Merge git://git.kernel.org/pub/scm/linux/kernel/git/davem/net-next
[cascardo/linux.git] / drivers / net / wireless / ipw2x00 / ipw2200.c
1 /******************************************************************************
2
3   Copyright(c) 2003 - 2006 Intel Corporation. All rights reserved.
4
5   802.11 status code portion of this file from ethereal-0.10.6:
6     Copyright 2000, Axis Communications AB
7     Ethereal - Network traffic analyzer
8     By Gerald Combs <gerald@ethereal.com>
9     Copyright 1998 Gerald Combs
10
11   This program is free software; you can redistribute it and/or modify it
12   under the terms of version 2 of the GNU General Public License as
13   published by the Free Software Foundation.
14
15   This program is distributed in the hope that it will be useful, but WITHOUT
16   ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
17   FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
18   more details.
19
20   You should have received a copy of the GNU General Public License along with
21   this program; if not, write to the Free Software Foundation, Inc., 59
22   Temple Place - Suite 330, Boston, MA  02111-1307, USA.
23
24   The full GNU General Public License is included in this distribution in the
25   file called LICENSE.
26
27   Contact Information:
28   Intel Linux Wireless <ilw@linux.intel.com>
29   Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
30
31 ******************************************************************************/
32
33 #include <linux/sched.h>
34 #include <linux/slab.h>
35 #include <net/cfg80211-wext.h>
36 #include "ipw2200.h"
37 #include "ipw.h"
38
39
40 #ifndef KBUILD_EXTMOD
41 #define VK "k"
42 #else
43 #define VK
44 #endif
45
46 #ifdef CONFIG_IPW2200_DEBUG
47 #define VD "d"
48 #else
49 #define VD
50 #endif
51
52 #ifdef CONFIG_IPW2200_MONITOR
53 #define VM "m"
54 #else
55 #define VM
56 #endif
57
58 #ifdef CONFIG_IPW2200_PROMISCUOUS
59 #define VP "p"
60 #else
61 #define VP
62 #endif
63
64 #ifdef CONFIG_IPW2200_RADIOTAP
65 #define VR "r"
66 #else
67 #define VR
68 #endif
69
70 #ifdef CONFIG_IPW2200_QOS
71 #define VQ "q"
72 #else
73 #define VQ
74 #endif
75
76 #define IPW2200_VERSION "1.2.2" VK VD VM VP VR VQ
77 #define DRV_DESCRIPTION "Intel(R) PRO/Wireless 2200/2915 Network Driver"
78 #define DRV_COPYRIGHT   "Copyright(c) 2003-2006 Intel Corporation"
79 #define DRV_VERSION     IPW2200_VERSION
80
81 #define ETH_P_80211_STATS (ETH_P_80211_RAW + 1)
82
83 MODULE_DESCRIPTION(DRV_DESCRIPTION);
84 MODULE_VERSION(DRV_VERSION);
85 MODULE_AUTHOR(DRV_COPYRIGHT);
86 MODULE_LICENSE("GPL");
87 MODULE_FIRMWARE("ipw2200-ibss.fw");
88 #ifdef CONFIG_IPW2200_MONITOR
89 MODULE_FIRMWARE("ipw2200-sniffer.fw");
90 #endif
91 MODULE_FIRMWARE("ipw2200-bss.fw");
92
93 static int cmdlog = 0;
94 static int debug = 0;
95 static int default_channel = 0;
96 static int network_mode = 0;
97
98 static u32 ipw_debug_level;
99 static int associate;
100 static int auto_create = 1;
101 static int led_support = 1;
102 static int disable = 0;
103 static int bt_coexist = 0;
104 static int hwcrypto = 0;
105 static int roaming = 1;
106 static const char ipw_modes[] = {
107         'a', 'b', 'g', '?'
108 };
109 static int antenna = CFG_SYS_ANTENNA_BOTH;
110
111 #ifdef CONFIG_IPW2200_PROMISCUOUS
112 static int rtap_iface = 0;     /* def: 0 -- do not create rtap interface */
113 #endif
114
115 static struct ieee80211_rate ipw2200_rates[] = {
116         { .bitrate = 10 },
117         { .bitrate = 20, .flags = IEEE80211_RATE_SHORT_PREAMBLE },
118         { .bitrate = 55, .flags = IEEE80211_RATE_SHORT_PREAMBLE },
119         { .bitrate = 110, .flags = IEEE80211_RATE_SHORT_PREAMBLE },
120         { .bitrate = 60 },
121         { .bitrate = 90 },
122         { .bitrate = 120 },
123         { .bitrate = 180 },
124         { .bitrate = 240 },
125         { .bitrate = 360 },
126         { .bitrate = 480 },
127         { .bitrate = 540 }
128 };
129
130 #define ipw2200_a_rates         (ipw2200_rates + 4)
131 #define ipw2200_num_a_rates     8
132 #define ipw2200_bg_rates        (ipw2200_rates + 0)
133 #define ipw2200_num_bg_rates    12
134
135 /* Ugly macro to convert literal channel numbers into their mhz equivalents
136  * There are certianly some conditions that will break this (like feeding it '30')
137  * but they shouldn't arise since nothing talks on channel 30. */
138 #define ieee80211chan2mhz(x) \
139         (((x) <= 14) ? \
140         (((x) == 14) ? 2484 : ((x) * 5) + 2407) : \
141         ((x) + 1000) * 5)
142
143 #ifdef CONFIG_IPW2200_QOS
144 static int qos_enable = 0;
145 static int qos_burst_enable = 0;
146 static int qos_no_ack_mask = 0;
147 static int burst_duration_CCK = 0;
148 static int burst_duration_OFDM = 0;
149
150 static struct libipw_qos_parameters def_qos_parameters_OFDM = {
151         {QOS_TX0_CW_MIN_OFDM, QOS_TX1_CW_MIN_OFDM, QOS_TX2_CW_MIN_OFDM,
152          QOS_TX3_CW_MIN_OFDM},
153         {QOS_TX0_CW_MAX_OFDM, QOS_TX1_CW_MAX_OFDM, QOS_TX2_CW_MAX_OFDM,
154          QOS_TX3_CW_MAX_OFDM},
155         {QOS_TX0_AIFS, QOS_TX1_AIFS, QOS_TX2_AIFS, QOS_TX3_AIFS},
156         {QOS_TX0_ACM, QOS_TX1_ACM, QOS_TX2_ACM, QOS_TX3_ACM},
157         {QOS_TX0_TXOP_LIMIT_OFDM, QOS_TX1_TXOP_LIMIT_OFDM,
158          QOS_TX2_TXOP_LIMIT_OFDM, QOS_TX3_TXOP_LIMIT_OFDM}
159 };
160
161 static struct libipw_qos_parameters def_qos_parameters_CCK = {
162         {QOS_TX0_CW_MIN_CCK, QOS_TX1_CW_MIN_CCK, QOS_TX2_CW_MIN_CCK,
163          QOS_TX3_CW_MIN_CCK},
164         {QOS_TX0_CW_MAX_CCK, QOS_TX1_CW_MAX_CCK, QOS_TX2_CW_MAX_CCK,
165          QOS_TX3_CW_MAX_CCK},
166         {QOS_TX0_AIFS, QOS_TX1_AIFS, QOS_TX2_AIFS, QOS_TX3_AIFS},
167         {QOS_TX0_ACM, QOS_TX1_ACM, QOS_TX2_ACM, QOS_TX3_ACM},
168         {QOS_TX0_TXOP_LIMIT_CCK, QOS_TX1_TXOP_LIMIT_CCK, QOS_TX2_TXOP_LIMIT_CCK,
169          QOS_TX3_TXOP_LIMIT_CCK}
170 };
171
172 static struct libipw_qos_parameters def_parameters_OFDM = {
173         {DEF_TX0_CW_MIN_OFDM, DEF_TX1_CW_MIN_OFDM, DEF_TX2_CW_MIN_OFDM,
174          DEF_TX3_CW_MIN_OFDM},
175         {DEF_TX0_CW_MAX_OFDM, DEF_TX1_CW_MAX_OFDM, DEF_TX2_CW_MAX_OFDM,
176          DEF_TX3_CW_MAX_OFDM},
177         {DEF_TX0_AIFS, DEF_TX1_AIFS, DEF_TX2_AIFS, DEF_TX3_AIFS},
178         {DEF_TX0_ACM, DEF_TX1_ACM, DEF_TX2_ACM, DEF_TX3_ACM},
179         {DEF_TX0_TXOP_LIMIT_OFDM, DEF_TX1_TXOP_LIMIT_OFDM,
180          DEF_TX2_TXOP_LIMIT_OFDM, DEF_TX3_TXOP_LIMIT_OFDM}
181 };
182
183 static struct libipw_qos_parameters def_parameters_CCK = {
184         {DEF_TX0_CW_MIN_CCK, DEF_TX1_CW_MIN_CCK, DEF_TX2_CW_MIN_CCK,
185          DEF_TX3_CW_MIN_CCK},
186         {DEF_TX0_CW_MAX_CCK, DEF_TX1_CW_MAX_CCK, DEF_TX2_CW_MAX_CCK,
187          DEF_TX3_CW_MAX_CCK},
188         {DEF_TX0_AIFS, DEF_TX1_AIFS, DEF_TX2_AIFS, DEF_TX3_AIFS},
189         {DEF_TX0_ACM, DEF_TX1_ACM, DEF_TX2_ACM, DEF_TX3_ACM},
190         {DEF_TX0_TXOP_LIMIT_CCK, DEF_TX1_TXOP_LIMIT_CCK, DEF_TX2_TXOP_LIMIT_CCK,
191          DEF_TX3_TXOP_LIMIT_CCK}
192 };
193
194 static u8 qos_oui[QOS_OUI_LEN] = { 0x00, 0x50, 0xF2 };
195
196 static int from_priority_to_tx_queue[] = {
197         IPW_TX_QUEUE_1, IPW_TX_QUEUE_2, IPW_TX_QUEUE_2, IPW_TX_QUEUE_1,
198         IPW_TX_QUEUE_3, IPW_TX_QUEUE_3, IPW_TX_QUEUE_4, IPW_TX_QUEUE_4
199 };
200
201 static u32 ipw_qos_get_burst_duration(struct ipw_priv *priv);
202
203 static int ipw_send_qos_params_command(struct ipw_priv *priv, struct libipw_qos_parameters
204                                        *qos_param);
205 static int ipw_send_qos_info_command(struct ipw_priv *priv, struct libipw_qos_information_element
206                                      *qos_param);
207 #endif                          /* CONFIG_IPW2200_QOS */
208
209 static struct iw_statistics *ipw_get_wireless_stats(struct net_device *dev);
210 static void ipw_remove_current_network(struct ipw_priv *priv);
211 static void ipw_rx(struct ipw_priv *priv);
212 static int ipw_queue_tx_reclaim(struct ipw_priv *priv,
213                                 struct clx2_tx_queue *txq, int qindex);
214 static int ipw_queue_reset(struct ipw_priv *priv);
215
216 static int ipw_queue_tx_hcmd(struct ipw_priv *priv, int hcmd, void *buf,
217                              int len, int sync);
218
219 static void ipw_tx_queue_free(struct ipw_priv *);
220
221 static struct ipw_rx_queue *ipw_rx_queue_alloc(struct ipw_priv *);
222 static void ipw_rx_queue_free(struct ipw_priv *, struct ipw_rx_queue *);
223 static void ipw_rx_queue_replenish(void *);
224 static int ipw_up(struct ipw_priv *);
225 static void ipw_bg_up(struct work_struct *work);
226 static void ipw_down(struct ipw_priv *);
227 static void ipw_bg_down(struct work_struct *work);
228 static int ipw_config(struct ipw_priv *);
229 static int init_supported_rates(struct ipw_priv *priv,
230                                 struct ipw_supported_rates *prates);
231 static void ipw_set_hwcrypto_keys(struct ipw_priv *);
232 static void ipw_send_wep_keys(struct ipw_priv *, int);
233
234 static int snprint_line(char *buf, size_t count,
235                         const u8 * data, u32 len, u32 ofs)
236 {
237         int out, i, j, l;
238         char c;
239
240         out = snprintf(buf, count, "%08X", ofs);
241
242         for (l = 0, i = 0; i < 2; i++) {
243                 out += snprintf(buf + out, count - out, " ");
244                 for (j = 0; j < 8 && l < len; j++, l++)
245                         out += snprintf(buf + out, count - out, "%02X ",
246                                         data[(i * 8 + j)]);
247                 for (; j < 8; j++)
248                         out += snprintf(buf + out, count - out, "   ");
249         }
250
251         out += snprintf(buf + out, count - out, " ");
252         for (l = 0, i = 0; i < 2; i++) {
253                 out += snprintf(buf + out, count - out, " ");
254                 for (j = 0; j < 8 && l < len; j++, l++) {
255                         c = data[(i * 8 + j)];
256                         if (!isascii(c) || !isprint(c))
257                                 c = '.';
258
259                         out += snprintf(buf + out, count - out, "%c", c);
260                 }
261
262                 for (; j < 8; j++)
263                         out += snprintf(buf + out, count - out, " ");
264         }
265
266         return out;
267 }
268
269 static void printk_buf(int level, const u8 * data, u32 len)
270 {
271         char line[81];
272         u32 ofs = 0;
273         if (!(ipw_debug_level & level))
274                 return;
275
276         while (len) {
277                 snprint_line(line, sizeof(line), &data[ofs],
278                              min(len, 16U), ofs);
279                 printk(KERN_DEBUG "%s\n", line);
280                 ofs += 16;
281                 len -= min(len, 16U);
282         }
283 }
284
285 static int snprintk_buf(u8 * output, size_t size, const u8 * data, size_t len)
286 {
287         size_t out = size;
288         u32 ofs = 0;
289         int total = 0;
290
291         while (size && len) {
292                 out = snprint_line(output, size, &data[ofs],
293                                    min_t(size_t, len, 16U), ofs);
294
295                 ofs += 16;
296                 output += out;
297                 size -= out;
298                 len -= min_t(size_t, len, 16U);
299                 total += out;
300         }
301         return total;
302 }
303
304 /* alias for 32-bit indirect read (for SRAM/reg above 4K), with debug wrapper */
305 static u32 _ipw_read_reg32(struct ipw_priv *priv, u32 reg);
306 #define ipw_read_reg32(a, b) _ipw_read_reg32(a, b)
307
308 /* alias for 8-bit indirect read (for SRAM/reg above 4K), with debug wrapper */
309 static u8 _ipw_read_reg8(struct ipw_priv *ipw, u32 reg);
310 #define ipw_read_reg8(a, b) _ipw_read_reg8(a, b)
311
312 /* 8-bit indirect write (for SRAM/reg above 4K), with debug wrapper */
313 static void _ipw_write_reg8(struct ipw_priv *priv, u32 reg, u8 value);
314 static inline void ipw_write_reg8(struct ipw_priv *a, u32 b, u8 c)
315 {
316         IPW_DEBUG_IO("%s %d: write_indirect8(0x%08X, 0x%08X)\n", __FILE__,
317                      __LINE__, (u32) (b), (u32) (c));
318         _ipw_write_reg8(a, b, c);
319 }
320
321 /* 16-bit indirect write (for SRAM/reg above 4K), with debug wrapper */
322 static void _ipw_write_reg16(struct ipw_priv *priv, u32 reg, u16 value);
323 static inline void ipw_write_reg16(struct ipw_priv *a, u32 b, u16 c)
324 {
325         IPW_DEBUG_IO("%s %d: write_indirect16(0x%08X, 0x%08X)\n", __FILE__,
326                      __LINE__, (u32) (b), (u32) (c));
327         _ipw_write_reg16(a, b, c);
328 }
329
330 /* 32-bit indirect write (for SRAM/reg above 4K), with debug wrapper */
331 static void _ipw_write_reg32(struct ipw_priv *priv, u32 reg, u32 value);
332 static inline void ipw_write_reg32(struct ipw_priv *a, u32 b, u32 c)
333 {
334         IPW_DEBUG_IO("%s %d: write_indirect32(0x%08X, 0x%08X)\n", __FILE__,
335                      __LINE__, (u32) (b), (u32) (c));
336         _ipw_write_reg32(a, b, c);
337 }
338
339 /* 8-bit direct write (low 4K) */
340 static inline void _ipw_write8(struct ipw_priv *ipw, unsigned long ofs,
341                 u8 val)
342 {
343         writeb(val, ipw->hw_base + ofs);
344 }
345
346 /* 8-bit direct write (for low 4K of SRAM/regs), with debug wrapper */
347 #define ipw_write8(ipw, ofs, val) do { \
348         IPW_DEBUG_IO("%s %d: write_direct8(0x%08X, 0x%08X)\n", __FILE__, \
349                         __LINE__, (u32)(ofs), (u32)(val)); \
350         _ipw_write8(ipw, ofs, val); \
351 } while (0)
352
353 /* 16-bit direct write (low 4K) */
354 static inline void _ipw_write16(struct ipw_priv *ipw, unsigned long ofs,
355                 u16 val)
356 {
357         writew(val, ipw->hw_base + ofs);
358 }
359
360 /* 16-bit direct write (for low 4K of SRAM/regs), with debug wrapper */
361 #define ipw_write16(ipw, ofs, val) do { \
362         IPW_DEBUG_IO("%s %d: write_direct16(0x%08X, 0x%08X)\n", __FILE__, \
363                         __LINE__, (u32)(ofs), (u32)(val)); \
364         _ipw_write16(ipw, ofs, val); \
365 } while (0)
366
367 /* 32-bit direct write (low 4K) */
368 static inline void _ipw_write32(struct ipw_priv *ipw, unsigned long ofs,
369                 u32 val)
370 {
371         writel(val, ipw->hw_base + ofs);
372 }
373
374 /* 32-bit direct write (for low 4K of SRAM/regs), with debug wrapper */
375 #define ipw_write32(ipw, ofs, val) do { \
376         IPW_DEBUG_IO("%s %d: write_direct32(0x%08X, 0x%08X)\n", __FILE__, \
377                         __LINE__, (u32)(ofs), (u32)(val)); \
378         _ipw_write32(ipw, ofs, val); \
379 } while (0)
380
381 /* 8-bit direct read (low 4K) */
382 static inline u8 _ipw_read8(struct ipw_priv *ipw, unsigned long ofs)
383 {
384         return readb(ipw->hw_base + ofs);
385 }
386
387 /* alias to 8-bit direct read (low 4K of SRAM/regs), with debug wrapper */
388 #define ipw_read8(ipw, ofs) ({ \
389         IPW_DEBUG_IO("%s %d: read_direct8(0x%08X)\n", __FILE__, __LINE__, \
390                         (u32)(ofs)); \
391         _ipw_read8(ipw, ofs); \
392 })
393
394 /* 16-bit direct read (low 4K) */
395 static inline u16 _ipw_read16(struct ipw_priv *ipw, unsigned long ofs)
396 {
397         return readw(ipw->hw_base + ofs);
398 }
399
400 /* alias to 16-bit direct read (low 4K of SRAM/regs), with debug wrapper */
401 #define ipw_read16(ipw, ofs) ({ \
402         IPW_DEBUG_IO("%s %d: read_direct16(0x%08X)\n", __FILE__, __LINE__, \
403                         (u32)(ofs)); \
404         _ipw_read16(ipw, ofs); \
405 })
406
407 /* 32-bit direct read (low 4K) */
408 static inline u32 _ipw_read32(struct ipw_priv *ipw, unsigned long ofs)
409 {
410         return readl(ipw->hw_base + ofs);
411 }
412
413 /* alias to 32-bit direct read (low 4K of SRAM/regs), with debug wrapper */
414 #define ipw_read32(ipw, ofs) ({ \
415         IPW_DEBUG_IO("%s %d: read_direct32(0x%08X)\n", __FILE__, __LINE__, \
416                         (u32)(ofs)); \
417         _ipw_read32(ipw, ofs); \
418 })
419
420 static void _ipw_read_indirect(struct ipw_priv *, u32, u8 *, int);
421 /* alias to multi-byte read (SRAM/regs above 4K), with debug wrapper */
422 #define ipw_read_indirect(a, b, c, d) ({ \
423         IPW_DEBUG_IO("%s %d: read_indirect(0x%08X) %u bytes\n", __FILE__, \
424                         __LINE__, (u32)(b), (u32)(d)); \
425         _ipw_read_indirect(a, b, c, d); \
426 })
427
428 /* alias to multi-byte read (SRAM/regs above 4K), with debug wrapper */
429 static void _ipw_write_indirect(struct ipw_priv *priv, u32 addr, u8 * data,
430                                 int num);
431 #define ipw_write_indirect(a, b, c, d) do { \
432         IPW_DEBUG_IO("%s %d: write_indirect(0x%08X) %u bytes\n", __FILE__, \
433                         __LINE__, (u32)(b), (u32)(d)); \
434         _ipw_write_indirect(a, b, c, d); \
435 } while (0)
436
437 /* 32-bit indirect write (above 4K) */
438 static void _ipw_write_reg32(struct ipw_priv *priv, u32 reg, u32 value)
439 {
440         IPW_DEBUG_IO(" %p : reg = 0x%8X : value = 0x%8X\n", priv, reg, value);
441         _ipw_write32(priv, IPW_INDIRECT_ADDR, reg);
442         _ipw_write32(priv, IPW_INDIRECT_DATA, value);
443 }
444
445 /* 8-bit indirect write (above 4K) */
446 static void _ipw_write_reg8(struct ipw_priv *priv, u32 reg, u8 value)
447 {
448         u32 aligned_addr = reg & IPW_INDIRECT_ADDR_MASK;        /* dword align */
449         u32 dif_len = reg - aligned_addr;
450
451         IPW_DEBUG_IO(" reg = 0x%8X : value = 0x%8X\n", reg, value);
452         _ipw_write32(priv, IPW_INDIRECT_ADDR, aligned_addr);
453         _ipw_write8(priv, IPW_INDIRECT_DATA + dif_len, value);
454 }
455
456 /* 16-bit indirect write (above 4K) */
457 static void _ipw_write_reg16(struct ipw_priv *priv, u32 reg, u16 value)
458 {
459         u32 aligned_addr = reg & IPW_INDIRECT_ADDR_MASK;        /* dword align */
460         u32 dif_len = (reg - aligned_addr) & (~0x1ul);
461
462         IPW_DEBUG_IO(" reg = 0x%8X : value = 0x%8X\n", reg, value);
463         _ipw_write32(priv, IPW_INDIRECT_ADDR, aligned_addr);
464         _ipw_write16(priv, IPW_INDIRECT_DATA + dif_len, value);
465 }
466
467 /* 8-bit indirect read (above 4K) */
468 static u8 _ipw_read_reg8(struct ipw_priv *priv, u32 reg)
469 {
470         u32 word;
471         _ipw_write32(priv, IPW_INDIRECT_ADDR, reg & IPW_INDIRECT_ADDR_MASK);
472         IPW_DEBUG_IO(" reg = 0x%8X :\n", reg);
473         word = _ipw_read32(priv, IPW_INDIRECT_DATA);
474         return (word >> ((reg & 0x3) * 8)) & 0xff;
475 }
476
477 /* 32-bit indirect read (above 4K) */
478 static u32 _ipw_read_reg32(struct ipw_priv *priv, u32 reg)
479 {
480         u32 value;
481
482         IPW_DEBUG_IO("%p : reg = 0x%08x\n", priv, reg);
483
484         _ipw_write32(priv, IPW_INDIRECT_ADDR, reg);
485         value = _ipw_read32(priv, IPW_INDIRECT_DATA);
486         IPW_DEBUG_IO(" reg = 0x%4X : value = 0x%4x\n", reg, value);
487         return value;
488 }
489
490 /* General purpose, no alignment requirement, iterative (multi-byte) read, */
491 /*    for area above 1st 4K of SRAM/reg space */
492 static void _ipw_read_indirect(struct ipw_priv *priv, u32 addr, u8 * buf,
493                                int num)
494 {
495         u32 aligned_addr = addr & IPW_INDIRECT_ADDR_MASK;       /* dword align */
496         u32 dif_len = addr - aligned_addr;
497         u32 i;
498
499         IPW_DEBUG_IO("addr = %i, buf = %p, num = %i\n", addr, buf, num);
500
501         if (num <= 0) {
502                 return;
503         }
504
505         /* Read the first dword (or portion) byte by byte */
506         if (unlikely(dif_len)) {
507                 _ipw_write32(priv, IPW_INDIRECT_ADDR, aligned_addr);
508                 /* Start reading at aligned_addr + dif_len */
509                 for (i = dif_len; ((i < 4) && (num > 0)); i++, num--)
510                         *buf++ = _ipw_read8(priv, IPW_INDIRECT_DATA + i);
511                 aligned_addr += 4;
512         }
513
514         /* Read all of the middle dwords as dwords, with auto-increment */
515         _ipw_write32(priv, IPW_AUTOINC_ADDR, aligned_addr);
516         for (; num >= 4; buf += 4, aligned_addr += 4, num -= 4)
517                 *(u32 *) buf = _ipw_read32(priv, IPW_AUTOINC_DATA);
518
519         /* Read the last dword (or portion) byte by byte */
520         if (unlikely(num)) {
521                 _ipw_write32(priv, IPW_INDIRECT_ADDR, aligned_addr);
522                 for (i = 0; num > 0; i++, num--)
523                         *buf++ = ipw_read8(priv, IPW_INDIRECT_DATA + i);
524         }
525 }
526
527 /* General purpose, no alignment requirement, iterative (multi-byte) write, */
528 /*    for area above 1st 4K of SRAM/reg space */
529 static void _ipw_write_indirect(struct ipw_priv *priv, u32 addr, u8 * buf,
530                                 int num)
531 {
532         u32 aligned_addr = addr & IPW_INDIRECT_ADDR_MASK;       /* dword align */
533         u32 dif_len = addr - aligned_addr;
534         u32 i;
535
536         IPW_DEBUG_IO("addr = %i, buf = %p, num = %i\n", addr, buf, num);
537
538         if (num <= 0) {
539                 return;
540         }
541
542         /* Write the first dword (or portion) byte by byte */
543         if (unlikely(dif_len)) {
544                 _ipw_write32(priv, IPW_INDIRECT_ADDR, aligned_addr);
545                 /* Start writing at aligned_addr + dif_len */
546                 for (i = dif_len; ((i < 4) && (num > 0)); i++, num--, buf++)
547                         _ipw_write8(priv, IPW_INDIRECT_DATA + i, *buf);
548                 aligned_addr += 4;
549         }
550
551         /* Write all of the middle dwords as dwords, with auto-increment */
552         _ipw_write32(priv, IPW_AUTOINC_ADDR, aligned_addr);
553         for (; num >= 4; buf += 4, aligned_addr += 4, num -= 4)
554                 _ipw_write32(priv, IPW_AUTOINC_DATA, *(u32 *) buf);
555
556         /* Write the last dword (or portion) byte by byte */
557         if (unlikely(num)) {
558                 _ipw_write32(priv, IPW_INDIRECT_ADDR, aligned_addr);
559                 for (i = 0; num > 0; i++, num--, buf++)
560                         _ipw_write8(priv, IPW_INDIRECT_DATA + i, *buf);
561         }
562 }
563
564 /* General purpose, no alignment requirement, iterative (multi-byte) write, */
565 /*    for 1st 4K of SRAM/regs space */
566 static void ipw_write_direct(struct ipw_priv *priv, u32 addr, void *buf,
567                              int num)
568 {
569         memcpy_toio((priv->hw_base + addr), buf, num);
570 }
571
572 /* Set bit(s) in low 4K of SRAM/regs */
573 static inline void ipw_set_bit(struct ipw_priv *priv, u32 reg, u32 mask)
574 {
575         ipw_write32(priv, reg, ipw_read32(priv, reg) | mask);
576 }
577
578 /* Clear bit(s) in low 4K of SRAM/regs */
579 static inline void ipw_clear_bit(struct ipw_priv *priv, u32 reg, u32 mask)
580 {
581         ipw_write32(priv, reg, ipw_read32(priv, reg) & ~mask);
582 }
583
584 static inline void __ipw_enable_interrupts(struct ipw_priv *priv)
585 {
586         if (priv->status & STATUS_INT_ENABLED)
587                 return;
588         priv->status |= STATUS_INT_ENABLED;
589         ipw_write32(priv, IPW_INTA_MASK_R, IPW_INTA_MASK_ALL);
590 }
591
592 static inline void __ipw_disable_interrupts(struct ipw_priv *priv)
593 {
594         if (!(priv->status & STATUS_INT_ENABLED))
595                 return;
596         priv->status &= ~STATUS_INT_ENABLED;
597         ipw_write32(priv, IPW_INTA_MASK_R, ~IPW_INTA_MASK_ALL);
598 }
599
600 static inline void ipw_enable_interrupts(struct ipw_priv *priv)
601 {
602         unsigned long flags;
603
604         spin_lock_irqsave(&priv->irq_lock, flags);
605         __ipw_enable_interrupts(priv);
606         spin_unlock_irqrestore(&priv->irq_lock, flags);
607 }
608
609 static inline void ipw_disable_interrupts(struct ipw_priv *priv)
610 {
611         unsigned long flags;
612
613         spin_lock_irqsave(&priv->irq_lock, flags);
614         __ipw_disable_interrupts(priv);
615         spin_unlock_irqrestore(&priv->irq_lock, flags);
616 }
617
618 static char *ipw_error_desc(u32 val)
619 {
620         switch (val) {
621         case IPW_FW_ERROR_OK:
622                 return "ERROR_OK";
623         case IPW_FW_ERROR_FAIL:
624                 return "ERROR_FAIL";
625         case IPW_FW_ERROR_MEMORY_UNDERFLOW:
626                 return "MEMORY_UNDERFLOW";
627         case IPW_FW_ERROR_MEMORY_OVERFLOW:
628                 return "MEMORY_OVERFLOW";
629         case IPW_FW_ERROR_BAD_PARAM:
630                 return "BAD_PARAM";
631         case IPW_FW_ERROR_BAD_CHECKSUM:
632                 return "BAD_CHECKSUM";
633         case IPW_FW_ERROR_NMI_INTERRUPT:
634                 return "NMI_INTERRUPT";
635         case IPW_FW_ERROR_BAD_DATABASE:
636                 return "BAD_DATABASE";
637         case IPW_FW_ERROR_ALLOC_FAIL:
638                 return "ALLOC_FAIL";
639         case IPW_FW_ERROR_DMA_UNDERRUN:
640                 return "DMA_UNDERRUN";
641         case IPW_FW_ERROR_DMA_STATUS:
642                 return "DMA_STATUS";
643         case IPW_FW_ERROR_DINO_ERROR:
644                 return "DINO_ERROR";
645         case IPW_FW_ERROR_EEPROM_ERROR:
646                 return "EEPROM_ERROR";
647         case IPW_FW_ERROR_SYSASSERT:
648                 return "SYSASSERT";
649         case IPW_FW_ERROR_FATAL_ERROR:
650                 return "FATAL_ERROR";
651         default:
652                 return "UNKNOWN_ERROR";
653         }
654 }
655
656 static void ipw_dump_error_log(struct ipw_priv *priv,
657                                struct ipw_fw_error *error)
658 {
659         u32 i;
660
661         if (!error) {
662                 IPW_ERROR("Error allocating and capturing error log.  "
663                           "Nothing to dump.\n");
664                 return;
665         }
666
667         IPW_ERROR("Start IPW Error Log Dump:\n");
668         IPW_ERROR("Status: 0x%08X, Config: %08X\n",
669                   error->status, error->config);
670
671         for (i = 0; i < error->elem_len; i++)
672                 IPW_ERROR("%s %i 0x%08x  0x%08x  0x%08x  0x%08x  0x%08x\n",
673                           ipw_error_desc(error->elem[i].desc),
674                           error->elem[i].time,
675                           error->elem[i].blink1,
676                           error->elem[i].blink2,
677                           error->elem[i].link1,
678                           error->elem[i].link2, error->elem[i].data);
679         for (i = 0; i < error->log_len; i++)
680                 IPW_ERROR("%i\t0x%08x\t%i\n",
681                           error->log[i].time,
682                           error->log[i].data, error->log[i].event);
683 }
684
685 static inline int ipw_is_init(struct ipw_priv *priv)
686 {
687         return (priv->status & STATUS_INIT) ? 1 : 0;
688 }
689
690 static int ipw_get_ordinal(struct ipw_priv *priv, u32 ord, void *val, u32 * len)
691 {
692         u32 addr, field_info, field_len, field_count, total_len;
693
694         IPW_DEBUG_ORD("ordinal = %i\n", ord);
695
696         if (!priv || !val || !len) {
697                 IPW_DEBUG_ORD("Invalid argument\n");
698                 return -EINVAL;
699         }
700
701         /* verify device ordinal tables have been initialized */
702         if (!priv->table0_addr || !priv->table1_addr || !priv->table2_addr) {
703                 IPW_DEBUG_ORD("Access ordinals before initialization\n");
704                 return -EINVAL;
705         }
706
707         switch (IPW_ORD_TABLE_ID_MASK & ord) {
708         case IPW_ORD_TABLE_0_MASK:
709                 /*
710                  * TABLE 0: Direct access to a table of 32 bit values
711                  *
712                  * This is a very simple table with the data directly
713                  * read from the table
714                  */
715
716                 /* remove the table id from the ordinal */
717                 ord &= IPW_ORD_TABLE_VALUE_MASK;
718
719                 /* boundary check */
720                 if (ord > priv->table0_len) {
721                         IPW_DEBUG_ORD("ordinal value (%i) longer then "
722                                       "max (%i)\n", ord, priv->table0_len);
723                         return -EINVAL;
724                 }
725
726                 /* verify we have enough room to store the value */
727                 if (*len < sizeof(u32)) {
728                         IPW_DEBUG_ORD("ordinal buffer length too small, "
729                                       "need %zd\n", sizeof(u32));
730                         return -EINVAL;
731                 }
732
733                 IPW_DEBUG_ORD("Reading TABLE0[%i] from offset 0x%08x\n",
734                               ord, priv->table0_addr + (ord << 2));
735
736                 *len = sizeof(u32);
737                 ord <<= 2;
738                 *((u32 *) val) = ipw_read32(priv, priv->table0_addr + ord);
739                 break;
740
741         case IPW_ORD_TABLE_1_MASK:
742                 /*
743                  * TABLE 1: Indirect access to a table of 32 bit values
744                  *
745                  * This is a fairly large table of u32 values each
746                  * representing starting addr for the data (which is
747                  * also a u32)
748                  */
749
750                 /* remove the table id from the ordinal */
751                 ord &= IPW_ORD_TABLE_VALUE_MASK;
752
753                 /* boundary check */
754                 if (ord > priv->table1_len) {
755                         IPW_DEBUG_ORD("ordinal value too long\n");
756                         return -EINVAL;
757                 }
758
759                 /* verify we have enough room to store the value */
760                 if (*len < sizeof(u32)) {
761                         IPW_DEBUG_ORD("ordinal buffer length too small, "
762                                       "need %zd\n", sizeof(u32));
763                         return -EINVAL;
764                 }
765
766                 *((u32 *) val) =
767                     ipw_read_reg32(priv, (priv->table1_addr + (ord << 2)));
768                 *len = sizeof(u32);
769                 break;
770
771         case IPW_ORD_TABLE_2_MASK:
772                 /*
773                  * TABLE 2: Indirect access to a table of variable sized values
774                  *
775                  * This table consist of six values, each containing
776                  *     - dword containing the starting offset of the data
777                  *     - dword containing the lengh in the first 16bits
778                  *       and the count in the second 16bits
779                  */
780
781                 /* remove the table id from the ordinal */
782                 ord &= IPW_ORD_TABLE_VALUE_MASK;
783
784                 /* boundary check */
785                 if (ord > priv->table2_len) {
786                         IPW_DEBUG_ORD("ordinal value too long\n");
787                         return -EINVAL;
788                 }
789
790                 /* get the address of statistic */
791                 addr = ipw_read_reg32(priv, priv->table2_addr + (ord << 3));
792
793                 /* get the second DW of statistics ;
794                  * two 16-bit words - first is length, second is count */
795                 field_info =
796                     ipw_read_reg32(priv,
797                                    priv->table2_addr + (ord << 3) +
798                                    sizeof(u32));
799
800                 /* get each entry length */
801                 field_len = *((u16 *) & field_info);
802
803                 /* get number of entries */
804                 field_count = *(((u16 *) & field_info) + 1);
805
806                 /* abort if not enough memory */
807                 total_len = field_len * field_count;
808                 if (total_len > *len) {
809                         *len = total_len;
810                         return -EINVAL;
811                 }
812
813                 *len = total_len;
814                 if (!total_len)
815                         return 0;
816
817                 IPW_DEBUG_ORD("addr = 0x%08x, total_len = %i, "
818                               "field_info = 0x%08x\n",
819                               addr, total_len, field_info);
820                 ipw_read_indirect(priv, addr, val, total_len);
821                 break;
822
823         default:
824                 IPW_DEBUG_ORD("Invalid ordinal!\n");
825                 return -EINVAL;
826
827         }
828
829         return 0;
830 }
831
832 static void ipw_init_ordinals(struct ipw_priv *priv)
833 {
834         priv->table0_addr = IPW_ORDINALS_TABLE_LOWER;
835         priv->table0_len = ipw_read32(priv, priv->table0_addr);
836
837         IPW_DEBUG_ORD("table 0 offset at 0x%08x, len = %i\n",
838                       priv->table0_addr, priv->table0_len);
839
840         priv->table1_addr = ipw_read32(priv, IPW_ORDINALS_TABLE_1);
841         priv->table1_len = ipw_read_reg32(priv, priv->table1_addr);
842
843         IPW_DEBUG_ORD("table 1 offset at 0x%08x, len = %i\n",
844                       priv->table1_addr, priv->table1_len);
845
846         priv->table2_addr = ipw_read32(priv, IPW_ORDINALS_TABLE_2);
847         priv->table2_len = ipw_read_reg32(priv, priv->table2_addr);
848         priv->table2_len &= 0x0000ffff; /* use first two bytes */
849
850         IPW_DEBUG_ORD("table 2 offset at 0x%08x, len = %i\n",
851                       priv->table2_addr, priv->table2_len);
852
853 }
854
855 static u32 ipw_register_toggle(u32 reg)
856 {
857         reg &= ~IPW_START_STANDBY;
858         if (reg & IPW_GATE_ODMA)
859                 reg &= ~IPW_GATE_ODMA;
860         if (reg & IPW_GATE_IDMA)
861                 reg &= ~IPW_GATE_IDMA;
862         if (reg & IPW_GATE_ADMA)
863                 reg &= ~IPW_GATE_ADMA;
864         return reg;
865 }
866
867 /*
868  * LED behavior:
869  * - On radio ON, turn on any LEDs that require to be on during start
870  * - On initialization, start unassociated blink
871  * - On association, disable unassociated blink
872  * - On disassociation, start unassociated blink
873  * - On radio OFF, turn off any LEDs started during radio on
874  *
875  */
876 #define LD_TIME_LINK_ON msecs_to_jiffies(300)
877 #define LD_TIME_LINK_OFF msecs_to_jiffies(2700)
878 #define LD_TIME_ACT_ON msecs_to_jiffies(250)
879
880 static void ipw_led_link_on(struct ipw_priv *priv)
881 {
882         unsigned long flags;
883         u32 led;
884
885         /* If configured to not use LEDs, or nic_type is 1,
886          * then we don't toggle a LINK led */
887         if (priv->config & CFG_NO_LED || priv->nic_type == EEPROM_NIC_TYPE_1)
888                 return;
889
890         spin_lock_irqsave(&priv->lock, flags);
891
892         if (!(priv->status & STATUS_RF_KILL_MASK) &&
893             !(priv->status & STATUS_LED_LINK_ON)) {
894                 IPW_DEBUG_LED("Link LED On\n");
895                 led = ipw_read_reg32(priv, IPW_EVENT_REG);
896                 led |= priv->led_association_on;
897
898                 led = ipw_register_toggle(led);
899
900                 IPW_DEBUG_LED("Reg: 0x%08X\n", led);
901                 ipw_write_reg32(priv, IPW_EVENT_REG, led);
902
903                 priv->status |= STATUS_LED_LINK_ON;
904
905                 /* If we aren't associated, schedule turning the LED off */
906                 if (!(priv->status & STATUS_ASSOCIATED))
907                         schedule_delayed_work(&priv->led_link_off,
908                                               LD_TIME_LINK_ON);
909         }
910
911         spin_unlock_irqrestore(&priv->lock, flags);
912 }
913
914 static void ipw_bg_led_link_on(struct work_struct *work)
915 {
916         struct ipw_priv *priv =
917                 container_of(work, struct ipw_priv, led_link_on.work);
918         mutex_lock(&priv->mutex);
919         ipw_led_link_on(priv);
920         mutex_unlock(&priv->mutex);
921 }
922
923 static void ipw_led_link_off(struct ipw_priv *priv)
924 {
925         unsigned long flags;
926         u32 led;
927
928         /* If configured not to use LEDs, or nic type is 1,
929          * then we don't goggle the LINK led. */
930         if (priv->config & CFG_NO_LED || priv->nic_type == EEPROM_NIC_TYPE_1)
931                 return;
932
933         spin_lock_irqsave(&priv->lock, flags);
934
935         if (priv->status & STATUS_LED_LINK_ON) {
936                 led = ipw_read_reg32(priv, IPW_EVENT_REG);
937                 led &= priv->led_association_off;
938                 led = ipw_register_toggle(led);
939
940                 IPW_DEBUG_LED("Reg: 0x%08X\n", led);
941                 ipw_write_reg32(priv, IPW_EVENT_REG, led);
942
943                 IPW_DEBUG_LED("Link LED Off\n");
944
945                 priv->status &= ~STATUS_LED_LINK_ON;
946
947                 /* If we aren't associated and the radio is on, schedule
948                  * turning the LED on (blink while unassociated) */
949                 if (!(priv->status & STATUS_RF_KILL_MASK) &&
950                     !(priv->status & STATUS_ASSOCIATED))
951                         schedule_delayed_work(&priv->led_link_on,
952                                               LD_TIME_LINK_OFF);
953
954         }
955
956         spin_unlock_irqrestore(&priv->lock, flags);
957 }
958
959 static void ipw_bg_led_link_off(struct work_struct *work)
960 {
961         struct ipw_priv *priv =
962                 container_of(work, struct ipw_priv, led_link_off.work);
963         mutex_lock(&priv->mutex);
964         ipw_led_link_off(priv);
965         mutex_unlock(&priv->mutex);
966 }
967
968 static void __ipw_led_activity_on(struct ipw_priv *priv)
969 {
970         u32 led;
971
972         if (priv->config & CFG_NO_LED)
973                 return;
974
975         if (priv->status & STATUS_RF_KILL_MASK)
976                 return;
977
978         if (!(priv->status & STATUS_LED_ACT_ON)) {
979                 led = ipw_read_reg32(priv, IPW_EVENT_REG);
980                 led |= priv->led_activity_on;
981
982                 led = ipw_register_toggle(led);
983
984                 IPW_DEBUG_LED("Reg: 0x%08X\n", led);
985                 ipw_write_reg32(priv, IPW_EVENT_REG, led);
986
987                 IPW_DEBUG_LED("Activity LED On\n");
988
989                 priv->status |= STATUS_LED_ACT_ON;
990
991                 cancel_delayed_work(&priv->led_act_off);
992                 schedule_delayed_work(&priv->led_act_off, LD_TIME_ACT_ON);
993         } else {
994                 /* Reschedule LED off for full time period */
995                 cancel_delayed_work(&priv->led_act_off);
996                 schedule_delayed_work(&priv->led_act_off, LD_TIME_ACT_ON);
997         }
998 }
999
1000 #if 0
1001 void ipw_led_activity_on(struct ipw_priv *priv)
1002 {
1003         unsigned long flags;
1004         spin_lock_irqsave(&priv->lock, flags);
1005         __ipw_led_activity_on(priv);
1006         spin_unlock_irqrestore(&priv->lock, flags);
1007 }
1008 #endif  /*  0  */
1009
1010 static void ipw_led_activity_off(struct ipw_priv *priv)
1011 {
1012         unsigned long flags;
1013         u32 led;
1014
1015         if (priv->config & CFG_NO_LED)
1016                 return;
1017
1018         spin_lock_irqsave(&priv->lock, flags);
1019
1020         if (priv->status & STATUS_LED_ACT_ON) {
1021                 led = ipw_read_reg32(priv, IPW_EVENT_REG);
1022                 led &= priv->led_activity_off;
1023
1024                 led = ipw_register_toggle(led);
1025
1026                 IPW_DEBUG_LED("Reg: 0x%08X\n", led);
1027                 ipw_write_reg32(priv, IPW_EVENT_REG, led);
1028
1029                 IPW_DEBUG_LED("Activity LED Off\n");
1030
1031                 priv->status &= ~STATUS_LED_ACT_ON;
1032         }
1033
1034         spin_unlock_irqrestore(&priv->lock, flags);
1035 }
1036
1037 static void ipw_bg_led_activity_off(struct work_struct *work)
1038 {
1039         struct ipw_priv *priv =
1040                 container_of(work, struct ipw_priv, led_act_off.work);
1041         mutex_lock(&priv->mutex);
1042         ipw_led_activity_off(priv);
1043         mutex_unlock(&priv->mutex);
1044 }
1045
1046 static void ipw_led_band_on(struct ipw_priv *priv)
1047 {
1048         unsigned long flags;
1049         u32 led;
1050
1051         /* Only nic type 1 supports mode LEDs */
1052         if (priv->config & CFG_NO_LED ||
1053             priv->nic_type != EEPROM_NIC_TYPE_1 || !priv->assoc_network)
1054                 return;
1055
1056         spin_lock_irqsave(&priv->lock, flags);
1057
1058         led = ipw_read_reg32(priv, IPW_EVENT_REG);
1059         if (priv->assoc_network->mode == IEEE_A) {
1060                 led |= priv->led_ofdm_on;
1061                 led &= priv->led_association_off;
1062                 IPW_DEBUG_LED("Mode LED On: 802.11a\n");
1063         } else if (priv->assoc_network->mode == IEEE_G) {
1064                 led |= priv->led_ofdm_on;
1065                 led |= priv->led_association_on;
1066                 IPW_DEBUG_LED("Mode LED On: 802.11g\n");
1067         } else {
1068                 led &= priv->led_ofdm_off;
1069                 led |= priv->led_association_on;
1070                 IPW_DEBUG_LED("Mode LED On: 802.11b\n");
1071         }
1072
1073         led = ipw_register_toggle(led);
1074
1075         IPW_DEBUG_LED("Reg: 0x%08X\n", led);
1076         ipw_write_reg32(priv, IPW_EVENT_REG, led);
1077
1078         spin_unlock_irqrestore(&priv->lock, flags);
1079 }
1080
1081 static void ipw_led_band_off(struct ipw_priv *priv)
1082 {
1083         unsigned long flags;
1084         u32 led;
1085
1086         /* Only nic type 1 supports mode LEDs */
1087         if (priv->config & CFG_NO_LED || priv->nic_type != EEPROM_NIC_TYPE_1)
1088                 return;
1089
1090         spin_lock_irqsave(&priv->lock, flags);
1091
1092         led = ipw_read_reg32(priv, IPW_EVENT_REG);
1093         led &= priv->led_ofdm_off;
1094         led &= priv->led_association_off;
1095
1096         led = ipw_register_toggle(led);
1097
1098         IPW_DEBUG_LED("Reg: 0x%08X\n", led);
1099         ipw_write_reg32(priv, IPW_EVENT_REG, led);
1100
1101         spin_unlock_irqrestore(&priv->lock, flags);
1102 }
1103
1104 static void ipw_led_radio_on(struct ipw_priv *priv)
1105 {
1106         ipw_led_link_on(priv);
1107 }
1108
1109 static void ipw_led_radio_off(struct ipw_priv *priv)
1110 {
1111         ipw_led_activity_off(priv);
1112         ipw_led_link_off(priv);
1113 }
1114
1115 static void ipw_led_link_up(struct ipw_priv *priv)
1116 {
1117         /* Set the Link Led on for all nic types */
1118         ipw_led_link_on(priv);
1119 }
1120
1121 static void ipw_led_link_down(struct ipw_priv *priv)
1122 {
1123         ipw_led_activity_off(priv);
1124         ipw_led_link_off(priv);
1125
1126         if (priv->status & STATUS_RF_KILL_MASK)
1127                 ipw_led_radio_off(priv);
1128 }
1129
1130 static void ipw_led_init(struct ipw_priv *priv)
1131 {
1132         priv->nic_type = priv->eeprom[EEPROM_NIC_TYPE];
1133
1134         /* Set the default PINs for the link and activity leds */
1135         priv->led_activity_on = IPW_ACTIVITY_LED;
1136         priv->led_activity_off = ~(IPW_ACTIVITY_LED);
1137
1138         priv->led_association_on = IPW_ASSOCIATED_LED;
1139         priv->led_association_off = ~(IPW_ASSOCIATED_LED);
1140
1141         /* Set the default PINs for the OFDM leds */
1142         priv->led_ofdm_on = IPW_OFDM_LED;
1143         priv->led_ofdm_off = ~(IPW_OFDM_LED);
1144
1145         switch (priv->nic_type) {
1146         case EEPROM_NIC_TYPE_1:
1147                 /* In this NIC type, the LEDs are reversed.... */
1148                 priv->led_activity_on = IPW_ASSOCIATED_LED;
1149                 priv->led_activity_off = ~(IPW_ASSOCIATED_LED);
1150                 priv->led_association_on = IPW_ACTIVITY_LED;
1151                 priv->led_association_off = ~(IPW_ACTIVITY_LED);
1152
1153                 if (!(priv->config & CFG_NO_LED))
1154                         ipw_led_band_on(priv);
1155
1156                 /* And we don't blink link LEDs for this nic, so
1157                  * just return here */
1158                 return;
1159
1160         case EEPROM_NIC_TYPE_3:
1161         case EEPROM_NIC_TYPE_2:
1162         case EEPROM_NIC_TYPE_4:
1163         case EEPROM_NIC_TYPE_0:
1164                 break;
1165
1166         default:
1167                 IPW_DEBUG_INFO("Unknown NIC type from EEPROM: %d\n",
1168                                priv->nic_type);
1169                 priv->nic_type = EEPROM_NIC_TYPE_0;
1170                 break;
1171         }
1172
1173         if (!(priv->config & CFG_NO_LED)) {
1174                 if (priv->status & STATUS_ASSOCIATED)
1175                         ipw_led_link_on(priv);
1176                 else
1177                         ipw_led_link_off(priv);
1178         }
1179 }
1180
1181 static void ipw_led_shutdown(struct ipw_priv *priv)
1182 {
1183         ipw_led_activity_off(priv);
1184         ipw_led_link_off(priv);
1185         ipw_led_band_off(priv);
1186         cancel_delayed_work(&priv->led_link_on);
1187         cancel_delayed_work(&priv->led_link_off);
1188         cancel_delayed_work(&priv->led_act_off);
1189 }
1190
1191 /*
1192  * The following adds a new attribute to the sysfs representation
1193  * of this device driver (i.e. a new file in /sys/bus/pci/drivers/ipw/)
1194  * used for controlling the debug level.
1195  *
1196  * See the level definitions in ipw for details.
1197  */
1198 static ssize_t show_debug_level(struct device_driver *d, char *buf)
1199 {
1200         return sprintf(buf, "0x%08X\n", ipw_debug_level);
1201 }
1202
1203 static ssize_t store_debug_level(struct device_driver *d, const char *buf,
1204                                  size_t count)
1205 {
1206         char *p = (char *)buf;
1207         u32 val;
1208
1209         if (p[1] == 'x' || p[1] == 'X' || p[0] == 'x' || p[0] == 'X') {
1210                 p++;
1211                 if (p[0] == 'x' || p[0] == 'X')
1212                         p++;
1213                 val = simple_strtoul(p, &p, 16);
1214         } else
1215                 val = simple_strtoul(p, &p, 10);
1216         if (p == buf)
1217                 printk(KERN_INFO DRV_NAME
1218                        ": %s is not in hex or decimal form.\n", buf);
1219         else
1220                 ipw_debug_level = val;
1221
1222         return strnlen(buf, count);
1223 }
1224
1225 static DRIVER_ATTR(debug_level, S_IWUSR | S_IRUGO,
1226                    show_debug_level, store_debug_level);
1227
1228 static inline u32 ipw_get_event_log_len(struct ipw_priv *priv)
1229 {
1230         /* length = 1st dword in log */
1231         return ipw_read_reg32(priv, ipw_read32(priv, IPW_EVENT_LOG));
1232 }
1233
1234 static void ipw_capture_event_log(struct ipw_priv *priv,
1235                                   u32 log_len, struct ipw_event *log)
1236 {
1237         u32 base;
1238
1239         if (log_len) {
1240                 base = ipw_read32(priv, IPW_EVENT_LOG);
1241                 ipw_read_indirect(priv, base + sizeof(base) + sizeof(u32),
1242                                   (u8 *) log, sizeof(*log) * log_len);
1243         }
1244 }
1245
1246 static struct ipw_fw_error *ipw_alloc_error_log(struct ipw_priv *priv)
1247 {
1248         struct ipw_fw_error *error;
1249         u32 log_len = ipw_get_event_log_len(priv);
1250         u32 base = ipw_read32(priv, IPW_ERROR_LOG);
1251         u32 elem_len = ipw_read_reg32(priv, base);
1252
1253         error = kmalloc(sizeof(*error) +
1254                         sizeof(*error->elem) * elem_len +
1255                         sizeof(*error->log) * log_len, GFP_ATOMIC);
1256         if (!error) {
1257                 IPW_ERROR("Memory allocation for firmware error log "
1258                           "failed.\n");
1259                 return NULL;
1260         }
1261         error->jiffies = jiffies;
1262         error->status = priv->status;
1263         error->config = priv->config;
1264         error->elem_len = elem_len;
1265         error->log_len = log_len;
1266         error->elem = (struct ipw_error_elem *)error->payload;
1267         error->log = (struct ipw_event *)(error->elem + elem_len);
1268
1269         ipw_capture_event_log(priv, log_len, error->log);
1270
1271         if (elem_len)
1272                 ipw_read_indirect(priv, base + sizeof(base), (u8 *) error->elem,
1273                                   sizeof(*error->elem) * elem_len);
1274
1275         return error;
1276 }
1277
1278 static ssize_t show_event_log(struct device *d,
1279                               struct device_attribute *attr, char *buf)
1280 {
1281         struct ipw_priv *priv = dev_get_drvdata(d);
1282         u32 log_len = ipw_get_event_log_len(priv);
1283         u32 log_size;
1284         struct ipw_event *log;
1285         u32 len = 0, i;
1286
1287         /* not using min() because of its strict type checking */
1288         log_size = PAGE_SIZE / sizeof(*log) > log_len ?
1289                         sizeof(*log) * log_len : PAGE_SIZE;
1290         log = kzalloc(log_size, GFP_KERNEL);
1291         if (!log) {
1292                 IPW_ERROR("Unable to allocate memory for log\n");
1293                 return 0;
1294         }
1295         log_len = log_size / sizeof(*log);
1296         ipw_capture_event_log(priv, log_len, log);
1297
1298         len += snprintf(buf + len, PAGE_SIZE - len, "%08X", log_len);
1299         for (i = 0; i < log_len; i++)
1300                 len += snprintf(buf + len, PAGE_SIZE - len,
1301                                 "\n%08X%08X%08X",
1302                                 log[i].time, log[i].event, log[i].data);
1303         len += snprintf(buf + len, PAGE_SIZE - len, "\n");
1304         kfree(log);
1305         return len;
1306 }
1307
1308 static DEVICE_ATTR(event_log, S_IRUGO, show_event_log, NULL);
1309
1310 static ssize_t show_error(struct device *d,
1311                           struct device_attribute *attr, char *buf)
1312 {
1313         struct ipw_priv *priv = dev_get_drvdata(d);
1314         u32 len = 0, i;
1315         if (!priv->error)
1316                 return 0;
1317         len += snprintf(buf + len, PAGE_SIZE - len,
1318                         "%08lX%08X%08X%08X",
1319                         priv->error->jiffies,
1320                         priv->error->status,
1321                         priv->error->config, priv->error->elem_len);
1322         for (i = 0; i < priv->error->elem_len; i++)
1323                 len += snprintf(buf + len, PAGE_SIZE - len,
1324                                 "\n%08X%08X%08X%08X%08X%08X%08X",
1325                                 priv->error->elem[i].time,
1326                                 priv->error->elem[i].desc,
1327                                 priv->error->elem[i].blink1,
1328                                 priv->error->elem[i].blink2,
1329                                 priv->error->elem[i].link1,
1330                                 priv->error->elem[i].link2,
1331                                 priv->error->elem[i].data);
1332
1333         len += snprintf(buf + len, PAGE_SIZE - len,
1334                         "\n%08X", priv->error->log_len);
1335         for (i = 0; i < priv->error->log_len; i++)
1336                 len += snprintf(buf + len, PAGE_SIZE - len,
1337                                 "\n%08X%08X%08X",
1338                                 priv->error->log[i].time,
1339                                 priv->error->log[i].event,
1340                                 priv->error->log[i].data);
1341         len += snprintf(buf + len, PAGE_SIZE - len, "\n");
1342         return len;
1343 }
1344
1345 static ssize_t clear_error(struct device *d,
1346                            struct device_attribute *attr,
1347                            const char *buf, size_t count)
1348 {
1349         struct ipw_priv *priv = dev_get_drvdata(d);
1350
1351         kfree(priv->error);
1352         priv->error = NULL;
1353         return count;
1354 }
1355
1356 static DEVICE_ATTR(error, S_IRUGO | S_IWUSR, show_error, clear_error);
1357
1358 static ssize_t show_cmd_log(struct device *d,
1359                             struct device_attribute *attr, char *buf)
1360 {
1361         struct ipw_priv *priv = dev_get_drvdata(d);
1362         u32 len = 0, i;
1363         if (!priv->cmdlog)
1364                 return 0;
1365         for (i = (priv->cmdlog_pos + 1) % priv->cmdlog_len;
1366              (i != priv->cmdlog_pos) && (PAGE_SIZE - len);
1367              i = (i + 1) % priv->cmdlog_len) {
1368                 len +=
1369                     snprintf(buf + len, PAGE_SIZE - len,
1370                              "\n%08lX%08X%08X%08X\n", priv->cmdlog[i].jiffies,
1371                              priv->cmdlog[i].retcode, priv->cmdlog[i].cmd.cmd,
1372                              priv->cmdlog[i].cmd.len);
1373                 len +=
1374                     snprintk_buf(buf + len, PAGE_SIZE - len,
1375                                  (u8 *) priv->cmdlog[i].cmd.param,
1376                                  priv->cmdlog[i].cmd.len);
1377                 len += snprintf(buf + len, PAGE_SIZE - len, "\n");
1378         }
1379         len += snprintf(buf + len, PAGE_SIZE - len, "\n");
1380         return len;
1381 }
1382
1383 static DEVICE_ATTR(cmd_log, S_IRUGO, show_cmd_log, NULL);
1384
1385 #ifdef CONFIG_IPW2200_PROMISCUOUS
1386 static void ipw_prom_free(struct ipw_priv *priv);
1387 static int ipw_prom_alloc(struct ipw_priv *priv);
1388 static ssize_t store_rtap_iface(struct device *d,
1389                          struct device_attribute *attr,
1390                          const char *buf, size_t count)
1391 {
1392         struct ipw_priv *priv = dev_get_drvdata(d);
1393         int rc = 0;
1394
1395         if (count < 1)
1396                 return -EINVAL;
1397
1398         switch (buf[0]) {
1399         case '0':
1400                 if (!rtap_iface)
1401                         return count;
1402
1403                 if (netif_running(priv->prom_net_dev)) {
1404                         IPW_WARNING("Interface is up.  Cannot unregister.\n");
1405                         return count;
1406                 }
1407
1408                 ipw_prom_free(priv);
1409                 rtap_iface = 0;
1410                 break;
1411
1412         case '1':
1413                 if (rtap_iface)
1414                         return count;
1415
1416                 rc = ipw_prom_alloc(priv);
1417                 if (!rc)
1418                         rtap_iface = 1;
1419                 break;
1420
1421         default:
1422                 return -EINVAL;
1423         }
1424
1425         if (rc) {
1426                 IPW_ERROR("Failed to register promiscuous network "
1427                           "device (error %d).\n", rc);
1428         }
1429
1430         return count;
1431 }
1432
1433 static ssize_t show_rtap_iface(struct device *d,
1434                         struct device_attribute *attr,
1435                         char *buf)
1436 {
1437         struct ipw_priv *priv = dev_get_drvdata(d);
1438         if (rtap_iface)
1439                 return sprintf(buf, "%s", priv->prom_net_dev->name);
1440         else {
1441                 buf[0] = '-';
1442                 buf[1] = '1';
1443                 buf[2] = '\0';
1444                 return 3;
1445         }
1446 }
1447
1448 static DEVICE_ATTR(rtap_iface, S_IWUSR | S_IRUSR, show_rtap_iface,
1449                    store_rtap_iface);
1450
1451 static ssize_t store_rtap_filter(struct device *d,
1452                          struct device_attribute *attr,
1453                          const char *buf, size_t count)
1454 {
1455         struct ipw_priv *priv = dev_get_drvdata(d);
1456
1457         if (!priv->prom_priv) {
1458                 IPW_ERROR("Attempting to set filter without "
1459                           "rtap_iface enabled.\n");
1460                 return -EPERM;
1461         }
1462
1463         priv->prom_priv->filter = simple_strtol(buf, NULL, 0);
1464
1465         IPW_DEBUG_INFO("Setting rtap filter to " BIT_FMT16 "\n",
1466                        BIT_ARG16(priv->prom_priv->filter));
1467
1468         return count;
1469 }
1470
1471 static ssize_t show_rtap_filter(struct device *d,
1472                         struct device_attribute *attr,
1473                         char *buf)
1474 {
1475         struct ipw_priv *priv = dev_get_drvdata(d);
1476         return sprintf(buf, "0x%04X",
1477                        priv->prom_priv ? priv->prom_priv->filter : 0);
1478 }
1479
1480 static DEVICE_ATTR(rtap_filter, S_IWUSR | S_IRUSR, show_rtap_filter,
1481                    store_rtap_filter);
1482 #endif
1483
1484 static ssize_t show_scan_age(struct device *d, struct device_attribute *attr,
1485                              char *buf)
1486 {
1487         struct ipw_priv *priv = dev_get_drvdata(d);
1488         return sprintf(buf, "%d\n", priv->ieee->scan_age);
1489 }
1490
1491 static ssize_t store_scan_age(struct device *d, struct device_attribute *attr,
1492                               const char *buf, size_t count)
1493 {
1494         struct ipw_priv *priv = dev_get_drvdata(d);
1495         struct net_device *dev = priv->net_dev;
1496         char buffer[] = "00000000";
1497         unsigned long len =
1498             (sizeof(buffer) - 1) > count ? count : sizeof(buffer) - 1;
1499         unsigned long val;
1500         char *p = buffer;
1501
1502         IPW_DEBUG_INFO("enter\n");
1503
1504         strncpy(buffer, buf, len);
1505         buffer[len] = 0;
1506
1507         if (p[1] == 'x' || p[1] == 'X' || p[0] == 'x' || p[0] == 'X') {
1508                 p++;
1509                 if (p[0] == 'x' || p[0] == 'X')
1510                         p++;
1511                 val = simple_strtoul(p, &p, 16);
1512         } else
1513                 val = simple_strtoul(p, &p, 10);
1514         if (p == buffer) {
1515                 IPW_DEBUG_INFO("%s: user supplied invalid value.\n", dev->name);
1516         } else {
1517                 priv->ieee->scan_age = val;
1518                 IPW_DEBUG_INFO("set scan_age = %u\n", priv->ieee->scan_age);
1519         }
1520
1521         IPW_DEBUG_INFO("exit\n");
1522         return len;
1523 }
1524
1525 static DEVICE_ATTR(scan_age, S_IWUSR | S_IRUGO, show_scan_age, store_scan_age);
1526
1527 static ssize_t show_led(struct device *d, struct device_attribute *attr,
1528                         char *buf)
1529 {
1530         struct ipw_priv *priv = dev_get_drvdata(d);
1531         return sprintf(buf, "%d\n", (priv->config & CFG_NO_LED) ? 0 : 1);
1532 }
1533
1534 static ssize_t store_led(struct device *d, struct device_attribute *attr,
1535                          const char *buf, size_t count)
1536 {
1537         struct ipw_priv *priv = dev_get_drvdata(d);
1538
1539         IPW_DEBUG_INFO("enter\n");
1540
1541         if (count == 0)
1542                 return 0;
1543
1544         if (*buf == 0) {
1545                 IPW_DEBUG_LED("Disabling LED control.\n");
1546                 priv->config |= CFG_NO_LED;
1547                 ipw_led_shutdown(priv);
1548         } else {
1549                 IPW_DEBUG_LED("Enabling LED control.\n");
1550                 priv->config &= ~CFG_NO_LED;
1551                 ipw_led_init(priv);
1552         }
1553
1554         IPW_DEBUG_INFO("exit\n");
1555         return count;
1556 }
1557
1558 static DEVICE_ATTR(led, S_IWUSR | S_IRUGO, show_led, store_led);
1559
1560 static ssize_t show_status(struct device *d,
1561                            struct device_attribute *attr, char *buf)
1562 {
1563         struct ipw_priv *p = dev_get_drvdata(d);
1564         return sprintf(buf, "0x%08x\n", (int)p->status);
1565 }
1566
1567 static DEVICE_ATTR(status, S_IRUGO, show_status, NULL);
1568
1569 static ssize_t show_cfg(struct device *d, struct device_attribute *attr,
1570                         char *buf)
1571 {
1572         struct ipw_priv *p = dev_get_drvdata(d);
1573         return sprintf(buf, "0x%08x\n", (int)p->config);
1574 }
1575
1576 static DEVICE_ATTR(cfg, S_IRUGO, show_cfg, NULL);
1577
1578 static ssize_t show_nic_type(struct device *d,
1579                              struct device_attribute *attr, char *buf)
1580 {
1581         struct ipw_priv *priv = dev_get_drvdata(d);
1582         return sprintf(buf, "TYPE: %d\n", priv->nic_type);
1583 }
1584
1585 static DEVICE_ATTR(nic_type, S_IRUGO, show_nic_type, NULL);
1586
1587 static ssize_t show_ucode_version(struct device *d,
1588                                   struct device_attribute *attr, char *buf)
1589 {
1590         u32 len = sizeof(u32), tmp = 0;
1591         struct ipw_priv *p = dev_get_drvdata(d);
1592
1593         if (ipw_get_ordinal(p, IPW_ORD_STAT_UCODE_VERSION, &tmp, &len))
1594                 return 0;
1595
1596         return sprintf(buf, "0x%08x\n", tmp);
1597 }
1598
1599 static DEVICE_ATTR(ucode_version, S_IWUSR | S_IRUGO, show_ucode_version, NULL);
1600
1601 static ssize_t show_rtc(struct device *d, struct device_attribute *attr,
1602                         char *buf)
1603 {
1604         u32 len = sizeof(u32), tmp = 0;
1605         struct ipw_priv *p = dev_get_drvdata(d);
1606
1607         if (ipw_get_ordinal(p, IPW_ORD_STAT_RTC, &tmp, &len))
1608                 return 0;
1609
1610         return sprintf(buf, "0x%08x\n", tmp);
1611 }
1612
1613 static DEVICE_ATTR(rtc, S_IWUSR | S_IRUGO, show_rtc, NULL);
1614
1615 /*
1616  * Add a device attribute to view/control the delay between eeprom
1617  * operations.
1618  */
1619 static ssize_t show_eeprom_delay(struct device *d,
1620                                  struct device_attribute *attr, char *buf)
1621 {
1622         struct ipw_priv *p = dev_get_drvdata(d);
1623         int n = p->eeprom_delay;
1624         return sprintf(buf, "%i\n", n);
1625 }
1626 static ssize_t store_eeprom_delay(struct device *d,
1627                                   struct device_attribute *attr,
1628                                   const char *buf, size_t count)
1629 {
1630         struct ipw_priv *p = dev_get_drvdata(d);
1631         sscanf(buf, "%i", &p->eeprom_delay);
1632         return strnlen(buf, count);
1633 }
1634
1635 static DEVICE_ATTR(eeprom_delay, S_IWUSR | S_IRUGO,
1636                    show_eeprom_delay, store_eeprom_delay);
1637
1638 static ssize_t show_command_event_reg(struct device *d,
1639                                       struct device_attribute *attr, char *buf)
1640 {
1641         u32 reg = 0;
1642         struct ipw_priv *p = dev_get_drvdata(d);
1643
1644         reg = ipw_read_reg32(p, IPW_INTERNAL_CMD_EVENT);
1645         return sprintf(buf, "0x%08x\n", reg);
1646 }
1647 static ssize_t store_command_event_reg(struct device *d,
1648                                        struct device_attribute *attr,
1649                                        const char *buf, size_t count)
1650 {
1651         u32 reg;
1652         struct ipw_priv *p = dev_get_drvdata(d);
1653
1654         sscanf(buf, "%x", &reg);
1655         ipw_write_reg32(p, IPW_INTERNAL_CMD_EVENT, reg);
1656         return strnlen(buf, count);
1657 }
1658
1659 static DEVICE_ATTR(command_event_reg, S_IWUSR | S_IRUGO,
1660                    show_command_event_reg, store_command_event_reg);
1661
1662 static ssize_t show_mem_gpio_reg(struct device *d,
1663                                  struct device_attribute *attr, char *buf)
1664 {
1665         u32 reg = 0;
1666         struct ipw_priv *p = dev_get_drvdata(d);
1667
1668         reg = ipw_read_reg32(p, 0x301100);
1669         return sprintf(buf, "0x%08x\n", reg);
1670 }
1671 static ssize_t store_mem_gpio_reg(struct device *d,
1672                                   struct device_attribute *attr,
1673                                   const char *buf, size_t count)
1674 {
1675         u32 reg;
1676         struct ipw_priv *p = dev_get_drvdata(d);
1677
1678         sscanf(buf, "%x", &reg);
1679         ipw_write_reg32(p, 0x301100, reg);
1680         return strnlen(buf, count);
1681 }
1682
1683 static DEVICE_ATTR(mem_gpio_reg, S_IWUSR | S_IRUGO,
1684                    show_mem_gpio_reg, store_mem_gpio_reg);
1685
1686 static ssize_t show_indirect_dword(struct device *d,
1687                                    struct device_attribute *attr, char *buf)
1688 {
1689         u32 reg = 0;
1690         struct ipw_priv *priv = dev_get_drvdata(d);
1691
1692         if (priv->status & STATUS_INDIRECT_DWORD)
1693                 reg = ipw_read_reg32(priv, priv->indirect_dword);
1694         else
1695                 reg = 0;
1696
1697         return sprintf(buf, "0x%08x\n", reg);
1698 }
1699 static ssize_t store_indirect_dword(struct device *d,
1700                                     struct device_attribute *attr,
1701                                     const char *buf, size_t count)
1702 {
1703         struct ipw_priv *priv = dev_get_drvdata(d);
1704
1705         sscanf(buf, "%x", &priv->indirect_dword);
1706         priv->status |= STATUS_INDIRECT_DWORD;
1707         return strnlen(buf, count);
1708 }
1709
1710 static DEVICE_ATTR(indirect_dword, S_IWUSR | S_IRUGO,
1711                    show_indirect_dword, store_indirect_dword);
1712
1713 static ssize_t show_indirect_byte(struct device *d,
1714                                   struct device_attribute *attr, char *buf)
1715 {
1716         u8 reg = 0;
1717         struct ipw_priv *priv = dev_get_drvdata(d);
1718
1719         if (priv->status & STATUS_INDIRECT_BYTE)
1720                 reg = ipw_read_reg8(priv, priv->indirect_byte);
1721         else
1722                 reg = 0;
1723
1724         return sprintf(buf, "0x%02x\n", reg);
1725 }
1726 static ssize_t store_indirect_byte(struct device *d,
1727                                    struct device_attribute *attr,
1728                                    const char *buf, size_t count)
1729 {
1730         struct ipw_priv *priv = dev_get_drvdata(d);
1731
1732         sscanf(buf, "%x", &priv->indirect_byte);
1733         priv->status |= STATUS_INDIRECT_BYTE;
1734         return strnlen(buf, count);
1735 }
1736
1737 static DEVICE_ATTR(indirect_byte, S_IWUSR | S_IRUGO,
1738                    show_indirect_byte, store_indirect_byte);
1739
1740 static ssize_t show_direct_dword(struct device *d,
1741                                  struct device_attribute *attr, char *buf)
1742 {
1743         u32 reg = 0;
1744         struct ipw_priv *priv = dev_get_drvdata(d);
1745
1746         if (priv->status & STATUS_DIRECT_DWORD)
1747                 reg = ipw_read32(priv, priv->direct_dword);
1748         else
1749                 reg = 0;
1750
1751         return sprintf(buf, "0x%08x\n", reg);
1752 }
1753 static ssize_t store_direct_dword(struct device *d,
1754                                   struct device_attribute *attr,
1755                                   const char *buf, size_t count)
1756 {
1757         struct ipw_priv *priv = dev_get_drvdata(d);
1758
1759         sscanf(buf, "%x", &priv->direct_dword);
1760         priv->status |= STATUS_DIRECT_DWORD;
1761         return strnlen(buf, count);
1762 }
1763
1764 static DEVICE_ATTR(direct_dword, S_IWUSR | S_IRUGO,
1765                    show_direct_dword, store_direct_dword);
1766
1767 static int rf_kill_active(struct ipw_priv *priv)
1768 {
1769         if (0 == (ipw_read32(priv, 0x30) & 0x10000)) {
1770                 priv->status |= STATUS_RF_KILL_HW;
1771                 wiphy_rfkill_set_hw_state(priv->ieee->wdev.wiphy, true);
1772         } else {
1773                 priv->status &= ~STATUS_RF_KILL_HW;
1774                 wiphy_rfkill_set_hw_state(priv->ieee->wdev.wiphy, false);
1775         }
1776
1777         return (priv->status & STATUS_RF_KILL_HW) ? 1 : 0;
1778 }
1779
1780 static ssize_t show_rf_kill(struct device *d, struct device_attribute *attr,
1781                             char *buf)
1782 {
1783         /* 0 - RF kill not enabled
1784            1 - SW based RF kill active (sysfs)
1785            2 - HW based RF kill active
1786            3 - Both HW and SW baed RF kill active */
1787         struct ipw_priv *priv = dev_get_drvdata(d);
1788         int val = ((priv->status & STATUS_RF_KILL_SW) ? 0x1 : 0x0) |
1789             (rf_kill_active(priv) ? 0x2 : 0x0);
1790         return sprintf(buf, "%i\n", val);
1791 }
1792
1793 static int ipw_radio_kill_sw(struct ipw_priv *priv, int disable_radio)
1794 {
1795         if ((disable_radio ? 1 : 0) ==
1796             ((priv->status & STATUS_RF_KILL_SW) ? 1 : 0))
1797                 return 0;
1798
1799         IPW_DEBUG_RF_KILL("Manual SW RF Kill set to: RADIO  %s\n",
1800                           disable_radio ? "OFF" : "ON");
1801
1802         if (disable_radio) {
1803                 priv->status |= STATUS_RF_KILL_SW;
1804
1805                 cancel_delayed_work(&priv->request_scan);
1806                 cancel_delayed_work(&priv->request_direct_scan);
1807                 cancel_delayed_work(&priv->request_passive_scan);
1808                 cancel_delayed_work(&priv->scan_event);
1809                 schedule_work(&priv->down);
1810         } else {
1811                 priv->status &= ~STATUS_RF_KILL_SW;
1812                 if (rf_kill_active(priv)) {
1813                         IPW_DEBUG_RF_KILL("Can not turn radio back on - "
1814                                           "disabled by HW switch\n");
1815                         /* Make sure the RF_KILL check timer is running */
1816                         cancel_delayed_work(&priv->rf_kill);
1817                         schedule_delayed_work(&priv->rf_kill,
1818                                               round_jiffies_relative(2 * HZ));
1819                 } else
1820                         schedule_work(&priv->up);
1821         }
1822
1823         return 1;
1824 }
1825
1826 static ssize_t store_rf_kill(struct device *d, struct device_attribute *attr,
1827                              const char *buf, size_t count)
1828 {
1829         struct ipw_priv *priv = dev_get_drvdata(d);
1830
1831         ipw_radio_kill_sw(priv, buf[0] == '1');
1832
1833         return count;
1834 }
1835
1836 static DEVICE_ATTR(rf_kill, S_IWUSR | S_IRUGO, show_rf_kill, store_rf_kill);
1837
1838 static ssize_t show_speed_scan(struct device *d, struct device_attribute *attr,
1839                                char *buf)
1840 {
1841         struct ipw_priv *priv = dev_get_drvdata(d);
1842         int pos = 0, len = 0;
1843         if (priv->config & CFG_SPEED_SCAN) {
1844                 while (priv->speed_scan[pos] != 0)
1845                         len += sprintf(&buf[len], "%d ",
1846                                        priv->speed_scan[pos++]);
1847                 return len + sprintf(&buf[len], "\n");
1848         }
1849
1850         return sprintf(buf, "0\n");
1851 }
1852
1853 static ssize_t store_speed_scan(struct device *d, struct device_attribute *attr,
1854                                 const char *buf, size_t count)
1855 {
1856         struct ipw_priv *priv = dev_get_drvdata(d);
1857         int channel, pos = 0;
1858         const char *p = buf;
1859
1860         /* list of space separated channels to scan, optionally ending with 0 */
1861         while ((channel = simple_strtol(p, NULL, 0))) {
1862                 if (pos == MAX_SPEED_SCAN - 1) {
1863                         priv->speed_scan[pos] = 0;
1864                         break;
1865                 }
1866
1867                 if (libipw_is_valid_channel(priv->ieee, channel))
1868                         priv->speed_scan[pos++] = channel;
1869                 else
1870                         IPW_WARNING("Skipping invalid channel request: %d\n",
1871                                     channel);
1872                 p = strchr(p, ' ');
1873                 if (!p)
1874                         break;
1875                 while (*p == ' ' || *p == '\t')
1876                         p++;
1877         }
1878
1879         if (pos == 0)
1880                 priv->config &= ~CFG_SPEED_SCAN;
1881         else {
1882                 priv->speed_scan_pos = 0;
1883                 priv->config |= CFG_SPEED_SCAN;
1884         }
1885
1886         return count;
1887 }
1888
1889 static DEVICE_ATTR(speed_scan, S_IWUSR | S_IRUGO, show_speed_scan,
1890                    store_speed_scan);
1891
1892 static ssize_t show_net_stats(struct device *d, struct device_attribute *attr,
1893                               char *buf)
1894 {
1895         struct ipw_priv *priv = dev_get_drvdata(d);
1896         return sprintf(buf, "%c\n", (priv->config & CFG_NET_STATS) ? '1' : '0');
1897 }
1898
1899 static ssize_t store_net_stats(struct device *d, struct device_attribute *attr,
1900                                const char *buf, size_t count)
1901 {
1902         struct ipw_priv *priv = dev_get_drvdata(d);
1903         if (buf[0] == '1')
1904                 priv->config |= CFG_NET_STATS;
1905         else
1906                 priv->config &= ~CFG_NET_STATS;
1907
1908         return count;
1909 }
1910
1911 static DEVICE_ATTR(net_stats, S_IWUSR | S_IRUGO,
1912                    show_net_stats, store_net_stats);
1913
1914 static ssize_t show_channels(struct device *d,
1915                              struct device_attribute *attr,
1916                              char *buf)
1917 {
1918         struct ipw_priv *priv = dev_get_drvdata(d);
1919         const struct libipw_geo *geo = libipw_get_geo(priv->ieee);
1920         int len = 0, i;
1921
1922         len = sprintf(&buf[len],
1923                       "Displaying %d channels in 2.4Ghz band "
1924                       "(802.11bg):\n", geo->bg_channels);
1925
1926         for (i = 0; i < geo->bg_channels; i++) {
1927                 len += sprintf(&buf[len], "%d: BSS%s%s, %s, Band %s.\n",
1928                                geo->bg[i].channel,
1929                                geo->bg[i].flags & LIBIPW_CH_RADAR_DETECT ?
1930                                " (radar spectrum)" : "",
1931                                ((geo->bg[i].flags & LIBIPW_CH_NO_IBSS) ||
1932                                 (geo->bg[i].flags & LIBIPW_CH_RADAR_DETECT))
1933                                ? "" : ", IBSS",
1934                                geo->bg[i].flags & LIBIPW_CH_PASSIVE_ONLY ?
1935                                "passive only" : "active/passive",
1936                                geo->bg[i].flags & LIBIPW_CH_B_ONLY ?
1937                                "B" : "B/G");
1938         }
1939
1940         len += sprintf(&buf[len],
1941                        "Displaying %d channels in 5.2Ghz band "
1942                        "(802.11a):\n", geo->a_channels);
1943         for (i = 0; i < geo->a_channels; i++) {
1944                 len += sprintf(&buf[len], "%d: BSS%s%s, %s.\n",
1945                                geo->a[i].channel,
1946                                geo->a[i].flags & LIBIPW_CH_RADAR_DETECT ?
1947                                " (radar spectrum)" : "",
1948                                ((geo->a[i].flags & LIBIPW_CH_NO_IBSS) ||
1949                                 (geo->a[i].flags & LIBIPW_CH_RADAR_DETECT))
1950                                ? "" : ", IBSS",
1951                                geo->a[i].flags & LIBIPW_CH_PASSIVE_ONLY ?
1952                                "passive only" : "active/passive");
1953         }
1954
1955         return len;
1956 }
1957
1958 static DEVICE_ATTR(channels, S_IRUSR, show_channels, NULL);
1959
1960 static void notify_wx_assoc_event(struct ipw_priv *priv)
1961 {
1962         union iwreq_data wrqu;
1963         wrqu.ap_addr.sa_family = ARPHRD_ETHER;
1964         if (priv->status & STATUS_ASSOCIATED)
1965                 memcpy(wrqu.ap_addr.sa_data, priv->bssid, ETH_ALEN);
1966         else
1967                 memset(wrqu.ap_addr.sa_data, 0, ETH_ALEN);
1968         wireless_send_event(priv->net_dev, SIOCGIWAP, &wrqu, NULL);
1969 }
1970
1971 static void ipw_irq_tasklet(struct ipw_priv *priv)
1972 {
1973         u32 inta, inta_mask, handled = 0;
1974         unsigned long flags;
1975         int rc = 0;
1976
1977         spin_lock_irqsave(&priv->irq_lock, flags);
1978
1979         inta = ipw_read32(priv, IPW_INTA_RW);
1980         inta_mask = ipw_read32(priv, IPW_INTA_MASK_R);
1981
1982         if (inta == 0xFFFFFFFF) {
1983                 /* Hardware disappeared */
1984                 IPW_WARNING("TASKLET INTA == 0xFFFFFFFF\n");
1985                 /* Only handle the cached INTA values */
1986                 inta = 0;
1987         }
1988         inta &= (IPW_INTA_MASK_ALL & inta_mask);
1989
1990         /* Add any cached INTA values that need to be handled */
1991         inta |= priv->isr_inta;
1992
1993         spin_unlock_irqrestore(&priv->irq_lock, flags);
1994
1995         spin_lock_irqsave(&priv->lock, flags);
1996
1997         /* handle all the justifications for the interrupt */
1998         if (inta & IPW_INTA_BIT_RX_TRANSFER) {
1999                 ipw_rx(priv);
2000                 handled |= IPW_INTA_BIT_RX_TRANSFER;
2001         }
2002
2003         if (inta & IPW_INTA_BIT_TX_CMD_QUEUE) {
2004                 IPW_DEBUG_HC("Command completed.\n");
2005                 rc = ipw_queue_tx_reclaim(priv, &priv->txq_cmd, -1);
2006                 priv->status &= ~STATUS_HCMD_ACTIVE;
2007                 wake_up_interruptible(&priv->wait_command_queue);
2008                 handled |= IPW_INTA_BIT_TX_CMD_QUEUE;
2009         }
2010
2011         if (inta & IPW_INTA_BIT_TX_QUEUE_1) {
2012                 IPW_DEBUG_TX("TX_QUEUE_1\n");
2013                 rc = ipw_queue_tx_reclaim(priv, &priv->txq[0], 0);
2014                 handled |= IPW_INTA_BIT_TX_QUEUE_1;
2015         }
2016
2017         if (inta & IPW_INTA_BIT_TX_QUEUE_2) {
2018                 IPW_DEBUG_TX("TX_QUEUE_2\n");
2019                 rc = ipw_queue_tx_reclaim(priv, &priv->txq[1], 1);
2020                 handled |= IPW_INTA_BIT_TX_QUEUE_2;
2021         }
2022
2023         if (inta & IPW_INTA_BIT_TX_QUEUE_3) {
2024                 IPW_DEBUG_TX("TX_QUEUE_3\n");
2025                 rc = ipw_queue_tx_reclaim(priv, &priv->txq[2], 2);
2026                 handled |= IPW_INTA_BIT_TX_QUEUE_3;
2027         }
2028
2029         if (inta & IPW_INTA_BIT_TX_QUEUE_4) {
2030                 IPW_DEBUG_TX("TX_QUEUE_4\n");
2031                 rc = ipw_queue_tx_reclaim(priv, &priv->txq[3], 3);
2032                 handled |= IPW_INTA_BIT_TX_QUEUE_4;
2033         }
2034
2035         if (inta & IPW_INTA_BIT_STATUS_CHANGE) {
2036                 IPW_WARNING("STATUS_CHANGE\n");
2037                 handled |= IPW_INTA_BIT_STATUS_CHANGE;
2038         }
2039
2040         if (inta & IPW_INTA_BIT_BEACON_PERIOD_EXPIRED) {
2041                 IPW_WARNING("TX_PERIOD_EXPIRED\n");
2042                 handled |= IPW_INTA_BIT_BEACON_PERIOD_EXPIRED;
2043         }
2044
2045         if (inta & IPW_INTA_BIT_SLAVE_MODE_HOST_CMD_DONE) {
2046                 IPW_WARNING("HOST_CMD_DONE\n");
2047                 handled |= IPW_INTA_BIT_SLAVE_MODE_HOST_CMD_DONE;
2048         }
2049
2050         if (inta & IPW_INTA_BIT_FW_INITIALIZATION_DONE) {
2051                 IPW_WARNING("FW_INITIALIZATION_DONE\n");
2052                 handled |= IPW_INTA_BIT_FW_INITIALIZATION_DONE;
2053         }
2054
2055         if (inta & IPW_INTA_BIT_FW_CARD_DISABLE_PHY_OFF_DONE) {
2056                 IPW_WARNING("PHY_OFF_DONE\n");
2057                 handled |= IPW_INTA_BIT_FW_CARD_DISABLE_PHY_OFF_DONE;
2058         }
2059
2060         if (inta & IPW_INTA_BIT_RF_KILL_DONE) {
2061                 IPW_DEBUG_RF_KILL("RF_KILL_DONE\n");
2062                 priv->status |= STATUS_RF_KILL_HW;
2063                 wiphy_rfkill_set_hw_state(priv->ieee->wdev.wiphy, true);
2064                 wake_up_interruptible(&priv->wait_command_queue);
2065                 priv->status &= ~(STATUS_ASSOCIATED | STATUS_ASSOCIATING);
2066                 cancel_delayed_work(&priv->request_scan);
2067                 cancel_delayed_work(&priv->request_direct_scan);
2068                 cancel_delayed_work(&priv->request_passive_scan);
2069                 cancel_delayed_work(&priv->scan_event);
2070                 schedule_work(&priv->link_down);
2071                 schedule_delayed_work(&priv->rf_kill, 2 * HZ);
2072                 handled |= IPW_INTA_BIT_RF_KILL_DONE;
2073         }
2074
2075         if (inta & IPW_INTA_BIT_FATAL_ERROR) {
2076                 IPW_WARNING("Firmware error detected.  Restarting.\n");
2077                 if (priv->error) {
2078                         IPW_DEBUG_FW("Sysfs 'error' log already exists.\n");
2079                         if (ipw_debug_level & IPW_DL_FW_ERRORS) {
2080                                 struct ipw_fw_error *error =
2081                                     ipw_alloc_error_log(priv);
2082                                 ipw_dump_error_log(priv, error);
2083                                 kfree(error);
2084                         }
2085                 } else {
2086                         priv->error = ipw_alloc_error_log(priv);
2087                         if (priv->error)
2088                                 IPW_DEBUG_FW("Sysfs 'error' log captured.\n");
2089                         else
2090                                 IPW_DEBUG_FW("Error allocating sysfs 'error' "
2091                                              "log.\n");
2092                         if (ipw_debug_level & IPW_DL_FW_ERRORS)
2093                                 ipw_dump_error_log(priv, priv->error);
2094                 }
2095
2096                 /* XXX: If hardware encryption is for WPA/WPA2,
2097                  * we have to notify the supplicant. */
2098                 if (priv->ieee->sec.encrypt) {
2099                         priv->status &= ~STATUS_ASSOCIATED;
2100                         notify_wx_assoc_event(priv);
2101                 }
2102
2103                 /* Keep the restart process from trying to send host
2104                  * commands by clearing the INIT status bit */
2105                 priv->status &= ~STATUS_INIT;
2106
2107                 /* Cancel currently queued command. */
2108                 priv->status &= ~STATUS_HCMD_ACTIVE;
2109                 wake_up_interruptible(&priv->wait_command_queue);
2110
2111                 schedule_work(&priv->adapter_restart);
2112                 handled |= IPW_INTA_BIT_FATAL_ERROR;
2113         }
2114
2115         if (inta & IPW_INTA_BIT_PARITY_ERROR) {
2116                 IPW_ERROR("Parity error\n");
2117                 handled |= IPW_INTA_BIT_PARITY_ERROR;
2118         }
2119
2120         if (handled != inta) {
2121                 IPW_ERROR("Unhandled INTA bits 0x%08x\n", inta & ~handled);
2122         }
2123
2124         spin_unlock_irqrestore(&priv->lock, flags);
2125
2126         /* enable all interrupts */
2127         ipw_enable_interrupts(priv);
2128 }
2129
2130 #define IPW_CMD(x) case IPW_CMD_ ## x : return #x
2131 static char *get_cmd_string(u8 cmd)
2132 {
2133         switch (cmd) {
2134                 IPW_CMD(HOST_COMPLETE);
2135                 IPW_CMD(POWER_DOWN);
2136                 IPW_CMD(SYSTEM_CONFIG);
2137                 IPW_CMD(MULTICAST_ADDRESS);
2138                 IPW_CMD(SSID);
2139                 IPW_CMD(ADAPTER_ADDRESS);
2140                 IPW_CMD(PORT_TYPE);
2141                 IPW_CMD(RTS_THRESHOLD);
2142                 IPW_CMD(FRAG_THRESHOLD);
2143                 IPW_CMD(POWER_MODE);
2144                 IPW_CMD(WEP_KEY);
2145                 IPW_CMD(TGI_TX_KEY);
2146                 IPW_CMD(SCAN_REQUEST);
2147                 IPW_CMD(SCAN_REQUEST_EXT);
2148                 IPW_CMD(ASSOCIATE);
2149                 IPW_CMD(SUPPORTED_RATES);
2150                 IPW_CMD(SCAN_ABORT);
2151                 IPW_CMD(TX_FLUSH);
2152                 IPW_CMD(QOS_PARAMETERS);
2153                 IPW_CMD(DINO_CONFIG);
2154                 IPW_CMD(RSN_CAPABILITIES);
2155                 IPW_CMD(RX_KEY);
2156                 IPW_CMD(CARD_DISABLE);
2157                 IPW_CMD(SEED_NUMBER);
2158                 IPW_CMD(TX_POWER);
2159                 IPW_CMD(COUNTRY_INFO);
2160                 IPW_CMD(AIRONET_INFO);
2161                 IPW_CMD(AP_TX_POWER);
2162                 IPW_CMD(CCKM_INFO);
2163                 IPW_CMD(CCX_VER_INFO);
2164                 IPW_CMD(SET_CALIBRATION);
2165                 IPW_CMD(SENSITIVITY_CALIB);
2166                 IPW_CMD(RETRY_LIMIT);
2167                 IPW_CMD(IPW_PRE_POWER_DOWN);
2168                 IPW_CMD(VAP_BEACON_TEMPLATE);
2169                 IPW_CMD(VAP_DTIM_PERIOD);
2170                 IPW_CMD(EXT_SUPPORTED_RATES);
2171                 IPW_CMD(VAP_LOCAL_TX_PWR_CONSTRAINT);
2172                 IPW_CMD(VAP_QUIET_INTERVALS);
2173                 IPW_CMD(VAP_CHANNEL_SWITCH);
2174                 IPW_CMD(VAP_MANDATORY_CHANNELS);
2175                 IPW_CMD(VAP_CELL_PWR_LIMIT);
2176                 IPW_CMD(VAP_CF_PARAM_SET);
2177                 IPW_CMD(VAP_SET_BEACONING_STATE);
2178                 IPW_CMD(MEASUREMENT);
2179                 IPW_CMD(POWER_CAPABILITY);
2180                 IPW_CMD(SUPPORTED_CHANNELS);
2181                 IPW_CMD(TPC_REPORT);
2182                 IPW_CMD(WME_INFO);
2183                 IPW_CMD(PRODUCTION_COMMAND);
2184         default:
2185                 return "UNKNOWN";
2186         }
2187 }
2188
2189 #define HOST_COMPLETE_TIMEOUT HZ
2190
2191 static int __ipw_send_cmd(struct ipw_priv *priv, struct host_cmd *cmd)
2192 {
2193         int rc = 0;
2194         unsigned long flags;
2195         unsigned long now, end;
2196
2197         spin_lock_irqsave(&priv->lock, flags);
2198         if (priv->status & STATUS_HCMD_ACTIVE) {
2199                 IPW_ERROR("Failed to send %s: Already sending a command.\n",
2200                           get_cmd_string(cmd->cmd));
2201                 spin_unlock_irqrestore(&priv->lock, flags);
2202                 return -EAGAIN;
2203         }
2204
2205         priv->status |= STATUS_HCMD_ACTIVE;
2206
2207         if (priv->cmdlog) {
2208                 priv->cmdlog[priv->cmdlog_pos].jiffies = jiffies;
2209                 priv->cmdlog[priv->cmdlog_pos].cmd.cmd = cmd->cmd;
2210                 priv->cmdlog[priv->cmdlog_pos].cmd.len = cmd->len;
2211                 memcpy(priv->cmdlog[priv->cmdlog_pos].cmd.param, cmd->param,
2212                        cmd->len);
2213                 priv->cmdlog[priv->cmdlog_pos].retcode = -1;
2214         }
2215
2216         IPW_DEBUG_HC("%s command (#%d) %d bytes: 0x%08X\n",
2217                      get_cmd_string(cmd->cmd), cmd->cmd, cmd->len,
2218                      priv->status);
2219
2220 #ifndef DEBUG_CMD_WEP_KEY
2221         if (cmd->cmd == IPW_CMD_WEP_KEY)
2222                 IPW_DEBUG_HC("WEP_KEY command masked out for secure.\n");
2223         else
2224 #endif
2225                 printk_buf(IPW_DL_HOST_COMMAND, (u8 *) cmd->param, cmd->len);
2226
2227         rc = ipw_queue_tx_hcmd(priv, cmd->cmd, cmd->param, cmd->len, 0);
2228         if (rc) {
2229                 priv->status &= ~STATUS_HCMD_ACTIVE;
2230                 IPW_ERROR("Failed to send %s: Reason %d\n",
2231                           get_cmd_string(cmd->cmd), rc);
2232                 spin_unlock_irqrestore(&priv->lock, flags);
2233                 goto exit;
2234         }
2235         spin_unlock_irqrestore(&priv->lock, flags);
2236
2237         now = jiffies;
2238         end = now + HOST_COMPLETE_TIMEOUT;
2239 again:
2240         rc = wait_event_interruptible_timeout(priv->wait_command_queue,
2241                                               !(priv->
2242                                                 status & STATUS_HCMD_ACTIVE),
2243                                               end - now);
2244         if (rc < 0) {
2245                 now = jiffies;
2246                 if (time_before(now, end))
2247                         goto again;
2248                 rc = 0;
2249         }
2250
2251         if (rc == 0) {
2252                 spin_lock_irqsave(&priv->lock, flags);
2253                 if (priv->status & STATUS_HCMD_ACTIVE) {
2254                         IPW_ERROR("Failed to send %s: Command timed out.\n",
2255                                   get_cmd_string(cmd->cmd));
2256                         priv->status &= ~STATUS_HCMD_ACTIVE;
2257                         spin_unlock_irqrestore(&priv->lock, flags);
2258                         rc = -EIO;
2259                         goto exit;
2260                 }
2261                 spin_unlock_irqrestore(&priv->lock, flags);
2262         } else
2263                 rc = 0;
2264
2265         if (priv->status & STATUS_RF_KILL_HW) {
2266                 IPW_ERROR("Failed to send %s: Aborted due to RF kill switch.\n",
2267                           get_cmd_string(cmd->cmd));
2268                 rc = -EIO;
2269                 goto exit;
2270         }
2271
2272       exit:
2273         if (priv->cmdlog) {
2274                 priv->cmdlog[priv->cmdlog_pos++].retcode = rc;
2275                 priv->cmdlog_pos %= priv->cmdlog_len;
2276         }
2277         return rc;
2278 }
2279
2280 static int ipw_send_cmd_simple(struct ipw_priv *priv, u8 command)
2281 {
2282         struct host_cmd cmd = {
2283                 .cmd = command,
2284         };
2285
2286         return __ipw_send_cmd(priv, &cmd);
2287 }
2288
2289 static int ipw_send_cmd_pdu(struct ipw_priv *priv, u8 command, u8 len,
2290                             void *data)
2291 {
2292         struct host_cmd cmd = {
2293                 .cmd = command,
2294                 .len = len,
2295                 .param = data,
2296         };
2297
2298         return __ipw_send_cmd(priv, &cmd);
2299 }
2300
2301 static int ipw_send_host_complete(struct ipw_priv *priv)
2302 {
2303         if (!priv) {
2304                 IPW_ERROR("Invalid args\n");
2305                 return -1;
2306         }
2307
2308         return ipw_send_cmd_simple(priv, IPW_CMD_HOST_COMPLETE);
2309 }
2310
2311 static int ipw_send_system_config(struct ipw_priv *priv)
2312 {
2313         return ipw_send_cmd_pdu(priv, IPW_CMD_SYSTEM_CONFIG,
2314                                 sizeof(priv->sys_config),
2315                                 &priv->sys_config);
2316 }
2317
2318 static int ipw_send_ssid(struct ipw_priv *priv, u8 * ssid, int len)
2319 {
2320         if (!priv || !ssid) {
2321                 IPW_ERROR("Invalid args\n");
2322                 return -1;
2323         }
2324
2325         return ipw_send_cmd_pdu(priv, IPW_CMD_SSID, min(len, IW_ESSID_MAX_SIZE),
2326                                 ssid);
2327 }
2328
2329 static int ipw_send_adapter_address(struct ipw_priv *priv, u8 * mac)
2330 {
2331         if (!priv || !mac) {
2332                 IPW_ERROR("Invalid args\n");
2333                 return -1;
2334         }
2335
2336         IPW_DEBUG_INFO("%s: Setting MAC to %pM\n",
2337                        priv->net_dev->name, mac);
2338
2339         return ipw_send_cmd_pdu(priv, IPW_CMD_ADAPTER_ADDRESS, ETH_ALEN, mac);
2340 }
2341
2342 static void ipw_adapter_restart(void *adapter)
2343 {
2344         struct ipw_priv *priv = adapter;
2345
2346         if (priv->status & STATUS_RF_KILL_MASK)
2347                 return;
2348
2349         ipw_down(priv);
2350
2351         if (priv->assoc_network &&
2352             (priv->assoc_network->capability & WLAN_CAPABILITY_IBSS))
2353                 ipw_remove_current_network(priv);
2354
2355         if (ipw_up(priv)) {
2356                 IPW_ERROR("Failed to up device\n");
2357                 return;
2358         }
2359 }
2360
2361 static void ipw_bg_adapter_restart(struct work_struct *work)
2362 {
2363         struct ipw_priv *priv =
2364                 container_of(work, struct ipw_priv, adapter_restart);
2365         mutex_lock(&priv->mutex);
2366         ipw_adapter_restart(priv);
2367         mutex_unlock(&priv->mutex);
2368 }
2369
2370 static void ipw_abort_scan(struct ipw_priv *priv);
2371
2372 #define IPW_SCAN_CHECK_WATCHDOG (5 * HZ)
2373
2374 static void ipw_scan_check(void *data)
2375 {
2376         struct ipw_priv *priv = data;
2377
2378         if (priv->status & STATUS_SCAN_ABORTING) {
2379                 IPW_DEBUG_SCAN("Scan completion watchdog resetting "
2380                                "adapter after (%dms).\n",
2381                                jiffies_to_msecs(IPW_SCAN_CHECK_WATCHDOG));
2382                 schedule_work(&priv->adapter_restart);
2383         } else if (priv->status & STATUS_SCANNING) {
2384                 IPW_DEBUG_SCAN("Scan completion watchdog aborting scan "
2385                                "after (%dms).\n",
2386                                jiffies_to_msecs(IPW_SCAN_CHECK_WATCHDOG));
2387                 ipw_abort_scan(priv);
2388                 schedule_delayed_work(&priv->scan_check, HZ);
2389         }
2390 }
2391
2392 static void ipw_bg_scan_check(struct work_struct *work)
2393 {
2394         struct ipw_priv *priv =
2395                 container_of(work, struct ipw_priv, scan_check.work);
2396         mutex_lock(&priv->mutex);
2397         ipw_scan_check(priv);
2398         mutex_unlock(&priv->mutex);
2399 }
2400
2401 static int ipw_send_scan_request_ext(struct ipw_priv *priv,
2402                                      struct ipw_scan_request_ext *request)
2403 {
2404         return ipw_send_cmd_pdu(priv, IPW_CMD_SCAN_REQUEST_EXT,
2405                                 sizeof(*request), request);
2406 }
2407
2408 static int ipw_send_scan_abort(struct ipw_priv *priv)
2409 {
2410         if (!priv) {
2411                 IPW_ERROR("Invalid args\n");
2412                 return -1;
2413         }
2414
2415         return ipw_send_cmd_simple(priv, IPW_CMD_SCAN_ABORT);
2416 }
2417
2418 static int ipw_set_sensitivity(struct ipw_priv *priv, u16 sens)
2419 {
2420         struct ipw_sensitivity_calib calib = {
2421                 .beacon_rssi_raw = cpu_to_le16(sens),
2422         };
2423
2424         return ipw_send_cmd_pdu(priv, IPW_CMD_SENSITIVITY_CALIB, sizeof(calib),
2425                                 &calib);
2426 }
2427
2428 static int ipw_send_associate(struct ipw_priv *priv,
2429                               struct ipw_associate *associate)
2430 {
2431         if (!priv || !associate) {
2432                 IPW_ERROR("Invalid args\n");
2433                 return -1;
2434         }
2435
2436         return ipw_send_cmd_pdu(priv, IPW_CMD_ASSOCIATE, sizeof(*associate),
2437                                 associate);
2438 }
2439
2440 static int ipw_send_supported_rates(struct ipw_priv *priv,
2441                                     struct ipw_supported_rates *rates)
2442 {
2443         if (!priv || !rates) {
2444                 IPW_ERROR("Invalid args\n");
2445                 return -1;
2446         }
2447
2448         return ipw_send_cmd_pdu(priv, IPW_CMD_SUPPORTED_RATES, sizeof(*rates),
2449                                 rates);
2450 }
2451
2452 static int ipw_set_random_seed(struct ipw_priv *priv)
2453 {
2454         u32 val;
2455
2456         if (!priv) {
2457                 IPW_ERROR("Invalid args\n");
2458                 return -1;
2459         }
2460
2461         get_random_bytes(&val, sizeof(val));
2462
2463         return ipw_send_cmd_pdu(priv, IPW_CMD_SEED_NUMBER, sizeof(val), &val);
2464 }
2465
2466 static int ipw_send_card_disable(struct ipw_priv *priv, u32 phy_off)
2467 {
2468         __le32 v = cpu_to_le32(phy_off);
2469         if (!priv) {
2470                 IPW_ERROR("Invalid args\n");
2471                 return -1;
2472         }
2473
2474         return ipw_send_cmd_pdu(priv, IPW_CMD_CARD_DISABLE, sizeof(v), &v);
2475 }
2476
2477 static int ipw_send_tx_power(struct ipw_priv *priv, struct ipw_tx_power *power)
2478 {
2479         if (!priv || !power) {
2480                 IPW_ERROR("Invalid args\n");
2481                 return -1;
2482         }
2483
2484         return ipw_send_cmd_pdu(priv, IPW_CMD_TX_POWER, sizeof(*power), power);
2485 }
2486
2487 static int ipw_set_tx_power(struct ipw_priv *priv)
2488 {
2489         const struct libipw_geo *geo = libipw_get_geo(priv->ieee);
2490         struct ipw_tx_power tx_power;
2491         s8 max_power;
2492         int i;
2493
2494         memset(&tx_power, 0, sizeof(tx_power));
2495
2496         /* configure device for 'G' band */
2497         tx_power.ieee_mode = IPW_G_MODE;
2498         tx_power.num_channels = geo->bg_channels;
2499         for (i = 0; i < geo->bg_channels; i++) {
2500                 max_power = geo->bg[i].max_power;
2501                 tx_power.channels_tx_power[i].channel_number =
2502                     geo->bg[i].channel;
2503                 tx_power.channels_tx_power[i].tx_power = max_power ?
2504                     min(max_power, priv->tx_power) : priv->tx_power;
2505         }
2506         if (ipw_send_tx_power(priv, &tx_power))
2507                 return -EIO;
2508
2509         /* configure device to also handle 'B' band */
2510         tx_power.ieee_mode = IPW_B_MODE;
2511         if (ipw_send_tx_power(priv, &tx_power))
2512                 return -EIO;
2513
2514         /* configure device to also handle 'A' band */
2515         if (priv->ieee->abg_true) {
2516                 tx_power.ieee_mode = IPW_A_MODE;
2517                 tx_power.num_channels = geo->a_channels;
2518                 for (i = 0; i < tx_power.num_channels; i++) {
2519                         max_power = geo->a[i].max_power;
2520                         tx_power.channels_tx_power[i].channel_number =
2521                             geo->a[i].channel;
2522                         tx_power.channels_tx_power[i].tx_power = max_power ?
2523                             min(max_power, priv->tx_power) : priv->tx_power;
2524                 }
2525                 if (ipw_send_tx_power(priv, &tx_power))
2526                         return -EIO;
2527         }
2528         return 0;
2529 }
2530
2531 static int ipw_send_rts_threshold(struct ipw_priv *priv, u16 rts)
2532 {
2533         struct ipw_rts_threshold rts_threshold = {
2534                 .rts_threshold = cpu_to_le16(rts),
2535         };
2536
2537         if (!priv) {
2538                 IPW_ERROR("Invalid args\n");
2539                 return -1;
2540         }
2541
2542         return ipw_send_cmd_pdu(priv, IPW_CMD_RTS_THRESHOLD,
2543                                 sizeof(rts_threshold), &rts_threshold);
2544 }
2545
2546 static int ipw_send_frag_threshold(struct ipw_priv *priv, u16 frag)
2547 {
2548         struct ipw_frag_threshold frag_threshold = {
2549                 .frag_threshold = cpu_to_le16(frag),
2550         };
2551
2552         if (!priv) {
2553                 IPW_ERROR("Invalid args\n");
2554                 return -1;
2555         }
2556
2557         return ipw_send_cmd_pdu(priv, IPW_CMD_FRAG_THRESHOLD,
2558                                 sizeof(frag_threshold), &frag_threshold);
2559 }
2560
2561 static int ipw_send_power_mode(struct ipw_priv *priv, u32 mode)
2562 {
2563         __le32 param;
2564
2565         if (!priv) {
2566                 IPW_ERROR("Invalid args\n");
2567                 return -1;
2568         }
2569
2570         /* If on battery, set to 3, if AC set to CAM, else user
2571          * level */
2572         switch (mode) {
2573         case IPW_POWER_BATTERY:
2574                 param = cpu_to_le32(IPW_POWER_INDEX_3);
2575                 break;
2576         case IPW_POWER_AC:
2577                 param = cpu_to_le32(IPW_POWER_MODE_CAM);
2578                 break;
2579         default:
2580                 param = cpu_to_le32(mode);
2581                 break;
2582         }
2583
2584         return ipw_send_cmd_pdu(priv, IPW_CMD_POWER_MODE, sizeof(param),
2585                                 &param);
2586 }
2587
2588 static int ipw_send_retry_limit(struct ipw_priv *priv, u8 slimit, u8 llimit)
2589 {
2590         struct ipw_retry_limit retry_limit = {
2591                 .short_retry_limit = slimit,
2592                 .long_retry_limit = llimit
2593         };
2594
2595         if (!priv) {
2596                 IPW_ERROR("Invalid args\n");
2597                 return -1;
2598         }
2599
2600         return ipw_send_cmd_pdu(priv, IPW_CMD_RETRY_LIMIT, sizeof(retry_limit),
2601                                 &retry_limit);
2602 }
2603
2604 /*
2605  * The IPW device contains a Microwire compatible EEPROM that stores
2606  * various data like the MAC address.  Usually the firmware has exclusive
2607  * access to the eeprom, but during device initialization (before the
2608  * device driver has sent the HostComplete command to the firmware) the
2609  * device driver has read access to the EEPROM by way of indirect addressing
2610  * through a couple of memory mapped registers.
2611  *
2612  * The following is a simplified implementation for pulling data out of the
2613  * the eeprom, along with some helper functions to find information in
2614  * the per device private data's copy of the eeprom.
2615  *
2616  * NOTE: To better understand how these functions work (i.e what is a chip
2617  *       select and why do have to keep driving the eeprom clock?), read
2618  *       just about any data sheet for a Microwire compatible EEPROM.
2619  */
2620
2621 /* write a 32 bit value into the indirect accessor register */
2622 static inline void eeprom_write_reg(struct ipw_priv *p, u32 data)
2623 {
2624         ipw_write_reg32(p, FW_MEM_REG_EEPROM_ACCESS, data);
2625
2626         /* the eeprom requires some time to complete the operation */
2627         udelay(p->eeprom_delay);
2628 }
2629
2630 /* perform a chip select operation */
2631 static void eeprom_cs(struct ipw_priv *priv)
2632 {
2633         eeprom_write_reg(priv, 0);
2634         eeprom_write_reg(priv, EEPROM_BIT_CS);
2635         eeprom_write_reg(priv, EEPROM_BIT_CS | EEPROM_BIT_SK);
2636         eeprom_write_reg(priv, EEPROM_BIT_CS);
2637 }
2638
2639 /* perform a chip select operation */
2640 static void eeprom_disable_cs(struct ipw_priv *priv)
2641 {
2642         eeprom_write_reg(priv, EEPROM_BIT_CS);
2643         eeprom_write_reg(priv, 0);
2644         eeprom_write_reg(priv, EEPROM_BIT_SK);
2645 }
2646
2647 /* push a single bit down to the eeprom */
2648 static inline void eeprom_write_bit(struct ipw_priv *p, u8 bit)
2649 {
2650         int d = (bit ? EEPROM_BIT_DI : 0);
2651         eeprom_write_reg(p, EEPROM_BIT_CS | d);
2652         eeprom_write_reg(p, EEPROM_BIT_CS | d | EEPROM_BIT_SK);
2653 }
2654
2655 /* push an opcode followed by an address down to the eeprom */
2656 static void eeprom_op(struct ipw_priv *priv, u8 op, u8 addr)
2657 {
2658         int i;
2659
2660         eeprom_cs(priv);
2661         eeprom_write_bit(priv, 1);
2662         eeprom_write_bit(priv, op & 2);
2663         eeprom_write_bit(priv, op & 1);
2664         for (i = 7; i >= 0; i--) {
2665                 eeprom_write_bit(priv, addr & (1 << i));
2666         }
2667 }
2668
2669 /* pull 16 bits off the eeprom, one bit at a time */
2670 static u16 eeprom_read_u16(struct ipw_priv *priv, u8 addr)
2671 {
2672         int i;
2673         u16 r = 0;
2674
2675         /* Send READ Opcode */
2676         eeprom_op(priv, EEPROM_CMD_READ, addr);
2677
2678         /* Send dummy bit */
2679         eeprom_write_reg(priv, EEPROM_BIT_CS);
2680
2681         /* Read the byte off the eeprom one bit at a time */
2682         for (i = 0; i < 16; i++) {
2683                 u32 data = 0;
2684                 eeprom_write_reg(priv, EEPROM_BIT_CS | EEPROM_BIT_SK);
2685                 eeprom_write_reg(priv, EEPROM_BIT_CS);
2686                 data = ipw_read_reg32(priv, FW_MEM_REG_EEPROM_ACCESS);
2687                 r = (r << 1) | ((data & EEPROM_BIT_DO) ? 1 : 0);
2688         }
2689
2690         /* Send another dummy bit */
2691         eeprom_write_reg(priv, 0);
2692         eeprom_disable_cs(priv);
2693
2694         return r;
2695 }
2696
2697 /* helper function for pulling the mac address out of the private */
2698 /* data's copy of the eeprom data                                 */
2699 static void eeprom_parse_mac(struct ipw_priv *priv, u8 * mac)
2700 {
2701         memcpy(mac, &priv->eeprom[EEPROM_MAC_ADDRESS], 6);
2702 }
2703
2704 static void ipw_read_eeprom(struct ipw_priv *priv)
2705 {
2706         int i;
2707         __le16 *eeprom = (__le16 *) priv->eeprom;
2708
2709         IPW_DEBUG_TRACE(">>\n");
2710
2711         /* read entire contents of eeprom into private buffer */
2712         for (i = 0; i < 128; i++)
2713                 eeprom[i] = cpu_to_le16(eeprom_read_u16(priv, (u8) i));
2714
2715         IPW_DEBUG_TRACE("<<\n");
2716 }
2717
2718 /*
2719  * Either the device driver (i.e. the host) or the firmware can
2720  * load eeprom data into the designated region in SRAM.  If neither
2721  * happens then the FW will shutdown with a fatal error.
2722  *
2723  * In order to signal the FW to load the EEPROM, the EEPROM_LOAD_DISABLE
2724  * bit needs region of shared SRAM needs to be non-zero.
2725  */
2726 static void ipw_eeprom_init_sram(struct ipw_priv *priv)
2727 {
2728         int i;
2729
2730         IPW_DEBUG_TRACE(">>\n");
2731
2732         /*
2733            If the data looks correct, then copy it to our private
2734            copy.  Otherwise let the firmware know to perform the operation
2735            on its own.
2736          */
2737         if (priv->eeprom[EEPROM_VERSION] != 0) {
2738                 IPW_DEBUG_INFO("Writing EEPROM data into SRAM\n");
2739
2740                 /* write the eeprom data to sram */
2741                 for (i = 0; i < IPW_EEPROM_IMAGE_SIZE; i++)
2742                         ipw_write8(priv, IPW_EEPROM_DATA + i, priv->eeprom[i]);
2743
2744                 /* Do not load eeprom data on fatal error or suspend */
2745                 ipw_write32(priv, IPW_EEPROM_LOAD_DISABLE, 0);
2746         } else {
2747                 IPW_DEBUG_INFO("Enabling FW initializationg of SRAM\n");
2748
2749                 /* Load eeprom data on fatal error or suspend */
2750                 ipw_write32(priv, IPW_EEPROM_LOAD_DISABLE, 1);
2751         }
2752
2753         IPW_DEBUG_TRACE("<<\n");
2754 }
2755
2756 static void ipw_zero_memory(struct ipw_priv *priv, u32 start, u32 count)
2757 {
2758         count >>= 2;
2759         if (!count)
2760                 return;
2761         _ipw_write32(priv, IPW_AUTOINC_ADDR, start);
2762         while (count--)
2763                 _ipw_write32(priv, IPW_AUTOINC_DATA, 0);
2764 }
2765
2766 static inline void ipw_fw_dma_reset_command_blocks(struct ipw_priv *priv)
2767 {
2768         ipw_zero_memory(priv, IPW_SHARED_SRAM_DMA_CONTROL,
2769                         CB_NUMBER_OF_ELEMENTS_SMALL *
2770                         sizeof(struct command_block));
2771 }
2772
2773 static int ipw_fw_dma_enable(struct ipw_priv *priv)
2774 {                               /* start dma engine but no transfers yet */
2775
2776         IPW_DEBUG_FW(">> :\n");
2777
2778         /* Start the dma */
2779         ipw_fw_dma_reset_command_blocks(priv);
2780
2781         /* Write CB base address */
2782         ipw_write_reg32(priv, IPW_DMA_I_CB_BASE, IPW_SHARED_SRAM_DMA_CONTROL);
2783
2784         IPW_DEBUG_FW("<< :\n");
2785         return 0;
2786 }
2787
2788 static void ipw_fw_dma_abort(struct ipw_priv *priv)
2789 {
2790         u32 control = 0;
2791
2792         IPW_DEBUG_FW(">> :\n");
2793
2794         /* set the Stop and Abort bit */
2795         control = DMA_CONTROL_SMALL_CB_CONST_VALUE | DMA_CB_STOP_AND_ABORT;
2796         ipw_write_reg32(priv, IPW_DMA_I_DMA_CONTROL, control);
2797         priv->sram_desc.last_cb_index = 0;
2798
2799         IPW_DEBUG_FW("<<\n");
2800 }
2801
2802 static int ipw_fw_dma_write_command_block(struct ipw_priv *priv, int index,
2803                                           struct command_block *cb)
2804 {
2805         u32 address =
2806             IPW_SHARED_SRAM_DMA_CONTROL +
2807             (sizeof(struct command_block) * index);
2808         IPW_DEBUG_FW(">> :\n");
2809
2810         ipw_write_indirect(priv, address, (u8 *) cb,
2811                            (int)sizeof(struct command_block));
2812
2813         IPW_DEBUG_FW("<< :\n");
2814         return 0;
2815
2816 }
2817
2818 static int ipw_fw_dma_kick(struct ipw_priv *priv)
2819 {
2820         u32 control = 0;
2821         u32 index = 0;
2822
2823         IPW_DEBUG_FW(">> :\n");
2824
2825         for (index = 0; index < priv->sram_desc.last_cb_index; index++)
2826                 ipw_fw_dma_write_command_block(priv, index,
2827                                                &priv->sram_desc.cb_list[index]);
2828
2829         /* Enable the DMA in the CSR register */
2830         ipw_clear_bit(priv, IPW_RESET_REG,
2831                       IPW_RESET_REG_MASTER_DISABLED |
2832                       IPW_RESET_REG_STOP_MASTER);
2833
2834         /* Set the Start bit. */
2835         control = DMA_CONTROL_SMALL_CB_CONST_VALUE | DMA_CB_START;
2836         ipw_write_reg32(priv, IPW_DMA_I_DMA_CONTROL, control);
2837
2838         IPW_DEBUG_FW("<< :\n");
2839         return 0;
2840 }
2841
2842 static void ipw_fw_dma_dump_command_block(struct ipw_priv *priv)
2843 {
2844         u32 address;
2845         u32 register_value = 0;
2846         u32 cb_fields_address = 0;
2847
2848         IPW_DEBUG_FW(">> :\n");
2849         address = ipw_read_reg32(priv, IPW_DMA_I_CURRENT_CB);
2850         IPW_DEBUG_FW_INFO("Current CB is 0x%x\n", address);
2851
2852         /* Read the DMA Controlor register */
2853         register_value = ipw_read_reg32(priv, IPW_DMA_I_DMA_CONTROL);
2854         IPW_DEBUG_FW_INFO("IPW_DMA_I_DMA_CONTROL is 0x%x\n", register_value);
2855
2856         /* Print the CB values */
2857         cb_fields_address = address;
2858         register_value = ipw_read_reg32(priv, cb_fields_address);
2859         IPW_DEBUG_FW_INFO("Current CB Control Field is 0x%x\n", register_value);
2860
2861         cb_fields_address += sizeof(u32);
2862         register_value = ipw_read_reg32(priv, cb_fields_address);
2863         IPW_DEBUG_FW_INFO("Current CB Source Field is 0x%x\n", register_value);
2864
2865         cb_fields_address += sizeof(u32);
2866         register_value = ipw_read_reg32(priv, cb_fields_address);
2867         IPW_DEBUG_FW_INFO("Current CB Destination Field is 0x%x\n",
2868                           register_value);
2869
2870         cb_fields_address += sizeof(u32);
2871         register_value = ipw_read_reg32(priv, cb_fields_address);
2872         IPW_DEBUG_FW_INFO("Current CB Status Field is 0x%x\n", register_value);
2873
2874         IPW_DEBUG_FW(">> :\n");
2875 }
2876
2877 static int ipw_fw_dma_command_block_index(struct ipw_priv *priv)
2878 {
2879         u32 current_cb_address = 0;
2880         u32 current_cb_index = 0;
2881
2882         IPW_DEBUG_FW("<< :\n");
2883         current_cb_address = ipw_read_reg32(priv, IPW_DMA_I_CURRENT_CB);
2884
2885         current_cb_index = (current_cb_address - IPW_SHARED_SRAM_DMA_CONTROL) /
2886             sizeof(struct command_block);
2887
2888         IPW_DEBUG_FW_INFO("Current CB index 0x%x address = 0x%X\n",
2889                           current_cb_index, current_cb_address);
2890
2891         IPW_DEBUG_FW(">> :\n");
2892         return current_cb_index;
2893
2894 }
2895
2896 static int ipw_fw_dma_add_command_block(struct ipw_priv *priv,
2897                                         u32 src_address,
2898                                         u32 dest_address,
2899                                         u32 length,
2900                                         int interrupt_enabled, int is_last)
2901 {
2902
2903         u32 control = CB_VALID | CB_SRC_LE | CB_DEST_LE | CB_SRC_AUTOINC |
2904             CB_SRC_IO_GATED | CB_DEST_AUTOINC | CB_SRC_SIZE_LONG |
2905             CB_DEST_SIZE_LONG;
2906         struct command_block *cb;
2907         u32 last_cb_element = 0;
2908
2909         IPW_DEBUG_FW_INFO("src_address=0x%x dest_address=0x%x length=0x%x\n",
2910                           src_address, dest_address, length);
2911
2912         if (priv->sram_desc.last_cb_index >= CB_NUMBER_OF_ELEMENTS_SMALL)
2913                 return -1;
2914
2915         last_cb_element = priv->sram_desc.last_cb_index;
2916         cb = &priv->sram_desc.cb_list[last_cb_element];
2917         priv->sram_desc.last_cb_index++;
2918
2919         /* Calculate the new CB control word */
2920         if (interrupt_enabled)
2921                 control |= CB_INT_ENABLED;
2922
2923         if (is_last)
2924                 control |= CB_LAST_VALID;
2925
2926         control |= length;
2927
2928         /* Calculate the CB Element's checksum value */
2929         cb->status = control ^ src_address ^ dest_address;
2930
2931         /* Copy the Source and Destination addresses */
2932         cb->dest_addr = dest_address;
2933         cb->source_addr = src_address;
2934
2935         /* Copy the Control Word last */
2936         cb->control = control;
2937
2938         return 0;
2939 }
2940
2941 static int ipw_fw_dma_add_buffer(struct ipw_priv *priv, dma_addr_t *src_address,
2942                                  int nr, u32 dest_address, u32 len)
2943 {
2944         int ret, i;
2945         u32 size;
2946
2947         IPW_DEBUG_FW(">>\n");
2948         IPW_DEBUG_FW_INFO("nr=%d dest_address=0x%x len=0x%x\n",
2949                           nr, dest_address, len);
2950
2951         for (i = 0; i < nr; i++) {
2952                 size = min_t(u32, len - i * CB_MAX_LENGTH, CB_MAX_LENGTH);
2953                 ret = ipw_fw_dma_add_command_block(priv, src_address[i],
2954                                                    dest_address +
2955                                                    i * CB_MAX_LENGTH, size,
2956                                                    0, 0);
2957                 if (ret) {
2958                         IPW_DEBUG_FW_INFO(": Failed\n");
2959                         return -1;
2960                 } else
2961                         IPW_DEBUG_FW_INFO(": Added new cb\n");
2962         }
2963
2964         IPW_DEBUG_FW("<<\n");
2965         return 0;
2966 }
2967
2968 static int ipw_fw_dma_wait(struct ipw_priv *priv)
2969 {
2970         u32 current_index = 0, previous_index;
2971         u32 watchdog = 0;
2972
2973         IPW_DEBUG_FW(">> :\n");
2974
2975         current_index = ipw_fw_dma_command_block_index(priv);
2976         IPW_DEBUG_FW_INFO("sram_desc.last_cb_index:0x%08X\n",
2977                           (int)priv->sram_desc.last_cb_index);
2978
2979         while (current_index < priv->sram_desc.last_cb_index) {
2980                 udelay(50);
2981                 previous_index = current_index;
2982                 current_index = ipw_fw_dma_command_block_index(priv);
2983
2984                 if (previous_index < current_index) {
2985                         watchdog = 0;
2986                         continue;
2987                 }
2988                 if (++watchdog > 400) {
2989                         IPW_DEBUG_FW_INFO("Timeout\n");
2990                         ipw_fw_dma_dump_command_block(priv);
2991                         ipw_fw_dma_abort(priv);
2992                         return -1;
2993                 }
2994         }
2995
2996         ipw_fw_dma_abort(priv);
2997
2998         /*Disable the DMA in the CSR register */
2999         ipw_set_bit(priv, IPW_RESET_REG,
3000                     IPW_RESET_REG_MASTER_DISABLED | IPW_RESET_REG_STOP_MASTER);
3001
3002         IPW_DEBUG_FW("<< dmaWaitSync\n");
3003         return 0;
3004 }
3005
3006 static void ipw_remove_current_network(struct ipw_priv *priv)
3007 {
3008         struct list_head *element, *safe;
3009         struct libipw_network *network = NULL;
3010         unsigned long flags;
3011
3012         spin_lock_irqsave(&priv->ieee->lock, flags);
3013         list_for_each_safe(element, safe, &priv->ieee->network_list) {
3014                 network = list_entry(element, struct libipw_network, list);
3015                 if (!memcmp(network->bssid, priv->bssid, ETH_ALEN)) {
3016                         list_del(element);
3017                         list_add_tail(&network->list,
3018                                       &priv->ieee->network_free_list);
3019                 }
3020         }
3021         spin_unlock_irqrestore(&priv->ieee->lock, flags);
3022 }
3023
3024 /**
3025  * Check that card is still alive.
3026  * Reads debug register from domain0.
3027  * If card is present, pre-defined value should
3028  * be found there.
3029  *
3030  * @param priv
3031  * @return 1 if card is present, 0 otherwise
3032  */
3033 static inline int ipw_alive(struct ipw_priv *priv)
3034 {
3035         return ipw_read32(priv, 0x90) == 0xd55555d5;
3036 }
3037
3038 /* timeout in msec, attempted in 10-msec quanta */
3039 static int ipw_poll_bit(struct ipw_priv *priv, u32 addr, u32 mask,
3040                                int timeout)
3041 {
3042         int i = 0;
3043
3044         do {
3045                 if ((ipw_read32(priv, addr) & mask) == mask)
3046                         return i;
3047                 mdelay(10);
3048                 i += 10;
3049         } while (i < timeout);
3050
3051         return -ETIME;
3052 }
3053
3054 /* These functions load the firmware and micro code for the operation of
3055  * the ipw hardware.  It assumes the buffer has all the bits for the
3056  * image and the caller is handling the memory allocation and clean up.
3057  */
3058
3059 static int ipw_stop_master(struct ipw_priv *priv)
3060 {
3061         int rc;
3062
3063         IPW_DEBUG_TRACE(">>\n");
3064         /* stop master. typical delay - 0 */
3065         ipw_set_bit(priv, IPW_RESET_REG, IPW_RESET_REG_STOP_MASTER);
3066
3067         /* timeout is in msec, polled in 10-msec quanta */
3068         rc = ipw_poll_bit(priv, IPW_RESET_REG,
3069                           IPW_RESET_REG_MASTER_DISABLED, 100);
3070         if (rc < 0) {
3071                 IPW_ERROR("wait for stop master failed after 100ms\n");
3072                 return -1;
3073         }
3074
3075         IPW_DEBUG_INFO("stop master %dms\n", rc);
3076
3077         return rc;
3078 }
3079
3080 static void ipw_arc_release(struct ipw_priv *priv)
3081 {
3082         IPW_DEBUG_TRACE(">>\n");
3083         mdelay(5);
3084
3085         ipw_clear_bit(priv, IPW_RESET_REG, CBD_RESET_REG_PRINCETON_RESET);
3086
3087         /* no one knows timing, for safety add some delay */
3088         mdelay(5);
3089 }
3090
3091 struct fw_chunk {
3092         __le32 address;
3093         __le32 length;
3094 };
3095
3096 static int ipw_load_ucode(struct ipw_priv *priv, u8 * data, size_t len)
3097 {
3098         int rc = 0, i, addr;
3099         u8 cr = 0;
3100         __le16 *image;
3101
3102         image = (__le16 *) data;
3103
3104         IPW_DEBUG_TRACE(">>\n");
3105
3106         rc = ipw_stop_master(priv);
3107
3108         if (rc < 0)
3109                 return rc;
3110
3111         for (addr = IPW_SHARED_LOWER_BOUND;
3112              addr < IPW_REGISTER_DOMAIN1_END; addr += 4) {
3113                 ipw_write32(priv, addr, 0);
3114         }
3115
3116         /* no ucode (yet) */
3117         memset(&priv->dino_alive, 0, sizeof(priv->dino_alive));
3118         /* destroy DMA queues */
3119         /* reset sequence */
3120
3121         ipw_write_reg32(priv, IPW_MEM_HALT_AND_RESET, IPW_BIT_HALT_RESET_ON);
3122         ipw_arc_release(priv);
3123         ipw_write_reg32(priv, IPW_MEM_HALT_AND_RESET, IPW_BIT_HALT_RESET_OFF);
3124         mdelay(1);
3125
3126         /* reset PHY */
3127         ipw_write_reg32(priv, IPW_INTERNAL_CMD_EVENT, IPW_BASEBAND_POWER_DOWN);
3128         mdelay(1);
3129
3130         ipw_write_reg32(priv, IPW_INTERNAL_CMD_EVENT, 0);
3131         mdelay(1);
3132
3133         /* enable ucode store */
3134         ipw_write_reg8(priv, IPW_BASEBAND_CONTROL_STATUS, 0x0);
3135         ipw_write_reg8(priv, IPW_BASEBAND_CONTROL_STATUS, DINO_ENABLE_CS);
3136         mdelay(1);
3137
3138         /* write ucode */
3139         /**
3140          * @bug
3141          * Do NOT set indirect address register once and then
3142          * store data to indirect data register in the loop.
3143          * It seems very reasonable, but in this case DINO do not
3144          * accept ucode. It is essential to set address each time.
3145          */
3146         /* load new ipw uCode */
3147         for (i = 0; i < len / 2; i++)
3148                 ipw_write_reg16(priv, IPW_BASEBAND_CONTROL_STORE,
3149                                 le16_to_cpu(image[i]));
3150
3151         /* enable DINO */
3152         ipw_write_reg8(priv, IPW_BASEBAND_CONTROL_STATUS, 0);
3153         ipw_write_reg8(priv, IPW_BASEBAND_CONTROL_STATUS, DINO_ENABLE_SYSTEM);
3154
3155         /* this is where the igx / win driver deveates from the VAP driver. */
3156
3157         /* wait for alive response */
3158         for (i = 0; i < 100; i++) {
3159                 /* poll for incoming data */
3160                 cr = ipw_read_reg8(priv, IPW_BASEBAND_CONTROL_STATUS);
3161                 if (cr & DINO_RXFIFO_DATA)
3162                         break;
3163                 mdelay(1);
3164         }
3165
3166         if (cr & DINO_RXFIFO_DATA) {
3167                 /* alive_command_responce size is NOT multiple of 4 */
3168                 __le32 response_buffer[(sizeof(priv->dino_alive) + 3) / 4];
3169
3170                 for (i = 0; i < ARRAY_SIZE(response_buffer); i++)
3171                         response_buffer[i] =
3172                             cpu_to_le32(ipw_read_reg32(priv,
3173                                                        IPW_BASEBAND_RX_FIFO_READ));
3174                 memcpy(&priv->dino_alive, response_buffer,
3175                        sizeof(priv->dino_alive));
3176                 if (priv->dino_alive.alive_command == 1
3177                     && priv->dino_alive.ucode_valid == 1) {
3178                         rc = 0;
3179                         IPW_DEBUG_INFO
3180                             ("Microcode OK, rev. %d (0x%x) dev. %d (0x%x) "
3181                              "of %02d/%02d/%02d %02d:%02d\n",
3182                              priv->dino_alive.software_revision,
3183                              priv->dino_alive.software_revision,
3184                              priv->dino_alive.device_identifier,
3185                              priv->dino_alive.device_identifier,
3186                              priv->dino_alive.time_stamp[0],
3187                              priv->dino_alive.time_stamp[1],
3188                              priv->dino_alive.time_stamp[2],
3189                              priv->dino_alive.time_stamp[3],
3190                              priv->dino_alive.time_stamp[4]);
3191                 } else {
3192                         IPW_DEBUG_INFO("Microcode is not alive\n");
3193                         rc = -EINVAL;
3194                 }
3195         } else {
3196                 IPW_DEBUG_INFO("No alive response from DINO\n");
3197                 rc = -ETIME;
3198         }
3199
3200         /* disable DINO, otherwise for some reason
3201            firmware have problem getting alive resp. */
3202         ipw_write_reg8(priv, IPW_BASEBAND_CONTROL_STATUS, 0);
3203
3204         return rc;
3205 }
3206
3207 static int ipw_load_firmware(struct ipw_priv *priv, u8 * data, size_t len)
3208 {
3209         int ret = -1;
3210         int offset = 0;
3211         struct fw_chunk *chunk;
3212         int total_nr = 0;
3213         int i;
3214         struct pci_pool *pool;
3215         void **virts;
3216         dma_addr_t *phys;
3217
3218         IPW_DEBUG_TRACE("<< :\n");
3219
3220         virts = kmalloc(sizeof(void *) * CB_NUMBER_OF_ELEMENTS_SMALL,
3221                         GFP_KERNEL);
3222         if (!virts)
3223                 return -ENOMEM;
3224
3225         phys = kmalloc(sizeof(dma_addr_t) * CB_NUMBER_OF_ELEMENTS_SMALL,
3226                         GFP_KERNEL);
3227         if (!phys) {
3228                 kfree(virts);
3229                 return -ENOMEM;
3230         }
3231         pool = pci_pool_create("ipw2200", priv->pci_dev, CB_MAX_LENGTH, 0, 0);
3232         if (!pool) {
3233                 IPW_ERROR("pci_pool_create failed\n");
3234                 kfree(phys);
3235                 kfree(virts);
3236                 return -ENOMEM;
3237         }
3238
3239         /* Start the Dma */
3240         ret = ipw_fw_dma_enable(priv);
3241
3242         /* the DMA is already ready this would be a bug. */
3243         BUG_ON(priv->sram_desc.last_cb_index > 0);
3244
3245         do {
3246                 u32 chunk_len;
3247                 u8 *start;
3248                 int size;
3249                 int nr = 0;
3250
3251                 chunk = (struct fw_chunk *)(data + offset);
3252                 offset += sizeof(struct fw_chunk);
3253                 chunk_len = le32_to_cpu(chunk->length);
3254                 start = data + offset;
3255
3256                 nr = (chunk_len + CB_MAX_LENGTH - 1) / CB_MAX_LENGTH;
3257                 for (i = 0; i < nr; i++) {
3258                         virts[total_nr] = pci_pool_alloc(pool, GFP_KERNEL,
3259                                                          &phys[total_nr]);
3260                         if (!virts[total_nr]) {
3261                                 ret = -ENOMEM;
3262                                 goto out;
3263                         }
3264                         size = min_t(u32, chunk_len - i * CB_MAX_LENGTH,
3265                                      CB_MAX_LENGTH);
3266                         memcpy(virts[total_nr], start, size);
3267                         start += size;
3268                         total_nr++;
3269                         /* We don't support fw chunk larger than 64*8K */
3270                         BUG_ON(total_nr > CB_NUMBER_OF_ELEMENTS_SMALL);
3271                 }
3272
3273                 /* build DMA packet and queue up for sending */
3274                 /* dma to chunk->address, the chunk->length bytes from data +
3275                  * offeset*/
3276                 /* Dma loading */
3277                 ret = ipw_fw_dma_add_buffer(priv, &phys[total_nr - nr],
3278                                             nr, le32_to_cpu(chunk->address),
3279                                             chunk_len);
3280                 if (ret) {
3281                         IPW_DEBUG_INFO("dmaAddBuffer Failed\n");
3282                         goto out;
3283                 }
3284
3285                 offset += chunk_len;
3286         } while (offset < len);
3287
3288         /* Run the DMA and wait for the answer */
3289         ret = ipw_fw_dma_kick(priv);
3290         if (ret) {
3291                 IPW_ERROR("dmaKick Failed\n");
3292                 goto out;
3293         }
3294
3295         ret = ipw_fw_dma_wait(priv);
3296         if (ret) {
3297                 IPW_ERROR("dmaWaitSync Failed\n");
3298                 goto out;
3299         }
3300  out:
3301         for (i = 0; i < total_nr; i++)
3302                 pci_pool_free(pool, virts[i], phys[i]);
3303
3304         pci_pool_destroy(pool);
3305         kfree(phys);
3306         kfree(virts);
3307
3308         return ret;
3309 }
3310
3311 /* stop nic */
3312 static int ipw_stop_nic(struct ipw_priv *priv)
3313 {
3314         int rc = 0;
3315
3316         /* stop */
3317         ipw_write32(priv, IPW_RESET_REG, IPW_RESET_REG_STOP_MASTER);
3318
3319         rc = ipw_poll_bit(priv, IPW_RESET_REG,
3320                           IPW_RESET_REG_MASTER_DISABLED, 500);
3321         if (rc < 0) {
3322                 IPW_ERROR("wait for reg master disabled failed after 500ms\n");
3323                 return rc;
3324         }
3325
3326         ipw_set_bit(priv, IPW_RESET_REG, CBD_RESET_REG_PRINCETON_RESET);
3327
3328         return rc;
3329 }
3330
3331 static void ipw_start_nic(struct ipw_priv *priv)
3332 {
3333         IPW_DEBUG_TRACE(">>\n");
3334
3335         /* prvHwStartNic  release ARC */
3336         ipw_clear_bit(priv, IPW_RESET_REG,
3337                       IPW_RESET_REG_MASTER_DISABLED |
3338                       IPW_RESET_REG_STOP_MASTER |
3339                       CBD_RESET_REG_PRINCETON_RESET);
3340
3341         /* enable power management */
3342         ipw_set_bit(priv, IPW_GP_CNTRL_RW,
3343                     IPW_GP_CNTRL_BIT_HOST_ALLOWS_STANDBY);
3344
3345         IPW_DEBUG_TRACE("<<\n");
3346 }
3347
3348 static int ipw_init_nic(struct ipw_priv *priv)
3349 {
3350         int rc;
3351
3352         IPW_DEBUG_TRACE(">>\n");
3353         /* reset */
3354         /*prvHwInitNic */
3355         /* set "initialization complete" bit to move adapter to D0 state */
3356         ipw_set_bit(priv, IPW_GP_CNTRL_RW, IPW_GP_CNTRL_BIT_INIT_DONE);
3357
3358         /* low-level PLL activation */
3359         ipw_write32(priv, IPW_READ_INT_REGISTER,
3360                     IPW_BIT_INT_HOST_SRAM_READ_INT_REGISTER);
3361
3362         /* wait for clock stabilization */
3363         rc = ipw_poll_bit(priv, IPW_GP_CNTRL_RW,
3364                           IPW_GP_CNTRL_BIT_CLOCK_READY, 250);
3365         if (rc < 0)
3366                 IPW_DEBUG_INFO("FAILED wait for clock stablization\n");
3367
3368         /* assert SW reset */
3369         ipw_set_bit(priv, IPW_RESET_REG, IPW_RESET_REG_SW_RESET);
3370
3371         udelay(10);
3372
3373         /* set "initialization complete" bit to move adapter to D0 state */
3374         ipw_set_bit(priv, IPW_GP_CNTRL_RW, IPW_GP_CNTRL_BIT_INIT_DONE);
3375
3376         IPW_DEBUG_TRACE(">>\n");
3377         return 0;
3378 }
3379
3380 /* Call this function from process context, it will sleep in request_firmware.
3381  * Probe is an ok place to call this from.
3382  */
3383 static int ipw_reset_nic(struct ipw_priv *priv)
3384 {
3385         int rc = 0;
3386         unsigned long flags;
3387
3388         IPW_DEBUG_TRACE(">>\n");
3389
3390         rc = ipw_init_nic(priv);
3391
3392         spin_lock_irqsave(&priv->lock, flags);
3393         /* Clear the 'host command active' bit... */
3394         priv->status &= ~STATUS_HCMD_ACTIVE;
3395         wake_up_interruptible(&priv->wait_command_queue);
3396         priv->status &= ~(STATUS_SCANNING | STATUS_SCAN_ABORTING);
3397         wake_up_interruptible(&priv->wait_state);
3398         spin_unlock_irqrestore(&priv->lock, flags);
3399
3400         IPW_DEBUG_TRACE("<<\n");
3401         return rc;
3402 }
3403
3404
3405 struct ipw_fw {
3406         __le32 ver;
3407         __le32 boot_size;
3408         __le32 ucode_size;
3409         __le32 fw_size;
3410         u8 data[0];
3411 };
3412
3413 static int ipw_get_fw(struct ipw_priv *priv,
3414                       const struct firmware **raw, const char *name)
3415 {
3416         struct ipw_fw *fw;
3417         int rc;
3418
3419         /* ask firmware_class module to get the boot firmware off disk */
3420         rc = request_firmware(raw, name, &priv->pci_dev->dev);
3421         if (rc < 0) {
3422                 IPW_ERROR("%s request_firmware failed: Reason %d\n", name, rc);
3423                 return rc;
3424         }
3425
3426         if ((*raw)->size < sizeof(*fw)) {
3427                 IPW_ERROR("%s is too small (%zd)\n", name, (*raw)->size);
3428                 return -EINVAL;
3429         }
3430
3431         fw = (void *)(*raw)->data;
3432
3433         if ((*raw)->size < sizeof(*fw) + le32_to_cpu(fw->boot_size) +
3434             le32_to_cpu(fw->ucode_size) + le32_to_cpu(fw->fw_size)) {
3435                 IPW_ERROR("%s is too small or corrupt (%zd)\n",
3436                           name, (*raw)->size);
3437                 return -EINVAL;
3438         }
3439
3440         IPW_DEBUG_INFO("Read firmware '%s' image v%d.%d (%zd bytes)\n",
3441                        name,
3442                        le32_to_cpu(fw->ver) >> 16,
3443                        le32_to_cpu(fw->ver) & 0xff,
3444                        (*raw)->size - sizeof(*fw));
3445         return 0;
3446 }
3447
3448 #define IPW_RX_BUF_SIZE (3000)
3449
3450 static void ipw_rx_queue_reset(struct ipw_priv *priv,
3451                                       struct ipw_rx_queue *rxq)
3452 {
3453         unsigned long flags;
3454         int i;
3455
3456         spin_lock_irqsave(&rxq->lock, flags);
3457
3458         INIT_LIST_HEAD(&rxq->rx_free);
3459         INIT_LIST_HEAD(&rxq->rx_used);
3460
3461         /* Fill the rx_used queue with _all_ of the Rx buffers */
3462         for (i = 0; i < RX_FREE_BUFFERS + RX_QUEUE_SIZE; i++) {
3463                 /* In the reset function, these buffers may have been allocated
3464                  * to an SKB, so we need to unmap and free potential storage */
3465                 if (rxq->pool[i].skb != NULL) {
3466                         pci_unmap_single(priv->pci_dev, rxq->pool[i].dma_addr,
3467                                          IPW_RX_BUF_SIZE, PCI_DMA_FROMDEVICE);
3468                         dev_kfree_skb(rxq->pool[i].skb);
3469                         rxq->pool[i].skb = NULL;
3470                 }
3471                 list_add_tail(&rxq->pool[i].list, &rxq->rx_used);
3472         }
3473
3474         /* Set us so that we have processed and used all buffers, but have
3475          * not restocked the Rx queue with fresh buffers */
3476         rxq->read = rxq->write = 0;
3477         rxq->free_count = 0;
3478         spin_unlock_irqrestore(&rxq->lock, flags);
3479 }
3480
3481 #ifdef CONFIG_PM
3482 static int fw_loaded = 0;
3483 static const struct firmware *raw = NULL;
3484
3485 static void free_firmware(void)
3486 {
3487         if (fw_loaded) {
3488                 release_firmware(raw);
3489                 raw = NULL;
3490                 fw_loaded = 0;
3491         }
3492 }
3493 #else
3494 #define free_firmware() do {} while (0)
3495 #endif
3496
3497 static int ipw_load(struct ipw_priv *priv)
3498 {
3499 #ifndef CONFIG_PM
3500         const struct firmware *raw = NULL;
3501 #endif
3502         struct ipw_fw *fw;
3503         u8 *boot_img, *ucode_img, *fw_img;
3504         u8 *name = NULL;
3505         int rc = 0, retries = 3;
3506
3507         switch (priv->ieee->iw_mode) {
3508         case IW_MODE_ADHOC:
3509                 name = "ipw2200-ibss.fw";
3510                 break;
3511 #ifdef CONFIG_IPW2200_MONITOR
3512         case IW_MODE_MONITOR:
3513                 name = "ipw2200-sniffer.fw";
3514                 break;
3515 #endif
3516         case IW_MODE_INFRA:
3517                 name = "ipw2200-bss.fw";
3518                 break;
3519         }
3520
3521         if (!name) {
3522                 rc = -EINVAL;
3523                 goto error;
3524         }
3525
3526 #ifdef CONFIG_PM
3527         if (!fw_loaded) {
3528 #endif
3529                 rc = ipw_get_fw(priv, &raw, name);
3530                 if (rc < 0)
3531                         goto error;
3532 #ifdef CONFIG_PM
3533         }
3534 #endif
3535
3536         fw = (void *)raw->data;
3537         boot_img = &fw->data[0];
3538         ucode_img = &fw->data[le32_to_cpu(fw->boot_size)];
3539         fw_img = &fw->data[le32_to_cpu(fw->boot_size) +
3540                            le32_to_cpu(fw->ucode_size)];
3541
3542         if (rc < 0)
3543                 goto error;
3544
3545         if (!priv->rxq)
3546                 priv->rxq = ipw_rx_queue_alloc(priv);
3547         else
3548                 ipw_rx_queue_reset(priv, priv->rxq);
3549         if (!priv->rxq) {
3550                 IPW_ERROR("Unable to initialize Rx queue\n");
3551                 rc = -ENOMEM;
3552                 goto error;
3553         }
3554
3555       retry:
3556         /* Ensure interrupts are disabled */
3557         ipw_write32(priv, IPW_INTA_MASK_R, ~IPW_INTA_MASK_ALL);
3558         priv->status &= ~STATUS_INT_ENABLED;
3559
3560         /* ack pending interrupts */
3561         ipw_write32(priv, IPW_INTA_RW, IPW_INTA_MASK_ALL);
3562
3563         ipw_stop_nic(priv);
3564
3565         rc = ipw_reset_nic(priv);
3566         if (rc < 0) {
3567                 IPW_ERROR("Unable to reset NIC\n");
3568                 goto error;
3569         }
3570
3571         ipw_zero_memory(priv, IPW_NIC_SRAM_LOWER_BOUND,
3572                         IPW_NIC_SRAM_UPPER_BOUND - IPW_NIC_SRAM_LOWER_BOUND);
3573
3574         /* DMA the initial boot firmware into the device */
3575         rc = ipw_load_firmware(priv, boot_img, le32_to_cpu(fw->boot_size));
3576         if (rc < 0) {
3577                 IPW_ERROR("Unable to load boot firmware: %d\n", rc);
3578                 goto error;
3579         }
3580
3581         /* kick start the device */
3582         ipw_start_nic(priv);
3583
3584         /* wait for the device to finish its initial startup sequence */
3585         rc = ipw_poll_bit(priv, IPW_INTA_RW,
3586                           IPW_INTA_BIT_FW_INITIALIZATION_DONE, 500);
3587         if (rc < 0) {
3588                 IPW_ERROR("device failed to boot initial fw image\n");
3589                 goto error;
3590         }
3591         IPW_DEBUG_INFO("initial device response after %dms\n", rc);
3592
3593         /* ack fw init done interrupt */
3594         ipw_write32(priv, IPW_INTA_RW, IPW_INTA_BIT_FW_INITIALIZATION_DONE);
3595
3596         /* DMA the ucode into the device */
3597         rc = ipw_load_ucode(priv, ucode_img, le32_to_cpu(fw->ucode_size));
3598         if (rc < 0) {
3599                 IPW_ERROR("Unable to load ucode: %d\n", rc);
3600                 goto error;
3601         }
3602
3603         /* stop nic */
3604         ipw_stop_nic(priv);
3605
3606         /* DMA bss firmware into the device */
3607         rc = ipw_load_firmware(priv, fw_img, le32_to_cpu(fw->fw_size));
3608         if (rc < 0) {
3609                 IPW_ERROR("Unable to load firmware: %d\n", rc);
3610                 goto error;
3611         }
3612 #ifdef CONFIG_PM
3613         fw_loaded = 1;
3614 #endif
3615
3616         ipw_write32(priv, IPW_EEPROM_LOAD_DISABLE, 0);
3617
3618         rc = ipw_queue_reset(priv);
3619         if (rc < 0) {
3620                 IPW_ERROR("Unable to initialize queues\n");
3621                 goto error;
3622         }
3623
3624         /* Ensure interrupts are disabled */
3625         ipw_write32(priv, IPW_INTA_MASK_R, ~IPW_INTA_MASK_ALL);
3626         /* ack pending interrupts */
3627         ipw_write32(priv, IPW_INTA_RW, IPW_INTA_MASK_ALL);
3628
3629         /* kick start the device */
3630         ipw_start_nic(priv);
3631
3632         if (ipw_read32(priv, IPW_INTA_RW) & IPW_INTA_BIT_PARITY_ERROR) {
3633                 if (retries > 0) {
3634                         IPW_WARNING("Parity error.  Retrying init.\n");
3635                         retries--;
3636                         goto retry;
3637                 }
3638
3639                 IPW_ERROR("TODO: Handle parity error -- schedule restart?\n");
3640                 rc = -EIO;
3641                 goto error;
3642         }
3643
3644         /* wait for the device */
3645         rc = ipw_poll_bit(priv, IPW_INTA_RW,
3646                           IPW_INTA_BIT_FW_INITIALIZATION_DONE, 500);
3647         if (rc < 0) {
3648                 IPW_ERROR("device failed to start within 500ms\n");
3649                 goto error;
3650         }
3651         IPW_DEBUG_INFO("device response after %dms\n", rc);
3652
3653         /* ack fw init done interrupt */
3654         ipw_write32(priv, IPW_INTA_RW, IPW_INTA_BIT_FW_INITIALIZATION_DONE);
3655
3656         /* read eeprom data */
3657         priv->eeprom_delay = 1;
3658         ipw_read_eeprom(priv);
3659         /* initialize the eeprom region of sram */
3660         ipw_eeprom_init_sram(priv);
3661
3662         /* enable interrupts */
3663         ipw_enable_interrupts(priv);
3664
3665         /* Ensure our queue has valid packets */
3666         ipw_rx_queue_replenish(priv);
3667
3668         ipw_write32(priv, IPW_RX_READ_INDEX, priv->rxq->read);
3669
3670         /* ack pending interrupts */
3671         ipw_write32(priv, IPW_INTA_RW, IPW_INTA_MASK_ALL);
3672
3673 #ifndef CONFIG_PM
3674         release_firmware(raw);
3675 #endif
3676         return 0;
3677
3678       error:
3679         if (priv->rxq) {
3680                 ipw_rx_queue_free(priv, priv->rxq);
3681                 priv->rxq = NULL;
3682         }
3683         ipw_tx_queue_free(priv);
3684         release_firmware(raw);
3685 #ifdef CONFIG_PM
3686         fw_loaded = 0;
3687         raw = NULL;
3688 #endif
3689
3690         return rc;
3691 }
3692
3693 /**
3694  * DMA services
3695  *
3696  * Theory of operation
3697  *
3698  * A queue is a circular buffers with 'Read' and 'Write' pointers.
3699  * 2 empty entries always kept in the buffer to protect from overflow.
3700  *
3701  * For Tx queue, there are low mark and high mark limits. If, after queuing
3702  * the packet for Tx, free space become < low mark, Tx queue stopped. When
3703  * reclaiming packets (on 'tx done IRQ), if free space become > high mark,
3704  * Tx queue resumed.
3705  *
3706  * The IPW operates with six queues, one receive queue in the device's
3707  * sram, one transmit queue for sending commands to the device firmware,
3708  * and four transmit queues for data.
3709  *
3710  * The four transmit queues allow for performing quality of service (qos)
3711  * transmissions as per the 802.11 protocol.  Currently Linux does not
3712  * provide a mechanism to the user for utilizing prioritized queues, so
3713  * we only utilize the first data transmit queue (queue1).
3714  */
3715
3716 /**
3717  * Driver allocates buffers of this size for Rx
3718  */
3719
3720 /**
3721  * ipw_rx_queue_space - Return number of free slots available in queue.
3722  */
3723 static int ipw_rx_queue_space(const struct ipw_rx_queue *q)
3724 {
3725         int s = q->read - q->write;
3726         if (s <= 0)
3727                 s += RX_QUEUE_SIZE;
3728         /* keep some buffer to not confuse full and empty queue */
3729         s -= 2;
3730         if (s < 0)
3731                 s = 0;
3732         return s;
3733 }
3734
3735 static inline int ipw_tx_queue_space(const struct clx2_queue *q)
3736 {
3737         int s = q->last_used - q->first_empty;
3738         if (s <= 0)
3739                 s += q->n_bd;
3740         s -= 2;                 /* keep some reserve to not confuse empty and full situations */
3741         if (s < 0)
3742                 s = 0;
3743         return s;
3744 }
3745
3746 static inline int ipw_queue_inc_wrap(int index, int n_bd)
3747 {
3748         return (++index == n_bd) ? 0 : index;
3749 }
3750
3751 /**
3752  * Initialize common DMA queue structure
3753  *
3754  * @param q                queue to init
3755  * @param count            Number of BD's to allocate. Should be power of 2
3756  * @param read_register    Address for 'read' register
3757  *                         (not offset within BAR, full address)
3758  * @param write_register   Address for 'write' register
3759  *                         (not offset within BAR, full address)
3760  * @param base_register    Address for 'base' register
3761  *                         (not offset within BAR, full address)
3762  * @param size             Address for 'size' register
3763  *                         (not offset within BAR, full address)
3764  */
3765 static void ipw_queue_init(struct ipw_priv *priv, struct clx2_queue *q,
3766                            int count, u32 read, u32 write, u32 base, u32 size)
3767 {
3768         q->n_bd = count;
3769
3770         q->low_mark = q->n_bd / 4;
3771         if (q->low_mark < 4)
3772                 q->low_mark = 4;
3773
3774         q->high_mark = q->n_bd / 8;
3775         if (q->high_mark < 2)
3776                 q->high_mark = 2;
3777
3778         q->first_empty = q->last_used = 0;
3779         q->reg_r = read;
3780         q->reg_w = write;
3781
3782         ipw_write32(priv, base, q->dma_addr);
3783         ipw_write32(priv, size, count);
3784         ipw_write32(priv, read, 0);
3785         ipw_write32(priv, write, 0);
3786
3787         _ipw_read32(priv, 0x90);
3788 }
3789
3790 static int ipw_queue_tx_init(struct ipw_priv *priv,
3791                              struct clx2_tx_queue *q,
3792                              int count, u32 read, u32 write, u32 base, u32 size)
3793 {
3794         struct pci_dev *dev = priv->pci_dev;
3795
3796         q->txb = kmalloc(sizeof(q->txb[0]) * count, GFP_KERNEL);
3797         if (!q->txb) {
3798                 IPW_ERROR("vmalloc for auxiliary BD structures failed\n");
3799                 return -ENOMEM;
3800         }
3801
3802         q->bd =
3803             pci_alloc_consistent(dev, sizeof(q->bd[0]) * count, &q->q.dma_addr);
3804         if (!q->bd) {
3805                 IPW_ERROR("pci_alloc_consistent(%zd) failed\n",
3806                           sizeof(q->bd[0]) * count);
3807                 kfree(q->txb);
3808                 q->txb = NULL;
3809                 return -ENOMEM;
3810         }
3811
3812         ipw_queue_init(priv, &q->q, count, read, write, base, size);
3813         return 0;
3814 }
3815
3816 /**
3817  * Free one TFD, those at index [txq->q.last_used].
3818  * Do NOT advance any indexes
3819  *
3820  * @param dev
3821  * @param txq
3822  */
3823 static void ipw_queue_tx_free_tfd(struct ipw_priv *priv,
3824                                   struct clx2_tx_queue *txq)
3825 {
3826         struct tfd_frame *bd = &txq->bd[txq->q.last_used];
3827         struct pci_dev *dev = priv->pci_dev;
3828         int i;
3829
3830         /* classify bd */
3831         if (bd->control_flags.message_type == TX_HOST_COMMAND_TYPE)
3832                 /* nothing to cleanup after for host commands */
3833                 return;
3834
3835         /* sanity check */
3836         if (le32_to_cpu(bd->u.data.num_chunks) > NUM_TFD_CHUNKS) {
3837                 IPW_ERROR("Too many chunks: %i\n",
3838                           le32_to_cpu(bd->u.data.num_chunks));
3839                 /** @todo issue fatal error, it is quite serious situation */
3840                 return;
3841         }
3842
3843         /* unmap chunks if any */
3844         for (i = 0; i < le32_to_cpu(bd->u.data.num_chunks); i++) {
3845                 pci_unmap_single(dev, le32_to_cpu(bd->u.data.chunk_ptr[i]),
3846                                  le16_to_cpu(bd->u.data.chunk_len[i]),
3847                                  PCI_DMA_TODEVICE);
3848                 if (txq->txb[txq->q.last_used]) {
3849                         libipw_txb_free(txq->txb[txq->q.last_used]);
3850                         txq->txb[txq->q.last_used] = NULL;
3851                 }
3852         }
3853 }
3854
3855 /**
3856  * Deallocate DMA queue.
3857  *
3858  * Empty queue by removing and destroying all BD's.
3859  * Free all buffers.
3860  *
3861  * @param dev
3862  * @param q
3863  */
3864 static void ipw_queue_tx_free(struct ipw_priv *priv, struct clx2_tx_queue *txq)
3865 {
3866         struct clx2_queue *q = &txq->q;
3867         struct pci_dev *dev = priv->pci_dev;
3868
3869         if (q->n_bd == 0)
3870                 return;
3871
3872         /* first, empty all BD's */
3873         for (; q->first_empty != q->last_used;
3874              q->last_used = ipw_queue_inc_wrap(q->last_used, q->n_bd)) {
3875                 ipw_queue_tx_free_tfd(priv, txq);
3876         }
3877
3878         /* free buffers belonging to queue itself */
3879         pci_free_consistent(dev, sizeof(txq->bd[0]) * q->n_bd, txq->bd,
3880                             q->dma_addr);
3881         kfree(txq->txb);
3882
3883         /* 0 fill whole structure */
3884         memset(txq, 0, sizeof(*txq));
3885 }
3886
3887 /**
3888  * Destroy all DMA queues and structures
3889  *
3890  * @param priv
3891  */
3892 static void ipw_tx_queue_free(struct ipw_priv *priv)
3893 {
3894         /* Tx CMD queue */
3895         ipw_queue_tx_free(priv, &priv->txq_cmd);
3896
3897         /* Tx queues */
3898         ipw_queue_tx_free(priv, &priv->txq[0]);
3899         ipw_queue_tx_free(priv, &priv->txq[1]);
3900         ipw_queue_tx_free(priv, &priv->txq[2]);
3901         ipw_queue_tx_free(priv, &priv->txq[3]);
3902 }
3903
3904 static void ipw_create_bssid(struct ipw_priv *priv, u8 * bssid)
3905 {
3906         /* First 3 bytes are manufacturer */
3907         bssid[0] = priv->mac_addr[0];
3908         bssid[1] = priv->mac_addr[1];
3909         bssid[2] = priv->mac_addr[2];
3910
3911         /* Last bytes are random */
3912         get_random_bytes(&bssid[3], ETH_ALEN - 3);
3913
3914         bssid[0] &= 0xfe;       /* clear multicast bit */
3915         bssid[0] |= 0x02;       /* set local assignment bit (IEEE802) */
3916 }
3917
3918 static u8 ipw_add_station(struct ipw_priv *priv, u8 * bssid)
3919 {
3920         struct ipw_station_entry entry;
3921         int i;
3922
3923         for (i = 0; i < priv->num_stations; i++) {
3924                 if (!memcmp(priv->stations[i], bssid, ETH_ALEN)) {
3925                         /* Another node is active in network */
3926                         priv->missed_adhoc_beacons = 0;
3927                         if (!(priv->config & CFG_STATIC_CHANNEL))
3928                                 /* when other nodes drop out, we drop out */
3929                                 priv->config &= ~CFG_ADHOC_PERSIST;
3930
3931                         return i;
3932                 }
3933         }
3934
3935         if (i == MAX_STATIONS)
3936                 return IPW_INVALID_STATION;
3937
3938         IPW_DEBUG_SCAN("Adding AdHoc station: %pM\n", bssid);
3939
3940         entry.reserved = 0;
3941         entry.support_mode = 0;
3942         memcpy(entry.mac_addr, bssid, ETH_ALEN);
3943         memcpy(priv->stations[i], bssid, ETH_ALEN);
3944         ipw_write_direct(priv, IPW_STATION_TABLE_LOWER + i * sizeof(entry),
3945                          &entry, sizeof(entry));
3946         priv->num_stations++;
3947
3948         return i;
3949 }
3950
3951 static u8 ipw_find_station(struct ipw_priv *priv, u8 * bssid)
3952 {
3953         int i;
3954
3955         for (i = 0; i < priv->num_stations; i++)
3956                 if (!memcmp(priv->stations[i], bssid, ETH_ALEN))
3957                         return i;
3958
3959         return IPW_INVALID_STATION;
3960 }
3961
3962 static void ipw_send_disassociate(struct ipw_priv *priv, int quiet)
3963 {
3964         int err;
3965
3966         if (priv->status & STATUS_ASSOCIATING) {
3967                 IPW_DEBUG_ASSOC("Disassociating while associating.\n");
3968                 schedule_work(&priv->disassociate);
3969                 return;
3970         }
3971
3972         if (!(priv->status & STATUS_ASSOCIATED)) {
3973                 IPW_DEBUG_ASSOC("Disassociating while not associated.\n");
3974                 return;
3975         }
3976
3977         IPW_DEBUG_ASSOC("Disassocation attempt from %pM "
3978                         "on channel %d.\n",
3979                         priv->assoc_request.bssid,
3980                         priv->assoc_request.channel);
3981
3982         priv->status &= ~(STATUS_ASSOCIATING | STATUS_ASSOCIATED);
3983         priv->status |= STATUS_DISASSOCIATING;
3984
3985         if (quiet)
3986                 priv->assoc_request.assoc_type = HC_DISASSOC_QUIET;
3987         else
3988                 priv->assoc_request.assoc_type = HC_DISASSOCIATE;
3989
3990         err = ipw_send_associate(priv, &priv->assoc_request);
3991         if (err) {
3992                 IPW_DEBUG_HC("Attempt to send [dis]associate command "
3993                              "failed.\n");
3994                 return;
3995         }
3996
3997 }
3998
3999 static int ipw_disassociate(void *data)
4000 {
4001         struct ipw_priv *priv = data;
4002         if (!(priv->status & (STATUS_ASSOCIATED | STATUS_ASSOCIATING)))
4003                 return 0;
4004         ipw_send_disassociate(data, 0);
4005         netif_carrier_off(priv->net_dev);
4006         return 1;
4007 }
4008
4009 static void ipw_bg_disassociate(struct work_struct *work)
4010 {
4011         struct ipw_priv *priv =
4012                 container_of(work, struct ipw_priv, disassociate);
4013         mutex_lock(&priv->mutex);
4014         ipw_disassociate(priv);
4015         mutex_unlock(&priv->mutex);
4016 }
4017
4018 static void ipw_system_config(struct work_struct *work)
4019 {
4020         struct ipw_priv *priv =
4021                 container_of(work, struct ipw_priv, system_config);
4022
4023 #ifdef CONFIG_IPW2200_PROMISCUOUS
4024         if (priv->prom_net_dev && netif_running(priv->prom_net_dev)) {
4025                 priv->sys_config.accept_all_data_frames = 1;
4026                 priv->sys_config.accept_non_directed_frames = 1;
4027                 priv->sys_config.accept_all_mgmt_bcpr = 1;
4028                 priv->sys_config.accept_all_mgmt_frames = 1;
4029         }
4030 #endif
4031
4032         ipw_send_system_config(priv);
4033 }
4034
4035 struct ipw_status_code {
4036         u16 status;
4037         const char *reason;
4038 };
4039
4040 static const struct ipw_status_code ipw_status_codes[] = {
4041         {0x00, "Successful"},
4042         {0x01, "Unspecified failure"},
4043         {0x0A, "Cannot support all requested capabilities in the "
4044          "Capability information field"},
4045         {0x0B, "Reassociation denied due to inability to confirm that "
4046          "association exists"},
4047         {0x0C, "Association denied due to reason outside the scope of this "
4048          "standard"},
4049         {0x0D,
4050          "Responding station does not support the specified authentication "
4051          "algorithm"},
4052         {0x0E,
4053          "Received an Authentication frame with authentication sequence "
4054          "transaction sequence number out of expected sequence"},
4055         {0x0F, "Authentication rejected because of challenge failure"},
4056         {0x10, "Authentication rejected due to timeout waiting for next "
4057          "frame in sequence"},
4058         {0x11, "Association denied because AP is unable to handle additional "
4059          "associated stations"},
4060         {0x12,
4061          "Association denied due to requesting station not supporting all "
4062          "of the datarates in the BSSBasicServiceSet Parameter"},
4063         {0x13,
4064          "Association denied due to requesting station not supporting "
4065          "short preamble operation"},
4066         {0x14,
4067          "Association denied due to requesting station not supporting "
4068          "PBCC encoding"},
4069         {0x15,
4070          "Association denied due to requesting station not supporting "
4071          "channel agility"},
4072         {0x19,
4073          "Association denied due to requesting station not supporting "
4074          "short slot operation"},
4075         {0x1A,
4076          "Association denied due to requesting station not supporting "
4077          "DSSS-OFDM operation"},
4078         {0x28, "Invalid Information Element"},
4079         {0x29, "Group Cipher is not valid"},
4080         {0x2A, "Pairwise Cipher is not valid"},
4081         {0x2B, "AKMP is not valid"},
4082         {0x2C, "Unsupported RSN IE version"},
4083         {0x2D, "Invalid RSN IE Capabilities"},
4084         {0x2E, "Cipher suite is rejected per security policy"},
4085 };
4086
4087 static const char *ipw_get_status_code(u16 status)
4088 {
4089         int i;
4090         for (i = 0; i < ARRAY_SIZE(ipw_status_codes); i++)
4091                 if (ipw_status_codes[i].status == (status & 0xff))
4092                         return ipw_status_codes[i].reason;
4093         return "Unknown status value.";
4094 }
4095
4096 static void inline average_init(struct average *avg)
4097 {
4098         memset(avg, 0, sizeof(*avg));
4099 }
4100
4101 #define DEPTH_RSSI 8
4102 #define DEPTH_NOISE 16
4103 static s16 exponential_average(s16 prev_avg, s16 val, u8 depth)
4104 {
4105         return ((depth-1)*prev_avg +  val)/depth;
4106 }
4107
4108 static void average_add(struct average *avg, s16 val)
4109 {
4110         avg->sum -= avg->entries[avg->pos];
4111         avg->sum += val;
4112         avg->entries[avg->pos++] = val;
4113         if (unlikely(avg->pos == AVG_ENTRIES)) {
4114                 avg->init = 1;
4115                 avg->pos = 0;
4116         }
4117 }
4118
4119 static s16 average_value(struct average *avg)
4120 {
4121         if (!unlikely(avg->init)) {
4122                 if (avg->pos)
4123                         return avg->sum / avg->pos;
4124                 return 0;
4125         }
4126
4127         return avg->sum / AVG_ENTRIES;
4128 }
4129
4130 static void ipw_reset_stats(struct ipw_priv *priv)
4131 {
4132         u32 len = sizeof(u32);
4133
4134         priv->quality = 0;
4135
4136         average_init(&priv->average_missed_beacons);
4137         priv->exp_avg_rssi = -60;
4138         priv->exp_avg_noise = -85 + 0x100;
4139
4140         priv->last_rate = 0;
4141         priv->last_missed_beacons = 0;
4142         priv->last_rx_packets = 0;
4143         priv->last_tx_packets = 0;
4144         priv->last_tx_failures = 0;
4145
4146         /* Firmware managed, reset only when NIC is restarted, so we have to
4147          * normalize on the current value */
4148         ipw_get_ordinal(priv, IPW_ORD_STAT_RX_ERR_CRC,
4149                         &priv->last_rx_err, &len);
4150         ipw_get_ordinal(priv, IPW_ORD_STAT_TX_FAILURE,
4151                         &priv->last_tx_failures, &len);
4152
4153         /* Driver managed, reset with each association */
4154         priv->missed_adhoc_beacons = 0;
4155         priv->missed_beacons = 0;
4156         priv->tx_packets = 0;
4157         priv->rx_packets = 0;
4158
4159 }
4160
4161 static u32 ipw_get_max_rate(struct ipw_priv *priv)
4162 {
4163         u32 i = 0x80000000;
4164         u32 mask = priv->rates_mask;
4165         /* If currently associated in B mode, restrict the maximum
4166          * rate match to B rates */
4167         if (priv->assoc_request.ieee_mode == IPW_B_MODE)
4168                 mask &= LIBIPW_CCK_RATES_MASK;
4169
4170         /* TODO: Verify that the rate is supported by the current rates
4171          * list. */
4172
4173         while (i && !(mask & i))
4174                 i >>= 1;
4175         switch (i) {
4176         case LIBIPW_CCK_RATE_1MB_MASK:
4177                 return 1000000;
4178         case LIBIPW_CCK_RATE_2MB_MASK:
4179                 return 2000000;
4180         case LIBIPW_CCK_RATE_5MB_MASK:
4181                 return 5500000;
4182         case LIBIPW_OFDM_RATE_6MB_MASK:
4183                 return 6000000;
4184         case LIBIPW_OFDM_RATE_9MB_MASK:
4185                 return 9000000;
4186         case LIBIPW_CCK_RATE_11MB_MASK:
4187                 return 11000000;
4188         case LIBIPW_OFDM_RATE_12MB_MASK:
4189                 return 12000000;
4190         case LIBIPW_OFDM_RATE_18MB_MASK:
4191                 return 18000000;
4192         case LIBIPW_OFDM_RATE_24MB_MASK:
4193                 return 24000000;
4194         case LIBIPW_OFDM_RATE_36MB_MASK:
4195                 return 36000000;
4196         case LIBIPW_OFDM_RATE_48MB_MASK:
4197                 return 48000000;
4198         case LIBIPW_OFDM_RATE_54MB_MASK:
4199                 return 54000000;
4200         }
4201
4202         if (priv->ieee->mode == IEEE_B)
4203                 return 11000000;
4204         else
4205                 return 54000000;
4206 }
4207
4208 static u32 ipw_get_current_rate(struct ipw_priv *priv)
4209 {
4210         u32 rate, len = sizeof(rate);
4211         int err;
4212
4213         if (!(priv->status & STATUS_ASSOCIATED))
4214                 return 0;
4215
4216         if (priv->tx_packets > IPW_REAL_RATE_RX_PACKET_THRESHOLD) {
4217                 err = ipw_get_ordinal(priv, IPW_ORD_STAT_TX_CURR_RATE, &rate,
4218                                       &len);
4219                 if (err) {
4220                         IPW_DEBUG_INFO("failed querying ordinals.\n");
4221                         return 0;
4222                 }
4223         } else
4224                 return ipw_get_max_rate(priv);
4225
4226         switch (rate) {
4227         case IPW_TX_RATE_1MB:
4228                 return 1000000;
4229         case IPW_TX_RATE_2MB:
4230                 return 2000000;
4231         case IPW_TX_RATE_5MB:
4232                 return 5500000;
4233         case IPW_TX_RATE_6MB:
4234                 return 6000000;
4235         case IPW_TX_RATE_9MB:
4236                 return 9000000;
4237         case IPW_TX_RATE_11MB:
4238                 return 11000000;
4239         case IPW_TX_RATE_12MB:
4240                 return 12000000;
4241         case IPW_TX_RATE_18MB:
4242                 return 18000000;
4243         case IPW_TX_RATE_24MB:
4244                 return 24000000;
4245         case IPW_TX_RATE_36MB:
4246                 return 36000000;
4247         case IPW_TX_RATE_48MB:
4248                 return 48000000;
4249         case IPW_TX_RATE_54MB:
4250                 return 54000000;
4251         }
4252
4253         return 0;
4254 }
4255
4256 #define IPW_STATS_INTERVAL (2 * HZ)
4257 static void ipw_gather_stats(struct ipw_priv *priv)
4258 {
4259         u32 rx_err, rx_err_delta, rx_packets_delta;
4260         u32 tx_failures, tx_failures_delta, tx_packets_delta;
4261         u32 missed_beacons_percent, missed_beacons_delta;
4262         u32 quality = 0;
4263         u32 len = sizeof(u32);
4264         s16 rssi;
4265         u32 beacon_quality, signal_quality, tx_quality, rx_quality,
4266             rate_quality;
4267         u32 max_rate;
4268
4269         if (!(priv->status & STATUS_ASSOCIATED)) {
4270                 priv->quality = 0;
4271                 return;
4272         }
4273
4274         /* Update the statistics */
4275         ipw_get_ordinal(priv, IPW_ORD_STAT_MISSED_BEACONS,
4276                         &priv->missed_beacons, &len);
4277         missed_beacons_delta = priv->missed_beacons - priv->last_missed_beacons;
4278         priv->last_missed_beacons = priv->missed_beacons;
4279         if (priv->assoc_request.beacon_interval) {
4280                 missed_beacons_percent = missed_beacons_delta *
4281                     (HZ * le16_to_cpu(priv->assoc_request.beacon_interval)) /
4282                     (IPW_STATS_INTERVAL * 10);
4283         } else {
4284                 missed_beacons_percent = 0;
4285         }
4286         average_add(&priv->average_missed_beacons, missed_beacons_percent);
4287
4288         ipw_get_ordinal(priv, IPW_ORD_STAT_RX_ERR_CRC, &rx_err, &len);
4289         rx_err_delta = rx_err - priv->last_rx_err;
4290         priv->last_rx_err = rx_err;
4291
4292         ipw_get_ordinal(priv, IPW_ORD_STAT_TX_FAILURE, &tx_failures, &len);
4293         tx_failures_delta = tx_failures - priv->last_tx_failures;
4294         priv->last_tx_failures = tx_failures;
4295
4296         rx_packets_delta = priv->rx_packets - priv->last_rx_packets;
4297         priv->last_rx_packets = priv->rx_packets;
4298
4299         tx_packets_delta = priv->tx_packets - priv->last_tx_packets;
4300         priv->last_tx_packets = priv->tx_packets;
4301
4302         /* Calculate quality based on the following:
4303          *
4304          * Missed beacon: 100% = 0, 0% = 70% missed
4305          * Rate: 60% = 1Mbs, 100% = Max
4306          * Rx and Tx errors represent a straight % of total Rx/Tx
4307          * RSSI: 100% = > -50,  0% = < -80
4308          * Rx errors: 100% = 0, 0% = 50% missed
4309          *
4310          * The lowest computed quality is used.
4311          *
4312          */
4313 #define BEACON_THRESHOLD 5
4314         beacon_quality = 100 - missed_beacons_percent;
4315         if (beacon_quality < BEACON_THRESHOLD)
4316                 beacon_quality = 0;
4317         else
4318                 beacon_quality = (beacon_quality - BEACON_THRESHOLD) * 100 /
4319                     (100 - BEACON_THRESHOLD);
4320         IPW_DEBUG_STATS("Missed beacon: %3d%% (%d%%)\n",
4321                         beacon_quality, missed_beacons_percent);
4322
4323         priv->last_rate = ipw_get_current_rate(priv);
4324         max_rate = ipw_get_max_rate(priv);
4325         rate_quality = priv->last_rate * 40 / max_rate + 60;
4326         IPW_DEBUG_STATS("Rate quality : %3d%% (%dMbs)\n",
4327                         rate_quality, priv->last_rate / 1000000);
4328
4329         if (rx_packets_delta > 100 && rx_packets_delta + rx_err_delta)
4330                 rx_quality = 100 - (rx_err_delta * 100) /
4331                     (rx_packets_delta + rx_err_delta);
4332         else
4333                 rx_quality = 100;
4334         IPW_DEBUG_STATS("Rx quality   : %3d%% (%u errors, %u packets)\n",
4335                         rx_quality, rx_err_delta, rx_packets_delta);
4336
4337         if (tx_packets_delta > 100 && tx_packets_delta + tx_failures_delta)
4338                 tx_quality = 100 - (tx_failures_delta * 100) /
4339                     (tx_packets_delta + tx_failures_delta);
4340         else
4341                 tx_quality = 100;
4342         IPW_DEBUG_STATS("Tx quality   : %3d%% (%u errors, %u packets)\n",
4343                         tx_quality, tx_failures_delta, tx_packets_delta);
4344
4345         rssi = priv->exp_avg_rssi;
4346         signal_quality =
4347             (100 *
4348              (priv->ieee->perfect_rssi - priv->ieee->worst_rssi) *
4349              (priv->ieee->perfect_rssi - priv->ieee->worst_rssi) -
4350              (priv->ieee->perfect_rssi - rssi) *
4351              (15 * (priv->ieee->perfect_rssi - priv->ieee->worst_rssi) +
4352               62 * (priv->ieee->perfect_rssi - rssi))) /
4353             ((priv->ieee->perfect_rssi - priv->ieee->worst_rssi) *
4354              (priv->ieee->perfect_rssi - priv->ieee->worst_rssi));
4355         if (signal_quality > 100)
4356                 signal_quality = 100;
4357         else if (signal_quality < 1)
4358                 signal_quality = 0;
4359
4360         IPW_DEBUG_STATS("Signal level : %3d%% (%d dBm)\n",
4361                         signal_quality, rssi);
4362
4363         quality = min(rx_quality, signal_quality);
4364         quality = min(tx_quality, quality);
4365         quality = min(rate_quality, quality);
4366         quality = min(beacon_quality, quality);
4367         if (quality == beacon_quality)
4368                 IPW_DEBUG_STATS("Quality (%d%%): Clamped to missed beacons.\n",
4369                                 quality);
4370         if (quality == rate_quality)
4371                 IPW_DEBUG_STATS("Quality (%d%%): Clamped to rate quality.\n",
4372                                 quality);
4373         if (quality == tx_quality)
4374                 IPW_DEBUG_STATS("Quality (%d%%): Clamped to Tx quality.\n",
4375                                 quality);
4376         if (quality == rx_quality)
4377                 IPW_DEBUG_STATS("Quality (%d%%): Clamped to Rx quality.\n",
4378                                 quality);
4379         if (quality == signal_quality)
4380                 IPW_DEBUG_STATS("Quality (%d%%): Clamped to signal quality.\n",
4381                                 quality);
4382
4383         priv->quality = quality;
4384
4385         schedule_delayed_work(&priv->gather_stats, IPW_STATS_INTERVAL);
4386 }
4387
4388 static void ipw_bg_gather_stats(struct work_struct *work)
4389 {
4390         struct ipw_priv *priv =
4391                 container_of(work, struct ipw_priv, gather_stats.work);
4392         mutex_lock(&priv->mutex);
4393         ipw_gather_stats(priv);
4394         mutex_unlock(&priv->mutex);
4395 }
4396
4397 /* Missed beacon behavior:
4398  * 1st missed -> roaming_threshold, just wait, don't do any scan/roam.
4399  * roaming_threshold -> disassociate_threshold, scan and roam for better signal.
4400  * Above disassociate threshold, give up and stop scanning.
4401  * Roaming is disabled if disassociate_threshold <= roaming_threshold  */
4402 static void ipw_handle_missed_beacon(struct ipw_priv *priv,
4403                                             int missed_count)
4404 {
4405         priv->notif_missed_beacons = missed_count;
4406
4407         if (missed_count > priv->disassociate_threshold &&
4408             priv->status & STATUS_ASSOCIATED) {
4409                 /* If associated and we've hit the missed
4410                  * beacon threshold, disassociate, turn
4411                  * off roaming, and abort any active scans */
4412                 IPW_DEBUG(IPW_DL_INFO | IPW_DL_NOTIF |
4413                           IPW_DL_STATE | IPW_DL_ASSOC,
4414                           "Missed beacon: %d - disassociate\n", missed_count);
4415                 priv->status &= ~STATUS_ROAMING;
4416                 if (priv->status & STATUS_SCANNING) {
4417                         IPW_DEBUG(IPW_DL_INFO | IPW_DL_NOTIF |
4418                                   IPW_DL_STATE,
4419                                   "Aborting scan with missed beacon.\n");
4420                         schedule_work(&priv->abort_scan);
4421                 }
4422
4423                 schedule_work(&priv->disassociate);
4424                 return;
4425         }
4426
4427         if (priv->status & STATUS_ROAMING) {
4428                 /* If we are currently roaming, then just
4429                  * print a debug statement... */
4430                 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE,
4431                           "Missed beacon: %d - roam in progress\n",
4432                           missed_count);
4433                 return;
4434         }
4435
4436         if (roaming &&
4437             (missed_count > priv->roaming_threshold &&
4438              missed_count <= priv->disassociate_threshold)) {
4439                 /* If we are not already roaming, set the ROAM
4440                  * bit in the status and kick off a scan.
4441                  * This can happen several times before we reach
4442                  * disassociate_threshold. */
4443                 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE,
4444                           "Missed beacon: %d - initiate "
4445                           "roaming\n", missed_count);
4446                 if (!(priv->status & STATUS_ROAMING)) {
4447                         priv->status |= STATUS_ROAMING;
4448                         if (!(priv->status & STATUS_SCANNING))
4449                                 schedule_delayed_work(&priv->request_scan, 0);
4450                 }
4451                 return;
4452         }
4453
4454         if (priv->status & STATUS_SCANNING &&
4455             missed_count > IPW_MB_SCAN_CANCEL_THRESHOLD) {
4456                 /* Stop scan to keep fw from getting
4457                  * stuck (only if we aren't roaming --
4458                  * otherwise we'll never scan more than 2 or 3
4459                  * channels..) */
4460                 IPW_DEBUG(IPW_DL_INFO | IPW_DL_NOTIF | IPW_DL_STATE,
4461                           "Aborting scan with missed beacon.\n");
4462                 schedule_work(&priv->abort_scan);
4463         }
4464
4465         IPW_DEBUG_NOTIF("Missed beacon: %d\n", missed_count);
4466 }
4467
4468 static void ipw_scan_event(struct work_struct *work)
4469 {
4470         union iwreq_data wrqu;
4471
4472         struct ipw_priv *priv =
4473                 container_of(work, struct ipw_priv, scan_event.work);
4474
4475         wrqu.data.length = 0;
4476         wrqu.data.flags = 0;
4477         wireless_send_event(priv->net_dev, SIOCGIWSCAN, &wrqu, NULL);
4478 }
4479
4480 static void handle_scan_event(struct ipw_priv *priv)
4481 {
4482         /* Only userspace-requested scan completion events go out immediately */
4483         if (!priv->user_requested_scan) {
4484                 schedule_delayed_work(&priv->scan_event,
4485                                       round_jiffies_relative(msecs_to_jiffies(4000)));
4486         } else {
4487                 priv->user_requested_scan = 0;
4488                 mod_delayed_work(system_wq, &priv->scan_event, 0);
4489         }
4490 }
4491
4492 /**
4493  * Handle host notification packet.
4494  * Called from interrupt routine
4495  */
4496 static void ipw_rx_notification(struct ipw_priv *priv,
4497                                        struct ipw_rx_notification *notif)
4498 {
4499         DECLARE_SSID_BUF(ssid);
4500         u16 size = le16_to_cpu(notif->size);
4501
4502         IPW_DEBUG_NOTIF("type = %i (%d bytes)\n", notif->subtype, size);
4503
4504         switch (notif->subtype) {
4505         case HOST_NOTIFICATION_STATUS_ASSOCIATED:{
4506                         struct notif_association *assoc = &notif->u.assoc;
4507
4508                         switch (assoc->state) {
4509                         case CMAS_ASSOCIATED:{
4510                                         IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4511                                                   IPW_DL_ASSOC,
4512                                                   "associated: '%s' %pM\n",
4513                                                   print_ssid(ssid, priv->essid,
4514                                                              priv->essid_len),
4515                                                   priv->bssid);
4516
4517                                         switch (priv->ieee->iw_mode) {
4518                                         case IW_MODE_INFRA:
4519                                                 memcpy(priv->ieee->bssid,
4520                                                        priv->bssid, ETH_ALEN);
4521                                                 break;
4522
4523                                         case IW_MODE_ADHOC:
4524                                                 memcpy(priv->ieee->bssid,
4525                                                        priv->bssid, ETH_ALEN);
4526
4527                                                 /* clear out the station table */
4528                                                 priv->num_stations = 0;
4529
4530                                                 IPW_DEBUG_ASSOC
4531                                                     ("queueing adhoc check\n");
4532                                                 schedule_delayed_work(
4533                                                         &priv->adhoc_check,
4534                                                         le16_to_cpu(priv->
4535                                                         assoc_request.
4536                                                         beacon_interval));
4537                                                 break;
4538                                         }
4539
4540                                         priv->status &= ~STATUS_ASSOCIATING;
4541                                         priv->status |= STATUS_ASSOCIATED;
4542                                         schedule_work(&priv->system_config);
4543
4544 #ifdef CONFIG_IPW2200_QOS
4545 #define IPW_GET_PACKET_STYPE(x) WLAN_FC_GET_STYPE( \
4546                          le16_to_cpu(((struct ieee80211_hdr *)(x))->frame_control))
4547                                         if ((priv->status & STATUS_AUTH) &&
4548                                             (IPW_GET_PACKET_STYPE(&notif->u.raw)
4549                                              == IEEE80211_STYPE_ASSOC_RESP)) {
4550                                                 if ((sizeof
4551                                                      (struct
4552                                                       libipw_assoc_response)
4553                                                      <= size)
4554                                                     && (size <= 2314)) {
4555                                                         struct
4556                                                         libipw_rx_stats
4557                                                             stats = {
4558                                                                 .len = size - 1,
4559                                                         };
4560
4561                                                         IPW_DEBUG_QOS
4562                                                             ("QoS Associate "
4563                                                              "size %d\n", size);
4564                                                         libipw_rx_mgt(priv->
4565                                                                          ieee,
4566                                                                          (struct
4567                                                                           libipw_hdr_4addr
4568                                                                           *)
4569                                                                          &notif->u.raw, &stats);
4570                                                 }
4571                                         }
4572 #endif
4573
4574                                         schedule_work(&priv->link_up);
4575
4576                                         break;
4577                                 }
4578
4579                         case CMAS_AUTHENTICATED:{
4580                                         if (priv->
4581                                             status & (STATUS_ASSOCIATED |
4582                                                       STATUS_AUTH)) {
4583                                                 struct notif_authenticate *auth
4584                                                     = &notif->u.auth;
4585                                                 IPW_DEBUG(IPW_DL_NOTIF |
4586                                                           IPW_DL_STATE |
4587                                                           IPW_DL_ASSOC,
4588                                                           "deauthenticated: '%s' "
4589                                                           "%pM"
4590                                                           ": (0x%04X) - %s\n",
4591                                                           print_ssid(ssid,
4592                                                                      priv->
4593                                                                      essid,
4594                                                                      priv->
4595                                                                      essid_len),
4596                                                           priv->bssid,
4597                                                           le16_to_cpu(auth->status),
4598                                                           ipw_get_status_code
4599                                                           (le16_to_cpu
4600                                                            (auth->status)));
4601
4602                                                 priv->status &=
4603                                                     ~(STATUS_ASSOCIATING |
4604                                                       STATUS_AUTH |
4605                                                       STATUS_ASSOCIATED);
4606
4607                                                 schedule_work(&priv->link_down);
4608                                                 break;
4609                                         }
4610
4611                                         IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4612                                                   IPW_DL_ASSOC,
4613                                                   "authenticated: '%s' %pM\n",
4614                                                   print_ssid(ssid, priv->essid,
4615                                                              priv->essid_len),
4616                                                   priv->bssid);
4617                                         break;
4618                                 }
4619
4620                         case CMAS_INIT:{
4621                                         if (priv->status & STATUS_AUTH) {
4622                                                 struct
4623                                                     libipw_assoc_response
4624                                                 *resp;
4625                                                 resp =
4626                                                     (struct
4627                                                      libipw_assoc_response
4628                                                      *)&notif->u.raw;
4629                                                 IPW_DEBUG(IPW_DL_NOTIF |
4630                                                           IPW_DL_STATE |
4631                                                           IPW_DL_ASSOC,
4632                                                           "association failed (0x%04X): %s\n",
4633                                                           le16_to_cpu(resp->status),
4634                                                           ipw_get_status_code
4635                                                           (le16_to_cpu
4636                                                            (resp->status)));
4637                                         }
4638
4639                                         IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4640                                                   IPW_DL_ASSOC,
4641                                                   "disassociated: '%s' %pM\n",
4642                                                   print_ssid(ssid, priv->essid,
4643                                                              priv->essid_len),
4644                                                   priv->bssid);
4645
4646                                         priv->status &=
4647                                             ~(STATUS_DISASSOCIATING |
4648                                               STATUS_ASSOCIATING |
4649                                               STATUS_ASSOCIATED | STATUS_AUTH);
4650                                         if (priv->assoc_network
4651                                             && (priv->assoc_network->
4652                                                 capability &
4653                                                 WLAN_CAPABILITY_IBSS))
4654                                                 ipw_remove_current_network
4655                                                     (priv);
4656
4657                                         schedule_work(&priv->link_down);
4658
4659                                         break;
4660                                 }
4661
4662                         case CMAS_RX_ASSOC_RESP:
4663                                 break;
4664
4665                         default:
4666                                 IPW_ERROR("assoc: unknown (%d)\n",
4667                                           assoc->state);
4668                                 break;
4669                         }
4670
4671                         break;
4672                 }
4673
4674         case HOST_NOTIFICATION_STATUS_AUTHENTICATE:{
4675                         struct notif_authenticate *auth = &notif->u.auth;
4676                         switch (auth->state) {
4677                         case CMAS_AUTHENTICATED:
4678                                 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE,
4679                                           "authenticated: '%s' %pM\n",
4680                                           print_ssid(ssid, priv->essid,
4681                                                      priv->essid_len),
4682                                           priv->bssid);
4683                                 priv->status |= STATUS_AUTH;
4684                                 break;
4685
4686                         case CMAS_INIT:
4687                                 if (priv->status & STATUS_AUTH) {
4688                                         IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4689                                                   IPW_DL_ASSOC,
4690                                                   "authentication failed (0x%04X): %s\n",
4691                                                   le16_to_cpu(auth->status),
4692                                                   ipw_get_status_code(le16_to_cpu
4693                                                                       (auth->
4694                                                                        status)));
4695                                 }
4696                                 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4697                                           IPW_DL_ASSOC,
4698                                           "deauthenticated: '%s' %pM\n",
4699                                           print_ssid(ssid, priv->essid,
4700                                                      priv->essid_len),
4701                                           priv->bssid);
4702
4703                                 priv->status &= ~(STATUS_ASSOCIATING |
4704                                                   STATUS_AUTH |
4705                                                   STATUS_ASSOCIATED);
4706
4707                                 schedule_work(&priv->link_down);
4708                                 break;
4709
4710                         case CMAS_TX_AUTH_SEQ_1:
4711                                 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4712                                           IPW_DL_ASSOC, "AUTH_SEQ_1\n");
4713                                 break;
4714                         case CMAS_RX_AUTH_SEQ_2:
4715                                 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4716                                           IPW_DL_ASSOC, "AUTH_SEQ_2\n");
4717                                 break;
4718                         case CMAS_AUTH_SEQ_1_PASS:
4719                                 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4720                                           IPW_DL_ASSOC, "AUTH_SEQ_1_PASS\n");
4721                                 break;
4722                         case CMAS_AUTH_SEQ_1_FAIL:
4723                                 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4724                                           IPW_DL_ASSOC, "AUTH_SEQ_1_FAIL\n");
4725                                 break;
4726                         case CMAS_TX_AUTH_SEQ_3:
4727                                 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4728                                           IPW_DL_ASSOC, "AUTH_SEQ_3\n");
4729                                 break;
4730                         case CMAS_RX_AUTH_SEQ_4:
4731                                 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4732                                           IPW_DL_ASSOC, "RX_AUTH_SEQ_4\n");
4733                                 break;
4734                         case CMAS_AUTH_SEQ_2_PASS:
4735                                 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4736                                           IPW_DL_ASSOC, "AUTH_SEQ_2_PASS\n");
4737                                 break;
4738                         case CMAS_AUTH_SEQ_2_FAIL:
4739                                 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4740                                           IPW_DL_ASSOC, "AUT_SEQ_2_FAIL\n");
4741                                 break;
4742                         case CMAS_TX_ASSOC:
4743                                 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4744                                           IPW_DL_ASSOC, "TX_ASSOC\n");
4745                                 break;
4746                         case CMAS_RX_ASSOC_RESP:
4747                                 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4748                                           IPW_DL_ASSOC, "RX_ASSOC_RESP\n");
4749
4750                                 break;
4751                         case CMAS_ASSOCIATED:
4752                                 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4753                                           IPW_DL_ASSOC, "ASSOCIATED\n");
4754                                 break;
4755                         default:
4756                                 IPW_DEBUG_NOTIF("auth: failure - %d\n",
4757                                                 auth->state);
4758                                 break;
4759                         }
4760                         break;
4761                 }
4762
4763         case HOST_NOTIFICATION_STATUS_SCAN_CHANNEL_RESULT:{
4764                         struct notif_channel_result *x =
4765                             &notif->u.channel_result;
4766
4767                         if (size == sizeof(*x)) {
4768                                 IPW_DEBUG_SCAN("Scan result for channel %d\n",
4769                                                x->channel_num);
4770                         } else {
4771                                 IPW_DEBUG_SCAN("Scan result of wrong size %d "
4772                                                "(should be %zd)\n",
4773                                                size, sizeof(*x));
4774                         }
4775                         break;
4776                 }
4777
4778         case HOST_NOTIFICATION_STATUS_SCAN_COMPLETED:{
4779                         struct notif_scan_complete *x = &notif->u.scan_complete;
4780                         if (size == sizeof(*x)) {
4781                                 IPW_DEBUG_SCAN
4782                                     ("Scan completed: type %d, %d channels, "
4783                                      "%d status\n", x->scan_type,
4784                                      x->num_channels, x->status);
4785                         } else {
4786                                 IPW_ERROR("Scan completed of wrong size %d "
4787                                           "(should be %zd)\n",
4788                                           size, sizeof(*x));
4789                         }
4790
4791                         priv->status &=
4792                             ~(STATUS_SCANNING | STATUS_SCAN_ABORTING);
4793
4794                         wake_up_interruptible(&priv->wait_state);
4795                         cancel_delayed_work(&priv->scan_check);
4796
4797                         if (priv->status & STATUS_EXIT_PENDING)
4798                                 break;
4799
4800                         priv->ieee->scans++;
4801
4802 #ifdef CONFIG_IPW2200_MONITOR
4803                         if (priv->ieee->iw_mode == IW_MODE_MONITOR) {
4804                                 priv->status |= STATUS_SCAN_FORCED;
4805                                 schedule_delayed_work(&priv->request_scan, 0);
4806                                 break;
4807                         }
4808                         priv->status &= ~STATUS_SCAN_FORCED;
4809 #endif                          /* CONFIG_IPW2200_MONITOR */
4810
4811                         /* Do queued direct scans first */
4812                         if (priv->status & STATUS_DIRECT_SCAN_PENDING)
4813                                 schedule_delayed_work(&priv->request_direct_scan, 0);
4814
4815                         if (!(priv->status & (STATUS_ASSOCIATED |
4816                                               STATUS_ASSOCIATING |
4817                                               STATUS_ROAMING |
4818                                               STATUS_DISASSOCIATING)))
4819                                 schedule_work(&priv->associate);
4820                         else if (priv->status & STATUS_ROAMING) {
4821                                 if (x->status == SCAN_COMPLETED_STATUS_COMPLETE)
4822                                         /* If a scan completed and we are in roam mode, then
4823                                          * the scan that completed was the one requested as a
4824                                          * result of entering roam... so, schedule the
4825                                          * roam work */
4826                                         schedule_work(&priv->roam);
4827                                 else
4828                                         /* Don't schedule if we aborted the scan */
4829                                         priv->status &= ~STATUS_ROAMING;
4830                         } else if (priv->status & STATUS_SCAN_PENDING)
4831                                 schedule_delayed_work(&priv->request_scan, 0);
4832                         else if (priv->config & CFG_BACKGROUND_SCAN
4833                                  && priv->status & STATUS_ASSOCIATED)
4834                                 schedule_delayed_work(&priv->request_scan,
4835                                                       round_jiffies_relative(HZ));
4836
4837                         /* Send an empty event to user space.
4838                          * We don't send the received data on the event because
4839                          * it would require us to do complex transcoding, and
4840                          * we want to minimise the work done in the irq handler
4841                          * Use a request to extract the data.
4842                          * Also, we generate this even for any scan, regardless
4843                          * on how the scan was initiated. User space can just
4844                          * sync on periodic scan to get fresh data...
4845                          * Jean II */
4846                         if (x->status == SCAN_COMPLETED_STATUS_COMPLETE)
4847                                 handle_scan_event(priv);
4848                         break;
4849                 }
4850
4851         case HOST_NOTIFICATION_STATUS_FRAG_LENGTH:{
4852                         struct notif_frag_length *x = &notif->u.frag_len;
4853
4854                         if (size == sizeof(*x))
4855                                 IPW_ERROR("Frag length: %d\n",
4856                                           le16_to_cpu(x->frag_length));
4857                         else
4858                                 IPW_ERROR("Frag length of wrong size %d "
4859                                           "(should be %zd)\n",
4860                                           size, sizeof(*x));
4861                         break;
4862                 }
4863
4864         case HOST_NOTIFICATION_STATUS_LINK_DETERIORATION:{
4865                         struct notif_link_deterioration *x =
4866                             &notif->u.link_deterioration;
4867
4868                         if (size == sizeof(*x)) {
4869                                 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE,
4870                                         "link deterioration: type %d, cnt %d\n",
4871                                         x->silence_notification_type,
4872                                         x->silence_count);
4873                                 memcpy(&priv->last_link_deterioration, x,
4874                                        sizeof(*x));
4875                         } else {
4876                                 IPW_ERROR("Link Deterioration of wrong size %d "
4877                                           "(should be %zd)\n",
4878                                           size, sizeof(*x));
4879                         }
4880                         break;
4881                 }
4882
4883         case HOST_NOTIFICATION_DINO_CONFIG_RESPONSE:{
4884                         IPW_ERROR("Dino config\n");
4885                         if (priv->hcmd
4886                             && priv->hcmd->cmd != HOST_CMD_DINO_CONFIG)
4887                                 IPW_ERROR("Unexpected DINO_CONFIG_RESPONSE\n");
4888
4889                         break;
4890                 }
4891
4892         case HOST_NOTIFICATION_STATUS_BEACON_STATE:{
4893                         struct notif_beacon_state *x = &notif->u.beacon_state;
4894                         if (size != sizeof(*x)) {
4895                                 IPW_ERROR
4896                                     ("Beacon state of wrong size %d (should "
4897                                      "be %zd)\n", size, sizeof(*x));
4898                                 break;
4899                         }
4900
4901                         if (le32_to_cpu(x->state) ==
4902                             HOST_NOTIFICATION_STATUS_BEACON_MISSING)
4903                                 ipw_handle_missed_beacon(priv,
4904                                                          le32_to_cpu(x->
4905                                                                      number));
4906
4907                         break;
4908                 }
4909
4910         case HOST_NOTIFICATION_STATUS_TGI_TX_KEY:{
4911                         struct notif_tgi_tx_key *x = &notif->u.tgi_tx_key;
4912                         if (size == sizeof(*x)) {
4913                                 IPW_ERROR("TGi Tx Key: state 0x%02x sec type "
4914                                           "0x%02x station %d\n",
4915                                           x->key_state, x->security_type,
4916                                           x->station_index);
4917                                 break;
4918                         }
4919
4920                         IPW_ERROR
4921                             ("TGi Tx Key of wrong size %d (should be %zd)\n",
4922                              size, sizeof(*x));
4923                         break;
4924                 }
4925
4926         case HOST_NOTIFICATION_CALIB_KEEP_RESULTS:{
4927                         struct notif_calibration *x = &notif->u.calibration;
4928
4929                         if (size == sizeof(*x)) {
4930                                 memcpy(&priv->calib, x, sizeof(*x));
4931                                 IPW_DEBUG_INFO("TODO: Calibration\n");
4932                                 break;
4933                         }
4934
4935                         IPW_ERROR
4936                             ("Calibration of wrong size %d (should be %zd)\n",
4937                              size, sizeof(*x));
4938                         break;
4939                 }
4940
4941         case HOST_NOTIFICATION_NOISE_STATS:{
4942                         if (size == sizeof(u32)) {
4943                                 priv->exp_avg_noise =
4944                                     exponential_average(priv->exp_avg_noise,
4945                                     (u8) (le32_to_cpu(notif->u.noise.value) & 0xff),
4946                                     DEPTH_NOISE);
4947                                 break;
4948                         }
4949
4950                         IPW_ERROR
4951                             ("Noise stat is wrong size %d (should be %zd)\n",
4952                              size, sizeof(u32));
4953                         break;
4954                 }
4955
4956         default:
4957                 IPW_DEBUG_NOTIF("Unknown notification: "
4958                                 "subtype=%d,flags=0x%2x,size=%d\n",
4959                                 notif->subtype, notif->flags, size);
4960         }
4961 }
4962
4963 /**
4964  * Destroys all DMA structures and initialise them again
4965  *
4966  * @param priv
4967  * @return error code
4968  */
4969 static int ipw_queue_reset(struct ipw_priv *priv)
4970 {
4971         int rc = 0;
4972         /** @todo customize queue sizes */
4973         int nTx = 64, nTxCmd = 8;
4974         ipw_tx_queue_free(priv);
4975         /* Tx CMD queue */
4976         rc = ipw_queue_tx_init(priv, &priv->txq_cmd, nTxCmd,
4977                                IPW_TX_CMD_QUEUE_READ_INDEX,
4978                                IPW_TX_CMD_QUEUE_WRITE_INDEX,
4979                                IPW_TX_CMD_QUEUE_BD_BASE,
4980                                IPW_TX_CMD_QUEUE_BD_SIZE);
4981         if (rc) {
4982                 IPW_ERROR("Tx Cmd queue init failed\n");
4983                 goto error;
4984         }
4985         /* Tx queue(s) */
4986         rc = ipw_queue_tx_init(priv, &priv->txq[0], nTx,
4987                                IPW_TX_QUEUE_0_READ_INDEX,
4988                                IPW_TX_QUEUE_0_WRITE_INDEX,
4989                                IPW_TX_QUEUE_0_BD_BASE, IPW_TX_QUEUE_0_BD_SIZE);
4990         if (rc) {
4991                 IPW_ERROR("Tx 0 queue init failed\n");
4992                 goto error;
4993         }
4994         rc = ipw_queue_tx_init(priv, &priv->txq[1], nTx,
4995                                IPW_TX_QUEUE_1_READ_INDEX,
4996                                IPW_TX_QUEUE_1_WRITE_INDEX,
4997                                IPW_TX_QUEUE_1_BD_BASE, IPW_TX_QUEUE_1_BD_SIZE);
4998         if (rc) {
4999                 IPW_ERROR("Tx 1 queue init failed\n");
5000                 goto error;
5001         }
5002         rc = ipw_queue_tx_init(priv, &priv->txq[2], nTx,
5003                                IPW_TX_QUEUE_2_READ_INDEX,
5004                                IPW_TX_QUEUE_2_WRITE_INDEX,
5005                                IPW_TX_QUEUE_2_BD_BASE, IPW_TX_QUEUE_2_BD_SIZE);
5006         if (rc) {
5007                 IPW_ERROR("Tx 2 queue init failed\n");
5008                 goto error;
5009         }
5010         rc = ipw_queue_tx_init(priv, &priv->txq[3], nTx,
5011                                IPW_TX_QUEUE_3_READ_INDEX,
5012                                IPW_TX_QUEUE_3_WRITE_INDEX,
5013                                IPW_TX_QUEUE_3_BD_BASE, IPW_TX_QUEUE_3_BD_SIZE);
5014         if (rc) {
5015                 IPW_ERROR("Tx 3 queue init failed\n");
5016                 goto error;
5017         }
5018         /* statistics */
5019         priv->rx_bufs_min = 0;
5020         priv->rx_pend_max = 0;
5021         return rc;
5022
5023       error:
5024         ipw_tx_queue_free(priv);
5025         return rc;
5026 }
5027
5028 /**
5029  * Reclaim Tx queue entries no more used by NIC.
5030  *
5031  * When FW advances 'R' index, all entries between old and
5032  * new 'R' index need to be reclaimed. As result, some free space
5033  * forms. If there is enough free space (> low mark), wake Tx queue.
5034  *
5035  * @note Need to protect against garbage in 'R' index
5036  * @param priv
5037  * @param txq
5038  * @param qindex
5039  * @return Number of used entries remains in the queue
5040  */
5041 static int ipw_queue_tx_reclaim(struct ipw_priv *priv,
5042                                 struct clx2_tx_queue *txq, int qindex)
5043 {
5044         u32 hw_tail;
5045         int used;
5046         struct clx2_queue *q = &txq->q;
5047
5048         hw_tail = ipw_read32(priv, q->reg_r);
5049         if (hw_tail >= q->n_bd) {
5050                 IPW_ERROR
5051                     ("Read index for DMA queue (%d) is out of range [0-%d)\n",
5052                      hw_tail, q->n_bd);
5053                 goto done;
5054         }
5055         for (; q->last_used != hw_tail;
5056              q->last_used = ipw_queue_inc_wrap(q->last_used, q->n_bd)) {
5057                 ipw_queue_tx_free_tfd(priv, txq);
5058                 priv->tx_packets++;
5059         }
5060       done:
5061         if ((ipw_tx_queue_space(q) > q->low_mark) &&
5062             (qindex >= 0))
5063                 netif_wake_queue(priv->net_dev);
5064         used = q->first_empty - q->last_used;
5065         if (used < 0)
5066                 used += q->n_bd;
5067
5068         return used;
5069 }
5070
5071 static int ipw_queue_tx_hcmd(struct ipw_priv *priv, int hcmd, void *buf,
5072                              int len, int sync)
5073 {
5074         struct clx2_tx_queue *txq = &priv->txq_cmd;
5075         struct clx2_queue *q = &txq->q;
5076         struct tfd_frame *tfd;
5077
5078         if (ipw_tx_queue_space(q) < (sync ? 1 : 2)) {
5079                 IPW_ERROR("No space for Tx\n");
5080                 return -EBUSY;
5081         }
5082
5083         tfd = &txq->bd[q->first_empty];
5084         txq->txb[q->first_empty] = NULL;
5085
5086         memset(tfd, 0, sizeof(*tfd));
5087         tfd->control_flags.message_type = TX_HOST_COMMAND_TYPE;
5088         tfd->control_flags.control_bits = TFD_NEED_IRQ_MASK;
5089         priv->hcmd_seq++;
5090         tfd->u.cmd.index = hcmd;
5091         tfd->u.cmd.length = len;
5092         memcpy(tfd->u.cmd.payload, buf, len);
5093         q->first_empty = ipw_queue_inc_wrap(q->first_empty, q->n_bd);
5094         ipw_write32(priv, q->reg_w, q->first_empty);
5095         _ipw_read32(priv, 0x90);
5096
5097         return 0;
5098 }
5099
5100 /*
5101  * Rx theory of operation
5102  *
5103  * The host allocates 32 DMA target addresses and passes the host address
5104  * to the firmware at register IPW_RFDS_TABLE_LOWER + N * RFD_SIZE where N is
5105  * 0 to 31
5106  *
5107  * Rx Queue Indexes
5108  * The host/firmware share two index registers for managing the Rx buffers.
5109  *
5110  * The READ index maps to the first position that the firmware may be writing
5111  * to -- the driver can read up to (but not including) this position and get
5112  * good data.
5113  * The READ index is managed by the firmware once the card is enabled.
5114  *
5115  * The WRITE index maps to the last position the driver has read from -- the
5116  * position preceding WRITE is the last slot the firmware can place a packet.
5117  *
5118  * The queue is empty (no good data) if WRITE = READ - 1, and is full if
5119  * WRITE = READ.
5120  *
5121  * During initialization the host sets up the READ queue position to the first
5122  * INDEX position, and WRITE to the last (READ - 1 wrapped)
5123  *
5124  * When the firmware places a packet in a buffer it will advance the READ index
5125  * and fire the RX interrupt.  The driver can then query the READ index and
5126  * process as many packets as possible, moving the WRITE index forward as it
5127  * resets the Rx queue buffers with new memory.
5128  *
5129  * The management in the driver is as follows:
5130  * + A list of pre-allocated SKBs is stored in ipw->rxq->rx_free.  When
5131  *   ipw->rxq->free_count drops to or below RX_LOW_WATERMARK, work is scheduled
5132  *   to replensish the ipw->rxq->rx_free.
5133  * + In ipw_rx_queue_replenish (scheduled) if 'processed' != 'read' then the
5134  *   ipw->rxq is replenished and the READ INDEX is updated (updating the
5135  *   'processed' and 'read' driver indexes as well)
5136  * + A received packet is processed and handed to the kernel network stack,
5137  *   detached from the ipw->rxq.  The driver 'processed' index is updated.
5138  * + The Host/Firmware ipw->rxq is replenished at tasklet time from the rx_free
5139  *   list. If there are no allocated buffers in ipw->rxq->rx_free, the READ
5140  *   INDEX is not incremented and ipw->status(RX_STALLED) is set.  If there
5141  *   were enough free buffers and RX_STALLED is set it is cleared.
5142  *
5143  *
5144  * Driver sequence:
5145  *
5146  * ipw_rx_queue_alloc()       Allocates rx_free
5147  * ipw_rx_queue_replenish()   Replenishes rx_free list from rx_used, and calls
5148  *                            ipw_rx_queue_restock
5149  * ipw_rx_queue_restock()     Moves available buffers from rx_free into Rx
5150  *                            queue, updates firmware pointers, and updates
5151  *                            the WRITE index.  If insufficient rx_free buffers
5152  *                            are available, schedules ipw_rx_queue_replenish
5153  *
5154  * -- enable interrupts --
5155  * ISR - ipw_rx()             Detach ipw_rx_mem_buffers from pool up to the
5156  *                            READ INDEX, detaching the SKB from the pool.
5157  *                            Moves the packet buffer from queue to rx_used.
5158  *                            Calls ipw_rx_queue_restock to refill any empty
5159  *                            slots.
5160  * ...
5161  *
5162  */
5163
5164 /*
5165  * If there are slots in the RX queue that  need to be restocked,
5166  * and we have free pre-allocated buffers, fill the ranks as much
5167  * as we can pulling from rx_free.
5168  *
5169  * This moves the 'write' index forward to catch up with 'processed', and
5170  * also updates the memory address in the firmware to reference the new
5171  * target buffer.
5172  */
5173 static void ipw_rx_queue_restock(struct ipw_priv *priv)
5174 {
5175         struct ipw_rx_queue *rxq = priv->rxq;
5176         struct list_head *element;
5177         struct ipw_rx_mem_buffer *rxb;
5178         unsigned long flags;
5179         int write;
5180
5181         spin_lock_irqsave(&rxq->lock, flags);
5182         write = rxq->write;
5183         while ((ipw_rx_queue_space(rxq) > 0) && (rxq->free_count)) {
5184                 element = rxq->rx_free.next;
5185                 rxb = list_entry(element, struct ipw_rx_mem_buffer, list);
5186                 list_del(element);
5187
5188                 ipw_write32(priv, IPW_RFDS_TABLE_LOWER + rxq->write * RFD_SIZE,
5189                             rxb->dma_addr);
5190                 rxq->queue[rxq->write] = rxb;
5191                 rxq->write = (rxq->write + 1) % RX_QUEUE_SIZE;
5192                 rxq->free_count--;
5193         }
5194         spin_unlock_irqrestore(&rxq->lock, flags);
5195
5196         /* If the pre-allocated buffer pool is dropping low, schedule to
5197          * refill it */
5198         if (rxq->free_count <= RX_LOW_WATERMARK)
5199                 schedule_work(&priv->rx_replenish);
5200
5201         /* If we've added more space for the firmware to place data, tell it */
5202         if (write != rxq->write)
5203                 ipw_write32(priv, IPW_RX_WRITE_INDEX, rxq->write);
5204 }
5205
5206 /*
5207  * Move all used packet from rx_used to rx_free, allocating a new SKB for each.
5208  * Also restock the Rx queue via ipw_rx_queue_restock.
5209  *
5210  * This is called as a scheduled work item (except for during intialization)
5211  */
5212 static void ipw_rx_queue_replenish(void *data)
5213 {
5214         struct ipw_priv *priv = data;
5215         struct ipw_rx_queue *rxq = priv->rxq;
5216         struct list_head *element;
5217         struct ipw_rx_mem_buffer *rxb;
5218         unsigned long flags;
5219
5220         spin_lock_irqsave(&rxq->lock, flags);
5221         while (!list_empty(&rxq->rx_used)) {
5222                 element = rxq->rx_used.next;
5223                 rxb = list_entry(element, struct ipw_rx_mem_buffer, list);
5224                 rxb->skb = alloc_skb(IPW_RX_BUF_SIZE, GFP_ATOMIC);
5225                 if (!rxb->skb) {
5226                         printk(KERN_CRIT "%s: Can not allocate SKB buffers.\n",
5227                                priv->net_dev->name);
5228                         /* We don't reschedule replenish work here -- we will
5229                          * call the restock method and if it still needs
5230                          * more buffers it will schedule replenish */
5231                         break;
5232                 }
5233                 list_del(element);
5234
5235                 rxb->dma_addr =
5236                     pci_map_single(priv->pci_dev, rxb->skb->data,
5237                                    IPW_RX_BUF_SIZE, PCI_DMA_FROMDEVICE);
5238
5239                 list_add_tail(&rxb->list, &rxq->rx_free);
5240                 rxq->free_count++;
5241         }
5242         spin_unlock_irqrestore(&rxq->lock, flags);
5243
5244         ipw_rx_queue_restock(priv);
5245 }
5246
5247 static void ipw_bg_rx_queue_replenish(struct work_struct *work)
5248 {
5249         struct ipw_priv *priv =
5250                 container_of(work, struct ipw_priv, rx_replenish);
5251         mutex_lock(&priv->mutex);
5252         ipw_rx_queue_replenish(priv);
5253         mutex_unlock(&priv->mutex);
5254 }
5255
5256 /* Assumes that the skb field of the buffers in 'pool' is kept accurate.
5257  * If an SKB has been detached, the POOL needs to have its SKB set to NULL
5258  * This free routine walks the list of POOL entries and if SKB is set to
5259  * non NULL it is unmapped and freed
5260  */
5261 static void ipw_rx_queue_free(struct ipw_priv *priv, struct ipw_rx_queue *rxq)
5262 {
5263         int i;
5264
5265         if (!rxq)
5266                 return;
5267
5268         for (i = 0; i < RX_QUEUE_SIZE + RX_FREE_BUFFERS; i++) {
5269                 if (rxq->pool[i].skb != NULL) {
5270                         pci_unmap_single(priv->pci_dev, rxq->pool[i].dma_addr,
5271                                          IPW_RX_BUF_SIZE, PCI_DMA_FROMDEVICE);
5272                         dev_kfree_skb(rxq->pool[i].skb);
5273                 }
5274         }
5275
5276         kfree(rxq);
5277 }
5278
5279 static struct ipw_rx_queue *ipw_rx_queue_alloc(struct ipw_priv *priv)
5280 {
5281         struct ipw_rx_queue *rxq;
5282         int i;
5283
5284         rxq = kzalloc(sizeof(*rxq), GFP_KERNEL);
5285         if (unlikely(!rxq)) {
5286                 IPW_ERROR("memory allocation failed\n");
5287                 return NULL;
5288         }
5289         spin_lock_init(&rxq->lock);
5290         INIT_LIST_HEAD(&rxq->rx_free);
5291         INIT_LIST_HEAD(&rxq->rx_used);
5292
5293         /* Fill the rx_used queue with _all_ of the Rx buffers */
5294         for (i = 0; i < RX_FREE_BUFFERS + RX_QUEUE_SIZE; i++)
5295                 list_add_tail(&rxq->pool[i].list, &rxq->rx_used);
5296
5297         /* Set us so that we have processed and used all buffers, but have
5298          * not restocked the Rx queue with fresh buffers */
5299         rxq->read = rxq->write = 0;
5300         rxq->free_count = 0;
5301
5302         return rxq;
5303 }
5304
5305 static int ipw_is_rate_in_mask(struct ipw_priv *priv, int ieee_mode, u8 rate)
5306 {
5307         rate &= ~LIBIPW_BASIC_RATE_MASK;
5308         if (ieee_mode == IEEE_A) {
5309                 switch (rate) {
5310                 case LIBIPW_OFDM_RATE_6MB:
5311                         return priv->rates_mask & LIBIPW_OFDM_RATE_6MB_MASK ?
5312                             1 : 0;
5313                 case LIBIPW_OFDM_RATE_9MB:
5314                         return priv->rates_mask & LIBIPW_OFDM_RATE_9MB_MASK ?
5315                             1 : 0;
5316                 case LIBIPW_OFDM_RATE_12MB:
5317                         return priv->
5318                             rates_mask & LIBIPW_OFDM_RATE_12MB_MASK ? 1 : 0;
5319                 case LIBIPW_OFDM_RATE_18MB:
5320                         return priv->
5321                             rates_mask & LIBIPW_OFDM_RATE_18MB_MASK ? 1 : 0;
5322                 case LIBIPW_OFDM_RATE_24MB:
5323                         return priv->
5324                             rates_mask & LIBIPW_OFDM_RATE_24MB_MASK ? 1 : 0;
5325                 case LIBIPW_OFDM_RATE_36MB:
5326                         return priv->
5327                             rates_mask & LIBIPW_OFDM_RATE_36MB_MASK ? 1 : 0;
5328                 case LIBIPW_OFDM_RATE_48MB:
5329                         return priv->
5330                             rates_mask & LIBIPW_OFDM_RATE_48MB_MASK ? 1 : 0;
5331                 case LIBIPW_OFDM_RATE_54MB:
5332                         return priv->
5333                             rates_mask & LIBIPW_OFDM_RATE_54MB_MASK ? 1 : 0;
5334                 default:
5335                         return 0;
5336                 }
5337         }
5338
5339         /* B and G mixed */
5340         switch (rate) {
5341         case LIBIPW_CCK_RATE_1MB:
5342                 return priv->rates_mask & LIBIPW_CCK_RATE_1MB_MASK ? 1 : 0;
5343         case LIBIPW_CCK_RATE_2MB:
5344                 return priv->rates_mask & LIBIPW_CCK_RATE_2MB_MASK ? 1 : 0;
5345         case LIBIPW_CCK_RATE_5MB:
5346                 return priv->rates_mask & LIBIPW_CCK_RATE_5MB_MASK ? 1 : 0;
5347         case LIBIPW_CCK_RATE_11MB:
5348                 return priv->rates_mask & LIBIPW_CCK_RATE_11MB_MASK ? 1 : 0;
5349         }
5350
5351         /* If we are limited to B modulations, bail at this point */
5352         if (ieee_mode == IEEE_B)
5353                 return 0;
5354
5355         /* G */
5356         switch (rate) {
5357         case LIBIPW_OFDM_RATE_6MB:
5358                 return priv->rates_mask & LIBIPW_OFDM_RATE_6MB_MASK ? 1 : 0;
5359         case LIBIPW_OFDM_RATE_9MB:
5360                 return priv->rates_mask & LIBIPW_OFDM_RATE_9MB_MASK ? 1 : 0;
5361         case LIBIPW_OFDM_RATE_12MB:
5362                 return priv->rates_mask & LIBIPW_OFDM_RATE_12MB_MASK ? 1 : 0;
5363         case LIBIPW_OFDM_RATE_18MB:
5364                 return priv->rates_mask & LIBIPW_OFDM_RATE_18MB_MASK ? 1 : 0;
5365         case LIBIPW_OFDM_RATE_24MB:
5366                 return priv->rates_mask & LIBIPW_OFDM_RATE_24MB_MASK ? 1 : 0;
5367         case LIBIPW_OFDM_RATE_36MB:
5368                 return priv->rates_mask & LIBIPW_OFDM_RATE_36MB_MASK ? 1 : 0;
5369         case LIBIPW_OFDM_RATE_48MB:
5370                 return priv->rates_mask & LIBIPW_OFDM_RATE_48MB_MASK ? 1 : 0;
5371         case LIBIPW_OFDM_RATE_54MB:
5372                 return priv->rates_mask & LIBIPW_OFDM_RATE_54MB_MASK ? 1 : 0;
5373         }
5374
5375         return 0;
5376 }
5377
5378 static int ipw_compatible_rates(struct ipw_priv *priv,
5379                                 const struct libipw_network *network,
5380                                 struct ipw_supported_rates *rates)
5381 {
5382         int num_rates, i;
5383
5384         memset(rates, 0, sizeof(*rates));
5385         num_rates = min(network->rates_len, (u8) IPW_MAX_RATES);
5386         rates->num_rates = 0;
5387         for (i = 0; i < num_rates; i++) {
5388                 if (!ipw_is_rate_in_mask(priv, network->mode,
5389                                          network->rates[i])) {
5390
5391                         if (network->rates[i] & LIBIPW_BASIC_RATE_MASK) {
5392                                 IPW_DEBUG_SCAN("Adding masked mandatory "
5393                                                "rate %02X\n",
5394                                                network->rates[i]);
5395                                 rates->supported_rates[rates->num_rates++] =
5396                                     network->rates[i];
5397                                 continue;
5398                         }
5399
5400                         IPW_DEBUG_SCAN("Rate %02X masked : 0x%08X\n",
5401                                        network->rates[i], priv->rates_mask);
5402                         continue;
5403                 }
5404
5405                 rates->supported_rates[rates->num_rates++] = network->rates[i];
5406         }
5407
5408         num_rates = min(network->rates_ex_len,
5409                         (u8) (IPW_MAX_RATES - num_rates));
5410         for (i = 0; i < num_rates; i++) {
5411                 if (!ipw_is_rate_in_mask(priv, network->mode,
5412                                          network->rates_ex[i])) {
5413                         if (network->rates_ex[i] & LIBIPW_BASIC_RATE_MASK) {
5414                                 IPW_DEBUG_SCAN("Adding masked mandatory "
5415                                                "rate %02X\n",
5416                                                network->rates_ex[i]);
5417                                 rates->supported_rates[rates->num_rates++] =
5418                                     network->rates[i];
5419                                 continue;
5420                         }
5421
5422                         IPW_DEBUG_SCAN("Rate %02X masked : 0x%08X\n",
5423                                        network->rates_ex[i], priv->rates_mask);
5424                         continue;
5425                 }
5426
5427                 rates->supported_rates[rates->num_rates++] =
5428                     network->rates_ex[i];
5429         }
5430
5431         return 1;
5432 }
5433
5434 static void ipw_copy_rates(struct ipw_supported_rates *dest,
5435                                   const struct ipw_supported_rates *src)
5436 {
5437         u8 i;
5438         for (i = 0; i < src->num_rates; i++)
5439                 dest->supported_rates[i] = src->supported_rates[i];
5440         dest->num_rates = src->num_rates;
5441 }
5442
5443 /* TODO: Look at sniffed packets in the air to determine if the basic rate
5444  * mask should ever be used -- right now all callers to add the scan rates are
5445  * set with the modulation = CCK, so BASIC_RATE_MASK is never set... */
5446 static void ipw_add_cck_scan_rates(struct ipw_supported_rates *rates,
5447                                    u8 modulation, u32 rate_mask)
5448 {
5449         u8 basic_mask = (LIBIPW_OFDM_MODULATION == modulation) ?
5450             LIBIPW_BASIC_RATE_MASK : 0;
5451
5452         if (rate_mask & LIBIPW_CCK_RATE_1MB_MASK)
5453                 rates->supported_rates[rates->num_rates++] =
5454                     LIBIPW_BASIC_RATE_MASK | LIBIPW_CCK_RATE_1MB;
5455
5456         if (rate_mask & LIBIPW_CCK_RATE_2MB_MASK)
5457                 rates->supported_rates[rates->num_rates++] =
5458                     LIBIPW_BASIC_RATE_MASK | LIBIPW_CCK_RATE_2MB;
5459
5460         if (rate_mask & LIBIPW_CCK_RATE_5MB_MASK)
5461                 rates->supported_rates[rates->num_rates++] = basic_mask |
5462                     LIBIPW_CCK_RATE_5MB;
5463
5464         if (rate_mask & LIBIPW_CCK_RATE_11MB_MASK)
5465                 rates->supported_rates[rates->num_rates++] = basic_mask |
5466                     LIBIPW_CCK_RATE_11MB;
5467 }
5468
5469 static void ipw_add_ofdm_scan_rates(struct ipw_supported_rates *rates,
5470                                     u8 modulation, u32 rate_mask)
5471 {
5472         u8 basic_mask = (LIBIPW_OFDM_MODULATION == modulation) ?
5473             LIBIPW_BASIC_RATE_MASK : 0;
5474
5475         if (rate_mask & LIBIPW_OFDM_RATE_6MB_MASK)
5476                 rates->supported_rates[rates->num_rates++] = basic_mask |
5477                     LIBIPW_OFDM_RATE_6MB;
5478
5479         if (rate_mask & LIBIPW_OFDM_RATE_9MB_MASK)
5480                 rates->supported_rates[rates->num_rates++] =
5481                     LIBIPW_OFDM_RATE_9MB;
5482
5483         if (rate_mask & LIBIPW_OFDM_RATE_12MB_MASK)
5484                 rates->supported_rates[rates->num_rates++] = basic_mask |
5485                     LIBIPW_OFDM_RATE_12MB;
5486
5487         if (rate_mask & LIBIPW_OFDM_RATE_18MB_MASK)
5488                 rates->supported_rates[rates->num_rates++] =
5489                     LIBIPW_OFDM_RATE_18MB;
5490
5491         if (rate_mask & LIBIPW_OFDM_RATE_24MB_MASK)
5492                 rates->supported_rates[rates->num_rates++] = basic_mask |
5493                     LIBIPW_OFDM_RATE_24MB;
5494
5495         if (rate_mask & LIBIPW_OFDM_RATE_36MB_MASK)
5496                 rates->supported_rates[rates->num_rates++] =
5497                     LIBIPW_OFDM_RATE_36MB;
5498
5499         if (rate_mask & LIBIPW_OFDM_RATE_48MB_MASK)
5500                 rates->supported_rates[rates->num_rates++] =
5501                     LIBIPW_OFDM_RATE_48MB;
5502
5503         if (rate_mask & LIBIPW_OFDM_RATE_54MB_MASK)
5504                 rates->supported_rates[rates->num_rates++] =
5505                     LIBIPW_OFDM_RATE_54MB;
5506 }
5507
5508 struct ipw_network_match {
5509         struct libipw_network *network;
5510         struct ipw_supported_rates rates;
5511 };
5512
5513 static int ipw_find_adhoc_network(struct ipw_priv *priv,
5514                                   struct ipw_network_match *match,
5515                                   struct libipw_network *network,
5516                                   int roaming)
5517 {
5518         struct ipw_supported_rates rates;
5519         DECLARE_SSID_BUF(ssid);
5520
5521         /* Verify that this network's capability is compatible with the
5522          * current mode (AdHoc or Infrastructure) */
5523         if ((priv->ieee->iw_mode == IW_MODE_ADHOC &&
5524              !(network->capability & WLAN_CAPABILITY_IBSS))) {
5525                 IPW_DEBUG_MERGE("Network '%s (%pM)' excluded due to "
5526                                 "capability mismatch.\n",
5527                                 print_ssid(ssid, network->ssid,
5528                                            network->ssid_len),
5529                                 network->bssid);
5530                 return 0;
5531         }
5532
5533         if (unlikely(roaming)) {
5534                 /* If we are roaming, then ensure check if this is a valid
5535                  * network to try and roam to */
5536                 if ((network->ssid_len != match->network->ssid_len) ||
5537                     memcmp(network->ssid, match->network->ssid,
5538                            network->ssid_len)) {
5539                         IPW_DEBUG_MERGE("Network '%s (%pM)' excluded "
5540                                         "because of non-network ESSID.\n",
5541                                         print_ssid(ssid, network->ssid,
5542                                                    network->ssid_len),
5543                                         network->bssid);
5544                         return 0;
5545                 }
5546         } else {
5547                 /* If an ESSID has been configured then compare the broadcast
5548                  * ESSID to ours */
5549                 if ((priv->config & CFG_STATIC_ESSID) &&
5550                     ((network->ssid_len != priv->essid_len) ||
5551                      memcmp(network->ssid, priv->essid,
5552                             min(network->ssid_len, priv->essid_len)))) {
5553                         char escaped[IW_ESSID_MAX_SIZE * 2 + 1];
5554
5555                         strncpy(escaped,
5556                                 print_ssid(ssid, network->ssid,
5557                                            network->ssid_len),
5558                                 sizeof(escaped));
5559                         IPW_DEBUG_MERGE("Network '%s (%pM)' excluded "
5560                                         "because of ESSID mismatch: '%s'.\n",
5561                                         escaped, network->bssid,
5562                                         print_ssid(ssid, priv->essid,
5563                                                    priv->essid_len));
5564                         return 0;
5565                 }
5566         }
5567
5568         /* If the old network rate is better than this one, don't bother
5569          * testing everything else. */
5570
5571         if (network->time_stamp[0] < match->network->time_stamp[0]) {
5572                 IPW_DEBUG_MERGE("Network '%s excluded because newer than "
5573                                 "current network.\n",
5574                                 print_ssid(ssid, match->network->ssid,
5575                                            match->network->ssid_len));
5576                 return 0;
5577         } else if (network->time_stamp[1] < match->network->time_stamp[1]) {
5578                 IPW_DEBUG_MERGE("Network '%s excluded because newer than "
5579                                 "current network.\n",
5580                                 print_ssid(ssid, match->network->ssid,
5581                                            match->network->ssid_len));
5582                 return 0;
5583         }
5584
5585         /* Now go through and see if the requested network is valid... */
5586         if (priv->ieee->scan_age != 0 &&
5587             time_after(jiffies, network->last_scanned + priv->ieee->scan_age)) {
5588                 IPW_DEBUG_MERGE("Network '%s (%pM)' excluded "
5589                                 "because of age: %ums.\n",
5590                                 print_ssid(ssid, network->ssid,
5591                                            network->ssid_len),
5592                                 network->bssid,
5593                                 jiffies_to_msecs(jiffies -
5594                                                  network->last_scanned));
5595                 return 0;
5596         }
5597
5598         if ((priv->config & CFG_STATIC_CHANNEL) &&
5599             (network->channel != priv->channel)) {
5600                 IPW_DEBUG_MERGE("Network '%s (%pM)' excluded "
5601                                 "because of channel mismatch: %d != %d.\n",
5602                                 print_ssid(ssid, network->ssid,
5603                                            network->ssid_len),
5604                                 network->bssid,
5605                                 network->channel, priv->channel);
5606                 return 0;
5607         }
5608
5609         /* Verify privacy compatibility */
5610         if (((priv->capability & CAP_PRIVACY_ON) ? 1 : 0) !=
5611             ((network->capability & WLAN_CAPABILITY_PRIVACY) ? 1 : 0)) {
5612                 IPW_DEBUG_MERGE("Network '%s (%pM)' excluded "
5613                                 "because of privacy mismatch: %s != %s.\n",
5614                                 print_ssid(ssid, network->ssid,
5615                                            network->ssid_len),
5616                                 network->bssid,
5617                                 priv->
5618                                 capability & CAP_PRIVACY_ON ? "on" : "off",
5619                                 network->
5620                                 capability & WLAN_CAPABILITY_PRIVACY ? "on" :
5621                                 "off");
5622                 return 0;
5623         }
5624
5625         if (!memcmp(network->bssid, priv->bssid, ETH_ALEN)) {
5626                 IPW_DEBUG_MERGE("Network '%s (%pM)' excluded "
5627                                 "because of the same BSSID match: %pM"
5628                                 ".\n", print_ssid(ssid, network->ssid,
5629                                                   network->ssid_len),
5630                                 network->bssid,
5631                                 priv->bssid);
5632                 return 0;
5633         }
5634
5635         /* Filter out any incompatible freq / mode combinations */
5636         if (!libipw_is_valid_mode(priv->ieee, network->mode)) {
5637                 IPW_DEBUG_MERGE("Network '%s (%pM)' excluded "
5638                                 "because of invalid frequency/mode "
5639                                 "combination.\n",
5640                                 print_ssid(ssid, network->ssid,
5641                                            network->ssid_len),
5642                                 network->bssid);
5643                 return 0;
5644         }
5645
5646         /* Ensure that the rates supported by the driver are compatible with
5647          * this AP, including verification of basic rates (mandatory) */
5648         if (!ipw_compatible_rates(priv, network, &rates)) {
5649                 IPW_DEBUG_MERGE("Network '%s (%pM)' excluded "
5650                                 "because configured rate mask excludes "
5651                                 "AP mandatory rate.\n",
5652                                 print_ssid(ssid, network->ssid,
5653                                            network->ssid_len),
5654                                 network->bssid);
5655                 return 0;
5656         }
5657
5658         if (rates.num_rates == 0) {
5659                 IPW_DEBUG_MERGE("Network '%s (%pM)' excluded "
5660                                 "because of no compatible rates.\n",
5661                                 print_ssid(ssid, network->ssid,
5662                                            network->ssid_len),
5663                                 network->bssid);
5664                 return 0;
5665         }
5666
5667         /* TODO: Perform any further minimal comparititive tests.  We do not
5668          * want to put too much policy logic here; intelligent scan selection
5669          * should occur within a generic IEEE 802.11 user space tool.  */
5670
5671         /* Set up 'new' AP to this network */
5672         ipw_copy_rates(&match->rates, &rates);
5673         match->network = network;
5674         IPW_DEBUG_MERGE("Network '%s (%pM)' is a viable match.\n",
5675                         print_ssid(ssid, network->ssid, network->ssid_len),
5676                         network->bssid);
5677
5678         return 1;
5679 }
5680
5681 static void ipw_merge_adhoc_network(struct work_struct *work)
5682 {
5683         DECLARE_SSID_BUF(ssid);
5684         struct ipw_priv *priv =
5685                 container_of(work, struct ipw_priv, merge_networks);
5686         struct libipw_network *network = NULL;
5687         struct ipw_network_match match = {
5688                 .network = priv->assoc_network
5689         };
5690
5691         if ((priv->status & STATUS_ASSOCIATED) &&
5692             (priv->ieee->iw_mode == IW_MODE_ADHOC)) {
5693                 /* First pass through ROAM process -- look for a better
5694                  * network */
5695                 unsigned long flags;
5696
5697                 spin_lock_irqsave(&priv->ieee->lock, flags);
5698                 list_for_each_entry(network, &priv->ieee->network_list, list) {
5699                         if (network != priv->assoc_network)
5700                                 ipw_find_adhoc_network(priv, &match, network,
5701                                                        1);
5702                 }
5703                 spin_unlock_irqrestore(&priv->ieee->lock, flags);
5704
5705                 if (match.network == priv->assoc_network) {
5706                         IPW_DEBUG_MERGE("No better ADHOC in this network to "
5707                                         "merge to.\n");
5708                         return;
5709                 }
5710
5711                 mutex_lock(&priv->mutex);
5712                 if ((priv->ieee->iw_mode == IW_MODE_ADHOC)) {
5713                         IPW_DEBUG_MERGE("remove network %s\n",
5714                                         print_ssid(ssid, priv->essid,
5715                                                    priv->essid_len));
5716                         ipw_remove_current_network(priv);
5717                 }
5718
5719                 ipw_disassociate(priv);
5720                 priv->assoc_network = match.network;
5721                 mutex_unlock(&priv->mutex);
5722                 return;
5723         }
5724 }
5725
5726 static int ipw_best_network(struct ipw_priv *priv,
5727                             struct ipw_network_match *match,
5728                             struct libipw_network *network, int roaming)
5729 {
5730         struct ipw_supported_rates rates;
5731         DECLARE_SSID_BUF(ssid);
5732
5733         /* Verify that this network's capability is compatible with the
5734          * current mode (AdHoc or Infrastructure) */
5735         if ((priv->ieee->iw_mode == IW_MODE_INFRA &&
5736              !(network->capability & WLAN_CAPABILITY_ESS)) ||
5737             (priv->ieee->iw_mode == IW_MODE_ADHOC &&
5738              !(network->capability & WLAN_CAPABILITY_IBSS))) {
5739                 IPW_DEBUG_ASSOC("Network '%s (%pM)' excluded due to "
5740                                 "capability mismatch.\n",
5741                                 print_ssid(ssid, network->ssid,
5742                                            network->ssid_len),
5743                                 network->bssid);
5744                 return 0;
5745         }
5746
5747         if (unlikely(roaming)) {
5748                 /* If we are roaming, then ensure check if this is a valid
5749                  * network to try and roam to */
5750                 if ((network->ssid_len != match->network->ssid_len) ||
5751                     memcmp(network->ssid, match->network->ssid,
5752                            network->ssid_len)) {
5753                         IPW_DEBUG_ASSOC("Network '%s (%pM)' excluded "
5754                                         "because of non-network ESSID.\n",
5755                                         print_ssid(ssid, network->ssid,
5756                                                    network->ssid_len),
5757                                         network->bssid);
5758                         return 0;
5759                 }
5760         } else {
5761                 /* If an ESSID has been configured then compare the broadcast
5762                  * ESSID to ours */
5763                 if ((priv->config & CFG_STATIC_ESSID) &&
5764                     ((network->ssid_len != priv->essid_len) ||
5765                      memcmp(network->ssid, priv->essid,
5766                             min(network->ssid_len, priv->essid_len)))) {
5767                         char escaped[IW_ESSID_MAX_SIZE * 2 + 1];
5768                         strncpy(escaped,
5769                                 print_ssid(ssid, network->ssid,
5770                                            network->ssid_len),
5771                                 sizeof(escaped));
5772                         IPW_DEBUG_ASSOC("Network '%s (%pM)' excluded "
5773                                         "because of ESSID mismatch: '%s'.\n",
5774                                         escaped, network->bssid,
5775                                         print_ssid(ssid, priv->essid,
5776                                                    priv->essid_len));
5777                         return 0;
5778                 }
5779         }
5780
5781         /* If the old network rate is better than this one, don't bother
5782          * testing everything else. */
5783         if (match->network && match->network->stats.rssi > network->stats.rssi) {
5784                 char escaped[IW_ESSID_MAX_SIZE * 2 + 1];
5785                 strncpy(escaped,
5786                         print_ssid(ssid, network->ssid, network->ssid_len),
5787                         sizeof(escaped));
5788                 IPW_DEBUG_ASSOC("Network '%s (%pM)' excluded because "
5789                                 "'%s (%pM)' has a stronger signal.\n",
5790                                 escaped, network->bssid,
5791                                 print_ssid(ssid, match->network->ssid,
5792                                            match->network->ssid_len),
5793                                 match->network->bssid);
5794                 return 0;
5795         }
5796
5797         /* If this network has already had an association attempt within the
5798          * last 3 seconds, do not try and associate again... */
5799         if (network->last_associate &&
5800             time_after(network->last_associate + (HZ * 3UL), jiffies)) {
5801                 IPW_DEBUG_ASSOC("Network '%s (%pM)' excluded "
5802                                 "because of storming (%ums since last "
5803                                 "assoc attempt).\n",
5804                                 print_ssid(ssid, network->ssid,
5805                                            network->ssid_len),
5806                                 network->bssid,
5807                                 jiffies_to_msecs(jiffies -
5808                                                  network->last_associate));
5809                 return 0;
5810         }
5811
5812         /* Now go through and see if the requested network is valid... */
5813         if (priv->ieee->scan_age != 0 &&
5814             time_after(jiffies, network->last_scanned + priv->ieee->scan_age)) {
5815                 IPW_DEBUG_ASSOC("Network '%s (%pM)' excluded "
5816                                 "because of age: %ums.\n",
5817                                 print_ssid(ssid, network->ssid,
5818                                            network->ssid_len),
5819                                 network->bssid,
5820                                 jiffies_to_msecs(jiffies -
5821                                                  network->last_scanned));
5822                 return 0;
5823         }
5824
5825         if ((priv->config & CFG_STATIC_CHANNEL) &&
5826             (network->channel != priv->channel)) {
5827                 IPW_DEBUG_ASSOC("Network '%s (%pM)' excluded "
5828                                 "because of channel mismatch: %d != %d.\n",
5829                                 print_ssid(ssid, network->ssid,
5830                                            network->ssid_len),
5831                                 network->bssid,
5832                                 network->channel, priv->channel);
5833                 return 0;
5834         }
5835
5836         /* Verify privacy compatibility */
5837         if (((priv->capability & CAP_PRIVACY_ON) ? 1 : 0) !=
5838             ((network->capability & WLAN_CAPABILITY_PRIVACY) ? 1 : 0)) {
5839                 IPW_DEBUG_ASSOC("Network '%s (%pM)' excluded "
5840                                 "because of privacy mismatch: %s != %s.\n",
5841                                 print_ssid(ssid, network->ssid,
5842                                            network->ssid_len),
5843                                 network->bssid,
5844                                 priv->capability & CAP_PRIVACY_ON ? "on" :
5845                                 "off",
5846                                 network->capability &
5847                                 WLAN_CAPABILITY_PRIVACY ? "on" : "off");
5848                 return 0;
5849         }
5850
5851         if ((priv->config & CFG_STATIC_BSSID) &&
5852             memcmp(network->bssid, priv->bssid, ETH_ALEN)) {
5853                 IPW_DEBUG_ASSOC("Network '%s (%pM)' excluded "
5854                                 "because of BSSID mismatch: %pM.\n",
5855                                 print_ssid(ssid, network->ssid,
5856                                            network->ssid_len),
5857                                 network->bssid, priv->bssid);
5858                 return 0;
5859         }
5860
5861         /* Filter out any incompatible freq / mode combinations */
5862         if (!libipw_is_valid_mode(priv->ieee, network->mode)) {
5863                 IPW_DEBUG_ASSOC("Network '%s (%pM)' excluded "
5864                                 "because of invalid frequency/mode "
5865                                 "combination.\n",
5866                                 print_ssid(ssid, network->ssid,
5867                                            network->ssid_len),
5868                                 network->bssid);
5869                 return 0;
5870         }
5871
5872         /* Filter out invalid channel in current GEO */
5873         if (!libipw_is_valid_channel(priv->ieee, network->channel)) {
5874                 IPW_DEBUG_ASSOC("Network '%s (%pM)' excluded "
5875                                 "because of invalid channel in current GEO\n",
5876                                 print_ssid(ssid, network->ssid,
5877                                            network->ssid_len),
5878                                 network->bssid);
5879                 return 0;
5880         }
5881
5882         /* Ensure that the rates supported by the driver are compatible with
5883          * this AP, including verification of basic rates (mandatory) */
5884         if (!ipw_compatible_rates(priv, network, &rates)) {
5885                 IPW_DEBUG_ASSOC("Network '%s (%pM)' excluded "
5886                                 "because configured rate mask excludes "
5887                                 "AP mandatory rate.\n",
5888                                 print_ssid(ssid, network->ssid,
5889                                            network->ssid_len),
5890                                 network->bssid);
5891                 return 0;
5892         }
5893
5894         if (rates.num_rates == 0) {
5895                 IPW_DEBUG_ASSOC("Network '%s (%pM)' excluded "
5896                                 "because of no compatible rates.\n",
5897                                 print_ssid(ssid, network->ssid,
5898                                            network->ssid_len),
5899                                 network->bssid);
5900                 return 0;
5901         }
5902
5903         /* TODO: Perform any further minimal comparititive tests.  We do not
5904          * want to put too much policy logic here; intelligent scan selection
5905          * should occur within a generic IEEE 802.11 user space tool.  */
5906
5907         /* Set up 'new' AP to this network */
5908         ipw_copy_rates(&match->rates, &rates);
5909         match->network = network;
5910
5911         IPW_DEBUG_ASSOC("Network '%s (%pM)' is a viable match.\n",
5912                         print_ssid(ssid, network->ssid, network->ssid_len),
5913                         network->bssid);
5914
5915         return 1;
5916 }
5917
5918 static void ipw_adhoc_create(struct ipw_priv *priv,
5919                              struct libipw_network *network)
5920 {
5921         const struct libipw_geo *geo = libipw_get_geo(priv->ieee);
5922         int i;
5923
5924         /*
5925          * For the purposes of scanning, we can set our wireless mode
5926          * to trigger scans across combinations of bands, but when it
5927          * comes to creating a new ad-hoc network, we have tell the FW
5928          * exactly which band to use.
5929          *
5930          * We also have the possibility of an invalid channel for the
5931          * chossen band.  Attempting to create a new ad-hoc network
5932          * with an invalid channel for wireless mode will trigger a
5933          * FW fatal error.
5934          *
5935          */
5936         switch (libipw_is_valid_channel(priv->ieee, priv->channel)) {
5937         case LIBIPW_52GHZ_BAND:
5938                 network->mode = IEEE_A;
5939                 i = libipw_channel_to_index(priv->ieee, priv->channel);
5940                 BUG_ON(i == -1);
5941                 if (geo->a[i].flags & LIBIPW_CH_PASSIVE_ONLY) {
5942                         IPW_WARNING("Overriding invalid channel\n");
5943                         priv->channel = geo->a[0].channel;
5944                 }
5945                 break;
5946
5947         case LIBIPW_24GHZ_BAND:
5948                 if (priv->ieee->mode & IEEE_G)
5949                         network->mode = IEEE_G;
5950                 else
5951                         network->mode = IEEE_B;
5952                 i = libipw_channel_to_index(priv->ieee, priv->channel);
5953                 BUG_ON(i == -1);
5954                 if (geo->bg[i].flags & LIBIPW_CH_PASSIVE_ONLY) {
5955                         IPW_WARNING("Overriding invalid channel\n");
5956                         priv->channel = geo->bg[0].channel;
5957                 }
5958                 break;
5959
5960         default:
5961                 IPW_WARNING("Overriding invalid channel\n");
5962                 if (priv->ieee->mode & IEEE_A) {
5963                         network->mode = IEEE_A;
5964                         priv->channel = geo->a[0].channel;
5965                 } else if (priv->ieee->mode & IEEE_G) {
5966                         network->mode = IEEE_G;
5967                         priv->channel = geo->bg[0].channel;
5968                 } else {
5969                         network->mode = IEEE_B;
5970                         priv->channel = geo->bg[0].channel;
5971                 }
5972                 break;
5973         }
5974
5975         network->channel = priv->channel;
5976         priv->config |= CFG_ADHOC_PERSIST;
5977         ipw_create_bssid(priv, network->bssid);
5978         network->ssid_len = priv->essid_len;
5979         memcpy(network->ssid, priv->essid, priv->essid_len);
5980         memset(&network->stats, 0, sizeof(network->stats));
5981         network->capability = WLAN_CAPABILITY_IBSS;
5982         if (!(priv->config & CFG_PREAMBLE_LONG))
5983                 network->capability |= WLAN_CAPABILITY_SHORT_PREAMBLE;
5984         if (priv->capability & CAP_PRIVACY_ON)
5985                 network->capability |= WLAN_CAPABILITY_PRIVACY;
5986         network->rates_len = min(priv->rates.num_rates, MAX_RATES_LENGTH);
5987         memcpy(network->rates, priv->rates.supported_rates, network->rates_len);
5988         network->rates_ex_len = priv->rates.num_rates - network->rates_len;
5989         memcpy(network->rates_ex,
5990                &priv->rates.supported_rates[network->rates_len],
5991                network->rates_ex_len);
5992         network->last_scanned = 0;
5993         network->flags = 0;
5994         network->last_associate = 0;
5995         network->time_stamp[0] = 0;
5996         network->time_stamp[1] = 0;
5997         network->beacon_interval = 100; /* Default */
5998         network->listen_interval = 10;  /* Default */
5999         network->atim_window = 0;       /* Default */
6000         network->wpa_ie_len = 0;
6001         network->rsn_ie_len = 0;
6002 }
6003
6004 static void ipw_send_tgi_tx_key(struct ipw_priv *priv, int type, int index)
6005 {
6006         struct ipw_tgi_tx_key key;
6007
6008         if (!(priv->ieee->sec.flags & (1 << index)))
6009                 return;
6010
6011         key.key_id = index;
6012         memcpy(key.key, priv->ieee->sec.keys[index], SCM_TEMPORAL_KEY_LENGTH);
6013         key.security_type = type;
6014         key.station_index = 0;  /* always 0 for BSS */
6015         key.flags = 0;
6016         /* 0 for new key; previous value of counter (after fatal error) */
6017         key.tx_counter[0] = cpu_to_le32(0);
6018         key.tx_counter[1] = cpu_to_le32(0);
6019
6020         ipw_send_cmd_pdu(priv, IPW_CMD_TGI_TX_KEY, sizeof(key), &key);
6021 }
6022
6023 static void ipw_send_wep_keys(struct ipw_priv *priv, int type)
6024 {
6025         struct ipw_wep_key key;
6026         int i;
6027
6028         key.cmd_id = DINO_CMD_WEP_KEY;
6029         key.seq_num = 0;
6030
6031         /* Note: AES keys cannot be set for multiple times.
6032          * Only set it at the first time. */
6033         for (i = 0; i < 4; i++) {
6034                 key.key_index = i | type;
6035                 if (!(priv->ieee->sec.flags & (1 << i))) {
6036                         key.key_size = 0;
6037                         continue;
6038                 }
6039
6040                 key.key_size = priv->ieee->sec.key_sizes[i];
6041                 memcpy(key.key, priv->ieee->sec.keys[i], key.key_size);
6042
6043                 ipw_send_cmd_pdu(priv, IPW_CMD_WEP_KEY, sizeof(key), &key);
6044         }
6045 }
6046
6047 static void ipw_set_hw_decrypt_unicast(struct ipw_priv *priv, int level)
6048 {
6049         if (priv->ieee->host_encrypt)
6050                 return;
6051
6052         switch (level) {
6053         case SEC_LEVEL_3:
6054                 priv->sys_config.disable_unicast_decryption = 0;
6055                 priv->ieee->host_decrypt = 0;
6056                 break;
6057         case SEC_LEVEL_2:
6058                 priv->sys_config.disable_unicast_decryption = 1;
6059                 priv->ieee->host_decrypt = 1;
6060                 break;
6061         case SEC_LEVEL_1:
6062                 priv->sys_config.disable_unicast_decryption = 0;
6063                 priv->ieee->host_decrypt = 0;
6064                 break;
6065         case SEC_LEVEL_0:
6066                 priv->sys_config.disable_unicast_decryption = 1;
6067                 break;
6068         default:
6069                 break;
6070         }
6071 }
6072
6073 static void ipw_set_hw_decrypt_multicast(struct ipw_priv *priv, int level)
6074 {
6075         if (priv->ieee->host_encrypt)
6076                 return;
6077
6078         switch (level) {
6079         case SEC_LEVEL_3:
6080                 priv->sys_config.disable_multicast_decryption = 0;
6081                 break;
6082         case SEC_LEVEL_2:
6083                 priv->sys_config.disable_multicast_decryption = 1;
6084                 break;
6085         case SEC_LEVEL_1:
6086                 priv->sys_config.disable_multicast_decryption = 0;
6087                 break;
6088         case SEC_LEVEL_0:
6089                 priv->sys_config.disable_multicast_decryption = 1;
6090                 break;
6091         default:
6092                 break;
6093         }
6094 }
6095
6096 static void ipw_set_hwcrypto_keys(struct ipw_priv *priv)
6097 {
6098         switch (priv->ieee->sec.level) {
6099         case SEC_LEVEL_3:
6100                 if (priv->ieee->sec.flags & SEC_ACTIVE_KEY)
6101                         ipw_send_tgi_tx_key(priv,
6102                                             DCT_FLAG_EXT_SECURITY_CCM,
6103                                             priv->ieee->sec.active_key);
6104
6105                 if (!priv->ieee->host_mc_decrypt)
6106                         ipw_send_wep_keys(priv, DCW_WEP_KEY_SEC_TYPE_CCM);
6107                 break;
6108         case SEC_LEVEL_2:
6109                 if (priv->ieee->sec.flags & SEC_ACTIVE_KEY)
6110                         ipw_send_tgi_tx_key(priv,
6111                                             DCT_FLAG_EXT_SECURITY_TKIP,
6112                                             priv->ieee->sec.active_key);
6113                 break;
6114         case SEC_LEVEL_1:
6115                 ipw_send_wep_keys(priv, DCW_WEP_KEY_SEC_TYPE_WEP);
6116                 ipw_set_hw_decrypt_unicast(priv, priv->ieee->sec.level);
6117                 ipw_set_hw_decrypt_multicast(priv, priv->ieee->sec.level);
6118                 break;
6119         case SEC_LEVEL_0:
6120         default:
6121                 break;
6122         }
6123 }
6124
6125 static void ipw_adhoc_check(void *data)
6126 {
6127         struct ipw_priv *priv = data;
6128
6129         if (priv->missed_adhoc_beacons++ > priv->disassociate_threshold &&
6130             !(priv->config & CFG_ADHOC_PERSIST)) {
6131                 IPW_DEBUG(IPW_DL_INFO | IPW_DL_NOTIF |
6132                           IPW_DL_STATE | IPW_DL_ASSOC,
6133                           "Missed beacon: %d - disassociate\n",
6134                           priv->missed_adhoc_beacons);
6135                 ipw_remove_current_network(priv);
6136                 ipw_disassociate(priv);
6137                 return;
6138         }
6139
6140         schedule_delayed_work(&priv->adhoc_check,
6141                               le16_to_cpu(priv->assoc_request.beacon_interval));
6142 }
6143
6144 static void ipw_bg_adhoc_check(struct work_struct *work)
6145 {
6146         struct ipw_priv *priv =
6147                 container_of(work, struct ipw_priv, adhoc_check.work);
6148         mutex_lock(&priv->mutex);
6149         ipw_adhoc_check(priv);
6150         mutex_unlock(&priv->mutex);
6151 }
6152
6153 static void ipw_debug_config(struct ipw_priv *priv)
6154 {
6155         DECLARE_SSID_BUF(ssid);
6156         IPW_DEBUG_INFO("Scan completed, no valid APs matched "
6157                        "[CFG 0x%08X]\n", priv->config);
6158         if (priv->config & CFG_STATIC_CHANNEL)
6159                 IPW_DEBUG_INFO("Channel locked to %d\n", priv->channel);
6160         else
6161                 IPW_DEBUG_INFO("Channel unlocked.\n");
6162         if (priv->config & CFG_STATIC_ESSID)
6163                 IPW_DEBUG_INFO("ESSID locked to '%s'\n",
6164                                print_ssid(ssid, priv->essid, priv->essid_len));
6165         else
6166                 IPW_DEBUG_INFO("ESSID unlocked.\n");
6167         if (priv->config & CFG_STATIC_BSSID)
6168                 IPW_DEBUG_INFO("BSSID locked to %pM\n", priv->bssid);
6169         else
6170                 IPW_DEBUG_INFO("BSSID unlocked.\n");
6171         if (priv->capability & CAP_PRIVACY_ON)
6172                 IPW_DEBUG_INFO("PRIVACY on\n");
6173         else
6174                 IPW_DEBUG_INFO("PRIVACY off\n");
6175         IPW_DEBUG_INFO("RATE MASK: 0x%08X\n", priv->rates_mask);
6176 }
6177
6178 static void ipw_set_fixed_rate(struct ipw_priv *priv, int mode)
6179 {
6180         /* TODO: Verify that this works... */
6181         struct ipw_fixed_rate fr;
6182         u32 reg;
6183         u16 mask = 0;
6184         u16 new_tx_rates = priv->rates_mask;
6185
6186         /* Identify 'current FW band' and match it with the fixed
6187          * Tx rates */
6188
6189         switch (priv->ieee->freq_band) {
6190         case LIBIPW_52GHZ_BAND: /* A only */
6191                 /* IEEE_A */
6192                 if (priv->rates_mask & ~LIBIPW_OFDM_RATES_MASK) {
6193                         /* Invalid fixed rate mask */
6194                         IPW_DEBUG_WX
6195                             ("invalid fixed rate mask in ipw_set_fixed_rate\n");
6196                         new_tx_rates = 0;
6197                         break;
6198                 }
6199
6200                 new_tx_rates >>= LIBIPW_OFDM_SHIFT_MASK_A;
6201                 break;
6202
6203         default:                /* 2.4Ghz or Mixed */
6204                 /* IEEE_B */
6205                 if (mode == IEEE_B) {
6206                         if (new_tx_rates & ~LIBIPW_CCK_RATES_MASK) {
6207                                 /* Invalid fixed rate mask */
6208                                 IPW_DEBUG_WX
6209                                     ("invalid fixed rate mask in ipw_set_fixed_rate\n");
6210                                 new_tx_rates = 0;
6211                         }
6212                         break;
6213                 }
6214
6215                 /* IEEE_G */
6216                 if (new_tx_rates & ~(LIBIPW_CCK_RATES_MASK |
6217                                     LIBIPW_OFDM_RATES_MASK)) {
6218                         /* Invalid fixed rate mask */
6219                         IPW_DEBUG_WX
6220                             ("invalid fixed rate mask in ipw_set_fixed_rate\n");
6221                         new_tx_rates = 0;
6222                         break;
6223                 }
6224
6225                 if (LIBIPW_OFDM_RATE_6MB_MASK & new_tx_rates) {
6226                         mask |= (LIBIPW_OFDM_RATE_6MB_MASK >> 1);
6227                         new_tx_rates &= ~LIBIPW_OFDM_RATE_6MB_MASK;
6228                 }
6229
6230                 if (LIBIPW_OFDM_RATE_9MB_MASK & new_tx_rates) {
6231                         mask |= (LIBIPW_OFDM_RATE_9MB_MASK >> 1);
6232                         new_tx_rates &= ~LIBIPW_OFDM_RATE_9MB_MASK;
6233                 }
6234
6235                 if (LIBIPW_OFDM_RATE_12MB_MASK & new_tx_rates) {
6236                         mask |= (LIBIPW_OFDM_RATE_12MB_MASK >> 1);
6237                         new_tx_rates &= ~LIBIPW_OFDM_RATE_12MB_MASK;
6238                 }
6239
6240                 new_tx_rates |= mask;
6241                 break;
6242         }
6243
6244         fr.tx_rates = cpu_to_le16(new_tx_rates);
6245
6246         reg = ipw_read32(priv, IPW_MEM_FIXED_OVERRIDE);
6247         ipw_write_reg32(priv, reg, *(u32 *) & fr);
6248 }
6249
6250 static void ipw_abort_scan(struct ipw_priv *priv)
6251 {
6252         int err;
6253
6254         if (priv->status & STATUS_SCAN_ABORTING) {
6255                 IPW_DEBUG_HC("Ignoring concurrent scan abort request.\n");
6256                 return;
6257         }
6258         priv->status |= STATUS_SCAN_ABORTING;
6259
6260         err = ipw_send_scan_abort(priv);
6261         if (err)
6262                 IPW_DEBUG_HC("Request to abort scan failed.\n");
6263 }
6264
6265 static void ipw_add_scan_channels(struct ipw_priv *priv,
6266                                   struct ipw_scan_request_ext *scan,
6267                                   int scan_type)
6268 {
6269         int channel_index = 0;
6270         const struct libipw_geo *geo;
6271         int i;
6272
6273         geo = libipw_get_geo(priv->ieee);
6274
6275         if (priv->ieee->freq_band & LIBIPW_52GHZ_BAND) {
6276                 int start = channel_index;
6277                 for (i = 0; i < geo->a_channels; i++) {
6278                         if ((priv->status & STATUS_ASSOCIATED) &&
6279                             geo->a[i].channel == priv->channel)
6280                                 continue;
6281                         channel_index++;
6282                         scan->channels_list[channel_index] = geo->a[i].channel;
6283                         ipw_set_scan_type(scan, channel_index,
6284                                           geo->a[i].
6285                                           flags & LIBIPW_CH_PASSIVE_ONLY ?
6286                                           IPW_SCAN_PASSIVE_FULL_DWELL_SCAN :
6287                                           scan_type);
6288                 }
6289
6290                 if (start != channel_index) {
6291                         scan->channels_list[start] = (u8) (IPW_A_MODE << 6) |
6292                             (channel_index - start);
6293                         channel_index++;
6294                 }
6295         }
6296
6297         if (priv->ieee->freq_band & LIBIPW_24GHZ_BAND) {
6298                 int start = channel_index;
6299                 if (priv->config & CFG_SPEED_SCAN) {
6300                         int index;
6301                         u8 channels[LIBIPW_24GHZ_CHANNELS] = {
6302                                 /* nop out the list */
6303                                 [0] = 0
6304                         };
6305
6306                         u8 channel;
6307                         while (channel_index < IPW_SCAN_CHANNELS - 1) {
6308                                 channel =
6309                                     priv->speed_scan[priv->speed_scan_pos];
6310                                 if (channel == 0) {
6311                                         priv->speed_scan_pos = 0;
6312                                         channel = priv->speed_scan[0];
6313                                 }
6314                                 if ((priv->status & STATUS_ASSOCIATED) &&
6315                                     channel == priv->channel) {
6316                                         priv->speed_scan_pos++;
6317                                         continue;
6318                                 }
6319
6320                                 /* If this channel has already been
6321                                  * added in scan, break from loop
6322                                  * and this will be the first channel
6323                                  * in the next scan.
6324                                  */
6325                                 if (channels[channel - 1] != 0)
6326                                         break;
6327
6328                                 channels[channel - 1] = 1;
6329                                 priv->speed_scan_pos++;
6330                                 channel_index++;
6331                                 scan->channels_list[channel_index] = channel;
6332                                 index =
6333                                     libipw_channel_to_index(priv->ieee, channel);
6334                                 ipw_set_scan_type(scan, channel_index,
6335                                                   geo->bg[index].
6336                                                   flags &
6337                                                   LIBIPW_CH_PASSIVE_ONLY ?
6338                                                   IPW_SCAN_PASSIVE_FULL_DWELL_SCAN
6339                                                   : scan_type);
6340                         }
6341                 } else {
6342                         for (i = 0; i < geo->bg_channels; i++) {
6343                                 if ((priv->status & STATUS_ASSOCIATED) &&
6344                                     geo->bg[i].channel == priv->channel)
6345                                         continue;
6346                                 channel_index++;
6347                                 scan->channels_list[channel_index] =
6348                                     geo->bg[i].channel;
6349                                 ipw_set_scan_type(scan, channel_index,
6350                                                   geo->bg[i].
6351                                                   flags &
6352                                                   LIBIPW_CH_PASSIVE_ONLY ?
6353                                                   IPW_SCAN_PASSIVE_FULL_DWELL_SCAN
6354                                                   : scan_type);
6355                         }
6356                 }
6357
6358                 if (start != channel_index) {
6359                         scan->channels_list[start] = (u8) (IPW_B_MODE << 6) |
6360                             (channel_index - start);
6361                 }
6362         }
6363 }
6364
6365 static int ipw_passive_dwell_time(struct ipw_priv *priv)
6366 {
6367         /* staying on passive channels longer than the DTIM interval during a
6368          * scan, while associated, causes the firmware to cancel the scan
6369          * without notification. Hence, don't stay on passive channels longer
6370          * than the beacon interval.
6371          */
6372         if (priv->status & STATUS_ASSOCIATED
6373             && priv->assoc_network->beacon_interval > 10)
6374                 return priv->assoc_network->beacon_interval - 10;
6375         else
6376                 return 120;
6377 }
6378
6379 static int ipw_request_scan_helper(struct ipw_priv *priv, int type, int direct)
6380 {
6381         struct ipw_scan_request_ext scan;
6382         int err = 0, scan_type;
6383
6384         if (!(priv->status & STATUS_INIT) ||
6385             (priv->status & STATUS_EXIT_PENDING))
6386                 return 0;
6387
6388         mutex_lock(&priv->mutex);
6389
6390         if (direct && (priv->direct_scan_ssid_len == 0)) {
6391                 IPW_DEBUG_HC("Direct scan requested but no SSID to scan for\n");
6392                 priv->status &= ~STATUS_DIRECT_SCAN_PENDING;
6393                 goto done;
6394         }
6395
6396         if (priv->status & STATUS_SCANNING) {
6397                 IPW_DEBUG_HC("Concurrent scan requested.  Queuing.\n");
6398                 priv->status |= direct ? STATUS_DIRECT_SCAN_PENDING :
6399                                         STATUS_SCAN_PENDING;
6400                 goto done;
6401         }
6402
6403         if (!(priv->status & STATUS_SCAN_FORCED) &&
6404             priv->status & STATUS_SCAN_ABORTING) {
6405                 IPW_DEBUG_HC("Scan request while abort pending.  Queuing.\n");
6406                 priv->status |= direct ? STATUS_DIRECT_SCAN_PENDING :
6407                                         STATUS_SCAN_PENDING;
6408                 goto done;
6409         }
6410
6411         if (priv->status & STATUS_RF_KILL_MASK) {
6412                 IPW_DEBUG_HC("Queuing scan due to RF Kill activation\n");
6413                 priv->status |= direct ? STATUS_DIRECT_SCAN_PENDING :
6414                                         STATUS_SCAN_PENDING;
6415                 goto done;
6416         }
6417
6418         memset(&scan, 0, sizeof(scan));
6419         scan.full_scan_index = cpu_to_le32(libipw_get_scans(priv->ieee));
6420
6421         if (type == IW_SCAN_TYPE_PASSIVE) {
6422                 IPW_DEBUG_WX("use passive scanning\n");
6423                 scan_type = IPW_SCAN_PASSIVE_FULL_DWELL_SCAN;
6424                 scan.dwell_time[IPW_SCAN_PASSIVE_FULL_DWELL_SCAN] =
6425                         cpu_to_le16(ipw_passive_dwell_time(priv));
6426                 ipw_add_scan_channels(priv, &scan, scan_type);
6427                 goto send_request;
6428         }
6429
6430         /* Use active scan by default. */
6431         if (priv->config & CFG_SPEED_SCAN)
6432                 scan.dwell_time[IPW_SCAN_ACTIVE_BROADCAST_SCAN] =
6433                         cpu_to_le16(30);
6434         else
6435                 scan.dwell_time[IPW_SCAN_ACTIVE_BROADCAST_SCAN] =
6436                         cpu_to_le16(20);
6437
6438         scan.dwell_time[IPW_SCAN_ACTIVE_BROADCAST_AND_DIRECT_SCAN] =
6439                 cpu_to_le16(20);
6440
6441         scan.dwell_time[IPW_SCAN_PASSIVE_FULL_DWELL_SCAN] =
6442                 cpu_to_le16(ipw_passive_dwell_time(priv));
6443         scan.dwell_time[IPW_SCAN_ACTIVE_DIRECT_SCAN] = cpu_to_le16(20);
6444
6445 #ifdef CONFIG_IPW2200_MONITOR
6446         if (priv->ieee->iw_mode == IW_MODE_MONITOR) {
6447                 u8 channel;
6448                 u8 band = 0;
6449
6450                 switch (libipw_is_valid_channel(priv->ieee, priv->channel)) {
6451                 case LIBIPW_52GHZ_BAND:
6452                         band = (u8) (IPW_A_MODE << 6) | 1;
6453                         channel = priv->channel;
6454                         break;
6455
6456                 case LIBIPW_24GHZ_BAND:
6457                         band = (u8) (IPW_B_MODE << 6) | 1;
6458                         channel = priv->channel;
6459                         break;
6460
6461                 default:
6462                         band = (u8) (IPW_B_MODE << 6) | 1;
6463                         channel = 9;
6464                         break;
6465                 }
6466
6467                 scan.channels_list[0] = band;
6468                 scan.channels_list[1] = channel;
6469                 ipw_set_scan_type(&scan, 1, IPW_SCAN_PASSIVE_FULL_DWELL_SCAN);
6470
6471                 /* NOTE:  The card will sit on this channel for this time
6472                  * period.  Scan aborts are timing sensitive and frequently
6473                  * result in firmware restarts.  As such, it is best to
6474                  * set a small dwell_time here and just keep re-issuing
6475                  * scans.  Otherwise fast channel hopping will not actually
6476                  * hop channels.
6477                  *
6478                  * TODO: Move SPEED SCAN support to all modes and bands */
6479                 scan.dwell_time[IPW_SCAN_PASSIVE_FULL_DWELL_SCAN] =
6480                         cpu_to_le16(2000);
6481         } else {
6482 #endif                          /* CONFIG_IPW2200_MONITOR */
6483                 /* Honor direct scans first, otherwise if we are roaming make
6484                  * this a direct scan for the current network.  Finally,
6485                  * ensure that every other scan is a fast channel hop scan */
6486                 if (direct) {
6487                         err = ipw_send_ssid(priv, priv->direct_scan_ssid,
6488                                             priv->direct_scan_ssid_len);
6489                         if (err) {
6490                                 IPW_DEBUG_HC("Attempt to send SSID command  "
6491                                              "failed\n");
6492                                 goto done;
6493                         }
6494
6495                         scan_type = IPW_SCAN_ACTIVE_BROADCAST_AND_DIRECT_SCAN;
6496                 } else if ((priv->status & STATUS_ROAMING)
6497                            || (!(priv->status & STATUS_ASSOCIATED)
6498                                && (priv->config & CFG_STATIC_ESSID)
6499                                && (le32_to_cpu(scan.full_scan_index) % 2))) {
6500                         err = ipw_send_ssid(priv, priv->essid, priv->essid_len);
6501                         if (err) {
6502                                 IPW_DEBUG_HC("Attempt to send SSID command "
6503                                              "failed.\n");
6504                                 goto done;
6505                         }
6506
6507                         scan_type = IPW_SCAN_ACTIVE_BROADCAST_AND_DIRECT_SCAN;
6508                 } else
6509                         scan_type = IPW_SCAN_ACTIVE_BROADCAST_SCAN;
6510
6511                 ipw_add_scan_channels(priv, &scan, scan_type);
6512 #ifdef CONFIG_IPW2200_MONITOR
6513         }
6514 #endif
6515
6516 send_request:
6517         err = ipw_send_scan_request_ext(priv, &scan);
6518         if (err) {
6519                 IPW_DEBUG_HC("Sending scan command failed: %08X\n", err);
6520                 goto done;
6521         }
6522
6523         priv->status |= STATUS_SCANNING;
6524         if (direct) {
6525                 priv->status &= ~STATUS_DIRECT_SCAN_PENDING;
6526                 priv->direct_scan_ssid_len = 0;
6527         } else
6528                 priv->status &= ~STATUS_SCAN_PENDING;
6529
6530         schedule_delayed_work(&priv->scan_check, IPW_SCAN_CHECK_WATCHDOG);
6531 done:
6532         mutex_unlock(&priv->mutex);
6533         return err;
6534 }
6535
6536 static void ipw_request_passive_scan(struct work_struct *work)
6537 {
6538         struct ipw_priv *priv =
6539                 container_of(work, struct ipw_priv, request_passive_scan.work);
6540         ipw_request_scan_helper(priv, IW_SCAN_TYPE_PASSIVE, 0);
6541 }
6542
6543 static void ipw_request_scan(struct work_struct *work)
6544 {
6545         struct ipw_priv *priv =
6546                 container_of(work, struct ipw_priv, request_scan.work);
6547         ipw_request_scan_helper(priv, IW_SCAN_TYPE_ACTIVE, 0);
6548 }
6549
6550 static void ipw_request_direct_scan(struct work_struct *work)
6551 {
6552         struct ipw_priv *priv =
6553                 container_of(work, struct ipw_priv, request_direct_scan.work);
6554         ipw_request_scan_helper(priv, IW_SCAN_TYPE_ACTIVE, 1);
6555 }
6556
6557 static void ipw_bg_abort_scan(struct work_struct *work)
6558 {
6559         struct ipw_priv *priv =
6560                 container_of(work, struct ipw_priv, abort_scan);
6561         mutex_lock(&priv->mutex);
6562         ipw_abort_scan(priv);
6563         mutex_unlock(&priv->mutex);
6564 }
6565
6566 static int ipw_wpa_enable(struct ipw_priv *priv, int value)
6567 {
6568         /* This is called when wpa_supplicant loads and closes the driver
6569          * interface. */
6570         priv->ieee->wpa_enabled = value;
6571         return 0;
6572 }
6573
6574 static int ipw_wpa_set_auth_algs(struct ipw_priv *priv, int value)
6575 {
6576         struct libipw_device *ieee = priv->ieee;
6577         struct libipw_security sec = {
6578                 .flags = SEC_AUTH_MODE,
6579         };
6580         int ret = 0;
6581
6582         if (value & IW_AUTH_ALG_SHARED_KEY) {
6583                 sec.auth_mode = WLAN_AUTH_SHARED_KEY;
6584                 ieee->open_wep = 0;
6585         } else if (value & IW_AUTH_ALG_OPEN_SYSTEM) {
6586                 sec.auth_mode = WLAN_AUTH_OPEN;
6587                 ieee->open_wep = 1;
6588         } else if (value & IW_AUTH_ALG_LEAP) {
6589                 sec.auth_mode = WLAN_AUTH_LEAP;
6590                 ieee->open_wep = 1;
6591         } else
6592                 return -EINVAL;
6593
6594         if (ieee->set_security)
6595                 ieee->set_security(ieee->dev, &sec);
6596         else
6597                 ret = -EOPNOTSUPP;
6598
6599         return ret;
6600 }
6601
6602 static void ipw_wpa_assoc_frame(struct ipw_priv *priv, char *wpa_ie,
6603                                 int wpa_ie_len)
6604 {
6605         /* make sure WPA is enabled */
6606         ipw_wpa_enable(priv, 1);
6607 }
6608
6609 static int ipw_set_rsn_capa(struct ipw_priv *priv,
6610                             char *capabilities, int length)
6611 {
6612         IPW_DEBUG_HC("HOST_CMD_RSN_CAPABILITIES\n");
6613
6614         return ipw_send_cmd_pdu(priv, IPW_CMD_RSN_CAPABILITIES, length,
6615                                 capabilities);
6616 }
6617
6618 /*
6619  * WE-18 support
6620  */
6621
6622 /* SIOCSIWGENIE */
6623 static int ipw_wx_set_genie(struct net_device *dev,
6624                             struct iw_request_info *info,
6625                             union iwreq_data *wrqu, char *extra)
6626 {
6627         struct ipw_priv *priv = libipw_priv(dev);
6628         struct libipw_device *ieee = priv->ieee;
6629         u8 *buf;
6630         int err = 0;
6631
6632         if (wrqu->data.length > MAX_WPA_IE_LEN ||
6633             (wrqu->data.length && extra == NULL))
6634                 return -EINVAL;
6635
6636         if (wrqu->data.length) {
6637                 buf = kmemdup(extra, wrqu->data.length, GFP_KERNEL);
6638                 if (buf == NULL) {
6639                         err = -ENOMEM;
6640                         goto out;
6641                 }
6642
6643                 kfree(ieee->wpa_ie);
6644                 ieee->wpa_ie = buf;
6645                 ieee->wpa_ie_len = wrqu->data.length;
6646         } else {
6647                 kfree(ieee->wpa_ie);
6648                 ieee->wpa_ie = NULL;
6649                 ieee->wpa_ie_len = 0;
6650         }
6651
6652         ipw_wpa_assoc_frame(priv, ieee->wpa_ie, ieee->wpa_ie_len);
6653       out:
6654         return err;
6655 }
6656
6657 /* SIOCGIWGENIE */
6658 static int ipw_wx_get_genie(struct net_device *dev,
6659                             struct iw_request_info *info,
6660                             union iwreq_data *wrqu, char *extra)
6661 {
6662         struct ipw_priv *priv = libipw_priv(dev);
6663         struct libipw_device *ieee = priv->ieee;
6664         int err = 0;
6665
6666         if (ieee->wpa_ie_len == 0 || ieee->wpa_ie == NULL) {
6667                 wrqu->data.length = 0;
6668                 goto out;
6669         }
6670
6671         if (wrqu->data.length < ieee->wpa_ie_len) {
6672                 err = -E2BIG;
6673                 goto out;
6674         }
6675
6676         wrqu->data.length = ieee->wpa_ie_len;
6677         memcpy(extra, ieee->wpa_ie, ieee->wpa_ie_len);
6678
6679       out:
6680         return err;
6681 }
6682
6683 static int wext_cipher2level(int cipher)
6684 {
6685         switch (cipher) {
6686         case IW_AUTH_CIPHER_NONE:
6687                 return SEC_LEVEL_0;
6688         case IW_AUTH_CIPHER_WEP40:
6689         case IW_AUTH_CIPHER_WEP104:
6690                 return SEC_LEVEL_1;
6691         case IW_AUTH_CIPHER_TKIP:
6692                 return SEC_LEVEL_2;
6693         case IW_AUTH_CIPHER_CCMP:
6694                 return SEC_LEVEL_3;
6695         default:
6696                 return -1;
6697         }
6698 }
6699
6700 /* SIOCSIWAUTH */
6701 static int ipw_wx_set_auth(struct net_device *dev,
6702                            struct iw_request_info *info,
6703                            union iwreq_data *wrqu, char *extra)
6704 {
6705         struct ipw_priv *priv = libipw_priv(dev);
6706         struct libipw_device *ieee = priv->ieee;
6707         struct iw_param *param = &wrqu->param;
6708         struct lib80211_crypt_data *crypt;
6709         unsigned long flags;
6710         int ret = 0;
6711
6712         switch (param->flags & IW_AUTH_INDEX) {
6713         case IW_AUTH_WPA_VERSION:
6714                 break;
6715         case IW_AUTH_CIPHER_PAIRWISE:
6716                 ipw_set_hw_decrypt_unicast(priv,
6717                                            wext_cipher2level(param->value));
6718                 break;
6719         case IW_AUTH_CIPHER_GROUP:
6720                 ipw_set_hw_decrypt_multicast(priv,
6721                                              wext_cipher2level(param->value));
6722                 break;
6723         case IW_AUTH_KEY_MGMT:
6724                 /*
6725                  * ipw2200 does not use these parameters
6726                  */
6727                 break;
6728
6729         case IW_AUTH_TKIP_COUNTERMEASURES:
6730                 crypt = priv->ieee->crypt_info.crypt[priv->ieee->crypt_info.tx_keyidx];
6731                 if (!crypt || !crypt->ops->set_flags || !crypt->ops->get_flags)
6732                         break;
6733
6734                 flags = crypt->ops->get_flags(crypt->priv);
6735
6736                 if (param->value)
6737                         flags |= IEEE80211_CRYPTO_TKIP_COUNTERMEASURES;
6738                 else
6739                         flags &= ~IEEE80211_CRYPTO_TKIP_COUNTERMEASURES;
6740
6741                 crypt->ops->set_flags(flags, crypt->priv);
6742
6743                 break;
6744
6745         case IW_AUTH_DROP_UNENCRYPTED:{
6746                         /* HACK:
6747                          *
6748                          * wpa_supplicant calls set_wpa_enabled when the driver
6749                          * is loaded and unloaded, regardless of if WPA is being
6750                          * used.  No other calls are made which can be used to
6751                          * determine if encryption will be used or not prior to
6752                          * association being expected.  If encryption is not being
6753                          * used, drop_unencrypted is set to false, else true -- we
6754                          * can use this to determine if the CAP_PRIVACY_ON bit should
6755                          * be set.
6756                          */
6757                         struct libipw_security sec = {
6758                                 .flags = SEC_ENABLED,
6759                                 .enabled = param->value,
6760                         };
6761                         priv->ieee->drop_unencrypted = param->value;
6762                         /* We only change SEC_LEVEL for open mode. Others
6763                          * are set by ipw_wpa_set_encryption.
6764                          */
6765                         if (!param->value) {
6766                                 sec.flags |= SEC_LEVEL;
6767                                 sec.level = SEC_LEVEL_0;
6768                         } else {
6769                                 sec.flags |= SEC_LEVEL;
6770                                 sec.level = SEC_LEVEL_1;
6771                         }
6772                         if (priv->ieee->set_security)
6773                                 priv->ieee->set_security(priv->ieee->dev, &sec);
6774                         break;
6775                 }
6776
6777         case IW_AUTH_80211_AUTH_ALG:
6778                 ret = ipw_wpa_set_auth_algs(priv, param->value);
6779                 break;
6780
6781         case IW_AUTH_WPA_ENABLED:
6782                 ret = ipw_wpa_enable(priv, param->value);
6783                 ipw_disassociate(priv);
6784                 break;
6785
6786         case IW_AUTH_RX_UNENCRYPTED_EAPOL:
6787                 ieee->ieee802_1x = param->value;
6788                 break;
6789
6790         case IW_AUTH_PRIVACY_INVOKED:
6791                 ieee->privacy_invoked = param->value;
6792                 break;
6793
6794         default:
6795                 return -EOPNOTSUPP;
6796         }
6797         return ret;
6798 }
6799
6800 /* SIOCGIWAUTH */
6801 static int ipw_wx_get_auth(struct net_device *dev,
6802                            struct iw_request_info *info,
6803                            union iwreq_data *wrqu, char *extra)
6804 {
6805         struct ipw_priv *priv = libipw_priv(dev);
6806         struct libipw_device *ieee = priv->ieee;
6807         struct lib80211_crypt_data *crypt;
6808         struct iw_param *param = &wrqu->param;
6809
6810         switch (param->flags & IW_AUTH_INDEX) {
6811         case IW_AUTH_WPA_VERSION:
6812         case IW_AUTH_CIPHER_PAIRWISE:
6813         case IW_AUTH_CIPHER_GROUP:
6814         case IW_AUTH_KEY_MGMT:
6815                 /*
6816                  * wpa_supplicant will control these internally
6817                  */
6818                 return -EOPNOTSUPP;
6819
6820         case IW_AUTH_TKIP_COUNTERMEASURES:
6821                 crypt = priv->ieee->crypt_info.crypt[priv->ieee->crypt_info.tx_keyidx];
6822                 if (!crypt || !crypt->ops->get_flags)
6823                         break;
6824
6825                 param->value = (crypt->ops->get_flags(crypt->priv) &
6826                                 IEEE80211_CRYPTO_TKIP_COUNTERMEASURES) ? 1 : 0;
6827
6828                 break;
6829
6830         case IW_AUTH_DROP_UNENCRYPTED:
6831                 param->value = ieee->drop_unencrypted;
6832                 break;
6833
6834         case IW_AUTH_80211_AUTH_ALG:
6835                 param->value = ieee->sec.auth_mode;
6836                 break;
6837
6838         case IW_AUTH_WPA_ENABLED:
6839                 param->value = ieee->wpa_enabled;
6840                 break;
6841
6842         case IW_AUTH_RX_UNENCRYPTED_EAPOL:
6843                 param->value = ieee->ieee802_1x;
6844                 break;
6845
6846         case IW_AUTH_ROAMING_CONTROL:
6847         case IW_AUTH_PRIVACY_INVOKED:
6848                 param->value = ieee->privacy_invoked;
6849                 break;
6850
6851         default:
6852                 return -EOPNOTSUPP;
6853         }
6854         return 0;
6855 }
6856
6857 /* SIOCSIWENCODEEXT */
6858 static int ipw_wx_set_encodeext(struct net_device *dev,
6859                                 struct iw_request_info *info,
6860                                 union iwreq_data *wrqu, char *extra)
6861 {
6862         struct ipw_priv *priv = libipw_priv(dev);
6863         struct iw_encode_ext *ext = (struct iw_encode_ext *)extra;
6864
6865         if (hwcrypto) {
6866                 if (ext->alg == IW_ENCODE_ALG_TKIP) {
6867                         /* IPW HW can't build TKIP MIC,
6868                            host decryption still needed */
6869                         if (ext->ext_flags & IW_ENCODE_EXT_GROUP_KEY)
6870                                 priv->ieee->host_mc_decrypt = 1;
6871                         else {
6872                                 priv->ieee->host_encrypt = 0;
6873                                 priv->ieee->host_encrypt_msdu = 1;
6874                                 priv->ieee->host_decrypt = 1;
6875                         }
6876                 } else {
6877                         priv->ieee->host_encrypt = 0;
6878                         priv->ieee->host_encrypt_msdu = 0;
6879                         priv->ieee->host_decrypt = 0;
6880                         priv->ieee->host_mc_decrypt = 0;
6881                 }
6882         }
6883
6884         return libipw_wx_set_encodeext(priv->ieee, info, wrqu, extra);
6885 }
6886
6887 /* SIOCGIWENCODEEXT */
6888 static int ipw_wx_get_encodeext(struct net_device *dev,
6889                                 struct iw_request_info *info,
6890                                 union iwreq_data *wrqu, char *extra)
6891 {
6892         struct ipw_priv *priv = libipw_priv(dev);
6893         return libipw_wx_get_encodeext(priv->ieee, info, wrqu, extra);
6894 }
6895
6896 /* SIOCSIWMLME */
6897 static int ipw_wx_set_mlme(struct net_device *dev,
6898                            struct iw_request_info *info,
6899                            union iwreq_data *wrqu, char *extra)
6900 {
6901         struct ipw_priv *priv = libipw_priv(dev);
6902         struct iw_mlme *mlme = (struct iw_mlme *)extra;
6903         __le16 reason;
6904
6905         reason = cpu_to_le16(mlme->reason_code);
6906
6907         switch (mlme->cmd) {
6908         case IW_MLME_DEAUTH:
6909                 /* silently ignore */
6910                 break;
6911
6912         case IW_MLME_DISASSOC:
6913                 ipw_disassociate(priv);
6914                 break;
6915
6916         default:
6917                 return -EOPNOTSUPP;
6918         }
6919         return 0;
6920 }
6921
6922 #ifdef CONFIG_IPW2200_QOS
6923
6924 /* QoS */
6925 /*
6926 * get the modulation type of the current network or
6927 * the card current mode
6928 */
6929 static u8 ipw_qos_current_mode(struct ipw_priv * priv)
6930 {
6931         u8 mode = 0;
6932
6933         if (priv->status & STATUS_ASSOCIATED) {
6934                 unsigned long flags;
6935
6936                 spin_lock_irqsave(&priv->ieee->lock, flags);
6937                 mode = priv->assoc_network->mode;
6938                 spin_unlock_irqrestore(&priv->ieee->lock, flags);
6939         } else {
6940                 mode = priv->ieee->mode;
6941         }
6942         IPW_DEBUG_QOS("QoS network/card mode %d\n", mode);
6943         return mode;
6944 }
6945
6946 /*
6947 * Handle management frame beacon and probe response
6948 */
6949 static int ipw_qos_handle_probe_response(struct ipw_priv *priv,
6950                                          int active_network,
6951                                          struct libipw_network *network)
6952 {
6953         u32 size = sizeof(struct libipw_qos_parameters);
6954
6955         if (network->capability & WLAN_CAPABILITY_IBSS)
6956                 network->qos_data.active = network->qos_data.supported;
6957
6958         if (network->flags & NETWORK_HAS_QOS_MASK) {
6959                 if (active_network &&
6960                     (network->flags & NETWORK_HAS_QOS_PARAMETERS))
6961                         network->qos_data.active = network->qos_data.supported;
6962
6963                 if ((network->qos_data.active == 1) && (active_network == 1) &&
6964                     (network->flags & NETWORK_HAS_QOS_PARAMETERS) &&
6965                     (network->qos_data.old_param_count !=
6966                      network->qos_data.param_count)) {
6967                         network->qos_data.old_param_count =
6968                             network->qos_data.param_count;
6969                         schedule_work(&priv->qos_activate);
6970                         IPW_DEBUG_QOS("QoS parameters change call "
6971                                       "qos_activate\n");
6972                 }
6973         } else {
6974                 if ((priv->ieee->mode == IEEE_B) || (network->mode == IEEE_B))
6975                         memcpy(&network->qos_data.parameters,
6976                                &def_parameters_CCK, size);
6977                 else
6978                         memcpy(&network->qos_data.parameters,
6979                                &def_parameters_OFDM, size);
6980
6981                 if ((network->qos_data.active == 1) && (active_network == 1)) {
6982                         IPW_DEBUG_QOS("QoS was disabled call qos_activate\n");
6983                         schedule_work(&priv->qos_activate);
6984                 }
6985
6986                 network->qos_data.active = 0;
6987                 network->qos_data.supported = 0;
6988         }
6989         if ((priv->status & STATUS_ASSOCIATED) &&
6990             (priv->ieee->iw_mode == IW_MODE_ADHOC) && (active_network == 0)) {
6991                 if (memcmp(network->bssid, priv->bssid, ETH_ALEN))
6992                         if (network->capability & WLAN_CAPABILITY_IBSS)
6993                                 if ((network->ssid_len ==
6994                                      priv->assoc_network->ssid_len) &&
6995                                     !memcmp(network->ssid,
6996                                             priv->assoc_network->ssid,
6997                                             network->ssid_len)) {
6998                                         schedule_work(&priv->merge_networks);
6999                                 }
7000         }
7001
7002         return 0;
7003 }
7004
7005 /*
7006 * This function set up the firmware to support QoS. It sends
7007 * IPW_CMD_QOS_PARAMETERS and IPW_CMD_WME_INFO
7008 */
7009 static int ipw_qos_activate(struct ipw_priv *priv,
7010                             struct libipw_qos_data *qos_network_data)
7011 {
7012         int err;
7013         struct libipw_qos_parameters qos_parameters[QOS_QOS_SETS];
7014         struct libipw_qos_parameters *active_one = NULL;
7015         u32 size = sizeof(struct libipw_qos_parameters);
7016         u32 burst_duration;
7017         int i;
7018         u8 type;
7019
7020         type = ipw_qos_current_mode(priv);
7021
7022         active_one = &(qos_parameters[QOS_PARAM_SET_DEF_CCK]);
7023         memcpy(active_one, priv->qos_data.def_qos_parm_CCK, size);
7024         active_one = &(qos_parameters[QOS_PARAM_SET_DEF_OFDM]);
7025         memcpy(active_one, priv->qos_data.def_qos_parm_OFDM, size);
7026
7027         if (qos_network_data == NULL) {
7028                 if (type == IEEE_B) {
7029                         IPW_DEBUG_QOS("QoS activate network mode %d\n", type);
7030                         active_one = &def_parameters_CCK;
7031                 } else
7032                         active_one = &def_parameters_OFDM;
7033
7034                 memcpy(&qos_parameters[QOS_PARAM_SET_ACTIVE], active_one, size);
7035                 burst_duration = ipw_qos_get_burst_duration(priv);
7036                 for (i = 0; i < QOS_QUEUE_NUM; i++)
7037                         qos_parameters[QOS_PARAM_SET_ACTIVE].tx_op_limit[i] =
7038                             cpu_to_le16(burst_duration);
7039         } else if (priv->ieee->iw_mode == IW_MODE_ADHOC) {
7040                 if (type == IEEE_B) {
7041                         IPW_DEBUG_QOS("QoS activate IBSS network mode %d\n",
7042                                       type);
7043                         if (priv->qos_data.qos_enable == 0)
7044                                 active_one = &def_parameters_CCK;
7045                         else
7046                                 active_one = priv->qos_data.def_qos_parm_CCK;
7047                 } else {
7048                         if (priv->qos_data.qos_enable == 0)
7049                                 active_one = &def_parameters_OFDM;
7050                         else
7051                                 active_one = priv->qos_data.def_qos_parm_OFDM;
7052                 }
7053                 memcpy(&qos_parameters[QOS_PARAM_SET_ACTIVE], active_one, size);
7054         } else {
7055                 unsigned long flags;
7056                 int active;
7057
7058                 spin_lock_irqsave(&priv->ieee->lock, flags);
7059                 active_one = &(qos_network_data->parameters);
7060                 qos_network_data->old_param_count =
7061                     qos_network_data->param_count;
7062                 memcpy(&qos_parameters[QOS_PARAM_SET_ACTIVE], active_one, size);
7063                 active = qos_network_data->supported;
7064                 spin_unlock_irqrestore(&priv->ieee->lock, flags);
7065
7066                 if (active == 0) {
7067                         burst_duration = ipw_qos_get_burst_duration(priv);
7068                         for (i = 0; i < QOS_QUEUE_NUM; i++)
7069                                 qos_parameters[QOS_PARAM_SET_ACTIVE].
7070                                     tx_op_limit[i] = cpu_to_le16(burst_duration);
7071                 }
7072         }
7073
7074         IPW_DEBUG_QOS("QoS sending IPW_CMD_QOS_PARAMETERS\n");
7075         err = ipw_send_qos_params_command(priv, &qos_parameters[0]);
7076         if (err)
7077                 IPW_DEBUG_QOS("QoS IPW_CMD_QOS_PARAMETERS failed\n");
7078
7079         return err;
7080 }
7081
7082 /*
7083 * send IPW_CMD_WME_INFO to the firmware
7084 */
7085 static int ipw_qos_set_info_element(struct ipw_priv *priv)
7086 {
7087         int ret = 0;
7088         struct libipw_qos_information_element qos_info;
7089
7090         if (priv == NULL)
7091                 return -1;
7092
7093         qos_info.elementID = QOS_ELEMENT_ID;
7094         qos_info.length = sizeof(struct libipw_qos_information_element) - 2;
7095
7096         qos_info.version = QOS_VERSION_1;
7097         qos_info.ac_info = 0;
7098
7099         memcpy(qos_info.qui, qos_oui, QOS_OUI_LEN);
7100         qos_info.qui_type = QOS_OUI_TYPE;
7101         qos_info.qui_subtype = QOS_OUI_INFO_SUB_TYPE;
7102
7103         ret = ipw_send_qos_info_command(priv, &qos_info);
7104         if (ret != 0) {
7105                 IPW_DEBUG_QOS("QoS error calling ipw_send_qos_info_command\n");
7106         }
7107         return ret;
7108 }
7109
7110 /*
7111 * Set the QoS parameter with the association request structure
7112 */
7113 static int ipw_qos_association(struct ipw_priv *priv,
7114                                struct libipw_network *network)
7115 {
7116         int err = 0;
7117         struct libipw_qos_data *qos_data = NULL;
7118         struct libipw_qos_data ibss_data = {
7119                 .supported = 1,
7120                 .active = 1,
7121         };
7122
7123         switch (priv->ieee->iw_mode) {
7124         case IW_MODE_ADHOC:
7125                 BUG_ON(!(network->capability & WLAN_CAPABILITY_IBSS));
7126
7127                 qos_data = &ibss_data;
7128                 break;
7129
7130         case IW_MODE_INFRA:
7131                 qos_data = &network->qos_data;
7132                 break;
7133
7134         default:
7135                 BUG();
7136                 break;
7137         }
7138
7139         err = ipw_qos_activate(priv, qos_data);
7140         if (err) {
7141                 priv->assoc_request.policy_support &= ~HC_QOS_SUPPORT_ASSOC;
7142                 return err;
7143         }
7144
7145         if (priv->qos_data.qos_enable && qos_data->supported) {
7146                 IPW_DEBUG_QOS("QoS will be enabled for this association\n");
7147                 priv->assoc_request.policy_support |= HC_QOS_SUPPORT_ASSOC;
7148                 return ipw_qos_set_info_element(priv);
7149         }
7150
7151         return 0;
7152 }
7153
7154 /*
7155 * handling the beaconing responses. if we get different QoS setting
7156 * off the network from the associated setting, adjust the QoS
7157 * setting
7158 */
7159 static int ipw_qos_association_resp(struct ipw_priv *priv,
7160                                     struct libipw_network *network)
7161 {
7162         int ret = 0;
7163         unsigned long flags;
7164         u32 size = sizeof(struct libipw_qos_parameters);
7165         int set_qos_param = 0;
7166
7167         if ((priv == NULL) || (network == NULL) ||
7168             (priv->assoc_network == NULL))
7169                 return ret;
7170
7171         if (!(priv->status & STATUS_ASSOCIATED))
7172                 return ret;
7173
7174         if ((priv->ieee->iw_mode != IW_MODE_INFRA))
7175                 return ret;
7176
7177         spin_lock_irqsave(&priv->ieee->lock, flags);
7178         if (network->flags & NETWORK_HAS_QOS_PARAMETERS) {
7179                 memcpy(&priv->assoc_network->qos_data, &network->qos_data,
7180                        sizeof(struct libipw_qos_data));
7181                 priv->assoc_network->qos_data.active = 1;
7182                 if ((network->qos_data.old_param_count !=
7183                      network->qos_data.param_count)) {
7184                         set_qos_param = 1;
7185                         network->qos_data.old_param_count =
7186                             network->qos_data.param_count;
7187                 }
7188
7189         } else {
7190                 if ((network->mode == IEEE_B) || (priv->ieee->mode == IEEE_B))
7191                         memcpy(&priv->assoc_network->qos_data.parameters,
7192                                &def_parameters_CCK, size);
7193                 else
7194                         memcpy(&priv->assoc_network->qos_data.parameters,
7195                                &def_parameters_OFDM, size);
7196                 priv->assoc_network->qos_data.active = 0;
7197                 priv->assoc_network->qos_data.supported = 0;
7198                 set_qos_param = 1;
7199         }
7200
7201         spin_unlock_irqrestore(&priv->ieee->lock, flags);
7202
7203         if (set_qos_param == 1)
7204                 schedule_work(&priv->qos_activate);
7205
7206         return ret;
7207 }
7208
7209 static u32 ipw_qos_get_burst_duration(struct ipw_priv *priv)
7210 {
7211         u32 ret = 0;
7212
7213         if ((priv == NULL))
7214                 return 0;
7215
7216         if (!(priv->ieee->modulation & LIBIPW_OFDM_MODULATION))
7217                 ret = priv->qos_data.burst_duration_CCK;
7218         else
7219                 ret = priv->qos_data.burst_duration_OFDM;
7220
7221         return ret;
7222 }
7223
7224 /*
7225 * Initialize the setting of QoS global
7226 */
7227 static void ipw_qos_init(struct ipw_priv *priv, int enable,
7228                          int burst_enable, u32 burst_duration_CCK,
7229                          u32 burst_duration_OFDM)
7230 {
7231         priv->qos_data.qos_enable = enable;
7232
7233         if (priv->qos_data.qos_enable) {
7234                 priv->qos_data.def_qos_parm_CCK = &def_qos_parameters_CCK;
7235                 priv->qos_data.def_qos_parm_OFDM = &def_qos_parameters_OFDM;
7236                 IPW_DEBUG_QOS("QoS is enabled\n");
7237         } else {
7238                 priv->qos_data.def_qos_parm_CCK = &def_parameters_CCK;
7239                 priv->qos_data.def_qos_parm_OFDM = &def_parameters_OFDM;
7240                 IPW_DEBUG_QOS("QoS is not enabled\n");
7241         }
7242
7243         priv->qos_data.burst_enable = burst_enable;
7244
7245         if (burst_enable) {
7246                 priv->qos_data.burst_duration_CCK = burst_duration_CCK;
7247                 priv->qos_data.burst_duration_OFDM = burst_duration_OFDM;
7248         } else {
7249                 priv->qos_data.burst_duration_CCK = 0;
7250                 priv->qos_data.burst_duration_OFDM = 0;
7251         }
7252 }
7253
7254 /*
7255 * map the packet priority to the right TX Queue
7256 */
7257 static int ipw_get_tx_queue_number(struct ipw_priv *priv, u16 priority)
7258 {
7259         if (priority > 7 || !priv->qos_data.qos_enable)
7260                 priority = 0;
7261
7262         return from_priority_to_tx_queue[priority] - 1;
7263 }
7264
7265 static int ipw_is_qos_active(struct net_device *dev,
7266                              struct sk_buff *skb)
7267 {
7268         struct ipw_priv *priv = libipw_priv(dev);
7269         struct libipw_qos_data *qos_data = NULL;
7270         int active, supported;
7271         u8 *daddr = skb->data + ETH_ALEN;
7272         int unicast = !is_multicast_ether_addr(daddr);
7273
7274         if (!(priv->status & STATUS_ASSOCIATED))
7275                 return 0;
7276
7277         qos_data = &priv->assoc_network->qos_data;
7278
7279         if (priv->ieee->iw_mode == IW_MODE_ADHOC) {
7280                 if (unicast == 0)
7281                         qos_data->active = 0;
7282                 else
7283                         qos_data->active = qos_data->supported;
7284         }
7285         active = qos_data->active;
7286         supported = qos_data->supported;
7287         IPW_DEBUG_QOS("QoS  %d network is QoS active %d  supported %d  "
7288                       "unicast %d\n",
7289                       priv->qos_data.qos_enable, active, supported, unicast);
7290         if (active && priv->qos_data.qos_enable)
7291                 return 1;
7292
7293         return 0;
7294
7295 }
7296 /*
7297 * add QoS parameter to the TX command
7298 */
7299 static int ipw_qos_set_tx_queue_command(struct ipw_priv *priv,
7300                                         u16 priority,
7301                                         struct tfd_data *tfd)
7302 {
7303         int tx_queue_id = 0;
7304
7305
7306         tx_queue_id = from_priority_to_tx_queue[priority] - 1;
7307         tfd->tx_flags_ext |= DCT_FLAG_EXT_QOS_ENABLED;
7308
7309         if (priv->qos_data.qos_no_ack_mask & (1UL << tx_queue_id)) {
7310                 tfd->tx_flags &= ~DCT_FLAG_ACK_REQD;
7311                 tfd->tfd.tfd_26.mchdr.qos_ctrl |= cpu_to_le16(CTRL_QOS_NO_ACK);
7312         }
7313         return 0;
7314 }
7315
7316 /*
7317 * background support to run QoS activate functionality
7318 */
7319 static void ipw_bg_qos_activate(struct work_struct *work)
7320 {
7321         struct ipw_priv *priv =
7322                 container_of(work, struct ipw_priv, qos_activate);
7323
7324         mutex_lock(&priv->mutex);
7325
7326         if (priv->status & STATUS_ASSOCIATED)
7327                 ipw_qos_activate(priv, &(priv->assoc_network->qos_data));
7328
7329         mutex_unlock(&priv->mutex);
7330 }
7331
7332 static int ipw_handle_probe_response(struct net_device *dev,
7333                                      struct libipw_probe_response *resp,
7334                                      struct libipw_network *network)
7335 {
7336         struct ipw_priv *priv = libipw_priv(dev);
7337         int active_network = ((priv->status & STATUS_ASSOCIATED) &&
7338                               (network == priv->assoc_network));
7339
7340         ipw_qos_handle_probe_response(priv, active_network, network);
7341
7342         return 0;
7343 }
7344
7345 static int ipw_handle_beacon(struct net_device *dev,
7346                              struct libipw_beacon *resp,
7347                              struct libipw_network *network)
7348 {
7349         struct ipw_priv *priv = libipw_priv(dev);
7350         int active_network = ((priv->status & STATUS_ASSOCIATED) &&
7351                               (network == priv->assoc_network));
7352
7353         ipw_qos_handle_probe_response(priv, active_network, network);
7354
7355         return 0;
7356 }
7357
7358 static int ipw_handle_assoc_response(struct net_device *dev,
7359                                      struct libipw_assoc_response *resp,
7360                                      struct libipw_network *network)
7361 {
7362         struct ipw_priv *priv = libipw_priv(dev);
7363         ipw_qos_association_resp(priv, network);
7364         return 0;
7365 }
7366
7367 static int ipw_send_qos_params_command(struct ipw_priv *priv, struct libipw_qos_parameters
7368                                        *qos_param)
7369 {
7370         return ipw_send_cmd_pdu(priv, IPW_CMD_QOS_PARAMETERS,
7371                                 sizeof(*qos_param) * 3, qos_param);
7372 }
7373
7374 static int ipw_send_qos_info_command(struct ipw_priv *priv, struct libipw_qos_information_element
7375                                      *qos_param)
7376 {
7377         return ipw_send_cmd_pdu(priv, IPW_CMD_WME_INFO, sizeof(*qos_param),
7378                                 qos_param);
7379 }
7380
7381 #endif                          /* CONFIG_IPW2200_QOS */
7382
7383 static int ipw_associate_network(struct ipw_priv *priv,
7384                                  struct libipw_network *network,
7385                                  struct ipw_supported_rates *rates, int roaming)
7386 {
7387         int err;
7388         DECLARE_SSID_BUF(ssid);
7389
7390         if (priv->config & CFG_FIXED_RATE)
7391                 ipw_set_fixed_rate(priv, network->mode);
7392
7393         if (!(priv->config & CFG_STATIC_ESSID)) {
7394                 priv->essid_len = min(network->ssid_len,
7395                                       (u8) IW_ESSID_MAX_SIZE);
7396                 memcpy(priv->essid, network->ssid, priv->essid_len);
7397         }
7398
7399         network->last_associate = jiffies;
7400
7401         memset(&priv->assoc_request, 0, sizeof(priv->assoc_request));
7402         priv->assoc_request.channel = network->channel;
7403         priv->assoc_request.auth_key = 0;
7404
7405         if ((priv->capability & CAP_PRIVACY_ON) &&
7406             (priv->ieee->sec.auth_mode == WLAN_AUTH_SHARED_KEY)) {
7407                 priv->assoc_request.auth_type = AUTH_SHARED_KEY;
7408                 priv->assoc_request.auth_key = priv->ieee->sec.active_key;
7409
7410                 if (priv->ieee->sec.level == SEC_LEVEL_1)
7411                         ipw_send_wep_keys(priv, DCW_WEP_KEY_SEC_TYPE_WEP);
7412
7413         } else if ((priv->capability & CAP_PRIVACY_ON) &&
7414                    (priv->ieee->sec.auth_mode == WLAN_AUTH_LEAP))
7415                 priv->assoc_request.auth_type = AUTH_LEAP;
7416         else
7417                 priv->assoc_request.auth_type = AUTH_OPEN;
7418
7419         if (priv->ieee->wpa_ie_len) {
7420                 priv->assoc_request.policy_support = cpu_to_le16(0x02); /* RSN active */
7421                 ipw_set_rsn_capa(priv, priv->ieee->wpa_ie,
7422                                  priv->ieee->wpa_ie_len);
7423         }
7424
7425         /*
7426          * It is valid for our ieee device to support multiple modes, but
7427          * when it comes to associating to a given network we have to choose
7428          * just one mode.
7429          */
7430         if (network->mode & priv->ieee->mode & IEEE_A)
7431                 priv->assoc_request.ieee_mode = IPW_A_MODE;
7432         else if (network->mode & priv->ieee->mode & IEEE_G)
7433                 priv->assoc_request.ieee_mode = IPW_G_MODE;
7434         else if (network->mode & priv->ieee->mode & IEEE_B)
7435                 priv->assoc_request.ieee_mode = IPW_B_MODE;
7436
7437         priv->assoc_request.capability = cpu_to_le16(network->capability);
7438         if ((network->capability & WLAN_CAPABILITY_SHORT_PREAMBLE)
7439             && !(priv->config & CFG_PREAMBLE_LONG)) {
7440                 priv->assoc_request.preamble_length = DCT_FLAG_SHORT_PREAMBLE;
7441         } else {
7442                 priv->assoc_request.preamble_length = DCT_FLAG_LONG_PREAMBLE;
7443
7444                 /* Clear the short preamble if we won't be supporting it */
7445                 priv->assoc_request.capability &=
7446                     ~cpu_to_le16(WLAN_CAPABILITY_SHORT_PREAMBLE);
7447         }
7448
7449         /* Clear capability bits that aren't used in Ad Hoc */
7450         if (priv->ieee->iw_mode == IW_MODE_ADHOC)
7451                 priv->assoc_request.capability &=
7452                     ~cpu_to_le16(WLAN_CAPABILITY_SHORT_SLOT_TIME);
7453
7454         IPW_DEBUG_ASSOC("%ssociation attempt: '%s', channel %d, "
7455                         "802.11%c [%d], %s[:%s], enc=%s%s%s%c%c\n",
7456                         roaming ? "Rea" : "A",
7457                         print_ssid(ssid, priv->essid, priv->essid_len),
7458                         network->channel,
7459                         ipw_modes[priv->assoc_request.ieee_mode],
7460                         rates->num_rates,
7461                         (priv->assoc_request.preamble_length ==
7462                          DCT_FLAG_LONG_PREAMBLE) ? "long" : "short",
7463                         network->capability &
7464                         WLAN_CAPABILITY_SHORT_PREAMBLE ? "short" : "long",
7465                         priv->capability & CAP_PRIVACY_ON ? "on " : "off",
7466                         priv->capability & CAP_PRIVACY_ON ?
7467                         (priv->capability & CAP_SHARED_KEY ? "(shared)" :
7468                          "(open)") : "",
7469                         priv->capability & CAP_PRIVACY_ON ? " key=" : "",
7470                         priv->capability & CAP_PRIVACY_ON ?
7471                         '1' + priv->ieee->sec.active_key : '.',
7472                         priv->capability & CAP_PRIVACY_ON ? '.' : ' ');
7473
7474         priv->assoc_request.beacon_interval = cpu_to_le16(network->beacon_interval);
7475         if ((priv->ieee->iw_mode == IW_MODE_ADHOC) &&
7476             (network->time_stamp[0] == 0) && (network->time_stamp[1] == 0)) {
7477                 priv->assoc_request.assoc_type = HC_IBSS_START;
7478                 priv->assoc_request.assoc_tsf_msw = 0;
7479                 priv->assoc_request.assoc_tsf_lsw = 0;
7480         } else {
7481                 if (unlikely(roaming))
7482                         priv->assoc_request.assoc_type = HC_REASSOCIATE;
7483                 else
7484                         priv->assoc_request.assoc_type = HC_ASSOCIATE;
7485                 priv->assoc_request.assoc_tsf_msw = cpu_to_le32(network->time_stamp[1]);
7486                 priv->assoc_request.assoc_tsf_lsw = cpu_to_le32(network->time_stamp[0]);
7487         }
7488
7489         memcpy(priv->assoc_request.bssid, network->bssid, ETH_ALEN);
7490
7491         if (priv->ieee->iw_mode == IW_MODE_ADHOC) {
7492                 memset(&priv->assoc_request.dest, 0xFF, ETH_ALEN);
7493                 priv->assoc_request.atim_window = cpu_to_le16(network->atim_window);
7494         } else {
7495                 memcpy(priv->assoc_request.dest, network->bssid, ETH_ALEN);
7496                 priv->assoc_request.atim_window = 0;
7497         }
7498
7499         priv->assoc_request.listen_interval = cpu_to_le16(network->listen_interval);
7500
7501         err = ipw_send_ssid(priv, priv->essid, priv->essid_len);
7502         if (err) {
7503                 IPW_DEBUG_HC("Attempt to send SSID command failed.\n");
7504                 return err;
7505         }
7506
7507         rates->ieee_mode = priv->assoc_request.ieee_mode;
7508         rates->purpose = IPW_RATE_CONNECT;
7509         ipw_send_supported_rates(priv, rates);
7510
7511         if (priv->assoc_request.ieee_mode == IPW_G_MODE)
7512                 priv->sys_config.dot11g_auto_detection = 1;
7513         else
7514                 priv->sys_config.dot11g_auto_detection = 0;
7515
7516         if (priv->ieee->iw_mode == IW_MODE_ADHOC)
7517                 priv->sys_config.answer_broadcast_ssid_probe = 1;
7518         else
7519                 priv->sys_config.answer_broadcast_ssid_probe = 0;
7520
7521         err = ipw_send_system_config(priv);
7522         if (err) {
7523                 IPW_DEBUG_HC("Attempt to send sys config command failed.\n");
7524                 return err;
7525         }
7526
7527         IPW_DEBUG_ASSOC("Association sensitivity: %d\n", network->stats.rssi);
7528         err = ipw_set_sensitivity(priv, network->stats.rssi + IPW_RSSI_TO_DBM);
7529         if (err) {
7530                 IPW_DEBUG_HC("Attempt to send associate command failed.\n");
7531                 return err;
7532         }
7533
7534         /*
7535          * If preemption is enabled, it is possible for the association
7536          * to complete before we return from ipw_send_associate.  Therefore
7537          * we have to be sure and update our priviate data first.
7538          */
7539         priv->channel = network->channel;
7540         memcpy(priv->bssid, network->bssid, ETH_ALEN);
7541         priv->status |= STATUS_ASSOCIATING;
7542         priv->status &= ~STATUS_SECURITY_UPDATED;
7543
7544         priv->assoc_network = network;
7545
7546 #ifdef CONFIG_IPW2200_QOS
7547         ipw_qos_association(priv, network);
7548 #endif
7549
7550         err = ipw_send_associate(priv, &priv->assoc_request);
7551         if (err) {
7552                 IPW_DEBUG_HC("Attempt to send associate command failed.\n");
7553                 return err;
7554         }
7555
7556         IPW_DEBUG(IPW_DL_STATE, "associating: '%s' %pM\n",
7557                   print_ssid(ssid, priv->essid, priv->essid_len),
7558                   priv->bssid);
7559
7560         return 0;
7561 }
7562
7563 static void ipw_roam(void *data)
7564 {
7565         struct ipw_priv *priv = data;
7566         struct libipw_network *network = NULL;
7567         struct ipw_network_match match = {
7568                 .network = priv->assoc_network
7569         };
7570
7571         /* The roaming process is as follows:
7572          *
7573          * 1.  Missed beacon threshold triggers the roaming process by
7574          *     setting the status ROAM bit and requesting a scan.
7575          * 2.  When the scan completes, it schedules the ROAM work
7576          * 3.  The ROAM work looks at all of the known networks for one that
7577          *     is a better network than the currently associated.  If none
7578          *     found, the ROAM process is over (ROAM bit cleared)
7579          * 4.  If a better network is found, a disassociation request is
7580          *     sent.
7581          * 5.  When the disassociation completes, the roam work is again
7582          *     scheduled.  The second time through, the driver is no longer
7583          *     associated, and the newly selected network is sent an
7584          *     association request.
7585          * 6.  At this point ,the roaming process is complete and the ROAM
7586          *     status bit is cleared.
7587          */
7588
7589         /* If we are no longer associated, and the roaming bit is no longer
7590          * set, then we are not actively roaming, so just return */
7591         if (!(priv->status & (STATUS_ASSOCIATED | STATUS_ROAMING)))
7592                 return;
7593
7594         if (priv->status & STATUS_ASSOCIATED) {
7595                 /* First pass through ROAM process -- look for a better
7596                  * network */
7597                 unsigned long flags;
7598                 u8 rssi = priv->assoc_network->stats.rssi;
7599                 priv->assoc_network->stats.rssi = -128;
7600                 spin_lock_irqsave(&priv->ieee->lock, flags);
7601                 list_for_each_entry(network, &priv->ieee->network_list, list) {
7602                         if (network != priv->assoc_network)
7603                                 ipw_best_network(priv, &match, network, 1);
7604                 }
7605                 spin_unlock_irqrestore(&priv->ieee->lock, flags);
7606                 priv->assoc_network->stats.rssi = rssi;
7607
7608                 if (match.network == priv->assoc_network) {
7609                         IPW_DEBUG_ASSOC("No better APs in this network to "
7610                                         "roam to.\n");
7611                         priv->status &= ~STATUS_ROAMING;
7612                         ipw_debug_config(priv);
7613                         return;
7614                 }
7615
7616                 ipw_send_disassociate(priv, 1);
7617                 priv->assoc_network = match.network;
7618
7619                 return;
7620         }
7621
7622         /* Second pass through ROAM process -- request association */
7623         ipw_compatible_rates(priv, priv->assoc_network, &match.rates);
7624         ipw_associate_network(priv, priv->assoc_network, &match.rates, 1);
7625         priv->status &= ~STATUS_ROAMING;
7626 }
7627
7628 static void ipw_bg_roam(struct work_struct *work)
7629 {
7630         struct ipw_priv *priv =
7631                 container_of(work, struct ipw_priv, roam);
7632         mutex_lock(&priv->mutex);
7633         ipw_roam(priv);
7634         mutex_unlock(&priv->mutex);
7635 }
7636
7637 static int ipw_associate(void *data)
7638 {
7639         struct ipw_priv *priv = data;
7640
7641         struct libipw_network *network = NULL;
7642         struct ipw_network_match match = {
7643                 .network = NULL
7644         };
7645         struct ipw_supported_rates *rates;
7646         struct list_head *element;
7647         unsigned long flags;
7648         DECLARE_SSID_BUF(ssid);
7649
7650         if (priv->ieee->iw_mode == IW_MODE_MONITOR) {
7651                 IPW_DEBUG_ASSOC("Not attempting association (monitor mode)\n");
7652                 return 0;
7653         }
7654
7655         if (priv->status & (STATUS_ASSOCIATED | STATUS_ASSOCIATING)) {
7656                 IPW_DEBUG_ASSOC("Not attempting association (already in "
7657                                 "progress)\n");
7658                 return 0;
7659         }
7660
7661         if (priv->status & STATUS_DISASSOCIATING) {
7662                 IPW_DEBUG_ASSOC("Not attempting association (in "
7663                                 "disassociating)\n ");
7664                 schedule_work(&priv->associate);
7665                 return 0;
7666         }
7667
7668         if (!ipw_is_init(priv) || (priv->status & STATUS_SCANNING)) {
7669                 IPW_DEBUG_ASSOC("Not attempting association (scanning or not "
7670                                 "initialized)\n");
7671                 return 0;
7672         }
7673
7674         if (!(priv->config & CFG_ASSOCIATE) &&
7675             !(priv->config & (CFG_STATIC_ESSID | CFG_STATIC_BSSID))) {
7676                 IPW_DEBUG_ASSOC("Not attempting association (associate=0)\n");
7677                 return 0;
7678         }
7679
7680         /* Protect our use of the network_list */
7681         spin_lock_irqsave(&priv->ieee->lock, flags);
7682         list_for_each_entry(network, &priv->ieee->network_list, list)
7683             ipw_best_network(priv, &match, network, 0);
7684
7685         network = match.network;
7686         rates = &match.rates;
7687
7688         if (network == NULL &&
7689             priv->ieee->iw_mode == IW_MODE_ADHOC &&
7690             priv->config & CFG_ADHOC_CREATE &&
7691             priv->config & CFG_STATIC_ESSID &&
7692             priv->config & CFG_STATIC_CHANNEL) {
7693                 /* Use oldest network if the free list is empty */
7694                 if (list_empty(&priv->ieee->network_free_list)) {
7695                         struct libipw_network *oldest = NULL;
7696                         struct libipw_network *target;
7697
7698                         list_for_each_entry(target, &priv->ieee->network_list, list) {
7699                                 if ((oldest == NULL) ||
7700                                     (target->last_scanned < oldest->last_scanned))
7701                                         oldest = target;
7702                         }
7703
7704                         /* If there are no more slots, expire the oldest */
7705                         list_del(&oldest->list);
7706                         target = oldest;
7707                         IPW_DEBUG_ASSOC("Expired '%s' (%pM) from "
7708                                         "network list.\n",
7709                                         print_ssid(ssid, target->ssid,
7710                                                    target->ssid_len),
7711                                         target->bssid);
7712                         list_add_tail(&target->list,
7713                                       &priv->ieee->network_free_list);
7714                 }
7715
7716                 element = priv->ieee->network_free_list.next;
7717                 network = list_entry(element, struct libipw_network, list);
7718                 ipw_adhoc_create(priv, network);
7719                 rates = &priv->rates;
7720                 list_del(element);
7721                 list_add_tail(&network->list, &priv->ieee->network_list);
7722         }
7723         spin_unlock_irqrestore(&priv->ieee->lock, flags);
7724
7725         /* If we reached the end of the list, then we don't have any valid
7726          * matching APs */
7727         if (!network) {
7728                 ipw_debug_config(priv);
7729
7730                 if (!(priv->status & STATUS_SCANNING)) {
7731                         if (!(priv->config & CFG_SPEED_SCAN))
7732                                 schedule_delayed_work(&priv->request_scan,
7733                                                       SCAN_INTERVAL);
7734                         else
7735                                 schedule_delayed_work(&priv->request_scan, 0);
7736                 }
7737
7738                 return 0;
7739         }
7740
7741         ipw_associate_network(priv, network, rates, 0);
7742
7743         return 1;
7744 }
7745
7746 static void ipw_bg_associate(struct work_struct *work)
7747 {
7748         struct ipw_priv *priv =
7749                 container_of(work, struct ipw_priv, associate);
7750         mutex_lock(&priv->mutex);
7751         ipw_associate(priv);
7752         mutex_unlock(&priv->mutex);
7753 }
7754
7755 static void ipw_rebuild_decrypted_skb(struct ipw_priv *priv,
7756                                       struct sk_buff *skb)
7757 {
7758         struct ieee80211_hdr *hdr;
7759         u16 fc;
7760
7761         hdr = (struct ieee80211_hdr *)skb->data;
7762         fc = le16_to_cpu(hdr->frame_control);
7763         if (!(fc & IEEE80211_FCTL_PROTECTED))
7764                 return;
7765
7766         fc &= ~IEEE80211_FCTL_PROTECTED;
7767         hdr->frame_control = cpu_to_le16(fc);
7768         switch (priv->ieee->sec.level) {
7769         case SEC_LEVEL_3:
7770                 /* Remove CCMP HDR */
7771                 memmove(skb->data + LIBIPW_3ADDR_LEN,
7772                         skb->data + LIBIPW_3ADDR_LEN + 8,
7773                         skb->len - LIBIPW_3ADDR_LEN - 8);
7774                 skb_trim(skb, skb->len - 16);   /* CCMP_HDR_LEN + CCMP_MIC_LEN */
7775                 break;
7776         case SEC_LEVEL_2:
7777                 break;
7778         case SEC_LEVEL_1:
7779                 /* Remove IV */
7780                 memmove(skb->data + LIBIPW_3ADDR_LEN,
7781                         skb->data + LIBIPW_3ADDR_LEN + 4,
7782                         skb->len - LIBIPW_3ADDR_LEN - 4);
7783                 skb_trim(skb, skb->len - 8);    /* IV + ICV */
7784                 break;
7785         case SEC_LEVEL_0:
7786                 break;
7787         default:
7788                 printk(KERN_ERR "Unknown security level %d\n",
7789                        priv->ieee->sec.level);
7790                 break;
7791         }
7792 }
7793
7794 static void ipw_handle_data_packet(struct ipw_priv *priv,
7795                                    struct ipw_rx_mem_buffer *rxb,
7796                                    struct libipw_rx_stats *stats)
7797 {
7798         struct net_device *dev = priv->net_dev;
7799         struct libipw_hdr_4addr *hdr;
7800         struct ipw_rx_packet *pkt = (struct ipw_rx_packet *)rxb->skb->data;
7801
7802         /* We received data from the HW, so stop the watchdog */
7803         dev->trans_start = jiffies;
7804
7805         /* We only process data packets if the
7806          * interface is open */
7807         if (unlikely((le16_to_cpu(pkt->u.frame.length) + IPW_RX_FRAME_SIZE) >
7808                      skb_tailroom(rxb->skb))) {
7809                 dev->stats.rx_errors++;
7810                 priv->wstats.discard.misc++;
7811                 IPW_DEBUG_DROP("Corruption detected! Oh no!\n");
7812                 return;
7813         } else if (unlikely(!netif_running(priv->net_dev))) {
7814                 dev->stats.rx_dropped++;
7815                 priv->wstats.discard.misc++;
7816                 IPW_DEBUG_DROP("Dropping packet while interface is not up.\n");
7817                 return;
7818         }
7819
7820         /* Advance skb->data to the start of the actual payload */
7821         skb_reserve(rxb->skb, offsetof(struct ipw_rx_packet, u.frame.data));
7822
7823         /* Set the size of the skb to the size of the frame */
7824         skb_put(rxb->skb, le16_to_cpu(pkt->u.frame.length));
7825
7826         IPW_DEBUG_RX("Rx packet of %d bytes.\n", rxb->skb->len);
7827
7828         /* HW decrypt will not clear the WEP bit, MIC, PN, etc. */
7829         hdr = (struct libipw_hdr_4addr *)rxb->skb->data;
7830         if (priv->ieee->iw_mode != IW_MODE_MONITOR &&
7831             (is_multicast_ether_addr(hdr->addr1) ?
7832              !priv->ieee->host_mc_decrypt : !priv->ieee->host_decrypt))
7833                 ipw_rebuild_decrypted_skb(priv, rxb->skb);
7834
7835         if (!libipw_rx(priv->ieee, rxb->skb, stats))
7836                 dev->stats.rx_errors++;
7837         else {                  /* libipw_rx succeeded, so it now owns the SKB */
7838                 rxb->skb = NULL;
7839                 __ipw_led_activity_on(priv);
7840         }
7841 }
7842
7843 #ifdef CONFIG_IPW2200_RADIOTAP
7844 static void ipw_handle_data_packet_monitor(struct ipw_priv *priv,
7845                                            struct ipw_rx_mem_buffer *rxb,
7846                                            struct libipw_rx_stats *stats)
7847 {
7848         struct net_device *dev = priv->net_dev;
7849         struct ipw_rx_packet *pkt = (struct ipw_rx_packet *)rxb->skb->data;
7850         struct ipw_rx_frame *frame = &pkt->u.frame;
7851
7852         /* initial pull of some data */
7853         u16 received_channel = frame->received_channel;
7854         u8 antennaAndPhy = frame->antennaAndPhy;
7855         s8 antsignal = frame->rssi_dbm - IPW_RSSI_TO_DBM;       /* call it signed anyhow */
7856         u16 pktrate = frame->rate;
7857
7858         /* Magic struct that slots into the radiotap header -- no reason
7859          * to build this manually element by element, we can write it much
7860          * more efficiently than we can parse it. ORDER MATTERS HERE */
7861         struct ipw_rt_hdr *ipw_rt;
7862
7863         unsigned short len = le16_to_cpu(pkt->u.frame.length);
7864
7865         /* We received data from the HW, so stop the watchdog */
7866         dev->trans_start = jiffies;
7867
7868         /* We only process data packets if the
7869          * interface is open */
7870         if (unlikely((le16_to_cpu(pkt->u.frame.length) + IPW_RX_FRAME_SIZE) >
7871                      skb_tailroom(rxb->skb))) {
7872                 dev->stats.rx_errors++;
7873                 priv->wstats.discard.misc++;
7874                 IPW_DEBUG_DROP("Corruption detected! Oh no!\n");
7875                 return;
7876         } else if (unlikely(!netif_running(priv->net_dev))) {
7877                 dev->stats.rx_dropped++;
7878                 priv->wstats.discard.misc++;
7879                 IPW_DEBUG_DROP("Dropping packet while interface is not up.\n");
7880                 return;
7881         }
7882
7883         /* Libpcap 0.9.3+ can handle variable length radiotap, so we'll use
7884          * that now */
7885         if (len > IPW_RX_BUF_SIZE - sizeof(struct ipw_rt_hdr)) {
7886                 /* FIXME: Should alloc bigger skb instead */
7887                 dev->stats.rx_dropped++;
7888                 priv->wstats.discard.misc++;
7889                 IPW_DEBUG_DROP("Dropping too large packet in monitor\n");
7890                 return;
7891         }
7892
7893         /* copy the frame itself */
7894         memmove(rxb->skb->data + sizeof(struct ipw_rt_hdr),
7895                 rxb->skb->data + IPW_RX_FRAME_SIZE, len);
7896
7897         ipw_rt = (struct ipw_rt_hdr *)rxb->skb->data;
7898
7899         ipw_rt->rt_hdr.it_version = PKTHDR_RADIOTAP_VERSION;
7900         ipw_rt->rt_hdr.it_pad = 0;      /* always good to zero */
7901         ipw_rt->rt_hdr.it_len = cpu_to_le16(sizeof(struct ipw_rt_hdr)); /* total header+data */
7902
7903         /* Big bitfield of all the fields we provide in radiotap */
7904         ipw_rt->rt_hdr.it_present = cpu_to_le32(
7905              (1 << IEEE80211_RADIOTAP_TSFT) |
7906              (1 << IEEE80211_RADIOTAP_FLAGS) |
7907              (1 << IEEE80211_RADIOTAP_RATE) |
7908              (1 << IEEE80211_RADIOTAP_CHANNEL) |
7909              (1 << IEEE80211_RADIOTAP_DBM_ANTSIGNAL) |
7910              (1 << IEEE80211_RADIOTAP_DBM_ANTNOISE) |
7911              (1 << IEEE80211_RADIOTAP_ANTENNA));
7912
7913         /* Zero the flags, we'll add to them as we go */
7914         ipw_rt->rt_flags = 0;
7915         ipw_rt->rt_tsf = (u64)(frame->parent_tsf[3] << 24 |
7916                                frame->parent_tsf[2] << 16 |
7917                                frame->parent_tsf[1] << 8  |
7918                                frame->parent_tsf[0]);
7919
7920         /* Convert signal to DBM */
7921         ipw_rt->rt_dbmsignal = antsignal;
7922         ipw_rt->rt_dbmnoise = (s8) le16_to_cpu(frame->noise);
7923
7924         /* Convert the channel data and set the flags */
7925         ipw_rt->rt_channel = cpu_to_le16(ieee80211chan2mhz(received_channel));
7926         if (received_channel > 14) {    /* 802.11a */
7927                 ipw_rt->rt_chbitmask =
7928                     cpu_to_le16((IEEE80211_CHAN_OFDM | IEEE80211_CHAN_5GHZ));
7929         } else if (antennaAndPhy & 32) {        /* 802.11b */
7930                 ipw_rt->rt_chbitmask =
7931                     cpu_to_le16((IEEE80211_CHAN_CCK | IEEE80211_CHAN_2GHZ));
7932         } else {                /* 802.11g */
7933                 ipw_rt->rt_chbitmask =
7934                     cpu_to_le16(IEEE80211_CHAN_OFDM | IEEE80211_CHAN_2GHZ);
7935         }
7936
7937         /* set the rate in multiples of 500k/s */
7938         switch (pktrate) {
7939         case IPW_TX_RATE_1MB:
7940                 ipw_rt->rt_rate = 2;
7941                 break;
7942         case IPW_TX_RATE_2MB:
7943                 ipw_rt->rt_rate = 4;
7944                 break;
7945         case IPW_TX_RATE_5MB:
7946                 ipw_rt->rt_rate = 10;
7947                 break;
7948         case IPW_TX_RATE_6MB:
7949                 ipw_rt->rt_rate = 12;
7950                 break;
7951         case IPW_TX_RATE_9MB:
7952                 ipw_rt->rt_rate = 18;
7953                 break;
7954         case IPW_TX_RATE_11MB:
7955                 ipw_rt->rt_rate = 22;
7956                 break;
7957         case IPW_TX_RATE_12MB:
7958                 ipw_rt->rt_rate = 24;
7959                 break;
7960         case IPW_TX_RATE_18MB:
7961                 ipw_rt->rt_rate = 36;
7962                 break;
7963         case IPW_TX_RATE_24MB:
7964                 ipw_rt->rt_rate = 48;
7965                 break;
7966         case IPW_TX_RATE_36MB:
7967                 ipw_rt->rt_rate = 72;
7968                 break;
7969         case IPW_TX_RATE_48MB:
7970                 ipw_rt->rt_rate = 96;
7971                 break;
7972         case IPW_TX_RATE_54MB:
7973                 ipw_rt->rt_rate = 108;
7974                 break;
7975         default:
7976                 ipw_rt->rt_rate = 0;
7977                 break;
7978         }
7979
7980         /* antenna number */
7981         ipw_rt->rt_antenna = (antennaAndPhy & 3);       /* Is this right? */
7982
7983         /* set the preamble flag if we have it */
7984         if ((antennaAndPhy & 64))
7985                 ipw_rt->rt_flags |= IEEE80211_RADIOTAP_F_SHORTPRE;
7986
7987         /* Set the size of the skb to the size of the frame */
7988         skb_put(rxb->skb, len + sizeof(struct ipw_rt_hdr));
7989
7990         IPW_DEBUG_RX("Rx packet of %d bytes.\n", rxb->skb->len);
7991
7992         if (!libipw_rx(priv->ieee, rxb->skb, stats))
7993                 dev->stats.rx_errors++;
7994         else {                  /* libipw_rx succeeded, so it now owns the SKB */
7995                 rxb->skb = NULL;
7996                 /* no LED during capture */
7997         }
7998 }
7999 #endif
8000
8001 #ifdef CONFIG_IPW2200_PROMISCUOUS
8002 #define libipw_is_probe_response(fc) \
8003    ((fc & IEEE80211_FCTL_FTYPE) == IEEE80211_FTYPE_MGMT && \
8004     (fc & IEEE80211_FCTL_STYPE) == IEEE80211_STYPE_PROBE_RESP )
8005
8006 #define libipw_is_management(fc) \
8007    ((fc & IEEE80211_FCTL_FTYPE) == IEEE80211_FTYPE_MGMT)
8008
8009 #define libipw_is_control(fc) \
8010    ((fc & IEEE80211_FCTL_FTYPE) == IEEE80211_FTYPE_CTL)
8011
8012 #define libipw_is_data(fc) \
8013    ((fc & IEEE80211_FCTL_FTYPE) == IEEE80211_FTYPE_DATA)
8014
8015 #define libipw_is_assoc_request(fc) \
8016    ((fc & IEEE80211_FCTL_STYPE) == IEEE80211_STYPE_ASSOC_REQ)
8017
8018 #define libipw_is_reassoc_request(fc) \
8019    ((fc & IEEE80211_FCTL_STYPE) == IEEE80211_STYPE_REASSOC_REQ)
8020
8021 static void ipw_handle_promiscuous_rx(struct ipw_priv *priv,
8022                                       struct ipw_rx_mem_buffer *rxb,
8023                                       struct libipw_rx_stats *stats)
8024 {
8025         struct net_device *dev = priv->prom_net_dev;
8026         struct ipw_rx_packet *pkt = (struct ipw_rx_packet *)rxb->skb->data;
8027         struct ipw_rx_frame *frame = &pkt->u.frame;
8028         struct ipw_rt_hdr *ipw_rt;
8029
8030         /* First cache any information we need before we overwrite
8031          * the information provided in the skb from the hardware */
8032         struct ieee80211_hdr *hdr;
8033         u16 channel = frame->received_channel;
8034         u8 phy_flags = frame->antennaAndPhy;
8035         s8 signal = frame->rssi_dbm - IPW_RSSI_TO_DBM;
8036         s8 noise = (s8) le16_to_cpu(frame->noise);
8037         u8 rate = frame->rate;
8038         unsigned short len = le16_to_cpu(pkt->u.frame.length);
8039         struct sk_buff *skb;
8040         int hdr_only = 0;
8041         u16 filter = priv->prom_priv->filter;
8042
8043         /* If the filter is set to not include Rx frames then return */
8044         if (filter & IPW_PROM_NO_RX)
8045                 return;
8046
8047         /* We received data from the HW, so stop the watchdog */
8048         dev->trans_start = jiffies;
8049
8050         if (unlikely((len + IPW_RX_FRAME_SIZE) > skb_tailroom(rxb->skb))) {
8051                 dev->stats.rx_errors++;
8052                 IPW_DEBUG_DROP("Corruption detected! Oh no!\n");
8053                 return;
8054         }
8055
8056         /* We only process data packets if the interface is open */
8057         if (unlikely(!netif_running(dev))) {
8058                 dev->stats.rx_dropped++;
8059                 IPW_DEBUG_DROP("Dropping packet while interface is not up.\n");
8060                 return;
8061         }
8062
8063         /* Libpcap 0.9.3+ can handle variable length radiotap, so we'll use
8064          * that now */
8065         if (len > IPW_RX_BUF_SIZE - sizeof(struct ipw_rt_hdr)) {
8066                 /* FIXME: Should alloc bigger skb instead */
8067                 dev->stats.rx_dropped++;
8068                 IPW_DEBUG_DROP("Dropping too large packet in monitor\n");
8069                 return;
8070         }
8071
8072         hdr = (void *)rxb->skb->data + IPW_RX_FRAME_SIZE;
8073         if (libipw_is_management(le16_to_cpu(hdr->frame_control))) {
8074                 if (filter & IPW_PROM_NO_MGMT)
8075                         return;
8076                 if (filter & IPW_PROM_MGMT_HEADER_ONLY)
8077                         hdr_only = 1;
8078         } else if (libipw_is_control(le16_to_cpu(hdr->frame_control))) {
8079                 if (filter & IPW_PROM_NO_CTL)
8080                         return;
8081                 if (filter & IPW_PROM_CTL_HEADER_ONLY)
8082                         hdr_only = 1;
8083         } else if (libipw_is_data(le16_to_cpu(hdr->frame_control))) {
8084                 if (filter & IPW_PROM_NO_DATA)
8085                         return;
8086                 if (filter & IPW_PROM_DATA_HEADER_ONLY)
8087                         hdr_only = 1;
8088         }
8089
8090         /* Copy the SKB since this is for the promiscuous side */
8091         skb = skb_copy(rxb->skb, GFP_ATOMIC);
8092         if (skb == NULL) {
8093                 IPW_ERROR("skb_clone failed for promiscuous copy.\n");
8094                 return;
8095         }
8096
8097         /* copy the frame data to write after where the radiotap header goes */
8098         ipw_rt = (void *)skb->data;
8099
8100         if (hdr_only)
8101                 len = libipw_get_hdrlen(le16_to_cpu(hdr->frame_control));
8102
8103         memcpy(ipw_rt->payload, hdr, len);
8104
8105         ipw_rt->rt_hdr.it_version = PKTHDR_RADIOTAP_VERSION;
8106         ipw_rt->rt_hdr.it_pad = 0;      /* always good to zero */
8107         ipw_rt->rt_hdr.it_len = cpu_to_le16(sizeof(*ipw_rt));   /* total header+data */
8108
8109         /* Set the size of the skb to the size of the frame */
8110         skb_put(skb, sizeof(*ipw_rt) + len);
8111
8112         /* Big bitfield of all the fields we provide in radiotap */
8113         ipw_rt->rt_hdr.it_present = cpu_to_le32(
8114              (1 << IEEE80211_RADIOTAP_TSFT) |
8115              (1 << IEEE80211_RADIOTAP_FLAGS) |
8116              (1 << IEEE80211_RADIOTAP_RATE) |
8117              (1 << IEEE80211_RADIOTAP_CHANNEL) |
8118              (1 << IEEE80211_RADIOTAP_DBM_ANTSIGNAL) |
8119              (1 << IEEE80211_RADIOTAP_DBM_ANTNOISE) |
8120              (1 << IEEE80211_RADIOTAP_ANTENNA));
8121
8122         /* Zero the flags, we'll add to them as we go */
8123         ipw_rt->rt_flags = 0;
8124         ipw_rt->rt_tsf = (u64)(frame->parent_tsf[3] << 24 |
8125                                frame->parent_tsf[2] << 16 |
8126                                frame->parent_tsf[1] << 8  |
8127                                frame->parent_tsf[0]);
8128
8129         /* Convert to DBM */
8130         ipw_rt->rt_dbmsignal = signal;
8131         ipw_rt->rt_dbmnoise = noise;
8132
8133         /* Convert the channel data and set the flags */
8134         ipw_rt->rt_channel = cpu_to_le16(ieee80211chan2mhz(channel));
8135         if (channel > 14) {     /* 802.11a */
8136                 ipw_rt->rt_chbitmask =
8137                     cpu_to_le16((IEEE80211_CHAN_OFDM | IEEE80211_CHAN_5GHZ));
8138         } else if (phy_flags & (1 << 5)) {      /* 802.11b */
8139                 ipw_rt->rt_chbitmask =
8140                     cpu_to_le16((IEEE80211_CHAN_CCK | IEEE80211_CHAN_2GHZ));
8141         } else {                /* 802.11g */
8142                 ipw_rt->rt_chbitmask =
8143                     cpu_to_le16(IEEE80211_CHAN_OFDM | IEEE80211_CHAN_2GHZ);
8144         }
8145
8146         /* set the rate in multiples of 500k/s */
8147         switch (rate) {
8148         case IPW_TX_RATE_1MB:
8149                 ipw_rt->rt_rate = 2;
8150                 break;
8151         case IPW_TX_RATE_2MB:
8152                 ipw_rt->rt_rate = 4;
8153                 break;
8154         case IPW_TX_RATE_5MB:
8155                 ipw_rt->rt_rate = 10;
8156                 break;
8157         case IPW_TX_RATE_6MB:
8158                 ipw_rt->rt_rate = 12;
8159                 break;
8160         case IPW_TX_RATE_9MB:
8161                 ipw_rt->rt_rate = 18;
8162                 break;
8163         case IPW_TX_RATE_11MB:
8164                 ipw_rt->rt_rate = 22;
8165                 break;
8166         case IPW_TX_RATE_12MB:
8167                 ipw_rt->rt_rate = 24;
8168                 break;
8169         case IPW_TX_RATE_18MB:
8170                 ipw_rt->rt_rate = 36;
8171                 break;
8172         case IPW_TX_RATE_24MB:
8173                 ipw_rt->rt_rate = 48;
8174                 break;
8175         case IPW_TX_RATE_36MB:
8176                 ipw_rt->rt_rate = 72;
8177                 break;
8178         case IPW_TX_RATE_48MB:
8179                 ipw_rt->rt_rate = 96;
8180                 break;
8181         case IPW_TX_RATE_54MB:
8182                 ipw_rt->rt_rate = 108;
8183                 break;
8184         default:
8185                 ipw_rt->rt_rate = 0;
8186                 break;
8187         }
8188
8189         /* antenna number */
8190         ipw_rt->rt_antenna = (phy_flags & 3);
8191
8192         /* set the preamble flag if we have it */
8193         if (phy_flags & (1 << 6))
8194                 ipw_rt->rt_flags |= IEEE80211_RADIOTAP_F_SHORTPRE;
8195
8196         IPW_DEBUG_RX("Rx packet of %d bytes.\n", skb->len);
8197
8198         if (!libipw_rx(priv->prom_priv->ieee, skb, stats)) {
8199                 dev->stats.rx_errors++;
8200                 dev_kfree_skb_any(skb);
8201         }
8202 }
8203 #endif
8204
8205 static int is_network_packet(struct ipw_priv *priv,
8206                                     struct libipw_hdr_4addr *header)
8207 {
8208         /* Filter incoming packets to determine if they are targeted toward
8209          * this network, discarding packets coming from ourselves */
8210         switch (priv->ieee->iw_mode) {
8211         case IW_MODE_ADHOC:     /* Header: Dest. | Source    | BSSID */
8212                 /* packets from our adapter are dropped (echo) */
8213                 if (!memcmp(header->addr2, priv->net_dev->dev_addr, ETH_ALEN))
8214                         return 0;
8215
8216                 /* {broad,multi}cast packets to our BSSID go through */
8217                 if (is_multicast_ether_addr(header->addr1))
8218                         return !memcmp(header->addr3, priv->bssid, ETH_ALEN);
8219
8220                 /* packets to our adapter go through */
8221                 return !memcmp(header->addr1, priv->net_dev->dev_addr,
8222                                ETH_ALEN);
8223
8224         case IW_MODE_INFRA:     /* Header: Dest. | BSSID | Source */
8225                 /* packets from our adapter are dropped (echo) */
8226                 if (!memcmp(header->addr3, priv->net_dev->dev_addr, ETH_ALEN))
8227                         return 0;
8228
8229                 /* {broad,multi}cast packets to our BSS go through */
8230                 if (is_multicast_ether_addr(header->addr1))
8231                         return !memcmp(header->addr2, priv->bssid, ETH_ALEN);
8232
8233                 /* packets to our adapter go through */
8234                 return !memcmp(header->addr1, priv->net_dev->dev_addr,
8235                                ETH_ALEN);
8236         }
8237
8238         return 1;
8239 }
8240
8241 #define IPW_PACKET_RETRY_TIME HZ
8242
8243 static  int is_duplicate_packet(struct ipw_priv *priv,
8244                                       struct libipw_hdr_4addr *header)
8245 {
8246         u16 sc = le16_to_cpu(header->seq_ctl);
8247         u16 seq = WLAN_GET_SEQ_SEQ(sc);
8248         u16 frag = WLAN_GET_SEQ_FRAG(sc);
8249         u16 *last_seq, *last_frag;
8250         unsigned long *last_time;
8251
8252         switch (priv->ieee->iw_mode) {
8253         case IW_MODE_ADHOC:
8254                 {
8255                         struct list_head *p;
8256                         struct ipw_ibss_seq *entry = NULL;
8257                         u8 *mac = header->addr2;
8258                         int index = mac[5] % IPW_IBSS_MAC_HASH_SIZE;
8259
8260                         list_for_each(p, &priv->ibss_mac_hash[index]) {
8261                                 entry =
8262                                     list_entry(p, struct ipw_ibss_seq, list);
8263                                 if (!memcmp(entry->mac, mac, ETH_ALEN))
8264                                         break;
8265                         }
8266                         if (p == &priv->ibss_mac_hash[index]) {
8267                                 entry = kmalloc(sizeof(*entry), GFP_ATOMIC);
8268                                 if (!entry) {
8269                                         IPW_ERROR
8270                                             ("Cannot malloc new mac entry\n");
8271                                         return 0;
8272                                 }
8273                                 memcpy(entry->mac, mac, ETH_ALEN);
8274                                 entry->seq_num = seq;
8275                                 entry->frag_num = frag;
8276                                 entry->packet_time = jiffies;
8277                                 list_add(&entry->list,
8278                                          &priv->ibss_mac_hash[index]);
8279                                 return 0;
8280                         }
8281                         last_seq = &entry->seq_num;
8282                         last_frag = &entry->frag_num;
8283                         last_time = &entry->packet_time;
8284                         break;
8285                 }
8286         case IW_MODE_INFRA:
8287                 last_seq = &priv->last_seq_num;
8288                 last_frag = &priv->last_frag_num;
8289                 last_time = &priv->last_packet_time;
8290                 break;
8291         default:
8292                 return 0;
8293         }
8294         if ((*last_seq == seq) &&
8295             time_after(*last_time + IPW_PACKET_RETRY_TIME, jiffies)) {
8296                 if (*last_frag == frag)
8297                         goto drop;
8298                 if (*last_frag + 1 != frag)
8299                         /* out-of-order fragment */
8300                         goto drop;
8301         } else
8302                 *last_seq = seq;
8303
8304         *last_frag = frag;
8305         *last_time = jiffies;
8306         return 0;
8307
8308       drop:
8309         /* Comment this line now since we observed the card receives
8310          * duplicate packets but the FCTL_RETRY bit is not set in the
8311          * IBSS mode with fragmentation enabled.
8312          BUG_ON(!(le16_to_cpu(header->frame_control) & IEEE80211_FCTL_RETRY)); */
8313         return 1;
8314 }
8315
8316 static void ipw_handle_mgmt_packet(struct ipw_priv *priv,
8317                                    struct ipw_rx_mem_buffer *rxb,
8318                                    struct libipw_rx_stats *stats)
8319 {
8320         struct sk_buff *skb = rxb->skb;
8321         struct ipw_rx_packet *pkt = (struct ipw_rx_packet *)skb->data;
8322         struct libipw_hdr_4addr *header = (struct libipw_hdr_4addr *)
8323             (skb->data + IPW_RX_FRAME_SIZE);
8324
8325         libipw_rx_mgt(priv->ieee, header, stats);
8326
8327         if (priv->ieee->iw_mode == IW_MODE_ADHOC &&
8328             ((WLAN_FC_GET_STYPE(le16_to_cpu(header->frame_ctl)) ==
8329               IEEE80211_STYPE_PROBE_RESP) ||
8330              (WLAN_FC_GET_STYPE(le16_to_cpu(header->frame_ctl)) ==
8331               IEEE80211_STYPE_BEACON))) {
8332                 if (!memcmp(header->addr3, priv->bssid, ETH_ALEN))
8333                         ipw_add_station(priv, header->addr2);
8334         }
8335
8336         if (priv->config & CFG_NET_STATS) {
8337                 IPW_DEBUG_HC("sending stat packet\n");
8338
8339                 /* Set the size of the skb to the size of the full
8340                  * ipw header and 802.11 frame */
8341                 skb_put(skb, le16_to_cpu(pkt->u.frame.length) +
8342                         IPW_RX_FRAME_SIZE);
8343
8344                 /* Advance past the ipw packet header to the 802.11 frame */
8345                 skb_pull(skb, IPW_RX_FRAME_SIZE);
8346
8347                 /* Push the libipw_rx_stats before the 802.11 frame */
8348                 memcpy(skb_push(skb, sizeof(*stats)), stats, sizeof(*stats));
8349
8350                 skb->dev = priv->ieee->dev;
8351
8352                 /* Point raw at the libipw_stats */
8353                 skb_reset_mac_header(skb);
8354
8355                 skb->pkt_type = PACKET_OTHERHOST;
8356                 skb->protocol = cpu_to_be16(ETH_P_80211_STATS);
8357                 memset(skb->cb, 0, sizeof(rxb->skb->cb));
8358                 netif_rx(skb);
8359                 rxb->skb = NULL;
8360         }
8361 }
8362
8363 /*
8364  * Main entry function for receiving a packet with 80211 headers.  This
8365  * should be called when ever the FW has notified us that there is a new
8366  * skb in the receive queue.
8367  */
8368 static void ipw_rx(struct ipw_priv *priv)
8369 {
8370         struct ipw_rx_mem_buffer *rxb;
8371         struct ipw_rx_packet *pkt;
8372         struct libipw_hdr_4addr *header;
8373         u32 r, w, i;
8374         u8 network_packet;
8375         u8 fill_rx = 0;
8376
8377         r = ipw_read32(priv, IPW_RX_READ_INDEX);
8378         w = ipw_read32(priv, IPW_RX_WRITE_INDEX);
8379         i = priv->rxq->read;
8380
8381         if (ipw_rx_queue_space (priv->rxq) > (RX_QUEUE_SIZE / 2))
8382                 fill_rx = 1;
8383
8384         while (i != r) {
8385                 rxb = priv->rxq->queue[i];
8386                 if (unlikely(rxb == NULL)) {
8387                         printk(KERN_CRIT "Queue not allocated!\n");
8388                         break;
8389                 }
8390                 priv->rxq->queue[i] = NULL;
8391
8392                 pci_dma_sync_single_for_cpu(priv->pci_dev, rxb->dma_addr,
8393                                             IPW_RX_BUF_SIZE,
8394                                             PCI_DMA_FROMDEVICE);
8395
8396                 pkt = (struct ipw_rx_packet *)rxb->skb->data;
8397                 IPW_DEBUG_RX("Packet: type=%02X seq=%02X bits=%02X\n",
8398                              pkt->header.message_type,
8399                              pkt->header.rx_seq_num, pkt->header.control_bits);
8400
8401                 switch (pkt->header.message_type) {
8402                 case RX_FRAME_TYPE:     /* 802.11 frame */  {
8403                                 struct libipw_rx_stats stats = {
8404                                         .rssi = pkt->u.frame.rssi_dbm -
8405                                             IPW_RSSI_TO_DBM,
8406                                         .signal =
8407                                             pkt->u.frame.rssi_dbm -
8408                                             IPW_RSSI_TO_DBM + 0x100,
8409                                         .noise =
8410                                             le16_to_cpu(pkt->u.frame.noise),
8411                                         .rate = pkt->u.frame.rate,
8412                                         .mac_time = jiffies,
8413                                         .received_channel =
8414                                             pkt->u.frame.received_channel,
8415                                         .freq =
8416                                             (pkt->u.frame.
8417                                              control & (1 << 0)) ?
8418                                             LIBIPW_24GHZ_BAND :
8419                                             LIBIPW_52GHZ_BAND,
8420                                         .len = le16_to_cpu(pkt->u.frame.length),
8421                                 };
8422
8423                                 if (stats.rssi != 0)
8424                                         stats.mask |= LIBIPW_STATMASK_RSSI;
8425                                 if (stats.signal != 0)
8426                                         stats.mask |= LIBIPW_STATMASK_SIGNAL;
8427                                 if (stats.noise != 0)
8428                                         stats.mask |= LIBIPW_STATMASK_NOISE;
8429                                 if (stats.rate != 0)
8430                                         stats.mask |= LIBIPW_STATMASK_RATE;
8431
8432                                 priv->rx_packets++;
8433
8434 #ifdef CONFIG_IPW2200_PROMISCUOUS
8435         if (priv->prom_net_dev && netif_running(priv->prom_net_dev))
8436                 ipw_handle_promiscuous_rx(priv, rxb, &stats);
8437 #endif
8438
8439 #ifdef CONFIG_IPW2200_MONITOR
8440                                 if (priv->ieee->iw_mode == IW_MODE_MONITOR) {
8441 #ifdef CONFIG_IPW2200_RADIOTAP
8442
8443                 ipw_handle_data_packet_monitor(priv,
8444                                                rxb,
8445                                                &stats);
8446 #else
8447                 ipw_handle_data_packet(priv, rxb,
8448                                        &stats);
8449 #endif
8450                                         break;
8451                                 }
8452 #endif
8453
8454                                 header =
8455                                     (struct libipw_hdr_4addr *)(rxb->skb->
8456                                                                    data +
8457                                                                    IPW_RX_FRAME_SIZE);
8458                                 /* TODO: Check Ad-Hoc dest/source and make sure
8459                                  * that we are actually parsing these packets
8460                                  * correctly -- we should probably use the
8461                                  * frame control of the packet and disregard
8462                                  * the current iw_mode */
8463
8464                                 network_packet =
8465                                     is_network_packet(priv, header);
8466                                 if (network_packet && priv->assoc_network) {
8467                                         priv->assoc_network->stats.rssi =
8468                                             stats.rssi;
8469                                         priv->exp_avg_rssi =
8470                                             exponential_average(priv->exp_avg_rssi,
8471                                             stats.rssi, DEPTH_RSSI);
8472                                 }
8473
8474                                 IPW_DEBUG_RX("Frame: len=%u\n",
8475                                              le16_to_cpu(pkt->u.frame.length));
8476
8477                                 if (le16_to_cpu(pkt->u.frame.length) <
8478                                     libipw_get_hdrlen(le16_to_cpu(
8479                                                     header->frame_ctl))) {
8480                                         IPW_DEBUG_DROP
8481                                             ("Received packet is too small. "
8482                                              "Dropping.\n");
8483                                         priv->net_dev->stats.rx_errors++;
8484                                         priv->wstats.discard.misc++;
8485                                         break;
8486                                 }
8487
8488                                 switch (WLAN_FC_GET_TYPE
8489                                         (le16_to_cpu(header->frame_ctl))) {
8490
8491                                 case IEEE80211_FTYPE_MGMT:
8492                                         ipw_handle_mgmt_packet(priv, rxb,
8493                                                                &stats);
8494                                         break;
8495
8496                                 case IEEE80211_FTYPE_CTL:
8497                                         break;
8498
8499                                 case IEEE80211_FTYPE_DATA:
8500                                         if (unlikely(!network_packet ||
8501                                                      is_duplicate_packet(priv,
8502                                                                          header)))
8503                                         {
8504                                                 IPW_DEBUG_DROP("Dropping: "
8505                                                                "%pM, "
8506                                                                "%pM, "
8507                                                                "%pM\n",
8508                                                                header->addr1,
8509                                                                header->addr2,
8510                                                                header->addr3);
8511                                                 break;
8512                                         }
8513
8514                                         ipw_handle_data_packet(priv, rxb,
8515                                                                &stats);
8516
8517                                         break;
8518                                 }
8519                                 break;
8520                         }
8521
8522                 case RX_HOST_NOTIFICATION_TYPE:{
8523                                 IPW_DEBUG_RX
8524                                     ("Notification: subtype=%02X flags=%02X size=%d\n",
8525                                      pkt->u.notification.subtype,
8526                                      pkt->u.notification.flags,
8527                                      le16_to_cpu(pkt->u.notification.size));
8528                                 ipw_rx_notification(priv, &pkt->u.notification);
8529                                 break;
8530                         }
8531
8532                 default:
8533                         IPW_DEBUG_RX("Bad Rx packet of type %d\n",
8534                                      pkt->header.message_type);
8535                         break;
8536                 }
8537
8538                 /* For now we just don't re-use anything.  We can tweak this
8539                  * later to try and re-use notification packets and SKBs that
8540                  * fail to Rx correctly */
8541                 if (rxb->skb != NULL) {
8542                         dev_kfree_skb_any(rxb->skb);
8543                         rxb->skb = NULL;
8544                 }
8545
8546                 pci_unmap_single(priv->pci_dev, rxb->dma_addr,
8547                                  IPW_RX_BUF_SIZE, PCI_DMA_FROMDEVICE);
8548                 list_add_tail(&rxb->list, &priv->rxq->rx_used);
8549
8550                 i = (i + 1) % RX_QUEUE_SIZE;
8551
8552                 /* If there are a lot of unsued frames, restock the Rx queue
8553                  * so the ucode won't assert */
8554                 if (fill_rx) {
8555                         priv->rxq->read = i;
8556                         ipw_rx_queue_replenish(priv);
8557                 }
8558         }
8559
8560         /* Backtrack one entry */
8561         priv->rxq->read = i;
8562         ipw_rx_queue_restock(priv);
8563 }
8564
8565 #define DEFAULT_RTS_THRESHOLD     2304U
8566 #define MIN_RTS_THRESHOLD         1U
8567 #define MAX_RTS_THRESHOLD         2304U
8568 #define DEFAULT_BEACON_INTERVAL   100U
8569 #define DEFAULT_SHORT_RETRY_LIMIT 7U
8570 #define DEFAULT_LONG_RETRY_LIMIT  4U
8571
8572 /**
8573  * ipw_sw_reset
8574  * @option: options to control different reset behaviour
8575  *          0 = reset everything except the 'disable' module_param
8576  *          1 = reset everything and print out driver info (for probe only)
8577  *          2 = reset everything
8578  */
8579 static int ipw_sw_reset(struct ipw_priv *priv, int option)
8580 {
8581         int band, modulation;
8582         int old_mode = priv->ieee->iw_mode;
8583
8584         /* Initialize module parameter values here */
8585         priv->config = 0;
8586
8587         /* We default to disabling the LED code as right now it causes
8588          * too many systems to lock up... */
8589         if (!led_support)
8590                 priv->config |= CFG_NO_LED;
8591
8592         if (associate)
8593                 priv->config |= CFG_ASSOCIATE;
8594         else
8595                 IPW_DEBUG_INFO("Auto associate disabled.\n");
8596
8597         if (auto_create)
8598                 priv->config |= CFG_ADHOC_CREATE;
8599         else
8600                 IPW_DEBUG_INFO("Auto adhoc creation disabled.\n");
8601
8602         priv->config &= ~CFG_STATIC_ESSID;
8603         priv->essid_len = 0;
8604         memset(priv->essid, 0, IW_ESSID_MAX_SIZE);
8605
8606         if (disable && option) {
8607                 priv->status |= STATUS_RF_KILL_SW;
8608                 IPW_DEBUG_INFO("Radio disabled.\n");
8609         }
8610
8611         if (default_channel != 0) {
8612                 priv->config |= CFG_STATIC_CHANNEL;
8613                 priv->channel = default_channel;
8614                 IPW_DEBUG_INFO("Bind to static channel %d\n", default_channel);
8615                 /* TODO: Validate that provided channel is in range */
8616         }
8617 #ifdef CONFIG_IPW2200_QOS
8618         ipw_qos_init(priv, qos_enable, qos_burst_enable,
8619                      burst_duration_CCK, burst_duration_OFDM);
8620 #endif                          /* CONFIG_IPW2200_QOS */
8621
8622         switch (network_mode) {
8623         case 1:
8624                 priv->ieee->iw_mode = IW_MODE_ADHOC;
8625                 priv->net_dev->type = ARPHRD_ETHER;
8626
8627                 break;
8628 #ifdef CONFIG_IPW2200_MONITOR
8629         case 2:
8630                 priv->ieee->iw_mode = IW_MODE_MONITOR;
8631 #ifdef CONFIG_IPW2200_RADIOTAP
8632                 priv->net_dev->type = ARPHRD_IEEE80211_RADIOTAP;
8633 #else
8634                 priv->net_dev->type = ARPHRD_IEEE80211;
8635 #endif
8636                 break;
8637 #endif
8638         default:
8639         case 0:
8640                 priv->net_dev->type = ARPHRD_ETHER;
8641                 priv->ieee->iw_mode = IW_MODE_INFRA;
8642                 break;
8643         }
8644
8645         if (hwcrypto) {
8646                 priv->ieee->host_encrypt = 0;
8647                 priv->ieee->host_encrypt_msdu = 0;
8648                 priv->ieee->host_decrypt = 0;
8649                 priv->ieee->host_mc_decrypt = 0;
8650         }
8651         IPW_DEBUG_INFO("Hardware crypto [%s]\n", hwcrypto ? "on" : "off");
8652
8653         /* IPW2200/2915 is abled to do hardware fragmentation. */
8654         priv->ieee->host_open_frag = 0;
8655
8656         if ((priv->pci_dev->device == 0x4223) ||
8657             (priv->pci_dev->device == 0x4224)) {
8658                 if (option == 1)
8659                         printk(KERN_INFO DRV_NAME
8660                                ": Detected Intel PRO/Wireless 2915ABG Network "
8661                                "Connection\n");
8662                 priv->ieee->abg_true = 1;
8663                 band = LIBIPW_52GHZ_BAND | LIBIPW_24GHZ_BAND;
8664                 modulation = LIBIPW_OFDM_MODULATION |
8665                     LIBIPW_CCK_MODULATION;
8666                 priv->adapter = IPW_2915ABG;
8667                 priv->ieee->mode = IEEE_A | IEEE_G | IEEE_B;
8668         } else {
8669                 if (option == 1)
8670                         printk(KERN_INFO DRV_NAME
8671                                ": Detected Intel PRO/Wireless 2200BG Network "
8672                                "Connection\n");
8673
8674                 priv->ieee->abg_true = 0;
8675                 band = LIBIPW_24GHZ_BAND;
8676                 modulation = LIBIPW_OFDM_MODULATION |
8677                     LIBIPW_CCK_MODULATION;
8678                 priv->adapter = IPW_2200BG;
8679                 priv->ieee->mode = IEEE_G | IEEE_B;
8680         }
8681
8682         priv->ieee->freq_band = band;
8683         priv->ieee->modulation = modulation;
8684
8685         priv->rates_mask = LIBIPW_DEFAULT_RATES_MASK;
8686
8687         priv->disassociate_threshold = IPW_MB_DISASSOCIATE_THRESHOLD_DEFAULT;
8688         priv->roaming_threshold = IPW_MB_ROAMING_THRESHOLD_DEFAULT;
8689
8690         priv->rts_threshold = DEFAULT_RTS_THRESHOLD;
8691         priv->short_retry_limit = DEFAULT_SHORT_RETRY_LIMIT;
8692         priv->long_retry_limit = DEFAULT_LONG_RETRY_LIMIT;
8693
8694         /* If power management is turned on, default to AC mode */
8695         priv->power_mode = IPW_POWER_AC;
8696         priv->tx_power = IPW_TX_POWER_DEFAULT;
8697
8698         return old_mode == priv->ieee->iw_mode;
8699 }
8700
8701 /*
8702  * This file defines the Wireless Extension handlers.  It does not
8703  * define any methods of hardware manipulation and relies on the
8704  * functions defined in ipw_main to provide the HW interaction.
8705  *
8706  * The exception to this is the use of the ipw_get_ordinal()
8707  * function used to poll the hardware vs. making unnecessary calls.
8708  *
8709  */
8710
8711 static int ipw_set_channel(struct ipw_priv *priv, u8 channel)
8712 {
8713         if (channel == 0) {
8714                 IPW_DEBUG_INFO("Setting channel to ANY (0)\n");
8715                 priv->config &= ~CFG_STATIC_CHANNEL;
8716                 IPW_DEBUG_ASSOC("Attempting to associate with new "
8717                                 "parameters.\n");
8718                 ipw_associate(priv);
8719                 return 0;
8720         }
8721
8722         priv->config |= CFG_STATIC_CHANNEL;
8723
8724         if (priv->channel == channel) {
8725                 IPW_DEBUG_INFO("Request to set channel to current value (%d)\n",
8726                                channel);
8727                 return 0;
8728         }
8729
8730         IPW_DEBUG_INFO("Setting channel to %i\n", (int)channel);
8731         priv->channel = channel;
8732
8733 #ifdef CONFIG_IPW2200_MONITOR
8734         if (priv->ieee->iw_mode == IW_MODE_MONITOR) {
8735                 int i;
8736                 if (priv->status & STATUS_SCANNING) {
8737                         IPW_DEBUG_SCAN("Scan abort triggered due to "
8738                                        "channel change.\n");
8739                         ipw_abort_scan(priv);
8740                 }
8741
8742                 for (i = 1000; i && (priv->status & STATUS_SCANNING); i--)
8743                         udelay(10);
8744
8745                 if (priv->status & STATUS_SCANNING)
8746                         IPW_DEBUG_SCAN("Still scanning...\n");
8747                 else
8748                         IPW_DEBUG_SCAN("Took %dms to abort current scan\n",
8749                                        1000 - i);
8750
8751                 return 0;
8752         }
8753 #endif                          /* CONFIG_IPW2200_MONITOR */
8754
8755         /* Network configuration changed -- force [re]association */
8756         IPW_DEBUG_ASSOC("[re]association triggered due to channel change.\n");
8757         if (!ipw_disassociate(priv))
8758                 ipw_associate(priv);
8759
8760         return 0;
8761 }
8762
8763 static int ipw_wx_set_freq(struct net_device *dev,
8764                            struct iw_request_info *info,
8765                            union iwreq_data *wrqu, char *extra)
8766 {
8767         struct ipw_priv *priv = libipw_priv(dev);
8768         const struct libipw_geo *geo = libipw_get_geo(priv->ieee);
8769         struct iw_freq *fwrq = &wrqu->freq;
8770         int ret = 0, i;
8771         u8 channel, flags;
8772         int band;
8773
8774         if (fwrq->m == 0) {
8775                 IPW_DEBUG_WX("SET Freq/Channel -> any\n");
8776                 mutex_lock(&priv->mutex);
8777                 ret = ipw_set_channel(priv, 0);
8778                 mutex_unlock(&priv->mutex);
8779                 return ret;
8780         }
8781         /* if setting by freq convert to channel */
8782         if (fwrq->e == 1) {
8783                 channel = libipw_freq_to_channel(priv->ieee, fwrq->m);
8784                 if (channel == 0)
8785                         return -EINVAL;
8786         } else
8787                 channel = fwrq->m;
8788
8789         if (!(band = libipw_is_valid_channel(priv->ieee, channel)))
8790                 return -EINVAL;
8791
8792         if (priv->ieee->iw_mode == IW_MODE_ADHOC) {
8793                 i = libipw_channel_to_index(priv->ieee, channel);
8794                 if (i == -1)
8795                         return -EINVAL;
8796
8797                 flags = (band == LIBIPW_24GHZ_BAND) ?
8798                     geo->bg[i].flags : geo->a[i].flags;
8799                 if (flags & LIBIPW_CH_PASSIVE_ONLY) {
8800                         IPW_DEBUG_WX("Invalid Ad-Hoc channel for 802.11a\n");
8801                         return -EINVAL;
8802                 }
8803         }
8804
8805         IPW_DEBUG_WX("SET Freq/Channel -> %d\n", fwrq->m);
8806         mutex_lock(&priv->mutex);
8807         ret = ipw_set_channel(priv, channel);
8808         mutex_unlock(&priv->mutex);
8809         return ret;
8810 }
8811
8812 static int ipw_wx_get_freq(struct net_device *dev,
8813                            struct iw_request_info *info,
8814                            union iwreq_data *wrqu, char *extra)
8815 {
8816         struct ipw_priv *priv = libipw_priv(dev);
8817
8818         wrqu->freq.e = 0;
8819
8820         /* If we are associated, trying to associate, or have a statically
8821          * configured CHANNEL then return that; otherwise return ANY */
8822         mutex_lock(&priv->mutex);
8823         if (priv->config & CFG_STATIC_CHANNEL ||
8824             priv->status & (STATUS_ASSOCIATING | STATUS_ASSOCIATED)) {
8825                 int i;
8826
8827                 i = libipw_channel_to_index(priv->ieee, priv->channel);
8828                 BUG_ON(i == -1);
8829                 wrqu->freq.e = 1;
8830
8831                 switch (libipw_is_valid_channel(priv->ieee, priv->channel)) {
8832                 case LIBIPW_52GHZ_BAND:
8833                         wrqu->freq.m = priv->ieee->geo.a[i].freq * 100000;
8834                         break;
8835
8836                 case LIBIPW_24GHZ_BAND:
8837                         wrqu->freq.m = priv->ieee->geo.bg[i].freq * 100000;
8838                         break;
8839
8840                 default:
8841                         BUG();
8842                 }
8843         } else
8844                 wrqu->freq.m = 0;
8845
8846         mutex_unlock(&priv->mutex);
8847         IPW_DEBUG_WX("GET Freq/Channel -> %d\n", priv->channel);
8848         return 0;
8849 }
8850
8851 static int ipw_wx_set_mode(struct net_device *dev,
8852                            struct iw_request_info *info,
8853                            union iwreq_data *wrqu, char *extra)
8854 {
8855         struct ipw_priv *priv = libipw_priv(dev);
8856         int err = 0;
8857
8858         IPW_DEBUG_WX("Set MODE: %d\n", wrqu->mode);
8859
8860         switch (wrqu->mode) {
8861 #ifdef CONFIG_IPW2200_MONITOR
8862         case IW_MODE_MONITOR:
8863 #endif
8864         case IW_MODE_ADHOC:
8865         case IW_MODE_INFRA:
8866                 break;
8867         case IW_MODE_AUTO:
8868                 wrqu->mode = IW_MODE_INFRA;
8869                 break;
8870         default:
8871                 return -EINVAL;
8872         }
8873         if (wrqu->mode == priv->ieee->iw_mode)
8874                 return 0;
8875
8876         mutex_lock(&priv->mutex);
8877
8878         ipw_sw_reset(priv, 0);
8879
8880 #ifdef CONFIG_IPW2200_MONITOR
8881         if (priv->ieee->iw_mode == IW_MODE_MONITOR)
8882                 priv->net_dev->type = ARPHRD_ETHER;
8883
8884         if (wrqu->mode == IW_MODE_MONITOR)
8885 #ifdef CONFIG_IPW2200_RADIOTAP
8886                 priv->net_dev->type = ARPHRD_IEEE80211_RADIOTAP;
8887 #else
8888                 priv->net_dev->type = ARPHRD_IEEE80211;
8889 #endif
8890 #endif                          /* CONFIG_IPW2200_MONITOR */
8891
8892         /* Free the existing firmware and reset the fw_loaded
8893          * flag so ipw_load() will bring in the new firmware */
8894         free_firmware();
8895
8896         priv->ieee->iw_mode = wrqu->mode;
8897
8898         schedule_work(&priv->adapter_restart);
8899         mutex_unlock(&priv->mutex);
8900         return err;
8901 }
8902
8903 static int ipw_wx_get_mode(struct net_device *dev,
8904                            struct iw_request_info *info,
8905                            union iwreq_data *wrqu, char *extra)
8906 {
8907         struct ipw_priv *priv = libipw_priv(dev);
8908         mutex_lock(&priv->mutex);
8909         wrqu->mode = priv->ieee->iw_mode;
8910         IPW_DEBUG_WX("Get MODE -> %d\n", wrqu->mode);
8911         mutex_unlock(&priv->mutex);
8912         return 0;
8913 }
8914
8915 /* Values are in microsecond */
8916 static const s32 timeout_duration[] = {
8917         350000,
8918         250000,
8919         75000,
8920         37000,
8921         25000,
8922 };
8923
8924 static const s32 period_duration[] = {
8925         400000,
8926         700000,
8927         1000000,
8928         1000000,
8929         1000000
8930 };
8931
8932 static int ipw_wx_get_range(struct net_device *dev,
8933                             struct iw_request_info *info,
8934                             union iwreq_data *wrqu, char *extra)
8935 {
8936         struct ipw_priv *priv = libipw_priv(dev);
8937         struct iw_range *range = (struct iw_range *)extra;
8938         const struct libipw_geo *geo = libipw_get_geo(priv->ieee);
8939         int i = 0, j;
8940
8941         wrqu->data.length = sizeof(*range);
8942         memset(range, 0, sizeof(*range));
8943
8944         /* 54Mbs == ~27 Mb/s real (802.11g) */
8945         range->throughput = 27 * 1000 * 1000;
8946
8947         range->max_qual.qual = 100;
8948         /* TODO: Find real max RSSI and stick here */
8949         range->max_qual.level = 0;
8950         range->max_qual.noise = 0;
8951         range->max_qual.updated = 7;    /* Updated all three */
8952
8953         range->avg_qual.qual = 70;
8954         /* TODO: Find real 'good' to 'bad' threshold value for RSSI */
8955         range->avg_qual.level = 0;      /* FIXME to real average level */
8956         range->avg_qual.noise = 0;
8957         range->avg_qual.updated = 7;    /* Updated all three */
8958         mutex_lock(&priv->mutex);
8959         range->num_bitrates = min(priv->rates.num_rates, (u8) IW_MAX_BITRATES);
8960
8961         for (i = 0; i < range->num_bitrates; i++)
8962                 range->bitrate[i] = (priv->rates.supported_rates[i] & 0x7F) *
8963                     500000;
8964
8965         range->max_rts = DEFAULT_RTS_THRESHOLD;
8966         range->min_frag = MIN_FRAG_THRESHOLD;
8967         range->max_frag = MAX_FRAG_THRESHOLD;
8968
8969         range->encoding_size[0] = 5;
8970         range->encoding_size[1] = 13;
8971         range->num_encoding_sizes = 2;
8972         range->max_encoding_tokens = WEP_KEYS;
8973
8974         /* Set the Wireless Extension versions */
8975         range->we_version_compiled = WIRELESS_EXT;
8976         range->we_version_source = 18;
8977
8978         i = 0;
8979         if (priv->ieee->mode & (IEEE_B | IEEE_G)) {
8980                 for (j = 0; j < geo->bg_channels && i < IW_MAX_FREQUENCIES; j++) {
8981                         if ((priv->ieee->iw_mode == IW_MODE_ADHOC) &&
8982                             (geo->bg[j].flags & LIBIPW_CH_PASSIVE_ONLY))
8983                                 continue;
8984
8985                         range->freq[i].i = geo->bg[j].channel;
8986                         range->freq[i].m = geo->bg[j].freq * 100000;
8987                         range->freq[i].e = 1;
8988                         i++;
8989                 }
8990         }
8991
8992         if (priv->ieee->mode & IEEE_A) {
8993                 for (j = 0; j < geo->a_channels && i < IW_MAX_FREQUENCIES; j++) {
8994                         if ((priv->ieee->iw_mode == IW_MODE_ADHOC) &&
8995                             (geo->a[j].flags & LIBIPW_CH_PASSIVE_ONLY))
8996                                 continue;
8997
8998                         range->freq[i].i = geo->a[j].channel;
8999                         range->freq[i].m = geo->a[j].freq * 100000;
9000                         range->freq[i].e = 1;
9001                         i++;
9002                 }
9003         }
9004
9005         range->num_channels = i;
9006         range->num_frequency = i;
9007
9008         mutex_unlock(&priv->mutex);
9009
9010         /* Event capability (kernel + driver) */
9011         range->event_capa[0] = (IW_EVENT_CAPA_K_0 |
9012                                 IW_EVENT_CAPA_MASK(SIOCGIWTHRSPY) |
9013                                 IW_EVENT_CAPA_MASK(SIOCGIWAP) |
9014                                 IW_EVENT_CAPA_MASK(SIOCGIWSCAN));
9015         range->event_capa[1] = IW_EVENT_CAPA_K_1;
9016
9017         range->enc_capa = IW_ENC_CAPA_WPA | IW_ENC_CAPA_WPA2 |
9018                 IW_ENC_CAPA_CIPHER_TKIP | IW_ENC_CAPA_CIPHER_CCMP;
9019
9020         range->scan_capa = IW_SCAN_CAPA_ESSID | IW_SCAN_CAPA_TYPE;
9021
9022         IPW_DEBUG_WX("GET Range\n");
9023         return 0;
9024 }
9025
9026 static int ipw_wx_set_wap(struct net_device *dev,
9027                           struct iw_request_info *info,
9028                           union iwreq_data *wrqu, char *extra)
9029 {
9030         struct ipw_priv *priv = libipw_priv(dev);
9031
9032         if (wrqu->ap_addr.sa_family != ARPHRD_ETHER)
9033                 return -EINVAL;
9034         mutex_lock(&priv->mutex);
9035         if (is_broadcast_ether_addr(wrqu->ap_addr.sa_data) ||
9036             is_zero_ether_addr(wrqu->ap_addr.sa_data)) {
9037                 /* we disable mandatory BSSID association */
9038                 IPW_DEBUG_WX("Setting AP BSSID to ANY\n");
9039                 priv->config &= ~CFG_STATIC_BSSID;
9040                 IPW_DEBUG_ASSOC("Attempting to associate with new "
9041                                 "parameters.\n");
9042                 ipw_associate(priv);
9043                 mutex_unlock(&priv->mutex);
9044                 return 0;
9045         }
9046
9047         priv->config |= CFG_STATIC_BSSID;
9048         if (!memcmp(priv->bssid, wrqu->ap_addr.sa_data, ETH_ALEN)) {
9049                 IPW_DEBUG_WX("BSSID set to current BSSID.\n");
9050                 mutex_unlock(&priv->mutex);
9051                 return 0;
9052         }
9053
9054         IPW_DEBUG_WX("Setting mandatory BSSID to %pM\n",
9055                      wrqu->ap_addr.sa_data);
9056
9057         memcpy(priv->bssid, wrqu->ap_addr.sa_data, ETH_ALEN);
9058
9059         /* Network configuration changed -- force [re]association */
9060         IPW_DEBUG_ASSOC("[re]association triggered due to BSSID change.\n");
9061         if (!ipw_disassociate(priv))
9062                 ipw_associate(priv);
9063
9064         mutex_unlock(&priv->mutex);
9065         return 0;
9066 }
9067
9068 static int ipw_wx_get_wap(struct net_device *dev,
9069                           struct iw_request_info *info,
9070                           union iwreq_data *wrqu, char *extra)
9071 {
9072         struct ipw_priv *priv = libipw_priv(dev);
9073
9074         /* If we are associated, trying to associate, or have a statically
9075          * configured BSSID then return that; otherwise return ANY */
9076         mutex_lock(&priv->mutex);
9077         if (priv->config & CFG_STATIC_BSSID ||
9078             priv->status & (STATUS_ASSOCIATED | STATUS_ASSOCIATING)) {
9079                 wrqu->ap_addr.sa_family = ARPHRD_ETHER;
9080                 memcpy(wrqu->ap_addr.sa_data, priv->bssid, ETH_ALEN);
9081         } else
9082                 memset(wrqu->ap_addr.sa_data, 0, ETH_ALEN);
9083
9084         IPW_DEBUG_WX("Getting WAP BSSID: %pM\n",
9085                      wrqu->ap_addr.sa_data);
9086         mutex_unlock(&priv->mutex);
9087         return 0;
9088 }
9089
9090 static int ipw_wx_set_essid(struct net_device *dev,
9091                             struct iw_request_info *info,
9092                             union iwreq_data *wrqu, char *extra)
9093 {
9094         struct ipw_priv *priv = libipw_priv(dev);
9095         int length;
9096         DECLARE_SSID_BUF(ssid);
9097
9098         mutex_lock(&priv->mutex);
9099
9100         if (!wrqu->essid.flags)
9101         {
9102                 IPW_DEBUG_WX("Setting ESSID to ANY\n");
9103                 ipw_disassociate(priv);
9104                 priv->config &= ~CFG_STATIC_ESSID;
9105                 ipw_associate(priv);
9106                 mutex_unlock(&priv->mutex);
9107                 return 0;
9108         }
9109
9110         length = min((int)wrqu->essid.length, IW_ESSID_MAX_SIZE);
9111
9112         priv->config |= CFG_STATIC_ESSID;
9113
9114         if (priv->essid_len == length && !memcmp(priv->essid, extra, length)
9115             && (priv->status & (STATUS_ASSOCIATED | STATUS_ASSOCIATING))) {
9116                 IPW_DEBUG_WX("ESSID set to current ESSID.\n");
9117                 mutex_unlock(&priv->mutex);
9118                 return 0;
9119         }
9120
9121         IPW_DEBUG_WX("Setting ESSID: '%s' (%d)\n",
9122                      print_ssid(ssid, extra, length), length);
9123
9124         priv->essid_len = length;
9125         memcpy(priv->essid, extra, priv->essid_len);
9126
9127         /* Network configuration changed -- force [re]association */
9128         IPW_DEBUG_ASSOC("[re]association triggered due to ESSID change.\n");
9129         if (!ipw_disassociate(priv))
9130                 ipw_associate(priv);
9131
9132         mutex_unlock(&priv->mutex);
9133         return 0;
9134 }
9135
9136 static int ipw_wx_get_essid(struct net_device *dev,
9137                             struct iw_request_info *info,
9138                             union iwreq_data *wrqu, char *extra)
9139 {
9140         struct ipw_priv *priv = libipw_priv(dev);
9141         DECLARE_SSID_BUF(ssid);
9142
9143         /* If we are associated, trying to associate, or have a statically
9144          * configured ESSID then return that; otherwise return ANY */
9145         mutex_lock(&priv->mutex);
9146         if (priv->config & CFG_STATIC_ESSID ||
9147             priv->status & (STATUS_ASSOCIATED | STATUS_ASSOCIATING)) {
9148                 IPW_DEBUG_WX("Getting essid: '%s'\n",
9149                              print_ssid(ssid, priv->essid, priv->essid_len));
9150                 memcpy(extra, priv->essid, priv->essid_len);
9151                 wrqu->essid.length = priv->essid_len;
9152                 wrqu->essid.flags = 1;  /* active */
9153         } else {
9154                 IPW_DEBUG_WX("Getting essid: ANY\n");
9155                 wrqu->essid.length = 0;
9156                 wrqu->essid.flags = 0;  /* active */
9157         }
9158         mutex_unlock(&priv->mutex);
9159         return 0;
9160 }
9161
9162 static int ipw_wx_set_nick(struct net_device *dev,
9163                            struct iw_request_info *info,
9164                            union iwreq_data *wrqu, char *extra)
9165 {
9166         struct ipw_priv *priv = libipw_priv(dev);
9167
9168         IPW_DEBUG_WX("Setting nick to '%s'\n", extra);
9169         if (wrqu->data.length > IW_ESSID_MAX_SIZE)
9170                 return -E2BIG;
9171         mutex_lock(&priv->mutex);
9172         wrqu->data.length = min((size_t) wrqu->data.length, sizeof(priv->nick));
9173         memset(priv->nick, 0, sizeof(priv->nick));
9174         memcpy(priv->nick, extra, wrqu->data.length);
9175         IPW_DEBUG_TRACE("<<\n");
9176         mutex_unlock(&priv->mutex);
9177         return 0;
9178
9179 }
9180
9181 static int ipw_wx_get_nick(struct net_device *dev,
9182                            struct iw_request_info *info,
9183                            union iwreq_data *wrqu, char *extra)
9184 {
9185         struct ipw_priv *priv = libipw_priv(dev);
9186         IPW_DEBUG_WX("Getting nick\n");
9187         mutex_lock(&priv->mutex);
9188         wrqu->data.length = strlen(priv->nick);
9189         memcpy(extra, priv->nick, wrqu->data.length);
9190         wrqu->data.flags = 1;   /* active */
9191         mutex_unlock(&priv->mutex);
9192         return 0;
9193 }
9194
9195 static int ipw_wx_set_sens(struct net_device *dev,
9196                             struct iw_request_info *info,
9197                             union iwreq_data *wrqu, char *extra)
9198 {
9199         struct ipw_priv *priv = libipw_priv(dev);
9200         int err = 0;
9201
9202         IPW_DEBUG_WX("Setting roaming threshold to %d\n", wrqu->sens.value);
9203         IPW_DEBUG_WX("Setting disassociate threshold to %d\n", 3*wrqu->sens.value);
9204         mutex_lock(&priv->mutex);
9205
9206         if (wrqu->sens.fixed == 0)
9207         {
9208                 priv->roaming_threshold = IPW_MB_ROAMING_THRESHOLD_DEFAULT;
9209                 priv->disassociate_threshold = IPW_MB_DISASSOCIATE_THRESHOLD_DEFAULT;
9210                 goto out;
9211         }
9212         if ((wrqu->sens.value > IPW_MB_ROAMING_THRESHOLD_MAX) ||
9213             (wrqu->sens.value < IPW_MB_ROAMING_THRESHOLD_MIN)) {
9214                 err = -EINVAL;
9215                 goto out;
9216         }
9217
9218         priv->roaming_threshold = wrqu->sens.value;
9219         priv->disassociate_threshold = 3*wrqu->sens.value;
9220       out:
9221         mutex_unlock(&priv->mutex);
9222         return err;
9223 }
9224
9225 static int ipw_wx_get_sens(struct net_device *dev,
9226                             struct iw_request_info *info,
9227                             union iwreq_data *wrqu, char *extra)
9228 {
9229         struct ipw_priv *priv = libipw_priv(dev);
9230         mutex_lock(&priv->mutex);
9231         wrqu->sens.fixed = 1;
9232         wrqu->sens.value = priv->roaming_threshold;
9233         mutex_unlock(&priv->mutex);
9234
9235         IPW_DEBUG_WX("GET roaming threshold -> %s %d\n",
9236                      wrqu->power.disabled ? "OFF" : "ON", wrqu->power.value);
9237
9238         return 0;
9239 }
9240
9241 static int ipw_wx_set_rate(struct net_device *dev,
9242                            struct iw_request_info *info,
9243                            union iwreq_data *wrqu, char *extra)
9244 {
9245         /* TODO: We should use semaphores or locks for access to priv */
9246         struct ipw_priv *priv = libipw_priv(dev);
9247         u32 target_rate = wrqu->bitrate.value;
9248         u32 fixed, mask;
9249
9250         /* value = -1, fixed = 0 means auto only, so we should use all rates offered by AP */
9251         /* value = X, fixed = 1 means only rate X */
9252         /* value = X, fixed = 0 means all rates lower equal X */
9253
9254         if (target_rate == -1) {
9255                 fixed = 0;
9256                 mask = LIBIPW_DEFAULT_RATES_MASK;
9257                 /* Now we should reassociate */
9258                 goto apply;
9259         }
9260
9261         mask = 0;
9262         fixed = wrqu->bitrate.fixed;
9263
9264         if (target_rate == 1000000 || !fixed)
9265                 mask |= LIBIPW_CCK_RATE_1MB_MASK;
9266         if (target_rate == 1000000)
9267                 goto apply;
9268
9269         if (target_rate == 2000000 || !fixed)
9270                 mask |= LIBIPW_CCK_RATE_2MB_MASK;
9271         if (target_rate == 2000000)
9272                 goto apply;
9273
9274         if (target_rate == 5500000 || !fixed)
9275                 mask |= LIBIPW_CCK_RATE_5MB_MASK;
9276         if (target_rate == 5500000)
9277                 goto apply;
9278
9279         if (target_rate == 6000000 || !fixed)
9280                 mask |= LIBIPW_OFDM_RATE_6MB_MASK;
9281         if (target_rate == 6000000)
9282                 goto apply;
9283
9284         if (target_rate == 9000000 || !fixed)
9285                 mask |= LIBIPW_OFDM_RATE_9MB_MASK;
9286         if (target_rate == 9000000)
9287                 goto apply;
9288
9289         if (target_rate == 11000000 || !fixed)
9290                 mask |= LIBIPW_CCK_RATE_11MB_MASK;
9291         if (target_rate == 11000000)
9292                 goto apply;
9293
9294         if (target_rate == 12000000 || !fixed)
9295                 mask |= LIBIPW_OFDM_RATE_12MB_MASK;
9296         if (target_rate == 12000000)
9297                 goto apply;
9298
9299         if (target_rate == 18000000 || !fixed)
9300                 mask |= LIBIPW_OFDM_RATE_18MB_MASK;
9301         if (target_rate == 18000000)
9302                 goto apply;
9303
9304         if (target_rate == 24000000 || !fixed)
9305                 mask |= LIBIPW_OFDM_RATE_24MB_MASK;
9306         if (target_rate == 24000000)
9307                 goto apply;
9308
9309         if (target_rate == 36000000 || !fixed)
9310                 mask |= LIBIPW_OFDM_RATE_36MB_MASK;
9311         if (target_rate == 36000000)
9312                 goto apply;
9313
9314         if (target_rate == 48000000 || !fixed)
9315                 mask |= LIBIPW_OFDM_RATE_48MB_MASK;
9316         if (target_rate == 48000000)
9317                 goto apply;
9318
9319         if (target_rate == 54000000 || !fixed)
9320                 mask |= LIBIPW_OFDM_RATE_54MB_MASK;
9321         if (target_rate == 54000000)
9322                 goto apply;
9323
9324         IPW_DEBUG_WX("invalid rate specified, returning error\n");
9325         return -EINVAL;
9326
9327       apply:
9328         IPW_DEBUG_WX("Setting rate mask to 0x%08X [%s]\n",
9329                      mask, fixed ? "fixed" : "sub-rates");
9330         mutex_lock(&priv->mutex);
9331         if (mask == LIBIPW_DEFAULT_RATES_MASK) {
9332                 priv->config &= ~CFG_FIXED_RATE;
9333                 ipw_set_fixed_rate(priv, priv->ieee->mode);
9334         } else
9335                 priv->config |= CFG_FIXED_RATE;
9336
9337         if (priv->rates_mask == mask) {
9338                 IPW_DEBUG_WX("Mask set to current mask.\n");
9339                 mutex_unlock(&priv->mutex);
9340                 return 0;
9341         }
9342
9343         priv->rates_mask = mask;
9344
9345         /* Network configuration changed -- force [re]association */
9346         IPW_DEBUG_ASSOC("[re]association triggered due to rates change.\n");
9347         if (!ipw_disassociate(priv))
9348                 ipw_associate(priv);
9349
9350         mutex_unlock(&priv->mutex);
9351         return 0;
9352 }
9353
9354 static int ipw_wx_get_rate(struct net_device *dev,
9355                            struct iw_request_info *info,
9356                            union iwreq_data *wrqu, char *extra)
9357 {
9358         struct ipw_priv *priv = libipw_priv(dev);
9359         mutex_lock(&priv->mutex);
9360         wrqu->bitrate.value = priv->last_rate;
9361         wrqu->bitrate.fixed = (priv->config & CFG_FIXED_RATE) ? 1 : 0;
9362         mutex_unlock(&priv->mutex);
9363         IPW_DEBUG_WX("GET Rate -> %d\n", wrqu->bitrate.value);
9364         return 0;
9365 }
9366
9367 static int ipw_wx_set_rts(struct net_device *dev,
9368                           struct iw_request_info *info,
9369                           union iwreq_data *wrqu, char *extra)
9370 {
9371         struct ipw_priv *priv = libipw_priv(dev);
9372         mutex_lock(&priv->mutex);
9373         if (wrqu->rts.disabled || !wrqu->rts.fixed)
9374                 priv->rts_threshold = DEFAULT_RTS_THRESHOLD;
9375         else {
9376                 if (wrqu->rts.value < MIN_RTS_THRESHOLD ||
9377                     wrqu->rts.value > MAX_RTS_THRESHOLD) {
9378                         mutex_unlock(&priv->mutex);
9379                         return -EINVAL;
9380                 }
9381                 priv->rts_threshold = wrqu->rts.value;
9382         }
9383
9384         ipw_send_rts_threshold(priv, priv->rts_threshold);
9385         mutex_unlock(&priv->mutex);
9386         IPW_DEBUG_WX("SET RTS Threshold -> %d\n", priv->rts_threshold);
9387         return 0;
9388 }
9389
9390 static int ipw_wx_get_rts(struct net_device *dev,
9391                           struct iw_request_info *info,
9392                           union iwreq_data *wrqu, char *extra)
9393 {
9394         struct ipw_priv *priv = libipw_priv(dev);
9395         mutex_lock(&priv->mutex);
9396         wrqu->rts.value = priv->rts_threshold;
9397         wrqu->rts.fixed = 0;    /* no auto select */
9398         wrqu->rts.disabled = (wrqu->rts.value == DEFAULT_RTS_THRESHOLD);
9399         mutex_unlock(&priv->mutex);
9400         IPW_DEBUG_WX("GET RTS Threshold -> %d\n", wrqu->rts.value);
9401         return 0;
9402 }
9403
9404 static int ipw_wx_set_txpow(struct net_device *dev,
9405                             struct iw_request_info *info,
9406                             union iwreq_data *wrqu, char *extra)
9407 {
9408         struct ipw_priv *priv = libipw_priv(dev);
9409         int err = 0;
9410
9411         mutex_lock(&priv->mutex);
9412         if (ipw_radio_kill_sw(priv, wrqu->power.disabled)) {
9413                 err = -EINPROGRESS;
9414                 goto out;
9415         }
9416
9417         if (!wrqu->power.fixed)
9418                 wrqu->power.value = IPW_TX_POWER_DEFAULT;
9419
9420         if (wrqu->power.flags != IW_TXPOW_DBM) {
9421                 err = -EINVAL;
9422                 goto out;
9423         }
9424
9425         if ((wrqu->power.value > IPW_TX_POWER_MAX) ||
9426             (wrqu->power.value < IPW_TX_POWER_MIN)) {
9427                 err = -EINVAL;
9428                 goto out;
9429         }
9430
9431         priv->tx_power = wrqu->power.value;
9432         err = ipw_set_tx_power(priv);
9433       out:
9434         mutex_unlock(&priv->mutex);
9435         return err;
9436 }
9437
9438 static int ipw_wx_get_txpow(struct net_device *dev,
9439                             struct iw_request_info *info,
9440                             union iwreq_data *wrqu, char *extra)
9441 {
9442         struct ipw_priv *priv = libipw_priv(dev);
9443         mutex_lock(&priv->mutex);
9444         wrqu->power.value = priv->tx_power;
9445         wrqu->power.fixed = 1;
9446         wrqu->power.flags = IW_TXPOW_DBM;
9447         wrqu->power.disabled = (priv->status & STATUS_RF_KILL_MASK) ? 1 : 0;
9448         mutex_unlock(&priv->mutex);
9449
9450         IPW_DEBUG_WX("GET TX Power -> %s %d\n",
9451                      wrqu->power.disabled ? "OFF" : "ON", wrqu->power.value);
9452
9453         return 0;
9454 }
9455
9456 static int ipw_wx_set_frag(struct net_device *dev,
9457                            struct iw_request_info *info,
9458                            union iwreq_data *wrqu, char *extra)
9459 {
9460         struct ipw_priv *priv = libipw_priv(dev);
9461         mutex_lock(&priv->mutex);
9462         if (wrqu->frag.disabled || !wrqu->frag.fixed)
9463                 priv->ieee->fts = DEFAULT_FTS;
9464         else {
9465                 if (wrqu->frag.value < MIN_FRAG_THRESHOLD ||
9466                     wrqu->frag.value > MAX_FRAG_THRESHOLD) {
9467                         mutex_unlock(&priv->mutex);
9468                         return -EINVAL;
9469                 }
9470
9471                 priv->ieee->fts = wrqu->frag.value & ~0x1;
9472         }
9473
9474         ipw_send_frag_threshold(priv, wrqu->frag.value);
9475         mutex_unlock(&priv->mutex);
9476         IPW_DEBUG_WX("SET Frag Threshold -> %d\n", wrqu->frag.value);
9477         return 0;
9478 }
9479
9480 static int ipw_wx_get_frag(struct net_device *dev,
9481                            struct iw_request_info *info,
9482                            union iwreq_data *wrqu, char *extra)
9483 {
9484         struct ipw_priv *priv = libipw_priv(dev);
9485         mutex_lock(&priv->mutex);
9486         wrqu->frag.value = priv->ieee->fts;
9487         wrqu->frag.fixed = 0;   /* no auto select */
9488         wrqu->frag.disabled = (wrqu->frag.value == DEFAULT_FTS);
9489         mutex_unlock(&priv->mutex);
9490         IPW_DEBUG_WX("GET Frag Threshold -> %d\n", wrqu->frag.value);
9491
9492         return 0;
9493 }
9494
9495 static int ipw_wx_set_retry(struct net_device *dev,
9496                             struct iw_request_info *info,
9497                             union iwreq_data *wrqu, char *extra)
9498 {
9499         struct ipw_priv *priv = libipw_priv(dev);
9500
9501         if (wrqu->retry.flags & IW_RETRY_LIFETIME || wrqu->retry.disabled)
9502                 return -EINVAL;
9503
9504         if (!(wrqu->retry.flags & IW_RETRY_LIMIT))
9505                 return 0;
9506
9507         if (wrqu->retry.value < 0 || wrqu->retry.value >= 255)
9508                 return -EINVAL;
9509
9510         mutex_lock(&priv->mutex);
9511         if (wrqu->retry.flags & IW_RETRY_SHORT)
9512                 priv->short_retry_limit = (u8) wrqu->retry.value;
9513         else if (wrqu->retry.flags & IW_RETRY_LONG)
9514                 priv->long_retry_limit = (u8) wrqu->retry.value;
9515         else {
9516                 priv->short_retry_limit = (u8) wrqu->retry.value;
9517                 priv->long_retry_limit = (u8) wrqu->retry.value;
9518         }
9519
9520         ipw_send_retry_limit(priv, priv->short_retry_limit,
9521                              priv->long_retry_limit);
9522         mutex_unlock(&priv->mutex);
9523         IPW_DEBUG_WX("SET retry limit -> short:%d long:%d\n",
9524                      priv->short_retry_limit, priv->long_retry_limit);
9525         return 0;
9526 }
9527
9528 static int ipw_wx_get_retry(struct net_device *dev,
9529                             struct iw_request_info *info,
9530                             union iwreq_data *wrqu, char *extra)
9531 {
9532         struct ipw_priv *priv = libipw_priv(dev);
9533
9534         mutex_lock(&priv->mutex);
9535         wrqu->retry.disabled = 0;
9536
9537         if ((wrqu->retry.flags & IW_RETRY_TYPE) == IW_RETRY_LIFETIME) {
9538                 mutex_unlock(&priv->mutex);
9539                 return -EINVAL;
9540         }
9541
9542         if (wrqu->retry.flags & IW_RETRY_LONG) {
9543                 wrqu->retry.flags = IW_RETRY_LIMIT | IW_RETRY_LONG;
9544                 wrqu->retry.value = priv->long_retry_limit;
9545         } else if (wrqu->retry.flags & IW_RETRY_SHORT) {
9546                 wrqu->retry.flags = IW_RETRY_LIMIT | IW_RETRY_SHORT;
9547                 wrqu->retry.value = priv->short_retry_limit;
9548         } else {
9549                 wrqu->retry.flags = IW_RETRY_LIMIT;
9550                 wrqu->retry.value = priv->short_retry_limit;
9551         }
9552         mutex_unlock(&priv->mutex);
9553
9554         IPW_DEBUG_WX("GET retry -> %d\n", wrqu->retry.value);
9555
9556         return 0;
9557 }
9558
9559 static int ipw_wx_set_scan(struct net_device *dev,
9560                            struct iw_request_info *info,
9561                            union iwreq_data *wrqu, char *extra)
9562 {
9563         struct ipw_priv *priv = libipw_priv(dev);
9564         struct iw_scan_req *req = (struct iw_scan_req *)extra;
9565         struct delayed_work *work = NULL;
9566
9567         mutex_lock(&priv->mutex);
9568
9569         priv->user_requested_scan = 1;
9570
9571         if (wrqu->data.length == sizeof(struct iw_scan_req)) {
9572                 if (wrqu->data.flags & IW_SCAN_THIS_ESSID) {
9573                         int len = min((int)req->essid_len,
9574                                       (int)sizeof(priv->direct_scan_ssid));
9575                         memcpy(priv->direct_scan_ssid, req->essid, len);
9576                         priv->direct_scan_ssid_len = len;
9577                         work = &priv->request_direct_scan;
9578                 } else if (req->scan_type == IW_SCAN_TYPE_PASSIVE) {
9579                         work = &priv->request_passive_scan;
9580                 }
9581         } else {
9582                 /* Normal active broadcast scan */
9583                 work = &priv->request_scan;
9584         }
9585
9586         mutex_unlock(&priv->mutex);
9587
9588         IPW_DEBUG_WX("Start scan\n");
9589
9590         schedule_delayed_work(work, 0);
9591
9592         return 0;
9593 }
9594
9595 static int ipw_wx_get_scan(struct net_device *dev,
9596                            struct iw_request_info *info,
9597                            union iwreq_data *wrqu, char *extra)
9598 {
9599         struct ipw_priv *priv = libipw_priv(dev);
9600         return libipw_wx_get_scan(priv->ieee, info, wrqu, extra);
9601 }
9602
9603 static int ipw_wx_set_encode(struct net_device *dev,
9604                              struct iw_request_info *info,
9605                              union iwreq_data *wrqu, char *key)
9606 {
9607         struct ipw_priv *priv = libipw_priv(dev);
9608         int ret;
9609         u32 cap = priv->capability;
9610
9611         mutex_lock(&priv->mutex);
9612         ret = libipw_wx_set_encode(priv->ieee, info, wrqu, key);
9613
9614         /* In IBSS mode, we need to notify the firmware to update
9615          * the beacon info after we changed the capability. */
9616         if (cap != priv->capability &&
9617             priv->ieee->iw_mode == IW_MODE_ADHOC &&
9618             priv->status & STATUS_ASSOCIATED)
9619                 ipw_disassociate(priv);
9620
9621         mutex_unlock(&priv->mutex);
9622         return ret;
9623 }
9624
9625 static int ipw_wx_get_encode(struct net_device *dev,
9626                              struct iw_request_info *info,
9627                              union iwreq_data *wrqu, char *key)
9628 {
9629         struct ipw_priv *priv = libipw_priv(dev);
9630         return libipw_wx_get_encode(priv->ieee, info, wrqu, key);
9631 }
9632
9633 static int ipw_wx_set_power(struct net_device *dev,
9634                             struct iw_request_info *info,
9635                             union iwreq_data *wrqu, char *extra)
9636 {
9637         struct ipw_priv *priv = libipw_priv(dev);
9638         int err;
9639         mutex_lock(&priv->mutex);
9640         if (wrqu->power.disabled) {
9641                 priv->power_mode = IPW_POWER_LEVEL(priv->power_mode);
9642                 err = ipw_send_power_mode(priv, IPW_POWER_MODE_CAM);
9643                 if (err) {
9644                         IPW_DEBUG_WX("failed setting power mode.\n");
9645                         mutex_unlock(&priv->mutex);
9646                         return err;
9647                 }
9648                 IPW_DEBUG_WX("SET Power Management Mode -> off\n");
9649                 mutex_unlock(&priv->mutex);
9650                 return 0;
9651         }
9652
9653         switch (wrqu->power.flags & IW_POWER_MODE) {
9654         case IW_POWER_ON:       /* If not specified */
9655         case IW_POWER_MODE:     /* If set all mask */
9656         case IW_POWER_ALL_R:    /* If explicitly state all */
9657                 break;
9658         default:                /* Otherwise we don't support it */
9659                 IPW_DEBUG_WX("SET PM Mode: %X not supported.\n",
9660                              wrqu->power.flags);
9661                 mutex_unlock(&priv->mutex);
9662                 return -EOPNOTSUPP;
9663         }
9664
9665         /* If the user hasn't specified a power management mode yet, default
9666          * to BATTERY */
9667         if (IPW_POWER_LEVEL(priv->power_mode) == IPW_POWER_AC)
9668                 priv->power_mode = IPW_POWER_ENABLED | IPW_POWER_BATTERY;
9669         else
9670                 priv->power_mode = IPW_POWER_ENABLED | priv->power_mode;
9671
9672         err = ipw_send_power_mode(priv, IPW_POWER_LEVEL(priv->power_mode));
9673         if (err) {
9674                 IPW_DEBUG_WX("failed setting power mode.\n");
9675                 mutex_unlock(&priv->mutex);
9676                 return err;
9677         }
9678
9679         IPW_DEBUG_WX("SET Power Management Mode -> 0x%02X\n", priv->power_mode);
9680         mutex_unlock(&priv->mutex);
9681         return 0;
9682 }
9683
9684 static int ipw_wx_get_power(struct net_device *dev,
9685                             struct iw_request_info *info,
9686                             union iwreq_data *wrqu, char *extra)
9687 {
9688         struct ipw_priv *priv = libipw_priv(dev);
9689         mutex_lock(&priv->mutex);
9690         if (!(priv->power_mode & IPW_POWER_ENABLED))
9691                 wrqu->power.disabled = 1;
9692         else
9693                 wrqu->power.disabled = 0;
9694
9695         mutex_unlock(&priv->mutex);
9696         IPW_DEBUG_WX("GET Power Management Mode -> %02X\n", priv->power_mode);
9697
9698         return 0;
9699 }
9700
9701 static int ipw_wx_set_powermode(struct net_device *dev,
9702                                 struct iw_request_info *info,
9703                                 union iwreq_data *wrqu, char *extra)
9704 {
9705         struct ipw_priv *priv = libipw_priv(dev);
9706         int mode = *(int *)extra;
9707         int err;
9708
9709         mutex_lock(&priv->mutex);
9710         if ((mode < 1) || (mode > IPW_POWER_LIMIT))
9711                 mode = IPW_POWER_AC;
9712
9713         if (IPW_POWER_LEVEL(priv->power_mode) != mode) {
9714                 err = ipw_send_power_mode(priv, mode);
9715                 if (err) {
9716                         IPW_DEBUG_WX("failed setting power mode.\n");
9717                         mutex_unlock(&priv->mutex);
9718                         return err;
9719                 }
9720                 priv->power_mode = IPW_POWER_ENABLED | mode;
9721         }
9722         mutex_unlock(&priv->mutex);
9723         return 0;
9724 }
9725
9726 #define MAX_WX_STRING 80
9727 static int ipw_wx_get_powermode(struct net_device *dev,
9728                                 struct iw_request_info *info,
9729                                 union iwreq_data *wrqu, char *extra)
9730 {
9731         struct ipw_priv *priv = libipw_priv(dev);
9732         int level = IPW_POWER_LEVEL(priv->power_mode);
9733         char *p = extra;
9734
9735         p += snprintf(p, MAX_WX_STRING, "Power save level: %d ", level);
9736
9737         switch (level) {
9738         case IPW_POWER_AC:
9739                 p += snprintf(p, MAX_WX_STRING - (p - extra), "(AC)");
9740                 break;
9741         case IPW_POWER_BATTERY:
9742                 p += snprintf(p, MAX_WX_STRING - (p - extra), "(BATTERY)");
9743                 break;
9744         default:
9745                 p += snprintf(p, MAX_WX_STRING - (p - extra),
9746                               "(Timeout %dms, Period %dms)",
9747                               timeout_duration[level - 1] / 1000,
9748                               period_duration[level - 1] / 1000);
9749         }
9750
9751         if (!(priv->power_mode & IPW_POWER_ENABLED))
9752                 p += snprintf(p, MAX_WX_STRING - (p - extra), " OFF");
9753
9754         wrqu->data.length = p - extra + 1;
9755
9756         return 0;
9757 }
9758
9759 static int ipw_wx_set_wireless_mode(struct net_device *dev,
9760                                     struct iw_request_info *info,
9761                                     union iwreq_data *wrqu, char *extra)
9762 {
9763         struct ipw_priv *priv = libipw_priv(dev);
9764         int mode = *(int *)extra;
9765         u8 band = 0, modulation = 0;
9766
9767         if (mode == 0 || mode & ~IEEE_MODE_MASK) {
9768                 IPW_WARNING("Attempt to set invalid wireless mode: %d\n", mode);
9769                 return -EINVAL;
9770         }
9771         mutex_lock(&priv->mutex);
9772         if (priv->adapter == IPW_2915ABG) {
9773                 priv->ieee->abg_true = 1;
9774                 if (mode & IEEE_A) {
9775                         band |= LIBIPW_52GHZ_BAND;
9776                         modulation |= LIBIPW_OFDM_MODULATION;
9777                 } else
9778                         priv->ieee->abg_true = 0;
9779         } else {
9780                 if (mode & IEEE_A) {
9781                         IPW_WARNING("Attempt to set 2200BG into "
9782                                     "802.11a mode\n");
9783                         mutex_unlock(&priv->mutex);
9784                         return -EINVAL;
9785                 }
9786
9787                 priv->ieee->abg_true = 0;
9788         }
9789
9790         if (mode & IEEE_B) {
9791                 band |= LIBIPW_24GHZ_BAND;
9792                 modulation |= LIBIPW_CCK_MODULATION;
9793         } else
9794                 priv->ieee->abg_true = 0;
9795
9796         if (mode & IEEE_G) {
9797                 band |= LIBIPW_24GHZ_BAND;
9798                 modulation |= LIBIPW_OFDM_MODULATION;
9799         } else
9800                 priv->ieee->abg_true = 0;
9801
9802         priv->ieee->mode = mode;
9803         priv->ieee->freq_band = band;
9804         priv->ieee->modulation = modulation;
9805         init_supported_rates(priv, &priv->rates);
9806
9807         /* Network configuration changed -- force [re]association */
9808         IPW_DEBUG_ASSOC("[re]association triggered due to mode change.\n");
9809         if (!ipw_disassociate(priv)) {
9810                 ipw_send_supported_rates(priv, &priv->rates);
9811                 ipw_associate(priv);
9812         }
9813
9814         /* Update the band LEDs */
9815         ipw_led_band_on(priv);
9816
9817         IPW_DEBUG_WX("PRIV SET MODE: %c%c%c\n",
9818                      mode & IEEE_A ? 'a' : '.',
9819                      mode & IEEE_B ? 'b' : '.', mode & IEEE_G ? 'g' : '.');
9820         mutex_unlock(&priv->mutex);
9821         return 0;
9822 }
9823
9824 static int ipw_wx_get_wireless_mode(struct net_device *dev,
9825                                     struct iw_request_info *info,
9826                                     union iwreq_data *wrqu, char *extra)
9827 {
9828         struct ipw_priv *priv = libipw_priv(dev);
9829         mutex_lock(&priv->mutex);
9830         switch (priv->ieee->mode) {
9831         case IEEE_A:
9832                 strncpy(extra, "802.11a (1)", MAX_WX_STRING);
9833                 break;
9834         case IEEE_B:
9835                 strncpy(extra, "802.11b (2)", MAX_WX_STRING);
9836                 break;
9837         case IEEE_A | IEEE_B:
9838                 strncpy(extra, "802.11ab (3)", MAX_WX_STRING);
9839                 break;
9840         case IEEE_G:
9841                 strncpy(extra, "802.11g (4)", MAX_WX_STRING);
9842                 break;
9843         case IEEE_A | IEEE_G:
9844                 strncpy(extra, "802.11ag (5)", MAX_WX_STRING);
9845                 break;
9846         case IEEE_B | IEEE_G:
9847                 strncpy(extra, "802.11bg (6)", MAX_WX_STRING);
9848                 break;
9849         case IEEE_A | IEEE_B | IEEE_G:
9850                 strncpy(extra, "802.11abg (7)", MAX_WX_STRING);
9851                 break;
9852         default:
9853                 strncpy(extra, "unknown", MAX_WX_STRING);
9854                 break;
9855         }
9856
9857         IPW_DEBUG_WX("PRIV GET MODE: %s\n", extra);
9858
9859         wrqu->data.length = strlen(extra) + 1;
9860         mutex_unlock(&priv->mutex);
9861
9862         return 0;
9863 }
9864
9865 static int ipw_wx_set_preamble(struct net_device *dev,
9866                                struct iw_request_info *info,
9867                                union iwreq_data *wrqu, char *extra)
9868 {
9869         struct ipw_priv *priv = libipw_priv(dev);
9870         int mode = *(int *)extra;
9871         mutex_lock(&priv->mutex);
9872         /* Switching from SHORT -> LONG requires a disassociation */
9873         if (mode == 1) {
9874                 if (!(priv->config & CFG_PREAMBLE_LONG)) {
9875                         priv->config |= CFG_PREAMBLE_LONG;
9876
9877                         /* Network configuration changed -- force [re]association */
9878                         IPW_DEBUG_ASSOC
9879                             ("[re]association triggered due to preamble change.\n");
9880                         if (!ipw_disassociate(priv))
9881                                 ipw_associate(priv);
9882                 }
9883                 goto done;
9884         }
9885
9886         if (mode == 0) {
9887                 priv->config &= ~CFG_PREAMBLE_LONG;
9888                 goto done;
9889         }
9890         mutex_unlock(&priv->mutex);
9891         return -EINVAL;
9892
9893       done:
9894         mutex_unlock(&priv->mutex);
9895         return 0;
9896 }
9897
9898 static int ipw_wx_get_preamble(struct net_device *dev,
9899                                struct iw_request_info *info,
9900                                union iwreq_data *wrqu, char *extra)
9901 {
9902         struct ipw_priv *priv = libipw_priv(dev);
9903         mutex_lock(&priv->mutex);
9904         if (priv->config & CFG_PREAMBLE_LONG)
9905                 snprintf(wrqu->name, IFNAMSIZ, "long (1)");
9906         else
9907                 snprintf(wrqu->name, IFNAMSIZ, "auto (0)");
9908         mutex_unlock(&priv->mutex);
9909         return 0;
9910 }
9911
9912 #ifdef CONFIG_IPW2200_MONITOR
9913 static int ipw_wx_set_monitor(struct net_device *dev,
9914                               struct iw_request_info *info,
9915                               union iwreq_data *wrqu, char *extra)
9916 {
9917         struct ipw_priv *priv = libipw_priv(dev);
9918         int *parms = (int *)extra;
9919         int enable = (parms[0] > 0);
9920         mutex_lock(&priv->mutex);
9921         IPW_DEBUG_WX("SET MONITOR: %d %d\n", enable, parms[1]);
9922         if (enable) {
9923                 if (priv->ieee->iw_mode != IW_MODE_MONITOR) {
9924 #ifdef CONFIG_IPW2200_RADIOTAP
9925                         priv->net_dev->type = ARPHRD_IEEE80211_RADIOTAP;
9926 #else
9927                         priv->net_dev->type = ARPHRD_IEEE80211;
9928 #endif
9929                         schedule_work(&priv->adapter_restart);
9930                 }
9931
9932                 ipw_set_channel(priv, parms[1]);
9933         } else {
9934                 if (priv->ieee->iw_mode != IW_MODE_MONITOR) {
9935                         mutex_unlock(&priv->mutex);
9936                         return 0;
9937                 }
9938                 priv->net_dev->type = ARPHRD_ETHER;
9939                 schedule_work(&priv->adapter_restart);
9940         }
9941         mutex_unlock(&priv->mutex);
9942         return 0;
9943 }
9944
9945 #endif                          /* CONFIG_IPW2200_MONITOR */
9946
9947 static int ipw_wx_reset(struct net_device *dev,
9948                         struct iw_request_info *info,
9949                         union iwreq_data *wrqu, char *extra)
9950 {
9951         struct ipw_priv *priv = libipw_priv(dev);
9952         IPW_DEBUG_WX("RESET\n");
9953         schedule_work(&priv->adapter_restart);
9954         return 0;
9955 }
9956
9957 static int ipw_wx_sw_reset(struct net_device *dev,
9958                            struct iw_request_info *info,
9959                            union iwreq_data *wrqu, char *extra)
9960 {
9961         struct ipw_priv *priv = libipw_priv(dev);
9962         union iwreq_data wrqu_sec = {
9963                 .encoding = {
9964                              .flags = IW_ENCODE_DISABLED,
9965                              },
9966         };
9967         int ret;
9968
9969         IPW_DEBUG_WX("SW_RESET\n");
9970
9971         mutex_lock(&priv->mutex);
9972
9973         ret = ipw_sw_reset(priv, 2);
9974         if (!ret) {
9975                 free_firmware();
9976                 ipw_adapter_restart(priv);
9977         }
9978
9979         /* The SW reset bit might have been toggled on by the 'disable'
9980          * module parameter, so take appropriate action */
9981         ipw_radio_kill_sw(priv, priv->status & STATUS_RF_KILL_SW);
9982
9983         mutex_unlock(&priv->mutex);
9984         libipw_wx_set_encode(priv->ieee, info, &wrqu_sec, NULL);
9985         mutex_lock(&priv->mutex);
9986
9987         if (!(priv->status & STATUS_RF_KILL_MASK)) {
9988                 /* Configuration likely changed -- force [re]association */
9989                 IPW_DEBUG_ASSOC("[re]association triggered due to sw "
9990                                 "reset.\n");
9991                 if (!ipw_disassociate(priv))
9992                         ipw_associate(priv);
9993         }
9994
9995         mutex_unlock(&priv->mutex);
9996
9997         return 0;
9998 }
9999
10000 /* Rebase the WE IOCTLs to zero for the handler array */
10001 static iw_handler ipw_wx_handlers[] = {
10002         IW_HANDLER(SIOCGIWNAME, (iw_handler)cfg80211_wext_giwname),
10003         IW_HANDLER(SIOCSIWFREQ, ipw_wx_set_freq),
10004         IW_HANDLER(SIOCGIWFREQ, ipw_wx_get_freq),
10005         IW_HANDLER(SIOCSIWMODE, ipw_wx_set_mode),
10006         IW_HANDLER(SIOCGIWMODE, ipw_wx_get_mode),
10007         IW_HANDLER(SIOCSIWSENS, ipw_wx_set_sens),
10008         IW_HANDLER(SIOCGIWSENS, ipw_wx_get_sens),
10009         IW_HANDLER(SIOCGIWRANGE, ipw_wx_get_range),
10010         IW_HANDLER(SIOCSIWAP, ipw_wx_set_wap),
10011         IW_HANDLER(SIOCGIWAP, ipw_wx_get_wap),
10012         IW_HANDLER(SIOCSIWSCAN, ipw_wx_set_scan),
10013         IW_HANDLER(SIOCGIWSCAN, ipw_wx_get_scan),
10014         IW_HANDLER(SIOCSIWESSID, ipw_wx_set_essid),
10015         IW_HANDLER(SIOCGIWESSID, ipw_wx_get_essid),
10016         IW_HANDLER(SIOCSIWNICKN, ipw_wx_set_nick),
10017         IW_HANDLER(SIOCGIWNICKN, ipw_wx_get_nick),
10018         IW_HANDLER(SIOCSIWRATE, ipw_wx_set_rate),
10019         IW_HANDLER(SIOCGIWRATE, ipw_wx_get_rate),
10020         IW_HANDLER(SIOCSIWRTS, ipw_wx_set_rts),
10021         IW_HANDLER(SIOCGIWRTS, ipw_wx_get_rts),
10022         IW_HANDLER(SIOCSIWFRAG, ipw_wx_set_frag),
10023         IW_HANDLER(SIOCGIWFRAG, ipw_wx_get_frag),
10024         IW_HANDLER(SIOCSIWTXPOW, ipw_wx_set_txpow),
10025         IW_HANDLER(SIOCGIWTXPOW, ipw_wx_get_txpow),
10026         IW_HANDLER(SIOCSIWRETRY, ipw_wx_set_retry),
10027         IW_HANDLER(SIOCGIWRETRY, ipw_wx_get_retry),
10028         IW_HANDLER(SIOCSIWENCODE, ipw_wx_set_encode),
10029         IW_HANDLER(SIOCGIWENCODE, ipw_wx_get_encode),
10030         IW_HANDLER(SIOCSIWPOWER, ipw_wx_set_power),
10031         IW_HANDLER(SIOCGIWPOWER, ipw_wx_get_power),
10032         IW_HANDLER(SIOCSIWSPY, iw_handler_set_spy),
10033         IW_HANDLER(SIOCGIWSPY, iw_handler_get_spy),
10034         IW_HANDLER(SIOCSIWTHRSPY, iw_handler_set_thrspy),
10035         IW_HANDLER(SIOCGIWTHRSPY, iw_handler_get_thrspy),
10036         IW_HANDLER(SIOCSIWGENIE, ipw_wx_set_genie),
10037         IW_HANDLER(SIOCGIWGENIE, ipw_wx_get_genie),
10038         IW_HANDLER(SIOCSIWMLME, ipw_wx_set_mlme),
10039         IW_HANDLER(SIOCSIWAUTH, ipw_wx_set_auth),
10040         IW_HANDLER(SIOCGIWAUTH, ipw_wx_get_auth),
10041         IW_HANDLER(SIOCSIWENCODEEXT, ipw_wx_set_encodeext),
10042         IW_HANDLER(SIOCGIWENCODEEXT, ipw_wx_get_encodeext),
10043 };
10044
10045 enum {
10046         IPW_PRIV_SET_POWER = SIOCIWFIRSTPRIV,
10047         IPW_PRIV_GET_POWER,
10048         IPW_PRIV_SET_MODE,
10049         IPW_PRIV_GET_MODE,
10050         IPW_PRIV_SET_PREAMBLE,
10051         IPW_PRIV_GET_PREAMBLE,
10052         IPW_PRIV_RESET,
10053         IPW_PRIV_SW_RESET,
10054 #ifdef CONFIG_IPW2200_MONITOR
10055         IPW_PRIV_SET_MONITOR,
10056 #endif
10057 };
10058
10059 static struct iw_priv_args ipw_priv_args[] = {
10060         {
10061          .cmd = IPW_PRIV_SET_POWER,
10062          .set_args = IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 1,
10063          .name = "set_power"},
10064         {
10065          .cmd = IPW_PRIV_GET_POWER,
10066          .get_args = IW_PRIV_TYPE_CHAR | IW_PRIV_SIZE_FIXED | MAX_WX_STRING,
10067          .name = "get_power"},
10068         {
10069          .cmd = IPW_PRIV_SET_MODE,
10070          .set_args = IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 1,
10071          .name = "set_mode"},
10072         {
10073          .cmd = IPW_PRIV_GET_MODE,
10074          .get_args = IW_PRIV_TYPE_CHAR | IW_PRIV_SIZE_FIXED | MAX_WX_STRING,
10075          .name = "get_mode"},
10076         {
10077          .cmd = IPW_PRIV_SET_PREAMBLE,
10078          .set_args = IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 1,
10079          .name = "set_preamble"},
10080         {
10081          .cmd = IPW_PRIV_GET_PREAMBLE,
10082          .get_args = IW_PRIV_TYPE_CHAR | IW_PRIV_SIZE_FIXED | IFNAMSIZ,
10083          .name = "get_preamble"},
10084         {
10085          IPW_PRIV_RESET,
10086          IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 0, 0, "reset"},
10087         {
10088          IPW_PRIV_SW_RESET,
10089          IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 0, 0, "sw_reset"},
10090 #ifdef CONFIG_IPW2200_MONITOR
10091         {
10092          IPW_PRIV_SET_MONITOR,
10093          IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 2, 0, "monitor"},
10094 #endif                          /* CONFIG_IPW2200_MONITOR */
10095 };
10096
10097 static iw_handler ipw_priv_handler[] = {
10098         ipw_wx_set_powermode,
10099         ipw_wx_get_powermode,
10100         ipw_wx_set_wireless_mode,
10101         ipw_wx_get_wireless_mode,
10102         ipw_wx_set_preamble,
10103         ipw_wx_get_preamble,
10104         ipw_wx_reset,
10105         ipw_wx_sw_reset,
10106 #ifdef CONFIG_IPW2200_MONITOR
10107         ipw_wx_set_monitor,
10108 #endif
10109 };
10110
10111 static struct iw_handler_def ipw_wx_handler_def = {
10112         .standard = ipw_wx_handlers,
10113         .num_standard = ARRAY_SIZE(ipw_wx_handlers),
10114         .num_private = ARRAY_SIZE(ipw_priv_handler),
10115         .num_private_args = ARRAY_SIZE(ipw_priv_args),
10116         .private = ipw_priv_handler,
10117         .private_args = ipw_priv_args,
10118         .get_wireless_stats = ipw_get_wireless_stats,
10119 };
10120
10121 /*
10122  * Get wireless statistics.
10123  * Called by /proc/net/wireless
10124  * Also called by SIOCGIWSTATS
10125  */
10126 static struct iw_statistics *ipw_get_wireless_stats(struct net_device *dev)
10127 {
10128         struct ipw_priv *priv = libipw_priv(dev);
10129         struct iw_statistics *wstats;
10130
10131         wstats = &priv->wstats;
10132
10133         /* if hw is disabled, then ipw_get_ordinal() can't be called.
10134          * netdev->get_wireless_stats seems to be called before fw is
10135          * initialized.  STATUS_ASSOCIATED will only be set if the hw is up
10136          * and associated; if not associcated, the values are all meaningless
10137          * anyway, so set them all to NULL and INVALID */
10138         if (!(priv->status & STATUS_ASSOCIATED)) {
10139                 wstats->miss.beacon = 0;
10140                 wstats->discard.retries = 0;
10141                 wstats->qual.qual = 0;
10142                 wstats->qual.level = 0;
10143                 wstats->qual.noise = 0;
10144                 wstats->qual.updated = 7;
10145                 wstats->qual.updated |= IW_QUAL_NOISE_INVALID |
10146                     IW_QUAL_QUAL_INVALID | IW_QUAL_LEVEL_INVALID;
10147                 return wstats;
10148         }
10149
10150         wstats->qual.qual = priv->quality;
10151         wstats->qual.level = priv->exp_avg_rssi;
10152         wstats->qual.noise = priv->exp_avg_noise;
10153         wstats->qual.updated = IW_QUAL_QUAL_UPDATED | IW_QUAL_LEVEL_UPDATED |
10154             IW_QUAL_NOISE_UPDATED | IW_QUAL_DBM;
10155
10156         wstats->miss.beacon = average_value(&priv->average_missed_beacons);
10157         wstats->discard.retries = priv->last_tx_failures;
10158         wstats->discard.code = priv->ieee->ieee_stats.rx_discards_undecryptable;
10159
10160 /*      if (ipw_get_ordinal(priv, IPW_ORD_STAT_TX_RETRY, &tx_retry, &len))
10161         goto fail_get_ordinal;
10162         wstats->discard.retries += tx_retry; */
10163
10164         return wstats;
10165 }
10166
10167 /* net device stuff */
10168
10169 static  void init_sys_config(struct ipw_sys_config *sys_config)
10170 {
10171         memset(sys_config, 0, sizeof(struct ipw_sys_config));
10172         sys_config->bt_coexistence = 0;
10173         sys_config->answer_broadcast_ssid_probe = 0;
10174         sys_config->accept_all_data_frames = 0;
10175         sys_config->accept_non_directed_frames = 1;
10176         sys_config->exclude_unicast_unencrypted = 0;
10177         sys_config->disable_unicast_decryption = 1;
10178         sys_config->exclude_multicast_unencrypted = 0;
10179         sys_config->disable_multicast_decryption = 1;
10180         if (antenna < CFG_SYS_ANTENNA_BOTH || antenna > CFG_SYS_ANTENNA_B)
10181                 antenna = CFG_SYS_ANTENNA_BOTH;
10182         sys_config->antenna_diversity = antenna;
10183         sys_config->pass_crc_to_host = 0;       /* TODO: See if 1 gives us FCS */
10184         sys_config->dot11g_auto_detection = 0;
10185         sys_config->enable_cts_to_self = 0;
10186         sys_config->bt_coexist_collision_thr = 0;
10187         sys_config->pass_noise_stats_to_host = 1;       /* 1 -- fix for 256 */
10188         sys_config->silence_threshold = 0x1e;
10189 }
10190
10191 static int ipw_net_open(struct net_device *dev)
10192 {
10193         IPW_DEBUG_INFO("dev->open\n");
10194         netif_start_queue(dev);
10195         return 0;
10196 }
10197
10198 static int ipw_net_stop(struct net_device *dev)
10199 {
10200         IPW_DEBUG_INFO("dev->close\n");
10201         netif_stop_queue(dev);
10202         return 0;
10203 }
10204
10205 /*
10206 todo:
10207
10208 modify to send one tfd per fragment instead of using chunking.  otherwise
10209 we need to heavily modify the libipw_skb_to_txb.
10210 */
10211
10212 static int ipw_tx_skb(struct ipw_priv *priv, struct libipw_txb *txb,
10213                              int pri)
10214 {
10215         struct libipw_hdr_3addrqos *hdr = (struct libipw_hdr_3addrqos *)
10216             txb->fragments[0]->data;
10217         int i = 0;
10218         struct tfd_frame *tfd;
10219 #ifdef CONFIG_IPW2200_QOS
10220         int tx_id = ipw_get_tx_queue_number(priv, pri);
10221         struct clx2_tx_queue *txq = &priv->txq[tx_id];
10222 #else
10223         struct clx2_tx_queue *txq = &priv->txq[0];
10224 #endif
10225         struct clx2_queue *q = &txq->q;
10226         u8 id, hdr_len, unicast;
10227         int fc;
10228
10229         if (!(priv->status & STATUS_ASSOCIATED))
10230                 goto drop;
10231
10232         hdr_len = libipw_get_hdrlen(le16_to_cpu(hdr->frame_ctl));
10233         switch (priv->ieee->iw_mode) {
10234         case IW_MODE_ADHOC:
10235                 unicast = !is_multicast_ether_addr(hdr->addr1);
10236                 id = ipw_find_station(priv, hdr->addr1);
10237                 if (id == IPW_INVALID_STATION) {
10238                         id = ipw_add_station(priv, hdr->addr1);
10239                         if (id == IPW_INVALID_STATION) {
10240                                 IPW_WARNING("Attempt to send data to "
10241                                             "invalid cell: %pM\n",
10242                                             hdr->addr1);
10243                                 goto drop;
10244                         }
10245                 }
10246                 break;
10247
10248         case IW_MODE_INFRA:
10249         default:
10250                 unicast = !is_multicast_ether_addr(hdr->addr3);
10251                 id = 0;
10252                 break;
10253         }
10254
10255         tfd = &txq->bd[q->first_empty];
10256         txq->txb[q->first_empty] = txb;
10257         memset(tfd, 0, sizeof(*tfd));
10258         tfd->u.data.station_number = id;
10259
10260         tfd->control_flags.message_type = TX_FRAME_TYPE;
10261         tfd->control_flags.control_bits = TFD_NEED_IRQ_MASK;
10262
10263         tfd->u.data.cmd_id = DINO_CMD_TX;
10264         tfd->u.data.len = cpu_to_le16(txb->payload_size);
10265
10266         if (priv->assoc_request.ieee_mode == IPW_B_MODE)
10267                 tfd->u.data.tx_flags_ext |= DCT_FLAG_EXT_MODE_CCK;
10268         else
10269                 tfd->u.data.tx_flags_ext |= DCT_FLAG_EXT_MODE_OFDM;
10270
10271         if (priv->assoc_request.preamble_length == DCT_FLAG_SHORT_PREAMBLE)
10272                 tfd->u.data.tx_flags |= DCT_FLAG_SHORT_PREAMBLE;
10273
10274         fc = le16_to_cpu(hdr->frame_ctl);
10275         hdr->frame_ctl = cpu_to_le16(fc & ~IEEE80211_FCTL_MOREFRAGS);
10276
10277         memcpy(&tfd->u.data.tfd.tfd_24.mchdr, hdr, hdr_len);
10278
10279         if (likely(unicast))
10280                 tfd->u.data.tx_flags |= DCT_FLAG_ACK_REQD;
10281
10282         if (txb->encrypted && !priv->ieee->host_encrypt) {
10283                 switch (priv->ieee->sec.level) {
10284                 case SEC_LEVEL_3:
10285                         tfd->u.data.tfd.tfd_24.mchdr.frame_ctl |=
10286                             cpu_to_le16(IEEE80211_FCTL_PROTECTED);
10287                         /* XXX: ACK flag must be set for CCMP even if it
10288                          * is a multicast/broadcast packet, because CCMP
10289                          * group communication encrypted by GTK is
10290                          * actually done by the AP. */
10291                         if (!unicast)
10292                                 tfd->u.data.tx_flags |= DCT_FLAG_ACK_REQD;
10293
10294                         tfd->u.data.tx_flags &= ~DCT_FLAG_NO_WEP;
10295                         tfd->u.data.tx_flags_ext |= DCT_FLAG_EXT_SECURITY_CCM;
10296                         tfd->u.data.key_index = 0;
10297                         tfd->u.data.key_index |= DCT_WEP_INDEX_USE_IMMEDIATE;
10298                         break;
10299                 case SEC_LEVEL_2:
10300                         tfd->u.data.tfd.tfd_24.mchdr.frame_ctl |=
10301                             cpu_to_le16(IEEE80211_FCTL_PROTECTED);
10302                         tfd->u.data.tx_flags &= ~DCT_FLAG_NO_WEP;
10303                         tfd->u.data.tx_flags_ext |= DCT_FLAG_EXT_SECURITY_TKIP;
10304                         tfd->u.data.key_index = DCT_WEP_INDEX_USE_IMMEDIATE;
10305                         break;
10306                 case SEC_LEVEL_1:
10307                         tfd->u.data.tfd.tfd_24.mchdr.frame_ctl |=
10308                             cpu_to_le16(IEEE80211_FCTL_PROTECTED);
10309                         tfd->u.data.key_index = priv->ieee->crypt_info.tx_keyidx;
10310                         if (priv->ieee->sec.key_sizes[priv->ieee->crypt_info.tx_keyidx] <=
10311                             40)
10312                                 tfd->u.data.key_index |= DCT_WEP_KEY_64Bit;
10313                         else
10314                                 tfd->u.data.key_index |= DCT_WEP_KEY_128Bit;
10315                         break;
10316                 case SEC_LEVEL_0:
10317                         break;
10318                 default:
10319                         printk(KERN_ERR "Unknown security level %d\n",
10320                                priv->ieee->sec.level);
10321                         break;
10322                 }
10323         } else
10324                 /* No hardware encryption */
10325                 tfd->u.data.tx_flags |= DCT_FLAG_NO_WEP;
10326
10327 #ifdef CONFIG_IPW2200_QOS
10328         if (fc & IEEE80211_STYPE_QOS_DATA)
10329                 ipw_qos_set_tx_queue_command(priv, pri, &(tfd->u.data));
10330 #endif                          /* CONFIG_IPW2200_QOS */
10331
10332         /* payload */
10333         tfd->u.data.num_chunks = cpu_to_le32(min((u8) (NUM_TFD_CHUNKS - 2),
10334                                                  txb->nr_frags));
10335         IPW_DEBUG_FRAG("%i fragments being sent as %i chunks.\n",
10336                        txb->nr_frags, le32_to_cpu(tfd->u.data.num_chunks));
10337         for (i = 0; i < le32_to_cpu(tfd->u.data.num_chunks); i++) {
10338                 IPW_DEBUG_FRAG("Adding fragment %i of %i (%d bytes).\n",
10339                                i, le32_to_cpu(tfd->u.data.num_chunks),
10340                                txb->fragments[i]->len - hdr_len);
10341                 IPW_DEBUG_TX("Dumping TX packet frag %i of %i (%d bytes):\n",
10342                              i, tfd->u.data.num_chunks,
10343                              txb->fragments[i]->len - hdr_len);
10344                 printk_buf(IPW_DL_TX, txb->fragments[i]->data + hdr_len,
10345                            txb->fragments[i]->len - hdr_len);
10346
10347                 tfd->u.data.chunk_ptr[i] =
10348                     cpu_to_le32(pci_map_single
10349                                 (priv->pci_dev,
10350                                  txb->fragments[i]->data + hdr_len,
10351                                  txb->fragments[i]->len - hdr_len,
10352                                  PCI_DMA_TODEVICE));
10353                 tfd->u.data.chunk_len[i] =
10354                     cpu_to_le16(txb->fragments[i]->len - hdr_len);
10355         }
10356
10357         if (i != txb->nr_frags) {
10358                 struct sk_buff *skb;
10359                 u16 remaining_bytes = 0;
10360                 int j;
10361
10362                 for (j = i; j < txb->nr_frags; j++)
10363                         remaining_bytes += txb->fragments[j]->len - hdr_len;
10364
10365                 printk(KERN_INFO "Trying to reallocate for %d bytes\n",
10366                        remaining_bytes);
10367                 skb = alloc_skb(remaining_bytes, GFP_ATOMIC);
10368                 if (skb != NULL) {
10369                         tfd->u.data.chunk_len[i] = cpu_to_le16(remaining_bytes);
10370                         for (j = i; j < txb->nr_frags; j++) {
10371                                 int size = txb->fragments[j]->len - hdr_len;
10372
10373                                 printk(KERN_INFO "Adding frag %d %d...\n",
10374                                        j, size);
10375                                 memcpy(skb_put(skb, size),
10376                                        txb->fragments[j]->data + hdr_len, size);
10377                         }
10378                         dev_kfree_skb_any(txb->fragments[i]);
10379                         txb->fragments[i] = skb;
10380                         tfd->u.data.chunk_ptr[i] =
10381                             cpu_to_le32(pci_map_single
10382                                         (priv->pci_dev, skb->data,
10383                                          remaining_bytes,
10384                                          PCI_DMA_TODEVICE));
10385
10386                         le32_add_cpu(&tfd->u.data.num_chunks, 1);
10387                 }
10388         }
10389
10390         /* kick DMA */
10391         q->first_empty = ipw_queue_inc_wrap(q->first_empty, q->n_bd);
10392         ipw_write32(priv, q->reg_w, q->first_empty);
10393
10394         if (ipw_tx_queue_space(q) < q->high_mark)
10395                 netif_stop_queue(priv->net_dev);
10396
10397         return NETDEV_TX_OK;
10398
10399       drop:
10400         IPW_DEBUG_DROP("Silently dropping Tx packet.\n");
10401         libipw_txb_free(txb);
10402         return NETDEV_TX_OK;
10403 }
10404
10405 static int ipw_net_is_queue_full(struct net_device *dev, int pri)
10406 {
10407         struct ipw_priv *priv = libipw_priv(dev);
10408 #ifdef CONFIG_IPW2200_QOS
10409         int tx_id = ipw_get_tx_queue_number(priv, pri);
10410         struct clx2_tx_queue *txq = &priv->txq[tx_id];
10411 #else
10412         struct clx2_tx_queue *txq = &priv->txq[0];
10413 #endif                          /* CONFIG_IPW2200_QOS */
10414
10415         if (ipw_tx_queue_space(&txq->q) < txq->q.high_mark)
10416                 return 1;
10417
10418         return 0;
10419 }
10420
10421 #ifdef CONFIG_IPW2200_PROMISCUOUS
10422 static void ipw_handle_promiscuous_tx(struct ipw_priv *priv,
10423                                       struct libipw_txb *txb)
10424 {
10425         struct libipw_rx_stats dummystats;
10426         struct ieee80211_hdr *hdr;
10427         u8 n;
10428         u16 filter = priv->prom_priv->filter;
10429         int hdr_only = 0;
10430
10431         if (filter & IPW_PROM_NO_TX)
10432                 return;
10433
10434         memset(&dummystats, 0, sizeof(dummystats));
10435
10436         /* Filtering of fragment chains is done against the first fragment */
10437         hdr = (void *)txb->fragments[0]->data;
10438         if (libipw_is_management(le16_to_cpu(hdr->frame_control))) {
10439                 if (filter & IPW_PROM_NO_MGMT)
10440                         return;
10441                 if (filter & IPW_PROM_MGMT_HEADER_ONLY)
10442                         hdr_only = 1;
10443         } else if (libipw_is_control(le16_to_cpu(hdr->frame_control))) {
10444                 if (filter & IPW_PROM_NO_CTL)
10445                         return;
10446                 if (filter & IPW_PROM_CTL_HEADER_ONLY)
10447                         hdr_only = 1;
10448         } else if (libipw_is_data(le16_to_cpu(hdr->frame_control))) {
10449                 if (filter & IPW_PROM_NO_DATA)
10450                         return;
10451                 if (filter & IPW_PROM_DATA_HEADER_ONLY)
10452                         hdr_only = 1;
10453         }
10454
10455         for(n=0; n<txb->nr_frags; ++n) {
10456                 struct sk_buff *src = txb->fragments[n];
10457                 struct sk_buff *dst;
10458                 struct ieee80211_radiotap_header *rt_hdr;
10459                 int len;
10460
10461                 if (hdr_only) {
10462                         hdr = (void *)src->data;
10463                         len = libipw_get_hdrlen(le16_to_cpu(hdr->frame_control));
10464                 } else
10465                         len = src->len;
10466
10467                 dst = alloc_skb(len + sizeof(*rt_hdr) + sizeof(u16)*2, GFP_ATOMIC);
10468                 if (!dst)
10469                         continue;
10470
10471                 rt_hdr = (void *)skb_put(dst, sizeof(*rt_hdr));
10472
10473                 rt_hdr->it_version = PKTHDR_RADIOTAP_VERSION;
10474                 rt_hdr->it_pad = 0;
10475                 rt_hdr->it_present = 0; /* after all, it's just an idea */
10476                 rt_hdr->it_present |=  cpu_to_le32(1 << IEEE80211_RADIOTAP_CHANNEL);
10477
10478                 *(__le16*)skb_put(dst, sizeof(u16)) = cpu_to_le16(
10479                         ieee80211chan2mhz(priv->channel));
10480                 if (priv->channel > 14)         /* 802.11a */
10481                         *(__le16*)skb_put(dst, sizeof(u16)) =
10482                                 cpu_to_le16(IEEE80211_CHAN_OFDM |
10483                                              IEEE80211_CHAN_5GHZ);
10484                 else if (priv->ieee->mode == IEEE_B) /* 802.11b */
10485                         *(__le16*)skb_put(dst, sizeof(u16)) =
10486                                 cpu_to_le16(IEEE80211_CHAN_CCK |
10487                                              IEEE80211_CHAN_2GHZ);
10488                 else            /* 802.11g */
10489                         *(__le16*)skb_put(dst, sizeof(u16)) =
10490                                 cpu_to_le16(IEEE80211_CHAN_OFDM |
10491                                  IEEE80211_CHAN_2GHZ);
10492
10493                 rt_hdr->it_len = cpu_to_le16(dst->len);
10494
10495                 skb_copy_from_linear_data(src, skb_put(dst, len), len);
10496
10497                 if (!libipw_rx(priv->prom_priv->ieee, dst, &dummystats))
10498                         dev_kfree_skb_any(dst);
10499         }
10500 }
10501 #endif
10502
10503 static netdev_tx_t ipw_net_hard_start_xmit(struct libipw_txb *txb,
10504                                            struct net_device *dev, int pri)
10505 {
10506         struct ipw_priv *priv = libipw_priv(dev);
10507         unsigned long flags;
10508         netdev_tx_t ret;
10509
10510         IPW_DEBUG_TX("dev->xmit(%d bytes)\n", txb->payload_size);
10511         spin_lock_irqsave(&priv->lock, flags);
10512
10513 #ifdef CONFIG_IPW2200_PROMISCUOUS
10514         if (rtap_iface && netif_running(priv->prom_net_dev))
10515                 ipw_handle_promiscuous_tx(priv, txb);
10516 #endif
10517
10518         ret = ipw_tx_skb(priv, txb, pri);
10519         if (ret == NETDEV_TX_OK)
10520                 __ipw_led_activity_on(priv);
10521         spin_unlock_irqrestore(&priv->lock, flags);
10522
10523         return ret;
10524 }
10525
10526 static void ipw_net_set_multicast_list(struct net_device *dev)
10527 {
10528
10529 }
10530
10531 static int ipw_net_set_mac_address(struct net_device *dev, void *p)
10532 {
10533         struct ipw_priv *priv = libipw_priv(dev);
10534         struct sockaddr *addr = p;
10535
10536         if (!is_valid_ether_addr(addr->sa_data))
10537                 return -EADDRNOTAVAIL;
10538         mutex_lock(&priv->mutex);
10539         priv->config |= CFG_CUSTOM_MAC;
10540         memcpy(priv->mac_addr, addr->sa_data, ETH_ALEN);
10541         printk(KERN_INFO "%s: Setting MAC to %pM\n",
10542                priv->net_dev->name, priv->mac_addr);
10543         schedule_work(&priv->adapter_restart);
10544         mutex_unlock(&priv->mutex);
10545         return 0;
10546 }
10547
10548 static void ipw_ethtool_get_drvinfo(struct net_device *dev,
10549                                     struct ethtool_drvinfo *info)
10550 {
10551         struct ipw_priv *p = libipw_priv(dev);
10552         char vers[64];
10553         char date[32];
10554         u32 len;
10555
10556         strlcpy(info->driver, DRV_NAME, sizeof(info->driver));
10557         strlcpy(info->version, DRV_VERSION, sizeof(info->version));
10558
10559         len = sizeof(vers);
10560         ipw_get_ordinal(p, IPW_ORD_STAT_FW_VERSION, vers, &len);
10561         len = sizeof(date);
10562         ipw_get_ordinal(p, IPW_ORD_STAT_FW_DATE, date, &len);
10563
10564         snprintf(info->fw_version, sizeof(info->fw_version), "%s (%s)",
10565                  vers, date);
10566         strlcpy(info->bus_info, pci_name(p->pci_dev),
10567                 sizeof(info->bus_info));
10568         info->eedump_len = IPW_EEPROM_IMAGE_SIZE;
10569 }
10570
10571 static u32 ipw_ethtool_get_link(struct net_device *dev)
10572 {
10573         struct ipw_priv *priv = libipw_priv(dev);
10574         return (priv->status & STATUS_ASSOCIATED) != 0;
10575 }
10576
10577 static int ipw_ethtool_get_eeprom_len(struct net_device *dev)
10578 {
10579         return IPW_EEPROM_IMAGE_SIZE;
10580 }
10581
10582 static int ipw_ethtool_get_eeprom(struct net_device *dev,
10583                                   struct ethtool_eeprom *eeprom, u8 * bytes)
10584 {
10585         struct ipw_priv *p = libipw_priv(dev);
10586
10587         if (eeprom->offset + eeprom->len > IPW_EEPROM_IMAGE_SIZE)
10588                 return -EINVAL;
10589         mutex_lock(&p->mutex);
10590         memcpy(bytes, &p->eeprom[eeprom->offset], eeprom->len);
10591         mutex_unlock(&p->mutex);
10592         return 0;
10593 }
10594
10595 static int ipw_ethtool_set_eeprom(struct net_device *dev,
10596                                   struct ethtool_eeprom *eeprom, u8 * bytes)
10597 {
10598         struct ipw_priv *p = libipw_priv(dev);
10599         int i;
10600
10601         if (eeprom->offset + eeprom->len > IPW_EEPROM_IMAGE_SIZE)
10602                 return -EINVAL;
10603         mutex_lock(&p->mutex);
10604         memcpy(&p->eeprom[eeprom->offset], bytes, eeprom->len);
10605         for (i = 0; i < IPW_EEPROM_IMAGE_SIZE; i++)
10606                 ipw_write8(p, i + IPW_EEPROM_DATA, p->eeprom[i]);
10607         mutex_unlock(&p->mutex);
10608         return 0;
10609 }
10610
10611 static const struct ethtool_ops ipw_ethtool_ops = {
10612         .get_link = ipw_ethtool_get_link,
10613         .get_drvinfo = ipw_ethtool_get_drvinfo,
10614         .get_eeprom_len = ipw_ethtool_get_eeprom_len,
10615         .get_eeprom = ipw_ethtool_get_eeprom,
10616         .set_eeprom = ipw_ethtool_set_eeprom,
10617 };
10618
10619 static irqreturn_t ipw_isr(int irq, void *data)
10620 {
10621         struct ipw_priv *priv = data;
10622         u32 inta, inta_mask;
10623
10624         if (!priv)
10625                 return IRQ_NONE;
10626
10627         spin_lock(&priv->irq_lock);
10628
10629         if (!(priv->status & STATUS_INT_ENABLED)) {
10630                 /* IRQ is disabled */
10631                 goto none;
10632         }
10633
10634         inta = ipw_read32(priv, IPW_INTA_RW);
10635         inta_mask = ipw_read32(priv, IPW_INTA_MASK_R);
10636
10637         if (inta == 0xFFFFFFFF) {
10638                 /* Hardware disappeared */
10639                 IPW_WARNING("IRQ INTA == 0xFFFFFFFF\n");
10640                 goto none;
10641         }
10642
10643         if (!(inta & (IPW_INTA_MASK_ALL & inta_mask))) {
10644                 /* Shared interrupt */
10645                 goto none;
10646         }
10647
10648         /* tell the device to stop sending interrupts */
10649         __ipw_disable_interrupts(priv);
10650
10651         /* ack current interrupts */
10652         inta &= (IPW_INTA_MASK_ALL & inta_mask);
10653         ipw_write32(priv, IPW_INTA_RW, inta);
10654
10655         /* Cache INTA value for our tasklet */
10656         priv->isr_inta = inta;
10657
10658         tasklet_schedule(&priv->irq_tasklet);
10659
10660         spin_unlock(&priv->irq_lock);
10661
10662         return IRQ_HANDLED;
10663       none:
10664         spin_unlock(&priv->irq_lock);
10665         return IRQ_NONE;
10666 }
10667
10668 static void ipw_rf_kill(void *adapter)
10669 {
10670         struct ipw_priv *priv = adapter;
10671         unsigned long flags;
10672
10673         spin_lock_irqsave(&priv->lock, flags);
10674
10675         if (rf_kill_active(priv)) {
10676                 IPW_DEBUG_RF_KILL("RF Kill active, rescheduling GPIO check\n");
10677                 schedule_delayed_work(&priv->rf_kill, 2 * HZ);
10678                 goto exit_unlock;
10679         }
10680
10681         /* RF Kill is now disabled, so bring the device back up */
10682
10683         if (!(priv->status & STATUS_RF_KILL_MASK)) {
10684                 IPW_DEBUG_RF_KILL("HW RF Kill no longer active, restarting "
10685                                   "device\n");
10686
10687                 /* we can not do an adapter restart while inside an irq lock */
10688                 schedule_work(&priv->adapter_restart);
10689         } else
10690                 IPW_DEBUG_RF_KILL("HW RF Kill deactivated.  SW RF Kill still "
10691                                   "enabled\n");
10692
10693       exit_unlock:
10694         spin_unlock_irqrestore(&priv->lock, flags);
10695 }
10696
10697 static void ipw_bg_rf_kill(struct work_struct *work)
10698 {
10699         struct ipw_priv *priv =
10700                 container_of(work, struct ipw_priv, rf_kill.work);
10701         mutex_lock(&priv->mutex);
10702         ipw_rf_kill(priv);
10703         mutex_unlock(&priv->mutex);
10704 }
10705
10706 static void ipw_link_up(struct ipw_priv *priv)
10707 {
10708         priv->last_seq_num = -1;
10709         priv->last_frag_num = -1;
10710         priv->last_packet_time = 0;
10711
10712         netif_carrier_on(priv->net_dev);
10713
10714         cancel_delayed_work(&priv->request_scan);
10715         cancel_delayed_work(&priv->request_direct_scan);
10716         cancel_delayed_work(&priv->request_passive_scan);
10717         cancel_delayed_work(&priv->scan_event);
10718         ipw_reset_stats(priv);
10719         /* Ensure the rate is updated immediately */
10720         priv->last_rate = ipw_get_current_rate(priv);
10721         ipw_gather_stats(priv);
10722         ipw_led_link_up(priv);
10723         notify_wx_assoc_event(priv);
10724
10725         if (priv->config & CFG_BACKGROUND_SCAN)
10726                 schedule_delayed_work(&priv->request_scan, HZ);
10727 }
10728
10729 static void ipw_bg_link_up(struct work_struct *work)
10730 {
10731         struct ipw_priv *priv =
10732                 container_of(work, struct ipw_priv, link_up);
10733         mutex_lock(&priv->mutex);
10734         ipw_link_up(priv);
10735         mutex_unlock(&priv->mutex);
10736 }
10737
10738 static void ipw_link_down(struct ipw_priv *priv)
10739 {
10740         ipw_led_link_down(priv);
10741         netif_carrier_off(priv->net_dev);
10742         notify_wx_assoc_event(priv);
10743
10744         /* Cancel any queued work ... */
10745         cancel_delayed_work(&priv->request_scan);
10746         cancel_delayed_work(&priv->request_direct_scan);
10747         cancel_delayed_work(&priv->request_passive_scan);
10748         cancel_delayed_work(&priv->adhoc_check);
10749         cancel_delayed_work(&priv->gather_stats);
10750
10751         ipw_reset_stats(priv);
10752
10753         if (!(priv->status & STATUS_EXIT_PENDING)) {
10754                 /* Queue up another scan... */
10755                 schedule_delayed_work(&priv->request_scan, 0);
10756         } else
10757                 cancel_delayed_work(&priv->scan_event);
10758 }
10759
10760 static void ipw_bg_link_down(struct work_struct *work)
10761 {
10762         struct ipw_priv *priv =
10763                 container_of(work, struct ipw_priv, link_down);
10764         mutex_lock(&priv->mutex);
10765         ipw_link_down(priv);
10766         mutex_unlock(&priv->mutex);
10767 }
10768
10769 static int ipw_setup_deferred_work(struct ipw_priv *priv)
10770 {
10771         int ret = 0;
10772
10773         init_waitqueue_head(&priv->wait_command_queue);
10774         init_waitqueue_head(&priv->wait_state);
10775
10776         INIT_DELAYED_WORK(&priv->adhoc_check, ipw_bg_adhoc_check);
10777         INIT_WORK(&priv->associate, ipw_bg_associate);
10778         INIT_WORK(&priv->disassociate, ipw_bg_disassociate);
10779         INIT_WORK(&priv->system_config, ipw_system_config);
10780         INIT_WORK(&priv->rx_replenish, ipw_bg_rx_queue_replenish);
10781         INIT_WORK(&priv->adapter_restart, ipw_bg_adapter_restart);
10782         INIT_DELAYED_WORK(&priv->rf_kill, ipw_bg_rf_kill);
10783         INIT_WORK(&priv->up, ipw_bg_up);
10784         INIT_WORK(&priv->down, ipw_bg_down);
10785         INIT_DELAYED_WORK(&priv->request_scan, ipw_request_scan);
10786         INIT_DELAYED_WORK(&priv->request_direct_scan, ipw_request_direct_scan);
10787         INIT_DELAYED_WORK(&priv->request_passive_scan, ipw_request_passive_scan);
10788         INIT_DELAYED_WORK(&priv->scan_event, ipw_scan_event);
10789         INIT_DELAYED_WORK(&priv->gather_stats, ipw_bg_gather_stats);
10790         INIT_WORK(&priv->abort_scan, ipw_bg_abort_scan);
10791         INIT_WORK(&priv->roam, ipw_bg_roam);
10792         INIT_DELAYED_WORK(&priv->scan_check, ipw_bg_scan_check);
10793         INIT_WORK(&priv->link_up, ipw_bg_link_up);
10794         INIT_WORK(&priv->link_down, ipw_bg_link_down);
10795         INIT_DELAYED_WORK(&priv->led_link_on, ipw_bg_led_link_on);
10796         INIT_DELAYED_WORK(&priv->led_link_off, ipw_bg_led_link_off);
10797         INIT_DELAYED_WORK(&priv->led_act_off, ipw_bg_led_activity_off);
10798         INIT_WORK(&priv->merge_networks, ipw_merge_adhoc_network);
10799
10800 #ifdef CONFIG_IPW2200_QOS
10801         INIT_WORK(&priv->qos_activate, ipw_bg_qos_activate);
10802 #endif                          /* CONFIG_IPW2200_QOS */
10803
10804         tasklet_init(&priv->irq_tasklet, (void (*)(unsigned long))
10805                      ipw_irq_tasklet, (unsigned long)priv);
10806
10807         return ret;
10808 }
10809
10810 static void shim__set_security(struct net_device *dev,
10811                                struct libipw_security *sec)
10812 {
10813         struct ipw_priv *priv = libipw_priv(dev);
10814         int i;
10815         for (i = 0; i < 4; i++) {
10816                 if (sec->flags & (1 << i)) {
10817                         priv->ieee->sec.encode_alg[i] = sec->encode_alg[i];
10818                         priv->ieee->sec.key_sizes[i] = sec->key_sizes[i];
10819                         if (sec->key_sizes[i] == 0)
10820                                 priv->ieee->sec.flags &= ~(1 << i);
10821                         else {
10822                                 memcpy(priv->ieee->sec.keys[i], sec->keys[i],
10823                                        sec->key_sizes[i]);
10824                                 priv->ieee->sec.flags |= (1 << i);
10825                         }
10826                         priv->status |= STATUS_SECURITY_UPDATED;
10827                 } else if (sec->level != SEC_LEVEL_1)
10828                         priv->ieee->sec.flags &= ~(1 << i);
10829         }
10830
10831         if (sec->flags & SEC_ACTIVE_KEY) {
10832                 if (sec->active_key <= 3) {
10833                         priv->ieee->sec.active_key = sec->active_key;
10834                         priv->ieee->sec.flags |= SEC_ACTIVE_KEY;
10835                 } else
10836                         priv->ieee->sec.flags &= ~SEC_ACTIVE_KEY;
10837                 priv->status |= STATUS_SECURITY_UPDATED;
10838         } else
10839                 priv->ieee->sec.flags &= ~SEC_ACTIVE_KEY;
10840
10841         if ((sec->flags & SEC_AUTH_MODE) &&
10842             (priv->ieee->sec.auth_mode != sec->auth_mode)) {
10843                 priv->ieee->sec.auth_mode = sec->auth_mode;
10844                 priv->ieee->sec.flags |= SEC_AUTH_MODE;
10845                 if (sec->auth_mode == WLAN_AUTH_SHARED_KEY)
10846                         priv->capability |= CAP_SHARED_KEY;
10847                 else
10848                         priv->capability &= ~CAP_SHARED_KEY;
10849                 priv->status |= STATUS_SECURITY_UPDATED;
10850         }
10851
10852         if (sec->flags & SEC_ENABLED && priv->ieee->sec.enabled != sec->enabled) {
10853                 priv->ieee->sec.flags |= SEC_ENABLED;
10854                 priv->ieee->sec.enabled = sec->enabled;
10855                 priv->status |= STATUS_SECURITY_UPDATED;
10856                 if (sec->enabled)
10857                         priv->capability |= CAP_PRIVACY_ON;
10858                 else
10859                         priv->capability &= ~CAP_PRIVACY_ON;
10860         }
10861
10862         if (sec->flags & SEC_ENCRYPT)
10863                 priv->ieee->sec.encrypt = sec->encrypt;
10864
10865         if (sec->flags & SEC_LEVEL && priv->ieee->sec.level != sec->level) {
10866                 priv->ieee->sec.level = sec->level;
10867                 priv->ieee->sec.flags |= SEC_LEVEL;
10868                 priv->status |= STATUS_SECURITY_UPDATED;
10869         }
10870
10871         if (!priv->ieee->host_encrypt && (sec->flags & SEC_ENCRYPT))
10872                 ipw_set_hwcrypto_keys(priv);
10873
10874         /* To match current functionality of ipw2100 (which works well w/
10875          * various supplicants, we don't force a disassociate if the
10876          * privacy capability changes ... */
10877 #if 0
10878         if ((priv->status & (STATUS_ASSOCIATED | STATUS_ASSOCIATING)) &&
10879             (((priv->assoc_request.capability &
10880                cpu_to_le16(WLAN_CAPABILITY_PRIVACY)) && !sec->enabled) ||
10881              (!(priv->assoc_request.capability &
10882                 cpu_to_le16(WLAN_CAPABILITY_PRIVACY)) && sec->enabled))) {
10883                 IPW_DEBUG_ASSOC("Disassociating due to capability "
10884                                 "change.\n");
10885                 ipw_disassociate(priv);
10886         }
10887 #endif
10888 }
10889
10890 static int init_supported_rates(struct ipw_priv *priv,
10891                                 struct ipw_supported_rates *rates)
10892 {
10893         /* TODO: Mask out rates based on priv->rates_mask */
10894
10895         memset(rates, 0, sizeof(*rates));
10896         /* configure supported rates */
10897         switch (priv->ieee->freq_band) {
10898         case LIBIPW_52GHZ_BAND:
10899                 rates->ieee_mode = IPW_A_MODE;
10900                 rates->purpose = IPW_RATE_CAPABILITIES;
10901                 ipw_add_ofdm_scan_rates(rates, LIBIPW_CCK_MODULATION,
10902                                         LIBIPW_OFDM_DEFAULT_RATES_MASK);
10903                 break;
10904
10905         default:                /* Mixed or 2.4Ghz */
10906                 rates->ieee_mode = IPW_G_MODE;
10907                 rates->purpose = IPW_RATE_CAPABILITIES;
10908                 ipw_add_cck_scan_rates(rates, LIBIPW_CCK_MODULATION,
10909                                        LIBIPW_CCK_DEFAULT_RATES_MASK);
10910                 if (priv->ieee->modulation & LIBIPW_OFDM_MODULATION) {
10911                         ipw_add_ofdm_scan_rates(rates, LIBIPW_CCK_MODULATION,
10912                                                 LIBIPW_OFDM_DEFAULT_RATES_MASK);
10913                 }
10914                 break;
10915         }
10916
10917         return 0;
10918 }
10919
10920 static int ipw_config(struct ipw_priv *priv)
10921 {
10922         /* This is only called from ipw_up, which resets/reloads the firmware
10923            so, we don't need to first disable the card before we configure
10924            it */
10925         if (ipw_set_tx_power(priv))
10926                 goto error;
10927
10928         /* initialize adapter address */
10929         if (ipw_send_adapter_address(priv, priv->net_dev->dev_addr))
10930                 goto error;
10931
10932         /* set basic system config settings */
10933         init_sys_config(&priv->sys_config);
10934
10935         /* Support Bluetooth if we have BT h/w on board, and user wants to.
10936          * Does not support BT priority yet (don't abort or defer our Tx) */
10937         if (bt_coexist) {
10938                 unsigned char bt_caps = priv->eeprom[EEPROM_SKU_CAPABILITY];
10939
10940                 if (bt_caps & EEPROM_SKU_CAP_BT_CHANNEL_SIG)
10941                         priv->sys_config.bt_coexistence
10942                             |= CFG_BT_COEXISTENCE_SIGNAL_CHNL;
10943                 if (bt_caps & EEPROM_SKU_CAP_BT_OOB)
10944                         priv->sys_config.bt_coexistence
10945                             |= CFG_BT_COEXISTENCE_OOB;
10946         }
10947
10948 #ifdef CONFIG_IPW2200_PROMISCUOUS
10949         if (priv->prom_net_dev && netif_running(priv->prom_net_dev)) {
10950                 priv->sys_config.accept_all_data_frames = 1;
10951                 priv->sys_config.accept_non_directed_frames = 1;
10952                 priv->sys_config.accept_all_mgmt_bcpr = 1;
10953                 priv->sys_config.accept_all_mgmt_frames = 1;
10954         }
10955 #endif
10956
10957         if (priv->ieee->iw_mode == IW_MODE_ADHOC)
10958                 priv->sys_config.answer_broadcast_ssid_probe = 1;
10959         else
10960                 priv->sys_config.answer_broadcast_ssid_probe = 0;
10961
10962         if (ipw_send_system_config(priv))
10963                 goto error;
10964
10965         init_supported_rates(priv, &priv->rates);
10966         if (ipw_send_supported_rates(priv, &priv->rates))
10967                 goto error;
10968
10969         /* Set request-to-send threshold */
10970         if (priv->rts_threshold) {
10971                 if (ipw_send_rts_threshold(priv, priv->rts_threshold))
10972                         goto error;
10973         }
10974 #ifdef CONFIG_IPW2200_QOS
10975         IPW_DEBUG_QOS("QoS: call ipw_qos_activate\n");
10976         ipw_qos_activate(priv, NULL);
10977 #endif                          /* CONFIG_IPW2200_QOS */
10978
10979         if (ipw_set_random_seed(priv))
10980                 goto error;
10981
10982         /* final state transition to the RUN state */
10983         if (ipw_send_host_complete(priv))
10984                 goto error;
10985
10986         priv->status |= STATUS_INIT;
10987
10988         ipw_led_init(priv);
10989         ipw_led_radio_on(priv);
10990         priv->notif_missed_beacons = 0;
10991
10992         /* Set hardware WEP key if it is configured. */
10993         if ((priv->capability & CAP_PRIVACY_ON) &&
10994             (priv->ieee->sec.level == SEC_LEVEL_1) &&
10995             !(priv->ieee->host_encrypt || priv->ieee->host_decrypt))
10996                 ipw_set_hwcrypto_keys(priv);
10997
10998         return 0;
10999
11000       error:
11001         return -EIO;
11002 }
11003
11004 /*
11005  * NOTE:
11006  *
11007  * These tables have been tested in conjunction with the
11008  * Intel PRO/Wireless 2200BG and 2915ABG Network Connection Adapters.
11009  *
11010  * Altering this values, using it on other hardware, or in geographies
11011  * not intended for resale of the above mentioned Intel adapters has
11012  * not been tested.
11013  *
11014  * Remember to update the table in README.ipw2200 when changing this
11015  * table.
11016  *
11017  */
11018 static const struct libipw_geo ipw_geos[] = {
11019         {                       /* Restricted */
11020          "---",
11021          .bg_channels = 11,
11022          .bg = {{2412, 1}, {2417, 2}, {2422, 3},
11023                 {2427, 4}, {2432, 5}, {2437, 6},
11024                 {2442, 7}, {2447, 8}, {2452, 9},
11025                 {2457, 10}, {2462, 11}},
11026          },
11027
11028         {                       /* Custom US/Canada */
11029          "ZZF",
11030          .bg_channels = 11,
11031          .bg = {{2412, 1}, {2417, 2}, {2422, 3},
11032                 {2427, 4}, {2432, 5}, {2437, 6},
11033                 {2442, 7}, {2447, 8}, {2452, 9},
11034                 {2457, 10}, {2462, 11}},
11035          .a_channels = 8,
11036          .a = {{5180, 36},
11037                {5200, 40},
11038                {5220, 44},
11039                {5240, 48},
11040                {5260, 52, LIBIPW_CH_PASSIVE_ONLY},
11041                {5280, 56, LIBIPW_CH_PASSIVE_ONLY},
11042                {5300, 60, LIBIPW_CH_PASSIVE_ONLY},
11043                {5320, 64, LIBIPW_CH_PASSIVE_ONLY}},
11044          },
11045
11046         {                       /* Rest of World */
11047          "ZZD",
11048          .bg_channels = 13,
11049          .bg = {{2412, 1}, {2417, 2}, {2422, 3},
11050                 {2427, 4}, {2432, 5}, {2437, 6},
11051                 {2442, 7}, {2447, 8}, {2452, 9},
11052                 {2457, 10}, {2462, 11}, {2467, 12},
11053                 {2472, 13}},
11054          },
11055
11056         {                       /* Custom USA & Europe & High */
11057          "ZZA",
11058          .bg_channels = 11,
11059          .bg = {{2412, 1}, {2417, 2}, {2422, 3},
11060                 {2427, 4}, {2432, 5}, {2437, 6},
11061                 {2442, 7}, {2447, 8}, {2452, 9},
11062                 {2457, 10}, {2462, 11}},
11063          .a_channels = 13,
11064          .a = {{5180, 36},
11065                {5200, 40},
11066                {5220, 44},
11067                {5240, 48},
11068                {5260, 52, LIBIPW_CH_PASSIVE_ONLY},
11069                {5280, 56, LIBIPW_CH_PASSIVE_ONLY},
11070                {5300, 60, LIBIPW_CH_PASSIVE_ONLY},
11071                {5320, 64, LIBIPW_CH_PASSIVE_ONLY},
11072                {5745, 149},
11073                {5765, 153},
11074                {5785, 157},
11075                {5805, 161},
11076                {5825, 165}},
11077          },
11078
11079         {                       /* Custom NA & Europe */
11080          "ZZB",
11081          .bg_channels = 11,
11082          .bg = {{2412, 1}, {2417, 2}, {2422, 3},
11083                 {2427, 4}, {2432, 5}, {2437, 6},
11084                 {2442, 7}, {2447, 8}, {2452, 9},
11085                 {2457, 10}, {2462, 11}},
11086          .a_channels = 13,
11087          .a = {{5180, 36},
11088                {5200, 40},
11089                {5220, 44},
11090                {5240, 48},
11091                {5260, 52, LIBIPW_CH_PASSIVE_ONLY},
11092                {5280, 56, LIBIPW_CH_PASSIVE_ONLY},
11093                {5300, 60, LIBIPW_CH_PASSIVE_ONLY},
11094                {5320, 64, LIBIPW_CH_PASSIVE_ONLY},
11095                {5745, 149, LIBIPW_CH_PASSIVE_ONLY},
11096                {5765, 153, LIBIPW_CH_PASSIVE_ONLY},
11097                {5785, 157, LIBIPW_CH_PASSIVE_ONLY},
11098                {5805, 161, LIBIPW_CH_PASSIVE_ONLY},
11099                {5825, 165, LIBIPW_CH_PASSIVE_ONLY}},
11100          },
11101
11102         {                       /* Custom Japan */
11103          "ZZC",
11104          .bg_channels = 11,
11105          .bg = {{2412, 1}, {2417, 2}, {2422, 3},
11106                 {2427, 4}, {2432, 5}, {2437, 6},
11107                 {2442, 7}, {2447, 8}, {2452, 9},
11108                 {2457, 10}, {2462, 11}},
11109          .a_channels = 4,
11110          .a = {{5170, 34}, {5190, 38},
11111                {5210, 42}, {5230, 46}},
11112          },
11113
11114         {                       /* Custom */
11115          "ZZM",
11116          .bg_channels = 11,
11117          .bg = {{2412, 1}, {2417, 2}, {2422, 3},
11118                 {2427, 4}, {2432, 5}, {2437, 6},
11119                 {2442, 7}, {2447, 8}, {2452, 9},
11120                 {2457, 10}, {2462, 11}},
11121          },
11122
11123         {                       /* Europe */
11124          "ZZE",
11125          .bg_channels = 13,
11126          .bg = {{2412, 1}, {2417, 2}, {2422, 3},
11127                 {2427, 4}, {2432, 5}, {2437, 6},
11128                 {2442, 7}, {2447, 8}, {2452, 9},
11129                 {2457, 10}, {2462, 11}, {2467, 12},
11130                 {2472, 13}},
11131          .a_channels = 19,
11132          .a = {{5180, 36},
11133                {5200, 40},
11134                {5220, 44},
11135                {5240, 48},
11136                {5260, 52, LIBIPW_CH_PASSIVE_ONLY},
11137                {5280, 56, LIBIPW_CH_PASSIVE_ONLY},
11138                {5300, 60, LIBIPW_CH_PASSIVE_ONLY},
11139                {5320, 64, LIBIPW_CH_PASSIVE_ONLY},
11140                {5500, 100, LIBIPW_CH_PASSIVE_ONLY},
11141                {5520, 104, LIBIPW_CH_PASSIVE_ONLY},
11142                {5540, 108, LIBIPW_CH_PASSIVE_ONLY},
11143                {5560, 112, LIBIPW_CH_PASSIVE_ONLY},
11144                {5580, 116, LIBIPW_CH_PASSIVE_ONLY},
11145                {5600, 120, LIBIPW_CH_PASSIVE_ONLY},
11146                {5620, 124, LIBIPW_CH_PASSIVE_ONLY},
11147                {5640, 128, LIBIPW_CH_PASSIVE_ONLY},
11148                {5660, 132, LIBIPW_CH_PASSIVE_ONLY},
11149                {5680, 136, LIBIPW_CH_PASSIVE_ONLY},
11150                {5700, 140, LIBIPW_CH_PASSIVE_ONLY}},
11151          },
11152
11153         {                       /* Custom Japan */
11154          "ZZJ",
11155          .bg_channels = 14,
11156          .bg = {{2412, 1}, {2417, 2}, {2422, 3},
11157                 {2427, 4}, {2432, 5}, {2437, 6},
11158                 {2442, 7}, {2447, 8}, {2452, 9},
11159                 {2457, 10}, {2462, 11}, {2467, 12},
11160                 {2472, 13}, {2484, 14, LIBIPW_CH_B_ONLY}},
11161          .a_channels = 4,
11162          .a = {{5170, 34}, {5190, 38},
11163                {5210, 42}, {5230, 46}},
11164          },
11165
11166         {                       /* Rest of World */
11167          "ZZR",
11168          .bg_channels = 14,
11169          .bg = {{2412, 1}, {2417, 2}, {2422, 3},
11170                 {2427, 4}, {2432, 5}, {2437, 6},
11171                 {2442, 7}, {2447, 8}, {2452, 9},
11172                 {2457, 10}, {2462, 11}, {2467, 12},
11173                 {2472, 13}, {2484, 14, LIBIPW_CH_B_ONLY |
11174                              LIBIPW_CH_PASSIVE_ONLY}},
11175          },
11176
11177         {                       /* High Band */
11178          "ZZH",
11179          .bg_channels = 13,
11180          .bg = {{2412, 1}, {2417, 2}, {2422, 3},
11181                 {2427, 4}, {2432, 5}, {2437, 6},
11182                 {2442, 7}, {2447, 8}, {2452, 9},
11183                 {2457, 10}, {2462, 11},
11184                 {2467, 12, LIBIPW_CH_PASSIVE_ONLY},
11185                 {2472, 13, LIBIPW_CH_PASSIVE_ONLY}},
11186          .a_channels = 4,
11187          .a = {{5745, 149}, {5765, 153},
11188                {5785, 157}, {5805, 161}},
11189          },
11190
11191         {                       /* Custom Europe */
11192          "ZZG",
11193          .bg_channels = 13,
11194          .bg = {{2412, 1}, {2417, 2}, {2422, 3},
11195                 {2427, 4}, {2432, 5}, {2437, 6},
11196                 {2442, 7}, {2447, 8}, {2452, 9},
11197                 {2457, 10}, {2462, 11},
11198                 {2467, 12}, {2472, 13}},
11199          .a_channels = 4,
11200          .a = {{5180, 36}, {5200, 40},
11201                {5220, 44}, {5240, 48}},
11202          },
11203
11204         {                       /* Europe */
11205          "ZZK",
11206          .bg_channels = 13,
11207          .bg = {{2412, 1}, {2417, 2}, {2422, 3},
11208                 {2427, 4}, {2432, 5}, {2437, 6},
11209                 {2442, 7}, {2447, 8}, {2452, 9},
11210                 {2457, 10}, {2462, 11},
11211                 {2467, 12, LIBIPW_CH_PASSIVE_ONLY},
11212                 {2472, 13, LIBIPW_CH_PASSIVE_ONLY}},
11213          .a_channels = 24,
11214          .a = {{5180, 36, LIBIPW_CH_PASSIVE_ONLY},
11215                {5200, 40, LIBIPW_CH_PASSIVE_ONLY},
11216                {5220, 44, LIBIPW_CH_PASSIVE_ONLY},
11217                {5240, 48, LIBIPW_CH_PASSIVE_ONLY},
11218                {5260, 52, LIBIPW_CH_PASSIVE_ONLY},
11219                {5280, 56, LIBIPW_CH_PASSIVE_ONLY},
11220                {5300, 60, LIBIPW_CH_PASSIVE_ONLY},
11221                {5320, 64, LIBIPW_CH_PASSIVE_ONLY},
11222                {5500, 100, LIBIPW_CH_PASSIVE_ONLY},
11223                {5520, 104, LIBIPW_CH_PASSIVE_ONLY},
11224                {5540, 108, LIBIPW_CH_PASSIVE_ONLY},
11225                {5560, 112, LIBIPW_CH_PASSIVE_ONLY},
11226                {5580, 116, LIBIPW_CH_PASSIVE_ONLY},
11227                {5600, 120, LIBIPW_CH_PASSIVE_ONLY},
11228                {5620, 124, LIBIPW_CH_PASSIVE_ONLY},
11229                {5640, 128, LIBIPW_CH_PASSIVE_ONLY},
11230                {5660, 132, LIBIPW_CH_PASSIVE_ONLY},
11231                {5680, 136, LIBIPW_CH_PASSIVE_ONLY},
11232                {5700, 140, LIBIPW_CH_PASSIVE_ONLY},
11233                {5745, 149, LIBIPW_CH_PASSIVE_ONLY},
11234                {5765, 153, LIBIPW_CH_PASSIVE_ONLY},
11235                {5785, 157, LIBIPW_CH_PASSIVE_ONLY},
11236                {5805, 161, LIBIPW_CH_PASSIVE_ONLY},
11237                {5825, 165, LIBIPW_CH_PASSIVE_ONLY}},
11238          },
11239
11240         {                       /* Europe */
11241          "ZZL",
11242          .bg_channels = 11,
11243          .bg = {{2412, 1}, {2417, 2}, {2422, 3},
11244                 {2427, 4}, {2432, 5}, {2437, 6},
11245                 {2442, 7}, {2447, 8}, {2452, 9},
11246                 {2457, 10}, {2462, 11}},
11247          .a_channels = 13,
11248          .a = {{5180, 36, LIBIPW_CH_PASSIVE_ONLY},
11249                {5200, 40, LIBIPW_CH_PASSIVE_ONLY},
11250                {5220, 44, LIBIPW_CH_PASSIVE_ONLY},
11251                {5240, 48, LIBIPW_CH_PASSIVE_ONLY},
11252                {5260, 52, LIBIPW_CH_PASSIVE_ONLY},
11253                {5280, 56, LIBIPW_CH_PASSIVE_ONLY},
11254                {5300, 60, LIBIPW_CH_PASSIVE_ONLY},
11255                {5320, 64, LIBIPW_CH_PASSIVE_ONLY},
11256                {5745, 149, LIBIPW_CH_PASSIVE_ONLY},
11257                {5765, 153, LIBIPW_CH_PASSIVE_ONLY},
11258                {5785, 157, LIBIPW_CH_PASSIVE_ONLY},
11259                {5805, 161, LIBIPW_CH_PASSIVE_ONLY},
11260                {5825, 165, LIBIPW_CH_PASSIVE_ONLY}},
11261          }
11262 };
11263
11264 static void ipw_set_geo(struct ipw_priv *priv)
11265 {
11266         int j;
11267
11268         for (j = 0; j < ARRAY_SIZE(ipw_geos); j++) {
11269                 if (!memcmp(&priv->eeprom[EEPROM_COUNTRY_CODE],
11270                             ipw_geos[j].name, 3))
11271                         break;
11272         }
11273
11274         if (j == ARRAY_SIZE(ipw_geos)) {
11275                 IPW_WARNING("SKU [%c%c%c] not recognized.\n",
11276                             priv->eeprom[EEPROM_COUNTRY_CODE + 0],
11277                             priv->eeprom[EEPROM_COUNTRY_CODE + 1],
11278                             priv->eeprom[EEPROM_COUNTRY_CODE + 2]);
11279                 j = 0;
11280         }
11281
11282         libipw_set_geo(priv->ieee, &ipw_geos[j]);
11283 }
11284
11285 #define MAX_HW_RESTARTS 5
11286 static int ipw_up(struct ipw_priv *priv)
11287 {
11288         int rc, i;
11289
11290         /* Age scan list entries found before suspend */
11291         if (priv->suspend_time) {
11292                 libipw_networks_age(priv->ieee, priv->suspend_time);
11293                 priv->suspend_time = 0;
11294         }
11295
11296         if (priv->status & STATUS_EXIT_PENDING)
11297                 return -EIO;
11298
11299         if (cmdlog && !priv->cmdlog) {
11300                 priv->cmdlog = kcalloc(cmdlog, sizeof(*priv->cmdlog),
11301                                        GFP_KERNEL);
11302                 if (priv->cmdlog == NULL) {
11303                         IPW_ERROR("Error allocating %d command log entries.\n",
11304                                   cmdlog);
11305                         return -ENOMEM;
11306                 } else {
11307                         priv->cmdlog_len = cmdlog;
11308                 }
11309         }
11310
11311         for (i = 0; i < MAX_HW_RESTARTS; i++) {
11312                 /* Load the microcode, firmware, and eeprom.
11313                  * Also start the clocks. */
11314                 rc = ipw_load(priv);
11315                 if (rc) {
11316                         IPW_ERROR("Unable to load firmware: %d\n", rc);
11317                         return rc;
11318                 }
11319
11320                 ipw_init_ordinals(priv);
11321                 if (!(priv->config & CFG_CUSTOM_MAC))
11322                         eeprom_parse_mac(priv, priv->mac_addr);
11323                 memcpy(priv->net_dev->dev_addr, priv->mac_addr, ETH_ALEN);
11324
11325                 ipw_set_geo(priv);
11326
11327                 if (priv->status & STATUS_RF_KILL_SW) {
11328                         IPW_WARNING("Radio disabled by module parameter.\n");
11329                         return 0;
11330                 } else if (rf_kill_active(priv)) {
11331                         IPW_WARNING("Radio Frequency Kill Switch is On:\n"
11332                                     "Kill switch must be turned off for "
11333                                     "wireless networking to work.\n");
11334                         schedule_delayed_work(&priv->rf_kill, 2 * HZ);
11335                         return 0;
11336                 }
11337
11338                 rc = ipw_config(priv);
11339                 if (!rc) {
11340                         IPW_DEBUG_INFO("Configured device on count %i\n", i);
11341
11342                         /* If configure to try and auto-associate, kick
11343                          * off a scan. */
11344                         schedule_delayed_work(&priv->request_scan, 0);
11345
11346                         return 0;
11347                 }
11348
11349                 IPW_DEBUG_INFO("Device configuration failed: 0x%08X\n", rc);
11350                 IPW_DEBUG_INFO("Failed to config device on retry %d of %d\n",
11351                                i, MAX_HW_RESTARTS);
11352
11353                 /* We had an error bringing up the hardware, so take it
11354                  * all the way back down so we can try again */
11355                 ipw_down(priv);
11356         }
11357
11358         /* tried to restart and config the device for as long as our
11359          * patience could withstand */
11360         IPW_ERROR("Unable to initialize device after %d attempts.\n", i);
11361
11362         return -EIO;
11363 }
11364
11365 static void ipw_bg_up(struct work_struct *work)
11366 {
11367         struct ipw_priv *priv =
11368                 container_of(work, struct ipw_priv, up);
11369         mutex_lock(&priv->mutex);
11370         ipw_up(priv);
11371         mutex_unlock(&priv->mutex);
11372 }
11373
11374 static void ipw_deinit(struct ipw_priv *priv)
11375 {
11376         int i;
11377
11378         if (priv->status & STATUS_SCANNING) {
11379                 IPW_DEBUG_INFO("Aborting scan during shutdown.\n");
11380                 ipw_abort_scan(priv);
11381         }
11382
11383         if (priv->status & STATUS_ASSOCIATED) {
11384                 IPW_DEBUG_INFO("Disassociating during shutdown.\n");
11385                 ipw_disassociate(priv);
11386         }
11387
11388         ipw_led_shutdown(priv);
11389
11390         /* Wait up to 1s for status to change to not scanning and not
11391          * associated (disassociation can take a while for a ful 802.11
11392          * exchange */
11393         for (i = 1000; i && (priv->status &
11394                              (STATUS_DISASSOCIATING |
11395                               STATUS_ASSOCIATED | STATUS_SCANNING)); i--)
11396                 udelay(10);
11397
11398         if (priv->status & (STATUS_DISASSOCIATING |
11399                             STATUS_ASSOCIATED | STATUS_SCANNING))
11400                 IPW_DEBUG_INFO("Still associated or scanning...\n");
11401         else
11402                 IPW_DEBUG_INFO("Took %dms to de-init\n", 1000 - i);
11403
11404         /* Attempt to disable the card */
11405         ipw_send_card_disable(priv, 0);
11406
11407         priv->status &= ~STATUS_INIT;
11408 }
11409
11410 static void ipw_down(struct ipw_priv *priv)
11411 {
11412         int exit_pending = priv->status & STATUS_EXIT_PENDING;
11413
11414         priv->status |= STATUS_EXIT_PENDING;
11415
11416         if (ipw_is_init(priv))
11417                 ipw_deinit(priv);
11418
11419         /* Wipe out the EXIT_PENDING status bit if we are not actually
11420          * exiting the module */
11421         if (!exit_pending)
11422                 priv->status &= ~STATUS_EXIT_PENDING;
11423
11424         /* tell the device to stop sending interrupts */
11425         ipw_disable_interrupts(priv);
11426
11427         /* Clear all bits but the RF Kill */
11428         priv->status &= STATUS_RF_KILL_MASK | STATUS_EXIT_PENDING;
11429         netif_carrier_off(priv->net_dev);
11430
11431         ipw_stop_nic(priv);
11432
11433         ipw_led_radio_off(priv);
11434 }
11435
11436 static void ipw_bg_down(struct work_struct *work)
11437 {
11438         struct ipw_priv *priv =
11439                 container_of(work, struct ipw_priv, down);
11440         mutex_lock(&priv->mutex);
11441         ipw_down(priv);
11442         mutex_unlock(&priv->mutex);
11443 }
11444
11445 static int ipw_wdev_init(struct net_device *dev)
11446 {
11447         int i, rc = 0;
11448         struct ipw_priv *priv = libipw_priv(dev);
11449         const struct libipw_geo *geo = libipw_get_geo(priv->ieee);
11450         struct wireless_dev *wdev = &priv->ieee->wdev;
11451
11452         memcpy(wdev->wiphy->perm_addr, priv->mac_addr, ETH_ALEN);
11453
11454         /* fill-out priv->ieee->bg_band */
11455         if (geo->bg_channels) {
11456                 struct ieee80211_supported_band *bg_band = &priv->ieee->bg_band;
11457
11458                 bg_band->band = IEEE80211_BAND_2GHZ;
11459                 bg_band->n_channels = geo->bg_channels;
11460                 bg_band->channels = kcalloc(geo->bg_channels,
11461                                             sizeof(struct ieee80211_channel),
11462                                             GFP_KERNEL);
11463                 if (!bg_band->channels) {
11464                         rc = -ENOMEM;
11465                         goto out;
11466                 }
11467                 /* translate geo->bg to bg_band.channels */
11468                 for (i = 0; i < geo->bg_channels; i++) {
11469                         bg_band->channels[i].band = IEEE80211_BAND_2GHZ;
11470                         bg_band->channels[i].center_freq = geo->bg[i].freq;
11471                         bg_band->channels[i].hw_value = geo->bg[i].channel;
11472                         bg_band->channels[i].max_power = geo->bg[i].max_power;
11473                         if (geo->bg[i].flags & LIBIPW_CH_PASSIVE_ONLY)
11474                                 bg_band->channels[i].flags |=
11475                                         IEEE80211_CHAN_PASSIVE_SCAN;
11476                         if (geo->bg[i].flags & LIBIPW_CH_NO_IBSS)
11477                                 bg_band->channels[i].flags |=
11478                                         IEEE80211_CHAN_NO_IBSS;
11479                         if (geo->bg[i].flags & LIBIPW_CH_RADAR_DETECT)
11480                                 bg_band->channels[i].flags |=
11481                                         IEEE80211_CHAN_RADAR;
11482                         /* No equivalent for LIBIPW_CH_80211H_RULES,
11483                            LIBIPW_CH_UNIFORM_SPREADING, or
11484                            LIBIPW_CH_B_ONLY... */
11485                 }
11486                 /* point at bitrate info */
11487                 bg_band->bitrates = ipw2200_bg_rates;
11488                 bg_band->n_bitrates = ipw2200_num_bg_rates;
11489
11490                 wdev->wiphy->bands[IEEE80211_BAND_2GHZ] = bg_band;
11491         }
11492
11493         /* fill-out priv->ieee->a_band */
11494         if (geo->a_channels) {
11495                 struct ieee80211_supported_band *a_band = &priv->ieee->a_band;
11496
11497                 a_band->band = IEEE80211_BAND_5GHZ;
11498                 a_band->n_channels = geo->a_channels;
11499                 a_band->channels = kcalloc(geo->a_channels,
11500                                            sizeof(struct ieee80211_channel),
11501                                            GFP_KERNEL);
11502                 if (!a_band->channels) {
11503                         rc = -ENOMEM;
11504                         goto out;
11505                 }
11506                 /* translate geo->a to a_band.channels */
11507                 for (i = 0; i < geo->a_channels; i++) {
11508                         a_band->channels[i].band = IEEE80211_BAND_5GHZ;
11509                         a_band->channels[i].center_freq = geo->a[i].freq;
11510                         a_band->channels[i].hw_value = geo->a[i].channel;
11511                         a_band->channels[i].max_power = geo->a[i].max_power;
11512                         if (geo->a[i].flags & LIBIPW_CH_PASSIVE_ONLY)
11513                                 a_band->channels[i].flags |=
11514                                         IEEE80211_CHAN_PASSIVE_SCAN;
11515                         if (geo->a[i].flags & LIBIPW_CH_NO_IBSS)
11516                                 a_band->channels[i].flags |=
11517                                         IEEE80211_CHAN_NO_IBSS;
11518                         if (geo->a[i].flags & LIBIPW_CH_RADAR_DETECT)
11519                                 a_band->channels[i].flags |=
11520                                         IEEE80211_CHAN_RADAR;
11521                         /* No equivalent for LIBIPW_CH_80211H_RULES,
11522                            LIBIPW_CH_UNIFORM_SPREADING, or
11523                            LIBIPW_CH_B_ONLY... */
11524                 }
11525                 /* point at bitrate info */
11526                 a_band->bitrates = ipw2200_a_rates;
11527                 a_band->n_bitrates = ipw2200_num_a_rates;
11528
11529                 wdev->wiphy->bands[IEEE80211_BAND_5GHZ] = a_band;
11530         }
11531
11532         wdev->wiphy->cipher_suites = ipw_cipher_suites;
11533         wdev->wiphy->n_cipher_suites = ARRAY_SIZE(ipw_cipher_suites);
11534
11535         set_wiphy_dev(wdev->wiphy, &priv->pci_dev->dev);
11536
11537         /* With that information in place, we can now register the wiphy... */
11538         if (wiphy_register(wdev->wiphy))
11539                 rc = -EIO;
11540 out:
11541         return rc;
11542 }
11543
11544 /* PCI driver stuff */
11545 static DEFINE_PCI_DEVICE_TABLE(card_ids) = {
11546         {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2701, 0, 0, 0},
11547         {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2702, 0, 0, 0},
11548         {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2711, 0, 0, 0},
11549         {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2712, 0, 0, 0},
11550         {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2721, 0, 0, 0},
11551         {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2722, 0, 0, 0},
11552         {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2731, 0, 0, 0},
11553         {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2732, 0, 0, 0},
11554         {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2741, 0, 0, 0},
11555         {PCI_VENDOR_ID_INTEL, 0x1043, 0x103c, 0x2741, 0, 0, 0},
11556         {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2742, 0, 0, 0},
11557         {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2751, 0, 0, 0},
11558         {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2752, 0, 0, 0},
11559         {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2753, 0, 0, 0},
11560         {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2754, 0, 0, 0},
11561         {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2761, 0, 0, 0},
11562         {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2762, 0, 0, 0},
11563         {PCI_VDEVICE(INTEL, 0x104f), 0},
11564         {PCI_VDEVICE(INTEL, 0x4220), 0},        /* BG */
11565         {PCI_VDEVICE(INTEL, 0x4221), 0},        /* BG */
11566         {PCI_VDEVICE(INTEL, 0x4223), 0},        /* ABG */
11567         {PCI_VDEVICE(INTEL, 0x4224), 0},        /* ABG */
11568
11569         /* required last entry */
11570         {0,}
11571 };
11572
11573 MODULE_DEVICE_TABLE(pci, card_ids);
11574
11575 static struct attribute *ipw_sysfs_entries[] = {
11576         &dev_attr_rf_kill.attr,
11577         &dev_attr_direct_dword.attr,
11578         &dev_attr_indirect_byte.attr,
11579         &dev_attr_indirect_dword.attr,
11580         &dev_attr_mem_gpio_reg.attr,
11581         &dev_attr_command_event_reg.attr,
11582         &dev_attr_nic_type.attr,
11583         &dev_attr_status.attr,
11584         &dev_attr_cfg.attr,
11585         &dev_attr_error.attr,
11586         &dev_attr_event_log.attr,
11587         &dev_attr_cmd_log.attr,
11588         &dev_attr_eeprom_delay.attr,
11589         &dev_attr_ucode_version.attr,
11590         &dev_attr_rtc.attr,
11591         &dev_attr_scan_age.attr,
11592         &dev_attr_led.attr,
11593         &dev_attr_speed_scan.attr,
11594         &dev_attr_net_stats.attr,
11595         &dev_attr_channels.attr,
11596 #ifdef CONFIG_IPW2200_PROMISCUOUS
11597         &dev_attr_rtap_iface.attr,
11598         &dev_attr_rtap_filter.attr,
11599 #endif
11600         NULL
11601 };
11602
11603 static struct attribute_group ipw_attribute_group = {
11604         .name = NULL,           /* put in device directory */
11605         .attrs = ipw_sysfs_entries,
11606 };
11607
11608 #ifdef CONFIG_IPW2200_PROMISCUOUS
11609 static int ipw_prom_open(struct net_device *dev)
11610 {
11611         struct ipw_prom_priv *prom_priv = libipw_priv(dev);
11612         struct ipw_priv *priv = prom_priv->priv;
11613
11614         IPW_DEBUG_INFO("prom dev->open\n");
11615         netif_carrier_off(dev);
11616
11617         if (priv->ieee->iw_mode != IW_MODE_MONITOR) {
11618                 priv->sys_config.accept_all_data_frames = 1;
11619                 priv->sys_config.accept_non_directed_frames = 1;
11620                 priv->sys_config.accept_all_mgmt_bcpr = 1;
11621                 priv->sys_config.accept_all_mgmt_frames = 1;
11622
11623                 ipw_send_system_config(priv);
11624         }
11625
11626         return 0;
11627 }
11628
11629 static int ipw_prom_stop(struct net_device *dev)
11630 {
11631         struct ipw_prom_priv *prom_priv = libipw_priv(dev);
11632         struct ipw_priv *priv = prom_priv->priv;
11633
11634         IPW_DEBUG_INFO("prom dev->stop\n");
11635
11636         if (priv->ieee->iw_mode != IW_MODE_MONITOR) {
11637                 priv->sys_config.accept_all_data_frames = 0;
11638                 priv->sys_config.accept_non_directed_frames = 0;
11639                 priv->sys_config.accept_all_mgmt_bcpr = 0;
11640                 priv->sys_config.accept_all_mgmt_frames = 0;
11641
11642                 ipw_send_system_config(priv);
11643         }
11644
11645         return 0;
11646 }
11647
11648 static netdev_tx_t ipw_prom_hard_start_xmit(struct sk_buff *skb,
11649                                             struct net_device *dev)
11650 {
11651         IPW_DEBUG_INFO("prom dev->xmit\n");
11652         dev_kfree_skb(skb);
11653         return NETDEV_TX_OK;
11654 }
11655
11656 static const struct net_device_ops ipw_prom_netdev_ops = {
11657         .ndo_open               = ipw_prom_open,
11658         .ndo_stop               = ipw_prom_stop,
11659         .ndo_start_xmit         = ipw_prom_hard_start_xmit,
11660         .ndo_change_mtu         = libipw_change_mtu,
11661         .ndo_set_mac_address    = eth_mac_addr,
11662         .ndo_validate_addr      = eth_validate_addr,
11663 };
11664
11665 static int ipw_prom_alloc(struct ipw_priv *priv)
11666 {
11667         int rc = 0;
11668
11669         if (priv->prom_net_dev)
11670                 return -EPERM;
11671
11672         priv->prom_net_dev = alloc_libipw(sizeof(struct ipw_prom_priv), 1);
11673         if (priv->prom_net_dev == NULL)
11674                 return -ENOMEM;
11675
11676         priv->prom_priv = libipw_priv(priv->prom_net_dev);
11677         priv->prom_priv->ieee = netdev_priv(priv->prom_net_dev);
11678         priv->prom_priv->priv = priv;
11679
11680         strcpy(priv->prom_net_dev->name, "rtap%d");
11681         memcpy(priv->prom_net_dev->dev_addr, priv->mac_addr, ETH_ALEN);
11682
11683         priv->prom_net_dev->type = ARPHRD_IEEE80211_RADIOTAP;
11684         priv->prom_net_dev->netdev_ops = &ipw_prom_netdev_ops;
11685
11686         priv->prom_priv->ieee->iw_mode = IW_MODE_MONITOR;
11687         SET_NETDEV_DEV(priv->prom_net_dev, &priv->pci_dev->dev);
11688
11689         rc = register_netdev(priv->prom_net_dev);
11690         if (rc) {
11691                 free_libipw(priv->prom_net_dev, 1);
11692                 priv->prom_net_dev = NULL;
11693                 return rc;
11694         }
11695
11696         return 0;
11697 }
11698
11699 static void ipw_prom_free(struct ipw_priv *priv)
11700 {
11701         if (!priv->prom_net_dev)
11702                 return;
11703
11704         unregister_netdev(priv->prom_net_dev);
11705         free_libipw(priv->prom_net_dev, 1);
11706
11707         priv->prom_net_dev = NULL;
11708 }
11709
11710 #endif
11711
11712 static const struct net_device_ops ipw_netdev_ops = {
11713         .ndo_open               = ipw_net_open,
11714         .ndo_stop               = ipw_net_stop,
11715         .ndo_set_rx_mode        = ipw_net_set_multicast_list,
11716         .ndo_set_mac_address    = ipw_net_set_mac_address,
11717         .ndo_start_xmit         = libipw_xmit,
11718         .ndo_change_mtu         = libipw_change_mtu,
11719         .ndo_validate_addr      = eth_validate_addr,
11720 };
11721
11722 static int ipw_pci_probe(struct pci_dev *pdev,
11723                                    const struct pci_device_id *ent)
11724 {
11725         int err = 0;
11726         struct net_device *net_dev;
11727         void __iomem *base;
11728         u32 length, val;
11729         struct ipw_priv *priv;
11730         int i;
11731
11732         net_dev = alloc_libipw(sizeof(struct ipw_priv), 0);
11733         if (net_dev == NULL) {
11734                 err = -ENOMEM;
11735                 goto out;
11736         }
11737
11738         priv = libipw_priv(net_dev);
11739         priv->ieee = netdev_priv(net_dev);
11740
11741         priv->net_dev = net_dev;
11742         priv->pci_dev = pdev;
11743         ipw_debug_level = debug;
11744         spin_lock_init(&priv->irq_lock);
11745         spin_lock_init(&priv->lock);
11746         for (i = 0; i < IPW_IBSS_MAC_HASH_SIZE; i++)
11747                 INIT_LIST_HEAD(&priv->ibss_mac_hash[i]);
11748
11749         mutex_init(&priv->mutex);
11750         if (pci_enable_device(pdev)) {
11751                 err = -ENODEV;
11752                 goto out_free_libipw;
11753         }
11754
11755         pci_set_master(pdev);
11756
11757         err = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
11758         if (!err)
11759                 err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32));
11760         if (err) {
11761                 printk(KERN_WARNING DRV_NAME ": No suitable DMA available.\n");
11762                 goto out_pci_disable_device;
11763         }
11764
11765         pci_set_drvdata(pdev, priv);
11766
11767         err = pci_request_regions(pdev, DRV_NAME);
11768         if (err)
11769                 goto out_pci_disable_device;
11770
11771         /* We disable the RETRY_TIMEOUT register (0x41) to keep
11772          * PCI Tx retries from interfering with C3 CPU state */
11773         pci_read_config_dword(pdev, 0x40, &val);
11774         if ((val & 0x0000ff00) != 0)
11775                 pci_write_config_dword(pdev, 0x40, val & 0xffff00ff);
11776
11777         length = pci_resource_len(pdev, 0);
11778         priv->hw_len = length;
11779
11780         base = pci_ioremap_bar(pdev, 0);
11781         if (!base) {
11782                 err = -ENODEV;
11783                 goto out_pci_release_regions;
11784         }
11785
11786         priv->hw_base = base;
11787         IPW_DEBUG_INFO("pci_resource_len = 0x%08x\n", length);
11788         IPW_DEBUG_INFO("pci_resource_base = %p\n", base);
11789
11790         err = ipw_setup_deferred_work(priv);
11791         if (err) {
11792                 IPW_ERROR("Unable to setup deferred work\n");
11793                 goto out_iounmap;
11794         }
11795
11796         ipw_sw_reset(priv, 1);
11797
11798         err = request_irq(pdev->irq, ipw_isr, IRQF_SHARED, DRV_NAME, priv);
11799         if (err) {
11800                 IPW_ERROR("Error allocating IRQ %d\n", pdev->irq);
11801                 goto out_iounmap;
11802         }
11803
11804         SET_NETDEV_DEV(net_dev, &pdev->dev);
11805
11806         mutex_lock(&priv->mutex);
11807
11808         priv->ieee->hard_start_xmit = ipw_net_hard_start_xmit;
11809         priv->ieee->set_security = shim__set_security;
11810         priv->ieee->is_queue_full = ipw_net_is_queue_full;
11811
11812 #ifdef CONFIG_IPW2200_QOS
11813         priv->ieee->is_qos_active = ipw_is_qos_active;
11814         priv->ieee->handle_probe_response = ipw_handle_beacon;
11815         priv->ieee->handle_beacon = ipw_handle_probe_response;
11816         priv->ieee->handle_assoc_response = ipw_handle_assoc_response;
11817 #endif                          /* CONFIG_IPW2200_QOS */
11818
11819         priv->ieee->perfect_rssi = -20;
11820         priv->ieee->worst_rssi = -85;
11821
11822         net_dev->netdev_ops = &ipw_netdev_ops;
11823         priv->wireless_data.spy_data = &priv->ieee->spy_data;
11824         net_dev->wireless_data = &priv->wireless_data;
11825         net_dev->wireless_handlers = &ipw_wx_handler_def;
11826         net_dev->ethtool_ops = &ipw_ethtool_ops;
11827
11828         err = sysfs_create_group(&pdev->dev.kobj, &ipw_attribute_group);
11829         if (err) {
11830                 IPW_ERROR("failed to create sysfs device attributes\n");
11831                 mutex_unlock(&priv->mutex);
11832                 goto out_release_irq;
11833         }
11834
11835         if (ipw_up(priv)) {
11836                 mutex_unlock(&priv->mutex);
11837                 err = -EIO;
11838                 goto out_remove_sysfs;
11839         }
11840
11841         mutex_unlock(&priv->mutex);
11842
11843         err = ipw_wdev_init(net_dev);
11844         if (err) {
11845                 IPW_ERROR("failed to register wireless device\n");
11846                 goto out_remove_sysfs;
11847         }
11848
11849         err = register_netdev(net_dev);
11850         if (err) {
11851                 IPW_ERROR("failed to register network device\n");
11852                 goto out_unregister_wiphy;
11853         }
11854
11855 #ifdef CONFIG_IPW2200_PROMISCUOUS
11856         if (rtap_iface) {
11857                 err = ipw_prom_alloc(priv);
11858                 if (err) {
11859                         IPW_ERROR("Failed to register promiscuous network "
11860                                   "device (error %d).\n", err);
11861                         unregister_netdev(priv->net_dev);
11862                         goto out_unregister_wiphy;
11863                 }
11864         }
11865 #endif
11866
11867         printk(KERN_INFO DRV_NAME ": Detected geography %s (%d 802.11bg "
11868                "channels, %d 802.11a channels)\n",
11869                priv->ieee->geo.name, priv->ieee->geo.bg_channels,
11870                priv->ieee->geo.a_channels);
11871
11872         return 0;
11873
11874       out_unregister_wiphy:
11875         wiphy_unregister(priv->ieee->wdev.wiphy);
11876         kfree(priv->ieee->a_band.channels);
11877         kfree(priv->ieee->bg_band.channels);
11878       out_remove_sysfs:
11879         sysfs_remove_group(&pdev->dev.kobj, &ipw_attribute_group);
11880       out_release_irq:
11881         free_irq(pdev->irq, priv);
11882       out_iounmap:
11883         iounmap(priv->hw_base);
11884       out_pci_release_regions:
11885         pci_release_regions(pdev);
11886       out_pci_disable_device:
11887         pci_disable_device(pdev);
11888         pci_set_drvdata(pdev, NULL);
11889       out_free_libipw:
11890         free_libipw(priv->net_dev, 0);
11891       out:
11892         return err;
11893 }
11894
11895 static void ipw_pci_remove(struct pci_dev *pdev)
11896 {
11897         struct ipw_priv *priv = pci_get_drvdata(pdev);
11898         struct list_head *p, *q;
11899         int i;
11900
11901         if (!priv)
11902                 return;
11903
11904         mutex_lock(&priv->mutex);
11905
11906         priv->status |= STATUS_EXIT_PENDING;
11907         ipw_down(priv);
11908         sysfs_remove_group(&pdev->dev.kobj, &ipw_attribute_group);
11909
11910         mutex_unlock(&priv->mutex);
11911
11912         unregister_netdev(priv->net_dev);
11913
11914         if (priv->rxq) {
11915                 ipw_rx_queue_free(priv, priv->rxq);
11916                 priv->rxq = NULL;
11917         }
11918         ipw_tx_queue_free(priv);
11919
11920         if (priv->cmdlog) {
11921                 kfree(priv->cmdlog);
11922                 priv->cmdlog = NULL;
11923         }
11924
11925         /* make sure all works are inactive */
11926         cancel_delayed_work_sync(&priv->adhoc_check);
11927         cancel_work_sync(&priv->associate);
11928         cancel_work_sync(&priv->disassociate);
11929         cancel_work_sync(&priv->system_config);
11930         cancel_work_sync(&priv->rx_replenish);
11931         cancel_work_sync(&priv->adapter_restart);
11932         cancel_delayed_work_sync(&priv->rf_kill);
11933         cancel_work_sync(&priv->up);
11934         cancel_work_sync(&priv->down);
11935         cancel_delayed_work_sync(&priv->request_scan);
11936         cancel_delayed_work_sync(&priv->request_direct_scan);
11937         cancel_delayed_work_sync(&priv->request_passive_scan);
11938         cancel_delayed_work_sync(&priv->scan_event);
11939         cancel_delayed_work_sync(&priv->gather_stats);
11940         cancel_work_sync(&priv->abort_scan);
11941         cancel_work_sync(&priv->roam);
11942         cancel_delayed_work_sync(&priv->scan_check);
11943         cancel_work_sync(&priv->link_up);
11944         cancel_work_sync(&priv->link_down);
11945         cancel_delayed_work_sync(&priv->led_link_on);
11946         cancel_delayed_work_sync(&priv->led_link_off);
11947         cancel_delayed_work_sync(&priv->led_act_off);
11948         cancel_work_sync(&priv->merge_networks);
11949
11950         /* Free MAC hash list for ADHOC */
11951         for (i = 0; i < IPW_IBSS_MAC_HASH_SIZE; i++) {
11952                 list_for_each_safe(p, q, &priv->ibss_mac_hash[i]) {
11953                         list_del(p);
11954                         kfree(list_entry(p, struct ipw_ibss_seq, list));
11955                 }
11956         }
11957
11958         kfree(priv->error);
11959         priv->error = NULL;
11960
11961 #ifdef CONFIG_IPW2200_PROMISCUOUS
11962         ipw_prom_free(priv);
11963 #endif
11964
11965         free_irq(pdev->irq, priv);
11966         iounmap(priv->hw_base);
11967         pci_release_regions(pdev);
11968         pci_disable_device(pdev);
11969         pci_set_drvdata(pdev, NULL);
11970         /* wiphy_unregister needs to be here, before free_libipw */
11971         wiphy_unregister(priv->ieee->wdev.wiphy);
11972         kfree(priv->ieee->a_band.channels);
11973         kfree(priv->ieee->bg_band.channels);
11974         free_libipw(priv->net_dev, 0);
11975         free_firmware();
11976 }
11977
11978 #ifdef CONFIG_PM
11979 static int ipw_pci_suspend(struct pci_dev *pdev, pm_message_t state)
11980 {
11981         struct ipw_priv *priv = pci_get_drvdata(pdev);
11982         struct net_device *dev = priv->net_dev;
11983
11984         printk(KERN_INFO "%s: Going into suspend...\n", dev->name);
11985
11986         /* Take down the device; powers it off, etc. */
11987         ipw_down(priv);
11988
11989         /* Remove the PRESENT state of the device */
11990         netif_device_detach(dev);
11991
11992         pci_save_state(pdev);
11993         pci_disable_device(pdev);
11994         pci_set_power_state(pdev, pci_choose_state(pdev, state));
11995
11996         priv->suspend_at = get_seconds();
11997
11998         return 0;
11999 }
12000
12001 static int ipw_pci_resume(struct pci_dev *pdev)
12002 {
12003         struct ipw_priv *priv = pci_get_drvdata(pdev);
12004         struct net_device *dev = priv->net_dev;
12005         int err;
12006         u32 val;
12007
12008         printk(KERN_INFO "%s: Coming out of suspend...\n", dev->name);
12009
12010         pci_set_power_state(pdev, PCI_D0);
12011         err = pci_enable_device(pdev);
12012         if (err) {
12013                 printk(KERN_ERR "%s: pci_enable_device failed on resume\n",
12014                        dev->name);
12015                 return err;
12016         }
12017         pci_restore_state(pdev);
12018
12019         /*
12020          * Suspend/Resume resets the PCI configuration space, so we have to
12021          * re-disable the RETRY_TIMEOUT register (0x41) to keep PCI Tx retries
12022          * from interfering with C3 CPU state. pci_restore_state won't help
12023          * here since it only restores the first 64 bytes pci config header.
12024          */
12025         pci_read_config_dword(pdev, 0x40, &val);
12026         if ((val & 0x0000ff00) != 0)
12027                 pci_write_config_dword(pdev, 0x40, val & 0xffff00ff);
12028
12029         /* Set the device back into the PRESENT state; this will also wake
12030          * the queue of needed */
12031         netif_device_attach(dev);
12032
12033         priv->suspend_time = get_seconds() - priv->suspend_at;
12034
12035         /* Bring the device back up */
12036         schedule_work(&priv->up);
12037
12038         return 0;
12039 }
12040 #endif
12041
12042 static void ipw_pci_shutdown(struct pci_dev *pdev)
12043 {
12044         struct ipw_priv *priv = pci_get_drvdata(pdev);
12045
12046         /* Take down the device; powers it off, etc. */
12047         ipw_down(priv);
12048
12049         pci_disable_device(pdev);
12050 }
12051
12052 /* driver initialization stuff */
12053 static struct pci_driver ipw_driver = {
12054         .name = DRV_NAME,
12055         .id_table = card_ids,
12056         .probe = ipw_pci_probe,
12057         .remove = ipw_pci_remove,
12058 #ifdef CONFIG_PM
12059         .suspend = ipw_pci_suspend,
12060         .resume = ipw_pci_resume,
12061 #endif
12062         .shutdown = ipw_pci_shutdown,
12063 };
12064
12065 static int __init ipw_init(void)
12066 {
12067         int ret;
12068
12069         printk(KERN_INFO DRV_NAME ": " DRV_DESCRIPTION ", " DRV_VERSION "\n");
12070         printk(KERN_INFO DRV_NAME ": " DRV_COPYRIGHT "\n");
12071
12072         ret = pci_register_driver(&ipw_driver);
12073         if (ret) {
12074                 IPW_ERROR("Unable to initialize PCI module\n");
12075                 return ret;
12076         }
12077
12078         ret = driver_create_file(&ipw_driver.driver, &driver_attr_debug_level);
12079         if (ret) {
12080                 IPW_ERROR("Unable to create driver sysfs file\n");
12081                 pci_unregister_driver(&ipw_driver);
12082                 return ret;
12083         }
12084
12085         return ret;
12086 }
12087
12088 static void __exit ipw_exit(void)
12089 {
12090         driver_remove_file(&ipw_driver.driver, &driver_attr_debug_level);
12091         pci_unregister_driver(&ipw_driver);
12092 }
12093
12094 module_param(disable, int, 0444);
12095 MODULE_PARM_DESC(disable, "manually disable the radio (default 0 [radio on])");
12096
12097 module_param(associate, int, 0444);
12098 MODULE_PARM_DESC(associate, "auto associate when scanning (default off)");
12099
12100 module_param(auto_create, int, 0444);
12101 MODULE_PARM_DESC(auto_create, "auto create adhoc network (default on)");
12102
12103 module_param_named(led, led_support, int, 0444);
12104 MODULE_PARM_DESC(led, "enable led control on some systems (default 1 on)");
12105
12106 module_param(debug, int, 0444);
12107 MODULE_PARM_DESC(debug, "debug output mask");
12108
12109 module_param_named(channel, default_channel, int, 0444);
12110 MODULE_PARM_DESC(channel, "channel to limit associate to (default 0 [ANY])");
12111
12112 #ifdef CONFIG_IPW2200_PROMISCUOUS
12113 module_param(rtap_iface, int, 0444);
12114 MODULE_PARM_DESC(rtap_iface, "create the rtap interface (1 - create, default 0)");
12115 #endif
12116
12117 #ifdef CONFIG_IPW2200_QOS
12118 module_param(qos_enable, int, 0444);
12119 MODULE_PARM_DESC(qos_enable, "enable all QoS functionalitis");
12120
12121 module_param(qos_burst_enable, int, 0444);
12122 MODULE_PARM_DESC(qos_burst_enable, "enable QoS burst mode");
12123
12124 module_param(qos_no_ack_mask, int, 0444);
12125 MODULE_PARM_DESC(qos_no_ack_mask, "mask Tx_Queue to no ack");
12126
12127 module_param(burst_duration_CCK, int, 0444);
12128 MODULE_PARM_DESC(burst_duration_CCK, "set CCK burst value");
12129
12130 module_param(burst_duration_OFDM, int, 0444);
12131 MODULE_PARM_DESC(burst_duration_OFDM, "set OFDM burst value");
12132 #endif                          /* CONFIG_IPW2200_QOS */
12133
12134 #ifdef CONFIG_IPW2200_MONITOR
12135 module_param_named(mode, network_mode, int, 0444);
12136 MODULE_PARM_DESC(mode, "network mode (0=BSS,1=IBSS,2=Monitor)");
12137 #else
12138 module_param_named(mode, network_mode, int, 0444);
12139 MODULE_PARM_DESC(mode, "network mode (0=BSS,1=IBSS)");
12140 #endif
12141
12142 module_param(bt_coexist, int, 0444);
12143 MODULE_PARM_DESC(bt_coexist, "enable bluetooth coexistence (default off)");
12144
12145 module_param(hwcrypto, int, 0444);
12146 MODULE_PARM_DESC(hwcrypto, "enable hardware crypto (default off)");
12147
12148 module_param(cmdlog, int, 0444);
12149 MODULE_PARM_DESC(cmdlog,
12150                  "allocate a ring buffer for logging firmware commands");
12151
12152 module_param(roaming, int, 0444);
12153 MODULE_PARM_DESC(roaming, "enable roaming support (default on)");
12154
12155 module_param(antenna, int, 0444);
12156 MODULE_PARM_DESC(antenna, "select antenna 1=Main, 3=Aux, default 0 [both], 2=slow_diversity (choose the one with lower background noise)");
12157
12158 module_exit(ipw_exit);
12159 module_init(ipw_init);