_params.disable_11ac)
460                 iwl_init_vht_hw_capab(cfg, data, &sband->vht_cap,
461                                       tx_chains, rx_chains);
462
463         if (n_channels != n_used)
464                 IWL_ERR_DEV(dev, "NVM: used only %d of %d channels\n",
465                             n_used, n_channels);
466 }
467
468 static int iwl_get_sku(const struct iwl_cfg *cfg, const __le16 *nvm_sw,
469                        const __le16 *phy_sku)
470 {
471         if (cfg->device_family != IWL_DEVICE_FAMILY_8000)
472                 return le16_to_cpup(nvm_sw + SKU);
473
474         return le32_to_cpup((__le32 *)(phy_sku + SKU_FAMILY_8000));
475 }
476
477 static int iwl_get_nvm_version(const struct iwl_cfg *cfg, const __le16 *nvm_sw)
478 {
479         if (cfg->device_family != IWL_DEVICE_FAMILY_8000)
480                 return le16_to_cpup(nvm_sw + NVM_VERSION);
481         else
482                 return le32_to_cpup((__le32 *)(nvm_sw +
483                                                NVM_VERSION_FAMILY_8000));
484 }
485
486 static int iwl_get_radio_cfg(const struct iwl_cfg *cfg, const __le16 *nvm_sw,
487                              const __le16 *phy_sku)
488 {
489         if (cfg->device_family != IWL_DEVICE_FAMILY_8000)
490                 return le16_to_cpup(nvm_sw + RADIO_CFG);
491
492         return le32_to_cpup((__le32 *)(phy_sku + RADIO_CFG_FAMILY_8000));
493
494 }
495
496 static int iwl_get_n_hw_addrs(const struct iwl_cfg *cfg, const __le16 *nvm_sw)
497 {
498         int n_hw_addr;
499
500         if (cfg->device_family != IWL_DEVICE_FAMILY_8000)
501                 return le16_to_cpup(nvm_sw + N_HW_ADDRS);
502
503         n_hw_addr = le32_to_cpup((__le32 *)(nvm_sw + N_HW_ADDRS_FAMILY_8000));
504
505         return n_hw_addr & N_HW_ADDR_MASK;
506 }
507
508 static void iwl_set_radio_cfg(const struct iwl_cfg *cfg,
509                               struct iwl_nvm_data *data,
510                               u32 radio_cfg)
511 {
512         if (cfg->device_family != IWL_DEVICE_FAMILY_8000) {
513                 data->radio_cfg_type = NVM_RF_CFG_TYPE_MSK(radio_cfg);
514                 data->radio_cfg_step = NVM_RF_CFG_STEP_MSK(radio_cfg);
515                 data->radio_cfg_dash = NVM_RF_CFG_DASH_MSK(radio_cfg);
516                 data->radio_cfg_pnum = NVM_RF_CFG_PNUM_MSK(radio_cfg);
517                 return;
518         }
519
520         /* set the radio configuration for family 8000 */
521         data->radio_cfg_type = NVM_RF_CFG_TYPE_MSK_FAMILY_8000(radio_cfg);
522         data->radio_cfg_step = NVM_RF_CFG_STEP_MSK_FAMILY_8000(radio_cfg);
523         data->radio_cfg_dash = NVM_RF_CFG_DASH_MSK_FAMILY_8000(radio_cfg);
524         data->radio_cfg_pnum = NVM_RF_CFG_FLAVOR_MSK_FAMILY_8000(radio_cfg);
525         data->valid_tx_ant = NVM_RF_CFG_TX_ANT_MSK_FAMILY_8000(radio_cfg);
526         data->valid_rx_ant = NVM_RF_CFG_RX_ANT_MSK_FAMILY_8000(radio_cfg);
527 }
528
529 static void iwl_flip_hw_address(__le32 mac_addr0, __le32 mac_addr1, u8 *dest)
530 {
531         const u8 *hw_addr;
532
533         hw_addr = (const u8 *)&mac_addr0;
534         dest[0] = hw_addr[3];
535         dest[1] = hw_addr[2];
536         dest[2] = hw_addr[1];
537         dest[3] = hw_addr[0];
538
539         hw_addr = (const u8 *)&mac_addr1;
540         dest[4] = hw_addr[1];
541         dest[5] = hw_addr[0];
542 }
543
544 static void iwl_set_hw_address_from_csr(struct iwl_trans *trans,
545                                         struct iwl_nvm_data *data)
546 {
547         __le32 mac_addr0 = cpu_to_le32(iwl_read32(trans, CSR_MAC_ADDR0_STRAP));
548         __le32 mac_addr1 = cpu_to_le32(iwl_read32(trans, CSR_MAC_ADDR1_STRAP));
549
550         /* If OEM did not fuse address - get it from OTP */
551         if (!mac_addr0 && !mac_addr1) {
552                 mac_addr0 = cpu_to_le32(iwl_read32(trans, CSR_MAC_ADDR0_OTP));
553                 mac_addr1 = cpu_to_le32(iwl_read32(trans, CSR_MAC_ADDR1_OTP));
554         }
555
556         iwl_flip_hw_address(mac_addr0, mac_addr1, data->hw_addr);
557 }
558
559 static void iwl_set_hw_address_family_8000(struct iwl_trans *trans,
560                                            const struct iwl_cfg *cfg,
561                                            struct iwl_nvm_data *data,
562                                            const __le16 *mac_override,
563                                            const __le16 *nvm_hw)
564 {
565         const u8 *hw_addr;
566
567         if (mac_override) {
568                 static const u8 reserved_mac[] = {
569                         0x02, 0xcc, 0xaa, 0xff, 0xee, 0x00
570                 };
571
572                 hw_addr = (const u8 *)(mac_override +
573                                  MAC_ADDRESS_OVERRIDE_FAMILY_8000);
574
575                 /*
576                  * Store the MAC address from MAO section.
577                  * No byte swapping is required in MAO section
578                  */
579                 memcpy(data->hw_addr, hw_addr, ETH_ALEN);
580
581                 /*
582                  * Force the use of the OTP MAC address in case of reserved MAC
583                  * address in the NVM, or if address is given but invalid.
584                  */
585                 if (is_valid_ether_addr(data->hw_addr) &&
586                     memcmp(reserved_mac, hw_addr, ETH_ALEN) != 0)
587                         return;
588
589                 IWL_ERR(trans,
590                         "mac address from nvm override section is not valid\n");
591         }
592
593         if (nvm_hw) {
594                 /* read the mac address from WFMP registers */
595                 __le32 mac_addr0 = cpu_to_le32(iwl_trans_read_prph(trans,
596                                                 WFMP_MAC_ADDR_0));
597                 __le32 mac_addr1 = cpu_to_le32(iwl_trans_read_prph(trans,
598                                                 WFMP_MAC_ADDR_1));
599
600                 iwl_flip_hw_address(mac_addr0, mac_addr1, data->hw_addr);
601
602                 return;
603         }
604
605         IWL_ERR(trans, "mac address is not found\n");
606 }
607
608 static int iwl_set_hw_address(struct iwl_trans *trans,
609                               const struct iwl_cfg *cfg,
610                               struct iwl_nvm_data *data, const __le16 *nvm_hw,
611                               const __le16 *mac_override)
612 {
613         if (cfg->mac_addr_from_csr) {
614                 iwl_set_hw_address_from_csr(trans, data);
615         } else if (cfg->device_family != IWL_DEVICE_FAMILY_8000) {
616                 const u8 *hw_addr = (const u8 *)(nvm_hw + HW_ADDR);
617
618                 /* The byte order is little endian 16 bit, meaning 214365 */
619                 data->hw_addr[0] = hw_addr[1];
620                 data->hw_addr[1] = hw_addr[0];
621                 data->hw_addr[2] = hw_addr[3];
622                 data->hw_addr[3] = hw_addr[2];
623                 data->hw_addr[4] = hw_addr[5];
624                 data->hw_addr[5] = hw_addr[4];
625         } else {
626                 iwl_set_hw_address_family_8000(trans, cfg, data,
627                                                mac_override, nvm_hw);
628         }
629
630         if (!is_valid_ether_addr(data->hw_addr)) {
631                 IWL_ERR(trans, "no valid mac address was found\n");
632                 return -EINVAL;
633         }
634
635         return 0;
636 }
637
638 struct iwl_nvm_data *
639 iwl_parse_nvm_data(struct iwl_trans *trans, const struct iwl_cfg *cfg,
640                    const __le16 *nvm_hw, const __le16 *nvm_sw,
641                    const __le16 *nvm_calib, const __le16 *regulatory,
642                    const __le16 *mac_override, const __le16 *phy_sku,
643                    u8 tx_chains, u8 rx_chains, bool lar_fw_supported)
644 {
645         struct device *dev = trans->dev;
646         struct iwl_nvm_data *data;
647         bool lar_enabled;
648         u32 sku, radio_cfg;
649         u16 lar_config;
650         const __le16 *ch_section;
651
652         if (cfg->device_family != IWL_DEVICE_FAMILY_8000)
653                 data = kzalloc(sizeof(*data) +
654                                sizeof(struct ieee80211_channel) *
655                                IWL_NUM_CHANNELS,
656                                GFP_KERNEL);
657         else
658                 data = kzalloc(sizeof(*data) +
659                                sizeof(struct ieee80211_channel) *
660                                IWL_NUM_CHANNELS_FAMILY_8000,
661                                GFP_KERNEL);
662         if (!data)
663                 return NULL;
664
665         data->nvm_version = iwl_get_nvm_version(cfg, nvm_sw);
666
667         radio_cfg = iwl_get_radio_cfg(cfg, nvm_sw, phy_sku);
668         iwl_set_radio_cfg(cfg, data, radio_cfg);
669         if (data->valid_tx_ant)
670                 tx_chains &= data->valid_tx_ant;
671         if (data->valid_rx_ant)
672                 rx_chains &= data->valid_rx_ant;
673
674         sku = iwl_get_sku(cfg, nvm_sw, phy_sku);
675         data->sku_cap_band_24GHz_enable = sku & NVM_SKU_CAP_BAND_24GHZ;
676         data->sku_cap_band_52GHz_enable = sku & NVM_SKU_CAP_BAND_52GHZ;
677         data->sku_cap_11n_enable = sku & NVM_SKU_CAP_11N_ENABLE;
678         if (iwlwifi_mod_params.disable_11n & IWL_DISABLE_HT_ALL)
679                 data->sku_cap_11n_enable = false;
680         data->sku_cap_11ac_enable = data->sku_cap_11n_enable &&
681                                     (sku & NVM_SKU_CAP_11AC_ENABLE);
682         data->sku_cap_mimo_disabled = sku & NVM_SKU_CAP_MIMO_DISABLE;
683
684         data->n_hw_addrs = iwl_get_n_hw_addrs(cfg, nvm_sw);
685
686         if (cfg->device_family != IWL_DEVICE_FAMILY_8000) {
687                 /* Checking for required sections */
688                 if (!nvm_calib) {
689                         IWL_ERR(trans,
690                                 "Can't parse empty Calib NVM sections\n");
691                         kfree(data);
692                         return NULL;
693                 }
694                 /* in family 8000 Xtal calibration values moved to OTP */
695                 data->xtal_calib[0] = *(nvm_calib + XTAL_CALIB);
696                 data->xtal_calib[1] = *(nvm_calib + XTAL_CALIB + 1);
697                 lar_enabled = true;
698                 ch_section = nvm_sw;
699         } else {
700                 u16 lar_offset = data->nvm_version < 0xE39 ?
701                                  NVM_LAR_OFFSET_FAMILY_8000_OLD :
702                                  NVM_LAR_OFFSET_FAMILY_8000;
703
704                 lar_config = le16_to_cpup(regulatory + lar_offset);
705                 data->lar_enabled = !!(lar_config &
706                                        NVM_LAR_ENABLED_FAMILY_8000);
707                 lar_enabled = data->lar_enabled;
708                 ch_section = regulatory;
709         }
710
711         /* If no valid mac address was found - bail out */
712         if (iwl_set_hw_address(trans, cfg, data, nvm_hw, mac_override)) {
713                 kfree(data);
714                 return NULL;
715         }
716
717         iwl_init_sbands(dev, cfg, data, ch_section, tx_chains, rx_chains,
718                         lar_fw_supported && lar_enabled);
719         data->calib_version = 255;
720
721         return data;
722 }
723 IWL_EXPORT_SYMBOL(iwl_parse_nvm_data);
724
725 static u32 iwl_nvm_get_regdom_bw_flags(const u8 *nvm_chan,
726                                        int ch_idx, u16 nvm_flags,
727                                        const struct iwl_cfg *cfg)
728 {
729         u32 flags = NL80211_RRF_NO_HT40;
730         u32 last_5ghz_ht = LAST_5GHZ_HT;
731
732         if (cfg->device_family == IWL_DEVICE_FAMILY_8000)
733                 last_5ghz_ht = LAST_5GHZ_HT_FAMILY_8000;
734
735         if (ch_idx < NUM_2GHZ_CHANNELS &&
736             (nvm_flags & NVM_CHANNEL_40MHZ)) {
737                 if (nvm_chan[ch_idx] <= LAST_2GHZ_HT_PLUS)
738                         flags &= ~NL80211_RRF_NO_HT40PLUS;
739                 if (nvm_chan[ch_idx] >= FIRST_2GHZ_HT_MINUS)
740                         flags &= ~NL80211_RRF_NO_HT40MINUS;
741         } else if (nvm_chan[ch_idx] <= last_5ghz_ht &&
742                    (nvm_flags & NVM_CHANNEL_40MHZ)) {
743                 if ((ch_idx - NUM_2GHZ_CHANNELS) % 2 == 0)
744                         flags &= ~NL80211_RRF_NO_HT40PLUS;
745                 else
746                         flags &= ~NL80211_RRF_NO_HT40MINUS;
747         }
748
749         if (!(nvm_flags & NVM_CHANNEL_80MHZ))
750                 flags |= NL80211_RRF_NO_80MHZ;
751         if (!(nvm_flags & NVM_CHANNEL_160MHZ))
752                 flags |= NL80211_RRF_NO_160MHZ;
753
754         if (!(nvm_flags & NVM_CHANNEL_ACTIVE))
755                 flags |= NL80211_RRF_NO_IR;
756
757         if (nvm_flags & NVM_CHANNEL_RADAR)
758                 flags |= NL80211_RRF_DFS;
759
760         if (nvm_flags & NVM_CHANNEL_INDOOR_ONLY)
761                 flags |= NL80211_RRF_NO_OUTDOOR;
762
763         /* Set the GO concurrent flag only in case that NO_IR is set.
764          * Otherwise it is meaningless
765          */
766         if ((nvm_flags & NVM_CHANNEL_GO_CONCURRENT) &&
767             (flags & NL80211_RRF_NO_IR))
768                 flags |= NL80211_RRF_GO_CONCURRENT;
769
770         return flags;
771 }
772
773 struct ieee80211_regdomain *
774 iwl_parse_nvm_mcc_info(struct device *dev, const struct iwl_cfg *cfg,
775                        int num_of_ch, __le32 *channels, u16 fw_mcc)
776 {
777         int ch_idx;
778         u16 ch_flags, prev_ch_flags = 0;
779         const u8 *nvm_chan = cfg->device_family == IWL_DEVICE_FAMILY_8000 ?
780                              iwl_nvm_channels_family_8000 : iwl_nvm_channels;
781         struct ieee80211_regdomain *regd;
782         int size_of_regd;
783         struct ieee80211_reg_rule *rule;
784         enum ieee80211_band band;
785         int center_freq, prev_center_freq = 0;
786         int valid_rules = 0;
787         bool new_rule;
788         int max_num_ch = cfg->device_family == IWL_DEVICE_FAMILY_8000 ?
789                          IWL_NUM_CHANNELS_FAMILY_8000 : IWL_NUM_CHANNELS;
790
791         if (WARN_ON_ONCE(num_of_ch > NL80211_MAX_SUPP_REG_RULES))
792                 return ERR_PTR(-EINVAL);
793
794         if (WARN_ON(num_of_ch > max_num_ch))
795                 num_of_ch = max_num_ch;
796
797         IWL_DEBUG_DEV(dev, IWL_DL_LAR, "building regdom for %d channels\n",
798                       num_of_ch);
799
800         /* build a regdomain rule for every valid channel */
801         size_of_regd =
802                 sizeof(struct ieee80211_regdomain) +
803                 num_of_ch * sizeof(struct ieee80211_reg_rule);
804
805         regd = kzalloc(size_of_regd, GFP_KERNEL);
806         if (!regd)
807                 return ERR_PTR(-ENOMEM);
808
809         for (ch_idx = 0; ch_idx < num_of_ch; ch_idx++) {
810                 ch_flags = (u16)__le32_to_cpup(channels + ch_idx);
811                 band = (ch_idx < NUM_2GHZ_CHANNELS) ?
812                        IEEE80211_BAND_2GHZ : IEEE80211_BAND_5GHZ;
813                 center_freq = ieee80211_channel_to_frequency(nvm_chan[ch_idx],
814                                                              band);
815                 new_rule = false;
816
817                 if (!(ch_flags & NVM_CHANNEL_VALID)) {
818                         IWL_DEBUG_DEV(dev, IWL_DL_LAR,
819                                       "Ch. %d Flags %x [%sGHz] - No traffic\n",
820                                       nvm_chan[ch_idx],
821                                       ch_flags,
822                                       (ch_idx >= NUM_2GHZ_CHANNELS) ?
823                                       "5.2" : "2.4");
824                         continue;
825                 }
826
827                 /* we can't continue the same rule */
828                 if (ch_idx == 0 || prev_ch_flags != ch_flags ||
829                     center_freq - prev_center_freq > 20) {
830                         valid_rules++;
831                         new_rule = true;
832                 }
833
834                 rule = &regd->reg_rules[valid_rules - 1];
835
836                 if (new_rule)
837                         rule->freq_range.start_freq_khz =
838                                                 MHZ_TO_KHZ(center_freq - 10);
839
840                 rule->freq_range.end_freq_khz = MHZ_TO_KHZ(center_freq + 10);
841
842                 /* this doesn't matter - not used by FW */
843                 rule->power_rule.max_antenna_gain = DBI_TO_MBI(6);
844                 rule->power_rule.max_eirp =
845                         DBM_TO_MBM(IWL_DEFAULT_MAX_TX_POWER);
846
847                 rule->flags = iwl_nvm_get_regdom_bw_flags(nvm_chan, ch_idx,
848                                                           ch_flags, cfg);
849
850                 /* rely on auto-calculation to merge BW of contiguous chans */
851                 rule->flags |= NL80211_RRF_AUTO_BW;
852                 rule->freq_range.max_bandwidth_khz = 0;
853
854                 prev_ch_flags = ch_flags;
855                 prev_center_freq = center_freq;
856
857                 IWL_DEBUG_DEV(dev, IWL_DL_LAR,
858                               "Ch. %d [%sGHz] %s%s%s%s%s%s%s%s%s(0x%02x): Ad-Hoc %ssupported\n",
859                               center_freq,
860                               band == IEEE80211_BAND_5GHZ ? "5.2" : "2.4",
861                               CHECK_AND_PRINT_I(VALID),
862                               CHECK_AND_PRINT_I(ACTIVE),
863                               CHECK_AND_PRINT_I(RADAR),
864                               CHECK_AND_PRINT_I(WIDE),
865                               CHECK_AND_PRINT_I(40MHZ),
866                               CHECK_AND_PRINT_I(80MHZ),
867                               CHECK_AND_PRINT_I(160MHZ),
868                               CHECK_AND_PRINT_I(INDOOR_ONLY),
869                               CHECK_AND_PRINT_I(GO_CONCURRENT),
870                               ch_flags,
871                               ((ch_flags & NVM_CHANNEL_ACTIVE) &&
872                                !(ch_flags & NVM_CHANNEL_RADAR))
873                                          ? "" : "not ");
874         }
875
876         regd->n_reg_rules = valid_rules;
877
878         /* set alpha2 from FW. */
879         regd->alpha2[0] = fw_mcc >> 8;
880         regd->alpha2[1] = fw_mcc & 0xff;
881
882         return regd;
883 }
884 IWL_EXPORT_SYMBOL(iwl_parse_nvm_mcc_info);