Merge branch 'for-john' of git://git.kernel.org/pub/scm/linux/kernel/git/jberg/mac80211
[cascardo/linux.git] / drivers / net / wireless / ipw2x00 / ipw2200.c
1 /******************************************************************************
2
3   Copyright(c) 2003 - 2006 Intel Corporation. All rights reserved.
4
5   802.11 status code portion of this file from ethereal-0.10.6:
6     Copyright 2000, Axis Communications AB
7     Ethereal - Network traffic analyzer
8     By Gerald Combs <gerald@ethereal.com>
9     Copyright 1998 Gerald Combs
10
11   This program is free software; you can redistribute it and/or modify it
12   under the terms of version 2 of the GNU General Public License as
13   published by the Free Software Foundation.
14
15   This program is distributed in the hope that it will be useful, but WITHOUT
16   ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
17   FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
18   more details.
19
20   You should have received a copy of the GNU General Public License along with
21   this program; if not, write to the Free Software Foundation, Inc., 59
22   Temple Place - Suite 330, Boston, MA  02111-1307, USA.
23
24   The full GNU General Public License is included in this distribution in the
25   file called LICENSE.
26
27   Contact Information:
28   Intel Linux Wireless <ilw@linux.intel.com>
29   Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
30
31 ******************************************************************************/
32
33 #include <linux/sched.h>
34 #include <linux/slab.h>
35 #include <net/cfg80211-wext.h>
36 #include "ipw2200.h"
37 #include "ipw.h"
38
39
40 #ifndef KBUILD_EXTMOD
41 #define VK "k"
42 #else
43 #define VK
44 #endif
45
46 #ifdef CONFIG_IPW2200_DEBUG
47 #define VD "d"
48 #else
49 #define VD
50 #endif
51
52 #ifdef CONFIG_IPW2200_MONITOR
53 #define VM "m"
54 #else
55 #define VM
56 #endif
57
58 #ifdef CONFIG_IPW2200_PROMISCUOUS
59 #define VP "p"
60 #else
61 #define VP
62 #endif
63
64 #ifdef CONFIG_IPW2200_RADIOTAP
65 #define VR "r"
66 #else
67 #define VR
68 #endif
69
70 #ifdef CONFIG_IPW2200_QOS
71 #define VQ "q"
72 #else
73 #define VQ
74 #endif
75
76 #define IPW2200_VERSION "1.2.2" VK VD VM VP VR VQ
77 #define DRV_DESCRIPTION "Intel(R) PRO/Wireless 2200/2915 Network Driver"
78 #define DRV_COPYRIGHT   "Copyright(c) 2003-2006 Intel Corporation"
79 #define DRV_VERSION     IPW2200_VERSION
80
81 #define ETH_P_80211_STATS (ETH_P_80211_RAW + 1)
82
83 MODULE_DESCRIPTION(DRV_DESCRIPTION);
84 MODULE_VERSION(DRV_VERSION);
85 MODULE_AUTHOR(DRV_COPYRIGHT);
86 MODULE_LICENSE("GPL");
87 MODULE_FIRMWARE("ipw2200-ibss.fw");
88 #ifdef CONFIG_IPW2200_MONITOR
89 MODULE_FIRMWARE("ipw2200-sniffer.fw");
90 #endif
91 MODULE_FIRMWARE("ipw2200-bss.fw");
92
93 static int cmdlog = 0;
94 static int debug = 0;
95 static int default_channel = 0;
96 static int network_mode = 0;
97
98 static u32 ipw_debug_level;
99 static int associate;
100 static int auto_create = 1;
101 static int led_support = 1;
102 static int disable = 0;
103 static int bt_coexist = 0;
104 static int hwcrypto = 0;
105 static int roaming = 1;
106 static const char ipw_modes[] = {
107         'a', 'b', 'g', '?'
108 };
109 static int antenna = CFG_SYS_ANTENNA_BOTH;
110
111 #ifdef CONFIG_IPW2200_PROMISCUOUS
112 static int rtap_iface = 0;     /* def: 0 -- do not create rtap interface */
113 #endif
114
115 static struct ieee80211_rate ipw2200_rates[] = {
116         { .bitrate = 10 },
117         { .bitrate = 20, .flags = IEEE80211_RATE_SHORT_PREAMBLE },
118         { .bitrate = 55, .flags = IEEE80211_RATE_SHORT_PREAMBLE },
119         { .bitrate = 110, .flags = IEEE80211_RATE_SHORT_PREAMBLE },
120         { .bitrate = 60 },
121         { .bitrate = 90 },
122         { .bitrate = 120 },
123         { .bitrate = 180 },
124         { .bitrate = 240 },
125         { .bitrate = 360 },
126         { .bitrate = 480 },
127         { .bitrate = 540 }
128 };
129
130 #define ipw2200_a_rates         (ipw2200_rates + 4)
131 #define ipw2200_num_a_rates     8
132 #define ipw2200_bg_rates        (ipw2200_rates + 0)
133 #define ipw2200_num_bg_rates    12
134
135 /* Ugly macro to convert literal channel numbers into their mhz equivalents
136  * There are certianly some conditions that will break this (like feeding it '30')
137  * but they shouldn't arise since nothing talks on channel 30. */
138 #define ieee80211chan2mhz(x) \
139         (((x) <= 14) ? \
140         (((x) == 14) ? 2484 : ((x) * 5) + 2407) : \
141         ((x) + 1000) * 5)
142
143 #ifdef CONFIG_IPW2200_QOS
144 static int qos_enable = 0;
145 static int qos_burst_enable = 0;
146 static int qos_no_ack_mask = 0;
147 static int burst_duration_CCK = 0;
148 static int burst_duration_OFDM = 0;
149
150 static struct libipw_qos_parameters def_qos_parameters_OFDM = {
151         {QOS_TX0_CW_MIN_OFDM, QOS_TX1_CW_MIN_OFDM, QOS_TX2_CW_MIN_OFDM,
152          QOS_TX3_CW_MIN_OFDM},
153         {QOS_TX0_CW_MAX_OFDM, QOS_TX1_CW_MAX_OFDM, QOS_TX2_CW_MAX_OFDM,
154          QOS_TX3_CW_MAX_OFDM},
155         {QOS_TX0_AIFS, QOS_TX1_AIFS, QOS_TX2_AIFS, QOS_TX3_AIFS},
156         {QOS_TX0_ACM, QOS_TX1_ACM, QOS_TX2_ACM, QOS_TX3_ACM},
157         {QOS_TX0_TXOP_LIMIT_OFDM, QOS_TX1_TXOP_LIMIT_OFDM,
158          QOS_TX2_TXOP_LIMIT_OFDM, QOS_TX3_TXOP_LIMIT_OFDM}
159 };
160
161 static struct libipw_qos_parameters def_qos_parameters_CCK = {
162         {QOS_TX0_CW_MIN_CCK, QOS_TX1_CW_MIN_CCK, QOS_TX2_CW_MIN_CCK,
163          QOS_TX3_CW_MIN_CCK},
164         {QOS_TX0_CW_MAX_CCK, QOS_TX1_CW_MAX_CCK, QOS_TX2_CW_MAX_CCK,
165          QOS_TX3_CW_MAX_CCK},
166         {QOS_TX0_AIFS, QOS_TX1_AIFS, QOS_TX2_AIFS, QOS_TX3_AIFS},
167         {QOS_TX0_ACM, QOS_TX1_ACM, QOS_TX2_ACM, QOS_TX3_ACM},
168         {QOS_TX0_TXOP_LIMIT_CCK, QOS_TX1_TXOP_LIMIT_CCK, QOS_TX2_TXOP_LIMIT_CCK,
169          QOS_TX3_TXOP_LIMIT_CCK}
170 };
171
172 static struct libipw_qos_parameters def_parameters_OFDM = {
173         {DEF_TX0_CW_MIN_OFDM, DEF_TX1_CW_MIN_OFDM, DEF_TX2_CW_MIN_OFDM,
174          DEF_TX3_CW_MIN_OFDM},
175         {DEF_TX0_CW_MAX_OFDM, DEF_TX1_CW_MAX_OFDM, DEF_TX2_CW_MAX_OFDM,
176          DEF_TX3_CW_MAX_OFDM},
177         {DEF_TX0_AIFS, DEF_TX1_AIFS, DEF_TX2_AIFS, DEF_TX3_AIFS},
178         {DEF_TX0_ACM, DEF_TX1_ACM, DEF_TX2_ACM, DEF_TX3_ACM},
179         {DEF_TX0_TXOP_LIMIT_OFDM, DEF_TX1_TXOP_LIMIT_OFDM,
180          DEF_TX2_TXOP_LIMIT_OFDM, DEF_TX3_TXOP_LIMIT_OFDM}
181 };
182
183 static struct libipw_qos_parameters def_parameters_CCK = {
184         {DEF_TX0_CW_MIN_CCK, DEF_TX1_CW_MIN_CCK, DEF_TX2_CW_MIN_CCK,
185          DEF_TX3_CW_MIN_CCK},
186         {DEF_TX0_CW_MAX_CCK, DEF_TX1_CW_MAX_CCK, DEF_TX2_CW_MAX_CCK,
187          DEF_TX3_CW_MAX_CCK},
188         {DEF_TX0_AIFS, DEF_TX1_AIFS, DEF_TX2_AIFS, DEF_TX3_AIFS},
189         {DEF_TX0_ACM, DEF_TX1_ACM, DEF_TX2_ACM, DEF_TX3_ACM},
190         {DEF_TX0_TXOP_LIMIT_CCK, DEF_TX1_TXOP_LIMIT_CCK, DEF_TX2_TXOP_LIMIT_CCK,
191          DEF_TX3_TXOP_LIMIT_CCK}
192 };
193
194 static u8 qos_oui[QOS_OUI_LEN] = { 0x00, 0x50, 0xF2 };
195
196 static int from_priority_to_tx_queue[] = {
197         IPW_TX_QUEUE_1, IPW_TX_QUEUE_2, IPW_TX_QUEUE_2, IPW_TX_QUEUE_1,
198         IPW_TX_QUEUE_3, IPW_TX_QUEUE_3, IPW_TX_QUEUE_4, IPW_TX_QUEUE_4
199 };
200
201 static u32 ipw_qos_get_burst_duration(struct ipw_priv *priv);
202
203 static int ipw_send_qos_params_command(struct ipw_priv *priv, struct libipw_qos_parameters
204                                        *qos_param);
205 static int ipw_send_qos_info_command(struct ipw_priv *priv, struct libipw_qos_information_element
206                                      *qos_param);
207 #endif                          /* CONFIG_IPW2200_QOS */
208
209 static struct iw_statistics *ipw_get_wireless_stats(struct net_device *dev);
210 static void ipw_remove_current_network(struct ipw_priv *priv);
211 static void ipw_rx(struct ipw_priv *priv);
212 static int ipw_queue_tx_reclaim(struct ipw_priv *priv,
213                                 struct clx2_tx_queue *txq, int qindex);
214 static int ipw_queue_reset(struct ipw_priv *priv);
215
216 static int ipw_queue_tx_hcmd(struct ipw_priv *priv, int hcmd, void *buf,
217                              int len, int sync);
218
219 static void ipw_tx_queue_free(struct ipw_priv *);
220
221 static struct ipw_rx_queue *ipw_rx_queue_alloc(struct ipw_priv *);
222 static void ipw_rx_queue_free(struct ipw_priv *, struct ipw_rx_queue *);
223 static void ipw_rx_queue_replenish(void *);
224 static int ipw_up(struct ipw_priv *);
225 static void ipw_bg_up(struct work_struct *work);
226 static void ipw_down(struct ipw_priv *);
227 static void ipw_bg_down(struct work_struct *work);
228 static int ipw_config(struct ipw_priv *);
229 static int init_supported_rates(struct ipw_priv *priv,
230                                 struct ipw_supported_rates *prates);
231 static void ipw_set_hwcrypto_keys(struct ipw_priv *);
232 static void ipw_send_wep_keys(struct ipw_priv *, int);
233
234 static int snprint_line(char *buf, size_t count,
235                         const u8 * data, u32 len, u32 ofs)
236 {
237         int out, i, j, l;
238         char c;
239
240         out = snprintf(buf, count, "%08X", ofs);
241
242         for (l = 0, i = 0; i < 2; i++) {
243                 out += snprintf(buf + out, count - out, " ");
244                 for (j = 0; j < 8 && l < len; j++, l++)
245                         out += snprintf(buf + out, count - out, "%02X ",
246                                         data[(i * 8 + j)]);
247                 for (; j < 8; j++)
248                         out += snprintf(buf + out, count - out, "   ");
249         }
250
251         out += snprintf(buf + out, count - out, " ");
252         for (l = 0, i = 0; i < 2; i++) {
253                 out += snprintf(buf + out, count - out, " ");
254                 for (j = 0; j < 8 && l < len; j++, l++) {
255                         c = data[(i * 8 + j)];
256                         if (!isascii(c) || !isprint(c))
257                                 c = '.';
258
259                         out += snprintf(buf + out, count - out, "%c", c);
260                 }
261
262                 for (; j < 8; j++)
263                         out += snprintf(buf + out, count - out, " ");
264         }
265
266         return out;
267 }
268
269 static void printk_buf(int level, const u8 * data, u32 len)
270 {
271         char line[81];
272         u32 ofs = 0;
273         if (!(ipw_debug_level & level))
274                 return;
275
276         while (len) {
277                 snprint_line(line, sizeof(line), &data[ofs],
278                              min(len, 16U), ofs);
279                 printk(KERN_DEBUG "%s\n", line);
280                 ofs += 16;
281                 len -= min(len, 16U);
282         }
283 }
284
285 static int snprintk_buf(u8 * output, size_t size, const u8 * data, size_t len)
286 {
287         size_t out = size;
288         u32 ofs = 0;
289         int total = 0;
290
291         while (size && len) {
292                 out = snprint_line(output, size, &data[ofs],
293                                    min_t(size_t, len, 16U), ofs);
294
295                 ofs += 16;
296                 output += out;
297                 size -= out;
298                 len -= min_t(size_t, len, 16U);
299                 total += out;
300         }
301         return total;
302 }
303
304 /* alias for 32-bit indirect read (for SRAM/reg above 4K), with debug wrapper */
305 static u32 _ipw_read_reg32(struct ipw_priv *priv, u32 reg);
306 #define ipw_read_reg32(a, b) _ipw_read_reg32(a, b)
307
308 /* alias for 8-bit indirect read (for SRAM/reg above 4K), with debug wrapper */
309 static u8 _ipw_read_reg8(struct ipw_priv *ipw, u32 reg);
310 #define ipw_read_reg8(a, b) _ipw_read_reg8(a, b)
311
312 /* 8-bit indirect write (for SRAM/reg above 4K), with debug wrapper */
313 static void _ipw_write_reg8(struct ipw_priv *priv, u32 reg, u8 value);
314 static inline void ipw_write_reg8(struct ipw_priv *a, u32 b, u8 c)
315 {
316         IPW_DEBUG_IO("%s %d: write_indirect8(0x%08X, 0x%08X)\n", __FILE__,
317                      __LINE__, (u32) (b), (u32) (c));
318         _ipw_write_reg8(a, b, c);
319 }
320
321 /* 16-bit indirect write (for SRAM/reg above 4K), with debug wrapper */
322 static void _ipw_write_reg16(struct ipw_priv *priv, u32 reg, u16 value);
323 static inline void ipw_write_reg16(struct ipw_priv *a, u32 b, u16 c)
324 {
325         IPW_DEBUG_IO("%s %d: write_indirect16(0x%08X, 0x%08X)\n", __FILE__,
326                      __LINE__, (u32) (b), (u32) (c));
327         _ipw_write_reg16(a, b, c);
328 }
329
330 /* 32-bit indirect write (for SRAM/reg above 4K), with debug wrapper */
331 static void _ipw_write_reg32(struct ipw_priv *priv, u32 reg, u32 value);
332 static inline void ipw_write_reg32(struct ipw_priv *a, u32 b, u32 c)
333 {
334         IPW_DEBUG_IO("%s %d: write_indirect32(0x%08X, 0x%08X)\n", __FILE__,
335                      __LINE__, (u32) (b), (u32) (c));
336         _ipw_write_reg32(a, b, c);
337 }
338
339 /* 8-bit direct write (low 4K) */
340 static inline void _ipw_write8(struct ipw_priv *ipw, unsigned long ofs,
341                 u8 val)
342 {
343         writeb(val, ipw->hw_base + ofs);
344 }
345
346 /* 8-bit direct write (for low 4K of SRAM/regs), with debug wrapper */
347 #define ipw_write8(ipw, ofs, val) do { \
348         IPW_DEBUG_IO("%s %d: write_direct8(0x%08X, 0x%08X)\n", __FILE__, \
349                         __LINE__, (u32)(ofs), (u32)(val)); \
350         _ipw_write8(ipw, ofs, val); \
351 } while (0)
352
353 /* 16-bit direct write (low 4K) */
354 static inline void _ipw_write16(struct ipw_priv *ipw, unsigned long ofs,
355                 u16 val)
356 {
357         writew(val, ipw->hw_base + ofs);
358 }
359
360 /* 16-bit direct write (for low 4K of SRAM/regs), with debug wrapper */
361 #define ipw_write16(ipw, ofs, val) do { \
362         IPW_DEBUG_IO("%s %d: write_direct16(0x%08X, 0x%08X)\n", __FILE__, \
363                         __LINE__, (u32)(ofs), (u32)(val)); \
364         _ipw_write16(ipw, ofs, val); \
365 } while (0)
366
367 /* 32-bit direct write (low 4K) */
368 static inline void _ipw_write32(struct ipw_priv *ipw, unsigned long ofs,
369                 u32 val)
370 {
371         writel(val, ipw->hw_base + ofs);
372 }
373
374 /* 32-bit direct write (for low 4K of SRAM/regs), with debug wrapper */
375 #define ipw_write32(ipw, ofs, val) do { \
376         IPW_DEBUG_IO("%s %d: write_direct32(0x%08X, 0x%08X)\n", __FILE__, \
377                         __LINE__, (u32)(ofs), (u32)(val)); \
378         _ipw_write32(ipw, ofs, val); \
379 } while (0)
380
381 /* 8-bit direct read (low 4K) */
382 static inline u8 _ipw_read8(struct ipw_priv *ipw, unsigned long ofs)
383 {
384         return readb(ipw->hw_base + ofs);
385 }
386
387 /* alias to 8-bit direct read (low 4K of SRAM/regs), with debug wrapper */
388 #define ipw_read8(ipw, ofs) ({ \
389         IPW_DEBUG_IO("%s %d: read_direct8(0x%08X)\n", __FILE__, __LINE__, \
390                         (u32)(ofs)); \
391         _ipw_read8(ipw, ofs); \
392 })
393
394 /* 16-bit direct read (low 4K) */
395 static inline u16 _ipw_read16(struct ipw_priv *ipw, unsigned long ofs)
396 {
397         return readw(ipw->hw_base + ofs);
398 }
399
400 /* alias to 16-bit direct read (low 4K of SRAM/regs), with debug wrapper */
401 #define ipw_read16(ipw, ofs) ({ \
402         IPW_DEBUG_IO("%s %d: read_direct16(0x%08X)\n", __FILE__, __LINE__, \
403                         (u32)(ofs)); \
404         _ipw_read16(ipw, ofs); \
405 })
406
407 /* 32-bit direct read (low 4K) */
408 static inline u32 _ipw_read32(struct ipw_priv *ipw, unsigned long ofs)
409 {
410         return readl(ipw->hw_base + ofs);
411 }
412
413 /* alias to 32-bit direct read (low 4K of SRAM/regs), with debug wrapper */
414 #define ipw_read32(ipw, ofs) ({ \
415         IPW_DEBUG_IO("%s %d: read_direct32(0x%08X)\n", __FILE__, __LINE__, \
416                         (u32)(ofs)); \
417         _ipw_read32(ipw, ofs); \
418 })
419
420 static void _ipw_read_indirect(struct ipw_priv *, u32, u8 *, int);
421 /* alias to multi-byte read (SRAM/regs above 4K), with debug wrapper */
422 #define ipw_read_indirect(a, b, c, d) ({ \
423         IPW_DEBUG_IO("%s %d: read_indirect(0x%08X) %u bytes\n", __FILE__, \
424                         __LINE__, (u32)(b), (u32)(d)); \
425         _ipw_read_indirect(a, b, c, d); \
426 })
427
428 /* alias to multi-byte read (SRAM/regs above 4K), with debug wrapper */
429 static void _ipw_write_indirect(struct ipw_priv *priv, u32 addr, u8 * data,
430                                 int num);
431 #define ipw_write_indirect(a, b, c, d) do { \
432         IPW_DEBUG_IO("%s %d: write_indirect(0x%08X) %u bytes\n", __FILE__, \
433                         __LINE__, (u32)(b), (u32)(d)); \
434         _ipw_write_indirect(a, b, c, d); \
435 } while (0)
436
437 /* 32-bit indirect write (above 4K) */
438 static void _ipw_write_reg32(struct ipw_priv *priv, u32 reg, u32 value)
439 {
440         IPW_DEBUG_IO(" %p : reg = 0x%8X : value = 0x%8X\n", priv, reg, value);
441         _ipw_write32(priv, IPW_INDIRECT_ADDR, reg);
442         _ipw_write32(priv, IPW_INDIRECT_DATA, value);
443 }
444
445 /* 8-bit indirect write (above 4K) */
446 static void _ipw_write_reg8(struct ipw_priv *priv, u32 reg, u8 value)
447 {
448         u32 aligned_addr = reg & IPW_INDIRECT_ADDR_MASK;        /* dword align */
449         u32 dif_len = reg - aligned_addr;
450
451         IPW_DEBUG_IO(" reg = 0x%8X : value = 0x%8X\n", reg, value);
452         _ipw_write32(priv, IPW_INDIRECT_ADDR, aligned_addr);
453         _ipw_write8(priv, IPW_INDIRECT_DATA + dif_len, value);
454 }
455
456 /* 16-bit indirect write (above 4K) */
457 static void _ipw_write_reg16(struct ipw_priv *priv, u32 reg, u16 value)
458 {
459         u32 aligned_addr = reg & IPW_INDIRECT_ADDR_MASK;        /* dword align */
460         u32 dif_len = (reg - aligned_addr) & (~0x1ul);
461
462         IPW_DEBUG_IO(" reg = 0x%8X : value = 0x%8X\n", reg, value);
463         _ipw_write32(priv, IPW_INDIRECT_ADDR, aligned_addr);
464         _ipw_write16(priv, IPW_INDIRECT_DATA + dif_len, value);
465 }
466
467 /* 8-bit indirect read (above 4K) */
468 static u8 _ipw_read_reg8(struct ipw_priv *priv, u32 reg)
469 {
470         u32 word;
471         _ipw_write32(priv, IPW_INDIRECT_ADDR, reg & IPW_INDIRECT_ADDR_MASK);
472         IPW_DEBUG_IO(" reg = 0x%8X :\n", reg);
473         word = _ipw_read32(priv, IPW_INDIRECT_DATA);
474         return (word >> ((reg & 0x3) * 8)) & 0xff;
475 }
476
477 /* 32-bit indirect read (above 4K) */
478 static u32 _ipw_read_reg32(struct ipw_priv *priv, u32 reg)
479 {
480         u32 value;
481
482         IPW_DEBUG_IO("%p : reg = 0x%08x\n", priv, reg);
483
484         _ipw_write32(priv, IPW_INDIRECT_ADDR, reg);
485         value = _ipw_read32(priv, IPW_INDIRECT_DATA);
486         IPW_DEBUG_IO(" reg = 0x%4X : value = 0x%4x\n", reg, value);
487         return value;
488 }
489
490 /* General purpose, no alignment requirement, iterative (multi-byte) read, */
491 /*    for area above 1st 4K of SRAM/reg space */
492 static void _ipw_read_indirect(struct ipw_priv *priv, u32 addr, u8 * buf,
493                                int num)
494 {
495         u32 aligned_addr = addr & IPW_INDIRECT_ADDR_MASK;       /* dword align */
496         u32 dif_len = addr - aligned_addr;
497         u32 i;
498
499         IPW_DEBUG_IO("addr = %i, buf = %p, num = %i\n", addr, buf, num);
500
501         if (num <= 0) {
502                 return;
503         }
504
505         /* Read the first dword (or portion) byte by byte */
506         if (unlikely(dif_len)) {
507                 _ipw_write32(priv, IPW_INDIRECT_ADDR, aligned_addr);
508                 /* Start reading at aligned_addr + dif_len */
509                 for (i = dif_len; ((i < 4) && (num > 0)); i++, num--)
510                         *buf++ = _ipw_read8(priv, IPW_INDIRECT_DATA + i);
511                 aligned_addr += 4;
512         }
513
514         /* Read all of the middle dwords as dwords, with auto-increment */
515         _ipw_write32(priv, IPW_AUTOINC_ADDR, aligned_addr);
516         for (; num >= 4; buf += 4, aligned_addr += 4, num -= 4)
517                 *(u32 *) buf = _ipw_read32(priv, IPW_AUTOINC_DATA);
518
519         /* Read the last dword (or portion) byte by byte */
520         if (unlikely(num)) {
521                 _ipw_write32(priv, IPW_INDIRECT_ADDR, aligned_addr);
522                 for (i = 0; num > 0; i++, num--)
523                         *buf++ = ipw_read8(priv, IPW_INDIRECT_DATA + i);
524         }
525 }
526
527 /* General purpose, no alignment requirement, iterative (multi-byte) write, */
528 /*    for area above 1st 4K of SRAM/reg space */
529 static void _ipw_write_indirect(struct ipw_priv *priv, u32 addr, u8 * buf,
530                                 int num)
531 {
532         u32 aligned_addr = addr & IPW_INDIRECT_ADDR_MASK;       /* dword align */
533         u32 dif_len = addr - aligned_addr;
534         u32 i;
535
536         IPW_DEBUG_IO("addr = %i, buf = %p, num = %i\n", addr, buf, num);
537
538         if (num <= 0) {
539                 return;
540         }
541
542         /* Write the first dword (or portion) byte by byte */
543         if (unlikely(dif_len)) {
544                 _ipw_write32(priv, IPW_INDIRECT_ADDR, aligned_addr);
545                 /* Start writing at aligned_addr + dif_len */
546                 for (i = dif_len; ((i < 4) && (num > 0)); i++, num--, buf++)
547                         _ipw_write8(priv, IPW_INDIRECT_DATA + i, *buf);
548                 aligned_addr += 4;
549         }
550
551         /* Write all of the middle dwords as dwords, with auto-increment */
552         _ipw_write32(priv, IPW_AUTOINC_ADDR, aligned_addr);
553         for (; num >= 4; buf += 4, aligned_addr += 4, num -= 4)
554                 _ipw_write32(priv, IPW_AUTOINC_DATA, *(u32 *) buf);
555
556         /* Write the last dword (or portion) byte by byte */
557         if (unlikely(num)) {
558                 _ipw_write32(priv, IPW_INDIRECT_ADDR, aligned_addr);
559                 for (i = 0; num > 0; i++, num--, buf++)
560                         _ipw_write8(priv, IPW_INDIRECT_DATA + i, *buf);
561         }
562 }
563
564 /* General purpose, no alignment requirement, iterative (multi-byte) write, */
565 /*    for 1st 4K of SRAM/regs space */
566 static void ipw_write_direct(struct ipw_priv *priv, u32 addr, void *buf,
567                              int num)
568 {
569         memcpy_toio((priv->hw_base + addr), buf, num);
570 }
571
572 /* Set bit(s) in low 4K of SRAM/regs */
573 static inline void ipw_set_bit(struct ipw_priv *priv, u32 reg, u32 mask)
574 {
575         ipw_write32(priv, reg, ipw_read32(priv, reg) | mask);
576 }
577
578 /* Clear bit(s) in low 4K of SRAM/regs */
579 static inline void ipw_clear_bit(struct ipw_priv *priv, u32 reg, u32 mask)
580 {
581         ipw_write32(priv, reg, ipw_read32(priv, reg) & ~mask);
582 }
583
584 static inline void __ipw_enable_interrupts(struct ipw_priv *priv)
585 {
586         if (priv->status & STATUS_INT_ENABLED)
587                 return;
588         priv->status |= STATUS_INT_ENABLED;
589         ipw_write32(priv, IPW_INTA_MASK_R, IPW_INTA_MASK_ALL);
590 }
591
592 static inline void __ipw_disable_interrupts(struct ipw_priv *priv)
593 {
594         if (!(priv->status & STATUS_INT_ENABLED))
595                 return;
596         priv->status &= ~STATUS_INT_ENABLED;
597         ipw_write32(priv, IPW_INTA_MASK_R, ~IPW_INTA_MASK_ALL);
598 }
599
600 static inline void ipw_enable_interrupts(struct ipw_priv *priv)
601 {
602         unsigned long flags;
603
604         spin_lock_irqsave(&priv->irq_lock, flags);
605         __ipw_enable_interrupts(priv);
606         spin_unlock_irqrestore(&priv->irq_lock, flags);
607 }
608
609 static inline void ipw_disable_interrupts(struct ipw_priv *priv)
610 {
611         unsigned long flags;
612
613         spin_lock_irqsave(&priv->irq_lock, flags);
614         __ipw_disable_interrupts(priv);
615         spin_unlock_irqrestore(&priv->irq_lock, flags);
616 }
617
618 static char *ipw_error_desc(u32 val)
619 {
620         switch (val) {
621         case IPW_FW_ERROR_OK:
622                 return "ERROR_OK";
623         case IPW_FW_ERROR_FAIL:
624                 return "ERROR_FAIL";
625         case IPW_FW_ERROR_MEMORY_UNDERFLOW:
626                 return "MEMORY_UNDERFLOW";
627         case IPW_FW_ERROR_MEMORY_OVERFLOW:
628                 return "MEMORY_OVERFLOW";
629         case IPW_FW_ERROR_BAD_PARAM:
630                 return "BAD_PARAM";
631         case IPW_FW_ERROR_BAD_CHECKSUM:
632                 return "BAD_CHECKSUM";
633         case IPW_FW_ERROR_NMI_INTERRUPT:
634                 return "NMI_INTERRUPT";
635         case IPW_FW_ERROR_BAD_DATABASE:
636                 return "BAD_DATABASE";
637         case IPW_FW_ERROR_ALLOC_FAIL:
638                 return "ALLOC_FAIL";
639         case IPW_FW_ERROR_DMA_UNDERRUN:
640                 return "DMA_UNDERRUN";
641         case IPW_FW_ERROR_DMA_STATUS:
642                 return "DMA_STATUS";
643         case IPW_FW_ERROR_DINO_ERROR:
644                 return "DINO_ERROR";
645         case IPW_FW_ERROR_EEPROM_ERROR:
646                 return "EEPROM_ERROR";
647         case IPW_FW_ERROR_SYSASSERT:
648                 return "SYSASSERT";
649         case IPW_FW_ERROR_FATAL_ERROR:
650                 return "FATAL_ERROR";
651         default:
652                 return "UNKNOWN_ERROR";
653         }
654 }
655
656 static void ipw_dump_error_log(struct ipw_priv *priv,
657                                struct ipw_fw_error *error)
658 {
659         u32 i;
660
661         if (!error) {
662                 IPW_ERROR("Error allocating and capturing error log.  "
663                           "Nothing to dump.\n");
664                 return;
665         }
666
667         IPW_ERROR("Start IPW Error Log Dump:\n");
668         IPW_ERROR("Status: 0x%08X, Config: %08X\n",
669                   error->status, error->config);
670
671         for (i = 0; i < error->elem_len; i++)
672                 IPW_ERROR("%s %i 0x%08x  0x%08x  0x%08x  0x%08x  0x%08x\n",
673                           ipw_error_desc(error->elem[i].desc),
674                           error->elem[i].time,
675                           error->elem[i].blink1,
676                           error->elem[i].blink2,
677                           error->elem[i].link1,
678                           error->elem[i].link2, error->elem[i].data);
679         for (i = 0; i < error->log_len; i++)
680                 IPW_ERROR("%i\t0x%08x\t%i\n",
681                           error->log[i].time,
682                           error->log[i].data, error->log[i].event);
683 }
684
685 static inline int ipw_is_init(struct ipw_priv *priv)
686 {
687         return (priv->status & STATUS_INIT) ? 1 : 0;
688 }
689
690 static int ipw_get_ordinal(struct ipw_priv *priv, u32 ord, void *val, u32 * len)
691 {
692         u32 addr, field_info, field_len, field_count, total_len;
693
694         IPW_DEBUG_ORD("ordinal = %i\n", ord);
695
696         if (!priv || !val || !len) {
697                 IPW_DEBUG_ORD("Invalid argument\n");
698                 return -EINVAL;
699         }
700
701         /* verify device ordinal tables have been initialized */
702         if (!priv->table0_addr || !priv->table1_addr || !priv->table2_addr) {
703                 IPW_DEBUG_ORD("Access ordinals before initialization\n");
704                 return -EINVAL;
705         }
706
707         switch (IPW_ORD_TABLE_ID_MASK & ord) {
708         case IPW_ORD_TABLE_0_MASK:
709                 /*
710                  * TABLE 0: Direct access to a table of 32 bit values
711                  *
712                  * This is a very simple table with the data directly
713                  * read from the table
714                  */
715
716                 /* remove the table id from the ordinal */
717                 ord &= IPW_ORD_TABLE_VALUE_MASK;
718
719                 /* boundary check */
720                 if (ord > priv->table0_len) {
721                         IPW_DEBUG_ORD("ordinal value (%i) longer then "
722                                       "max (%i)\n", ord, priv->table0_len);
723                         return -EINVAL;
724                 }
725
726                 /* verify we have enough room to store the value */
727                 if (*len < sizeof(u32)) {
728                         IPW_DEBUG_ORD("ordinal buffer length too small, "
729                                       "need %zd\n", sizeof(u32));
730                         return -EINVAL;
731                 }
732
733                 IPW_DEBUG_ORD("Reading TABLE0[%i] from offset 0x%08x\n",
734                               ord, priv->table0_addr + (ord << 2));
735
736                 *len = sizeof(u32);
737                 ord <<= 2;
738                 *((u32 *) val) = ipw_read32(priv, priv->table0_addr + ord);
739                 break;
740
741         case IPW_ORD_TABLE_1_MASK:
742                 /*
743                  * TABLE 1: Indirect access to a table of 32 bit values
744                  *
745                  * This is a fairly large table of u32 values each
746                  * representing starting addr for the data (which is
747                  * also a u32)
748                  */
749
750                 /* remove the table id from the ordinal */
751                 ord &= IPW_ORD_TABLE_VALUE_MASK;
752
753                 /* boundary check */
754                 if (ord > priv->table1_len) {
755                         IPW_DEBUG_ORD("ordinal value too long\n");
756                         return -EINVAL;
757                 }
758
759                 /* verify we have enough room to store the value */
760                 if (*len < sizeof(u32)) {
761                         IPW_DEBUG_ORD("ordinal buffer length too small, "
762                                       "need %zd\n", sizeof(u32));
763                         return -EINVAL;
764                 }
765
766                 *((u32 *) val) =
767                     ipw_read_reg32(priv, (priv->table1_addr + (ord << 2)));
768                 *len = sizeof(u32);
769                 break;
770
771         case IPW_ORD_TABLE_2_MASK:
772                 /*
773                  * TABLE 2: Indirect access to a table of variable sized values
774                  *
775                  * This table consist of six values, each containing
776                  *     - dword containing the starting offset of the data
777                  *     - dword containing the lengh in the first 16bits
778                  *       and the count in the second 16bits
779                  */
780
781                 /* remove the table id from the ordinal */
782                 ord &= IPW_ORD_TABLE_VALUE_MASK;
783
784                 /* boundary check */
785                 if (ord > priv->table2_len) {
786                         IPW_DEBUG_ORD("ordinal value too long\n");
787                         return -EINVAL;
788                 }
789
790                 /* get the address of statistic */
791                 addr = ipw_read_reg32(priv, priv->table2_addr + (ord << 3));
792
793                 /* get the second DW of statistics ;
794                  * two 16-bit words - first is length, second is count */
795                 field_info =
796                     ipw_read_reg32(priv,
797                                    priv->table2_addr + (ord << 3) +
798                                    sizeof(u32));
799
800                 /* get each entry length */
801                 field_len = *((u16 *) & field_info);
802
803                 /* get number of entries */
804                 field_count = *(((u16 *) & field_info) + 1);
805
806                 /* abort if not enough memory */
807                 total_len = field_len * field_count;
808                 if (total_len > *len) {
809                         *len = total_len;
810                         return -EINVAL;
811                 }
812
813                 *len = total_len;
814                 if (!total_len)
815                         return 0;
816
817                 IPW_DEBUG_ORD("addr = 0x%08x, total_len = %i, "
818                               "field_info = 0x%08x\n",
819                               addr, total_len, field_info);
820                 ipw_read_indirect(priv, addr, val, total_len);
821                 break;
822
823         default:
824                 IPW_DEBUG_ORD("Invalid ordinal!\n");
825                 return -EINVAL;
826
827         }
828
829         return 0;
830 }
831
832 static void ipw_init_ordinals(struct ipw_priv *priv)
833 {
834         priv->table0_addr = IPW_ORDINALS_TABLE_LOWER;
835         priv->table0_len = ipw_read32(priv, priv->table0_addr);
836
837         IPW_DEBUG_ORD("table 0 offset at 0x%08x, len = %i\n",
838                       priv->table0_addr, priv->table0_len);
839
840         priv->table1_addr = ipw_read32(priv, IPW_ORDINALS_TABLE_1);
841         priv->table1_len = ipw_read_reg32(priv, priv->table1_addr);
842
843         IPW_DEBUG_ORD("table 1 offset at 0x%08x, len = %i\n",
844                       priv->table1_addr, priv->table1_len);
845
846         priv->table2_addr = ipw_read32(priv, IPW_ORDINALS_TABLE_2);
847         priv->table2_len = ipw_read_reg32(priv, priv->table2_addr);
848         priv->table2_len &= 0x0000ffff; /* use first two bytes */
849
850         IPW_DEBUG_ORD("table 2 offset at 0x%08x, len = %i\n",
851                       priv->table2_addr, priv->table2_len);
852
853 }
854
855 static u32 ipw_register_toggle(u32 reg)
856 {
857         reg &= ~IPW_START_STANDBY;
858         if (reg & IPW_GATE_ODMA)
859                 reg &= ~IPW_GATE_ODMA;
860         if (reg & IPW_GATE_IDMA)
861                 reg &= ~IPW_GATE_IDMA;
862         if (reg & IPW_GATE_ADMA)
863                 reg &= ~IPW_GATE_ADMA;
864         return reg;
865 }
866
867 /*
868  * LED behavior:
869  * - On radio ON, turn on any LEDs that require to be on during start
870  * - On initialization, start unassociated blink
871  * - On association, disable unassociated blink
872  * - On disassociation, start unassociated blink
873  * - On radio OFF, turn off any LEDs started during radio on
874  *
875  */
876 #define LD_TIME_LINK_ON msecs_to_jiffies(300)
877 #define LD_TIME_LINK_OFF msecs_to_jiffies(2700)
878 #define LD_TIME_ACT_ON msecs_to_jiffies(250)
879
880 static void ipw_led_link_on(struct ipw_priv *priv)
881 {
882         unsigned long flags;
883         u32 led;
884
885         /* If configured to not use LEDs, or nic_type is 1,
886          * then we don't toggle a LINK led */
887         if (priv->config & CFG_NO_LED || priv->nic_type == EEPROM_NIC_TYPE_1)
888                 return;
889
890         spin_lock_irqsave(&priv->lock, flags);
891
892         if (!(priv->status & STATUS_RF_KILL_MASK) &&
893             !(priv->status & STATUS_LED_LINK_ON)) {
894                 IPW_DEBUG_LED("Link LED On\n");
895                 led = ipw_read_reg32(priv, IPW_EVENT_REG);
896                 led |= priv->led_association_on;
897
898                 led = ipw_register_toggle(led);
899
900                 IPW_DEBUG_LED("Reg: 0x%08X\n", led);
901                 ipw_write_reg32(priv, IPW_EVENT_REG, led);
902
903                 priv->status |= STATUS_LED_LINK_ON;
904
905                 /* If we aren't associated, schedule turning the LED off */
906                 if (!(priv->status & STATUS_ASSOCIATED))
907                         schedule_delayed_work(&priv->led_link_off,
908                                               LD_TIME_LINK_ON);
909         }
910
911         spin_unlock_irqrestore(&priv->lock, flags);
912 }
913
914 static void ipw_bg_led_link_on(struct work_struct *work)
915 {
916         struct ipw_priv *priv =
917                 container_of(work, struct ipw_priv, led_link_on.work);
918         mutex_lock(&priv->mutex);
919         ipw_led_link_on(priv);
920         mutex_unlock(&priv->mutex);
921 }
922
923 static void ipw_led_link_off(struct ipw_priv *priv)
924 {
925         unsigned long flags;
926         u32 led;
927
928         /* If configured not to use LEDs, or nic type is 1,
929          * then we don't goggle the LINK led. */
930         if (priv->config & CFG_NO_LED || priv->nic_type == EEPROM_NIC_TYPE_1)
931                 return;
932
933         spin_lock_irqsave(&priv->lock, flags);
934
935         if (priv->status & STATUS_LED_LINK_ON) {
936                 led = ipw_read_reg32(priv, IPW_EVENT_REG);
937                 led &= priv->led_association_off;
938                 led = ipw_register_toggle(led);
939
940                 IPW_DEBUG_LED("Reg: 0x%08X\n", led);
941                 ipw_write_reg32(priv, IPW_EVENT_REG, led);
942
943                 IPW_DEBUG_LED("Link LED Off\n");
944
945                 priv->status &= ~STATUS_LED_LINK_ON;
946
947                 /* If we aren't associated and the radio is on, schedule
948                  * turning the LED on (blink while unassociated) */
949                 if (!(priv->status & STATUS_RF_KILL_MASK) &&
950                     !(priv->status & STATUS_ASSOCIATED))
951                         schedule_delayed_work(&priv->led_link_on,
952                                               LD_TIME_LINK_OFF);
953
954         }
955
956         spin_unlock_irqrestore(&priv->lock, flags);
957 }
958
959 static void ipw_bg_led_link_off(struct work_struct *work)
960 {
961         struct ipw_priv *priv =
962                 container_of(work, struct ipw_priv, led_link_off.work);
963         mutex_lock(&priv->mutex);
964         ipw_led_link_off(priv);
965         mutex_unlock(&priv->mutex);
966 }
967
968 static void __ipw_led_activity_on(struct ipw_priv *priv)
969 {
970         u32 led;
971
972         if (priv->config & CFG_NO_LED)
973                 return;
974
975         if (priv->status & STATUS_RF_KILL_MASK)
976                 return;
977
978         if (!(priv->status & STATUS_LED_ACT_ON)) {
979                 led = ipw_read_reg32(priv, IPW_EVENT_REG);
980                 led |= priv->led_activity_on;
981
982                 led = ipw_register_toggle(led);
983
984                 IPW_DEBUG_LED("Reg: 0x%08X\n", led);
985                 ipw_write_reg32(priv, IPW_EVENT_REG, led);
986
987                 IPW_DEBUG_LED("Activity LED On\n");
988
989                 priv->status |= STATUS_LED_ACT_ON;
990
991                 cancel_delayed_work(&priv->led_act_off);
992                 schedule_delayed_work(&priv->led_act_off, LD_TIME_ACT_ON);
993         } else {
994                 /* Reschedule LED off for full time period */
995                 cancel_delayed_work(&priv->led_act_off);
996                 schedule_delayed_work(&priv->led_act_off, LD_TIME_ACT_ON);
997         }
998 }
999
1000 #if 0
1001 void ipw_led_activity_on(struct ipw_priv *priv)
1002 {
1003         unsigned long flags;
1004         spin_lock_irqsave(&priv->lock, flags);
1005         __ipw_led_activity_on(priv);
1006         spin_unlock_irqrestore(&priv->lock, flags);
1007 }
1008 #endif  /*  0  */
1009
1010 static void ipw_led_activity_off(struct ipw_priv *priv)
1011 {
1012         unsigned long flags;
1013         u32 led;
1014
1015         if (priv->config & CFG_NO_LED)
1016                 return;
1017
1018         spin_lock_irqsave(&priv->lock, flags);
1019
1020         if (priv->status & STATUS_LED_ACT_ON) {
1021                 led = ipw_read_reg32(priv, IPW_EVENT_REG);
1022                 led &= priv->led_activity_off;
1023
1024                 led = ipw_register_toggle(led);
1025
1026                 IPW_DEBUG_LED("Reg: 0x%08X\n", led);
1027                 ipw_write_reg32(priv, IPW_EVENT_REG, led);
1028
1029                 IPW_DEBUG_LED("Activity LED Off\n");
1030
1031                 priv->status &= ~STATUS_LED_ACT_ON;
1032         }
1033
1034         spin_unlock_irqrestore(&priv->lock, flags);
1035 }
1036
1037 static void ipw_bg_led_activity_off(struct work_struct *work)
1038 {
1039         struct ipw_priv *priv =
1040                 container_of(work, struct ipw_priv, led_act_off.work);
1041         mutex_lock(&priv->mutex);
1042         ipw_led_activity_off(priv);
1043         mutex_unlock(&priv->mutex);
1044 }
1045
1046 static void ipw_led_band_on(struct ipw_priv *priv)
1047 {
1048         unsigned long flags;
1049         u32 led;
1050
1051         /* Only nic type 1 supports mode LEDs */
1052         if (priv->config & CFG_NO_LED ||
1053             priv->nic_type != EEPROM_NIC_TYPE_1 || !priv->assoc_network)
1054                 return;
1055
1056         spin_lock_irqsave(&priv->lock, flags);
1057
1058         led = ipw_read_reg32(priv, IPW_EVENT_REG);
1059         if (priv->assoc_network->mode == IEEE_A) {
1060                 led |= priv->led_ofdm_on;
1061                 led &= priv->led_association_off;
1062                 IPW_DEBUG_LED("Mode LED On: 802.11a\n");
1063         } else if (priv->assoc_network->mode == IEEE_G) {
1064                 led |= priv->led_ofdm_on;
1065                 led |= priv->led_association_on;
1066                 IPW_DEBUG_LED("Mode LED On: 802.11g\n");
1067         } else {
1068                 led &= priv->led_ofdm_off;
1069                 led |= priv->led_association_on;
1070                 IPW_DEBUG_LED("Mode LED On: 802.11b\n");
1071         }
1072
1073         led = ipw_register_toggle(led);
1074
1075         IPW_DEBUG_LED("Reg: 0x%08X\n", led);
1076         ipw_write_reg32(priv, IPW_EVENT_REG, led);
1077
1078         spin_unlock_irqrestore(&priv->lock, flags);
1079 }
1080
1081 static void ipw_led_band_off(struct ipw_priv *priv)
1082 {
1083         unsigned long flags;
1084         u32 led;
1085
1086         /* Only nic type 1 supports mode LEDs */
1087         if (priv->config & CFG_NO_LED || priv->nic_type != EEPROM_NIC_TYPE_1)
1088                 return;
1089
1090         spin_lock_irqsave(&priv->lock, flags);
1091
1092         led = ipw_read_reg32(priv, IPW_EVENT_REG);
1093         led &= priv->led_ofdm_off;
1094         led &= priv->led_association_off;
1095
1096         led = ipw_register_toggle(led);
1097
1098         IPW_DEBUG_LED("Reg: 0x%08X\n", led);
1099         ipw_write_reg32(priv, IPW_EVENT_REG, led);
1100
1101         spin_unlock_irqrestore(&priv->lock, flags);
1102 }
1103
1104 static void ipw_led_radio_on(struct ipw_priv *priv)
1105 {
1106         ipw_led_link_on(priv);
1107 }
1108
1109 static void ipw_led_radio_off(struct ipw_priv *priv)
1110 {
1111         ipw_led_activity_off(priv);
1112         ipw_led_link_off(priv);
1113 }
1114
1115 static void ipw_led_link_up(struct ipw_priv *priv)
1116 {
1117         /* Set the Link Led on for all nic types */
1118         ipw_led_link_on(priv);
1119 }
1120
1121 static void ipw_led_link_down(struct ipw_priv *priv)
1122 {
1123         ipw_led_activity_off(priv);
1124         ipw_led_link_off(priv);
1125
1126         if (priv->status & STATUS_RF_KILL_MASK)
1127                 ipw_led_radio_off(priv);
1128 }
1129
1130 static void ipw_led_init(struct ipw_priv *priv)
1131 {
1132         priv->nic_type = priv->eeprom[EEPROM_NIC_TYPE];
1133
1134         /* Set the default PINs for the link and activity leds */
1135         priv->led_activity_on = IPW_ACTIVITY_LED;
1136         priv->led_activity_off = ~(IPW_ACTIVITY_LED);
1137
1138         priv->led_association_on = IPW_ASSOCIATED_LED;
1139         priv->led_association_off = ~(IPW_ASSOCIATED_LED);
1140
1141         /* Set the default PINs for the OFDM leds */
1142         priv->led_ofdm_on = IPW_OFDM_LED;
1143         priv->led_ofdm_off = ~(IPW_OFDM_LED);
1144
1145         switch (priv->nic_type) {
1146         case EEPROM_NIC_TYPE_1:
1147                 /* In this NIC type, the LEDs are reversed.... */
1148                 priv->led_activity_on = IPW_ASSOCIATED_LED;
1149                 priv->led_activity_off = ~(IPW_ASSOCIATED_LED);
1150                 priv->led_association_on = IPW_ACTIVITY_LED;
1151                 priv->led_association_off = ~(IPW_ACTIVITY_LED);
1152
1153                 if (!(priv->config & CFG_NO_LED))
1154                         ipw_led_band_on(priv);
1155
1156                 /* And we don't blink link LEDs for this nic, so
1157                  * just return here */
1158                 return;
1159
1160         case EEPROM_NIC_TYPE_3:
1161         case EEPROM_NIC_TYPE_2:
1162         case EEPROM_NIC_TYPE_4:
1163         case EEPROM_NIC_TYPE_0:
1164                 break;
1165
1166         default:
1167                 IPW_DEBUG_INFO("Unknown NIC type from EEPROM: %d\n",
1168                                priv->nic_type);
1169                 priv->nic_type = EEPROM_NIC_TYPE_0;
1170                 break;
1171         }
1172
1173         if (!(priv->config & CFG_NO_LED)) {
1174                 if (priv->status & STATUS_ASSOCIATED)
1175                         ipw_led_link_on(priv);
1176                 else
1177                         ipw_led_link_off(priv);
1178         }
1179 }
1180
1181 static void ipw_led_shutdown(struct ipw_priv *priv)
1182 {
1183         ipw_led_activity_off(priv);
1184         ipw_led_link_off(priv);
1185         ipw_led_band_off(priv);
1186         cancel_delayed_work(&priv->led_link_on);
1187         cancel_delayed_work(&priv->led_link_off);
1188         cancel_delayed_work(&priv->led_act_off);
1189 }
1190
1191 /*
1192  * The following adds a new attribute to the sysfs representation
1193  * of this device driver (i.e. a new file in /sys/bus/pci/drivers/ipw/)
1194  * used for controlling the debug level.
1195  *
1196  * See the level definitions in ipw for details.
1197  */
1198 static ssize_t show_debug_level(struct device_driver *d, char *buf)
1199 {
1200         return sprintf(buf, "0x%08X\n", ipw_debug_level);
1201 }
1202
1203 static ssize_t store_debug_level(struct device_driver *d, const char *buf,
1204                                  size_t count)
1205 {
1206         char *p = (char *)buf;
1207         u32 val;
1208
1209         if (p[1] == 'x' || p[1] == 'X' || p[0] == 'x' || p[0] == 'X') {
1210                 p++;
1211                 if (p[0] == 'x' || p[0] == 'X')
1212                         p++;
1213                 val = simple_strtoul(p, &p, 16);
1214         } else
1215                 val = simple_strtoul(p, &p, 10);
1216         if (p == buf)
1217                 printk(KERN_INFO DRV_NAME
1218                        ": %s is not in hex or decimal form.\n", buf);
1219         else
1220                 ipw_debug_level = val;
1221
1222         return strnlen(buf, count);
1223 }
1224
1225 static DRIVER_ATTR(debug_level, S_IWUSR | S_IRUGO,
1226                    show_debug_level, store_debug_level);
1227
1228 static inline u32 ipw_get_event_log_len(struct ipw_priv *priv)
1229 {
1230         /* length = 1st dword in log */
1231         return ipw_read_reg32(priv, ipw_read32(priv, IPW_EVENT_LOG));
1232 }
1233
1234 static void ipw_capture_event_log(struct ipw_priv *priv,
1235                                   u32 log_len, struct ipw_event *log)
1236 {
1237         u32 base;
1238
1239         if (log_len) {
1240                 base = ipw_read32(priv, IPW_EVENT_LOG);
1241                 ipw_read_indirect(priv, base + sizeof(base) + sizeof(u32),
1242                                   (u8 *) log, sizeof(*log) * log_len);
1243         }
1244 }
1245
1246 static struct ipw_fw_error *ipw_alloc_error_log(struct ipw_priv *priv)
1247 {
1248         struct ipw_fw_error *error;
1249         u32 log_len = ipw_get_event_log_len(priv);
1250         u32 base = ipw_read32(priv, IPW_ERROR_LOG);
1251         u32 elem_len = ipw_read_reg32(priv, base);
1252
1253         error = kmalloc(sizeof(*error) +
1254                         sizeof(*error->elem) * elem_len +
1255                         sizeof(*error->log) * log_len, GFP_ATOMIC);
1256         if (!error) {
1257                 IPW_ERROR("Memory allocation for firmware error log "
1258                           "failed.\n");
1259                 return NULL;
1260         }
1261         error->jiffies = jiffies;
1262         error->status = priv->status;
1263         error->config = priv->config;
1264         error->elem_len = elem_len;
1265         error->log_len = log_len;
1266         error->elem = (struct ipw_error_elem *)error->payload;
1267         error->log = (struct ipw_event *)(error->elem + elem_len);
1268
1269         ipw_capture_event_log(priv, log_len, error->log);
1270
1271         if (elem_len)
1272                 ipw_read_indirect(priv, base + sizeof(base), (u8 *) error->elem,
1273                                   sizeof(*error->elem) * elem_len);
1274
1275         return error;
1276 }
1277
1278 static ssize_t show_event_log(struct device *d,
1279                               struct device_attribute *attr, char *buf)
1280 {
1281         struct ipw_priv *priv = dev_get_drvdata(d);
1282         u32 log_len = ipw_get_event_log_len(priv);
1283         u32 log_size;
1284         struct ipw_event *log;
1285         u32 len = 0, i;
1286
1287         /* not using min() because of its strict type checking */
1288         log_size = PAGE_SIZE / sizeof(*log) > log_len ?
1289                         sizeof(*log) * log_len : PAGE_SIZE;
1290         log = kzalloc(log_size, GFP_KERNEL);
1291         if (!log) {
1292                 IPW_ERROR("Unable to allocate memory for log\n");
1293                 return 0;
1294         }
1295         log_len = log_size / sizeof(*log);
1296         ipw_capture_event_log(priv, log_len, log);
1297
1298         len += snprintf(buf + len, PAGE_SIZE - len, "%08X", log_len);
1299         for (i = 0; i < log_len; i++)
1300                 len += snprintf(buf + len, PAGE_SIZE - len,
1301                                 "\n%08X%08X%08X",
1302                                 log[i].time, log[i].event, log[i].data);
1303         len += snprintf(buf + len, PAGE_SIZE - len, "\n");
1304         kfree(log);
1305         return len;
1306 }
1307
1308 static DEVICE_ATTR(event_log, S_IRUGO, show_event_log, NULL);
1309
1310 static ssize_t show_error(struct device *d,
1311                           struct device_attribute *attr, char *buf)
1312 {
1313         struct ipw_priv *priv = dev_get_drvdata(d);
1314         u32 len = 0, i;
1315         if (!priv->error)
1316                 return 0;
1317         len += snprintf(buf + len, PAGE_SIZE - len,
1318                         "%08lX%08X%08X%08X",
1319                         priv->error->jiffies,
1320                         priv->error->status,
1321                         priv->error->config, priv->error->elem_len);
1322         for (i = 0; i < priv->error->elem_len; i++)
1323                 len += snprintf(buf + len, PAGE_SIZE - len,
1324                                 "\n%08X%08X%08X%08X%08X%08X%08X",
1325                                 priv->error->elem[i].time,
1326                                 priv->error->elem[i].desc,
1327                                 priv->error->elem[i].blink1,
1328                                 priv->error->elem[i].blink2,
1329                                 priv->error->elem[i].link1,
1330                                 priv->error->elem[i].link2,
1331                                 priv->error->elem[i].data);
1332
1333         len += snprintf(buf + len, PAGE_SIZE - len,
1334                         "\n%08X", priv->error->log_len);
1335         for (i = 0; i < priv->error->log_len; i++)
1336                 len += snprintf(buf + len, PAGE_SIZE - len,
1337                                 "\n%08X%08X%08X",
1338                                 priv->error->log[i].time,
1339                                 priv->error->log[i].event,
1340                                 priv->error->log[i].data);
1341         len += snprintf(buf + len, PAGE_SIZE - len, "\n");
1342         return len;
1343 }
1344
1345 static ssize_t clear_error(struct device *d,
1346                            struct device_attribute *attr,
1347                            const char *buf, size_t count)
1348 {
1349         struct ipw_priv *priv = dev_get_drvdata(d);
1350
1351         kfree(priv->error);
1352         priv->error = NULL;
1353         return count;
1354 }
1355
1356 static DEVICE_ATTR(error, S_IRUGO | S_IWUSR, show_error, clear_error);
1357
1358 static ssize_t show_cmd_log(struct device *d,
1359                             struct device_attribute *attr, char *buf)
1360 {
1361         struct ipw_priv *priv = dev_get_drvdata(d);
1362         u32 len = 0, i;
1363         if (!priv->cmdlog)
1364                 return 0;
1365         for (i = (priv->cmdlog_pos + 1) % priv->cmdlog_len;
1366              (i != priv->cmdlog_pos) && (PAGE_SIZE - len);
1367              i = (i + 1) % priv->cmdlog_len) {
1368                 len +=
1369                     snprintf(buf + len, PAGE_SIZE - len,
1370                              "\n%08lX%08X%08X%08X\n", priv->cmdlog[i].jiffies,
1371                              priv->cmdlog[i].retcode, priv->cmdlog[i].cmd.cmd,
1372                              priv->cmdlog[i].cmd.len);
1373                 len +=
1374                     snprintk_buf(buf + len, PAGE_SIZE - len,
1375                                  (u8 *) priv->cmdlog[i].cmd.param,
1376                                  priv->cmdlog[i].cmd.len);
1377                 len += snprintf(buf + len, PAGE_SIZE - len, "\n");
1378         }
1379         len += snprintf(buf + len, PAGE_SIZE - len, "\n");
1380         return len;
1381 }
1382
1383 static DEVICE_ATTR(cmd_log, S_IRUGO, show_cmd_log, NULL);
1384
1385 #ifdef CONFIG_IPW2200_PROMISCUOUS
1386 static void ipw_prom_free(struct ipw_priv *priv);
1387 static int ipw_prom_alloc(struct ipw_priv *priv);
1388 static ssize_t store_rtap_iface(struct device *d,
1389                          struct device_attribute *attr,
1390                          const char *buf, size_t count)
1391 {
1392         struct ipw_priv *priv = dev_get_drvdata(d);
1393         int rc = 0;
1394
1395         if (count < 1)
1396                 return -EINVAL;
1397
1398         switch (buf[0]) {
1399         case '0':
1400                 if (!rtap_iface)
1401                         return count;
1402
1403                 if (netif_running(priv->prom_net_dev)) {
1404                         IPW_WARNING("Interface is up.  Cannot unregister.\n");
1405                         return count;
1406                 }
1407
1408                 ipw_prom_free(priv);
1409                 rtap_iface = 0;
1410                 break;
1411
1412         case '1':
1413                 if (rtap_iface)
1414                         return count;
1415
1416                 rc = ipw_prom_alloc(priv);
1417                 if (!rc)
1418                         rtap_iface = 1;
1419                 break;
1420
1421         default:
1422                 return -EINVAL;
1423         }
1424
1425         if (rc) {
1426                 IPW_ERROR("Failed to register promiscuous network "
1427                           "device (error %d).\n", rc);
1428         }
1429
1430         return count;
1431 }
1432
1433 static ssize_t show_rtap_iface(struct device *d,
1434                         struct device_attribute *attr,
1435                         char *buf)
1436 {
1437         struct ipw_priv *priv = dev_get_drvdata(d);
1438         if (rtap_iface)
1439                 return sprintf(buf, "%s", priv->prom_net_dev->name);
1440         else {
1441                 buf[0] = '-';
1442                 buf[1] = '1';
1443                 buf[2] = '\0';
1444                 return 3;
1445         }
1446 }
1447
1448 static DEVICE_ATTR(rtap_iface, S_IWUSR | S_IRUSR, show_rtap_iface,
1449                    store_rtap_iface);
1450
1451 static ssize_t store_rtap_filter(struct device *d,
1452                          struct device_attribute *attr,
1453                          const char *buf, size_t count)
1454 {
1455         struct ipw_priv *priv = dev_get_drvdata(d);
1456
1457         if (!priv->prom_priv) {
1458                 IPW_ERROR("Attempting to set filter without "
1459                           "rtap_iface enabled.\n");
1460                 return -EPERM;
1461         }
1462
1463         priv->prom_priv->filter = simple_strtol(buf, NULL, 0);
1464
1465         IPW_DEBUG_INFO("Setting rtap filter to " BIT_FMT16 "\n",
1466                        BIT_ARG16(priv->prom_priv->filter));
1467
1468         return count;
1469 }
1470
1471 static ssize_t show_rtap_filter(struct device *d,
1472                         struct device_attribute *attr,
1473                         char *buf)
1474 {
1475         struct ipw_priv *priv = dev_get_drvdata(d);
1476         return sprintf(buf, "0x%04X",
1477                        priv->prom_priv ? priv->prom_priv->filter : 0);
1478 }
1479
1480 static DEVICE_ATTR(rtap_filter, S_IWUSR | S_IRUSR, show_rtap_filter,
1481                    store_rtap_filter);
1482 #endif
1483
1484 static ssize_t show_scan_age(struct device *d, struct device_attribute *attr,
1485                              char *buf)
1486 {
1487         struct ipw_priv *priv = dev_get_drvdata(d);
1488         return sprintf(buf, "%d\n", priv->ieee->scan_age);
1489 }
1490
1491 static ssize_t store_scan_age(struct device *d, struct device_attribute *attr,
1492                               const char *buf, size_t count)
1493 {
1494         struct ipw_priv *priv = dev_get_drvdata(d);
1495         struct net_device *dev = priv->net_dev;
1496         char buffer[] = "00000000";
1497         unsigned long len =
1498             (sizeof(buffer) - 1) > count ? count : sizeof(buffer) - 1;
1499         unsigned long val;
1500         char *p = buffer;
1501
1502         IPW_DEBUG_INFO("enter\n");
1503
1504         strncpy(buffer, buf, len);
1505         buffer[len] = 0;
1506
1507         if (p[1] == 'x' || p[1] == 'X' || p[0] == 'x' || p[0] == 'X') {
1508                 p++;
1509                 if (p[0] == 'x' || p[0] == 'X')
1510                         p++;
1511                 val = simple_strtoul(p, &p, 16);
1512         } else
1513                 val = simple_strtoul(p, &p, 10);
1514         if (p == buffer) {
1515                 IPW_DEBUG_INFO("%s: user supplied invalid value.\n", dev->name);
1516         } else {
1517                 priv->ieee->scan_age = val;
1518                 IPW_DEBUG_INFO("set scan_age = %u\n", priv->ieee->scan_age);
1519         }
1520
1521         IPW_DEBUG_INFO("exit\n");
1522         return len;
1523 }
1524
1525 static DEVICE_ATTR(scan_age, S_IWUSR | S_IRUGO, show_scan_age, store_scan_age);
1526
1527 static ssize_t show_led(struct device *d, struct device_attribute *attr,
1528                         char *buf)
1529 {
1530         struct ipw_priv *priv = dev_get_drvdata(d);
1531         return sprintf(buf, "%d\n", (priv->config & CFG_NO_LED) ? 0 : 1);
1532 }
1533
1534 static ssize_t store_led(struct device *d, struct device_attribute *attr,
1535                          const char *buf, size_t count)
1536 {
1537         struct ipw_priv *priv = dev_get_drvdata(d);
1538
1539         IPW_DEBUG_INFO("enter\n");
1540
1541         if (count == 0)
1542                 return 0;
1543
1544         if (*buf == 0) {
1545                 IPW_DEBUG_LED("Disabling LED control.\n");
1546                 priv->config |= CFG_NO_LED;
1547                 ipw_led_shutdown(priv);
1548         } else {
1549                 IPW_DEBUG_LED("Enabling LED control.\n");
1550                 priv->config &= ~CFG_NO_LED;
1551                 ipw_led_init(priv);
1552         }
1553
1554         IPW_DEBUG_INFO("exit\n");
1555         return count;
1556 }
1557
1558 static DEVICE_ATTR(led, S_IWUSR | S_IRUGO, show_led, store_led);
1559
1560 static ssize_t show_status(struct device *d,
1561                            struct device_attribute *attr, char *buf)
1562 {
1563         struct ipw_priv *p = dev_get_drvdata(d);
1564         return sprintf(buf, "0x%08x\n", (int)p->status);
1565 }
1566
1567 static DEVICE_ATTR(status, S_IRUGO, show_status, NULL);
1568
1569 static ssize_t show_cfg(struct device *d, struct device_attribute *attr,
1570                         char *buf)
1571 {
1572         struct ipw_priv *p = dev_get_drvdata(d);
1573         return sprintf(buf, "0x%08x\n", (int)p->config);
1574 }
1575
1576 static DEVICE_ATTR(cfg, S_IRUGO, show_cfg, NULL);
1577
1578 static ssize_t show_nic_type(struct device *d,
1579                              struct device_attribute *attr, char *buf)
1580 {
1581         struct ipw_priv *priv = dev_get_drvdata(d);
1582         return sprintf(buf, "TYPE: %d\n", priv->nic_type);
1583 }
1584
1585 static DEVICE_ATTR(nic_type, S_IRUGO, show_nic_type, NULL);
1586
1587 static ssize_t show_ucode_version(struct device *d,
1588                                   struct device_attribute *attr, char *buf)
1589 {
1590         u32 len = sizeof(u32), tmp = 0;
1591         struct ipw_priv *p = dev_get_drvdata(d);
1592
1593         if (ipw_get_ordinal(p, IPW_ORD_STAT_UCODE_VERSION, &tmp, &len))
1594                 return 0;
1595
1596         return sprintf(buf, "0x%08x\n", tmp);
1597 }
1598
1599 static DEVICE_ATTR(ucode_version, S_IWUSR | S_IRUGO, show_ucode_version, NULL);
1600
1601 static ssize_t show_rtc(struct device *d, struct device_attribute *attr,
1602                         char *buf)
1603 {
1604         u32 len = sizeof(u32), tmp = 0;
1605         struct ipw_priv *p = dev_get_drvdata(d);
1606
1607         if (ipw_get_ordinal(p, IPW_ORD_STAT_RTC, &tmp, &len))
1608                 return 0;
1609
1610         return sprintf(buf, "0x%08x\n", tmp);
1611 }
1612
1613 static DEVICE_ATTR(rtc, S_IWUSR | S_IRUGO, show_rtc, NULL);
1614
1615 /*
1616  * Add a device attribute to view/control the delay between eeprom
1617  * operations.
1618  */
1619 static ssize_t show_eeprom_delay(struct device *d,
1620                                  struct device_attribute *attr, char *buf)
1621 {
1622         struct ipw_priv *p = dev_get_drvdata(d);
1623         int n = p->eeprom_delay;
1624         return sprintf(buf, "%i\n", n);
1625 }
1626 static ssize_t store_eeprom_delay(struct device *d,
1627                                   struct device_attribute *attr,
1628                                   const char *buf, size_t count)
1629 {
1630         struct ipw_priv *p = dev_get_drvdata(d);
1631         sscanf(buf, "%i", &p->eeprom_delay);
1632         return strnlen(buf, count);
1633 }
1634
1635 static DEVICE_ATTR(eeprom_delay, S_IWUSR | S_IRUGO,
1636                    show_eeprom_delay, store_eeprom_delay);
1637
1638 static ssize_t show_command_event_reg(struct device *d,
1639                                       struct device_attribute *attr, char *buf)
1640 {
1641         u32 reg = 0;
1642         struct ipw_priv *p = dev_get_drvdata(d);
1643
1644         reg = ipw_read_reg32(p, IPW_INTERNAL_CMD_EVENT);
1645         return sprintf(buf, "0x%08x\n", reg);
1646 }
1647 static ssize_t store_command_event_reg(struct device *d,
1648                                        struct device_attribute *attr,
1649                                        const char *buf, size_t count)
1650 {
1651         u32 reg;
1652         struct ipw_priv *p = dev_get_drvdata(d);
1653
1654         sscanf(buf, "%x", &reg);
1655         ipw_write_reg32(p, IPW_INTERNAL_CMD_EVENT, reg);
1656         return strnlen(buf, count);
1657 }
1658
1659 static DEVICE_ATTR(command_event_reg, S_IWUSR | S_IRUGO,
1660                    show_command_event_reg, store_command_event_reg);
1661
1662 static ssize_t show_mem_gpio_reg(struct device *d,
1663                                  struct device_attribute *attr, char *buf)
1664 {
1665         u32 reg = 0;
1666         struct ipw_priv *p = dev_get_drvdata(d);
1667
1668         reg = ipw_read_reg32(p, 0x301100);
1669         return sprintf(buf, "0x%08x\n", reg);
1670 }
1671 static ssize_t store_mem_gpio_reg(struct device *d,
1672                                   struct device_attribute *attr,
1673                                   const char *buf, size_t count)
1674 {
1675         u32 reg;
1676         struct ipw_priv *p = dev_get_drvdata(d);
1677
1678         sscanf(buf, "%x", &reg);
1679         ipw_write_reg32(p, 0x301100, reg);
1680         return strnlen(buf, count);
1681 }
1682
1683 static DEVICE_ATTR(mem_gpio_reg, S_IWUSR | S_IRUGO,
1684                    show_mem_gpio_reg, store_mem_gpio_reg);
1685
1686 static ssize_t show_indirect_dword(struct device *d,
1687                                    struct device_attribute *attr, char *buf)
1688 {
1689         u32 reg = 0;
1690         struct ipw_priv *priv = dev_get_drvdata(d);
1691
1692         if (priv->status & STATUS_INDIRECT_DWORD)
1693                 reg = ipw_read_reg32(priv, priv->indirect_dword);
1694         else
1695                 reg = 0;
1696
1697         return sprintf(buf, "0x%08x\n", reg);
1698 }
1699 static ssize_t store_indirect_dword(struct device *d,
1700                                     struct device_attribute *attr,
1701                                     const char *buf, size_t count)
1702 {
1703         struct ipw_priv *priv = dev_get_drvdata(d);
1704
1705         sscanf(buf, "%x", &priv->indirect_dword);
1706         priv->status |= STATUS_INDIRECT_DWORD;
1707         return strnlen(buf, count);
1708 }
1709
1710 static DEVICE_ATTR(indirect_dword, S_IWUSR | S_IRUGO,
1711                    show_indirect_dword, store_indirect_dword);
1712
1713 static ssize_t show_indirect_byte(struct device *d,
1714                                   struct device_attribute *attr, char *buf)
1715 {
1716         u8 reg = 0;
1717         struct ipw_priv *priv = dev_get_drvdata(d);
1718
1719         if (priv->status & STATUS_INDIRECT_BYTE)
1720                 reg = ipw_read_reg8(priv, priv->indirect_byte);
1721         else
1722                 reg = 0;
1723
1724         return sprintf(buf, "0x%02x\n", reg);
1725 }
1726 static ssize_t store_indirect_byte(struct device *d,
1727                                    struct device_attribute *attr,
1728                                    const char *buf, size_t count)
1729 {
1730         struct ipw_priv *priv = dev_get_drvdata(d);
1731
1732         sscanf(buf, "%x", &priv->indirect_byte);
1733         priv->status |= STATUS_INDIRECT_BYTE;
1734         return strnlen(buf, count);
1735 }
1736
1737 static DEVICE_ATTR(indirect_byte, S_IWUSR | S_IRUGO,
1738                    show_indirect_byte, store_indirect_byte);
1739
1740 static ssize_t show_direct_dword(struct device *d,
1741                                  struct device_attribute *attr, char *buf)
1742 {
1743         u32 reg = 0;
1744         struct ipw_priv *priv = dev_get_drvdata(d);
1745
1746         if (priv->status & STATUS_DIRECT_DWORD)
1747                 reg = ipw_read32(priv, priv->direct_dword);
1748         else
1749                 reg = 0;
1750
1751         return sprintf(buf, "0x%08x\n", reg);
1752 }
1753 static ssize_t store_direct_dword(struct device *d,
1754                                   struct device_attribute *attr,
1755                                   const char *buf, size_t count)
1756 {
1757         struct ipw_priv *priv = dev_get_drvdata(d);
1758
1759         sscanf(buf, "%x", &priv->direct_dword);
1760         priv->status |= STATUS_DIRECT_DWORD;
1761         return strnlen(buf, count);
1762 }
1763
1764 static DEVICE_ATTR(direct_dword, S_IWUSR | S_IRUGO,
1765                    show_direct_dword, store_direct_dword);
1766
1767 static int rf_kill_active(struct ipw_priv *priv)
1768 {
1769         if (0 == (ipw_read32(priv, 0x30) & 0x10000)) {
1770                 priv->status |= STATUS_RF_KILL_HW;
1771                 wiphy_rfkill_set_hw_state(priv->ieee->wdev.wiphy, true);
1772         } else {
1773                 priv->status &= ~STATUS_RF_KILL_HW;
1774                 wiphy_rfkill_set_hw_state(priv->ieee->wdev.wiphy, false);
1775         }
1776
1777         return (priv->status & STATUS_RF_KILL_HW) ? 1 : 0;
1778 }
1779
1780 static ssize_t show_rf_kill(struct device *d, struct device_attribute *attr,
1781                             char *buf)
1782 {
1783         /* 0 - RF kill not enabled
1784            1 - SW based RF kill active (sysfs)
1785            2 - HW based RF kill active
1786            3 - Both HW and SW baed RF kill active */
1787         struct ipw_priv *priv = dev_get_drvdata(d);
1788         int val = ((priv->status & STATUS_RF_KILL_SW) ? 0x1 : 0x0) |
1789             (rf_kill_active(priv) ? 0x2 : 0x0);
1790         return sprintf(buf, "%i\n", val);
1791 }
1792
1793 static int ipw_radio_kill_sw(struct ipw_priv *priv, int disable_radio)
1794 {
1795         if ((disable_radio ? 1 : 0) ==
1796             ((priv->status & STATUS_RF_KILL_SW) ? 1 : 0))
1797                 return 0;
1798
1799         IPW_DEBUG_RF_KILL("Manual SW RF Kill set to: RADIO  %s\n",
1800                           disable_radio ? "OFF" : "ON");
1801
1802         if (disable_radio) {
1803                 priv->status |= STATUS_RF_KILL_SW;
1804
1805                 cancel_delayed_work(&priv->request_scan);
1806                 cancel_delayed_work(&priv->request_direct_scan);
1807                 cancel_delayed_work(&priv->request_passive_scan);
1808                 cancel_delayed_work(&priv->scan_event);
1809                 schedule_work(&priv->down);
1810         } else {
1811                 priv->status &= ~STATUS_RF_KILL_SW;
1812                 if (rf_kill_active(priv)) {
1813                         IPW_DEBUG_RF_KILL("Can not turn radio back on - "
1814                                           "disabled by HW switch\n");
1815                         /* Make sure the RF_KILL check timer is running */
1816                         cancel_delayed_work(&priv->rf_kill);
1817                         schedule_delayed_work(&priv->rf_kill,
1818                                               round_jiffies_relative(2 * HZ));
1819                 } else
1820                         schedule_work(&priv->up);
1821         }
1822
1823         return 1;
1824 }
1825
1826 static ssize_t store_rf_kill(struct device *d, struct device_attribute *attr,
1827                              const char *buf, size_t count)
1828 {
1829         struct ipw_priv *priv = dev_get_drvdata(d);
1830
1831         ipw_radio_kill_sw(priv, buf[0] == '1');
1832
1833         return count;
1834 }
1835
1836 static DEVICE_ATTR(rf_kill, S_IWUSR | S_IRUGO, show_rf_kill, store_rf_kill);
1837
1838 static ssize_t show_speed_scan(struct device *d, struct device_attribute *attr,
1839                                char *buf)
1840 {
1841         struct ipw_priv *priv = dev_get_drvdata(d);
1842         int pos = 0, len = 0;
1843         if (priv->config & CFG_SPEED_SCAN) {
1844                 while (priv->speed_scan[pos] != 0)
1845                         len += sprintf(&buf[len], "%d ",
1846                                        priv->speed_scan[pos++]);
1847                 return len + sprintf(&buf[len], "\n");
1848         }
1849
1850         return sprintf(buf, "0\n");
1851 }
1852
1853 static ssize_t store_speed_scan(struct device *d, struct device_attribute *attr,
1854                                 const char *buf, size_t count)
1855 {
1856         struct ipw_priv *priv = dev_get_drvdata(d);
1857         int channel, pos = 0;
1858         const char *p = buf;
1859
1860         /* list of space separated channels to scan, optionally ending with 0 */
1861         while ((channel = simple_strtol(p, NULL, 0))) {
1862                 if (pos == MAX_SPEED_SCAN - 1) {
1863                         priv->speed_scan[pos] = 0;
1864                         break;
1865                 }
1866
1867                 if (libipw_is_valid_channel(priv->ieee, channel))
1868                         priv->speed_scan[pos++] = channel;
1869                 else
1870                         IPW_WARNING("Skipping invalid channel request: %d\n",
1871                                     channel);
1872                 p = strchr(p, ' ');
1873                 if (!p)
1874                         break;
1875                 while (*p == ' ' || *p == '\t')
1876                         p++;
1877         }
1878
1879         if (pos == 0)
1880                 priv->config &= ~CFG_SPEED_SCAN;
1881         else {
1882                 priv->speed_scan_pos = 0;
1883                 priv->config |= CFG_SPEED_SCAN;
1884         }
1885
1886         return count;
1887 }
1888
1889 static DEVICE_ATTR(speed_scan, S_IWUSR | S_IRUGO, show_speed_scan,
1890                    store_speed_scan);
1891
1892 static ssize_t show_net_stats(struct device *d, struct device_attribute *attr,
1893                               char *buf)
1894 {
1895         struct ipw_priv *priv = dev_get_drvdata(d);
1896         return sprintf(buf, "%c\n", (priv->config & CFG_NET_STATS) ? '1' : '0');
1897 }
1898
1899 static ssize_t store_net_stats(struct device *d, struct device_attribute *attr,
1900                                const char *buf, size_t count)
1901 {
1902         struct ipw_priv *priv = dev_get_drvdata(d);
1903         if (buf[0] == '1')
1904                 priv->config |= CFG_NET_STATS;
1905         else
1906                 priv->config &= ~CFG_NET_STATS;
1907
1908         return count;
1909 }
1910
1911 static DEVICE_ATTR(net_stats, S_IWUSR | S_IRUGO,
1912                    show_net_stats, store_net_stats);
1913
1914 static ssize_t show_channels(struct device *d,
1915                              struct device_attribute *attr,
1916                              char *buf)
1917 {
1918         struct ipw_priv *priv = dev_get_drvdata(d);
1919         const struct libipw_geo *geo = libipw_get_geo(priv->ieee);
1920         int len = 0, i;
1921
1922         len = sprintf(&buf[len],
1923                       "Displaying %d channels in 2.4Ghz band "
1924                       "(802.11bg):\n", geo->bg_channels);
1925
1926         for (i = 0; i < geo->bg_channels; i++) {
1927                 len += sprintf(&buf[len], "%d: BSS%s%s, %s, Band %s.\n",
1928                                geo->bg[i].channel,
1929                                geo->bg[i].flags & LIBIPW_CH_RADAR_DETECT ?
1930                                " (radar spectrum)" : "",
1931                                ((geo->bg[i].flags & LIBIPW_CH_NO_IBSS) ||
1932                                 (geo->bg[i].flags & LIBIPW_CH_RADAR_DETECT))
1933                                ? "" : ", IBSS",
1934                                geo->bg[i].flags & LIBIPW_CH_PASSIVE_ONLY ?
1935                                "passive only" : "active/passive",
1936                                geo->bg[i].flags & LIBIPW_CH_B_ONLY ?
1937                                "B" : "B/G");
1938         }
1939
1940         len += sprintf(&buf[len],
1941                        "Displaying %d channels in 5.2Ghz band "
1942                        "(802.11a):\n", geo->a_channels);
1943         for (i = 0; i < geo->a_channels; i++) {
1944                 len += sprintf(&buf[len], "%d: BSS%s%s, %s.\n",
1945                                geo->a[i].channel,
1946                                geo->a[i].flags & LIBIPW_CH_RADAR_DETECT ?
1947                                " (radar spectrum)" : "",
1948                                ((geo->a[i].flags & LIBIPW_CH_NO_IBSS) ||
1949                                 (geo->a[i].flags & LIBIPW_CH_RADAR_DETECT))
1950                                ? "" : ", IBSS",
1951                                geo->a[i].flags & LIBIPW_CH_PASSIVE_ONLY ?
1952                                "passive only" : "active/passive");
1953         }
1954
1955         return len;
1956 }
1957
1958 static DEVICE_ATTR(channels, S_IRUSR, show_channels, NULL);
1959
1960 static void notify_wx_assoc_event(struct ipw_priv *priv)
1961 {
1962         union iwreq_data wrqu;
1963         wrqu.ap_addr.sa_family = ARPHRD_ETHER;
1964         if (priv->status & STATUS_ASSOCIATED)
1965                 memcpy(wrqu.ap_addr.sa_data, priv->bssid, ETH_ALEN);
1966         else
1967                 memset(wrqu.ap_addr.sa_data, 0, ETH_ALEN);
1968         wireless_send_event(priv->net_dev, SIOCGIWAP, &wrqu, NULL);
1969 }
1970
1971 static void ipw_irq_tasklet(struct ipw_priv *priv)
1972 {
1973         u32 inta, inta_mask, handled = 0;
1974         unsigned long flags;
1975         int rc = 0;
1976
1977         spin_lock_irqsave(&priv->irq_lock, flags);
1978
1979         inta = ipw_read32(priv, IPW_INTA_RW);
1980         inta_mask = ipw_read32(priv, IPW_INTA_MASK_R);
1981
1982         if (inta == 0xFFFFFFFF) {
1983                 /* Hardware disappeared */
1984                 IPW_WARNING("TASKLET INTA == 0xFFFFFFFF\n");
1985                 /* Only handle the cached INTA values */
1986                 inta = 0;
1987         }
1988         inta &= (IPW_INTA_MASK_ALL & inta_mask);
1989
1990         /* Add any cached INTA values that need to be handled */
1991         inta |= priv->isr_inta;
1992
1993         spin_unlock_irqrestore(&priv->irq_lock, flags);
1994
1995         spin_lock_irqsave(&priv->lock, flags);
1996
1997         /* handle all the justifications for the interrupt */
1998         if (inta & IPW_INTA_BIT_RX_TRANSFER) {
1999                 ipw_rx(priv);
2000                 handled |= IPW_INTA_BIT_RX_TRANSFER;
2001         }
2002
2003         if (inta & IPW_INTA_BIT_TX_CMD_QUEUE) {
2004                 IPW_DEBUG_HC("Command completed.\n");
2005                 rc = ipw_queue_tx_reclaim(priv, &priv->txq_cmd, -1);
2006                 priv->status &= ~STATUS_HCMD_ACTIVE;
2007                 wake_up_interruptible(&priv->wait_command_queue);
2008                 handled |= IPW_INTA_BIT_TX_CMD_QUEUE;
2009         }
2010
2011         if (inta & IPW_INTA_BIT_TX_QUEUE_1) {
2012                 IPW_DEBUG_TX("TX_QUEUE_1\n");
2013                 rc = ipw_queue_tx_reclaim(priv, &priv->txq[0], 0);
2014                 handled |= IPW_INTA_BIT_TX_QUEUE_1;
2015         }
2016
2017         if (inta & IPW_INTA_BIT_TX_QUEUE_2) {
2018                 IPW_DEBUG_TX("TX_QUEUE_2\n");
2019                 rc = ipw_queue_tx_reclaim(priv, &priv->txq[1], 1);
2020                 handled |= IPW_INTA_BIT_TX_QUEUE_2;
2021         }
2022
2023         if (inta & IPW_INTA_BIT_TX_QUEUE_3) {
2024                 IPW_DEBUG_TX("TX_QUEUE_3\n");
2025                 rc = ipw_queue_tx_reclaim(priv, &priv->txq[2], 2);
2026                 handled |= IPW_INTA_BIT_TX_QUEUE_3;
2027         }
2028
2029         if (inta & IPW_INTA_BIT_TX_QUEUE_4) {
2030                 IPW_DEBUG_TX("TX_QUEUE_4\n");
2031                 rc = ipw_queue_tx_reclaim(priv, &priv->txq[3], 3);
2032                 handled |= IPW_INTA_BIT_TX_QUEUE_4;
2033         }
2034
2035         if (inta & IPW_INTA_BIT_STATUS_CHANGE) {
2036                 IPW_WARNING("STATUS_CHANGE\n");
2037                 handled |= IPW_INTA_BIT_STATUS_CHANGE;
2038         }
2039
2040         if (inta & IPW_INTA_BIT_BEACON_PERIOD_EXPIRED) {
2041                 IPW_WARNING("TX_PERIOD_EXPIRED\n");
2042                 handled |= IPW_INTA_BIT_BEACON_PERIOD_EXPIRED;
2043         }
2044
2045         if (inta & IPW_INTA_BIT_SLAVE_MODE_HOST_CMD_DONE) {
2046                 IPW_WARNING("HOST_CMD_DONE\n");
2047                 handled |= IPW_INTA_BIT_SLAVE_MODE_HOST_CMD_DONE;
2048         }
2049
2050         if (inta & IPW_INTA_BIT_FW_INITIALIZATION_DONE) {
2051                 IPW_WARNING("FW_INITIALIZATION_DONE\n");
2052                 handled |= IPW_INTA_BIT_FW_INITIALIZATION_DONE;
2053         }
2054
2055         if (inta & IPW_INTA_BIT_FW_CARD_DISABLE_PHY_OFF_DONE) {
2056                 IPW_WARNING("PHY_OFF_DONE\n");
2057                 handled |= IPW_INTA_BIT_FW_CARD_DISABLE_PHY_OFF_DONE;
2058         }
2059
2060         if (inta & IPW_INTA_BIT_RF_KILL_DONE) {
2061                 IPW_DEBUG_RF_KILL("RF_KILL_DONE\n");
2062                 priv->status |= STATUS_RF_KILL_HW;
2063                 wiphy_rfkill_set_hw_state(priv->ieee->wdev.wiphy, true);
2064                 wake_up_interruptible(&priv->wait_command_queue);
2065                 priv->status &= ~(STATUS_ASSOCIATED | STATUS_ASSOCIATING);
2066                 cancel_delayed_work(&priv->request_scan);
2067                 cancel_delayed_work(&priv->request_direct_scan);
2068                 cancel_delayed_work(&priv->request_passive_scan);
2069                 cancel_delayed_work(&priv->scan_event);
2070                 schedule_work(&priv->link_down);
2071                 schedule_delayed_work(&priv->rf_kill, 2 * HZ);
2072                 handled |= IPW_INTA_BIT_RF_KILL_DONE;
2073         }
2074
2075         if (inta & IPW_INTA_BIT_FATAL_ERROR) {
2076                 IPW_WARNING("Firmware error detected.  Restarting.\n");
2077                 if (priv->error) {
2078                         IPW_DEBUG_FW("Sysfs 'error' log already exists.\n");
2079                         if (ipw_debug_level & IPW_DL_FW_ERRORS) {
2080                                 struct ipw_fw_error *error =
2081                                     ipw_alloc_error_log(priv);
2082                                 ipw_dump_error_log(priv, error);
2083                                 kfree(error);
2084                         }
2085                 } else {
2086                         priv->error = ipw_alloc_error_log(priv);
2087                         if (priv->error)
2088                                 IPW_DEBUG_FW("Sysfs 'error' log captured.\n");
2089                         else
2090                                 IPW_DEBUG_FW("Error allocating sysfs 'error' "
2091                                              "log.\n");
2092                         if (ipw_debug_level & IPW_DL_FW_ERRORS)
2093                                 ipw_dump_error_log(priv, priv->error);
2094                 }
2095
2096                 /* XXX: If hardware encryption is for WPA/WPA2,
2097                  * we have to notify the supplicant. */
2098                 if (priv->ieee->sec.encrypt) {
2099                         priv->status &= ~STATUS_ASSOCIATED;
2100                         notify_wx_assoc_event(priv);
2101                 }
2102
2103                 /* Keep the restart process from trying to send host
2104                  * commands by clearing the INIT status bit */
2105                 priv->status &= ~STATUS_INIT;
2106
2107                 /* Cancel currently queued command. */
2108                 priv->status &= ~STATUS_HCMD_ACTIVE;
2109                 wake_up_interruptible(&priv->wait_command_queue);
2110
2111                 schedule_work(&priv->adapter_restart);
2112                 handled |= IPW_INTA_BIT_FATAL_ERROR;
2113         }
2114
2115         if (inta & IPW_INTA_BIT_PARITY_ERROR) {
2116                 IPW_ERROR("Parity error\n");
2117                 handled |= IPW_INTA_BIT_PARITY_ERROR;
2118         }
2119
2120         if (handled != inta) {
2121                 IPW_ERROR("Unhandled INTA bits 0x%08x\n", inta & ~handled);
2122         }
2123
2124         spin_unlock_irqrestore(&priv->lock, flags);
2125
2126         /* enable all interrupts */
2127         ipw_enable_interrupts(priv);
2128 }
2129
2130 #define IPW_CMD(x) case IPW_CMD_ ## x : return #x
2131 static char *get_cmd_string(u8 cmd)
2132 {
2133         switch (cmd) {
2134                 IPW_CMD(HOST_COMPLETE);
2135                 IPW_CMD(POWER_DOWN);
2136                 IPW_CMD(SYSTEM_CONFIG);
2137                 IPW_CMD(MULTICAST_ADDRESS);
2138                 IPW_CMD(SSID);
2139                 IPW_CMD(ADAPTER_ADDRESS);
2140                 IPW_CMD(PORT_TYPE);
2141                 IPW_CMD(RTS_THRESHOLD);
2142                 IPW_CMD(FRAG_THRESHOLD);
2143                 IPW_CMD(POWER_MODE);
2144                 IPW_CMD(WEP_KEY);
2145                 IPW_CMD(TGI_TX_KEY);
2146                 IPW_CMD(SCAN_REQUEST);
2147                 IPW_CMD(SCAN_REQUEST_EXT);
2148                 IPW_CMD(ASSOCIATE);
2149                 IPW_CMD(SUPPORTED_RATES);
2150                 IPW_CMD(SCAN_ABORT);
2151                 IPW_CMD(TX_FLUSH);
2152                 IPW_CMD(QOS_PARAMETERS);
2153                 IPW_CMD(DINO_CONFIG);
2154                 IPW_CMD(RSN_CAPABILITIES);
2155                 IPW_CMD(RX_KEY);
2156                 IPW_CMD(CARD_DISABLE);
2157                 IPW_CMD(SEED_NUMBER);
2158                 IPW_CMD(TX_POWER);
2159                 IPW_CMD(COUNTRY_INFO);
2160                 IPW_CMD(AIRONET_INFO);
2161                 IPW_CMD(AP_TX_POWER);
2162                 IPW_CMD(CCKM_INFO);
2163                 IPW_CMD(CCX_VER_INFO);
2164                 IPW_CMD(SET_CALIBRATION);
2165                 IPW_CMD(SENSITIVITY_CALIB);
2166                 IPW_CMD(RETRY_LIMIT);
2167                 IPW_CMD(IPW_PRE_POWER_DOWN);
2168                 IPW_CMD(VAP_BEACON_TEMPLATE);
2169                 IPW_CMD(VAP_DTIM_PERIOD);
2170                 IPW_CMD(EXT_SUPPORTED_RATES);
2171                 IPW_CMD(VAP_LOCAL_TX_PWR_CONSTRAINT);
2172                 IPW_CMD(VAP_QUIET_INTERVALS);
2173                 IPW_CMD(VAP_CHANNEL_SWITCH);
2174                 IPW_CMD(VAP_MANDATORY_CHANNELS);
2175                 IPW_CMD(VAP_CELL_PWR_LIMIT);
2176                 IPW_CMD(VAP_CF_PARAM_SET);
2177                 IPW_CMD(VAP_SET_BEACONING_STATE);
2178                 IPW_CMD(MEASUREMENT);
2179                 IPW_CMD(POWER_CAPABILITY);
2180                 IPW_CMD(SUPPORTED_CHANNELS);
2181                 IPW_CMD(TPC_REPORT);
2182                 IPW_CMD(WME_INFO);
2183                 IPW_CMD(PRODUCTION_COMMAND);
2184         default:
2185                 return "UNKNOWN";
2186         }
2187 }
2188
2189 #define HOST_COMPLETE_TIMEOUT HZ
2190
2191 static int __ipw_send_cmd(struct ipw_priv *priv, struct host_cmd *cmd)
2192 {
2193         int rc = 0;
2194         unsigned long flags;
2195         unsigned long now, end;
2196
2197         spin_lock_irqsave(&priv->lock, flags);
2198         if (priv->status & STATUS_HCMD_ACTIVE) {
2199                 IPW_ERROR("Failed to send %s: Already sending a command.\n",
2200                           get_cmd_string(cmd->cmd));
2201                 spin_unlock_irqrestore(&priv->lock, flags);
2202                 return -EAGAIN;
2203         }
2204
2205         priv->status |= STATUS_HCMD_ACTIVE;
2206
2207         if (priv->cmdlog) {
2208                 priv->cmdlog[priv->cmdlog_pos].jiffies = jiffies;
2209                 priv->cmdlog[priv->cmdlog_pos].cmd.cmd = cmd->cmd;
2210                 priv->cmdlog[priv->cmdlog_pos].cmd.len = cmd->len;
2211                 memcpy(priv->cmdlog[priv->cmdlog_pos].cmd.param, cmd->param,
2212                        cmd->len);
2213                 priv->cmdlog[priv->cmdlog_pos].retcode = -1;
2214         }
2215
2216         IPW_DEBUG_HC("%s command (#%d) %d bytes: 0x%08X\n",
2217                      get_cmd_string(cmd->cmd), cmd->cmd, cmd->len,
2218                      priv->status);
2219
2220 #ifndef DEBUG_CMD_WEP_KEY
2221         if (cmd->cmd == IPW_CMD_WEP_KEY)
2222                 IPW_DEBUG_HC("WEP_KEY command masked out for secure.\n");
2223         else
2224 #endif
2225                 printk_buf(IPW_DL_HOST_COMMAND, (u8 *) cmd->param, cmd->len);
2226
2227         rc = ipw_queue_tx_hcmd(priv, cmd->cmd, cmd->param, cmd->len, 0);
2228         if (rc) {
2229                 priv->status &= ~STATUS_HCMD_ACTIVE;
2230                 IPW_ERROR("Failed to send %s: Reason %d\n",
2231                           get_cmd_string(cmd->cmd), rc);
2232                 spin_unlock_irqrestore(&priv->lock, flags);
2233                 goto exit;
2234         }
2235         spin_unlock_irqrestore(&priv->lock, flags);
2236
2237         now = jiffies;
2238         end = now + HOST_COMPLETE_TIMEOUT;
2239 again:
2240         rc = wait_event_interruptible_timeout(priv->wait_command_queue,
2241                                               !(priv->
2242                                                 status & STATUS_HCMD_ACTIVE),
2243                                               end - now);
2244         if (rc < 0) {
2245                 now = jiffies;
2246                 if (time_before(now, end))
2247                         goto again;
2248                 rc = 0;
2249         }
2250
2251         if (rc == 0) {
2252                 spin_lock_irqsave(&priv->lock, flags);
2253                 if (priv->status & STATUS_HCMD_ACTIVE) {
2254                         IPW_ERROR("Failed to send %s: Command timed out.\n",
2255                                   get_cmd_string(cmd->cmd));
2256                         priv->status &= ~STATUS_HCMD_ACTIVE;
2257                         spin_unlock_irqrestore(&priv->lock, flags);
2258                         rc = -EIO;
2259                         goto exit;
2260                 }
2261                 spin_unlock_irqrestore(&priv->lock, flags);
2262         } else
2263                 rc = 0;
2264
2265         if (priv->status & STATUS_RF_KILL_HW) {
2266                 IPW_ERROR("Failed to send %s: Aborted due to RF kill switch.\n",
2267                           get_cmd_string(cmd->cmd));
2268                 rc = -EIO;
2269                 goto exit;
2270         }
2271
2272       exit:
2273         if (priv->cmdlog) {
2274                 priv->cmdlog[priv->cmdlog_pos++].retcode = rc;
2275                 priv->cmdlog_pos %= priv->cmdlog_len;
2276         }
2277         return rc;
2278 }
2279
2280 static int ipw_send_cmd_simple(struct ipw_priv *priv, u8 command)
2281 {
2282         struct host_cmd cmd = {
2283                 .cmd = command,
2284         };
2285
2286         return __ipw_send_cmd(priv, &cmd);
2287 }
2288
2289 static int ipw_send_cmd_pdu(struct ipw_priv *priv, u8 command, u8 len,
2290                             void *data)
2291 {
2292         struct host_cmd cmd = {
2293                 .cmd = command,
2294                 .len = len,
2295                 .param = data,
2296         };
2297
2298         return __ipw_send_cmd(priv, &cmd);
2299 }
2300
2301 static int ipw_send_host_complete(struct ipw_priv *priv)
2302 {
2303         if (!priv) {
2304                 IPW_ERROR("Invalid args\n");
2305                 return -1;
2306         }
2307
2308         return ipw_send_cmd_simple(priv, IPW_CMD_HOST_COMPLETE);
2309 }
2310
2311 static int ipw_send_system_config(struct ipw_priv *priv)
2312 {
2313         return ipw_send_cmd_pdu(priv, IPW_CMD_SYSTEM_CONFIG,
2314                                 sizeof(priv->sys_config),
2315                                 &priv->sys_config);
2316 }
2317
2318 static int ipw_send_ssid(struct ipw_priv *priv, u8 * ssid, int len)
2319 {
2320         if (!priv || !ssid) {
2321                 IPW_ERROR("Invalid args\n");
2322                 return -1;
2323         }
2324
2325         return ipw_send_cmd_pdu(priv, IPW_CMD_SSID, min(len, IW_ESSID_MAX_SIZE),
2326                                 ssid);
2327 }
2328
2329 static int ipw_send_adapter_address(struct ipw_priv *priv, u8 * mac)
2330 {
2331         if (!priv || !mac) {
2332                 IPW_ERROR("Invalid args\n");
2333                 return -1;
2334         }
2335
2336         IPW_DEBUG_INFO("%s: Setting MAC to %pM\n",
2337                        priv->net_dev->name, mac);
2338
2339         return ipw_send_cmd_pdu(priv, IPW_CMD_ADAPTER_ADDRESS, ETH_ALEN, mac);
2340 }
2341
2342 static void ipw_adapter_restart(void *adapter)
2343 {
2344         struct ipw_priv *priv = adapter;
2345
2346         if (priv->status & STATUS_RF_KILL_MASK)
2347                 return;
2348
2349         ipw_down(priv);
2350
2351         if (priv->assoc_network &&
2352             (priv->assoc_network->capability & WLAN_CAPABILITY_IBSS))
2353                 ipw_remove_current_network(priv);
2354
2355         if (ipw_up(priv)) {
2356                 IPW_ERROR("Failed to up device\n");
2357                 return;
2358         }
2359 }
2360
2361 static void ipw_bg_adapter_restart(struct work_struct *work)
2362 {
2363         struct ipw_priv *priv =
2364                 container_of(work, struct ipw_priv, adapter_restart);
2365         mutex_lock(&priv->mutex);
2366         ipw_adapter_restart(priv);
2367         mutex_unlock(&priv->mutex);
2368 }
2369
2370 static void ipw_abort_scan(struct ipw_priv *priv);
2371
2372 #define IPW_SCAN_CHECK_WATCHDOG (5 * HZ)
2373
2374 static void ipw_scan_check(void *data)
2375 {
2376         struct ipw_priv *priv = data;
2377
2378         if (priv->status & STATUS_SCAN_ABORTING) {
2379                 IPW_DEBUG_SCAN("Scan completion watchdog resetting "
2380                                "adapter after (%dms).\n",
2381                                jiffies_to_msecs(IPW_SCAN_CHECK_WATCHDOG));
2382                 schedule_work(&priv->adapter_restart);
2383         } else if (priv->status & STATUS_SCANNING) {
2384                 IPW_DEBUG_SCAN("Scan completion watchdog aborting scan "
2385                                "after (%dms).\n",
2386                                jiffies_to_msecs(IPW_SCAN_CHECK_WATCHDOG));
2387                 ipw_abort_scan(priv);
2388                 schedule_delayed_work(&priv->scan_check, HZ);
2389         }
2390 }
2391
2392 static void ipw_bg_scan_check(struct work_struct *work)
2393 {
2394         struct ipw_priv *priv =
2395                 container_of(work, struct ipw_priv, scan_check.work);
2396         mutex_lock(&priv->mutex);
2397         ipw_scan_check(priv);
2398         mutex_unlock(&priv->mutex);
2399 }
2400
2401 static int ipw_send_scan_request_ext(struct ipw_priv *priv,
2402                                      struct ipw_scan_request_ext *request)
2403 {
2404         return ipw_send_cmd_pdu(priv, IPW_CMD_SCAN_REQUEST_EXT,
2405                                 sizeof(*request), request);
2406 }
2407
2408 static int ipw_send_scan_abort(struct ipw_priv *priv)
2409 {
2410         if (!priv) {
2411                 IPW_ERROR("Invalid args\n");
2412                 return -1;
2413         }
2414
2415         return ipw_send_cmd_simple(priv, IPW_CMD_SCAN_ABORT);
2416 }
2417
2418 static int ipw_set_sensitivity(struct ipw_priv *priv, u16 sens)
2419 {
2420         struct ipw_sensitivity_calib calib = {
2421                 .beacon_rssi_raw = cpu_to_le16(sens),
2422         };
2423
2424         return ipw_send_cmd_pdu(priv, IPW_CMD_SENSITIVITY_CALIB, sizeof(calib),
2425                                 &calib);
2426 }
2427
2428 static int ipw_send_associate(struct ipw_priv *priv,
2429                               struct ipw_associate *associate)
2430 {
2431         if (!priv || !associate) {
2432                 IPW_ERROR("Invalid args\n");
2433                 return -1;
2434         }
2435
2436         return ipw_send_cmd_pdu(priv, IPW_CMD_ASSOCIATE, sizeof(*associate),
2437                                 associate);
2438 }
2439
2440 static int ipw_send_supported_rates(struct ipw_priv *priv,
2441                                     struct ipw_supported_rates *rates)
2442 {
2443         if (!priv || !rates) {
2444                 IPW_ERROR("Invalid args\n");
2445                 return -1;
2446         }
2447
2448         return ipw_send_cmd_pdu(priv, IPW_CMD_SUPPORTED_RATES, sizeof(*rates),
2449                                 rates);
2450 }
2451
2452 static int ipw_set_random_seed(struct ipw_priv *priv)
2453 {
2454         u32 val;
2455
2456         if (!priv) {
2457                 IPW_ERROR("Invalid args\n");
2458                 return -1;
2459         }
2460
2461         get_random_bytes(&val, sizeof(val));
2462
2463         return ipw_send_cmd_pdu(priv, IPW_CMD_SEED_NUMBER, sizeof(val), &val);
2464 }
2465
2466 static int ipw_send_card_disable(struct ipw_priv *priv, u32 phy_off)
2467 {
2468         __le32 v = cpu_to_le32(phy_off);
2469         if (!priv) {
2470                 IPW_ERROR("Invalid args\n");
2471                 return -1;
2472         }
2473
2474         return ipw_send_cmd_pdu(priv, IPW_CMD_CARD_DISABLE, sizeof(v), &v);
2475 }
2476
2477 static int ipw_send_tx_power(struct ipw_priv *priv, struct ipw_tx_power *power)
2478 {
2479         if (!priv || !power) {
2480                 IPW_ERROR("Invalid args\n");
2481                 return -1;
2482         }
2483
2484         return ipw_send_cmd_pdu(priv, IPW_CMD_TX_POWER, sizeof(*power), power);
2485 }
2486
2487 static int ipw_set_tx_power(struct ipw_priv *priv)
2488 {
2489         const struct libipw_geo *geo = libipw_get_geo(priv->ieee);
2490         struct ipw_tx_power tx_power;
2491         s8 max_power;
2492         int i;
2493
2494         memset(&tx_power, 0, sizeof(tx_power));
2495
2496         /* configure device for 'G' band */
2497         tx_power.ieee_mode = IPW_G_MODE;
2498         tx_power.num_channels = geo->bg_channels;
2499         for (i = 0; i < geo->bg_channels; i++) {
2500                 max_power = geo->bg[i].max_power;
2501                 tx_power.channels_tx_power[i].channel_number =
2502                     geo->bg[i].channel;
2503                 tx_power.channels_tx_power[i].tx_power = max_power ?
2504                     min(max_power, priv->tx_power) : priv->tx_power;
2505         }
2506         if (ipw_send_tx_power(priv, &tx_power))
2507                 return -EIO;
2508
2509         /* configure device to also handle 'B' band */
2510         tx_power.ieee_mode = IPW_B_MODE;
2511         if (ipw_send_tx_power(priv, &tx_power))
2512                 return -EIO;
2513
2514         /* configure device to also handle 'A' band */
2515         if (priv->ieee->abg_true) {
2516                 tx_power.ieee_mode = IPW_A_MODE;
2517                 tx_power.num_channels = geo->a_channels;
2518                 for (i = 0; i < tx_power.num_channels; i++) {
2519                         max_power = geo->a[i].max_power;
2520                         tx_power.channels_tx_power[i].channel_number =
2521                             geo->a[i].channel;
2522                         tx_power.channels_tx_power[i].tx_power = max_power ?
2523                             min(max_power, priv->tx_power) : priv->tx_power;
2524                 }
2525                 if (ipw_send_tx_power(priv, &tx_power))
2526                         return -EIO;
2527         }
2528         return 0;
2529 }
2530
2531 static int ipw_send_rts_threshold(struct ipw_priv *priv, u16 rts)
2532 {
2533         struct ipw_rts_threshold rts_threshold = {
2534                 .rts_threshold = cpu_to_le16(rts),
2535         };
2536
2537         if (!priv) {
2538                 IPW_ERROR("Invalid args\n");
2539                 return -1;
2540         }
2541
2542         return ipw_send_cmd_pdu(priv, IPW_CMD_RTS_THRESHOLD,
2543                                 sizeof(rts_threshold), &rts_threshold);
2544 }
2545
2546 static int ipw_send_frag_threshold(struct ipw_priv *priv, u16 frag)
2547 {
2548         struct ipw_frag_threshold frag_threshold = {
2549                 .frag_threshold = cpu_to_le16(frag),
2550         };
2551
2552         if (!priv) {
2553                 IPW_ERROR("Invalid args\n");
2554                 return -1;
2555         }
2556
2557         return ipw_send_cmd_pdu(priv, IPW_CMD_FRAG_THRESHOLD,
2558                                 sizeof(frag_threshold), &frag_threshold);
2559 }
2560
2561 static int ipw_send_power_mode(struct ipw_priv *priv, u32 mode)
2562 {
2563         __le32 param;
2564
2565         if (!priv) {
2566                 IPW_ERROR("Invalid args\n");
2567                 return -1;
2568         }
2569
2570         /* If on battery, set to 3, if AC set to CAM, else user
2571          * level */
2572         switch (mode) {
2573         case IPW_POWER_BATTERY:
2574                 param = cpu_to_le32(IPW_POWER_INDEX_3);
2575                 break;
2576         case IPW_POWER_AC:
2577                 param = cpu_to_le32(IPW_POWER_MODE_CAM);
2578                 break;
2579         default:
2580                 param = cpu_to_le32(mode);
2581                 break;
2582         }
2583
2584         return ipw_send_cmd_pdu(priv, IPW_CMD_POWER_MODE, sizeof(param),
2585                                 &param);
2586 }
2587
2588 static int ipw_send_retry_limit(struct ipw_priv *priv, u8 slimit, u8 llimit)
2589 {
2590         struct ipw_retry_limit retry_limit = {
2591                 .short_retry_limit = slimit,
2592                 .long_retry_limit = llimit
2593         };
2594
2595         if (!priv) {
2596                 IPW_ERROR("Invalid args\n");
2597                 return -1;
2598         }
2599
2600         return ipw_send_cmd_pdu(priv, IPW_CMD_RETRY_LIMIT, sizeof(retry_limit),
2601                                 &retry_limit);
2602 }
2603
2604 /*
2605  * The IPW device contains a Microwire compatible EEPROM that stores
2606  * various data like the MAC address.  Usually the firmware has exclusive
2607  * access to the eeprom, but during device initialization (before the
2608  * device driver has sent the HostComplete command to the firmware) the
2609  * device driver has read access to the EEPROM by way of indirect addressing
2610  * through a couple of memory mapped registers.
2611  *
2612  * The following is a simplified implementation for pulling data out of the
2613  * the eeprom, along with some helper functions to find information in
2614  * the per device private data's copy of the eeprom.
2615  *
2616  * NOTE: To better understand how these functions work (i.e what is a chip
2617  *       select and why do have to keep driving the eeprom clock?), read
2618  *       just about any data sheet for a Microwire compatible EEPROM.
2619  */
2620
2621 /* write a 32 bit value into the indirect accessor register */
2622 static inline void eeprom_write_reg(struct ipw_priv *p, u32 data)
2623 {
2624         ipw_write_reg32(p, FW_MEM_REG_EEPROM_ACCESS, data);
2625
2626         /* the eeprom requires some time to complete the operation */
2627         udelay(p->eeprom_delay);
2628 }
2629
2630 /* perform a chip select operation */
2631 static void eeprom_cs(struct ipw_priv *priv)
2632 {
2633         eeprom_write_reg(priv, 0);
2634         eeprom_write_reg(priv, EEPROM_BIT_CS);
2635         eeprom_write_reg(priv, EEPROM_BIT_CS | EEPROM_BIT_SK);
2636         eeprom_write_reg(priv, EEPROM_BIT_CS);
2637 }
2638
2639 /* perform a chip select operation */
2640 static void eeprom_disable_cs(struct ipw_priv *priv)
2641 {
2642         eeprom_write_reg(priv, EEPROM_BIT_CS);
2643         eeprom_write_reg(priv, 0);
2644         eeprom_write_reg(priv, EEPROM_BIT_SK);
2645 }
2646
2647 /* push a single bit down to the eeprom */
2648 static inline void eeprom_write_bit(struct ipw_priv *p, u8 bit)
2649 {
2650         int d = (bit ? EEPROM_BIT_DI : 0);
2651         eeprom_write_reg(p, EEPROM_BIT_CS | d);
2652         eeprom_write_reg(p, EEPROM_BIT_CS | d | EEPROM_BIT_SK);
2653 }
2654
2655 /* push an opcode followed by an address down to the eeprom */
2656 static void eeprom_op(struct ipw_priv *priv, u8 op, u8 addr)
2657 {
2658         int i;
2659
2660         eeprom_cs(priv);
2661         eeprom_write_bit(priv, 1);
2662         eeprom_write_bit(priv, op & 2);
2663         eeprom_write_bit(priv, op & 1);
2664         for (i = 7; i >= 0; i--) {
2665                 eeprom_write_bit(priv, addr & (1 << i));
2666         }
2667 }
2668
2669 /* pull 16 bits off the eeprom, one bit at a time */
2670 static u16 eeprom_read_u16(struct ipw_priv *priv, u8 addr)
2671 {
2672         int i;
2673         u16 r = 0;
2674
2675         /* Send READ Opcode */
2676         eeprom_op(priv, EEPROM_CMD_READ, addr);
2677
2678         /* Send dummy bit */
2679         eeprom_write_reg(priv, EEPROM_BIT_CS);
2680
2681         /* Read the byte off the eeprom one bit at a time */
2682         for (i = 0; i < 16; i++) {
2683                 u32 data = 0;
2684                 eeprom_write_reg(priv, EEPROM_BIT_CS | EEPROM_BIT_SK);
2685                 eeprom_write_reg(priv, EEPROM_BIT_CS);
2686                 data = ipw_read_reg32(priv, FW_MEM_REG_EEPROM_ACCESS);
2687                 r = (r << 1) | ((data & EEPROM_BIT_DO) ? 1 : 0);
2688         }
2689
2690         /* Send another dummy bit */
2691         eeprom_write_reg(priv, 0);
2692         eeprom_disable_cs(priv);
2693
2694         return r;
2695 }
2696
2697 /* helper function for pulling the mac address out of the private */
2698 /* data's copy of the eeprom data                                 */
2699 static void eeprom_parse_mac(struct ipw_priv *priv, u8 * mac)
2700 {
2701         memcpy(mac, &priv->eeprom[EEPROM_MAC_ADDRESS], 6);
2702 }
2703
2704 static void ipw_read_eeprom(struct ipw_priv *priv)
2705 {
2706         int i;
2707         __le16 *eeprom = (__le16 *) priv->eeprom;
2708
2709         IPW_DEBUG_TRACE(">>\n");
2710
2711         /* read entire contents of eeprom into private buffer */
2712         for (i = 0; i < 128; i++)
2713                 eeprom[i] = cpu_to_le16(eeprom_read_u16(priv, (u8) i));
2714
2715         IPW_DEBUG_TRACE("<<\n");
2716 }
2717
2718 /*
2719  * Either the device driver (i.e. the host) or the firmware can
2720  * load eeprom data into the designated region in SRAM.  If neither
2721  * happens then the FW will shutdown with a fatal error.
2722  *
2723  * In order to signal the FW to load the EEPROM, the EEPROM_LOAD_DISABLE
2724  * bit needs region of shared SRAM needs to be non-zero.
2725  */
2726 static void ipw_eeprom_init_sram(struct ipw_priv *priv)
2727 {
2728         int i;
2729
2730         IPW_DEBUG_TRACE(">>\n");
2731
2732         /*
2733            If the data looks correct, then copy it to our private
2734            copy.  Otherwise let the firmware know to perform the operation
2735            on its own.
2736          */
2737         if (priv->eeprom[EEPROM_VERSION] != 0) {
2738                 IPW_DEBUG_INFO("Writing EEPROM data into SRAM\n");
2739
2740                 /* write the eeprom data to sram */
2741                 for (i = 0; i < IPW_EEPROM_IMAGE_SIZE; i++)
2742                         ipw_write8(priv, IPW_EEPROM_DATA + i, priv->eeprom[i]);
2743
2744                 /* Do not load eeprom data on fatal error or suspend */
2745                 ipw_write32(priv, IPW_EEPROM_LOAD_DISABLE, 0);
2746         } else {
2747                 IPW_DEBUG_INFO("Enabling FW initializationg of SRAM\n");
2748
2749                 /* Load eeprom data on fatal error or suspend */
2750                 ipw_write32(priv, IPW_EEPROM_LOAD_DISABLE, 1);
2751         }
2752
2753         IPW_DEBUG_TRACE("<<\n");
2754 }
2755
2756 static void ipw_zero_memory(struct ipw_priv *priv, u32 start, u32 count)
2757 {
2758         count >>= 2;
2759         if (!count)
2760                 return;
2761         _ipw_write32(priv, IPW_AUTOINC_ADDR, start);
2762         while (count--)
2763                 _ipw_write32(priv, IPW_AUTOINC_DATA, 0);
2764 }
2765
2766 static inline void ipw_fw_dma_reset_command_blocks(struct ipw_priv *priv)
2767 {
2768         ipw_zero_memory(priv, IPW_SHARED_SRAM_DMA_CONTROL,
2769                         CB_NUMBER_OF_ELEMENTS_SMALL *
2770                         sizeof(struct command_block));
2771 }
2772
2773 static int ipw_fw_dma_enable(struct ipw_priv *priv)
2774 {                               /* start dma engine but no transfers yet */
2775
2776         IPW_DEBUG_FW(">> :\n");
2777
2778         /* Start the dma */
2779         ipw_fw_dma_reset_command_blocks(priv);
2780
2781         /* Write CB base address */
2782         ipw_write_reg32(priv, IPW_DMA_I_CB_BASE, IPW_SHARED_SRAM_DMA_CONTROL);
2783
2784         IPW_DEBUG_FW("<< :\n");
2785         return 0;
2786 }
2787
2788 static void ipw_fw_dma_abort(struct ipw_priv *priv)
2789 {
2790         u32 control = 0;
2791
2792         IPW_DEBUG_FW(">> :\n");
2793
2794         /* set the Stop and Abort bit */
2795         control = DMA_CONTROL_SMALL_CB_CONST_VALUE | DMA_CB_STOP_AND_ABORT;
2796         ipw_write_reg32(priv, IPW_DMA_I_DMA_CONTROL, control);
2797         priv->sram_desc.last_cb_index = 0;
2798
2799         IPW_DEBUG_FW("<<\n");
2800 }
2801
2802 static int ipw_fw_dma_write_command_block(struct ipw_priv *priv, int index,
2803                                           struct command_block *cb)
2804 {
2805         u32 address =
2806             IPW_SHARED_SRAM_DMA_CONTROL +
2807             (sizeof(struct command_block) * index);
2808         IPW_DEBUG_FW(">> :\n");
2809
2810         ipw_write_indirect(priv, address, (u8 *) cb,
2811                            (int)sizeof(struct command_block));
2812
2813         IPW_DEBUG_FW("<< :\n");
2814         return 0;
2815
2816 }
2817
2818 static int ipw_fw_dma_kick(struct ipw_priv *priv)
2819 {
2820         u32 control = 0;
2821         u32 index = 0;
2822
2823         IPW_DEBUG_FW(">> :\n");
2824
2825         for (index = 0; index < priv->sram_desc.last_cb_index; index++)
2826                 ipw_fw_dma_write_command_block(priv, index,
2827                                                &priv->sram_desc.cb_list[index]);
2828
2829         /* Enable the DMA in the CSR register */
2830         ipw_clear_bit(priv, IPW_RESET_REG,
2831                       IPW_RESET_REG_MASTER_DISABLED |
2832                       IPW_RESET_REG_STOP_MASTER);
2833
2834         /* Set the Start bit. */
2835         control = DMA_CONTROL_SMALL_CB_CONST_VALUE | DMA_CB_START;
2836         ipw_write_reg32(priv, IPW_DMA_I_DMA_CONTROL, control);
2837
2838         IPW_DEBUG_FW("<< :\n");
2839         return 0;
2840 }
2841
2842 static void ipw_fw_dma_dump_command_block(struct ipw_priv *priv)
2843 {
2844         u32 address;
2845         u32 register_value = 0;
2846         u32 cb_fields_address = 0;
2847
2848         IPW_DEBUG_FW(">> :\n");
2849         address = ipw_read_reg32(priv, IPW_DMA_I_CURRENT_CB);
2850         IPW_DEBUG_FW_INFO("Current CB is 0x%x\n", address);
2851
2852         /* Read the DMA Controlor register */
2853         register_value = ipw_read_reg32(priv, IPW_DMA_I_DMA_CONTROL);
2854         IPW_DEBUG_FW_INFO("IPW_DMA_I_DMA_CONTROL is 0x%x\n", register_value);
2855
2856         /* Print the CB values */
2857         cb_fields_address = address;
2858         register_value = ipw_read_reg32(priv, cb_fields_address);
2859         IPW_DEBUG_FW_INFO("Current CB Control Field is 0x%x\n", register_value);
2860
2861         cb_fields_address += sizeof(u32);
2862         register_value = ipw_read_reg32(priv, cb_fields_address);
2863         IPW_DEBUG_FW_INFO("Current CB Source Field is 0x%x\n", register_value);
2864
2865         cb_fields_address += sizeof(u32);
2866         register_value = ipw_read_reg32(priv, cb_fields_address);
2867         IPW_DEBUG_FW_INFO("Current CB Destination Field is 0x%x\n",
2868                           register_value);
2869
2870         cb_fields_address += sizeof(u32);
2871         register_value = ipw_read_reg32(priv, cb_fields_address);
2872         IPW_DEBUG_FW_INFO("Current CB Status Field is 0x%x\n", register_value);
2873
2874         IPW_DEBUG_FW(">> :\n");
2875 }
2876
2877 static int ipw_fw_dma_command_block_index(struct ipw_priv *priv)
2878 {
2879         u32 current_cb_address = 0;
2880         u32 current_cb_index = 0;
2881
2882         IPW_DEBUG_FW("<< :\n");
2883         current_cb_address = ipw_read_reg32(priv, IPW_DMA_I_CURRENT_CB);
2884
2885         current_cb_index = (current_cb_address - IPW_SHARED_SRAM_DMA_CONTROL) /
2886             sizeof(struct command_block);
2887
2888         IPW_DEBUG_FW_INFO("Current CB index 0x%x address = 0x%X\n",
2889                           current_cb_index, current_cb_address);
2890
2891         IPW_DEBUG_FW(">> :\n");
2892         return current_cb_index;
2893
2894 }
2895
2896 static int ipw_fw_dma_add_command_block(struct ipw_priv *priv,
2897                                         u32 src_address,
2898                                         u32 dest_address,
2899                                         u32 length,
2900                                         int interrupt_enabled, int is_last)
2901 {
2902
2903         u32 control = CB_VALID | CB_SRC_LE | CB_DEST_LE | CB_SRC_AUTOINC |
2904             CB_SRC_IO_GATED | CB_DEST_AUTOINC | CB_SRC_SIZE_LONG |
2905             CB_DEST_SIZE_LONG;
2906         struct command_block *cb;
2907         u32 last_cb_element = 0;
2908
2909         IPW_DEBUG_FW_INFO("src_address=0x%x dest_address=0x%x length=0x%x\n",
2910                           src_address, dest_address, length);
2911
2912         if (priv->sram_desc.last_cb_index >= CB_NUMBER_OF_ELEMENTS_SMALL)
2913                 return -1;
2914
2915         last_cb_element = priv->sram_desc.last_cb_index;
2916         cb = &priv->sram_desc.cb_list[last_cb_element];
2917         priv->sram_desc.last_cb_index++;
2918
2919         /* Calculate the new CB control word */
2920         if (interrupt_enabled)
2921                 control |= CB_INT_ENABLED;
2922
2923         if (is_last)
2924                 control |= CB_LAST_VALID;
2925
2926         control |= length;
2927
2928         /* Calculate the CB Element's checksum value */
2929         cb->status = control ^ src_address ^ dest_address;
2930
2931         /* Copy the Source and Destination addresses */
2932         cb->dest_addr = dest_address;
2933         cb->source_addr = src_address;
2934
2935         /* Copy the Control Word last */
2936         cb->control = control;
2937
2938         return 0;
2939 }
2940
2941 static int ipw_fw_dma_add_buffer(struct ipw_priv *priv, dma_addr_t *src_address,
2942                                  int nr, u32 dest_address, u32 len)
2943 {
2944         int ret, i;
2945         u32 size;
2946
2947         IPW_DEBUG_FW(">>\n");
2948         IPW_DEBUG_FW_INFO("nr=%d dest_address=0x%x len=0x%x\n",
2949                           nr, dest_address, len);
2950
2951         for (i = 0; i < nr; i++) {
2952                 size = min_t(u32, len - i * CB_MAX_LENGTH, CB_MAX_LENGTH);
2953                 ret = ipw_fw_dma_add_command_block(priv, src_address[i],
2954                                                    dest_address +
2955                                                    i * CB_MAX_LENGTH, size,
2956                                                    0, 0);
2957                 if (ret) {
2958                         IPW_DEBUG_FW_INFO(": Failed\n");
2959                         return -1;
2960                 } else
2961                         IPW_DEBUG_FW_INFO(": Added new cb\n");
2962         }
2963
2964         IPW_DEBUG_FW("<<\n");
2965         return 0;
2966 }
2967
2968 static int ipw_fw_dma_wait(struct ipw_priv *priv)
2969 {
2970         u32 current_index = 0, previous_index;
2971         u32 watchdog = 0;
2972
2973         IPW_DEBUG_FW(">> :\n");
2974
2975         current_index = ipw_fw_dma_command_block_index(priv);
2976         IPW_DEBUG_FW_INFO("sram_desc.last_cb_index:0x%08X\n",
2977                           (int)priv->sram_desc.last_cb_index);
2978
2979         while (current_index < priv->sram_desc.last_cb_index) {
2980                 udelay(50);
2981                 previous_index = current_index;
2982                 current_index = ipw_fw_dma_command_block_index(priv);
2983
2984                 if (previous_index < current_index) {
2985                         watchdog = 0;
2986                         continue;
2987                 }
2988                 if (++watchdog > 400) {
2989                         IPW_DEBUG_FW_INFO("Timeout\n");
2990                         ipw_fw_dma_dump_command_block(priv);
2991                         ipw_fw_dma_abort(priv);
2992                         return -1;
2993                 }
2994         }
2995
2996         ipw_fw_dma_abort(priv);
2997
2998         /*Disable the DMA in the CSR register */
2999         ipw_set_bit(priv, IPW_RESET_REG,
3000                     IPW_RESET_REG_MASTER_DISABLED | IPW_RESET_REG_STOP_MASTER);
3001
3002         IPW_DEBUG_FW("<< dmaWaitSync\n");
3003         return 0;
3004 }
3005
3006 static void ipw_remove_current_network(struct ipw_priv *priv)
3007 {
3008         struct list_head *element, *safe;
3009         struct libipw_network *network = NULL;
3010         unsigned long flags;
3011
3012         spin_lock_irqsave(&priv->ieee->lock, flags);
3013         list_for_each_safe(element, safe, &priv->ieee->network_list) {
3014                 network = list_entry(element, struct libipw_network, list);
3015                 if (!memcmp(network->bssid, priv->bssid, ETH_ALEN)) {
3016                         list_del(element);
3017                         list_add_tail(&network->list,
3018                                       &priv->ieee->network_free_list);
3019                 }
3020         }
3021         spin_unlock_irqrestore(&priv->ieee->lock, flags);
3022 }
3023
3024 /**
3025  * Check that card is still alive.
3026  * Reads debug register from domain0.
3027  * If card is present, pre-defined value should
3028  * be found there.
3029  *
3030  * @param priv
3031  * @return 1 if card is present, 0 otherwise
3032  */
3033 static inline int ipw_alive(struct ipw_priv *priv)
3034 {
3035         return ipw_read32(priv, 0x90) == 0xd55555d5;
3036 }
3037
3038 /* timeout in msec, attempted in 10-msec quanta */
3039 static int ipw_poll_bit(struct ipw_priv *priv, u32 addr, u32 mask,
3040                                int timeout)
3041 {
3042         int i = 0;
3043
3044         do {
3045                 if ((ipw_read32(priv, addr) & mask) == mask)
3046                         return i;
3047                 mdelay(10);
3048                 i += 10;
3049         } while (i < timeout);
3050
3051         return -ETIME;
3052 }
3053
3054 /* These functions load the firmware and micro code for the operation of
3055  * the ipw hardware.  It assumes the buffer has all the bits for the
3056  * image and the caller is handling the memory allocation and clean up.
3057  */
3058
3059 static int ipw_stop_master(struct ipw_priv *priv)
3060 {
3061         int rc;
3062
3063         IPW_DEBUG_TRACE(">>\n");
3064         /* stop master. typical delay - 0 */
3065         ipw_set_bit(priv, IPW_RESET_REG, IPW_RESET_REG_STOP_MASTER);
3066
3067         /* timeout is in msec, polled in 10-msec quanta */
3068         rc = ipw_poll_bit(priv, IPW_RESET_REG,
3069                           IPW_RESET_REG_MASTER_DISABLED, 100);
3070         if (rc < 0) {
3071                 IPW_ERROR("wait for stop master failed after 100ms\n");
3072                 return -1;
3073         }
3074
3075         IPW_DEBUG_INFO("stop master %dms\n", rc);
3076
3077         return rc;
3078 }
3079
3080 static void ipw_arc_release(struct ipw_priv *priv)
3081 {
3082         IPW_DEBUG_TRACE(">>\n");
3083         mdelay(5);
3084
3085         ipw_clear_bit(priv, IPW_RESET_REG, CBD_RESET_REG_PRINCETON_RESET);
3086
3087         /* no one knows timing, for safety add some delay */
3088         mdelay(5);
3089 }
3090
3091 struct fw_chunk {
3092         __le32 address;
3093         __le32 length;
3094 };
3095
3096 static int ipw_load_ucode(struct ipw_priv *priv, u8 * data, size_t len)
3097 {
3098         int rc = 0, i, addr;
3099         u8 cr = 0;
3100         __le16 *image;
3101
3102         image = (__le16 *) data;
3103
3104         IPW_DEBUG_TRACE(">>\n");
3105
3106         rc = ipw_stop_master(priv);
3107
3108         if (rc < 0)
3109                 return rc;
3110
3111         for (addr = IPW_SHARED_LOWER_BOUND;
3112              addr < IPW_REGISTER_DOMAIN1_END; addr += 4) {
3113                 ipw_write32(priv, addr, 0);
3114         }
3115
3116         /* no ucode (yet) */
3117         memset(&priv->dino_alive, 0, sizeof(priv->dino_alive));
3118         /* destroy DMA queues */
3119         /* reset sequence */
3120
3121         ipw_write_reg32(priv, IPW_MEM_HALT_AND_RESET, IPW_BIT_HALT_RESET_ON);
3122         ipw_arc_release(priv);
3123         ipw_write_reg32(priv, IPW_MEM_HALT_AND_RESET, IPW_BIT_HALT_RESET_OFF);
3124         mdelay(1);
3125
3126         /* reset PHY */
3127         ipw_write_reg32(priv, IPW_INTERNAL_CMD_EVENT, IPW_BASEBAND_POWER_DOWN);
3128         mdelay(1);
3129
3130         ipw_write_reg32(priv, IPW_INTERNAL_CMD_EVENT, 0);
3131         mdelay(1);
3132
3133         /* enable ucode store */
3134         ipw_write_reg8(priv, IPW_BASEBAND_CONTROL_STATUS, 0x0);
3135         ipw_write_reg8(priv, IPW_BASEBAND_CONTROL_STATUS, DINO_ENABLE_CS);
3136         mdelay(1);
3137
3138         /* write ucode */
3139         /**
3140          * @bug
3141          * Do NOT set indirect address register once and then
3142          * store data to indirect data register in the loop.
3143          * It seems very reasonable, but in this case DINO do not
3144          * accept ucode. It is essential to set address each time.
3145          */
3146         /* load new ipw uCode */
3147         for (i = 0; i < len / 2; i++)
3148                 ipw_write_reg16(priv, IPW_BASEBAND_CONTROL_STORE,
3149                                 le16_to_cpu(image[i]));
3150
3151         /* enable DINO */
3152         ipw_write_reg8(priv, IPW_BASEBAND_CONTROL_STATUS, 0);
3153         ipw_write_reg8(priv, IPW_BASEBAND_CONTROL_STATUS, DINO_ENABLE_SYSTEM);
3154
3155         /* this is where the igx / win driver deveates from the VAP driver. */
3156
3157         /* wait for alive response */
3158         for (i = 0; i < 100; i++) {
3159                 /* poll for incoming data */
3160                 cr = ipw_read_reg8(priv, IPW_BASEBAND_CONTROL_STATUS);
3161                 if (cr & DINO_RXFIFO_DATA)
3162                         break;
3163                 mdelay(1);
3164         }
3165
3166         if (cr & DINO_RXFIFO_DATA) {
3167                 /* alive_command_responce size is NOT multiple of 4 */
3168                 __le32 response_buffer[(sizeof(priv->dino_alive) + 3) / 4];
3169
3170                 for (i = 0; i < ARRAY_SIZE(response_buffer); i++)
3171                         response_buffer[i] =
3172                             cpu_to_le32(ipw_read_reg32(priv,
3173                                                        IPW_BASEBAND_RX_FIFO_READ));
3174                 memcpy(&priv->dino_alive, response_buffer,
3175                        sizeof(priv->dino_alive));
3176                 if (priv->dino_alive.alive_command == 1
3177                     && priv->dino_alive.ucode_valid == 1) {
3178                         rc = 0;
3179                         IPW_DEBUG_INFO
3180                             ("Microcode OK, rev. %d (0x%x) dev. %d (0x%x) "
3181                              "of %02d/%02d/%02d %02d:%02d\n",
3182                              priv->dino_alive.software_revision,
3183                              priv->dino_alive.software_revision,
3184                              priv->dino_alive.device_identifier,
3185                              priv->dino_alive.device_identifier,
3186                              priv->dino_alive.time_stamp[0],
3187                              priv->dino_alive.time_stamp[1],
3188                              priv->dino_alive.time_stamp[2],
3189                              priv->dino_alive.time_stamp[3],
3190                              priv->dino_alive.time_stamp[4]);
3191                 } else {
3192                         IPW_DEBUG_INFO("Microcode is not alive\n");
3193                         rc = -EINVAL;
3194                 }
3195         } else {
3196                 IPW_DEBUG_INFO("No alive response from DINO\n");
3197                 rc = -ETIME;
3198         }
3199
3200         /* disable DINO, otherwise for some reason
3201            firmware have problem getting alive resp. */
3202         ipw_write_reg8(priv, IPW_BASEBAND_CONTROL_STATUS, 0);
3203
3204         return rc;
3205 }
3206
3207 static int ipw_load_firmware(struct ipw_priv *priv, u8 * data, size_t len)
3208 {
3209         int ret = -1;
3210         int offset = 0;
3211         struct fw_chunk *chunk;
3212         int total_nr = 0;
3213         int i;
3214         struct pci_pool *pool;
3215         void **virts;
3216         dma_addr_t *phys;
3217
3218         IPW_DEBUG_TRACE("<< :\n");
3219
3220         virts = kmalloc(sizeof(void *) * CB_NUMBER_OF_ELEMENTS_SMALL,
3221                         GFP_KERNEL);
3222         if (!virts)
3223                 return -ENOMEM;
3224
3225         phys = kmalloc(sizeof(dma_addr_t) * CB_NUMBER_OF_ELEMENTS_SMALL,
3226                         GFP_KERNEL);
3227         if (!phys) {
3228                 kfree(virts);
3229                 return -ENOMEM;
3230         }
3231         pool = pci_pool_create("ipw2200", priv->pci_dev, CB_MAX_LENGTH, 0, 0);
3232         if (!pool) {
3233                 IPW_ERROR("pci_pool_create failed\n");
3234                 kfree(phys);
3235                 kfree(virts);
3236                 return -ENOMEM;
3237         }
3238
3239         /* Start the Dma */
3240         ret = ipw_fw_dma_enable(priv);
3241
3242         /* the DMA is already ready this would be a bug. */
3243         BUG_ON(priv->sram_desc.last_cb_index > 0);
3244
3245         do {
3246                 u32 chunk_len;
3247                 u8 *start;
3248                 int size;
3249                 int nr = 0;
3250
3251                 chunk = (struct fw_chunk *)(data + offset);
3252                 offset += sizeof(struct fw_chunk);
3253                 chunk_len = le32_to_cpu(chunk->length);
3254                 start = data + offset;
3255
3256                 nr = (chunk_len + CB_MAX_LENGTH - 1) / CB_MAX_LENGTH;
3257                 for (i = 0; i < nr; i++) {
3258                         virts[total_nr] = pci_pool_alloc(pool, GFP_KERNEL,
3259                                                          &phys[total_nr]);
3260                         if (!virts[total_nr]) {
3261                                 ret = -ENOMEM;
3262                                 goto out;
3263                         }
3264                         size = min_t(u32, chunk_len - i * CB_MAX_LENGTH,
3265                                      CB_MAX_LENGTH);
3266                         memcpy(virts[total_nr], start, size);
3267                         start += size;
3268                         total_nr++;
3269                         /* We don't support fw chunk larger than 64*8K */
3270                         BUG_ON(total_nr > CB_NUMBER_OF_ELEMENTS_SMALL);
3271                 }
3272
3273                 /* build DMA packet and queue up for sending */
3274                 /* dma to chunk->address, the chunk->length bytes from data +
3275                  * offeset*/
3276                 /* Dma loading */
3277                 ret = ipw_fw_dma_add_buffer(priv, &phys[total_nr - nr],
3278                                             nr, le32_to_cpu(chunk->address),
3279                                             chunk_len);
3280                 if (ret) {
3281                         IPW_DEBUG_INFO("dmaAddBuffer Failed\n");
3282                         goto out;
3283                 }
3284
3285                 offset += chunk_len;
3286         } while (offset < len);
3287
3288         /* Run the DMA and wait for the answer */
3289         ret = ipw_fw_dma_kick(priv);
3290         if (ret) {
3291                 IPW_ERROR("dmaKick Failed\n");
3292                 goto out;
3293         }
3294
3295         ret = ipw_fw_dma_wait(priv);
3296         if (ret) {
3297                 IPW_ERROR("dmaWaitSync Failed\n");
3298                 goto out;
3299         }
3300  out:
3301         for (i = 0; i < total_nr; i++)
3302                 pci_pool_free(pool, virts[i], phys[i]);
3303
3304         pci_pool_destroy(pool);
3305         kfree(phys);
3306         kfree(virts);
3307
3308         return ret;
3309 }
3310
3311 /* stop nic */
3312 static int ipw_stop_nic(struct ipw_priv *priv)
3313 {
3314         int rc = 0;
3315
3316         /* stop */
3317         ipw_write32(priv, IPW_RESET_REG, IPW_RESET_REG_STOP_MASTER);
3318
3319         rc = ipw_poll_bit(priv, IPW_RESET_REG,
3320                           IPW_RESET_REG_MASTER_DISABLED, 500);
3321         if (rc < 0) {
3322                 IPW_ERROR("wait for reg master disabled failed after 500ms\n");
3323                 return rc;
3324         }
3325
3326         ipw_set_bit(priv, IPW_RESET_REG, CBD_RESET_REG_PRINCETON_RESET);
3327
3328         return rc;
3329 }
3330
3331 static void ipw_start_nic(struct ipw_priv *priv)
3332 {
3333         IPW_DEBUG_TRACE(">>\n");
3334
3335         /* prvHwStartNic  release ARC */
3336         ipw_clear_bit(priv, IPW_RESET_REG,
3337                       IPW_RESET_REG_MASTER_DISABLED |
3338                       IPW_RESET_REG_STOP_MASTER |
3339                       CBD_RESET_REG_PRINCETON_RESET);
3340
3341         /* enable power management */
3342         ipw_set_bit(priv, IPW_GP_CNTRL_RW,
3343                     IPW_GP_CNTRL_BIT_HOST_ALLOWS_STANDBY);
3344
3345         IPW_DEBUG_TRACE("<<\n");
3346 }
3347
3348 static int ipw_init_nic(struct ipw_priv *priv)
3349 {
3350         int rc;
3351
3352         IPW_DEBUG_TRACE(">>\n");
3353         /* reset */
3354         /*prvHwInitNic */
3355         /* set "initialization complete" bit to move adapter to D0 state */
3356         ipw_set_bit(priv, IPW_GP_CNTRL_RW, IPW_GP_CNTRL_BIT_INIT_DONE);
3357
3358         /* low-level PLL activation */
3359         ipw_write32(priv, IPW_READ_INT_REGISTER,
3360                     IPW_BIT_INT_HOST_SRAM_READ_INT_REGISTER);
3361
3362         /* wait for clock stabilization */
3363         rc = ipw_poll_bit(priv, IPW_GP_CNTRL_RW,
3364                           IPW_GP_CNTRL_BIT_CLOCK_READY, 250);
3365         if (rc < 0)
3366                 IPW_DEBUG_INFO("FAILED wait for clock stablization\n");
3367
3368         /* assert SW reset */
3369         ipw_set_bit(priv, IPW_RESET_REG, IPW_RESET_REG_SW_RESET);
3370
3371         udelay(10);
3372
3373         /* set "initialization complete" bit to move adapter to D0 state */
3374         ipw_set_bit(priv, IPW_GP_CNTRL_RW, IPW_GP_CNTRL_BIT_INIT_DONE);
3375
3376         IPW_DEBUG_TRACE(">>\n");
3377         return 0;
3378 }
3379
3380 /* Call this function from process context, it will sleep in request_firmware.
3381  * Probe is an ok place to call this from.
3382  */
3383 static int ipw_reset_nic(struct ipw_priv *priv)
3384 {
3385         int rc = 0;
3386         unsigned long flags;
3387
3388         IPW_DEBUG_TRACE(">>\n");
3389
3390         rc = ipw_init_nic(priv);
3391
3392         spin_lock_irqsave(&priv->lock, flags);
3393         /* Clear the 'host command active' bit... */
3394         priv->status &= ~STATUS_HCMD_ACTIVE;
3395         wake_up_interruptible(&priv->wait_command_queue);
3396         priv->status &= ~(STATUS_SCANNING | STATUS_SCAN_ABORTING);
3397         wake_up_interruptible(&priv->wait_state);
3398         spin_unlock_irqrestore(&priv->lock, flags);
3399
3400         IPW_DEBUG_TRACE("<<\n");
3401         return rc;
3402 }
3403
3404
3405 struct ipw_fw {
3406         __le32 ver;
3407         __le32 boot_size;
3408         __le32 ucode_size;
3409         __le32 fw_size;
3410         u8 data[0];
3411 };
3412
3413 static int ipw_get_fw(struct ipw_priv *priv,
3414                       const struct firmware **raw, const char *name)
3415 {
3416         struct ipw_fw *fw;
3417         int rc;
3418
3419         /* ask firmware_class module to get the boot firmware off disk */
3420         rc = request_firmware(raw, name, &priv->pci_dev->dev);
3421         if (rc < 0) {
3422                 IPW_ERROR("%s request_firmware failed: Reason %d\n", name, rc);
3423                 return rc;
3424         }
3425
3426         if ((*raw)->size < sizeof(*fw)) {
3427                 IPW_ERROR("%s is too small (%zd)\n", name, (*raw)->size);
3428                 return -EINVAL;
3429         }
3430
3431         fw = (void *)(*raw)->data;
3432
3433         if ((*raw)->size < sizeof(*fw) + le32_to_cpu(fw->boot_size) +
3434             le32_to_cpu(fw->ucode_size) + le32_to_cpu(fw->fw_size)) {
3435                 IPW_ERROR("%s is too small or corrupt (%zd)\n",
3436                           name, (*raw)->size);
3437                 return -EINVAL;
3438         }
3439
3440         IPW_DEBUG_INFO("Read firmware '%s' image v%d.%d (%zd bytes)\n",
3441                        name,
3442                        le32_to_cpu(fw->ver) >> 16,
3443                        le32_to_cpu(fw->ver) & 0xff,
3444                        (*raw)->size - sizeof(*fw));
3445         return 0;
3446 }
3447
3448 #define IPW_RX_BUF_SIZE (3000)
3449
3450 static void ipw_rx_queue_reset(struct ipw_priv *priv,
3451                                       struct ipw_rx_queue *rxq)
3452 {
3453         unsigned long flags;
3454         int i;
3455
3456         spin_lock_irqsave(&rxq->lock, flags);
3457
3458         INIT_LIST_HEAD(&rxq->rx_free);
3459         INIT_LIST_HEAD(&rxq->rx_used);
3460
3461         /* Fill the rx_used queue with _all_ of the Rx buffers */
3462         for (i = 0; i < RX_FREE_BUFFERS + RX_QUEUE_SIZE; i++) {
3463                 /* In the reset function, these buffers may have been allocated
3464                  * to an SKB, so we need to unmap and free potential storage */
3465                 if (rxq->pool[i].skb != NULL) {
3466                         pci_unmap_single(priv->pci_dev, rxq->pool[i].dma_addr,
3467                                          IPW_RX_BUF_SIZE, PCI_DMA_FROMDEVICE);
3468                         dev_kfree_skb(rxq->pool[i].skb);
3469                         rxq->pool[i].skb = NULL;
3470                 }
3471                 list_add_tail(&rxq->pool[i].list, &rxq->rx_used);
3472         }
3473
3474         /* Set us so that we have processed and used all buffers, but have
3475          * not restocked the Rx queue with fresh buffers */
3476         rxq->read = rxq->write = 0;
3477         rxq->free_count = 0;
3478         spin_unlock_irqrestore(&rxq->lock, flags);
3479 }
3480
3481 #ifdef CONFIG_PM
3482 static int fw_loaded = 0;
3483 static const struct firmware *raw = NULL;
3484
3485 static void free_firmware(void)
3486 {
3487         if (fw_loaded) {
3488                 release_firmware(raw);
3489                 raw = NULL;
3490                 fw_loaded = 0;
3491         }
3492 }
3493 #else
3494 #define free_firmware() do {} while (0)
3495 #endif
3496
3497 static int ipw_load(struct ipw_priv *priv)
3498 {
3499 #ifndef CONFIG_PM
3500         const struct firmware *raw = NULL;
3501 #endif
3502         struct ipw_fw *fw;
3503         u8 *boot_img, *ucode_img, *fw_img;
3504         u8 *name = NULL;
3505         int rc = 0, retries = 3;
3506
3507         switch (priv->ieee->iw_mode) {
3508         case IW_MODE_ADHOC:
3509                 name = "ipw2200-ibss.fw";
3510                 break;
3511 #ifdef CONFIG_IPW2200_MONITOR
3512         case IW_MODE_MONITOR:
3513                 name = "ipw2200-sniffer.fw";
3514                 break;
3515 #endif
3516         case IW_MODE_INFRA:
3517                 name = "ipw2200-bss.fw";
3518                 break;
3519         }
3520
3521         if (!name) {
3522                 rc = -EINVAL;
3523                 goto error;
3524         }
3525
3526 #ifdef CONFIG_PM
3527         if (!fw_loaded) {
3528 #endif
3529                 rc = ipw_get_fw(priv, &raw, name);
3530                 if (rc < 0)
3531                         goto error;
3532 #ifdef CONFIG_PM
3533         }
3534 #endif
3535
3536         fw = (void *)raw->data;
3537         boot_img = &fw->data[0];
3538         ucode_img = &fw->data[le32_to_cpu(fw->boot_size)];
3539         fw_img = &fw->data[le32_to_cpu(fw->boot_size) +
3540                            le32_to_cpu(fw->ucode_size)];
3541
3542         if (rc < 0)
3543                 goto error;
3544
3545         if (!priv->rxq)
3546                 priv->rxq = ipw_rx_queue_alloc(priv);
3547         else
3548                 ipw_rx_queue_reset(priv, priv->rxq);
3549         if (!priv->rxq) {
3550                 IPW_ERROR("Unable to initialize Rx queue\n");
3551                 goto error;
3552         }
3553
3554       retry:
3555         /* Ensure interrupts are disabled */
3556         ipw_write32(priv, IPW_INTA_MASK_R, ~IPW_INTA_MASK_ALL);
3557         priv->status &= ~STATUS_INT_ENABLED;
3558
3559         /* ack pending interrupts */
3560         ipw_write32(priv, IPW_INTA_RW, IPW_INTA_MASK_ALL);
3561
3562         ipw_stop_nic(priv);
3563
3564         rc = ipw_reset_nic(priv);
3565         if (rc < 0) {
3566                 IPW_ERROR("Unable to reset NIC\n");
3567                 goto error;
3568         }
3569
3570         ipw_zero_memory(priv, IPW_NIC_SRAM_LOWER_BOUND,
3571                         IPW_NIC_SRAM_UPPER_BOUND - IPW_NIC_SRAM_LOWER_BOUND);
3572
3573         /* DMA the initial boot firmware into the device */
3574         rc = ipw_load_firmware(priv, boot_img, le32_to_cpu(fw->boot_size));
3575         if (rc < 0) {
3576                 IPW_ERROR("Unable to load boot firmware: %d\n", rc);
3577                 goto error;
3578         }
3579
3580         /* kick start the device */
3581         ipw_start_nic(priv);
3582
3583         /* wait for the device to finish its initial startup sequence */
3584         rc = ipw_poll_bit(priv, IPW_INTA_RW,
3585                           IPW_INTA_BIT_FW_INITIALIZATION_DONE, 500);
3586         if (rc < 0) {
3587                 IPW_ERROR("device failed to boot initial fw image\n");
3588                 goto error;
3589         }
3590         IPW_DEBUG_INFO("initial device response after %dms\n", rc);
3591
3592         /* ack fw init done interrupt */
3593         ipw_write32(priv, IPW_INTA_RW, IPW_INTA_BIT_FW_INITIALIZATION_DONE);
3594
3595         /* DMA the ucode into the device */
3596         rc = ipw_load_ucode(priv, ucode_img, le32_to_cpu(fw->ucode_size));
3597         if (rc < 0) {
3598                 IPW_ERROR("Unable to load ucode: %d\n", rc);
3599                 goto error;
3600         }
3601
3602         /* stop nic */
3603         ipw_stop_nic(priv);
3604
3605         /* DMA bss firmware into the device */
3606         rc = ipw_load_firmware(priv, fw_img, le32_to_cpu(fw->fw_size));
3607         if (rc < 0) {
3608                 IPW_ERROR("Unable to load firmware: %d\n", rc);
3609                 goto error;
3610         }
3611 #ifdef CONFIG_PM
3612         fw_loaded = 1;
3613 #endif
3614
3615         ipw_write32(priv, IPW_EEPROM_LOAD_DISABLE, 0);
3616
3617         rc = ipw_queue_reset(priv);
3618         if (rc < 0) {
3619                 IPW_ERROR("Unable to initialize queues\n");
3620                 goto error;
3621         }
3622
3623         /* Ensure interrupts are disabled */
3624         ipw_write32(priv, IPW_INTA_MASK_R, ~IPW_INTA_MASK_ALL);
3625         /* ack pending interrupts */
3626         ipw_write32(priv, IPW_INTA_RW, IPW_INTA_MASK_ALL);
3627
3628         /* kick start the device */
3629         ipw_start_nic(priv);
3630
3631         if (ipw_read32(priv, IPW_INTA_RW) & IPW_INTA_BIT_PARITY_ERROR) {
3632                 if (retries > 0) {
3633                         IPW_WARNING("Parity error.  Retrying init.\n");
3634                         retries--;
3635                         goto retry;
3636                 }
3637
3638                 IPW_ERROR("TODO: Handle parity error -- schedule restart?\n");
3639                 rc = -EIO;
3640                 goto error;
3641         }
3642
3643         /* wait for the device */
3644         rc = ipw_poll_bit(priv, IPW_INTA_RW,
3645                           IPW_INTA_BIT_FW_INITIALIZATION_DONE, 500);
3646         if (rc < 0) {
3647                 IPW_ERROR("device failed to start within 500ms\n");
3648                 goto error;
3649         }
3650         IPW_DEBUG_INFO("device response after %dms\n", rc);
3651
3652         /* ack fw init done interrupt */
3653         ipw_write32(priv, IPW_INTA_RW, IPW_INTA_BIT_FW_INITIALIZATION_DONE);
3654
3655         /* read eeprom data */
3656         priv->eeprom_delay = 1;
3657         ipw_read_eeprom(priv);
3658         /* initialize the eeprom region of sram */
3659         ipw_eeprom_init_sram(priv);
3660
3661         /* enable interrupts */
3662         ipw_enable_interrupts(priv);
3663
3664         /* Ensure our queue has valid packets */
3665         ipw_rx_queue_replenish(priv);
3666
3667         ipw_write32(priv, IPW_RX_READ_INDEX, priv->rxq->read);
3668
3669         /* ack pending interrupts */
3670         ipw_write32(priv, IPW_INTA_RW, IPW_INTA_MASK_ALL);
3671
3672 #ifndef CONFIG_PM
3673         release_firmware(raw);
3674 #endif
3675         return 0;
3676
3677       error:
3678         if (priv->rxq) {
3679                 ipw_rx_queue_free(priv, priv->rxq);
3680                 priv->rxq = NULL;
3681         }
3682         ipw_tx_queue_free(priv);
3683         release_firmware(raw);
3684 #ifdef CONFIG_PM
3685         fw_loaded = 0;
3686         raw = NULL;
3687 #endif
3688
3689         return rc;
3690 }
3691
3692 /**
3693  * DMA services
3694  *
3695  * Theory of operation
3696  *
3697  * A queue is a circular buffers with 'Read' and 'Write' pointers.
3698  * 2 empty entries always kept in the buffer to protect from overflow.
3699  *
3700  * For Tx queue, there are low mark and high mark limits. If, after queuing
3701  * the packet for Tx, free space become < low mark, Tx queue stopped. When
3702  * reclaiming packets (on 'tx done IRQ), if free space become > high mark,
3703  * Tx queue resumed.
3704  *
3705  * The IPW operates with six queues, one receive queue in the device's
3706  * sram, one transmit queue for sending commands to the device firmware,
3707  * and four transmit queues for data.
3708  *
3709  * The four transmit queues allow for performing quality of service (qos)
3710  * transmissions as per the 802.11 protocol.  Currently Linux does not
3711  * provide a mechanism to the user for utilizing prioritized queues, so
3712  * we only utilize the first data transmit queue (queue1).
3713  */
3714
3715 /**
3716  * Driver allocates buffers of this size for Rx
3717  */
3718
3719 /**
3720  * ipw_rx_queue_space - Return number of free slots available in queue.
3721  */
3722 static int ipw_rx_queue_space(const struct ipw_rx_queue *q)
3723 {
3724         int s = q->read - q->write;
3725         if (s <= 0)
3726                 s += RX_QUEUE_SIZE;
3727         /* keep some buffer to not confuse full and empty queue */
3728         s -= 2;
3729         if (s < 0)
3730                 s = 0;
3731         return s;
3732 }
3733
3734 static inline int ipw_tx_queue_space(const struct clx2_queue *q)
3735 {
3736         int s = q->last_used - q->first_empty;
3737         if (s <= 0)
3738                 s += q->n_bd;
3739         s -= 2;                 /* keep some reserve to not confuse empty and full situations */
3740         if (s < 0)
3741                 s = 0;
3742         return s;
3743 }
3744
3745 static inline int ipw_queue_inc_wrap(int index, int n_bd)
3746 {
3747         return (++index == n_bd) ? 0 : index;
3748 }
3749
3750 /**
3751  * Initialize common DMA queue structure
3752  *
3753  * @param q                queue to init
3754  * @param count            Number of BD's to allocate. Should be power of 2
3755  * @param read_register    Address for 'read' register
3756  *                         (not offset within BAR, full address)
3757  * @param write_register   Address for 'write' register
3758  *                         (not offset within BAR, full address)
3759  * @param base_register    Address for 'base' register
3760  *                         (not offset within BAR, full address)
3761  * @param size             Address for 'size' register
3762  *                         (not offset within BAR, full address)
3763  */
3764 static void ipw_queue_init(struct ipw_priv *priv, struct clx2_queue *q,
3765                            int count, u32 read, u32 write, u32 base, u32 size)
3766 {
3767         q->n_bd = count;
3768
3769         q->low_mark = q->n_bd / 4;
3770         if (q->low_mark < 4)
3771                 q->low_mark = 4;
3772
3773         q->high_mark = q->n_bd / 8;
3774         if (q->high_mark < 2)
3775                 q->high_mark = 2;
3776
3777         q->first_empty = q->last_used = 0;
3778         q->reg_r = read;
3779         q->reg_w = write;
3780
3781         ipw_write32(priv, base, q->dma_addr);
3782         ipw_write32(priv, size, count);
3783         ipw_write32(priv, read, 0);
3784         ipw_write32(priv, write, 0);
3785
3786         _ipw_read32(priv, 0x90);
3787 }
3788
3789 static int ipw_queue_tx_init(struct ipw_priv *priv,
3790                              struct clx2_tx_queue *q,
3791                              int count, u32 read, u32 write, u32 base, u32 size)
3792 {
3793         struct pci_dev *dev = priv->pci_dev;
3794
3795         q->txb = kmalloc(sizeof(q->txb[0]) * count, GFP_KERNEL);
3796         if (!q->txb) {
3797                 IPW_ERROR("vmalloc for auxiliary BD structures failed\n");
3798                 return -ENOMEM;
3799         }
3800
3801         q->bd =
3802             pci_alloc_consistent(dev, sizeof(q->bd[0]) * count, &q->q.dma_addr);
3803         if (!q->bd) {
3804                 IPW_ERROR("pci_alloc_consistent(%zd) failed\n",
3805                           sizeof(q->bd[0]) * count);
3806                 kfree(q->txb);
3807                 q->txb = NULL;
3808                 return -ENOMEM;
3809         }
3810
3811         ipw_queue_init(priv, &q->q, count, read, write, base, size);
3812         return 0;
3813 }
3814
3815 /**
3816  * Free one TFD, those at index [txq->q.last_used].
3817  * Do NOT advance any indexes
3818  *
3819  * @param dev
3820  * @param txq
3821  */
3822 static void ipw_queue_tx_free_tfd(struct ipw_priv *priv,
3823                                   struct clx2_tx_queue *txq)
3824 {
3825         struct tfd_frame *bd = &txq->bd[txq->q.last_used];
3826         struct pci_dev *dev = priv->pci_dev;
3827         int i;
3828
3829         /* classify bd */
3830         if (bd->control_flags.message_type == TX_HOST_COMMAND_TYPE)
3831                 /* nothing to cleanup after for host commands */
3832                 return;
3833
3834         /* sanity check */
3835         if (le32_to_cpu(bd->u.data.num_chunks) > NUM_TFD_CHUNKS) {
3836                 IPW_ERROR("Too many chunks: %i\n",
3837                           le32_to_cpu(bd->u.data.num_chunks));
3838                 /** @todo issue fatal error, it is quite serious situation */
3839                 return;
3840         }
3841
3842         /* unmap chunks if any */
3843         for (i = 0; i < le32_to_cpu(bd->u.data.num_chunks); i++) {
3844                 pci_unmap_single(dev, le32_to_cpu(bd->u.data.chunk_ptr[i]),
3845                                  le16_to_cpu(bd->u.data.chunk_len[i]),
3846                                  PCI_DMA_TODEVICE);
3847                 if (txq->txb[txq->q.last_used]) {
3848                         libipw_txb_free(txq->txb[txq->q.last_used]);
3849                         txq->txb[txq->q.last_used] = NULL;
3850                 }
3851         }
3852 }
3853
3854 /**
3855  * Deallocate DMA queue.
3856  *
3857  * Empty queue by removing and destroying all BD's.
3858  * Free all buffers.
3859  *
3860  * @param dev
3861  * @param q
3862  */
3863 static void ipw_queue_tx_free(struct ipw_priv *priv, struct clx2_tx_queue *txq)
3864 {
3865         struct clx2_queue *q = &txq->q;
3866         struct pci_dev *dev = priv->pci_dev;
3867
3868         if (q->n_bd == 0)
3869                 return;
3870
3871         /* first, empty all BD's */
3872         for (; q->first_empty != q->last_used;
3873              q->last_used = ipw_queue_inc_wrap(q->last_used, q->n_bd)) {
3874                 ipw_queue_tx_free_tfd(priv, txq);
3875         }
3876
3877         /* free buffers belonging to queue itself */
3878         pci_free_consistent(dev, sizeof(txq->bd[0]) * q->n_bd, txq->bd,
3879                             q->dma_addr);
3880         kfree(txq->txb);
3881
3882         /* 0 fill whole structure */
3883         memset(txq, 0, sizeof(*txq));
3884 }
3885
3886 /**
3887  * Destroy all DMA queues and structures
3888  *
3889  * @param priv
3890  */
3891 static void ipw_tx_queue_free(struct ipw_priv *priv)
3892 {
3893         /* Tx CMD queue */
3894         ipw_queue_tx_free(priv, &priv->txq_cmd);
3895
3896         /* Tx queues */
3897         ipw_queue_tx_free(priv, &priv->txq[0]);
3898         ipw_queue_tx_free(priv, &priv->txq[1]);
3899         ipw_queue_tx_free(priv, &priv->txq[2]);
3900         ipw_queue_tx_free(priv, &priv->txq[3]);
3901 }
3902
3903 static void ipw_create_bssid(struct ipw_priv *priv, u8 * bssid)
3904 {
3905         /* First 3 bytes are manufacturer */
3906         bssid[0] = priv->mac_addr[0];
3907         bssid[1] = priv->mac_addr[1];
3908         bssid[2] = priv->mac_addr[2];
3909
3910         /* Last bytes are random */
3911         get_random_bytes(&bssid[3], ETH_ALEN - 3);
3912
3913         bssid[0] &= 0xfe;       /* clear multicast bit */
3914         bssid[0] |= 0x02;       /* set local assignment bit (IEEE802) */
3915 }
3916
3917 static u8 ipw_add_station(struct ipw_priv *priv, u8 * bssid)
3918 {
3919         struct ipw_station_entry entry;
3920         int i;
3921
3922         for (i = 0; i < priv->num_stations; i++) {
3923                 if (!memcmp(priv->stations[i], bssid, ETH_ALEN)) {
3924                         /* Another node is active in network */
3925                         priv->missed_adhoc_beacons = 0;
3926                         if (!(priv->config & CFG_STATIC_CHANNEL))
3927                                 /* when other nodes drop out, we drop out */
3928                                 priv->config &= ~CFG_ADHOC_PERSIST;
3929
3930                         return i;
3931                 }
3932         }
3933
3934         if (i == MAX_STATIONS)
3935                 return IPW_INVALID_STATION;
3936
3937         IPW_DEBUG_SCAN("Adding AdHoc station: %pM\n", bssid);
3938
3939         entry.reserved = 0;
3940         entry.support_mode = 0;
3941         memcpy(entry.mac_addr, bssid, ETH_ALEN);
3942         memcpy(priv->stations[i], bssid, ETH_ALEN);
3943         ipw_write_direct(priv, IPW_STATION_TABLE_LOWER + i * sizeof(entry),
3944                          &entry, sizeof(entry));
3945         priv->num_stations++;
3946
3947         return i;
3948 }
3949
3950 static u8 ipw_find_station(struct ipw_priv *priv, u8 * bssid)
3951 {
3952         int i;
3953
3954         for (i = 0; i < priv->num_stations; i++)
3955                 if (!memcmp(priv->stations[i], bssid, ETH_ALEN))
3956                         return i;
3957
3958         return IPW_INVALID_STATION;
3959 }
3960
3961 static void ipw_send_disassociate(struct ipw_priv *priv, int quiet)
3962 {
3963         int err;
3964
3965         if (priv->status & STATUS_ASSOCIATING) {
3966                 IPW_DEBUG_ASSOC("Disassociating while associating.\n");
3967                 schedule_work(&priv->disassociate);
3968                 return;
3969         }
3970
3971         if (!(priv->status & STATUS_ASSOCIATED)) {
3972                 IPW_DEBUG_ASSOC("Disassociating while not associated.\n");
3973                 return;
3974         }
3975
3976         IPW_DEBUG_ASSOC("Disassocation attempt from %pM "
3977                         "on channel %d.\n",
3978                         priv->assoc_request.bssid,
3979                         priv->assoc_request.channel);
3980
3981         priv->status &= ~(STATUS_ASSOCIATING | STATUS_ASSOCIATED);
3982         priv->status |= STATUS_DISASSOCIATING;
3983
3984         if (quiet)
3985                 priv->assoc_request.assoc_type = HC_DISASSOC_QUIET;
3986         else
3987                 priv->assoc_request.assoc_type = HC_DISASSOCIATE;
3988
3989         err = ipw_send_associate(priv, &priv->assoc_request);
3990         if (err) {
3991                 IPW_DEBUG_HC("Attempt to send [dis]associate command "
3992                              "failed.\n");
3993                 return;
3994         }
3995
3996 }
3997
3998 static int ipw_disassociate(void *data)
3999 {
4000         struct ipw_priv *priv = data;
4001         if (!(priv->status & (STATUS_ASSOCIATED | STATUS_ASSOCIATING)))
4002                 return 0;
4003         ipw_send_disassociate(data, 0);
4004         netif_carrier_off(priv->net_dev);
4005         return 1;
4006 }
4007
4008 static void ipw_bg_disassociate(struct work_struct *work)
4009 {
4010         struct ipw_priv *priv =
4011                 container_of(work, struct ipw_priv, disassociate);
4012         mutex_lock(&priv->mutex);
4013         ipw_disassociate(priv);
4014         mutex_unlock(&priv->mutex);
4015 }
4016
4017 static void ipw_system_config(struct work_struct *work)
4018 {
4019         struct ipw_priv *priv =
4020                 container_of(work, struct ipw_priv, system_config);
4021
4022 #ifdef CONFIG_IPW2200_PROMISCUOUS
4023         if (priv->prom_net_dev && netif_running(priv->prom_net_dev)) {
4024                 priv->sys_config.accept_all_data_frames = 1;
4025                 priv->sys_config.accept_non_directed_frames = 1;
4026                 priv->sys_config.accept_all_mgmt_bcpr = 1;
4027                 priv->sys_config.accept_all_mgmt_frames = 1;
4028         }
4029 #endif
4030
4031         ipw_send_system_config(priv);
4032 }
4033
4034 struct ipw_status_code {
4035         u16 status;
4036         const char *reason;
4037 };
4038
4039 static const struct ipw_status_code ipw_status_codes[] = {
4040         {0x00, "Successful"},
4041         {0x01, "Unspecified failure"},
4042         {0x0A, "Cannot support all requested capabilities in the "
4043          "Capability information field"},
4044         {0x0B, "Reassociation denied due to inability to confirm that "
4045          "association exists"},
4046         {0x0C, "Association denied due to reason outside the scope of this "
4047          "standard"},
4048         {0x0D,
4049          "Responding station does not support the specified authentication "
4050          "algorithm"},
4051         {0x0E,
4052          "Received an Authentication frame with authentication sequence "
4053          "transaction sequence number out of expected sequence"},
4054         {0x0F, "Authentication rejected because of challenge failure"},
4055         {0x10, "Authentication rejected due to timeout waiting for next "
4056          "frame in sequence"},
4057         {0x11, "Association denied because AP is unable to handle additional "
4058          "associated stations"},
4059         {0x12,
4060          "Association denied due to requesting station not supporting all "
4061          "of the datarates in the BSSBasicServiceSet Parameter"},
4062         {0x13,
4063          "Association denied due to requesting station not supporting "
4064          "short preamble operation"},
4065         {0x14,
4066          "Association denied due to requesting station not supporting "
4067          "PBCC encoding"},
4068         {0x15,
4069          "Association denied due to requesting station not supporting "
4070          "channel agility"},
4071         {0x19,
4072          "Association denied due to requesting station not supporting "
4073          "short slot operation"},
4074         {0x1A,
4075          "Association denied due to requesting station not supporting "
4076          "DSSS-OFDM operation"},
4077         {0x28, "Invalid Information Element"},
4078         {0x29, "Group Cipher is not valid"},
4079         {0x2A, "Pairwise Cipher is not valid"},
4080         {0x2B, "AKMP is not valid"},
4081         {0x2C, "Unsupported RSN IE version"},
4082         {0x2D, "Invalid RSN IE Capabilities"},
4083         {0x2E, "Cipher suite is rejected per security policy"},
4084 };
4085
4086 static const char *ipw_get_status_code(u16 status)
4087 {
4088         int i;
4089         for (i = 0; i < ARRAY_SIZE(ipw_status_codes); i++)
4090                 if (ipw_status_codes[i].status == (status & 0xff))
4091                         return ipw_status_codes[i].reason;
4092         return "Unknown status value.";
4093 }
4094
4095 static void inline average_init(struct average *avg)
4096 {
4097         memset(avg, 0, sizeof(*avg));
4098 }
4099
4100 #define DEPTH_RSSI 8
4101 #define DEPTH_NOISE 16
4102 static s16 exponential_average(s16 prev_avg, s16 val, u8 depth)
4103 {
4104         return ((depth-1)*prev_avg +  val)/depth;
4105 }
4106
4107 static void average_add(struct average *avg, s16 val)
4108 {
4109         avg->sum -= avg->entries[avg->pos];
4110         avg->sum += val;
4111         avg->entries[avg->pos++] = val;
4112         if (unlikely(avg->pos == AVG_ENTRIES)) {
4113                 avg->init = 1;
4114                 avg->pos = 0;
4115         }
4116 }
4117
4118 static s16 average_value(struct average *avg)
4119 {
4120         if (!unlikely(avg->init)) {
4121                 if (avg->pos)
4122                         return avg->sum / avg->pos;
4123                 return 0;
4124         }
4125
4126         return avg->sum / AVG_ENTRIES;
4127 }
4128
4129 static void ipw_reset_stats(struct ipw_priv *priv)
4130 {
4131         u32 len = sizeof(u32);
4132
4133         priv->quality = 0;
4134
4135         average_init(&priv->average_missed_beacons);
4136         priv->exp_avg_rssi = -60;
4137         priv->exp_avg_noise = -85 + 0x100;
4138
4139         priv->last_rate = 0;
4140         priv->last_missed_beacons = 0;
4141         priv->last_rx_packets = 0;
4142         priv->last_tx_packets = 0;
4143         priv->last_tx_failures = 0;
4144
4145         /* Firmware managed, reset only when NIC is restarted, so we have to
4146          * normalize on the current value */
4147         ipw_get_ordinal(priv, IPW_ORD_STAT_RX_ERR_CRC,
4148                         &priv->last_rx_err, &len);
4149         ipw_get_ordinal(priv, IPW_ORD_STAT_TX_FAILURE,
4150                         &priv->last_tx_failures, &len);
4151
4152         /* Driver managed, reset with each association */
4153         priv->missed_adhoc_beacons = 0;
4154         priv->missed_beacons = 0;
4155         priv->tx_packets = 0;
4156         priv->rx_packets = 0;
4157
4158 }
4159
4160 static u32 ipw_get_max_rate(struct ipw_priv *priv)
4161 {
4162         u32 i = 0x80000000;
4163         u32 mask = priv->rates_mask;
4164         /* If currently associated in B mode, restrict the maximum
4165          * rate match to B rates */
4166         if (priv->assoc_request.ieee_mode == IPW_B_MODE)
4167                 mask &= LIBIPW_CCK_RATES_MASK;
4168
4169         /* TODO: Verify that the rate is supported by the current rates
4170          * list. */
4171
4172         while (i && !(mask & i))
4173                 i >>= 1;
4174         switch (i) {
4175         case LIBIPW_CCK_RATE_1MB_MASK:
4176                 return 1000000;
4177         case LIBIPW_CCK_RATE_2MB_MASK:
4178                 return 2000000;
4179         case LIBIPW_CCK_RATE_5MB_MASK:
4180                 return 5500000;
4181         case LIBIPW_OFDM_RATE_6MB_MASK:
4182                 return 6000000;
4183         case LIBIPW_OFDM_RATE_9MB_MASK:
4184                 return 9000000;
4185         case LIBIPW_CCK_RATE_11MB_MASK:
4186                 return 11000000;
4187         case LIBIPW_OFDM_RATE_12MB_MASK:
4188                 return 12000000;
4189         case LIBIPW_OFDM_RATE_18MB_MASK:
4190                 return 18000000;
4191         case LIBIPW_OFDM_RATE_24MB_MASK:
4192                 return 24000000;
4193         case LIBIPW_OFDM_RATE_36MB_MASK:
4194                 return 36000000;
4195         case LIBIPW_OFDM_RATE_48MB_MASK:
4196                 return 48000000;
4197         case LIBIPW_OFDM_RATE_54MB_MASK:
4198                 return 54000000;
4199         }
4200
4201         if (priv->ieee->mode == IEEE_B)
4202                 return 11000000;
4203         else
4204                 return 54000000;
4205 }
4206
4207 static u32 ipw_get_current_rate(struct ipw_priv *priv)
4208 {
4209         u32 rate, len = sizeof(rate);
4210         int err;
4211
4212         if (!(priv->status & STATUS_ASSOCIATED))
4213                 return 0;
4214
4215         if (priv->tx_packets > IPW_REAL_RATE_RX_PACKET_THRESHOLD) {
4216                 err = ipw_get_ordinal(priv, IPW_ORD_STAT_TX_CURR_RATE, &rate,
4217                                       &len);
4218                 if (err) {
4219                         IPW_DEBUG_INFO("failed querying ordinals.\n");
4220                         return 0;
4221                 }
4222         } else
4223                 return ipw_get_max_rate(priv);
4224
4225         switch (rate) {
4226         case IPW_TX_RATE_1MB:
4227                 return 1000000;
4228         case IPW_TX_RATE_2MB:
4229                 return 2000000;
4230         case IPW_TX_RATE_5MB:
4231                 return 5500000;
4232         case IPW_TX_RATE_6MB:
4233                 return 6000000;
4234         case IPW_TX_RATE_9MB:
4235                 return 9000000;
4236         case IPW_TX_RATE_11MB:
4237                 return 11000000;
4238         case IPW_TX_RATE_12MB:
4239                 return 12000000;
4240         case IPW_TX_RATE_18MB:
4241                 return 18000000;
4242         case IPW_TX_RATE_24MB:
4243                 return 24000000;
4244         case IPW_TX_RATE_36MB:
4245                 return 36000000;
4246         case IPW_TX_RATE_48MB:
4247                 return 48000000;
4248         case IPW_TX_RATE_54MB:
4249                 return 54000000;
4250         }
4251
4252         return 0;
4253 }
4254
4255 #define IPW_STATS_INTERVAL (2 * HZ)
4256 static void ipw_gather_stats(struct ipw_priv *priv)
4257 {
4258         u32 rx_err, rx_err_delta, rx_packets_delta;
4259         u32 tx_failures, tx_failures_delta, tx_packets_delta;
4260         u32 missed_beacons_percent, missed_beacons_delta;
4261         u32 quality = 0;
4262         u32 len = sizeof(u32);
4263         s16 rssi;
4264         u32 beacon_quality, signal_quality, tx_quality, rx_quality,
4265             rate_quality;
4266         u32 max_rate;
4267
4268         if (!(priv->status & STATUS_ASSOCIATED)) {
4269                 priv->quality = 0;
4270                 return;
4271         }
4272
4273         /* Update the statistics */
4274         ipw_get_ordinal(priv, IPW_ORD_STAT_MISSED_BEACONS,
4275                         &priv->missed_beacons, &len);
4276         missed_beacons_delta = priv->missed_beacons - priv->last_missed_beacons;
4277         priv->last_missed_beacons = priv->missed_beacons;
4278         if (priv->assoc_request.beacon_interval) {
4279                 missed_beacons_percent = missed_beacons_delta *
4280                     (HZ * le16_to_cpu(priv->assoc_request.beacon_interval)) /
4281                     (IPW_STATS_INTERVAL * 10);
4282         } else {
4283                 missed_beacons_percent = 0;
4284         }
4285         average_add(&priv->average_missed_beacons, missed_beacons_percent);
4286
4287         ipw_get_ordinal(priv, IPW_ORD_STAT_RX_ERR_CRC, &rx_err, &len);
4288         rx_err_delta = rx_err - priv->last_rx_err;
4289         priv->last_rx_err = rx_err;
4290
4291         ipw_get_ordinal(priv, IPW_ORD_STAT_TX_FAILURE, &tx_failures, &len);
4292         tx_failures_delta = tx_failures - priv->last_tx_failures;
4293         priv->last_tx_failures = tx_failures;
4294
4295         rx_packets_delta = priv->rx_packets - priv->last_rx_packets;
4296         priv->last_rx_packets = priv->rx_packets;
4297
4298         tx_packets_delta = priv->tx_packets - priv->last_tx_packets;
4299         priv->last_tx_packets = priv->tx_packets;
4300
4301         /* Calculate quality based on the following:
4302          *
4303          * Missed beacon: 100% = 0, 0% = 70% missed
4304          * Rate: 60% = 1Mbs, 100% = Max
4305          * Rx and Tx errors represent a straight % of total Rx/Tx
4306          * RSSI: 100% = > -50,  0% = < -80
4307          * Rx errors: 100% = 0, 0% = 50% missed
4308          *
4309          * The lowest computed quality is used.
4310          *
4311          */
4312 #define BEACON_THRESHOLD 5
4313         beacon_quality = 100 - missed_beacons_percent;
4314         if (beacon_quality < BEACON_THRESHOLD)
4315                 beacon_quality = 0;
4316         else
4317                 beacon_quality = (beacon_quality - BEACON_THRESHOLD) * 100 /
4318                     (100 - BEACON_THRESHOLD);
4319         IPW_DEBUG_STATS("Missed beacon: %3d%% (%d%%)\n",
4320                         beacon_quality, missed_beacons_percent);
4321
4322         priv->last_rate = ipw_get_current_rate(priv);
4323         max_rate = ipw_get_max_rate(priv);
4324         rate_quality = priv->last_rate * 40 / max_rate + 60;
4325         IPW_DEBUG_STATS("Rate quality : %3d%% (%dMbs)\n",
4326                         rate_quality, priv->last_rate / 1000000);
4327
4328         if (rx_packets_delta > 100 && rx_packets_delta + rx_err_delta)
4329                 rx_quality = 100 - (rx_err_delta * 100) /
4330                     (rx_packets_delta + rx_err_delta);
4331         else
4332                 rx_quality = 100;
4333         IPW_DEBUG_STATS("Rx quality   : %3d%% (%u errors, %u packets)\n",
4334                         rx_quality, rx_err_delta, rx_packets_delta);
4335
4336         if (tx_packets_delta > 100 && tx_packets_delta + tx_failures_delta)
4337                 tx_quality = 100 - (tx_failures_delta * 100) /
4338                     (tx_packets_delta + tx_failures_delta);
4339         else
4340                 tx_quality = 100;
4341         IPW_DEBUG_STATS("Tx quality   : %3d%% (%u errors, %u packets)\n",
4342                         tx_quality, tx_failures_delta, tx_packets_delta);
4343
4344         rssi = priv->exp_avg_rssi;
4345         signal_quality =
4346             (100 *
4347              (priv->ieee->perfect_rssi - priv->ieee->worst_rssi) *
4348              (priv->ieee->perfect_rssi - priv->ieee->worst_rssi) -
4349              (priv->ieee->perfect_rssi - rssi) *
4350              (15 * (priv->ieee->perfect_rssi - priv->ieee->worst_rssi) +
4351               62 * (priv->ieee->perfect_rssi - rssi))) /
4352             ((priv->ieee->perfect_rssi - priv->ieee->worst_rssi) *
4353              (priv->ieee->perfect_rssi - priv->ieee->worst_rssi));
4354         if (signal_quality > 100)
4355                 signal_quality = 100;
4356         else if (signal_quality < 1)
4357                 signal_quality = 0;
4358
4359         IPW_DEBUG_STATS("Signal level : %3d%% (%d dBm)\n",
4360                         signal_quality, rssi);
4361
4362         quality = min(rx_quality, signal_quality);
4363         quality = min(tx_quality, quality);
4364         quality = min(rate_quality, quality);
4365         quality = min(beacon_quality, quality);
4366         if (quality == beacon_quality)
4367                 IPW_DEBUG_STATS("Quality (%d%%): Clamped to missed beacons.\n",
4368                                 quality);
4369         if (quality == rate_quality)
4370                 IPW_DEBUG_STATS("Quality (%d%%): Clamped to rate quality.\n",
4371                                 quality);
4372         if (quality == tx_quality)
4373                 IPW_DEBUG_STATS("Quality (%d%%): Clamped to Tx quality.\n",
4374                                 quality);
4375         if (quality == rx_quality)
4376                 IPW_DEBUG_STATS("Quality (%d%%): Clamped to Rx quality.\n",
4377                                 quality);
4378         if (quality == signal_quality)
4379                 IPW_DEBUG_STATS("Quality (%d%%): Clamped to signal quality.\n",
4380                                 quality);
4381
4382         priv->quality = quality;
4383
4384         schedule_delayed_work(&priv->gather_stats, IPW_STATS_INTERVAL);
4385 }
4386
4387 static void ipw_bg_gather_stats(struct work_struct *work)
4388 {
4389         struct ipw_priv *priv =
4390                 container_of(work, struct ipw_priv, gather_stats.work);
4391         mutex_lock(&priv->mutex);
4392         ipw_gather_stats(priv);
4393         mutex_unlock(&priv->mutex);
4394 }
4395
4396 /* Missed beacon behavior:
4397  * 1st missed -> roaming_threshold, just wait, don't do any scan/roam.
4398  * roaming_threshold -> disassociate_threshold, scan and roam for better signal.
4399  * Above disassociate threshold, give up and stop scanning.
4400  * Roaming is disabled if disassociate_threshold <= roaming_threshold  */
4401 static void ipw_handle_missed_beacon(struct ipw_priv *priv,
4402                                             int missed_count)
4403 {
4404         priv->notif_missed_beacons = missed_count;
4405
4406         if (missed_count > priv->disassociate_threshold &&
4407             priv->status & STATUS_ASSOCIATED) {
4408                 /* If associated and we've hit the missed
4409                  * beacon threshold, disassociate, turn
4410                  * off roaming, and abort any active scans */
4411                 IPW_DEBUG(IPW_DL_INFO | IPW_DL_NOTIF |
4412                           IPW_DL_STATE | IPW_DL_ASSOC,
4413                           "Missed beacon: %d - disassociate\n", missed_count);
4414                 priv->status &= ~STATUS_ROAMING;
4415                 if (priv->status & STATUS_SCANNING) {
4416                         IPW_DEBUG(IPW_DL_INFO | IPW_DL_NOTIF |
4417                                   IPW_DL_STATE,
4418                                   "Aborting scan with missed beacon.\n");
4419                         schedule_work(&priv->abort_scan);
4420                 }
4421
4422                 schedule_work(&priv->disassociate);
4423                 return;
4424         }
4425
4426         if (priv->status & STATUS_ROAMING) {
4427                 /* If we are currently roaming, then just
4428                  * print a debug statement... */
4429                 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE,
4430                           "Missed beacon: %d - roam in progress\n",
4431                           missed_count);
4432                 return;
4433         }
4434
4435         if (roaming &&
4436             (missed_count > priv->roaming_threshold &&
4437              missed_count <= priv->disassociate_threshold)) {
4438                 /* If we are not already roaming, set the ROAM
4439                  * bit in the status and kick off a scan.
4440                  * This can happen several times before we reach
4441                  * disassociate_threshold. */
4442                 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE,
4443                           "Missed beacon: %d - initiate "
4444                           "roaming\n", missed_count);
4445                 if (!(priv->status & STATUS_ROAMING)) {
4446                         priv->status |= STATUS_ROAMING;
4447                         if (!(priv->status & STATUS_SCANNING))
4448                                 schedule_delayed_work(&priv->request_scan, 0);
4449                 }
4450                 return;
4451         }
4452
4453         if (priv->status & STATUS_SCANNING &&
4454             missed_count > IPW_MB_SCAN_CANCEL_THRESHOLD) {
4455                 /* Stop scan to keep fw from getting
4456                  * stuck (only if we aren't roaming --
4457                  * otherwise we'll never scan more than 2 or 3
4458                  * channels..) */
4459                 IPW_DEBUG(IPW_DL_INFO | IPW_DL_NOTIF | IPW_DL_STATE,
4460                           "Aborting scan with missed beacon.\n");
4461                 schedule_work(&priv->abort_scan);
4462         }
4463
4464         IPW_DEBUG_NOTIF("Missed beacon: %d\n", missed_count);
4465 }
4466
4467 static void ipw_scan_event(struct work_struct *work)
4468 {
4469         union iwreq_data wrqu;
4470
4471         struct ipw_priv *priv =
4472                 container_of(work, struct ipw_priv, scan_event.work);
4473
4474         wrqu.data.length = 0;
4475         wrqu.data.flags = 0;
4476         wireless_send_event(priv->net_dev, SIOCGIWSCAN, &wrqu, NULL);
4477 }
4478
4479 static void handle_scan_event(struct ipw_priv *priv)
4480 {
4481         /* Only userspace-requested scan completion events go out immediately */
4482         if (!priv->user_requested_scan) {
4483                 schedule_delayed_work(&priv->scan_event,
4484                                       round_jiffies_relative(msecs_to_jiffies(4000)));
4485         } else {
4486                 priv->user_requested_scan = 0;
4487                 mod_delayed_work(system_wq, &priv->scan_event, 0);
4488         }
4489 }
4490
4491 /**
4492  * Handle host notification packet.
4493  * Called from interrupt routine
4494  */
4495 static void ipw_rx_notification(struct ipw_priv *priv,
4496                                        struct ipw_rx_notification *notif)
4497 {
4498         DECLARE_SSID_BUF(ssid);
4499         u16 size = le16_to_cpu(notif->size);
4500
4501         IPW_DEBUG_NOTIF("type = %i (%d bytes)\n", notif->subtype, size);
4502
4503         switch (notif->subtype) {
4504         case HOST_NOTIFICATION_STATUS_ASSOCIATED:{
4505                         struct notif_association *assoc = &notif->u.assoc;
4506
4507                         switch (assoc->state) {
4508                         case CMAS_ASSOCIATED:{
4509                                         IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4510                                                   IPW_DL_ASSOC,
4511                                                   "associated: '%s' %pM\n",
4512                                                   print_ssid(ssid, priv->essid,
4513                                                              priv->essid_len),
4514                                                   priv->bssid);
4515
4516                                         switch (priv->ieee->iw_mode) {
4517                                         case IW_MODE_INFRA:
4518                                                 memcpy(priv->ieee->bssid,
4519                                                        priv->bssid, ETH_ALEN);
4520                                                 break;
4521
4522                                         case IW_MODE_ADHOC:
4523                                                 memcpy(priv->ieee->bssid,
4524                                                        priv->bssid, ETH_ALEN);
4525
4526                                                 /* clear out the station table */
4527                                                 priv->num_stations = 0;
4528
4529                                                 IPW_DEBUG_ASSOC
4530                                                     ("queueing adhoc check\n");
4531                                                 schedule_delayed_work(
4532                                                         &priv->adhoc_check,
4533                                                         le16_to_cpu(priv->
4534                                                         assoc_request.
4535                                                         beacon_interval));
4536                                                 break;
4537                                         }
4538
4539                                         priv->status &= ~STATUS_ASSOCIATING;
4540                                         priv->status |= STATUS_ASSOCIATED;
4541                                         schedule_work(&priv->system_config);
4542
4543 #ifdef CONFIG_IPW2200_QOS
4544 #define IPW_GET_PACKET_STYPE(x) WLAN_FC_GET_STYPE( \
4545                          le16_to_cpu(((struct ieee80211_hdr *)(x))->frame_control))
4546                                         if ((priv->status & STATUS_AUTH) &&
4547                                             (IPW_GET_PACKET_STYPE(&notif->u.raw)
4548                                              == IEEE80211_STYPE_ASSOC_RESP)) {
4549                                                 if ((sizeof
4550                                                      (struct
4551                                                       libipw_assoc_response)
4552                                                      <= size)
4553                                                     && (size <= 2314)) {
4554                                                         struct
4555                                                         libipw_rx_stats
4556                                                             stats = {
4557                                                                 .len = size - 1,
4558                                                         };
4559
4560                                                         IPW_DEBUG_QOS
4561                                                             ("QoS Associate "
4562                                                              "size %d\n", size);
4563                                                         libipw_rx_mgt(priv->
4564                                                                          ieee,
4565                                                                          (struct
4566                                                                           libipw_hdr_4addr
4567                                                                           *)
4568                                                                          &notif->u.raw, &stats);
4569                                                 }
4570                                         }
4571 #endif
4572
4573                                         schedule_work(&priv->link_up);
4574
4575                                         break;
4576                                 }
4577
4578                         case CMAS_AUTHENTICATED:{
4579                                         if (priv->
4580                                             status & (STATUS_ASSOCIATED |
4581                                                       STATUS_AUTH)) {
4582                                                 struct notif_authenticate *auth
4583                                                     = &notif->u.auth;
4584                                                 IPW_DEBUG(IPW_DL_NOTIF |
4585                                                           IPW_DL_STATE |
4586                                                           IPW_DL_ASSOC,
4587                                                           "deauthenticated: '%s' "
4588                                                           "%pM"
4589                                                           ": (0x%04X) - %s\n",
4590                                                           print_ssid(ssid,
4591                                                                      priv->
4592                                                                      essid,
4593                                                                      priv->
4594                                                                      essid_len),
4595                                                           priv->bssid,
4596                                                           le16_to_cpu(auth->status),
4597                                                           ipw_get_status_code
4598                                                           (le16_to_cpu
4599                                                            (auth->status)));
4600
4601                                                 priv->status &=
4602                                                     ~(STATUS_ASSOCIATING |
4603                                                       STATUS_AUTH |
4604                                                       STATUS_ASSOCIATED);
4605
4606                                                 schedule_work(&priv->link_down);
4607                                                 break;
4608                                         }
4609
4610                                         IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4611                                                   IPW_DL_ASSOC,
4612                                                   "authenticated: '%s' %pM\n",
4613                                                   print_ssid(ssid, priv->essid,
4614                                                              priv->essid_len),
4615                                                   priv->bssid);
4616                                         break;
4617                                 }
4618
4619                         case CMAS_INIT:{
4620                                         if (priv->status & STATUS_AUTH) {
4621                                                 struct
4622                                                     libipw_assoc_response
4623                                                 *resp;
4624                                                 resp =
4625                                                     (struct
4626                                                      libipw_assoc_response
4627                                                      *)&notif->u.raw;
4628                                                 IPW_DEBUG(IPW_DL_NOTIF |
4629                                                           IPW_DL_STATE |
4630                                                           IPW_DL_ASSOC,
4631                                                           "association failed (0x%04X): %s\n",
4632                                                           le16_to_cpu(resp->status),
4633                                                           ipw_get_status_code
4634                                                           (le16_to_cpu
4635                                                            (resp->status)));
4636                                         }
4637
4638                                         IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4639                                                   IPW_DL_ASSOC,
4640                                                   "disassociated: '%s' %pM\n",
4641                                                   print_ssid(ssid, priv->essid,
4642                                                              priv->essid_len),
4643                                                   priv->bssid);
4644
4645                                         priv->status &=
4646                                             ~(STATUS_DISASSOCIATING |
4647                                               STATUS_ASSOCIATING |
4648                                               STATUS_ASSOCIATED | STATUS_AUTH);
4649                                         if (priv->assoc_network
4650                                             && (priv->assoc_network->
4651                                                 capability &
4652                                                 WLAN_CAPABILITY_IBSS))
4653                                                 ipw_remove_current_network
4654                                                     (priv);
4655
4656                                         schedule_work(&priv->link_down);
4657
4658                                         break;
4659                                 }
4660
4661                         case CMAS_RX_ASSOC_RESP:
4662                                 break;
4663
4664                         default:
4665                                 IPW_ERROR("assoc: unknown (%d)\n",
4666                                           assoc->state);
4667                                 break;
4668                         }
4669
4670                         break;
4671                 }
4672
4673         case HOST_NOTIFICATION_STATUS_AUTHENTICATE:{
4674                         struct notif_authenticate *auth = &notif->u.auth;
4675                         switch (auth->state) {
4676                         case CMAS_AUTHENTICATED:
4677                                 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE,
4678                                           "authenticated: '%s' %pM\n",
4679                                           print_ssid(ssid, priv->essid,
4680                                                      priv->essid_len),
4681                                           priv->bssid);
4682                                 priv->status |= STATUS_AUTH;
4683                                 break;
4684
4685                         case CMAS_INIT:
4686                                 if (priv->status & STATUS_AUTH) {
4687                                         IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4688                                                   IPW_DL_ASSOC,
4689                                                   "authentication failed (0x%04X): %s\n",
4690                                                   le16_to_cpu(auth->status),
4691                                                   ipw_get_status_code(le16_to_cpu
4692                                                                       (auth->
4693                                                                        status)));
4694                                 }
4695                                 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4696                                           IPW_DL_ASSOC,
4697                                           "deauthenticated: '%s' %pM\n",
4698                                           print_ssid(ssid, priv->essid,
4699                                                      priv->essid_len),
4700                                           priv->bssid);
4701
4702                                 priv->status &= ~(STATUS_ASSOCIATING |
4703                                                   STATUS_AUTH |
4704                                                   STATUS_ASSOCIATED);
4705
4706                                 schedule_work(&priv->link_down);
4707                                 break;
4708
4709                         case CMAS_TX_AUTH_SEQ_1:
4710                                 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4711                                           IPW_DL_ASSOC, "AUTH_SEQ_1\n");
4712                                 break;
4713                         case CMAS_RX_AUTH_SEQ_2:
4714                                 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4715                                           IPW_DL_ASSOC, "AUTH_SEQ_2\n");
4716                                 break;
4717                         case CMAS_AUTH_SEQ_1_PASS:
4718                                 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4719                                           IPW_DL_ASSOC, "AUTH_SEQ_1_PASS\n");
4720                                 break;
4721                         case CMAS_AUTH_SEQ_1_FAIL:
4722                                 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4723                                           IPW_DL_ASSOC, "AUTH_SEQ_1_FAIL\n");
4724                                 break;
4725                         case CMAS_TX_AUTH_SEQ_3:
4726                                 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4727                                           IPW_DL_ASSOC, "AUTH_SEQ_3\n");
4728                                 break;
4729                         case CMAS_RX_AUTH_SEQ_4:
4730                                 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4731                                           IPW_DL_ASSOC, "RX_AUTH_SEQ_4\n");
4732                                 break;
4733                         case CMAS_AUTH_SEQ_2_PASS:
4734                                 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4735                                           IPW_DL_ASSOC, "AUTH_SEQ_2_PASS\n");
4736                                 break;
4737                         case CMAS_AUTH_SEQ_2_FAIL:
4738                                 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4739                                           IPW_DL_ASSOC, "AUT_SEQ_2_FAIL\n");
4740                                 break;
4741                         case CMAS_TX_ASSOC:
4742                                 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4743                                           IPW_DL_ASSOC, "TX_ASSOC\n");
4744                                 break;
4745                         case CMAS_RX_ASSOC_RESP:
4746                                 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4747                                           IPW_DL_ASSOC, "RX_ASSOC_RESP\n");
4748
4749                                 break;
4750                         case CMAS_ASSOCIATED:
4751                                 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4752                                           IPW_DL_ASSOC, "ASSOCIATED\n");
4753                                 break;
4754                         default:
4755                                 IPW_DEBUG_NOTIF("auth: failure - %d\n",
4756                                                 auth->state);
4757                                 break;
4758                         }
4759                         break;
4760                 }
4761
4762         case HOST_NOTIFICATION_STATUS_SCAN_CHANNEL_RESULT:{
4763                         struct notif_channel_result *x =
4764                             &notif->u.channel_result;
4765
4766                         if (size == sizeof(*x)) {
4767                                 IPW_DEBUG_SCAN("Scan result for channel %d\n",
4768                                                x->channel_num);
4769                         } else {
4770                                 IPW_DEBUG_SCAN("Scan result of wrong size %d "
4771                                                "(should be %zd)\n",
4772                                                size, sizeof(*x));
4773                         }
4774                         break;
4775                 }
4776
4777         case HOST_NOTIFICATION_STATUS_SCAN_COMPLETED:{
4778                         struct notif_scan_complete *x = &notif->u.scan_complete;
4779                         if (size == sizeof(*x)) {
4780                                 IPW_DEBUG_SCAN
4781                                     ("Scan completed: type %d, %d channels, "
4782                                      "%d status\n", x->scan_type,
4783                                      x->num_channels, x->status);
4784                         } else {
4785                                 IPW_ERROR("Scan completed of wrong size %d "
4786                                           "(should be %zd)\n",
4787                                           size, sizeof(*x));
4788                         }
4789
4790                         priv->status &=
4791                             ~(STATUS_SCANNING | STATUS_SCAN_ABORTING);
4792
4793                         wake_up_interruptible(&priv->wait_state);
4794                         cancel_delayed_work(&priv->scan_check);
4795
4796                         if (priv->status & STATUS_EXIT_PENDING)
4797                                 break;
4798
4799                         priv->ieee->scans++;
4800
4801 #ifdef CONFIG_IPW2200_MONITOR
4802                         if (priv->ieee->iw_mode == IW_MODE_MONITOR) {
4803                                 priv->status |= STATUS_SCAN_FORCED;
4804                                 schedule_delayed_work(&priv->request_scan, 0);
4805                                 break;
4806                         }
4807                         priv->status &= ~STATUS_SCAN_FORCED;
4808 #endif                          /* CONFIG_IPW2200_MONITOR */
4809
4810                         /* Do queued direct scans first */
4811                         if (priv->status & STATUS_DIRECT_SCAN_PENDING)
4812                                 schedule_delayed_work(&priv->request_direct_scan, 0);
4813
4814                         if (!(priv->status & (STATUS_ASSOCIATED |
4815                                               STATUS_ASSOCIATING |
4816                                               STATUS_ROAMING |
4817                                               STATUS_DISASSOCIATING)))
4818                                 schedule_work(&priv->associate);
4819                         else if (priv->status & STATUS_ROAMING) {
4820                                 if (x->status == SCAN_COMPLETED_STATUS_COMPLETE)
4821                                         /* If a scan completed and we are in roam mode, then
4822                                          * the scan that completed was the one requested as a
4823                                          * result of entering roam... so, schedule the
4824                                          * roam work */
4825                                         schedule_work(&priv->roam);
4826                                 else
4827                                         /* Don't schedule if we aborted the scan */
4828                                         priv->status &= ~STATUS_ROAMING;
4829                         } else if (priv->status & STATUS_SCAN_PENDING)
4830                                 schedule_delayed_work(&priv->request_scan, 0);
4831                         else if (priv->config & CFG_BACKGROUND_SCAN
4832                                  && priv->status & STATUS_ASSOCIATED)
4833                                 schedule_delayed_work(&priv->request_scan,
4834                                                       round_jiffies_relative(HZ));
4835
4836                         /* Send an empty event to user space.
4837                          * We don't send the received data on the event because
4838                          * it would require us to do complex transcoding, and
4839                          * we want to minimise the work done in the irq handler
4840                          * Use a request to extract the data.
4841                          * Also, we generate this even for any scan, regardless
4842                          * on how the scan was initiated. User space can just
4843                          * sync on periodic scan to get fresh data...
4844                          * Jean II */
4845                         if (x->status == SCAN_COMPLETED_STATUS_COMPLETE)
4846                                 handle_scan_event(priv);
4847                         break;
4848                 }
4849
4850         case HOST_NOTIFICATION_STATUS_FRAG_LENGTH:{
4851                         struct notif_frag_length *x = &notif->u.frag_len;
4852
4853                         if (size == sizeof(*x))
4854                                 IPW_ERROR("Frag length: %d\n",
4855                                           le16_to_cpu(x->frag_length));
4856                         else
4857                                 IPW_ERROR("Frag length of wrong size %d "
4858                                           "(should be %zd)\n",
4859                                           size, sizeof(*x));
4860                         break;
4861                 }
4862
4863         case HOST_NOTIFICATION_STATUS_LINK_DETERIORATION:{
4864                         struct notif_link_deterioration *x =
4865                             &notif->u.link_deterioration;
4866
4867                         if (size == sizeof(*x)) {
4868                                 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE,
4869                                         "link deterioration: type %d, cnt %d\n",
4870                                         x->silence_notification_type,
4871                                         x->silence_count);
4872                                 memcpy(&priv->last_link_deterioration, x,
4873                                        sizeof(*x));
4874                         } else {
4875                                 IPW_ERROR("Link Deterioration of wrong size %d "
4876                                           "(should be %zd)\n",
4877                                           size, sizeof(*x));
4878                         }
4879                         break;
4880                 }
4881
4882         case HOST_NOTIFICATION_DINO_CONFIG_RESPONSE:{
4883                         IPW_ERROR("Dino config\n");
4884                         if (priv->hcmd
4885                             && priv->hcmd->cmd != HOST_CMD_DINO_CONFIG)
4886                                 IPW_ERROR("Unexpected DINO_CONFIG_RESPONSE\n");
4887
4888                         break;
4889                 }
4890
4891         case HOST_NOTIFICATION_STATUS_BEACON_STATE:{
4892                         struct notif_beacon_state *x = &notif->u.beacon_state;
4893                         if (size != sizeof(*x)) {
4894                                 IPW_ERROR
4895                                     ("Beacon state of wrong size %d (should "
4896                                      "be %zd)\n", size, sizeof(*x));
4897                                 break;
4898                         }
4899
4900                         if (le32_to_cpu(x->state) ==
4901                             HOST_NOTIFICATION_STATUS_BEACON_MISSING)
4902                                 ipw_handle_missed_beacon(priv,
4903                                                          le32_to_cpu(x->
4904                                                                      number));
4905
4906                         break;
4907                 }
4908
4909         case HOST_NOTIFICATION_STATUS_TGI_TX_KEY:{
4910                         struct notif_tgi_tx_key *x = &notif->u.tgi_tx_key;
4911                         if (size == sizeof(*x)) {
4912                                 IPW_ERROR("TGi Tx Key: state 0x%02x sec type "
4913                                           "0x%02x station %d\n",
4914                                           x->key_state, x->security_type,
4915                                           x->station_index);
4916                                 break;
4917                         }
4918
4919                         IPW_ERROR
4920                             ("TGi Tx Key of wrong size %d (should be %zd)\n",
4921                              size, sizeof(*x));
4922                         break;
4923                 }
4924
4925         case HOST_NOTIFICATION_CALIB_KEEP_RESULTS:{
4926                         struct notif_calibration *x = &notif->u.calibration;
4927
4928                         if (size == sizeof(*x)) {
4929                                 memcpy(&priv->calib, x, sizeof(*x));
4930                                 IPW_DEBUG_INFO("TODO: Calibration\n");
4931                                 break;
4932                         }
4933
4934                         IPW_ERROR
4935                             ("Calibration of wrong size %d (should be %zd)\n",
4936                              size, sizeof(*x));
4937                         break;
4938                 }
4939
4940         case HOST_NOTIFICATION_NOISE_STATS:{
4941                         if (size == sizeof(u32)) {
4942                                 priv->exp_avg_noise =
4943                                     exponential_average(priv->exp_avg_noise,
4944                                     (u8) (le32_to_cpu(notif->u.noise.value) & 0xff),
4945                                     DEPTH_NOISE);
4946                                 break;
4947                         }
4948
4949                         IPW_ERROR
4950                             ("Noise stat is wrong size %d (should be %zd)\n",
4951                              size, sizeof(u32));
4952                         break;
4953                 }
4954
4955         default:
4956                 IPW_DEBUG_NOTIF("Unknown notification: "
4957                                 "subtype=%d,flags=0x%2x,size=%d\n",
4958                                 notif->subtype, notif->flags, size);
4959         }
4960 }
4961
4962 /**
4963  * Destroys all DMA structures and initialise them again
4964  *
4965  * @param priv
4966  * @return error code
4967  */
4968 static int ipw_queue_reset(struct ipw_priv *priv)
4969 {
4970         int rc = 0;
4971         /** @todo customize queue sizes */
4972         int nTx = 64, nTxCmd = 8;
4973         ipw_tx_queue_free(priv);
4974         /* Tx CMD queue */
4975         rc = ipw_queue_tx_init(priv, &priv->txq_cmd, nTxCmd,
4976                                IPW_TX_CMD_QUEUE_READ_INDEX,
4977                                IPW_TX_CMD_QUEUE_WRITE_INDEX,
4978                                IPW_TX_CMD_QUEUE_BD_BASE,
4979                                IPW_TX_CMD_QUEUE_BD_SIZE);
4980         if (rc) {
4981                 IPW_ERROR("Tx Cmd queue init failed\n");
4982                 goto error;
4983         }
4984         /* Tx queue(s) */
4985         rc = ipw_queue_tx_init(priv, &priv->txq[0], nTx,
4986                                IPW_TX_QUEUE_0_READ_INDEX,
4987                                IPW_TX_QUEUE_0_WRITE_INDEX,
4988                                IPW_TX_QUEUE_0_BD_BASE, IPW_TX_QUEUE_0_BD_SIZE);
4989         if (rc) {
4990                 IPW_ERROR("Tx 0 queue init failed\n");
4991                 goto error;
4992         }
4993         rc = ipw_queue_tx_init(priv, &priv->txq[1], nTx,
4994                                IPW_TX_QUEUE_1_READ_INDEX,
4995                                IPW_TX_QUEUE_1_WRITE_INDEX,
4996                                IPW_TX_QUEUE_1_BD_BASE, IPW_TX_QUEUE_1_BD_SIZE);
4997         if (rc) {
4998                 IPW_ERROR("Tx 1 queue init failed\n");
4999                 goto error;
5000         }
5001         rc = ipw_queue_tx_init(priv, &priv->txq[2], nTx,
5002                                IPW_TX_QUEUE_2_READ_INDEX,
5003                                IPW_TX_QUEUE_2_WRITE_INDEX,
5004                                IPW_TX_QUEUE_2_BD_BASE, IPW_TX_QUEUE_2_BD_SIZE);
5005         if (rc) {
5006                 IPW_ERROR("Tx 2 queue init failed\n");
5007                 goto error;
5008         }
5009         rc = ipw_queue_tx_init(priv, &priv->txq[3], nTx,
5010                                IPW_TX_QUEUE_3_READ_INDEX,
5011                                IPW_TX_QUEUE_3_WRITE_INDEX,
5012                                IPW_TX_QUEUE_3_BD_BASE, IPW_TX_QUEUE_3_BD_SIZE);
5013         if (rc) {
5014                 IPW_ERROR("Tx 3 queue init failed\n");
5015                 goto error;
5016         }
5017         /* statistics */
5018         priv->rx_bufs_min = 0;
5019         priv->rx_pend_max = 0;
5020         return rc;
5021
5022       error:
5023         ipw_tx_queue_free(priv);
5024         return rc;
5025 }
5026
5027 /**
5028  * Reclaim Tx queue entries no more used by NIC.
5029  *
5030  * When FW advances 'R' index, all entries between old and
5031  * new 'R' index need to be reclaimed. As result, some free space
5032  * forms. If there is enough free space (> low mark), wake Tx queue.
5033  *
5034  * @note Need to protect against garbage in 'R' index
5035  * @param priv
5036  * @param txq
5037  * @param qindex
5038  * @return Number of used entries remains in the queue
5039  */
5040 static int ipw_queue_tx_reclaim(struct ipw_priv *priv,
5041                                 struct clx2_tx_queue *txq, int qindex)
5042 {
5043         u32 hw_tail;
5044         int used;
5045         struct clx2_queue *q = &txq->q;
5046
5047         hw_tail = ipw_read32(priv, q->reg_r);
5048         if (hw_tail >= q->n_bd) {
5049                 IPW_ERROR
5050                     ("Read index for DMA queue (%d) is out of range [0-%d)\n",
5051                      hw_tail, q->n_bd);
5052                 goto done;
5053         }
5054         for (; q->last_used != hw_tail;
5055              q->last_used = ipw_queue_inc_wrap(q->last_used, q->n_bd)) {
5056                 ipw_queue_tx_free_tfd(priv, txq);
5057                 priv->tx_packets++;
5058         }
5059       done:
5060         if ((ipw_tx_queue_space(q) > q->low_mark) &&
5061             (qindex >= 0))
5062                 netif_wake_queue(priv->net_dev);
5063         used = q->first_empty - q->last_used;
5064         if (used < 0)
5065                 used += q->n_bd;
5066
5067         return used;
5068 }
5069
5070 static int ipw_queue_tx_hcmd(struct ipw_priv *priv, int hcmd, void *buf,
5071                              int len, int sync)
5072 {
5073         struct clx2_tx_queue *txq = &priv->txq_cmd;
5074         struct clx2_queue *q = &txq->q;
5075         struct tfd_frame *tfd;
5076
5077         if (ipw_tx_queue_space(q) < (sync ? 1 : 2)) {
5078                 IPW_ERROR("No space for Tx\n");
5079                 return -EBUSY;
5080         }
5081
5082         tfd = &txq->bd[q->first_empty];
5083         txq->txb[q->first_empty] = NULL;
5084
5085         memset(tfd, 0, sizeof(*tfd));
5086         tfd->control_flags.message_type = TX_HOST_COMMAND_TYPE;
5087         tfd->control_flags.control_bits = TFD_NEED_IRQ_MASK;
5088         priv->hcmd_seq++;
5089         tfd->u.cmd.index = hcmd;
5090         tfd->u.cmd.length = len;
5091         memcpy(tfd->u.cmd.payload, buf, len);
5092         q->first_empty = ipw_queue_inc_wrap(q->first_empty, q->n_bd);
5093         ipw_write32(priv, q->reg_w, q->first_empty);
5094         _ipw_read32(priv, 0x90);
5095
5096         return 0;
5097 }
5098
5099 /*
5100  * Rx theory of operation
5101  *
5102  * The host allocates 32 DMA target addresses and passes the host address
5103  * to the firmware at register IPW_RFDS_TABLE_LOWER + N * RFD_SIZE where N is
5104  * 0 to 31
5105  *
5106  * Rx Queue Indexes
5107  * The host/firmware share two index registers for managing the Rx buffers.
5108  *
5109  * The READ index maps to the first position that the firmware may be writing
5110  * to -- the driver can read up to (but not including) this position and get
5111  * good data.
5112  * The READ index is managed by the firmware once the card is enabled.
5113  *
5114  * The WRITE index maps to the last position the driver has read from -- the
5115  * position preceding WRITE is the last slot the firmware can place a packet.
5116  *
5117  * The queue is empty (no good data) if WRITE = READ - 1, and is full if
5118  * WRITE = READ.
5119  *
5120  * During initialization the host sets up the READ queue position to the first
5121  * INDEX position, and WRITE to the last (READ - 1 wrapped)
5122  *
5123  * When the firmware places a packet in a buffer it will advance the READ index
5124  * and fire the RX interrupt.  The driver can then query the READ index and
5125  * process as many packets as possible, moving the WRITE index forward as it
5126  * resets the Rx queue buffers with new memory.
5127  *
5128  * The management in the driver is as follows:
5129  * + A list of pre-allocated SKBs is stored in ipw->rxq->rx_free.  When
5130  *   ipw->rxq->free_count drops to or below RX_LOW_WATERMARK, work is scheduled
5131  *   to replensish the ipw->rxq->rx_free.
5132  * + In ipw_rx_queue_replenish (scheduled) if 'processed' != 'read' then the
5133  *   ipw->rxq is replenished and the READ INDEX is updated (updating the
5134  *   'processed' and 'read' driver indexes as well)
5135  * + A received packet is processed and handed to the kernel network stack,
5136  *   detached from the ipw->rxq.  The driver 'processed' index is updated.
5137  * + The Host/Firmware ipw->rxq is replenished at tasklet time from the rx_free
5138  *   list. If there are no allocated buffers in ipw->rxq->rx_free, the READ
5139  *   INDEX is not incremented and ipw->status(RX_STALLED) is set.  If there
5140  *   were enough free buffers and RX_STALLED is set it is cleared.
5141  *
5142  *
5143  * Driver sequence:
5144  *
5145  * ipw_rx_queue_alloc()       Allocates rx_free
5146  * ipw_rx_queue_replenish()   Replenishes rx_free list from rx_used, and calls
5147  *                            ipw_rx_queue_restock
5148  * ipw_rx_queue_restock()     Moves available buffers from rx_free into Rx
5149  *                            queue, updates firmware pointers, and updates
5150  *                            the WRITE index.  If insufficient rx_free buffers
5151  *                            are available, schedules ipw_rx_queue_replenish
5152  *
5153  * -- enable interrupts --
5154  * ISR - ipw_rx()             Detach ipw_rx_mem_buffers from pool up to the
5155  *                            READ INDEX, detaching the SKB from the pool.
5156  *                            Moves the packet buffer from queue to rx_used.
5157  *                            Calls ipw_rx_queue_restock to refill any empty
5158  *                            slots.
5159  * ...
5160  *
5161  */
5162
5163 /*
5164  * If there are slots in the RX queue that  need to be restocked,
5165  * and we have free pre-allocated buffers, fill the ranks as much
5166  * as we can pulling from rx_free.
5167  *
5168  * This moves the 'write' index forward to catch up with 'processed', and
5169  * also updates the memory address in the firmware to reference the new
5170  * target buffer.
5171  */
5172 static void ipw_rx_queue_restock(struct ipw_priv *priv)
5173 {
5174         struct ipw_rx_queue *rxq = priv->rxq;
5175         struct list_head *element;
5176         struct ipw_rx_mem_buffer *rxb;
5177         unsigned long flags;
5178         int write;
5179
5180         spin_lock_irqsave(&rxq->lock, flags);
5181         write = rxq->write;
5182         while ((ipw_rx_queue_space(rxq) > 0) && (rxq->free_count)) {
5183                 element = rxq->rx_free.next;
5184                 rxb = list_entry(element, struct ipw_rx_mem_buffer, list);
5185                 list_del(element);
5186
5187                 ipw_write32(priv, IPW_RFDS_TABLE_LOWER + rxq->write * RFD_SIZE,
5188                             rxb->dma_addr);
5189                 rxq->queue[rxq->write] = rxb;
5190                 rxq->write = (rxq->write + 1) % RX_QUEUE_SIZE;
5191                 rxq->free_count--;
5192         }
5193         spin_unlock_irqrestore(&rxq->lock, flags);
5194
5195         /* If the pre-allocated buffer pool is dropping low, schedule to
5196          * refill it */
5197         if (rxq->free_count <= RX_LOW_WATERMARK)
5198                 schedule_work(&priv->rx_replenish);
5199
5200         /* If we've added more space for the firmware to place data, tell it */
5201         if (write != rxq->write)
5202                 ipw_write32(priv, IPW_RX_WRITE_INDEX, rxq->write);
5203 }
5204
5205 /*
5206  * Move all used packet from rx_used to rx_free, allocating a new SKB for each.
5207  * Also restock the Rx queue via ipw_rx_queue_restock.
5208  *
5209  * This is called as a scheduled work item (except for during intialization)
5210  */
5211 static void ipw_rx_queue_replenish(void *data)
5212 {
5213         struct ipw_priv *priv = data;
5214         struct ipw_rx_queue *rxq = priv->rxq;
5215         struct list_head *element;
5216         struct ipw_rx_mem_buffer *rxb;
5217         unsigned long flags;
5218
5219         spin_lock_irqsave(&rxq->lock, flags);
5220         while (!list_empty(&rxq->rx_used)) {
5221                 element = rxq->rx_used.next;
5222                 rxb = list_entry(element, struct ipw_rx_mem_buffer, list);
5223                 rxb->skb = alloc_skb(IPW_RX_BUF_SIZE, GFP_ATOMIC);
5224                 if (!rxb->skb) {
5225                         printk(KERN_CRIT "%s: Can not allocate SKB buffers.\n",
5226                                priv->net_dev->name);
5227                         /* We don't reschedule replenish work here -- we will
5228                          * call the restock method and if it still needs
5229                          * more buffers it will schedule replenish */
5230                         break;
5231                 }
5232                 list_del(element);
5233
5234                 rxb->dma_addr =
5235                     pci_map_single(priv->pci_dev, rxb->skb->data,
5236                                    IPW_RX_BUF_SIZE, PCI_DMA_FROMDEVICE);
5237
5238                 list_add_tail(&rxb->list, &rxq->rx_free);
5239                 rxq->free_count++;
5240         }
5241         spin_unlock_irqrestore(&rxq->lock, flags);
5242
5243         ipw_rx_queue_restock(priv);
5244 }
5245
5246 static void ipw_bg_rx_queue_replenish(struct work_struct *work)
5247 {
5248         struct ipw_priv *priv =
5249                 container_of(work, struct ipw_priv, rx_replenish);
5250         mutex_lock(&priv->mutex);
5251         ipw_rx_queue_replenish(priv);
5252         mutex_unlock(&priv->mutex);
5253 }
5254
5255 /* Assumes that the skb field of the buffers in 'pool' is kept accurate.
5256  * If an SKB has been detached, the POOL needs to have its SKB set to NULL
5257  * This free routine walks the list of POOL entries and if SKB is set to
5258  * non NULL it is unmapped and freed
5259  */
5260 static void ipw_rx_queue_free(struct ipw_priv *priv, struct ipw_rx_queue *rxq)
5261 {
5262         int i;
5263
5264         if (!rxq)
5265                 return;
5266
5267         for (i = 0; i < RX_QUEUE_SIZE + RX_FREE_BUFFERS; i++) {
5268                 if (rxq->pool[i].skb != NULL) {
5269                         pci_unmap_single(priv->pci_dev, rxq->pool[i].dma_addr,
5270                                          IPW_RX_BUF_SIZE, PCI_DMA_FROMDEVICE);
5271                         dev_kfree_skb(rxq->pool[i].skb);
5272                 }
5273         }
5274
5275         kfree(rxq);
5276 }
5277
5278 static struct ipw_rx_queue *ipw_rx_queue_alloc(struct ipw_priv *priv)
5279 {
5280         struct ipw_rx_queue *rxq;
5281         int i;
5282
5283         rxq = kzalloc(sizeof(*rxq), GFP_KERNEL);
5284         if (unlikely(!rxq)) {
5285                 IPW_ERROR("memory allocation failed\n");
5286                 return NULL;
5287         }
5288         spin_lock_init(&rxq->lock);
5289         INIT_LIST_HEAD(&rxq->rx_free);
5290         INIT_LIST_HEAD(&rxq->rx_used);
5291
5292         /* Fill the rx_used queue with _all_ of the Rx buffers */
5293         for (i = 0; i < RX_FREE_BUFFERS + RX_QUEUE_SIZE; i++)
5294                 list_add_tail(&rxq->pool[i].list, &rxq->rx_used);
5295
5296         /* Set us so that we have processed and used all buffers, but have
5297          * not restocked the Rx queue with fresh buffers */
5298         rxq->read = rxq->write = 0;
5299         rxq->free_count = 0;
5300
5301         return rxq;
5302 }
5303
5304 static int ipw_is_rate_in_mask(struct ipw_priv *priv, int ieee_mode, u8 rate)
5305 {
5306         rate &= ~LIBIPW_BASIC_RATE_MASK;
5307         if (ieee_mode == IEEE_A) {
5308                 switch (rate) {
5309                 case LIBIPW_OFDM_RATE_6MB:
5310                         return priv->rates_mask & LIBIPW_OFDM_RATE_6MB_MASK ?
5311                             1 : 0;
5312                 case LIBIPW_OFDM_RATE_9MB:
5313                         return priv->rates_mask & LIBIPW_OFDM_RATE_9MB_MASK ?
5314                             1 : 0;
5315                 case LIBIPW_OFDM_RATE_12MB:
5316                         return priv->
5317                             rates_mask & LIBIPW_OFDM_RATE_12MB_MASK ? 1 : 0;
5318                 case LIBIPW_OFDM_RATE_18MB:
5319                         return priv->
5320                             rates_mask & LIBIPW_OFDM_RATE_18MB_MASK ? 1 : 0;
5321                 case LIBIPW_OFDM_RATE_24MB:
5322                         return priv->
5323                             rates_mask & LIBIPW_OFDM_RATE_24MB_MASK ? 1 : 0;
5324                 case LIBIPW_OFDM_RATE_36MB:
5325                         return priv->
5326                             rates_mask & LIBIPW_OFDM_RATE_36MB_MASK ? 1 : 0;
5327                 case LIBIPW_OFDM_RATE_48MB:
5328                         return priv->
5329                             rates_mask & LIBIPW_OFDM_RATE_48MB_MASK ? 1 : 0;
5330                 case LIBIPW_OFDM_RATE_54MB:
5331                         return priv->
5332                             rates_mask & LIBIPW_OFDM_RATE_54MB_MASK ? 1 : 0;
5333                 default:
5334                         return 0;
5335                 }
5336         }
5337
5338         /* B and G mixed */
5339         switch (rate) {
5340         case LIBIPW_CCK_RATE_1MB:
5341                 return priv->rates_mask & LIBIPW_CCK_RATE_1MB_MASK ? 1 : 0;
5342         case LIBIPW_CCK_RATE_2MB:
5343                 return priv->rates_mask & LIBIPW_CCK_RATE_2MB_MASK ? 1 : 0;
5344         case LIBIPW_CCK_RATE_5MB:
5345                 return priv->rates_mask & LIBIPW_CCK_RATE_5MB_MASK ? 1 : 0;
5346         case LIBIPW_CCK_RATE_11MB:
5347                 return priv->rates_mask & LIBIPW_CCK_RATE_11MB_MASK ? 1 : 0;
5348         }
5349
5350         /* If we are limited to B modulations, bail at this point */
5351         if (ieee_mode == IEEE_B)
5352                 return 0;
5353
5354         /* G */
5355         switch (rate) {
5356         case LIBIPW_OFDM_RATE_6MB:
5357                 return priv->rates_mask & LIBIPW_OFDM_RATE_6MB_MASK ? 1 : 0;
5358         case LIBIPW_OFDM_RATE_9MB:
5359                 return priv->rates_mask & LIBIPW_OFDM_RATE_9MB_MASK ? 1 : 0;
5360         case LIBIPW_OFDM_RATE_12MB:
5361                 return priv->rates_mask & LIBIPW_OFDM_RATE_12MB_MASK ? 1 : 0;
5362         case LIBIPW_OFDM_RATE_18MB:
5363                 return priv->rates_mask & LIBIPW_OFDM_RATE_18MB_MASK ? 1 : 0;
5364         case LIBIPW_OFDM_RATE_24MB:
5365                 return priv->rates_mask & LIBIPW_OFDM_RATE_24MB_MASK ? 1 : 0;
5366         case LIBIPW_OFDM_RATE_36MB:
5367                 return priv->rates_mask & LIBIPW_OFDM_RATE_36MB_MASK ? 1 : 0;
5368         case LIBIPW_OFDM_RATE_48MB:
5369                 return priv->rates_mask & LIBIPW_OFDM_RATE_48MB_MASK ? 1 : 0;
5370         case LIBIPW_OFDM_RATE_54MB:
5371                 return priv->rates_mask & LIBIPW_OFDM_RATE_54MB_MASK ? 1 : 0;
5372         }
5373
5374         return 0;
5375 }
5376
5377 static int ipw_compatible_rates(struct ipw_priv *priv,
5378                                 const struct libipw_network *network,
5379                                 struct ipw_supported_rates *rates)
5380 {
5381         int num_rates, i;
5382
5383         memset(rates, 0, sizeof(*rates));
5384         num_rates = min(network->rates_len, (u8) IPW_MAX_RATES);
5385         rates->num_rates = 0;
5386         for (i = 0; i < num_rates; i++) {
5387                 if (!ipw_is_rate_in_mask(priv, network->mode,
5388                                          network->rates[i])) {
5389
5390                         if (network->rates[i] & LIBIPW_BASIC_RATE_MASK) {
5391                                 IPW_DEBUG_SCAN("Adding masked mandatory "
5392                                                "rate %02X\n",
5393                                                network->rates[i]);
5394                                 rates->supported_rates[rates->num_rates++] =
5395                                     network->rates[i];
5396                                 continue;
5397                         }
5398
5399                         IPW_DEBUG_SCAN("Rate %02X masked : 0x%08X\n",
5400                                        network->rates[i], priv->rates_mask);
5401                         continue;
5402                 }
5403
5404                 rates->supported_rates[rates->num_rates++] = network->rates[i];
5405         }
5406
5407         num_rates = min(network->rates_ex_len,
5408                         (u8) (IPW_MAX_RATES - num_rates));
5409         for (i = 0; i < num_rates; i++) {
5410                 if (!ipw_is_rate_in_mask(priv, network->mode,
5411                                          network->rates_ex[i])) {
5412                         if (network->rates_ex[i] & LIBIPW_BASIC_RATE_MASK) {
5413                                 IPW_DEBUG_SCAN("Adding masked mandatory "
5414                                                "rate %02X\n",
5415                                                network->rates_ex[i]);
5416                                 rates->supported_rates[rates->num_rates++] =
5417                                     network->rates[i];
5418                                 continue;
5419                         }
5420
5421                         IPW_DEBUG_SCAN("Rate %02X masked : 0x%08X\n",
5422                                        network->rates_ex[i], priv->rates_mask);
5423                         continue;
5424                 }
5425
5426                 rates->supported_rates[rates->num_rates++] =
5427                     network->rates_ex[i];
5428         }
5429
5430         return 1;
5431 }
5432
5433 static void ipw_copy_rates(struct ipw_supported_rates *dest,
5434                                   const struct ipw_supported_rates *src)
5435 {
5436         u8 i;
5437         for (i = 0; i < src->num_rates; i++)
5438                 dest->supported_rates[i] = src->supported_rates[i];
5439         dest->num_rates = src->num_rates;
5440 }
5441
5442 /* TODO: Look at sniffed packets in the air to determine if the basic rate
5443  * mask should ever be used -- right now all callers to add the scan rates are
5444  * set with the modulation = CCK, so BASIC_RATE_MASK is never set... */
5445 static void ipw_add_cck_scan_rates(struct ipw_supported_rates *rates,
5446                                    u8 modulation, u32 rate_mask)
5447 {
5448         u8 basic_mask = (LIBIPW_OFDM_MODULATION == modulation) ?
5449             LIBIPW_BASIC_RATE_MASK : 0;
5450
5451         if (rate_mask & LIBIPW_CCK_RATE_1MB_MASK)
5452                 rates->supported_rates[rates->num_rates++] =
5453                     LIBIPW_BASIC_RATE_MASK | LIBIPW_CCK_RATE_1MB;
5454
5455         if (rate_mask & LIBIPW_CCK_RATE_2MB_MASK)
5456                 rates->supported_rates[rates->num_rates++] =
5457                     LIBIPW_BASIC_RATE_MASK | LIBIPW_CCK_RATE_2MB;
5458
5459         if (rate_mask & LIBIPW_CCK_RATE_5MB_MASK)
5460                 rates->supported_rates[rates->num_rates++] = basic_mask |
5461                     LIBIPW_CCK_RATE_5MB;
5462
5463         if (rate_mask & LIBIPW_CCK_RATE_11MB_MASK)
5464                 rates->supported_rates[rates->num_rates++] = basic_mask |
5465                     LIBIPW_CCK_RATE_11MB;
5466 }
5467
5468 static void ipw_add_ofdm_scan_rates(struct ipw_supported_rates *rates,
5469                                     u8 modulation, u32 rate_mask)
5470 {
5471         u8 basic_mask = (LIBIPW_OFDM_MODULATION == modulation) ?
5472             LIBIPW_BASIC_RATE_MASK : 0;
5473
5474         if (rate_mask & LIBIPW_OFDM_RATE_6MB_MASK)
5475                 rates->supported_rates[rates->num_rates++] = basic_mask |
5476                     LIBIPW_OFDM_RATE_6MB;
5477
5478         if (rate_mask & LIBIPW_OFDM_RATE_9MB_MASK)
5479                 rates->supported_rates[rates->num_rates++] =
5480                     LIBIPW_OFDM_RATE_9MB;
5481
5482         if (rate_mask & LIBIPW_OFDM_RATE_12MB_MASK)
5483                 rates->supported_rates[rates->num_rates++] = basic_mask |
5484                     LIBIPW_OFDM_RATE_12MB;
5485
5486         if (rate_mask & LIBIPW_OFDM_RATE_18MB_MASK)
5487                 rates->supported_rates[rates->num_rates++] =
5488                     LIBIPW_OFDM_RATE_18MB;
5489
5490         if (rate_mask & LIBIPW_OFDM_RATE_24MB_MASK)
5491                 rates->supported_rates[rates->num_rates++] = basic_mask |
5492                     LIBIPW_OFDM_RATE_24MB;
5493
5494         if (rate_mask & LIBIPW_OFDM_RATE_36MB_MASK)
5495                 rates->supported_rates[rates->num_rates++] =
5496                     LIBIPW_OFDM_RATE_36MB;
5497
5498         if (rate_mask & LIBIPW_OFDM_RATE_48MB_MASK)
5499                 rates->supported_rates[rates->num_rates++] =
5500                     LIBIPW_OFDM_RATE_48MB;
5501
5502         if (rate_mask & LIBIPW_OFDM_RATE_54MB_MASK)
5503                 rates->supported_rates[rates->num_rates++] =
5504                     LIBIPW_OFDM_RATE_54MB;
5505 }
5506
5507 struct ipw_network_match {
5508         struct libipw_network *network;
5509         struct ipw_supported_rates rates;
5510 };
5511
5512 static int ipw_find_adhoc_network(struct ipw_priv *priv,
5513                                   struct ipw_network_match *match,
5514                                   struct libipw_network *network,
5515                                   int roaming)
5516 {
5517         struct ipw_supported_rates rates;
5518         DECLARE_SSID_BUF(ssid);
5519
5520         /* Verify that this network's capability is compatible with the
5521          * current mode (AdHoc or Infrastructure) */
5522         if ((priv->ieee->iw_mode == IW_MODE_ADHOC &&
5523              !(network->capability & WLAN_CAPABILITY_IBSS))) {
5524                 IPW_DEBUG_MERGE("Network '%s (%pM)' excluded due to "
5525                                 "capability mismatch.\n",
5526                                 print_ssid(ssid, network->ssid,
5527                                            network->ssid_len),
5528                                 network->bssid);
5529                 return 0;
5530         }
5531
5532         if (unlikely(roaming)) {
5533                 /* If we are roaming, then ensure check if this is a valid
5534                  * network to try and roam to */
5535                 if ((network->ssid_len != match->network->ssid_len) ||
5536                     memcmp(network->ssid, match->network->ssid,
5537                            network->ssid_len)) {
5538                         IPW_DEBUG_MERGE("Network '%s (%pM)' excluded "
5539                                         "because of non-network ESSID.\n",
5540                                         print_ssid(ssid, network->ssid,
5541                                                    network->ssid_len),
5542                                         network->bssid);
5543                         return 0;
5544                 }
5545         } else {
5546                 /* If an ESSID has been configured then compare the broadcast
5547                  * ESSID to ours */
5548                 if ((priv->config & CFG_STATIC_ESSID) &&
5549                     ((network->ssid_len != priv->essid_len) ||
5550                      memcmp(network->ssid, priv->essid,
5551                             min(network->ssid_len, priv->essid_len)))) {
5552                         char escaped[IW_ESSID_MAX_SIZE * 2 + 1];
5553
5554                         strncpy(escaped,
5555                                 print_ssid(ssid, network->ssid,
5556                                            network->ssid_len),
5557                                 sizeof(escaped));
5558                         IPW_DEBUG_MERGE("Network '%s (%pM)' excluded "
5559                                         "because of ESSID mismatch: '%s'.\n",
5560                                         escaped, network->bssid,
5561                                         print_ssid(ssid, priv->essid,
5562                                                    priv->essid_len));
5563                         return 0;
5564                 }
5565         }
5566
5567         /* If the old network rate is better than this one, don't bother
5568          * testing everything else. */
5569
5570         if (network->time_stamp[0] < match->network->time_stamp[0]) {
5571                 IPW_DEBUG_MERGE("Network '%s excluded because newer than "
5572                                 "current network.\n",
5573                                 print_ssid(ssid, match->network->ssid,
5574                                            match->network->ssid_len));
5575                 return 0;
5576         } else if (network->time_stamp[1] < match->network->time_stamp[1]) {
5577                 IPW_DEBUG_MERGE("Network '%s excluded because newer than "
5578                                 "current network.\n",
5579                                 print_ssid(ssid, match->network->ssid,
5580                                            match->network->ssid_len));
5581                 return 0;
5582         }
5583
5584         /* Now go through and see if the requested network is valid... */
5585         if (priv->ieee->scan_age != 0 &&
5586             time_after(jiffies, network->last_scanned + priv->ieee->scan_age)) {
5587                 IPW_DEBUG_MERGE("Network '%s (%pM)' excluded "
5588                                 "because of age: %ums.\n",
5589                                 print_ssid(ssid, network->ssid,
5590                                            network->ssid_len),
5591                                 network->bssid,
5592                                 jiffies_to_msecs(jiffies -
5593                                                  network->last_scanned));
5594                 return 0;
5595         }
5596
5597         if ((priv->config & CFG_STATIC_CHANNEL) &&
5598             (network->channel != priv->channel)) {
5599                 IPW_DEBUG_MERGE("Network '%s (%pM)' excluded "
5600                                 "because of channel mismatch: %d != %d.\n",
5601                                 print_ssid(ssid, network->ssid,
5602                                            network->ssid_len),
5603                                 network->bssid,
5604                                 network->channel, priv->channel);
5605                 return 0;
5606         }
5607
5608         /* Verify privacy compatibility */
5609         if (((priv->capability & CAP_PRIVACY_ON) ? 1 : 0) !=
5610             ((network->capability & WLAN_CAPABILITY_PRIVACY) ? 1 : 0)) {
5611                 IPW_DEBUG_MERGE("Network '%s (%pM)' excluded "
5612                                 "because of privacy mismatch: %s != %s.\n",
5613                                 print_ssid(ssid, network->ssid,
5614                                            network->ssid_len),
5615                                 network->bssid,
5616                                 priv->
5617                                 capability & CAP_PRIVACY_ON ? "on" : "off",
5618                                 network->
5619                                 capability & WLAN_CAPABILITY_PRIVACY ? "on" :
5620                                 "off");
5621                 return 0;
5622         }
5623
5624         if (!memcmp(network->bssid, priv->bssid, ETH_ALEN)) {
5625                 IPW_DEBUG_MERGE("Network '%s (%pM)' excluded "
5626                                 "because of the same BSSID match: %pM"
5627                                 ".\n", print_ssid(ssid, network->ssid,
5628                                                   network->ssid_len),
5629                                 network->bssid,
5630                                 priv->bssid);
5631                 return 0;
5632         }
5633
5634         /* Filter out any incompatible freq / mode combinations */
5635         if (!libipw_is_valid_mode(priv->ieee, network->mode)) {
5636                 IPW_DEBUG_MERGE("Network '%s (%pM)' excluded "
5637                                 "because of invalid frequency/mode "
5638                                 "combination.\n",
5639                                 print_ssid(ssid, network->ssid,
5640                                            network->ssid_len),
5641                                 network->bssid);
5642                 return 0;
5643         }
5644
5645         /* Ensure that the rates supported by the driver are compatible with
5646          * this AP, including verification of basic rates (mandatory) */
5647         if (!ipw_compatible_rates(priv, network, &rates)) {
5648                 IPW_DEBUG_MERGE("Network '%s (%pM)' excluded "
5649                                 "because configured rate mask excludes "
5650                                 "AP mandatory rate.\n",
5651                                 print_ssid(ssid, network->ssid,
5652                                            network->ssid_len),
5653                                 network->bssid);
5654                 return 0;
5655         }
5656
5657         if (rates.num_rates == 0) {
5658                 IPW_DEBUG_MERGE("Network '%s (%pM)' excluded "
5659                                 "because of no compatible rates.\n",
5660                                 print_ssid(ssid, network->ssid,
5661                                            network->ssid_len),
5662                                 network->bssid);
5663                 return 0;
5664         }
5665
5666         /* TODO: Perform any further minimal comparititive tests.  We do not
5667          * want to put too much policy logic here; intelligent scan selection
5668          * should occur within a generic IEEE 802.11 user space tool.  */
5669
5670         /* Set up 'new' AP to this network */
5671         ipw_copy_rates(&match->rates, &rates);
5672         match->network = network;
5673         IPW_DEBUG_MERGE("Network '%s (%pM)' is a viable match.\n",
5674                         print_ssid(ssid, network->ssid, network->ssid_len),
5675                         network->bssid);
5676
5677         return 1;
5678 }
5679
5680 static void ipw_merge_adhoc_network(struct work_struct *work)
5681 {
5682         DECLARE_SSID_BUF(ssid);
5683         struct ipw_priv *priv =
5684                 container_of(work, struct ipw_priv, merge_networks);
5685         struct libipw_network *network = NULL;
5686         struct ipw_network_match match = {
5687                 .network = priv->assoc_network
5688         };
5689
5690         if ((priv->status & STATUS_ASSOCIATED) &&
5691             (priv->ieee->iw_mode == IW_MODE_ADHOC)) {
5692                 /* First pass through ROAM process -- look for a better
5693                  * network */
5694                 unsigned long flags;
5695
5696                 spin_lock_irqsave(&priv->ieee->lock, flags);
5697                 list_for_each_entry(network, &priv->ieee->network_list, list) {
5698                         if (network != priv->assoc_network)
5699                                 ipw_find_adhoc_network(priv, &match, network,
5700                                                        1);
5701                 }
5702                 spin_unlock_irqrestore(&priv->ieee->lock, flags);
5703
5704                 if (match.network == priv->assoc_network) {
5705                         IPW_DEBUG_MERGE("No better ADHOC in this network to "
5706                                         "merge to.\n");
5707                         return;
5708                 }
5709
5710                 mutex_lock(&priv->mutex);
5711                 if ((priv->ieee->iw_mode == IW_MODE_ADHOC)) {
5712                         IPW_DEBUG_MERGE("remove network %s\n",
5713                                         print_ssid(ssid, priv->essid,
5714                                                    priv->essid_len));
5715                         ipw_remove_current_network(priv);
5716                 }
5717
5718                 ipw_disassociate(priv);
5719                 priv->assoc_network = match.network;
5720                 mutex_unlock(&priv->mutex);
5721                 return;
5722         }
5723 }
5724
5725 static int ipw_best_network(struct ipw_priv *priv,
5726                             struct ipw_network_match *match,
5727                             struct libipw_network *network, int roaming)
5728 {
5729         struct ipw_supported_rates rates;
5730         DECLARE_SSID_BUF(ssid);
5731
5732         /* Verify that this network's capability is compatible with the
5733          * current mode (AdHoc or Infrastructure) */
5734         if ((priv->ieee->iw_mode == IW_MODE_INFRA &&
5735              !(network->capability & WLAN_CAPABILITY_ESS)) ||
5736             (priv->ieee->iw_mode == IW_MODE_ADHOC &&
5737              !(network->capability & WLAN_CAPABILITY_IBSS))) {
5738                 IPW_DEBUG_ASSOC("Network '%s (%pM)' excluded due to "
5739                                 "capability mismatch.\n",
5740                                 print_ssid(ssid, network->ssid,
5741                                            network->ssid_len),
5742                                 network->bssid);
5743                 return 0;
5744         }
5745
5746         if (unlikely(roaming)) {
5747                 /* If we are roaming, then ensure check if this is a valid
5748                  * network to try and roam to */
5749                 if ((network->ssid_len != match->network->ssid_len) ||
5750                     memcmp(network->ssid, match->network->ssid,
5751                            network->ssid_len)) {
5752                         IPW_DEBUG_ASSOC("Network '%s (%pM)' excluded "
5753                                         "because of non-network ESSID.\n",
5754                                         print_ssid(ssid, network->ssid,
5755                                                    network->ssid_len),
5756                                         network->bssid);
5757                         return 0;
5758                 }
5759         } else {
5760                 /* If an ESSID has been configured then compare the broadcast
5761                  * ESSID to ours */
5762                 if ((priv->config & CFG_STATIC_ESSID) &&
5763                     ((network->ssid_len != priv->essid_len) ||
5764                      memcmp(network->ssid, priv->essid,
5765                             min(network->ssid_len, priv->essid_len)))) {
5766                         char escaped[IW_ESSID_MAX_SIZE * 2 + 1];
5767                         strncpy(escaped,
5768                                 print_ssid(ssid, network->ssid,
5769                                            network->ssid_len),
5770                                 sizeof(escaped));
5771                         IPW_DEBUG_ASSOC("Network '%s (%pM)' excluded "
5772                                         "because of ESSID mismatch: '%s'.\n",
5773                                         escaped, network->bssid,
5774                                         print_ssid(ssid, priv->essid,
5775                                                    priv->essid_len));
5776                         return 0;
5777                 }
5778         }
5779
5780         /* If the old network rate is better than this one, don't bother
5781          * testing everything else. */
5782         if (match->network && match->network->stats.rssi > network->stats.rssi) {
5783                 char escaped[IW_ESSID_MAX_SIZE * 2 + 1];
5784                 strncpy(escaped,
5785                         print_ssid(ssid, network->ssid, network->ssid_len),
5786                         sizeof(escaped));
5787                 IPW_DEBUG_ASSOC("Network '%s (%pM)' excluded because "
5788                                 "'%s (%pM)' has a stronger signal.\n",
5789                                 escaped, network->bssid,
5790                                 print_ssid(ssid, match->network->ssid,
5791                                            match->network->ssid_len),
5792                                 match->network->bssid);
5793                 return 0;
5794         }
5795
5796         /* If this network has already had an association attempt within the
5797          * last 3 seconds, do not try and associate again... */
5798         if (network->last_associate &&
5799             time_after(network->last_associate + (HZ * 3UL), jiffies)) {
5800                 IPW_DEBUG_ASSOC("Network '%s (%pM)' excluded "
5801                                 "because of storming (%ums since last "
5802                                 "assoc attempt).\n",
5803                                 print_ssid(ssid, network->ssid,
5804                                            network->ssid_len),
5805                                 network->bssid,
5806                                 jiffies_to_msecs(jiffies -
5807                                                  network->last_associate));
5808                 return 0;
5809         }
5810
5811         /* Now go through and see if the requested network is valid... */
5812         if (priv->ieee->scan_age != 0 &&
5813             time_after(jiffies, network->last_scanned + priv->ieee->scan_age)) {
5814                 IPW_DEBUG_ASSOC("Network '%s (%pM)' excluded "
5815                                 "because of age: %ums.\n",
5816                                 print_ssid(ssid, network->ssid,
5817                                            network->ssid_len),
5818                                 network->bssid,
5819                                 jiffies_to_msecs(jiffies -
5820                                                  network->last_scanned));
5821                 return 0;
5822         }
5823
5824         if ((priv->config & CFG_STATIC_CHANNEL) &&
5825             (network->channel != priv->channel)) {
5826                 IPW_DEBUG_ASSOC("Network '%s (%pM)' excluded "
5827                                 "because of channel mismatch: %d != %d.\n",
5828                                 print_ssid(ssid, network->ssid,
5829                                            network->ssid_len),
5830                                 network->bssid,
5831                                 network->channel, priv->channel);
5832                 return 0;
5833         }
5834
5835         /* Verify privacy compatibility */
5836         if (((priv->capability & CAP_PRIVACY_ON) ? 1 : 0) !=
5837             ((network->capability & WLAN_CAPABILITY_PRIVACY) ? 1 : 0)) {
5838                 IPW_DEBUG_ASSOC("Network '%s (%pM)' excluded "
5839                                 "because of privacy mismatch: %s != %s.\n",
5840                                 print_ssid(ssid, network->ssid,
5841                                            network->ssid_len),
5842                                 network->bssid,
5843                                 priv->capability & CAP_PRIVACY_ON ? "on" :
5844                                 "off",
5845                                 network->capability &
5846                                 WLAN_CAPABILITY_PRIVACY ? "on" : "off");
5847                 return 0;
5848         }
5849
5850         if ((priv->config & CFG_STATIC_BSSID) &&
5851             memcmp(network->bssid, priv->bssid, ETH_ALEN)) {
5852                 IPW_DEBUG_ASSOC("Network '%s (%pM)' excluded "
5853                                 "because of BSSID mismatch: %pM.\n",
5854                                 print_ssid(ssid, network->ssid,
5855                                            network->ssid_len),
5856                                 network->bssid, priv->bssid);
5857                 return 0;
5858         }
5859
5860         /* Filter out any incompatible freq / mode combinations */
5861         if (!libipw_is_valid_mode(priv->ieee, network->mode)) {
5862                 IPW_DEBUG_ASSOC("Network '%s (%pM)' excluded "
5863                                 "because of invalid frequency/mode "
5864                                 "combination.\n",
5865                                 print_ssid(ssid, network->ssid,
5866                                            network->ssid_len),
5867                                 network->bssid);
5868                 return 0;
5869         }
5870
5871         /* Filter out invalid channel in current GEO */
5872         if (!libipw_is_valid_channel(priv->ieee, network->channel)) {
5873                 IPW_DEBUG_ASSOC("Network '%s (%pM)' excluded "
5874                                 "because of invalid channel in current GEO\n",
5875                                 print_ssid(ssid, network->ssid,
5876                                            network->ssid_len),
5877                                 network->bssid);
5878                 return 0;
5879         }
5880
5881         /* Ensure that the rates supported by the driver are compatible with
5882          * this AP, including verification of basic rates (mandatory) */
5883         if (!ipw_compatible_rates(priv, network, &rates)) {
5884                 IPW_DEBUG_ASSOC("Network '%s (%pM)' excluded "
5885                                 "because configured rate mask excludes "
5886                                 "AP mandatory rate.\n",
5887                                 print_ssid(ssid, network->ssid,
5888                                            network->ssid_len),
5889                                 network->bssid);
5890                 return 0;
5891         }
5892
5893         if (rates.num_rates == 0) {
5894                 IPW_DEBUG_ASSOC("Network '%s (%pM)' excluded "
5895                                 "because of no compatible rates.\n",
5896                                 print_ssid(ssid, network->ssid,
5897                                            network->ssid_len),
5898                                 network->bssid);
5899                 return 0;
5900         }
5901
5902         /* TODO: Perform any further minimal comparititive tests.  We do not
5903          * want to put too much policy logic here; intelligent scan selection
5904          * should occur within a generic IEEE 802.11 user space tool.  */
5905
5906         /* Set up 'new' AP to this network */
5907         ipw_copy_rates(&match->rates, &rates);
5908         match->network = network;
5909
5910         IPW_DEBUG_ASSOC("Network '%s (%pM)' is a viable match.\n",
5911                         print_ssid(ssid, network->ssid, network->ssid_len),
5912                         network->bssid);
5913
5914         return 1;
5915 }
5916
5917 static void ipw_adhoc_create(struct ipw_priv *priv,
5918                              struct libipw_network *network)
5919 {
5920         const struct libipw_geo *geo = libipw_get_geo(priv->ieee);
5921         int i;
5922
5923         /*
5924          * For the purposes of scanning, we can set our wireless mode
5925          * to trigger scans across combinations of bands, but when it
5926          * comes to creating a new ad-hoc network, we have tell the FW
5927          * exactly which band to use.
5928          *
5929          * We also have the possibility of an invalid channel for the
5930          * chossen band.  Attempting to create a new ad-hoc network
5931          * with an invalid channel for wireless mode will trigger a
5932          * FW fatal error.
5933          *
5934          */
5935         switch (libipw_is_valid_channel(priv->ieee, priv->channel)) {
5936         case LIBIPW_52GHZ_BAND:
5937                 network->mode = IEEE_A;
5938                 i = libipw_channel_to_index(priv->ieee, priv->channel);
5939                 BUG_ON(i == -1);
5940                 if (geo->a[i].flags & LIBIPW_CH_PASSIVE_ONLY) {
5941                         IPW_WARNING("Overriding invalid channel\n");
5942                         priv->channel = geo->a[0].channel;
5943                 }
5944                 break;
5945
5946         case LIBIPW_24GHZ_BAND:
5947                 if (priv->ieee->mode & IEEE_G)
5948                         network->mode = IEEE_G;
5949                 else
5950                         network->mode = IEEE_B;
5951                 i = libipw_channel_to_index(priv->ieee, priv->channel);
5952                 BUG_ON(i == -1);
5953                 if (geo->bg[i].flags & LIBIPW_CH_PASSIVE_ONLY) {
5954                         IPW_WARNING("Overriding invalid channel\n");
5955                         priv->channel = geo->bg[0].channel;
5956                 }
5957                 break;
5958
5959         default:
5960                 IPW_WARNING("Overriding invalid channel\n");
5961                 if (priv->ieee->mode & IEEE_A) {
5962                         network->mode = IEEE_A;
5963                         priv->channel = geo->a[0].channel;
5964                 } else if (priv->ieee->mode & IEEE_G) {
5965                         network->mode = IEEE_G;
5966                         priv->channel = geo->bg[0].channel;
5967                 } else {
5968                         network->mode = IEEE_B;
5969                         priv->channel = geo->bg[0].channel;
5970                 }
5971                 break;
5972         }
5973
5974         network->channel = priv->channel;
5975         priv->config |= CFG_ADHOC_PERSIST;
5976         ipw_create_bssid(priv, network->bssid);
5977         network->ssid_len = priv->essid_len;
5978         memcpy(network->ssid, priv->essid, priv->essid_len);
5979         memset(&network->stats, 0, sizeof(network->stats));
5980         network->capability = WLAN_CAPABILITY_IBSS;
5981         if (!(priv->config & CFG_PREAMBLE_LONG))
5982                 network->capability |= WLAN_CAPABILITY_SHORT_PREAMBLE;
5983         if (priv->capability & CAP_PRIVACY_ON)
5984                 network->capability |= WLAN_CAPABILITY_PRIVACY;
5985         network->rates_len = min(priv->rates.num_rates, MAX_RATES_LENGTH);
5986         memcpy(network->rates, priv->rates.supported_rates, network->rates_len);
5987         network->rates_ex_len = priv->rates.num_rates - network->rates_len;
5988         memcpy(network->rates_ex,
5989                &priv->rates.supported_rates[network->rates_len],
5990                network->rates_ex_len);
5991         network->last_scanned = 0;
5992         network->flags = 0;
5993         network->last_associate = 0;
5994         network->time_stamp[0] = 0;
5995         network->time_stamp[1] = 0;
5996         network->beacon_interval = 100; /* Default */
5997         network->listen_interval = 10;  /* Default */
5998         network->atim_window = 0;       /* Default */
5999         network->wpa_ie_len = 0;
6000         network->rsn_ie_len = 0;
6001 }
6002
6003 static void ipw_send_tgi_tx_key(struct ipw_priv *priv, int type, int index)
6004 {
6005         struct ipw_tgi_tx_key key;
6006
6007         if (!(priv->ieee->sec.flags & (1 << index)))
6008                 return;
6009
6010         key.key_id = index;
6011         memcpy(key.key, priv->ieee->sec.keys[index], SCM_TEMPORAL_KEY_LENGTH);
6012         key.security_type = type;
6013         key.station_index = 0;  /* always 0 for BSS */
6014         key.flags = 0;
6015         /* 0 for new key; previous value of counter (after fatal error) */
6016         key.tx_counter[0] = cpu_to_le32(0);
6017         key.tx_counter[1] = cpu_to_le32(0);
6018
6019         ipw_send_cmd_pdu(priv, IPW_CMD_TGI_TX_KEY, sizeof(key), &key);
6020 }
6021
6022 static void ipw_send_wep_keys(struct ipw_priv *priv, int type)
6023 {
6024         struct ipw_wep_key key;
6025         int i;
6026
6027         key.cmd_id = DINO_CMD_WEP_KEY;
6028         key.seq_num = 0;
6029
6030         /* Note: AES keys cannot be set for multiple times.
6031          * Only set it at the first time. */
6032         for (i = 0; i < 4; i++) {
6033                 key.key_index = i | type;
6034                 if (!(priv->ieee->sec.flags & (1 << i))) {
6035                         key.key_size = 0;
6036                         continue;
6037                 }
6038
6039                 key.key_size = priv->ieee->sec.key_sizes[i];
6040                 memcpy(key.key, priv->ieee->sec.keys[i], key.key_size);
6041
6042                 ipw_send_cmd_pdu(priv, IPW_CMD_WEP_KEY, sizeof(key), &key);
6043         }
6044 }
6045
6046 static void ipw_set_hw_decrypt_unicast(struct ipw_priv *priv, int level)
6047 {
6048         if (priv->ieee->host_encrypt)
6049                 return;
6050
6051         switch (level) {
6052         case SEC_LEVEL_3:
6053                 priv->sys_config.disable_unicast_decryption = 0;
6054                 priv->ieee->host_decrypt = 0;
6055                 break;
6056         case SEC_LEVEL_2:
6057                 priv->sys_config.disable_unicast_decryption = 1;
6058                 priv->ieee->host_decrypt = 1;
6059                 break;
6060         case SEC_LEVEL_1:
6061                 priv->sys_config.disable_unicast_decryption = 0;
6062                 priv->ieee->host_decrypt = 0;
6063                 break;
6064         case SEC_LEVEL_0:
6065                 priv->sys_config.disable_unicast_decryption = 1;
6066                 break;
6067         default:
6068                 break;
6069         }
6070 }
6071
6072 static void ipw_set_hw_decrypt_multicast(struct ipw_priv *priv, int level)
6073 {
6074         if (priv->ieee->host_encrypt)
6075                 return;
6076
6077         switch (level) {
6078         case SEC_LEVEL_3:
6079                 priv->sys_config.disable_multicast_decryption = 0;
6080                 break;
6081         case SEC_LEVEL_2:
6082                 priv->sys_config.disable_multicast_decryption = 1;
6083                 break;
6084         case SEC_LEVEL_1:
6085                 priv->sys_config.disable_multicast_decryption = 0;
6086                 break;
6087         case SEC_LEVEL_0:
6088                 priv->sys_config.disable_multicast_decryption = 1;
6089                 break;
6090         default:
6091                 break;
6092         }
6093 }
6094
6095 static void ipw_set_hwcrypto_keys(struct ipw_priv *priv)
6096 {
6097         switch (priv->ieee->sec.level) {
6098         case SEC_LEVEL_3:
6099                 if (priv->ieee->sec.flags & SEC_ACTIVE_KEY)
6100                         ipw_send_tgi_tx_key(priv,
6101                                             DCT_FLAG_EXT_SECURITY_CCM,
6102                                             priv->ieee->sec.active_key);
6103
6104                 if (!priv->ieee->host_mc_decrypt)
6105                         ipw_send_wep_keys(priv, DCW_WEP_KEY_SEC_TYPE_CCM);
6106                 break;
6107         case SEC_LEVEL_2:
6108                 if (priv->ieee->sec.flags & SEC_ACTIVE_KEY)
6109                         ipw_send_tgi_tx_key(priv,
6110                                             DCT_FLAG_EXT_SECURITY_TKIP,
6111                                             priv->ieee->sec.active_key);
6112                 break;
6113         case SEC_LEVEL_1:
6114                 ipw_send_wep_keys(priv, DCW_WEP_KEY_SEC_TYPE_WEP);
6115                 ipw_set_hw_decrypt_unicast(priv, priv->ieee->sec.level);
6116                 ipw_set_hw_decrypt_multicast(priv, priv->ieee->sec.level);
6117                 break;
6118         case SEC_LEVEL_0:
6119         default:
6120                 break;
6121         }
6122 }
6123
6124 static void ipw_adhoc_check(void *data)
6125 {
6126         struct ipw_priv *priv = data;
6127
6128         if (priv->missed_adhoc_beacons++ > priv->disassociate_threshold &&
6129             !(priv->config & CFG_ADHOC_PERSIST)) {
6130                 IPW_DEBUG(IPW_DL_INFO | IPW_DL_NOTIF |
6131                           IPW_DL_STATE | IPW_DL_ASSOC,
6132                           "Missed beacon: %d - disassociate\n",
6133                           priv->missed_adhoc_beacons);
6134                 ipw_remove_current_network(priv);
6135                 ipw_disassociate(priv);
6136                 return;
6137         }
6138
6139         schedule_delayed_work(&priv->adhoc_check,
6140                               le16_to_cpu(priv->assoc_request.beacon_interval));
6141 }
6142
6143 static void ipw_bg_adhoc_check(struct work_struct *work)
6144 {
6145         struct ipw_priv *priv =
6146                 container_of(work, struct ipw_priv, adhoc_check.work);
6147         mutex_lock(&priv->mutex);
6148         ipw_adhoc_check(priv);
6149         mutex_unlock(&priv->mutex);
6150 }
6151
6152 static void ipw_debug_config(struct ipw_priv *priv)
6153 {
6154         DECLARE_SSID_BUF(ssid);
6155         IPW_DEBUG_INFO("Scan completed, no valid APs matched "
6156                        "[CFG 0x%08X]\n", priv->config);
6157         if (priv->config & CFG_STATIC_CHANNEL)
6158                 IPW_DEBUG_INFO("Channel locked to %d\n", priv->channel);
6159         else
6160                 IPW_DEBUG_INFO("Channel unlocked.\n");
6161         if (priv->config & CFG_STATIC_ESSID)
6162                 IPW_DEBUG_INFO("ESSID locked to '%s'\n",
6163                                print_ssid(ssid, priv->essid, priv->essid_len));
6164         else
6165                 IPW_DEBUG_INFO("ESSID unlocked.\n");
6166         if (priv->config & CFG_STATIC_BSSID)
6167                 IPW_DEBUG_INFO("BSSID locked to %pM\n", priv->bssid);
6168         else
6169                 IPW_DEBUG_INFO("BSSID unlocked.\n");
6170         if (priv->capability & CAP_PRIVACY_ON)
6171                 IPW_DEBUG_INFO("PRIVACY on\n");
6172         else
6173                 IPW_DEBUG_INFO("PRIVACY off\n");
6174         IPW_DEBUG_INFO("RATE MASK: 0x%08X\n", priv->rates_mask);
6175 }
6176
6177 static void ipw_set_fixed_rate(struct ipw_priv *priv, int mode)
6178 {
6179         /* TODO: Verify that this works... */
6180         struct ipw_fixed_rate fr;
6181         u32 reg;
6182         u16 mask = 0;
6183         u16 new_tx_rates = priv->rates_mask;
6184
6185         /* Identify 'current FW band' and match it with the fixed
6186          * Tx rates */
6187
6188         switch (priv->ieee->freq_band) {
6189         case LIBIPW_52GHZ_BAND: /* A only */
6190                 /* IEEE_A */
6191                 if (priv->rates_mask & ~LIBIPW_OFDM_RATES_MASK) {
6192                         /* Invalid fixed rate mask */
6193                         IPW_DEBUG_WX
6194                             ("invalid fixed rate mask in ipw_set_fixed_rate\n");
6195                         new_tx_rates = 0;
6196                         break;
6197                 }
6198
6199                 new_tx_rates >>= LIBIPW_OFDM_SHIFT_MASK_A;
6200                 break;
6201
6202         default:                /* 2.4Ghz or Mixed */
6203                 /* IEEE_B */
6204                 if (mode == IEEE_B) {
6205                         if (new_tx_rates & ~LIBIPW_CCK_RATES_MASK) {
6206                                 /* Invalid fixed rate mask */
6207                                 IPW_DEBUG_WX
6208                                     ("invalid fixed rate mask in ipw_set_fixed_rate\n");
6209                                 new_tx_rates = 0;
6210                         }
6211                         break;
6212                 }
6213
6214                 /* IEEE_G */
6215                 if (new_tx_rates & ~(LIBIPW_CCK_RATES_MASK |
6216                                     LIBIPW_OFDM_RATES_MASK)) {
6217                         /* Invalid fixed rate mask */
6218                         IPW_DEBUG_WX
6219                             ("invalid fixed rate mask in ipw_set_fixed_rate\n");
6220                         new_tx_rates = 0;
6221                         break;
6222                 }
6223
6224                 if (LIBIPW_OFDM_RATE_6MB_MASK & new_tx_rates) {
6225                         mask |= (LIBIPW_OFDM_RATE_6MB_MASK >> 1);
6226                         new_tx_rates &= ~LIBIPW_OFDM_RATE_6MB_MASK;
6227                 }
6228
6229                 if (LIBIPW_OFDM_RATE_9MB_MASK & new_tx_rates) {
6230                         mask |= (LIBIPW_OFDM_RATE_9MB_MASK >> 1);
6231                         new_tx_rates &= ~LIBIPW_OFDM_RATE_9MB_MASK;
6232                 }
6233
6234                 if (LIBIPW_OFDM_RATE_12MB_MASK & new_tx_rates) {
6235                         mask |= (LIBIPW_OFDM_RATE_12MB_MASK >> 1);
6236                         new_tx_rates &= ~LIBIPW_OFDM_RATE_12MB_MASK;
6237                 }
6238
6239                 new_tx_rates |= mask;
6240                 break;
6241         }
6242
6243         fr.tx_rates = cpu_to_le16(new_tx_rates);
6244
6245         reg = ipw_read32(priv, IPW_MEM_FIXED_OVERRIDE);
6246         ipw_write_reg32(priv, reg, *(u32 *) & fr);
6247 }
6248
6249 static void ipw_abort_scan(struct ipw_priv *priv)
6250 {
6251         int err;
6252
6253         if (priv->status & STATUS_SCAN_ABORTING) {
6254                 IPW_DEBUG_HC("Ignoring concurrent scan abort request.\n");
6255                 return;
6256         }
6257         priv->status |= STATUS_SCAN_ABORTING;
6258
6259         err = ipw_send_scan_abort(priv);
6260         if (err)
6261                 IPW_DEBUG_HC("Request to abort scan failed.\n");
6262 }
6263
6264 static void ipw_add_scan_channels(struct ipw_priv *priv,
6265                                   struct ipw_scan_request_ext *scan,
6266                                   int scan_type)
6267 {
6268         int channel_index = 0;
6269         const struct libipw_geo *geo;
6270         int i;
6271
6272         geo = libipw_get_geo(priv->ieee);
6273
6274         if (priv->ieee->freq_band & LIBIPW_52GHZ_BAND) {
6275                 int start = channel_index;
6276                 for (i = 0; i < geo->a_channels; i++) {
6277                         if ((priv->status & STATUS_ASSOCIATED) &&
6278                             geo->a[i].channel == priv->channel)
6279                                 continue;
6280                         channel_index++;
6281                         scan->channels_list[channel_index] = geo->a[i].channel;
6282                         ipw_set_scan_type(scan, channel_index,
6283                                           geo->a[i].
6284                                           flags & LIBIPW_CH_PASSIVE_ONLY ?
6285                                           IPW_SCAN_PASSIVE_FULL_DWELL_SCAN :
6286                                           scan_type);
6287                 }
6288
6289                 if (start != channel_index) {
6290                         scan->channels_list[start] = (u8) (IPW_A_MODE << 6) |
6291                             (channel_index - start);
6292                         channel_index++;
6293                 }
6294         }
6295
6296         if (priv->ieee->freq_band & LIBIPW_24GHZ_BAND) {
6297                 int start = channel_index;
6298                 if (priv->config & CFG_SPEED_SCAN) {
6299                         int index;
6300                         u8 channels[LIBIPW_24GHZ_CHANNELS] = {
6301                                 /* nop out the list */
6302                                 [0] = 0
6303                         };
6304
6305                         u8 channel;
6306                         while (channel_index < IPW_SCAN_CHANNELS - 1) {
6307                                 channel =
6308                                     priv->speed_scan[priv->speed_scan_pos];
6309                                 if (channel == 0) {
6310                                         priv->speed_scan_pos = 0;
6311                                         channel = priv->speed_scan[0];
6312                                 }
6313                                 if ((priv->status & STATUS_ASSOCIATED) &&
6314                                     channel == priv->channel) {
6315                                         priv->speed_scan_pos++;
6316                                         continue;
6317                                 }
6318
6319                                 /* If this channel has already been
6320                                  * added in scan, break from loop
6321                                  * and this will be the first channel
6322                                  * in the next scan.
6323                                  */
6324                                 if (channels[channel - 1] != 0)
6325                                         break;
6326
6327                                 channels[channel - 1] = 1;
6328                                 priv->speed_scan_pos++;
6329                                 channel_index++;
6330                                 scan->channels_list[channel_index] = channel;
6331                                 index =
6332                                     libipw_channel_to_index(priv->ieee, channel);
6333                                 ipw_set_scan_type(scan, channel_index,
6334                                                   geo->bg[index].
6335                                                   flags &
6336                                                   LIBIPW_CH_PASSIVE_ONLY ?
6337                                                   IPW_SCAN_PASSIVE_FULL_DWELL_SCAN
6338                                                   : scan_type);
6339                         }
6340                 } else {
6341                         for (i = 0; i < geo->bg_channels; i++) {
6342                                 if ((priv->status & STATUS_ASSOCIATED) &&
6343                                     geo->bg[i].channel == priv->channel)
6344                                         continue;
6345                                 channel_index++;
6346                                 scan->channels_list[channel_index] =
6347                                     geo->bg[i].channel;
6348                                 ipw_set_scan_type(scan, channel_index,
6349                                                   geo->bg[i].
6350                                                   flags &
6351                                                   LIBIPW_CH_PASSIVE_ONLY ?
6352                                                   IPW_SCAN_PASSIVE_FULL_DWELL_SCAN
6353                                                   : scan_type);
6354                         }
6355                 }
6356
6357                 if (start != channel_index) {
6358                         scan->channels_list[start] = (u8) (IPW_B_MODE << 6) |
6359                             (channel_index - start);
6360                 }
6361         }
6362 }
6363
6364 static int ipw_passive_dwell_time(struct ipw_priv *priv)
6365 {
6366         /* staying on passive channels longer than the DTIM interval during a
6367          * scan, while associated, causes the firmware to cancel the scan
6368          * without notification. Hence, don't stay on passive channels longer
6369          * than the beacon interval.
6370          */
6371         if (priv->status & STATUS_ASSOCIATED
6372             && priv->assoc_network->beacon_interval > 10)
6373                 return priv->assoc_network->beacon_interval - 10;
6374         else
6375                 return 120;
6376 }
6377
6378 static int ipw_request_scan_helper(struct ipw_priv *priv, int type, int direct)
6379 {
6380         struct ipw_scan_request_ext scan;
6381         int err = 0, scan_type;
6382
6383         if (!(priv->status & STATUS_INIT) ||
6384             (priv->status & STATUS_EXIT_PENDING))
6385                 return 0;
6386
6387         mutex_lock(&priv->mutex);
6388
6389         if (direct && (priv->direct_scan_ssid_len == 0)) {
6390                 IPW_DEBUG_HC("Direct scan requested but no SSID to scan for\n");
6391                 priv->status &= ~STATUS_DIRECT_SCAN_PENDING;
6392                 goto done;
6393         }
6394
6395         if (priv->status & STATUS_SCANNING) {
6396                 IPW_DEBUG_HC("Concurrent scan requested.  Queuing.\n");
6397                 priv->status |= direct ? STATUS_DIRECT_SCAN_PENDING :
6398                                         STATUS_SCAN_PENDING;
6399                 goto done;
6400         }
6401
6402         if (!(priv->status & STATUS_SCAN_FORCED) &&
6403             priv->status & STATUS_SCAN_ABORTING) {
6404                 IPW_DEBUG_HC("Scan request while abort pending.  Queuing.\n");
6405                 priv->status |= direct ? STATUS_DIRECT_SCAN_PENDING :
6406                                         STATUS_SCAN_PENDING;
6407                 goto done;
6408         }
6409
6410         if (priv->status & STATUS_RF_KILL_MASK) {
6411                 IPW_DEBUG_HC("Queuing scan due to RF Kill activation\n");
6412                 priv->status |= direct ? STATUS_DIRECT_SCAN_PENDING :
6413                                         STATUS_SCAN_PENDING;
6414                 goto done;
6415         }
6416
6417         memset(&scan, 0, sizeof(scan));
6418         scan.full_scan_index = cpu_to_le32(libipw_get_scans(priv->ieee));
6419
6420         if (type == IW_SCAN_TYPE_PASSIVE) {
6421                 IPW_DEBUG_WX("use passive scanning\n");
6422                 scan_type = IPW_SCAN_PASSIVE_FULL_DWELL_SCAN;
6423                 scan.dwell_time[IPW_SCAN_PASSIVE_FULL_DWELL_SCAN] =
6424                         cpu_to_le16(ipw_passive_dwell_time(priv));
6425                 ipw_add_scan_channels(priv, &scan, scan_type);
6426                 goto send_request;
6427         }
6428
6429         /* Use active scan by default. */
6430         if (priv->config & CFG_SPEED_SCAN)
6431                 scan.dwell_time[IPW_SCAN_ACTIVE_BROADCAST_SCAN] =
6432                         cpu_to_le16(30);
6433         else
6434                 scan.dwell_time[IPW_SCAN_ACTIVE_BROADCAST_SCAN] =
6435                         cpu_to_le16(20);
6436
6437         scan.dwell_time[IPW_SCAN_ACTIVE_BROADCAST_AND_DIRECT_SCAN] =
6438                 cpu_to_le16(20);
6439
6440         scan.dwell_time[IPW_SCAN_PASSIVE_FULL_DWELL_SCAN] =
6441                 cpu_to_le16(ipw_passive_dwell_time(priv));
6442         scan.dwell_time[IPW_SCAN_ACTIVE_DIRECT_SCAN] = cpu_to_le16(20);
6443
6444 #ifdef CONFIG_IPW2200_MONITOR
6445         if (priv->ieee->iw_mode == IW_MODE_MONITOR) {
6446                 u8 channel;
6447                 u8 band = 0;
6448
6449                 switch (libipw_is_valid_channel(priv->ieee, priv->channel)) {
6450                 case LIBIPW_52GHZ_BAND:
6451                         band = (u8) (IPW_A_MODE << 6) | 1;
6452                         channel = priv->channel;
6453                         break;
6454
6455                 case LIBIPW_24GHZ_BAND:
6456                         band = (u8) (IPW_B_MODE << 6) | 1;
6457                         channel = priv->channel;
6458                         break;
6459
6460                 default:
6461                         band = (u8) (IPW_B_MODE << 6) | 1;
6462                         channel = 9;
6463                         break;
6464                 }
6465
6466                 scan.channels_list[0] = band;
6467                 scan.channels_list[1] = channel;
6468                 ipw_set_scan_type(&scan, 1, IPW_SCAN_PASSIVE_FULL_DWELL_SCAN);
6469
6470                 /* NOTE:  The card will sit on this channel for this time
6471                  * period.  Scan aborts are timing sensitive and frequently
6472                  * result in firmware restarts.  As such, it is best to
6473                  * set a small dwell_time here and just keep re-issuing
6474                  * scans.  Otherwise fast channel hopping will not actually
6475                  * hop channels.
6476                  *
6477                  * TODO: Move SPEED SCAN support to all modes and bands */
6478                 scan.dwell_time[IPW_SCAN_PASSIVE_FULL_DWELL_SCAN] =
6479                         cpu_to_le16(2000);
6480         } else {
6481 #endif                          /* CONFIG_IPW2200_MONITOR */
6482                 /* Honor direct scans first, otherwise if we are roaming make
6483                  * this a direct scan for the current network.  Finally,
6484                  * ensure that every other scan is a fast channel hop scan */
6485                 if (direct) {
6486                         err = ipw_send_ssid(priv, priv->direct_scan_ssid,
6487                                             priv->direct_scan_ssid_len);
6488                         if (err) {
6489                                 IPW_DEBUG_HC("Attempt to send SSID command  "
6490                                              "failed\n");
6491                                 goto done;
6492                         }
6493
6494                         scan_type = IPW_SCAN_ACTIVE_BROADCAST_AND_DIRECT_SCAN;
6495                 } else if ((priv->status & STATUS_ROAMING)
6496                            || (!(priv->status & STATUS_ASSOCIATED)
6497                                && (priv->config & CFG_STATIC_ESSID)
6498                                && (le32_to_cpu(scan.full_scan_index) % 2))) {
6499                         err = ipw_send_ssid(priv, priv->essid, priv->essid_len);
6500                         if (err) {
6501                                 IPW_DEBUG_HC("Attempt to send SSID command "
6502                                              "failed.\n");
6503                                 goto done;
6504                         }
6505
6506                         scan_type = IPW_SCAN_ACTIVE_BROADCAST_AND_DIRECT_SCAN;
6507                 } else
6508                         scan_type = IPW_SCAN_ACTIVE_BROADCAST_SCAN;
6509
6510                 ipw_add_scan_channels(priv, &scan, scan_type);
6511 #ifdef CONFIG_IPW2200_MONITOR
6512         }
6513 #endif
6514
6515 send_request:
6516         err = ipw_send_scan_request_ext(priv, &scan);
6517         if (err) {
6518                 IPW_DEBUG_HC("Sending scan command failed: %08X\n", err);
6519                 goto done;
6520         }
6521
6522         priv->status |= STATUS_SCANNING;
6523         if (direct) {
6524                 priv->status &= ~STATUS_DIRECT_SCAN_PENDING;
6525                 priv->direct_scan_ssid_len = 0;
6526         } else
6527                 priv->status &= ~STATUS_SCAN_PENDING;
6528
6529         schedule_delayed_work(&priv->scan_check, IPW_SCAN_CHECK_WATCHDOG);
6530 done:
6531         mutex_unlock(&priv->mutex);
6532         return err;
6533 }
6534
6535 static void ipw_request_passive_scan(struct work_struct *work)
6536 {
6537         struct ipw_priv *priv =
6538                 container_of(work, struct ipw_priv, request_passive_scan.work);
6539         ipw_request_scan_helper(priv, IW_SCAN_TYPE_PASSIVE, 0);
6540 }
6541
6542 static void ipw_request_scan(struct work_struct *work)
6543 {
6544         struct ipw_priv *priv =
6545                 container_of(work, struct ipw_priv, request_scan.work);
6546         ipw_request_scan_helper(priv, IW_SCAN_TYPE_ACTIVE, 0);
6547 }
6548
6549 static void ipw_request_direct_scan(struct work_struct *work)
6550 {
6551         struct ipw_priv *priv =
6552                 container_of(work, struct ipw_priv, request_direct_scan.work);
6553         ipw_request_scan_helper(priv, IW_SCAN_TYPE_ACTIVE, 1);
6554 }
6555
6556 static void ipw_bg_abort_scan(struct work_struct *work)
6557 {
6558         struct ipw_priv *priv =
6559                 container_of(work, struct ipw_priv, abort_scan);
6560         mutex_lock(&priv->mutex);
6561         ipw_abort_scan(priv);
6562         mutex_unlock(&priv->mutex);
6563 }
6564
6565 static int ipw_wpa_enable(struct ipw_priv *priv, int value)
6566 {
6567         /* This is called when wpa_supplicant loads and closes the driver
6568          * interface. */
6569         priv->ieee->wpa_enabled = value;
6570         return 0;
6571 }
6572
6573 static int ipw_wpa_set_auth_algs(struct ipw_priv *priv, int value)
6574 {
6575         struct libipw_device *ieee = priv->ieee;
6576         struct libipw_security sec = {
6577                 .flags = SEC_AUTH_MODE,
6578         };
6579         int ret = 0;
6580
6581         if (value & IW_AUTH_ALG_SHARED_KEY) {
6582                 sec.auth_mode = WLAN_AUTH_SHARED_KEY;
6583                 ieee->open_wep = 0;
6584         } else if (value & IW_AUTH_ALG_OPEN_SYSTEM) {
6585                 sec.auth_mode = WLAN_AUTH_OPEN;
6586                 ieee->open_wep = 1;
6587         } else if (value & IW_AUTH_ALG_LEAP) {
6588                 sec.auth_mode = WLAN_AUTH_LEAP;
6589                 ieee->open_wep = 1;
6590         } else
6591                 return -EINVAL;
6592
6593         if (ieee->set_security)
6594                 ieee->set_security(ieee->dev, &sec);
6595         else
6596                 ret = -EOPNOTSUPP;
6597
6598         return ret;
6599 }
6600
6601 static void ipw_wpa_assoc_frame(struct ipw_priv *priv, char *wpa_ie,
6602                                 int wpa_ie_len)
6603 {
6604         /* make sure WPA is enabled */
6605         ipw_wpa_enable(priv, 1);
6606 }
6607
6608 static int ipw_set_rsn_capa(struct ipw_priv *priv,
6609                             char *capabilities, int length)
6610 {
6611         IPW_DEBUG_HC("HOST_CMD_RSN_CAPABILITIES\n");
6612
6613         return ipw_send_cmd_pdu(priv, IPW_CMD_RSN_CAPABILITIES, length,
6614                                 capabilities);
6615 }
6616
6617 /*
6618  * WE-18 support
6619  */
6620
6621 /* SIOCSIWGENIE */
6622 static int ipw_wx_set_genie(struct net_device *dev,
6623                             struct iw_request_info *info,
6624                             union iwreq_data *wrqu, char *extra)
6625 {
6626         struct ipw_priv *priv = libipw_priv(dev);
6627         struct libipw_device *ieee = priv->ieee;
6628         u8 *buf;
6629         int err = 0;
6630
6631         if (wrqu->data.length > MAX_WPA_IE_LEN ||
6632             (wrqu->data.length && extra == NULL))
6633                 return -EINVAL;
6634
6635         if (wrqu->data.length) {
6636                 buf = kmemdup(extra, wrqu->data.length, GFP_KERNEL);
6637                 if (buf == NULL) {
6638                         err = -ENOMEM;
6639                         goto out;
6640                 }
6641
6642                 kfree(ieee->wpa_ie);
6643                 ieee->wpa_ie = buf;
6644                 ieee->wpa_ie_len = wrqu->data.length;
6645         } else {
6646                 kfree(ieee->wpa_ie);
6647                 ieee->wpa_ie = NULL;
6648                 ieee->wpa_ie_len = 0;
6649         }
6650
6651         ipw_wpa_assoc_frame(priv, ieee->wpa_ie, ieee->wpa_ie_len);
6652       out:
6653         return err;
6654 }
6655
6656 /* SIOCGIWGENIE */
6657 static int ipw_wx_get_genie(struct net_device *dev,
6658                             struct iw_request_info *info,
6659                             union iwreq_data *wrqu, char *extra)
6660 {
6661         struct ipw_priv *priv = libipw_priv(dev);
6662         struct libipw_device *ieee = priv->ieee;
6663         int err = 0;
6664
6665         if (ieee->wpa_ie_len == 0 || ieee->wpa_ie == NULL) {
6666                 wrqu->data.length = 0;
6667                 goto out;
6668         }
6669
6670         if (wrqu->data.length < ieee->wpa_ie_len) {
6671                 err = -E2BIG;
6672                 goto out;
6673         }
6674
6675         wrqu->data.length = ieee->wpa_ie_len;
6676         memcpy(extra, ieee->wpa_ie, ieee->wpa_ie_len);
6677
6678       out:
6679         return err;
6680 }
6681
6682 static int wext_cipher2level(int cipher)
6683 {
6684         switch (cipher) {
6685         case IW_AUTH_CIPHER_NONE:
6686                 return SEC_LEVEL_0;
6687         case IW_AUTH_CIPHER_WEP40:
6688         case IW_AUTH_CIPHER_WEP104:
6689                 return SEC_LEVEL_1;
6690         case IW_AUTH_CIPHER_TKIP:
6691                 return SEC_LEVEL_2;
6692         case IW_AUTH_CIPHER_CCMP:
6693                 return SEC_LEVEL_3;
6694         default:
6695                 return -1;
6696         }
6697 }
6698
6699 /* SIOCSIWAUTH */
6700 static int ipw_wx_set_auth(struct net_device *dev,
6701                            struct iw_request_info *info,
6702                            union iwreq_data *wrqu, char *extra)
6703 {
6704         struct ipw_priv *priv = libipw_priv(dev);
6705         struct libipw_device *ieee = priv->ieee;
6706         struct iw_param *param = &wrqu->param;
6707         struct lib80211_crypt_data *crypt;
6708         unsigned long flags;
6709         int ret = 0;
6710
6711         switch (param->flags & IW_AUTH_INDEX) {
6712         case IW_AUTH_WPA_VERSION:
6713                 break;
6714         case IW_AUTH_CIPHER_PAIRWISE:
6715                 ipw_set_hw_decrypt_unicast(priv,
6716                                            wext_cipher2level(param->value));
6717                 break;
6718         case IW_AUTH_CIPHER_GROUP:
6719                 ipw_set_hw_decrypt_multicast(priv,
6720                                              wext_cipher2level(param->value));
6721                 break;
6722         case IW_AUTH_KEY_MGMT:
6723                 /*
6724                  * ipw2200 does not use these parameters
6725                  */
6726                 break;
6727
6728         case IW_AUTH_TKIP_COUNTERMEASURES:
6729                 crypt = priv->ieee->crypt_info.crypt[priv->ieee->crypt_info.tx_keyidx];
6730                 if (!crypt || !crypt->ops->set_flags || !crypt->ops->get_flags)
6731                         break;
6732
6733                 flags = crypt->ops->get_flags(crypt->priv);
6734
6735                 if (param->value)
6736                         flags |= IEEE80211_CRYPTO_TKIP_COUNTERMEASURES;
6737                 else
6738                         flags &= ~IEEE80211_CRYPTO_TKIP_COUNTERMEASURES;
6739
6740                 crypt->ops->set_flags(flags, crypt->priv);
6741
6742                 break;
6743
6744         case IW_AUTH_DROP_UNENCRYPTED:{
6745                         /* HACK:
6746                          *
6747                          * wpa_supplicant calls set_wpa_enabled when the driver
6748                          * is loaded and unloaded, regardless of if WPA is being
6749                          * used.  No other calls are made which can be used to
6750                          * determine if encryption will be used or not prior to
6751                          * association being expected.  If encryption is not being
6752                          * used, drop_unencrypted is set to false, else true -- we
6753                          * can use this to determine if the CAP_PRIVACY_ON bit should
6754                          * be set.
6755                          */
6756                         struct libipw_security sec = {
6757                                 .flags = SEC_ENABLED,
6758                                 .enabled = param->value,
6759                         };
6760                         priv->ieee->drop_unencrypted = param->value;
6761                         /* We only change SEC_LEVEL for open mode. Others
6762                          * are set by ipw_wpa_set_encryption.
6763                          */
6764                         if (!param->value) {
6765                                 sec.flags |= SEC_LEVEL;
6766                                 sec.level = SEC_LEVEL_0;
6767                         } else {
6768                                 sec.flags |= SEC_LEVEL;
6769                                 sec.level = SEC_LEVEL_1;
6770                         }
6771                         if (priv->ieee->set_security)
6772                                 priv->ieee->set_security(priv->ieee->dev, &sec);
6773                         break;
6774                 }
6775
6776         case IW_AUTH_80211_AUTH_ALG:
6777                 ret = ipw_wpa_set_auth_algs(priv, param->value);
6778                 break;
6779
6780         case IW_AUTH_WPA_ENABLED:
6781                 ret = ipw_wpa_enable(priv, param->value);
6782                 ipw_disassociate(priv);
6783                 break;
6784
6785         case IW_AUTH_RX_UNENCRYPTED_EAPOL:
6786                 ieee->ieee802_1x = param->value;
6787                 break;
6788
6789         case IW_AUTH_PRIVACY_INVOKED:
6790                 ieee->privacy_invoked = param->value;
6791                 break;
6792
6793         default:
6794                 return -EOPNOTSUPP;
6795         }
6796         return ret;
6797 }
6798
6799 /* SIOCGIWAUTH */
6800 static int ipw_wx_get_auth(struct net_device *dev,
6801                            struct iw_request_info *info,
6802                            union iwreq_data *wrqu, char *extra)
6803 {
6804         struct ipw_priv *priv = libipw_priv(dev);
6805         struct libipw_device *ieee = priv->ieee;
6806         struct lib80211_crypt_data *crypt;
6807         struct iw_param *param = &wrqu->param;
6808
6809         switch (param->flags & IW_AUTH_INDEX) {
6810         case IW_AUTH_WPA_VERSION:
6811         case IW_AUTH_CIPHER_PAIRWISE:
6812         case IW_AUTH_CIPHER_GROUP:
6813         case IW_AUTH_KEY_MGMT:
6814                 /*
6815                  * wpa_supplicant will control these internally
6816                  */
6817                 return -EOPNOTSUPP;
6818
6819         case IW_AUTH_TKIP_COUNTERMEASURES:
6820                 crypt = priv->ieee->crypt_info.crypt[priv->ieee->crypt_info.tx_keyidx];
6821                 if (!crypt || !crypt->ops->get_flags)
6822                         break;
6823
6824                 param->value = (crypt->ops->get_flags(crypt->priv) &
6825                                 IEEE80211_CRYPTO_TKIP_COUNTERMEASURES) ? 1 : 0;
6826
6827                 break;
6828
6829         case IW_AUTH_DROP_UNENCRYPTED:
6830                 param->value = ieee->drop_unencrypted;
6831                 break;
6832
6833         case IW_AUTH_80211_AUTH_ALG:
6834                 param->value = ieee->sec.auth_mode;
6835                 break;
6836
6837         case IW_AUTH_WPA_ENABLED:
6838                 param->value = ieee->wpa_enabled;
6839                 break;
6840
6841         case IW_AUTH_RX_UNENCRYPTED_EAPOL:
6842                 param->value = ieee->ieee802_1x;
6843                 break;
6844
6845         case IW_AUTH_ROAMING_CONTROL:
6846         case IW_AUTH_PRIVACY_INVOKED:
6847                 param->value = ieee->privacy_invoked;
6848                 break;
6849
6850         default:
6851                 return -EOPNOTSUPP;
6852         }
6853         return 0;
6854 }
6855
6856 /* SIOCSIWENCODEEXT */
6857 static int ipw_wx_set_encodeext(struct net_device *dev,
6858                                 struct iw_request_info *info,
6859                                 union iwreq_data *wrqu, char *extra)
6860 {
6861         struct ipw_priv *priv = libipw_priv(dev);
6862         struct iw_encode_ext *ext = (struct iw_encode_ext *)extra;
6863
6864         if (hwcrypto) {
6865                 if (ext->alg == IW_ENCODE_ALG_TKIP) {
6866                         /* IPW HW can't build TKIP MIC,
6867                            host decryption still needed */
6868                         if (ext->ext_flags & IW_ENCODE_EXT_GROUP_KEY)
6869                                 priv->ieee->host_mc_decrypt = 1;
6870                         else {
6871                                 priv->ieee->host_encrypt = 0;
6872                                 priv->ieee->host_encrypt_msdu = 1;
6873                                 priv->ieee->host_decrypt = 1;
6874                         }
6875                 } else {
6876                         priv->ieee->host_encrypt = 0;
6877                         priv->ieee->host_encrypt_msdu = 0;
6878                         priv->ieee->host_decrypt = 0;
6879                         priv->ieee->host_mc_decrypt = 0;
6880                 }
6881         }
6882
6883         return libipw_wx_set_encodeext(priv->ieee, info, wrqu, extra);
6884 }
6885
6886 /* SIOCGIWENCODEEXT */
6887 static int ipw_wx_get_encodeext(struct net_device *dev,
6888                                 struct iw_request_info *info,
6889                                 union iwreq_data *wrqu, char *extra)
6890 {
6891         struct ipw_priv *priv = libipw_priv(dev);
6892         return libipw_wx_get_encodeext(priv->ieee, info, wrqu, extra);
6893 }
6894
6895 /* SIOCSIWMLME */
6896 static int ipw_wx_set_mlme(struct net_device *dev,
6897                            struct iw_request_info *info,
6898                            union iwreq_data *wrqu, char *extra)
6899 {
6900         struct ipw_priv *priv = libipw_priv(dev);
6901         struct iw_mlme *mlme = (struct iw_mlme *)extra;
6902         __le16 reason;
6903
6904         reason = cpu_to_le16(mlme->reason_code);
6905
6906         switch (mlme->cmd) {
6907         case IW_MLME_DEAUTH:
6908                 /* silently ignore */
6909                 break;
6910
6911         case IW_MLME_DISASSOC:
6912                 ipw_disassociate(priv);
6913                 break;
6914
6915         default:
6916                 return -EOPNOTSUPP;
6917         }
6918         return 0;
6919 }
6920
6921 #ifdef CONFIG_IPW2200_QOS
6922
6923 /* QoS */
6924 /*
6925 * get the modulation type of the current network or
6926 * the card current mode
6927 */
6928 static u8 ipw_qos_current_mode(struct ipw_priv * priv)
6929 {
6930         u8 mode = 0;
6931
6932         if (priv->status & STATUS_ASSOCIATED) {
6933                 unsigned long flags;
6934
6935                 spin_lock_irqsave(&priv->ieee->lock, flags);
6936                 mode = priv->assoc_network->mode;
6937                 spin_unlock_irqrestore(&priv->ieee->lock, flags);
6938         } else {
6939                 mode = priv->ieee->mode;
6940         }
6941         IPW_DEBUG_QOS("QoS network/card mode %d\n", mode);
6942         return mode;
6943 }
6944
6945 /*
6946 * Handle management frame beacon and probe response
6947 */
6948 static int ipw_qos_handle_probe_response(struct ipw_priv *priv,
6949                                          int active_network,
6950                                          struct libipw_network *network)
6951 {
6952         u32 size = sizeof(struct libipw_qos_parameters);
6953
6954         if (network->capability & WLAN_CAPABILITY_IBSS)
6955                 network->qos_data.active = network->qos_data.supported;
6956
6957         if (network->flags & NETWORK_HAS_QOS_MASK) {
6958                 if (active_network &&
6959                     (network->flags & NETWORK_HAS_QOS_PARAMETERS))
6960                         network->qos_data.active = network->qos_data.supported;
6961
6962                 if ((network->qos_data.active == 1) && (active_network == 1) &&
6963                     (network->flags & NETWORK_HAS_QOS_PARAMETERS) &&
6964                     (network->qos_data.old_param_count !=
6965                      network->qos_data.param_count)) {
6966                         network->qos_data.old_param_count =
6967                             network->qos_data.param_count;
6968                         schedule_work(&priv->qos_activate);
6969                         IPW_DEBUG_QOS("QoS parameters change call "
6970                                       "qos_activate\n");
6971                 }
6972         } else {
6973                 if ((priv->ieee->mode == IEEE_B) || (network->mode == IEEE_B))
6974                         memcpy(&network->qos_data.parameters,
6975                                &def_parameters_CCK, size);
6976                 else
6977                         memcpy(&network->qos_data.parameters,
6978                                &def_parameters_OFDM, size);
6979
6980                 if ((network->qos_data.active == 1) && (active_network == 1)) {
6981                         IPW_DEBUG_QOS("QoS was disabled call qos_activate\n");
6982                         schedule_work(&priv->qos_activate);
6983                 }
6984
6985                 network->qos_data.active = 0;
6986                 network->qos_data.supported = 0;
6987         }
6988         if ((priv->status & STATUS_ASSOCIATED) &&
6989             (priv->ieee->iw_mode == IW_MODE_ADHOC) && (active_network == 0)) {
6990                 if (memcmp(network->bssid, priv->bssid, ETH_ALEN))
6991                         if (network->capability & WLAN_CAPABILITY_IBSS)
6992                                 if ((network->ssid_len ==
6993                                      priv->assoc_network->ssid_len) &&
6994                                     !memcmp(network->ssid,
6995                                             priv->assoc_network->ssid,
6996                                             network->ssid_len)) {
6997                                         schedule_work(&priv->merge_networks);
6998                                 }
6999         }
7000
7001         return 0;
7002 }
7003
7004 /*
7005 * This function set up the firmware to support QoS. It sends
7006 * IPW_CMD_QOS_PARAMETERS and IPW_CMD_WME_INFO
7007 */
7008 static int ipw_qos_activate(struct ipw_priv *priv,
7009                             struct libipw_qos_data *qos_network_data)
7010 {
7011         int err;
7012         struct libipw_qos_parameters qos_parameters[QOS_QOS_SETS];
7013         struct libipw_qos_parameters *active_one = NULL;
7014         u32 size = sizeof(struct libipw_qos_parameters);
7015         u32 burst_duration;
7016         int i;
7017         u8 type;
7018
7019         type = ipw_qos_current_mode(priv);
7020
7021         active_one = &(qos_parameters[QOS_PARAM_SET_DEF_CCK]);
7022         memcpy(active_one, priv->qos_data.def_qos_parm_CCK, size);
7023         active_one = &(qos_parameters[QOS_PARAM_SET_DEF_OFDM]);
7024         memcpy(active_one, priv->qos_data.def_qos_parm_OFDM, size);
7025
7026         if (qos_network_data == NULL) {
7027                 if (type == IEEE_B) {
7028                         IPW_DEBUG_QOS("QoS activate network mode %d\n", type);
7029                         active_one = &def_parameters_CCK;
7030                 } else
7031                         active_one = &def_parameters_OFDM;
7032
7033                 memcpy(&qos_parameters[QOS_PARAM_SET_ACTIVE], active_one, size);
7034                 burst_duration = ipw_qos_get_burst_duration(priv);
7035                 for (i = 0; i < QOS_QUEUE_NUM; i++)
7036                         qos_parameters[QOS_PARAM_SET_ACTIVE].tx_op_limit[i] =
7037                             cpu_to_le16(burst_duration);
7038         } else if (priv->ieee->iw_mode == IW_MODE_ADHOC) {
7039                 if (type == IEEE_B) {
7040                         IPW_DEBUG_QOS("QoS activate IBSS network mode %d\n",
7041                                       type);
7042                         if (priv->qos_data.qos_enable == 0)
7043                                 active_one = &def_parameters_CCK;
7044                         else
7045                                 active_one = priv->qos_data.def_qos_parm_CCK;
7046                 } else {
7047                         if (priv->qos_data.qos_enable == 0)
7048                                 active_one = &def_parameters_OFDM;
7049                         else
7050                                 active_one = priv->qos_data.def_qos_parm_OFDM;
7051                 }
7052                 memcpy(&qos_parameters[QOS_PARAM_SET_ACTIVE], active_one, size);
7053         } else {
7054                 unsigned long flags;
7055                 int active;
7056
7057                 spin_lock_irqsave(&priv->ieee->lock, flags);
7058                 active_one = &(qos_network_data->parameters);
7059                 qos_network_data->old_param_count =
7060                     qos_network_data->param_count;
7061                 memcpy(&qos_parameters[QOS_PARAM_SET_ACTIVE], active_one, size);
7062                 active = qos_network_data->supported;
7063                 spin_unlock_irqrestore(&priv->ieee->lock, flags);
7064
7065                 if (active == 0) {
7066                         burst_duration = ipw_qos_get_burst_duration(priv);
7067                         for (i = 0; i < QOS_QUEUE_NUM; i++)
7068                                 qos_parameters[QOS_PARAM_SET_ACTIVE].
7069                                     tx_op_limit[i] = cpu_to_le16(burst_duration);
7070                 }
7071         }
7072
7073         IPW_DEBUG_QOS("QoS sending IPW_CMD_QOS_PARAMETERS\n");
7074         err = ipw_send_qos_params_command(priv, &qos_parameters[0]);
7075         if (err)
7076                 IPW_DEBUG_QOS("QoS IPW_CMD_QOS_PARAMETERS failed\n");
7077
7078         return err;
7079 }
7080
7081 /*
7082 * send IPW_CMD_WME_INFO to the firmware
7083 */
7084 static int ipw_qos_set_info_element(struct ipw_priv *priv)
7085 {
7086         int ret = 0;
7087         struct libipw_qos_information_element qos_info;
7088
7089         if (priv == NULL)
7090                 return -1;
7091
7092         qos_info.elementID = QOS_ELEMENT_ID;
7093         qos_info.length = sizeof(struct libipw_qos_information_element) - 2;
7094
7095         qos_info.version = QOS_VERSION_1;
7096         qos_info.ac_info = 0;
7097
7098         memcpy(qos_info.qui, qos_oui, QOS_OUI_LEN);
7099         qos_info.qui_type = QOS_OUI_TYPE;
7100         qos_info.qui_subtype = QOS_OUI_INFO_SUB_TYPE;
7101
7102         ret = ipw_send_qos_info_command(priv, &qos_info);
7103         if (ret != 0) {
7104                 IPW_DEBUG_QOS("QoS error calling ipw_send_qos_info_command\n");
7105         }
7106         return ret;
7107 }
7108
7109 /*
7110 * Set the QoS parameter with the association request structure
7111 */
7112 static int ipw_qos_association(struct ipw_priv *priv,
7113                                struct libipw_network *network)
7114 {
7115         int err = 0;
7116         struct libipw_qos_data *qos_data = NULL;
7117         struct libipw_qos_data ibss_data = {
7118                 .supported = 1,
7119                 .active = 1,
7120         };
7121
7122         switch (priv->ieee->iw_mode) {
7123         case IW_MODE_ADHOC:
7124                 BUG_ON(!(network->capability & WLAN_CAPABILITY_IBSS));
7125
7126                 qos_data = &ibss_data;
7127                 break;
7128
7129         case IW_MODE_INFRA:
7130                 qos_data = &network->qos_data;
7131                 break;
7132
7133         default:
7134                 BUG();
7135                 break;
7136         }
7137
7138         err = ipw_qos_activate(priv, qos_data);
7139         if (err) {
7140                 priv->assoc_request.policy_support &= ~HC_QOS_SUPPORT_ASSOC;
7141                 return err;
7142         }
7143
7144         if (priv->qos_data.qos_enable && qos_data->supported) {
7145                 IPW_DEBUG_QOS("QoS will be enabled for this association\n");
7146                 priv->assoc_request.policy_support |= HC_QOS_SUPPORT_ASSOC;
7147                 return ipw_qos_set_info_element(priv);
7148         }
7149
7150         return 0;
7151 }
7152
7153 /*
7154 * handling the beaconing responses. if we get different QoS setting
7155 * off the network from the associated setting, adjust the QoS
7156 * setting
7157 */
7158 static int ipw_qos_association_resp(struct ipw_priv *priv,
7159                                     struct libipw_network *network)
7160 {
7161         int ret = 0;
7162         unsigned long flags;
7163         u32 size = sizeof(struct libipw_qos_parameters);
7164         int set_qos_param = 0;
7165
7166         if ((priv == NULL) || (network == NULL) ||
7167             (priv->assoc_network == NULL))
7168                 return ret;
7169
7170         if (!(priv->status & STATUS_ASSOCIATED))
7171                 return ret;
7172
7173         if ((priv->ieee->iw_mode != IW_MODE_INFRA))
7174                 return ret;
7175
7176         spin_lock_irqsave(&priv->ieee->lock, flags);
7177         if (network->flags & NETWORK_HAS_QOS_PARAMETERS) {
7178                 memcpy(&priv->assoc_network->qos_data, &network->qos_data,
7179                        sizeof(struct libipw_qos_data));
7180                 priv->assoc_network->qos_data.active = 1;
7181                 if ((network->qos_data.old_param_count !=
7182                      network->qos_data.param_count)) {
7183                         set_qos_param = 1;
7184                         network->qos_data.old_param_count =
7185                             network->qos_data.param_count;
7186                 }
7187
7188         } else {
7189                 if ((network->mode == IEEE_B) || (priv->ieee->mode == IEEE_B))
7190                         memcpy(&priv->assoc_network->qos_data.parameters,
7191                                &def_parameters_CCK, size);
7192                 else
7193                         memcpy(&priv->assoc_network->qos_data.parameters,
7194                                &def_parameters_OFDM, size);
7195                 priv->assoc_network->qos_data.active = 0;
7196                 priv->assoc_network->qos_data.supported = 0;
7197                 set_qos_param = 1;
7198         }
7199
7200         spin_unlock_irqrestore(&priv->ieee->lock, flags);
7201
7202         if (set_qos_param == 1)
7203                 schedule_work(&priv->qos_activate);
7204
7205         return ret;
7206 }
7207
7208 static u32 ipw_qos_get_burst_duration(struct ipw_priv *priv)
7209 {
7210         u32 ret = 0;
7211
7212         if ((priv == NULL))
7213                 return 0;
7214
7215         if (!(priv->ieee->modulation & LIBIPW_OFDM_MODULATION))
7216                 ret = priv->qos_data.burst_duration_CCK;
7217         else
7218                 ret = priv->qos_data.burst_duration_OFDM;
7219
7220         return ret;
7221 }
7222
7223 /*
7224 * Initialize the setting of QoS global
7225 */
7226 static void ipw_qos_init(struct ipw_priv *priv, int enable,
7227                          int burst_enable, u32 burst_duration_CCK,
7228                          u32 burst_duration_OFDM)
7229 {
7230         priv->qos_data.qos_enable = enable;
7231
7232         if (priv->qos_data.qos_enable) {
7233                 priv->qos_data.def_qos_parm_CCK = &def_qos_parameters_CCK;
7234                 priv->qos_data.def_qos_parm_OFDM = &def_qos_parameters_OFDM;
7235                 IPW_DEBUG_QOS("QoS is enabled\n");
7236         } else {
7237                 priv->qos_data.def_qos_parm_CCK = &def_parameters_CCK;
7238                 priv->qos_data.def_qos_parm_OFDM = &def_parameters_OFDM;
7239                 IPW_DEBUG_QOS("QoS is not enabled\n");
7240         }
7241
7242         priv->qos_data.burst_enable = burst_enable;
7243
7244         if (burst_enable) {
7245                 priv->qos_data.burst_duration_CCK = burst_duration_CCK;
7246                 priv->qos_data.burst_duration_OFDM = burst_duration_OFDM;
7247         } else {
7248                 priv->qos_data.burst_duration_CCK = 0;
7249                 priv->qos_data.burst_duration_OFDM = 0;
7250         }
7251 }
7252
7253 /*
7254 * map the packet priority to the right TX Queue
7255 */
7256 static int ipw_get_tx_queue_number(struct ipw_priv *priv, u16 priority)
7257 {
7258         if (priority > 7 || !priv->qos_data.qos_enable)
7259                 priority = 0;
7260
7261         return from_priority_to_tx_queue[priority] - 1;
7262 }
7263
7264 static int ipw_is_qos_active(struct net_device *dev,
7265                              struct sk_buff *skb)
7266 {
7267         struct ipw_priv *priv = libipw_priv(dev);
7268         struct libipw_qos_data *qos_data = NULL;
7269         int active, supported;
7270         u8 *daddr = skb->data + ETH_ALEN;
7271         int unicast = !is_multicast_ether_addr(daddr);
7272
7273         if (!(priv->status & STATUS_ASSOCIATED))
7274                 return 0;
7275
7276         qos_data = &priv->assoc_network->qos_data;
7277
7278         if (priv->ieee->iw_mode == IW_MODE_ADHOC) {
7279                 if (unicast == 0)
7280                         qos_data->active = 0;
7281                 else
7282                         qos_data->active = qos_data->supported;
7283         }
7284         active = qos_data->active;
7285         supported = qos_data->supported;
7286         IPW_DEBUG_QOS("QoS  %d network is QoS active %d  supported %d  "
7287                       "unicast %d\n",
7288                       priv->qos_data.qos_enable, active, supported, unicast);
7289         if (active && priv->qos_data.qos_enable)
7290                 return 1;
7291
7292         return 0;
7293
7294 }
7295 /*
7296 * add QoS parameter to the TX command
7297 */
7298 static int ipw_qos_set_tx_queue_command(struct ipw_priv *priv,
7299                                         u16 priority,
7300                                         struct tfd_data *tfd)
7301 {
7302         int tx_queue_id = 0;
7303
7304
7305         tx_queue_id = from_priority_to_tx_queue[priority] - 1;
7306         tfd->tx_flags_ext |= DCT_FLAG_EXT_QOS_ENABLED;
7307
7308         if (priv->qos_data.qos_no_ack_mask & (1UL << tx_queue_id)) {
7309                 tfd->tx_flags &= ~DCT_FLAG_ACK_REQD;
7310                 tfd->tfd.tfd_26.mchdr.qos_ctrl |= cpu_to_le16(CTRL_QOS_NO_ACK);
7311         }
7312         return 0;
7313 }
7314
7315 /*
7316 * background support to run QoS activate functionality
7317 */
7318 static void ipw_bg_qos_activate(struct work_struct *work)
7319 {
7320         struct ipw_priv *priv =
7321                 container_of(work, struct ipw_priv, qos_activate);
7322
7323         mutex_lock(&priv->mutex);
7324
7325         if (priv->status & STATUS_ASSOCIATED)
7326                 ipw_qos_activate(priv, &(priv->assoc_network->qos_data));
7327
7328         mutex_unlock(&priv->mutex);
7329 }
7330
7331 static int ipw_handle_probe_response(struct net_device *dev,
7332                                      struct libipw_probe_response *resp,
7333                                      struct libipw_network *network)
7334 {
7335         struct ipw_priv *priv = libipw_priv(dev);
7336         int active_network = ((priv->status & STATUS_ASSOCIATED) &&
7337                               (network == priv->assoc_network));
7338
7339         ipw_qos_handle_probe_response(priv, active_network, network);
7340
7341         return 0;
7342 }
7343
7344 static int ipw_handle_beacon(struct net_device *dev,
7345                              struct libipw_beacon *resp,
7346                              struct libipw_network *network)
7347 {
7348         struct ipw_priv *priv = libipw_priv(dev);
7349         int active_network = ((priv->status & STATUS_ASSOCIATED) &&
7350                               (network == priv->assoc_network));
7351
7352         ipw_qos_handle_probe_response(priv, active_network, network);
7353
7354         return 0;
7355 }
7356
7357 static int ipw_handle_assoc_response(struct net_device *dev,
7358                                      struct libipw_assoc_response *resp,
7359                                      struct libipw_network *network)
7360 {
7361         struct ipw_priv *priv = libipw_priv(dev);
7362         ipw_qos_association_resp(priv, network);
7363         return 0;
7364 }
7365
7366 static int ipw_send_qos_params_command(struct ipw_priv *priv, struct libipw_qos_parameters
7367                                        *qos_param)
7368 {
7369         return ipw_send_cmd_pdu(priv, IPW_CMD_QOS_PARAMETERS,
7370                                 sizeof(*qos_param) * 3, qos_param);
7371 }
7372
7373 static int ipw_send_qos_info_command(struct ipw_priv *priv, struct libipw_qos_information_element
7374                                      *qos_param)
7375 {
7376         return ipw_send_cmd_pdu(priv, IPW_CMD_WME_INFO, sizeof(*qos_param),
7377                                 qos_param);
7378 }
7379
7380 #endif                          /* CONFIG_IPW2200_QOS */
7381
7382 static int ipw_associate_network(struct ipw_priv *priv,
7383                                  struct libipw_network *network,
7384                                  struct ipw_supported_rates *rates, int roaming)
7385 {
7386         int err;
7387         DECLARE_SSID_BUF(ssid);
7388
7389         if (priv->config & CFG_FIXED_RATE)
7390                 ipw_set_fixed_rate(priv, network->mode);
7391
7392         if (!(priv->config & CFG_STATIC_ESSID)) {
7393                 priv->essid_len = min(network->ssid_len,
7394                                       (u8) IW_ESSID_MAX_SIZE);
7395                 memcpy(priv->essid, network->ssid, priv->essid_len);
7396         }
7397
7398         network->last_associate = jiffies;
7399
7400         memset(&priv->assoc_request, 0, sizeof(priv->assoc_request));
7401         priv->assoc_request.channel = network->channel;
7402         priv->assoc_request.auth_key = 0;
7403
7404         if ((priv->capability & CAP_PRIVACY_ON) &&
7405             (priv->ieee->sec.auth_mode == WLAN_AUTH_SHARED_KEY)) {
7406                 priv->assoc_request.auth_type = AUTH_SHARED_KEY;
7407                 priv->assoc_request.auth_key = priv->ieee->sec.active_key;
7408
7409                 if (priv->ieee->sec.level == SEC_LEVEL_1)
7410                         ipw_send_wep_keys(priv, DCW_WEP_KEY_SEC_TYPE_WEP);
7411
7412         } else if ((priv->capability & CAP_PRIVACY_ON) &&
7413                    (priv->ieee->sec.auth_mode == WLAN_AUTH_LEAP))
7414                 priv->assoc_request.auth_type = AUTH_LEAP;
7415         else
7416                 priv->assoc_request.auth_type = AUTH_OPEN;
7417
7418         if (priv->ieee->wpa_ie_len) {
7419                 priv->assoc_request.policy_support = cpu_to_le16(0x02); /* RSN active */
7420                 ipw_set_rsn_capa(priv, priv->ieee->wpa_ie,
7421                                  priv->ieee->wpa_ie_len);
7422         }
7423
7424         /*
7425          * It is valid for our ieee device to support multiple modes, but
7426          * when it comes to associating to a given network we have to choose
7427          * just one mode.
7428          */
7429         if (network->mode & priv->ieee->mode & IEEE_A)
7430                 priv->assoc_request.ieee_mode = IPW_A_MODE;
7431         else if (network->mode & priv->ieee->mode & IEEE_G)
7432                 priv->assoc_request.ieee_mode = IPW_G_MODE;
7433         else if (network->mode & priv->ieee->mode & IEEE_B)
7434                 priv->assoc_request.ieee_mode = IPW_B_MODE;
7435
7436         priv->assoc_request.capability = cpu_to_le16(network->capability);
7437         if ((network->capability & WLAN_CAPABILITY_SHORT_PREAMBLE)
7438             && !(priv->config & CFG_PREAMBLE_LONG)) {
7439                 priv->assoc_request.preamble_length = DCT_FLAG_SHORT_PREAMBLE;
7440         } else {
7441                 priv->assoc_request.preamble_length = DCT_FLAG_LONG_PREAMBLE;
7442
7443                 /* Clear the short preamble if we won't be supporting it */
7444                 priv->assoc_request.capability &=
7445                     ~cpu_to_le16(WLAN_CAPABILITY_SHORT_PREAMBLE);
7446         }
7447
7448         /* Clear capability bits that aren't used in Ad Hoc */
7449         if (priv->ieee->iw_mode == IW_MODE_ADHOC)
7450                 priv->assoc_request.capability &=
7451                     ~cpu_to_le16(WLAN_CAPABILITY_SHORT_SLOT_TIME);
7452
7453         IPW_DEBUG_ASSOC("%ssociation attempt: '%s', channel %d, "
7454                         "802.11%c [%d], %s[:%s], enc=%s%s%s%c%c\n",
7455                         roaming ? "Rea" : "A",
7456                         print_ssid(ssid, priv->essid, priv->essid_len),
7457                         network->channel,
7458                         ipw_modes[priv->assoc_request.ieee_mode],
7459                         rates->num_rates,
7460                         (priv->assoc_request.preamble_length ==
7461                          DCT_FLAG_LONG_PREAMBLE) ? "long" : "short",
7462                         network->capability &
7463                         WLAN_CAPABILITY_SHORT_PREAMBLE ? "short" : "long",
7464                         priv->capability & CAP_PRIVACY_ON ? "on " : "off",
7465                         priv->capability & CAP_PRIVACY_ON ?
7466                         (priv->capability & CAP_SHARED_KEY ? "(shared)" :
7467                          "(open)") : "",
7468                         priv->capability & CAP_PRIVACY_ON ? " key=" : "",
7469                         priv->capability & CAP_PRIVACY_ON ?
7470                         '1' + priv->ieee->sec.active_key : '.',
7471                         priv->capability & CAP_PRIVACY_ON ? '.' : ' ');
7472
7473         priv->assoc_request.beacon_interval = cpu_to_le16(network->beacon_interval);
7474         if ((priv->ieee->iw_mode == IW_MODE_ADHOC) &&
7475             (network->time_stamp[0] == 0) && (network->time_stamp[1] == 0)) {
7476                 priv->assoc_request.assoc_type = HC_IBSS_START;
7477                 priv->assoc_request.assoc_tsf_msw = 0;
7478                 priv->assoc_request.assoc_tsf_lsw = 0;
7479         } else {
7480                 if (unlikely(roaming))
7481                         priv->assoc_request.assoc_type = HC_REASSOCIATE;
7482                 else
7483                         priv->assoc_request.assoc_type = HC_ASSOCIATE;
7484                 priv->assoc_request.assoc_tsf_msw = cpu_to_le32(network->time_stamp[1]);
7485                 priv->assoc_request.assoc_tsf_lsw = cpu_to_le32(network->time_stamp[0]);
7486         }
7487
7488         memcpy(priv->assoc_request.bssid, network->bssid, ETH_ALEN);
7489
7490         if (priv->ieee->iw_mode == IW_MODE_ADHOC) {
7491                 memset(&priv->assoc_request.dest, 0xFF, ETH_ALEN);
7492                 priv->assoc_request.atim_window = cpu_to_le16(network->atim_window);
7493         } else {
7494                 memcpy(priv->assoc_request.dest, network->bssid, ETH_ALEN);
7495                 priv->assoc_request.atim_window = 0;
7496         }
7497
7498         priv->assoc_request.listen_interval = cpu_to_le16(network->listen_interval);
7499
7500         err = ipw_send_ssid(priv, priv->essid, priv->essid_len);
7501         if (err) {
7502                 IPW_DEBUG_HC("Attempt to send SSID command failed.\n");
7503                 return err;
7504         }
7505
7506         rates->ieee_mode = priv->assoc_request.ieee_mode;
7507         rates->purpose = IPW_RATE_CONNECT;
7508         ipw_send_supported_rates(priv, rates);
7509
7510         if (priv->assoc_request.ieee_mode == IPW_G_MODE)
7511                 priv->sys_config.dot11g_auto_detection = 1;
7512         else
7513                 priv->sys_config.dot11g_auto_detection = 0;
7514
7515         if (priv->ieee->iw_mode == IW_MODE_ADHOC)
7516                 priv->sys_config.answer_broadcast_ssid_probe = 1;
7517         else
7518                 priv->sys_config.answer_broadcast_ssid_probe = 0;
7519
7520         err = ipw_send_system_config(priv);
7521         if (err) {
7522                 IPW_DEBUG_HC("Attempt to send sys config command failed.\n");
7523                 return err;
7524         }
7525
7526         IPW_DEBUG_ASSOC("Association sensitivity: %d\n", network->stats.rssi);
7527         err = ipw_set_sensitivity(priv, network->stats.rssi + IPW_RSSI_TO_DBM);
7528         if (err) {
7529                 IPW_DEBUG_HC("Attempt to send associate command failed.\n");
7530                 return err;
7531         }
7532
7533         /*
7534          * If preemption is enabled, it is possible for the association
7535          * to complete before we return from ipw_send_associate.  Therefore
7536          * we have to be sure and update our priviate data first.
7537          */
7538         priv->channel = network->channel;
7539         memcpy(priv->bssid, network->bssid, ETH_ALEN);
7540         priv->status |= STATUS_ASSOCIATING;
7541         priv->status &= ~STATUS_SECURITY_UPDATED;
7542
7543         priv->assoc_network = network;
7544
7545 #ifdef CONFIG_IPW2200_QOS
7546         ipw_qos_association(priv, network);
7547 #endif
7548
7549         err = ipw_send_associate(priv, &priv->assoc_request);
7550         if (err) {
7551                 IPW_DEBUG_HC("Attempt to send associate command failed.\n");
7552                 return err;
7553         }
7554
7555         IPW_DEBUG(IPW_DL_STATE, "associating: '%s' %pM\n",
7556                   print_ssid(ssid, priv->essid, priv->essid_len),
7557                   priv->bssid);
7558
7559         return 0;
7560 }
7561
7562 static void ipw_roam(void *data)
7563 {
7564         struct ipw_priv *priv = data;
7565         struct libipw_network *network = NULL;
7566         struct ipw_network_match match = {
7567                 .network = priv->assoc_network
7568         };
7569
7570         /* The roaming process is as follows:
7571          *
7572          * 1.  Missed beacon threshold triggers the roaming process by
7573          *     setting the status ROAM bit and requesting a scan.
7574          * 2.  When the scan completes, it schedules the ROAM work
7575          * 3.  The ROAM work looks at all of the known networks for one that
7576          *     is a better network than the currently associated.  If none
7577          *     found, the ROAM process is over (ROAM bit cleared)
7578          * 4.  If a better network is found, a disassociation request is
7579          *     sent.
7580          * 5.  When the disassociation completes, the roam work is again
7581          *     scheduled.  The second time through, the driver is no longer
7582          *     associated, and the newly selected network is sent an
7583          *     association request.
7584          * 6.  At this point ,the roaming process is complete and the ROAM
7585          *     status bit is cleared.
7586          */
7587
7588         /* If we are no longer associated, and the roaming bit is no longer
7589          * set, then we are not actively roaming, so just return */
7590         if (!(priv->status & (STATUS_ASSOCIATED | STATUS_ROAMING)))
7591                 return;
7592
7593         if (priv->status & STATUS_ASSOCIATED) {
7594                 /* First pass through ROAM process -- look for a better
7595                  * network */
7596                 unsigned long flags;
7597                 u8 rssi = priv->assoc_network->stats.rssi;
7598                 priv->assoc_network->stats.rssi = -128;
7599                 spin_lock_irqsave(&priv->ieee->lock, flags);
7600                 list_for_each_entry(network, &priv->ieee->network_list, list) {
7601                         if (network != priv->assoc_network)
7602                                 ipw_best_network(priv, &match, network, 1);
7603                 }
7604                 spin_unlock_irqrestore(&priv->ieee->lock, flags);
7605                 priv->assoc_network->stats.rssi = rssi;
7606
7607                 if (match.network == priv->assoc_network) {
7608                         IPW_DEBUG_ASSOC("No better APs in this network to "
7609                                         "roam to.\n");
7610                         priv->status &= ~STATUS_ROAMING;
7611                         ipw_debug_config(priv);
7612                         return;
7613                 }
7614
7615                 ipw_send_disassociate(priv, 1);
7616                 priv->assoc_network = match.network;
7617
7618                 return;
7619         }
7620
7621         /* Second pass through ROAM process -- request association */
7622         ipw_compatible_rates(priv, priv->assoc_network, &match.rates);
7623         ipw_associate_network(priv, priv->assoc_network, &match.rates, 1);
7624         priv->status &= ~STATUS_ROAMING;
7625 }
7626
7627 static void ipw_bg_roam(struct work_struct *work)
7628 {
7629         struct ipw_priv *priv =
7630                 container_of(work, struct ipw_priv, roam);
7631         mutex_lock(&priv->mutex);
7632         ipw_roam(priv);
7633         mutex_unlock(&priv->mutex);
7634 }
7635
7636 static int ipw_associate(void *data)
7637 {
7638         struct ipw_priv *priv = data;
7639
7640         struct libipw_network *network = NULL;
7641         struct ipw_network_match match = {
7642                 .network = NULL
7643         };
7644         struct ipw_supported_rates *rates;
7645         struct list_head *element;
7646         unsigned long flags;
7647         DECLARE_SSID_BUF(ssid);
7648
7649         if (priv->ieee->iw_mode == IW_MODE_MONITOR) {
7650                 IPW_DEBUG_ASSOC("Not attempting association (monitor mode)\n");
7651                 return 0;
7652         }
7653
7654         if (priv->status & (STATUS_ASSOCIATED | STATUS_ASSOCIATING)) {
7655                 IPW_DEBUG_ASSOC("Not attempting association (already in "
7656                                 "progress)\n");
7657                 return 0;
7658         }
7659
7660         if (priv->status & STATUS_DISASSOCIATING) {
7661                 IPW_DEBUG_ASSOC("Not attempting association (in "
7662                                 "disassociating)\n ");
7663                 schedule_work(&priv->associate);
7664                 return 0;
7665         }
7666
7667         if (!ipw_is_init(priv) || (priv->status & STATUS_SCANNING)) {
7668                 IPW_DEBUG_ASSOC("Not attempting association (scanning or not "
7669                                 "initialized)\n");
7670                 return 0;
7671         }
7672
7673         if (!(priv->config & CFG_ASSOCIATE) &&
7674             !(priv->config & (CFG_STATIC_ESSID | CFG_STATIC_BSSID))) {
7675                 IPW_DEBUG_ASSOC("Not attempting association (associate=0)\n");
7676                 return 0;
7677         }
7678
7679         /* Protect our use of the network_list */
7680         spin_lock_irqsave(&priv->ieee->lock, flags);
7681         list_for_each_entry(network, &priv->ieee->network_list, list)
7682             ipw_best_network(priv, &match, network, 0);
7683
7684         network = match.network;
7685         rates = &match.rates;
7686
7687         if (network == NULL &&
7688             priv->ieee->iw_mode == IW_MODE_ADHOC &&
7689             priv->config & CFG_ADHOC_CREATE &&
7690             priv->config & CFG_STATIC_ESSID &&
7691             priv->config & CFG_STATIC_CHANNEL) {
7692                 /* Use oldest network if the free list is empty */
7693                 if (list_empty(&priv->ieee->network_free_list)) {
7694                         struct libipw_network *oldest = NULL;
7695                         struct libipw_network *target;
7696
7697                         list_for_each_entry(target, &priv->ieee->network_list, list) {
7698                                 if ((oldest == NULL) ||
7699                                     (target->last_scanned < oldest->last_scanned))
7700                                         oldest = target;
7701                         }
7702
7703                         /* If there are no more slots, expire the oldest */
7704                         list_del(&oldest->list);
7705                         target = oldest;
7706                         IPW_DEBUG_ASSOC("Expired '%s' (%pM) from "
7707                                         "network list.\n",
7708                                         print_ssid(ssid, target->ssid,
7709                                                    target->ssid_len),
7710                                         target->bssid);
7711                         list_add_tail(&target->list,
7712                                       &priv->ieee->network_free_list);
7713                 }
7714
7715                 element = priv->ieee->network_free_list.next;
7716                 network = list_entry(element, struct libipw_network, list);
7717                 ipw_adhoc_create(priv, network);
7718                 rates = &priv->rates;
7719                 list_del(element);
7720                 list_add_tail(&network->list, &priv->ieee->network_list);
7721         }
7722         spin_unlock_irqrestore(&priv->ieee->lock, flags);
7723
7724         /* If we reached the end of the list, then we don't have any valid
7725          * matching APs */
7726         if (!network) {
7727                 ipw_debug_config(priv);
7728
7729                 if (!(priv->status & STATUS_SCANNING)) {
7730                         if (!(priv->config & CFG_SPEED_SCAN))
7731                                 schedule_delayed_work(&priv->request_scan,
7732                                                       SCAN_INTERVAL);
7733                         else
7734                                 schedule_delayed_work(&priv->request_scan, 0);
7735                 }
7736
7737                 return 0;
7738         }
7739
7740         ipw_associate_network(priv, network, rates, 0);
7741
7742         return 1;
7743 }
7744
7745 static void ipw_bg_associate(struct work_struct *work)
7746 {
7747         struct ipw_priv *priv =
7748                 container_of(work, struct ipw_priv, associate);
7749         mutex_lock(&priv->mutex);
7750         ipw_associate(priv);
7751         mutex_unlock(&priv->mutex);
7752 }
7753
7754 static void ipw_rebuild_decrypted_skb(struct ipw_priv *priv,
7755                                       struct sk_buff *skb)
7756 {
7757         struct ieee80211_hdr *hdr;
7758         u16 fc;
7759
7760         hdr = (struct ieee80211_hdr *)skb->data;
7761         fc = le16_to_cpu(hdr->frame_control);
7762         if (!(fc & IEEE80211_FCTL_PROTECTED))
7763                 return;
7764
7765         fc &= ~IEEE80211_FCTL_PROTECTED;
7766         hdr->frame_control = cpu_to_le16(fc);
7767         switch (priv->ieee->sec.level) {
7768         case SEC_LEVEL_3:
7769                 /* Remove CCMP HDR */
7770                 memmove(skb->data + LIBIPW_3ADDR_LEN,
7771                         skb->data + LIBIPW_3ADDR_LEN + 8,
7772                         skb->len - LIBIPW_3ADDR_LEN - 8);
7773                 skb_trim(skb, skb->len - 16);   /* CCMP_HDR_LEN + CCMP_MIC_LEN */
7774                 break;
7775         case SEC_LEVEL_2:
7776                 break;
7777         case SEC_LEVEL_1:
7778                 /* Remove IV */
7779                 memmove(skb->data + LIBIPW_3ADDR_LEN,
7780                         skb->data + LIBIPW_3ADDR_LEN + 4,
7781                         skb->len - LIBIPW_3ADDR_LEN - 4);
7782                 skb_trim(skb, skb->len - 8);    /* IV + ICV */
7783                 break;
7784         case SEC_LEVEL_0:
7785                 break;
7786         default:
7787                 printk(KERN_ERR "Unknown security level %d\n",
7788                        priv->ieee->sec.level);
7789                 break;
7790         }
7791 }
7792
7793 static void ipw_handle_data_packet(struct ipw_priv *priv,
7794                                    struct ipw_rx_mem_buffer *rxb,
7795                                    struct libipw_rx_stats *stats)
7796 {
7797         struct net_device *dev = priv->net_dev;
7798         struct libipw_hdr_4addr *hdr;
7799         struct ipw_rx_packet *pkt = (struct ipw_rx_packet *)rxb->skb->data;
7800
7801         /* We received data from the HW, so stop the watchdog */
7802         dev->trans_start = jiffies;
7803
7804         /* We only process data packets if the
7805          * interface is open */
7806         if (unlikely((le16_to_cpu(pkt->u.frame.length) + IPW_RX_FRAME_SIZE) >
7807                      skb_tailroom(rxb->skb))) {
7808                 dev->stats.rx_errors++;
7809                 priv->wstats.discard.misc++;
7810                 IPW_DEBUG_DROP("Corruption detected! Oh no!\n");
7811                 return;
7812         } else if (unlikely(!netif_running(priv->net_dev))) {
7813                 dev->stats.rx_dropped++;
7814                 priv->wstats.discard.misc++;
7815                 IPW_DEBUG_DROP("Dropping packet while interface is not up.\n");
7816                 return;
7817         }
7818
7819         /* Advance skb->data to the start of the actual payload */
7820         skb_reserve(rxb->skb, offsetof(struct ipw_rx_packet, u.frame.data));
7821
7822         /* Set the size of the skb to the size of the frame */
7823         skb_put(rxb->skb, le16_to_cpu(pkt->u.frame.length));
7824
7825         IPW_DEBUG_RX("Rx packet of %d bytes.\n", rxb->skb->len);
7826
7827         /* HW decrypt will not clear the WEP bit, MIC, PN, etc. */
7828         hdr = (struct libipw_hdr_4addr *)rxb->skb->data;
7829         if (priv->ieee->iw_mode != IW_MODE_MONITOR &&
7830             (is_multicast_ether_addr(hdr->addr1) ?
7831              !priv->ieee->host_mc_decrypt : !priv->ieee->host_decrypt))
7832                 ipw_rebuild_decrypted_skb(priv, rxb->skb);
7833
7834         if (!libipw_rx(priv->ieee, rxb->skb, stats))
7835                 dev->stats.rx_errors++;
7836         else {                  /* libipw_rx succeeded, so it now owns the SKB */
7837                 rxb->skb = NULL;
7838                 __ipw_led_activity_on(priv);
7839         }
7840 }
7841
7842 #ifdef CONFIG_IPW2200_RADIOTAP
7843 static void ipw_handle_data_packet_monitor(struct ipw_priv *priv,
7844                                            struct ipw_rx_mem_buffer *rxb,
7845                                            struct libipw_rx_stats *stats)
7846 {
7847         struct net_device *dev = priv->net_dev;
7848         struct ipw_rx_packet *pkt = (struct ipw_rx_packet *)rxb->skb->data;
7849         struct ipw_rx_frame *frame = &pkt->u.frame;
7850
7851         /* initial pull of some data */
7852         u16 received_channel = frame->received_channel;
7853         u8 antennaAndPhy = frame->antennaAndPhy;
7854         s8 antsignal = frame->rssi_dbm - IPW_RSSI_TO_DBM;       /* call it signed anyhow */
7855         u16 pktrate = frame->rate;
7856
7857         /* Magic struct that slots into the radiotap header -- no reason
7858          * to build this manually element by element, we can write it much
7859          * more efficiently than we can parse it. ORDER MATTERS HERE */
7860         struct ipw_rt_hdr *ipw_rt;
7861
7862         unsigned short len = le16_to_cpu(pkt->u.frame.length);
7863
7864         /* We received data from the HW, so stop the watchdog */
7865         dev->trans_start = jiffies;
7866
7867         /* We only process data packets if the
7868          * interface is open */
7869         if (unlikely((le16_to_cpu(pkt->u.frame.length) + IPW_RX_FRAME_SIZE) >
7870                      skb_tailroom(rxb->skb))) {
7871                 dev->stats.rx_errors++;
7872                 priv->wstats.discard.misc++;
7873                 IPW_DEBUG_DROP("Corruption detected! Oh no!\n");
7874                 return;
7875         } else if (unlikely(!netif_running(priv->net_dev))) {
7876                 dev->stats.rx_dropped++;
7877                 priv->wstats.discard.misc++;
7878                 IPW_DEBUG_DROP("Dropping packet while interface is not up.\n");
7879                 return;
7880         }
7881
7882         /* Libpcap 0.9.3+ can handle variable length radiotap, so we'll use
7883          * that now */
7884         if (len > IPW_RX_BUF_SIZE - sizeof(struct ipw_rt_hdr)) {
7885                 /* FIXME: Should alloc bigger skb instead */
7886                 dev->stats.rx_dropped++;
7887                 priv->wstats.discard.misc++;
7888                 IPW_DEBUG_DROP("Dropping too large packet in monitor\n");
7889                 return;
7890         }
7891
7892         /* copy the frame itself */
7893         memmove(rxb->skb->data + sizeof(struct ipw_rt_hdr),
7894                 rxb->skb->data + IPW_RX_FRAME_SIZE, len);
7895
7896         ipw_rt = (struct ipw_rt_hdr *)rxb->skb->data;
7897
7898         ipw_rt->rt_hdr.it_version = PKTHDR_RADIOTAP_VERSION;
7899         ipw_rt->rt_hdr.it_pad = 0;      /* always good to zero */
7900         ipw_rt->rt_hdr.it_len = cpu_to_le16(sizeof(struct ipw_rt_hdr)); /* total header+data */
7901
7902         /* Big bitfield of all the fields we provide in radiotap */
7903         ipw_rt->rt_hdr.it_present = cpu_to_le32(
7904              (1 << IEEE80211_RADIOTAP_TSFT) |
7905              (1 << IEEE80211_RADIOTAP_FLAGS) |
7906              (1 << IEEE80211_RADIOTAP_RATE) |
7907              (1 << IEEE80211_RADIOTAP_CHANNEL) |
7908              (1 << IEEE80211_RADIOTAP_DBM_ANTSIGNAL) |
7909              (1 << IEEE80211_RADIOTAP_DBM_ANTNOISE) |
7910              (1 << IEEE80211_RADIOTAP_ANTENNA));
7911
7912         /* Zero the flags, we'll add to them as we go */
7913         ipw_rt->rt_flags = 0;
7914         ipw_rt->rt_tsf = (u64)(frame->parent_tsf[3] << 24 |
7915                                frame->parent_tsf[2] << 16 |
7916                                frame->parent_tsf[1] << 8  |
7917                                frame->parent_tsf[0]);
7918
7919         /* Convert signal to DBM */
7920         ipw_rt->rt_dbmsignal = antsignal;
7921         ipw_rt->rt_dbmnoise = (s8) le16_to_cpu(frame->noise);
7922
7923         /* Convert the channel data and set the flags */
7924         ipw_rt->rt_channel = cpu_to_le16(ieee80211chan2mhz(received_channel));
7925         if (received_channel > 14) {    /* 802.11a */
7926                 ipw_rt->rt_chbitmask =
7927                     cpu_to_le16((IEEE80211_CHAN_OFDM | IEEE80211_CHAN_5GHZ));
7928         } else if (antennaAndPhy & 32) {        /* 802.11b */
7929                 ipw_rt->rt_chbitmask =
7930                     cpu_to_le16((IEEE80211_CHAN_CCK | IEEE80211_CHAN_2GHZ));
7931         } else {                /* 802.11g */
7932                 ipw_rt->rt_chbitmask =
7933                     cpu_to_le16(IEEE80211_CHAN_OFDM | IEEE80211_CHAN_2GHZ);
7934         }
7935
7936         /* set the rate in multiples of 500k/s */
7937         switch (pktrate) {
7938         case IPW_TX_RATE_1MB:
7939                 ipw_rt->rt_rate = 2;
7940                 break;
7941         case IPW_TX_RATE_2MB:
7942                 ipw_rt->rt_rate = 4;
7943                 break;
7944         case IPW_TX_RATE_5MB:
7945                 ipw_rt->rt_rate = 10;
7946                 break;
7947         case IPW_TX_RATE_6MB:
7948                 ipw_rt->rt_rate = 12;
7949                 break;
7950         case IPW_TX_RATE_9MB:
7951                 ipw_rt->rt_rate = 18;
7952                 break;
7953         case IPW_TX_RATE_11MB:
7954                 ipw_rt->rt_rate = 22;
7955                 break;
7956         case IPW_TX_RATE_12MB:
7957                 ipw_rt->rt_rate = 24;
7958                 break;
7959         case IPW_TX_RATE_18MB:
7960                 ipw_rt->rt_rate = 36;
7961                 break;
7962         case IPW_TX_RATE_24MB:
7963                 ipw_rt->rt_rate = 48;
7964                 break;
7965         case IPW_TX_RATE_36MB:
7966                 ipw_rt->rt_rate = 72;
7967                 break;
7968         case IPW_TX_RATE_48MB:
7969                 ipw_rt->rt_rate = 96;
7970                 break;
7971         case IPW_TX_RATE_54MB:
7972                 ipw_rt->rt_rate = 108;
7973                 break;
7974         default:
7975                 ipw_rt->rt_rate = 0;
7976                 break;
7977         }
7978
7979         /* antenna number */
7980         ipw_rt->rt_antenna = (antennaAndPhy & 3);       /* Is this right? */
7981
7982         /* set the preamble flag if we have it */
7983         if ((antennaAndPhy & 64))
7984                 ipw_rt->rt_flags |= IEEE80211_RADIOTAP_F_SHORTPRE;
7985
7986         /* Set the size of the skb to the size of the frame */
7987         skb_put(rxb->skb, len + sizeof(struct ipw_rt_hdr));
7988
7989         IPW_DEBUG_RX("Rx packet of %d bytes.\n", rxb->skb->len);
7990
7991         if (!libipw_rx(priv->ieee, rxb->skb, stats))
7992                 dev->stats.rx_errors++;
7993         else {                  /* libipw_rx succeeded, so it now owns the SKB */
7994                 rxb->skb = NULL;
7995                 /* no LED during capture */
7996         }
7997 }
7998 #endif
7999
8000 #ifdef CONFIG_IPW2200_PROMISCUOUS
8001 #define libipw_is_probe_response(fc) \
8002    ((fc & IEEE80211_FCTL_FTYPE) == IEEE80211_FTYPE_MGMT && \
8003     (fc & IEEE80211_FCTL_STYPE) == IEEE80211_STYPE_PROBE_RESP )
8004
8005 #define libipw_is_management(fc) \
8006    ((fc & IEEE80211_FCTL_FTYPE) == IEEE80211_FTYPE_MGMT)
8007
8008 #define libipw_is_control(fc) \
8009    ((fc & IEEE80211_FCTL_FTYPE) == IEEE80211_FTYPE_CTL)
8010
8011 #define libipw_is_data(fc) \
8012    ((fc & IEEE80211_FCTL_FTYPE) == IEEE80211_FTYPE_DATA)
8013
8014 #define libipw_is_assoc_request(fc) \
8015    ((fc & IEEE80211_FCTL_STYPE) == IEEE80211_STYPE_ASSOC_REQ)
8016
8017 #define libipw_is_reassoc_request(fc) \
8018    ((fc & IEEE80211_FCTL_STYPE) == IEEE80211_STYPE_REASSOC_REQ)
8019
8020 static void ipw_handle_promiscuous_rx(struct ipw_priv *priv,
8021                                       struct ipw_rx_mem_buffer *rxb,
8022                                       struct libipw_rx_stats *stats)
8023 {
8024         struct net_device *dev = priv->prom_net_dev;
8025         struct ipw_rx_packet *pkt = (struct ipw_rx_packet *)rxb->skb->data;
8026         struct ipw_rx_frame *frame = &pkt->u.frame;
8027         struct ipw_rt_hdr *ipw_rt;
8028
8029         /* First cache any information we need before we overwrite
8030          * the information provided in the skb from the hardware */
8031         struct ieee80211_hdr *hdr;
8032         u16 channel = frame->received_channel;
8033         u8 phy_flags = frame->antennaAndPhy;
8034         s8 signal = frame->rssi_dbm - IPW_RSSI_TO_DBM;
8035         s8 noise = (s8) le16_to_cpu(frame->noise);
8036         u8 rate = frame->rate;
8037         unsigned short len = le16_to_cpu(pkt->u.frame.length);
8038         struct sk_buff *skb;
8039         int hdr_only = 0;
8040         u16 filter = priv->prom_priv->filter;
8041
8042         /* If the filter is set to not include Rx frames then return */
8043         if (filter & IPW_PROM_NO_RX)
8044                 return;
8045
8046         /* We received data from the HW, so stop the watchdog */
8047         dev->trans_start = jiffies;
8048
8049         if (unlikely((len + IPW_RX_FRAME_SIZE) > skb_tailroom(rxb->skb))) {
8050                 dev->stats.rx_errors++;
8051                 IPW_DEBUG_DROP("Corruption detected! Oh no!\n");
8052                 return;
8053         }
8054
8055         /* We only process data packets if the interface is open */
8056         if (unlikely(!netif_running(dev))) {
8057                 dev->stats.rx_dropped++;
8058                 IPW_DEBUG_DROP("Dropping packet while interface is not up.\n");
8059                 return;
8060         }
8061
8062         /* Libpcap 0.9.3+ can handle variable length radiotap, so we'll use
8063          * that now */
8064         if (len > IPW_RX_BUF_SIZE - sizeof(struct ipw_rt_hdr)) {
8065                 /* FIXME: Should alloc bigger skb instead */
8066                 dev->stats.rx_dropped++;
8067                 IPW_DEBUG_DROP("Dropping too large packet in monitor\n");
8068                 return;
8069         }
8070
8071         hdr = (void *)rxb->skb->data + IPW_RX_FRAME_SIZE;
8072         if (libipw_is_management(le16_to_cpu(hdr->frame_control))) {
8073                 if (filter & IPW_PROM_NO_MGMT)
8074                         return;
8075                 if (filter & IPW_PROM_MGMT_HEADER_ONLY)
8076                         hdr_only = 1;
8077         } else if (libipw_is_control(le16_to_cpu(hdr->frame_control))) {
8078                 if (filter & IPW_PROM_NO_CTL)
8079                         return;
8080                 if (filter & IPW_PROM_CTL_HEADER_ONLY)
8081                         hdr_only = 1;
8082         } else if (libipw_is_data(le16_to_cpu(hdr->frame_control))) {
8083                 if (filter & IPW_PROM_NO_DATA)
8084                         return;
8085                 if (filter & IPW_PROM_DATA_HEADER_ONLY)
8086                         hdr_only = 1;
8087         }
8088
8089         /* Copy the SKB since this is for the promiscuous side */
8090         skb = skb_copy(rxb->skb, GFP_ATOMIC);
8091         if (skb == NULL) {
8092                 IPW_ERROR("skb_clone failed for promiscuous copy.\n");
8093                 return;
8094         }
8095
8096         /* copy the frame data to write after where the radiotap header goes */
8097         ipw_rt = (void *)skb->data;
8098
8099         if (hdr_only)
8100                 len = libipw_get_hdrlen(le16_to_cpu(hdr->frame_control));
8101
8102         memcpy(ipw_rt->payload, hdr, len);
8103
8104         ipw_rt->rt_hdr.it_version = PKTHDR_RADIOTAP_VERSION;
8105         ipw_rt->rt_hdr.it_pad = 0;      /* always good to zero */
8106         ipw_rt->rt_hdr.it_len = cpu_to_le16(sizeof(*ipw_rt));   /* total header+data */
8107
8108         /* Set the size of the skb to the size of the frame */
8109         skb_put(skb, sizeof(*ipw_rt) + len);
8110
8111         /* Big bitfield of all the fields we provide in radiotap */
8112         ipw_rt->rt_hdr.it_present = cpu_to_le32(
8113              (1 << IEEE80211_RADIOTAP_TSFT) |
8114              (1 << IEEE80211_RADIOTAP_FLAGS) |
8115              (1 << IEEE80211_RADIOTAP_RATE) |
8116              (1 << IEEE80211_RADIOTAP_CHANNEL) |
8117              (1 << IEEE80211_RADIOTAP_DBM_ANTSIGNAL) |
8118              (1 << IEEE80211_RADIOTAP_DBM_ANTNOISE) |
8119              (1 << IEEE80211_RADIOTAP_ANTENNA));
8120
8121         /* Zero the flags, we'll add to them as we go */
8122         ipw_rt->rt_flags = 0;
8123         ipw_rt->rt_tsf = (u64)(frame->parent_tsf[3] << 24 |
8124                                frame->parent_tsf[2] << 16 |
8125                                frame->parent_tsf[1] << 8  |
8126                                frame->parent_tsf[0]);
8127
8128         /* Convert to DBM */
8129         ipw_rt->rt_dbmsignal = signal;
8130         ipw_rt->rt_dbmnoise = noise;
8131
8132         /* Convert the channel data and set the flags */
8133         ipw_rt->rt_channel = cpu_to_le16(ieee80211chan2mhz(channel));
8134         if (channel > 14) {     /* 802.11a */
8135                 ipw_rt->rt_chbitmask =
8136                     cpu_to_le16((IEEE80211_CHAN_OFDM | IEEE80211_CHAN_5GHZ));
8137         } else if (phy_flags & (1 << 5)) {      /* 802.11b */
8138                 ipw_rt->rt_chbitmask =
8139                     cpu_to_le16((IEEE80211_CHAN_CCK | IEEE80211_CHAN_2GHZ));
8140         } else {                /* 802.11g */
8141                 ipw_rt->rt_chbitmask =
8142                     cpu_to_le16(IEEE80211_CHAN_OFDM | IEEE80211_CHAN_2GHZ);
8143         }
8144
8145         /* set the rate in multiples of 500k/s */
8146         switch (rate) {
8147         case IPW_TX_RATE_1MB:
8148                 ipw_rt->rt_rate = 2;
8149                 break;
8150         case IPW_TX_RATE_2MB:
8151                 ipw_rt->rt_rate = 4;
8152                 break;
8153         case IPW_TX_RATE_5MB:
8154                 ipw_rt->rt_rate = 10;
8155                 break;
8156         case IPW_TX_RATE_6MB:
8157                 ipw_rt->rt_rate = 12;
8158                 break;
8159         case IPW_TX_RATE_9MB:
8160                 ipw_rt->rt_rate = 18;
8161                 break;
8162         case IPW_TX_RATE_11MB:
8163                 ipw_rt->rt_rate = 22;
8164                 break;
8165         case IPW_TX_RATE_12MB:
8166                 ipw_rt->rt_rate = 24;
8167                 break;
8168         case IPW_TX_RATE_18MB:
8169                 ipw_rt->rt_rate = 36;
8170                 break;
8171         case IPW_TX_RATE_24MB:
8172                 ipw_rt->rt_rate = 48;
8173                 break;
8174         case IPW_TX_RATE_36MB:
8175                 ipw_rt->rt_rate = 72;
8176                 break;
8177         case IPW_TX_RATE_48MB:
8178                 ipw_rt->rt_rate = 96;
8179                 break;
8180         case IPW_TX_RATE_54MB:
8181                 ipw_rt->rt_rate = 108;
8182                 break;
8183         default:
8184                 ipw_rt->rt_rate = 0;
8185                 break;
8186         }
8187
8188         /* antenna number */
8189         ipw_rt->rt_antenna = (phy_flags & 3);
8190
8191         /* set the preamble flag if we have it */
8192         if (phy_flags & (1 << 6))
8193                 ipw_rt->rt_flags |= IEEE80211_RADIOTAP_F_SHORTPRE;
8194
8195         IPW_DEBUG_RX("Rx packet of %d bytes.\n", skb->len);
8196
8197         if (!libipw_rx(priv->prom_priv->ieee, skb, stats)) {
8198                 dev->stats.rx_errors++;
8199                 dev_kfree_skb_any(skb);
8200         }
8201 }
8202 #endif
8203
8204 static int is_network_packet(struct ipw_priv *priv,
8205                                     struct libipw_hdr_4addr *header)
8206 {
8207         /* Filter incoming packets to determine if they are targeted toward
8208          * this network, discarding packets coming from ourselves */
8209         switch (priv->ieee->iw_mode) {
8210         case IW_MODE_ADHOC:     /* Header: Dest. | Source    | BSSID */
8211                 /* packets from our adapter are dropped (echo) */
8212                 if (!memcmp(header->addr2, priv->net_dev->dev_addr, ETH_ALEN))
8213                         return 0;
8214
8215                 /* {broad,multi}cast packets to our BSSID go through */
8216                 if (is_multicast_ether_addr(header->addr1))
8217                         return !memcmp(header->addr3, priv->bssid, ETH_ALEN);
8218
8219                 /* packets to our adapter go through */
8220                 return !memcmp(header->addr1, priv->net_dev->dev_addr,
8221                                ETH_ALEN);
8222
8223         case IW_MODE_INFRA:     /* Header: Dest. | BSSID | Source */
8224                 /* packets from our adapter are dropped (echo) */
8225                 if (!memcmp(header->addr3, priv->net_dev->dev_addr, ETH_ALEN))
8226                         return 0;
8227
8228                 /* {broad,multi}cast packets to our BSS go through */
8229                 if (is_multicast_ether_addr(header->addr1))
8230                         return !memcmp(header->addr2, priv->bssid, ETH_ALEN);
8231
8232                 /* packets to our adapter go through */
8233                 return !memcmp(header->addr1, priv->net_dev->dev_addr,
8234                                ETH_ALEN);
8235         }
8236
8237         return 1;
8238 }
8239
8240 #define IPW_PACKET_RETRY_TIME HZ
8241
8242 static  int is_duplicate_packet(struct ipw_priv *priv,
8243                                       struct libipw_hdr_4addr *header)
8244 {
8245         u16 sc = le16_to_cpu(header->seq_ctl);
8246         u16 seq = WLAN_GET_SEQ_SEQ(sc);
8247         u16 frag = WLAN_GET_SEQ_FRAG(sc);
8248         u16 *last_seq, *last_frag;
8249         unsigned long *last_time;
8250
8251         switch (priv->ieee->iw_mode) {
8252         case IW_MODE_ADHOC:
8253                 {
8254                         struct list_head *p;
8255                         struct ipw_ibss_seq *entry = NULL;
8256                         u8 *mac = header->addr2;
8257                         int index = mac[5] % IPW_IBSS_MAC_HASH_SIZE;
8258
8259                         __list_for_each(p, &priv->ibss_mac_hash[index]) {
8260                                 entry =
8261                                     list_entry(p, struct ipw_ibss_seq, list);
8262                                 if (!memcmp(entry->mac, mac, ETH_ALEN))
8263                                         break;
8264                         }
8265                         if (p == &priv->ibss_mac_hash[index]) {
8266                                 entry = kmalloc(sizeof(*entry), GFP_ATOMIC);
8267                                 if (!entry) {
8268                                         IPW_ERROR
8269                                             ("Cannot malloc new mac entry\n");
8270                                         return 0;
8271                                 }
8272                                 memcpy(entry->mac, mac, ETH_ALEN);
8273                                 entry->seq_num = seq;
8274                                 entry->frag_num = frag;
8275                                 entry->packet_time = jiffies;
8276                                 list_add(&entry->list,
8277                                          &priv->ibss_mac_hash[index]);
8278                                 return 0;
8279                         }
8280                         last_seq = &entry->seq_num;
8281                         last_frag = &entry->frag_num;
8282                         last_time = &entry->packet_time;
8283                         break;
8284                 }
8285         case IW_MODE_INFRA:
8286                 last_seq = &priv->last_seq_num;
8287                 last_frag = &priv->last_frag_num;
8288                 last_time = &priv->last_packet_time;
8289                 break;
8290         default:
8291                 return 0;
8292         }
8293         if ((*last_seq == seq) &&
8294             time_after(*last_time + IPW_PACKET_RETRY_TIME, jiffies)) {
8295                 if (*last_frag == frag)
8296                         goto drop;
8297                 if (*last_frag + 1 != frag)
8298                         /* out-of-order fragment */
8299                         goto drop;
8300         } else
8301                 *last_seq = seq;
8302
8303         *last_frag = frag;
8304         *last_time = jiffies;
8305         return 0;
8306
8307       drop:
8308         /* Comment this line now since we observed the card receives
8309          * duplicate packets but the FCTL_RETRY bit is not set in the
8310          * IBSS mode with fragmentation enabled.
8311          BUG_ON(!(le16_to_cpu(header->frame_control) & IEEE80211_FCTL_RETRY)); */
8312         return 1;
8313 }
8314
8315 static void ipw_handle_mgmt_packet(struct ipw_priv *priv,
8316                                    struct ipw_rx_mem_buffer *rxb,
8317                                    struct libipw_rx_stats *stats)
8318 {
8319         struct sk_buff *skb = rxb->skb;
8320         struct ipw_rx_packet *pkt = (struct ipw_rx_packet *)skb->data;
8321         struct libipw_hdr_4addr *header = (struct libipw_hdr_4addr *)
8322             (skb->data + IPW_RX_FRAME_SIZE);
8323
8324         libipw_rx_mgt(priv->ieee, header, stats);
8325
8326         if (priv->ieee->iw_mode == IW_MODE_ADHOC &&
8327             ((WLAN_FC_GET_STYPE(le16_to_cpu(header->frame_ctl)) ==
8328               IEEE80211_STYPE_PROBE_RESP) ||
8329              (WLAN_FC_GET_STYPE(le16_to_cpu(header->frame_ctl)) ==
8330               IEEE80211_STYPE_BEACON))) {
8331                 if (!memcmp(header->addr3, priv->bssid, ETH_ALEN))
8332                         ipw_add_station(priv, header->addr2);
8333         }
8334
8335         if (priv->config & CFG_NET_STATS) {
8336                 IPW_DEBUG_HC("sending stat packet\n");
8337
8338                 /* Set the size of the skb to the size of the full
8339                  * ipw header and 802.11 frame */
8340                 skb_put(skb, le16_to_cpu(pkt->u.frame.length) +
8341                         IPW_RX_FRAME_SIZE);
8342
8343                 /* Advance past the ipw packet header to the 802.11 frame */
8344                 skb_pull(skb, IPW_RX_FRAME_SIZE);
8345
8346                 /* Push the libipw_rx_stats before the 802.11 frame */
8347                 memcpy(skb_push(skb, sizeof(*stats)), stats, sizeof(*stats));
8348
8349                 skb->dev = priv->ieee->dev;
8350
8351                 /* Point raw at the libipw_stats */
8352                 skb_reset_mac_header(skb);
8353
8354                 skb->pkt_type = PACKET_OTHERHOST;
8355                 skb->protocol = cpu_to_be16(ETH_P_80211_STATS);
8356                 memset(skb->cb, 0, sizeof(rxb->skb->cb));
8357                 netif_rx(skb);
8358                 rxb->skb = NULL;
8359         }
8360 }
8361
8362 /*
8363  * Main entry function for receiving a packet with 80211 headers.  This
8364  * should be called when ever the FW has notified us that there is a new
8365  * skb in the receive queue.
8366  */
8367 static void ipw_rx(struct ipw_priv *priv)
8368 {
8369         struct ipw_rx_mem_buffer *rxb;
8370         struct ipw_rx_packet *pkt;
8371         struct libipw_hdr_4addr *header;
8372         u32 r, w, i;
8373         u8 network_packet;
8374         u8 fill_rx = 0;
8375
8376         r = ipw_read32(priv, IPW_RX_READ_INDEX);
8377         w = ipw_read32(priv, IPW_RX_WRITE_INDEX);
8378         i = priv->rxq->read;
8379
8380         if (ipw_rx_queue_space (priv->rxq) > (RX_QUEUE_SIZE / 2))
8381                 fill_rx = 1;
8382
8383         while (i != r) {
8384                 rxb = priv->rxq->queue[i];
8385                 if (unlikely(rxb == NULL)) {
8386                         printk(KERN_CRIT "Queue not allocated!\n");
8387                         break;
8388                 }
8389                 priv->rxq->queue[i] = NULL;
8390
8391                 pci_dma_sync_single_for_cpu(priv->pci_dev, rxb->dma_addr,
8392                                             IPW_RX_BUF_SIZE,
8393                                             PCI_DMA_FROMDEVICE);
8394
8395                 pkt = (struct ipw_rx_packet *)rxb->skb->data;
8396                 IPW_DEBUG_RX("Packet: type=%02X seq=%02X bits=%02X\n",
8397                              pkt->header.message_type,
8398                              pkt->header.rx_seq_num, pkt->header.control_bits);
8399
8400                 switch (pkt->header.message_type) {
8401                 case RX_FRAME_TYPE:     /* 802.11 frame */  {
8402                                 struct libipw_rx_stats stats = {
8403                                         .rssi = pkt->u.frame.rssi_dbm -
8404                                             IPW_RSSI_TO_DBM,
8405                                         .signal =
8406                                             pkt->u.frame.rssi_dbm -
8407                                             IPW_RSSI_TO_DBM + 0x100,
8408                                         .noise =
8409                                             le16_to_cpu(pkt->u.frame.noise),
8410                                         .rate = pkt->u.frame.rate,
8411                                         .mac_time = jiffies,
8412                                         .received_channel =
8413                                             pkt->u.frame.received_channel,
8414                                         .freq =
8415                                             (pkt->u.frame.
8416                                              control & (1 << 0)) ?
8417                                             LIBIPW_24GHZ_BAND :
8418                                             LIBIPW_52GHZ_BAND,
8419                                         .len = le16_to_cpu(pkt->u.frame.length),
8420                                 };
8421
8422                                 if (stats.rssi != 0)
8423                                         stats.mask |= LIBIPW_STATMASK_RSSI;
8424                                 if (stats.signal != 0)
8425                                         stats.mask |= LIBIPW_STATMASK_SIGNAL;
8426                                 if (stats.noise != 0)
8427                                         stats.mask |= LIBIPW_STATMASK_NOISE;
8428                                 if (stats.rate != 0)
8429                                         stats.mask |= LIBIPW_STATMASK_RATE;
8430
8431                                 priv->rx_packets++;
8432
8433 #ifdef CONFIG_IPW2200_PROMISCUOUS
8434         if (priv->prom_net_dev && netif_running(priv->prom_net_dev))
8435                 ipw_handle_promiscuous_rx(priv, rxb, &stats);
8436 #endif
8437
8438 #ifdef CONFIG_IPW2200_MONITOR
8439                                 if (priv->ieee->iw_mode == IW_MODE_MONITOR) {
8440 #ifdef CONFIG_IPW2200_RADIOTAP
8441
8442                 ipw_handle_data_packet_monitor(priv,
8443                                                rxb,
8444                                                &stats);
8445 #else
8446                 ipw_handle_data_packet(priv, rxb,
8447                                        &stats);
8448 #endif
8449                                         break;
8450                                 }
8451 #endif
8452
8453                                 header =
8454                                     (struct libipw_hdr_4addr *)(rxb->skb->
8455                                                                    data +
8456                                                                    IPW_RX_FRAME_SIZE);
8457                                 /* TODO: Check Ad-Hoc dest/source and make sure
8458                                  * that we are actually parsing these packets
8459                                  * correctly -- we should probably use the
8460                                  * frame control of the packet and disregard
8461                                  * the current iw_mode */
8462
8463                                 network_packet =
8464                                     is_network_packet(priv, header);
8465                                 if (network_packet && priv->assoc_network) {
8466                                         priv->assoc_network->stats.rssi =
8467                                             stats.rssi;
8468                                         priv->exp_avg_rssi =
8469                                             exponential_average(priv->exp_avg_rssi,
8470                                             stats.rssi, DEPTH_RSSI);
8471                                 }
8472
8473                                 IPW_DEBUG_RX("Frame: len=%u\n",
8474                                              le16_to_cpu(pkt->u.frame.length));
8475
8476                                 if (le16_to_cpu(pkt->u.frame.length) <
8477                                     libipw_get_hdrlen(le16_to_cpu(
8478                                                     header->frame_ctl))) {
8479                                         IPW_DEBUG_DROP
8480                                             ("Received packet is too small. "
8481                                              "Dropping.\n");
8482                                         priv->net_dev->stats.rx_errors++;
8483                                         priv->wstats.discard.misc++;
8484                                         break;
8485                                 }
8486
8487                                 switch (WLAN_FC_GET_TYPE
8488                                         (le16_to_cpu(header->frame_ctl))) {
8489
8490                                 case IEEE80211_FTYPE_MGMT:
8491                                         ipw_handle_mgmt_packet(priv, rxb,
8492                                                                &stats);
8493                                         break;
8494
8495                                 case IEEE80211_FTYPE_CTL:
8496                                         break;
8497
8498                                 case IEEE80211_FTYPE_DATA:
8499                                         if (unlikely(!network_packet ||
8500                                                      is_duplicate_packet(priv,
8501                                                                          header)))
8502                                         {
8503                                                 IPW_DEBUG_DROP("Dropping: "
8504                                                                "%pM, "
8505                                                                "%pM, "
8506                                                                "%pM\n",
8507                                                                header->addr1,
8508                                                                header->addr2,
8509                                                                header->addr3);
8510                                                 break;
8511                                         }
8512
8513                                         ipw_handle_data_packet(priv, rxb,
8514                                                                &stats);
8515
8516                                         break;
8517                                 }
8518                                 break;
8519                         }
8520
8521                 case RX_HOST_NOTIFICATION_TYPE:{
8522                                 IPW_DEBUG_RX
8523                                     ("Notification: subtype=%02X flags=%02X size=%d\n",
8524                                      pkt->u.notification.subtype,
8525                                      pkt->u.notification.flags,
8526                                      le16_to_cpu(pkt->u.notification.size));
8527                                 ipw_rx_notification(priv, &pkt->u.notification);
8528                                 break;
8529                         }
8530
8531                 default:
8532                         IPW_DEBUG_RX("Bad Rx packet of type %d\n",
8533                                      pkt->header.message_type);
8534                         break;
8535                 }
8536
8537                 /* For now we just don't re-use anything.  We can tweak this
8538                  * later to try and re-use notification packets and SKBs that
8539                  * fail to Rx correctly */
8540                 if (rxb->skb != NULL) {
8541                         dev_kfree_skb_any(rxb->skb);
8542                         rxb->skb = NULL;
8543                 }
8544
8545                 pci_unmap_single(priv->pci_dev, rxb->dma_addr,
8546                                  IPW_RX_BUF_SIZE, PCI_DMA_FROMDEVICE);
8547                 list_add_tail(&rxb->list, &priv->rxq->rx_used);
8548
8549                 i = (i + 1) % RX_QUEUE_SIZE;
8550
8551                 /* If there are a lot of unsued frames, restock the Rx queue
8552                  * so the ucode won't assert */
8553                 if (fill_rx) {
8554                         priv->rxq->read = i;
8555                         ipw_rx_queue_replenish(priv);
8556                 }
8557         }
8558
8559         /* Backtrack one entry */
8560         priv->rxq->read = i;
8561         ipw_rx_queue_restock(priv);
8562 }
8563
8564 #define DEFAULT_RTS_THRESHOLD     2304U
8565 #define MIN_RTS_THRESHOLD         1U
8566 #define MAX_RTS_THRESHOLD         2304U
8567 #define DEFAULT_BEACON_INTERVAL   100U
8568 #define DEFAULT_SHORT_RETRY_LIMIT 7U
8569 #define DEFAULT_LONG_RETRY_LIMIT  4U
8570
8571 /**
8572  * ipw_sw_reset
8573  * @option: options to control different reset behaviour
8574  *          0 = reset everything except the 'disable' module_param
8575  *          1 = reset everything and print out driver info (for probe only)
8576  *          2 = reset everything
8577  */
8578 static int ipw_sw_reset(struct ipw_priv *priv, int option)
8579 {
8580         int band, modulation;
8581         int old_mode = priv->ieee->iw_mode;
8582
8583         /* Initialize module parameter values here */
8584         priv->config = 0;
8585
8586         /* We default to disabling the LED code as right now it causes
8587          * too many systems to lock up... */
8588         if (!led_support)
8589                 priv->config |= CFG_NO_LED;
8590
8591         if (associate)
8592                 priv->config |= CFG_ASSOCIATE;
8593         else
8594                 IPW_DEBUG_INFO("Auto associate disabled.\n");
8595
8596         if (auto_create)
8597                 priv->config |= CFG_ADHOC_CREATE;
8598         else
8599                 IPW_DEBUG_INFO("Auto adhoc creation disabled.\n");
8600
8601         priv->config &= ~CFG_STATIC_ESSID;
8602         priv->essid_len = 0;
8603         memset(priv->essid, 0, IW_ESSID_MAX_SIZE);
8604
8605         if (disable && option) {
8606                 priv->status |= STATUS_RF_KILL_SW;
8607                 IPW_DEBUG_INFO("Radio disabled.\n");
8608         }
8609
8610         if (default_channel != 0) {
8611                 priv->config |= CFG_STATIC_CHANNEL;
8612                 priv->channel = default_channel;
8613                 IPW_DEBUG_INFO("Bind to static channel %d\n", default_channel);
8614                 /* TODO: Validate that provided channel is in range */
8615         }
8616 #ifdef CONFIG_IPW2200_QOS
8617         ipw_qos_init(priv, qos_enable, qos_burst_enable,
8618                      burst_duration_CCK, burst_duration_OFDM);
8619 #endif                          /* CONFIG_IPW2200_QOS */
8620
8621         switch (network_mode) {
8622         case 1:
8623                 priv->ieee->iw_mode = IW_MODE_ADHOC;
8624                 priv->net_dev->type = ARPHRD_ETHER;
8625
8626                 break;
8627 #ifdef CONFIG_IPW2200_MONITOR
8628         case 2:
8629                 priv->ieee->iw_mode = IW_MODE_MONITOR;
8630 #ifdef CONFIG_IPW2200_RADIOTAP
8631                 priv->net_dev->type = ARPHRD_IEEE80211_RADIOTAP;
8632 #else
8633                 priv->net_dev->type = ARPHRD_IEEE80211;
8634 #endif
8635                 break;
8636 #endif
8637         default:
8638         case 0:
8639                 priv->net_dev->type = ARPHRD_ETHER;
8640                 priv->ieee->iw_mode = IW_MODE_INFRA;
8641                 break;
8642         }
8643
8644         if (hwcrypto) {
8645                 priv->ieee->host_encrypt = 0;
8646                 priv->ieee->host_encrypt_msdu = 0;
8647                 priv->ieee->host_decrypt = 0;
8648                 priv->ieee->host_mc_decrypt = 0;
8649         }
8650         IPW_DEBUG_INFO("Hardware crypto [%s]\n", hwcrypto ? "on" : "off");
8651
8652         /* IPW2200/2915 is abled to do hardware fragmentation. */
8653         priv->ieee->host_open_frag = 0;
8654
8655         if ((priv->pci_dev->device == 0x4223) ||
8656             (priv->pci_dev->device == 0x4224)) {
8657                 if (option == 1)
8658                         printk(KERN_INFO DRV_NAME
8659                                ": Detected Intel PRO/Wireless 2915ABG Network "
8660                                "Connection\n");
8661                 priv->ieee->abg_true = 1;
8662                 band = LIBIPW_52GHZ_BAND | LIBIPW_24GHZ_BAND;
8663                 modulation = LIBIPW_OFDM_MODULATION |
8664                     LIBIPW_CCK_MODULATION;
8665                 priv->adapter = IPW_2915ABG;
8666                 priv->ieee->mode = IEEE_A | IEEE_G | IEEE_B;
8667         } else {
8668                 if (option == 1)
8669                         printk(KERN_INFO DRV_NAME
8670                                ": Detected Intel PRO/Wireless 2200BG Network "
8671                                "Connection\n");
8672
8673                 priv->ieee->abg_true = 0;
8674                 band = LIBIPW_24GHZ_BAND;
8675                 modulation = LIBIPW_OFDM_MODULATION |
8676                     LIBIPW_CCK_MODULATION;
8677                 priv->adapter = IPW_2200BG;
8678                 priv->ieee->mode = IEEE_G | IEEE_B;
8679         }
8680
8681         priv->ieee->freq_band = band;
8682         priv->ieee->modulation = modulation;
8683
8684         priv->rates_mask = LIBIPW_DEFAULT_RATES_MASK;
8685
8686         priv->disassociate_threshold = IPW_MB_DISASSOCIATE_THRESHOLD_DEFAULT;
8687         priv->roaming_threshold = IPW_MB_ROAMING_THRESHOLD_DEFAULT;
8688
8689         priv->rts_threshold = DEFAULT_RTS_THRESHOLD;
8690         priv->short_retry_limit = DEFAULT_SHORT_RETRY_LIMIT;
8691         priv->long_retry_limit = DEFAULT_LONG_RETRY_LIMIT;
8692
8693         /* If power management is turned on, default to AC mode */
8694         priv->power_mode = IPW_POWER_AC;
8695         priv->tx_power = IPW_TX_POWER_DEFAULT;
8696
8697         return old_mode == priv->ieee->iw_mode;
8698 }
8699
8700 /*
8701  * This file defines the Wireless Extension handlers.  It does not
8702  * define any methods of hardware manipulation and relies on the
8703  * functions defined in ipw_main to provide the HW interaction.
8704  *
8705  * The exception to this is the use of the ipw_get_ordinal()
8706  * function used to poll the hardware vs. making unnecessary calls.
8707  *
8708  */
8709
8710 static int ipw_set_channel(struct ipw_priv *priv, u8 channel)
8711 {
8712         if (channel == 0) {
8713                 IPW_DEBUG_INFO("Setting channel to ANY (0)\n");
8714                 priv->config &= ~CFG_STATIC_CHANNEL;
8715                 IPW_DEBUG_ASSOC("Attempting to associate with new "
8716                                 "parameters.\n");
8717                 ipw_associate(priv);
8718                 return 0;
8719         }
8720
8721         priv->config |= CFG_STATIC_CHANNEL;
8722
8723         if (priv->channel == channel) {
8724                 IPW_DEBUG_INFO("Request to set channel to current value (%d)\n",
8725                                channel);
8726                 return 0;
8727         }
8728
8729         IPW_DEBUG_INFO("Setting channel to %i\n", (int)channel);
8730         priv->channel = channel;
8731
8732 #ifdef CONFIG_IPW2200_MONITOR
8733         if (priv->ieee->iw_mode == IW_MODE_MONITOR) {
8734                 int i;
8735                 if (priv->status & STATUS_SCANNING) {
8736                         IPW_DEBUG_SCAN("Scan abort triggered due to "
8737                                        "channel change.\n");
8738                         ipw_abort_scan(priv);
8739                 }
8740
8741                 for (i = 1000; i && (priv->status & STATUS_SCANNING); i--)
8742                         udelay(10);
8743
8744                 if (priv->status & STATUS_SCANNING)
8745                         IPW_DEBUG_SCAN("Still scanning...\n");
8746                 else
8747                         IPW_DEBUG_SCAN("Took %dms to abort current scan\n",
8748                                        1000 - i);
8749
8750                 return 0;
8751         }
8752 #endif                          /* CONFIG_IPW2200_MONITOR */
8753
8754         /* Network configuration changed -- force [re]association */
8755         IPW_DEBUG_ASSOC("[re]association triggered due to channel change.\n");
8756         if (!ipw_disassociate(priv))
8757                 ipw_associate(priv);
8758
8759         return 0;
8760 }
8761
8762 static int ipw_wx_set_freq(struct net_device *dev,
8763                            struct iw_request_info *info,
8764                            union iwreq_data *wrqu, char *extra)
8765 {
8766         struct ipw_priv *priv = libipw_priv(dev);
8767         const struct libipw_geo *geo = libipw_get_geo(priv->ieee);
8768         struct iw_freq *fwrq = &wrqu->freq;
8769         int ret = 0, i;
8770         u8 channel, flags;
8771         int band;
8772
8773         if (fwrq->m == 0) {
8774                 IPW_DEBUG_WX("SET Freq/Channel -> any\n");
8775                 mutex_lock(&priv->mutex);
8776                 ret = ipw_set_channel(priv, 0);
8777                 mutex_unlock(&priv->mutex);
8778                 return ret;
8779         }
8780         /* if setting by freq convert to channel */
8781         if (fwrq->e == 1) {
8782                 channel = libipw_freq_to_channel(priv->ieee, fwrq->m);
8783                 if (channel == 0)
8784                         return -EINVAL;
8785         } else
8786                 channel = fwrq->m;
8787
8788         if (!(band = libipw_is_valid_channel(priv->ieee, channel)))
8789                 return -EINVAL;
8790
8791         if (priv->ieee->iw_mode == IW_MODE_ADHOC) {
8792                 i = libipw_channel_to_index(priv->ieee, channel);
8793                 if (i == -1)
8794                         return -EINVAL;
8795
8796                 flags = (band == LIBIPW_24GHZ_BAND) ?
8797                     geo->bg[i].flags : geo->a[i].flags;
8798                 if (flags & LIBIPW_CH_PASSIVE_ONLY) {
8799                         IPW_DEBUG_WX("Invalid Ad-Hoc channel for 802.11a\n");
8800                         return -EINVAL;
8801                 }
8802         }
8803
8804         IPW_DEBUG_WX("SET Freq/Channel -> %d\n", fwrq->m);
8805         mutex_lock(&priv->mutex);
8806         ret = ipw_set_channel(priv, channel);
8807         mutex_unlock(&priv->mutex);
8808         return ret;
8809 }
8810
8811 static int ipw_wx_get_freq(struct net_device *dev,
8812                            struct iw_request_info *info,
8813                            union iwreq_data *wrqu, char *extra)
8814 {
8815         struct ipw_priv *priv = libipw_priv(dev);
8816
8817         wrqu->freq.e = 0;
8818
8819         /* If we are associated, trying to associate, or have a statically
8820          * configured CHANNEL then return that; otherwise return ANY */
8821         mutex_lock(&priv->mutex);
8822         if (priv->config & CFG_STATIC_CHANNEL ||
8823             priv->status & (STATUS_ASSOCIATING | STATUS_ASSOCIATED)) {
8824                 int i;
8825
8826                 i = libipw_channel_to_index(priv->ieee, priv->channel);
8827                 BUG_ON(i == -1);
8828                 wrqu->freq.e = 1;
8829
8830                 switch (libipw_is_valid_channel(priv->ieee, priv->channel)) {
8831                 case LIBIPW_52GHZ_BAND:
8832                         wrqu->freq.m = priv->ieee->geo.a[i].freq * 100000;
8833                         break;
8834
8835                 case LIBIPW_24GHZ_BAND:
8836                         wrqu->freq.m = priv->ieee->geo.bg[i].freq * 100000;
8837                         break;
8838
8839                 default:
8840                         BUG();
8841                 }
8842         } else
8843                 wrqu->freq.m = 0;
8844
8845         mutex_unlock(&priv->mutex);
8846         IPW_DEBUG_WX("GET Freq/Channel -> %d\n", priv->channel);
8847         return 0;
8848 }
8849
8850 static int ipw_wx_set_mode(struct net_device *dev,
8851                            struct iw_request_info *info,
8852                            union iwreq_data *wrqu, char *extra)
8853 {
8854         struct ipw_priv *priv = libipw_priv(dev);
8855         int err = 0;
8856
8857         IPW_DEBUG_WX("Set MODE: %d\n", wrqu->mode);
8858
8859         switch (wrqu->mode) {
8860 #ifdef CONFIG_IPW2200_MONITOR
8861         case IW_MODE_MONITOR:
8862 #endif
8863         case IW_MODE_ADHOC:
8864         case IW_MODE_INFRA:
8865                 break;
8866         case IW_MODE_AUTO:
8867                 wrqu->mode = IW_MODE_INFRA;
8868                 break;
8869         default:
8870                 return -EINVAL;
8871         }
8872         if (wrqu->mode == priv->ieee->iw_mode)
8873                 return 0;
8874
8875         mutex_lock(&priv->mutex);
8876
8877         ipw_sw_reset(priv, 0);
8878
8879 #ifdef CONFIG_IPW2200_MONITOR
8880         if (priv->ieee->iw_mode == IW_MODE_MONITOR)
8881                 priv->net_dev->type = ARPHRD_ETHER;
8882
8883         if (wrqu->mode == IW_MODE_MONITOR)
8884 #ifdef CONFIG_IPW2200_RADIOTAP
8885                 priv->net_dev->type = ARPHRD_IEEE80211_RADIOTAP;
8886 #else
8887                 priv->net_dev->type = ARPHRD_IEEE80211;
8888 #endif
8889 #endif                          /* CONFIG_IPW2200_MONITOR */
8890
8891         /* Free the existing firmware and reset the fw_loaded
8892          * flag so ipw_load() will bring in the new firmware */
8893         free_firmware();
8894
8895         priv->ieee->iw_mode = wrqu->mode;
8896
8897         schedule_work(&priv->adapter_restart);
8898         mutex_unlock(&priv->mutex);
8899         return err;
8900 }
8901
8902 static int ipw_wx_get_mode(struct net_device *dev,
8903                            struct iw_request_info *info,
8904                            union iwreq_data *wrqu, char *extra)
8905 {
8906         struct ipw_priv *priv = libipw_priv(dev);
8907         mutex_lock(&priv->mutex);
8908         wrqu->mode = priv->ieee->iw_mode;
8909         IPW_DEBUG_WX("Get MODE -> %d\n", wrqu->mode);
8910         mutex_unlock(&priv->mutex);
8911         return 0;
8912 }
8913
8914 /* Values are in microsecond */
8915 static const s32 timeout_duration[] = {
8916         350000,
8917         250000,
8918         75000,
8919         37000,
8920         25000,
8921 };
8922
8923 static const s32 period_duration[] = {
8924         400000,
8925         700000,
8926         1000000,
8927         1000000,
8928         1000000
8929 };
8930
8931 static int ipw_wx_get_range(struct net_device *dev,
8932                             struct iw_request_info *info,
8933                             union iwreq_data *wrqu, char *extra)
8934 {
8935         struct ipw_priv *priv = libipw_priv(dev);
8936         struct iw_range *range = (struct iw_range *)extra;
8937         const struct libipw_geo *geo = libipw_get_geo(priv->ieee);
8938         int i = 0, j;
8939
8940         wrqu->data.length = sizeof(*range);
8941         memset(range, 0, sizeof(*range));
8942
8943         /* 54Mbs == ~27 Mb/s real (802.11g) */
8944         range->throughput = 27 * 1000 * 1000;
8945
8946         range->max_qual.qual = 100;
8947         /* TODO: Find real max RSSI and stick here */
8948         range->max_qual.level = 0;
8949         range->max_qual.noise = 0;
8950         range->max_qual.updated = 7;    /* Updated all three */
8951
8952         range->avg_qual.qual = 70;
8953         /* TODO: Find real 'good' to 'bad' threshold value for RSSI */
8954         range->avg_qual.level = 0;      /* FIXME to real average level */
8955         range->avg_qual.noise = 0;
8956         range->avg_qual.updated = 7;    /* Updated all three */
8957         mutex_lock(&priv->mutex);
8958         range->num_bitrates = min(priv->rates.num_rates, (u8) IW_MAX_BITRATES);
8959
8960         for (i = 0; i < range->num_bitrates; i++)
8961                 range->bitrate[i] = (priv->rates.supported_rates[i] & 0x7F) *
8962                     500000;
8963
8964         range->max_rts = DEFAULT_RTS_THRESHOLD;
8965         range->min_frag = MIN_FRAG_THRESHOLD;
8966         range->max_frag = MAX_FRAG_THRESHOLD;
8967
8968         range->encoding_size[0] = 5;
8969         range->encoding_size[1] = 13;
8970         range->num_encoding_sizes = 2;
8971         range->max_encoding_tokens = WEP_KEYS;
8972
8973         /* Set the Wireless Extension versions */
8974         range->we_version_compiled = WIRELESS_EXT;
8975         range->we_version_source = 18;
8976
8977         i = 0;
8978         if (priv->ieee->mode & (IEEE_B | IEEE_G)) {
8979                 for (j = 0; j < geo->bg_channels && i < IW_MAX_FREQUENCIES; j++) {
8980                         if ((priv->ieee->iw_mode == IW_MODE_ADHOC) &&
8981                             (geo->bg[j].flags & LIBIPW_CH_PASSIVE_ONLY))
8982                                 continue;
8983
8984                         range->freq[i].i = geo->bg[j].channel;
8985                         range->freq[i].m = geo->bg[j].freq * 100000;
8986                         range->freq[i].e = 1;
8987                         i++;
8988                 }
8989         }
8990
8991         if (priv->ieee->mode & IEEE_A) {
8992                 for (j = 0; j < geo->a_channels && i < IW_MAX_FREQUENCIES; j++) {
8993                         if ((priv->ieee->iw_mode == IW_MODE_ADHOC) &&
8994                             (geo->a[j].flags & LIBIPW_CH_PASSIVE_ONLY))
8995                                 continue;
8996
8997                         range->freq[i].i = geo->a[j].channel;
8998                         range->freq[i].m = geo->a[j].freq * 100000;
8999                         range->freq[i].e = 1;
9000                         i++;
9001                 }
9002         }
9003
9004         range->num_channels = i;
9005         range->num_frequency = i;
9006
9007         mutex_unlock(&priv->mutex);
9008
9009         /* Event capability (kernel + driver) */
9010         range->event_capa[0] = (IW_EVENT_CAPA_K_0 |
9011                                 IW_EVENT_CAPA_MASK(SIOCGIWTHRSPY) |
9012                                 IW_EVENT_CAPA_MASK(SIOCGIWAP) |
9013                                 IW_EVENT_CAPA_MASK(SIOCGIWSCAN));
9014         range->event_capa[1] = IW_EVENT_CAPA_K_1;
9015
9016         range->enc_capa = IW_ENC_CAPA_WPA | IW_ENC_CAPA_WPA2 |
9017                 IW_ENC_CAPA_CIPHER_TKIP | IW_ENC_CAPA_CIPHER_CCMP;
9018
9019         range->scan_capa = IW_SCAN_CAPA_ESSID | IW_SCAN_CAPA_TYPE;
9020
9021         IPW_DEBUG_WX("GET Range\n");
9022         return 0;
9023 }
9024
9025 static int ipw_wx_set_wap(struct net_device *dev,
9026                           struct iw_request_info *info,
9027                           union iwreq_data *wrqu, char *extra)
9028 {
9029         struct ipw_priv *priv = libipw_priv(dev);
9030
9031         if (wrqu->ap_addr.sa_family != ARPHRD_ETHER)
9032                 return -EINVAL;
9033         mutex_lock(&priv->mutex);
9034         if (is_broadcast_ether_addr(wrqu->ap_addr.sa_data) ||
9035             is_zero_ether_addr(wrqu->ap_addr.sa_data)) {
9036                 /* we disable mandatory BSSID association */
9037                 IPW_DEBUG_WX("Setting AP BSSID to ANY\n");
9038                 priv->config &= ~CFG_STATIC_BSSID;
9039                 IPW_DEBUG_ASSOC("Attempting to associate with new "
9040                                 "parameters.\n");
9041                 ipw_associate(priv);
9042                 mutex_unlock(&priv->mutex);
9043                 return 0;
9044         }
9045
9046         priv->config |= CFG_STATIC_BSSID;
9047         if (!memcmp(priv->bssid, wrqu->ap_addr.sa_data, ETH_ALEN)) {
9048                 IPW_DEBUG_WX("BSSID set to current BSSID.\n");
9049                 mutex_unlock(&priv->mutex);
9050                 return 0;
9051         }
9052
9053         IPW_DEBUG_WX("Setting mandatory BSSID to %pM\n",
9054                      wrqu->ap_addr.sa_data);
9055
9056         memcpy(priv->bssid, wrqu->ap_addr.sa_data, ETH_ALEN);
9057
9058         /* Network configuration changed -- force [re]association */
9059         IPW_DEBUG_ASSOC("[re]association triggered due to BSSID change.\n");
9060         if (!ipw_disassociate(priv))
9061                 ipw_associate(priv);
9062
9063         mutex_unlock(&priv->mutex);
9064         return 0;
9065 }
9066
9067 static int ipw_wx_get_wap(struct net_device *dev,
9068                           struct iw_request_info *info,
9069                           union iwreq_data *wrqu, char *extra)
9070 {
9071         struct ipw_priv *priv = libipw_priv(dev);
9072
9073         /* If we are associated, trying to associate, or have a statically
9074          * configured BSSID then return that; otherwise return ANY */
9075         mutex_lock(&priv->mutex);
9076         if (priv->config & CFG_STATIC_BSSID ||
9077             priv->status & (STATUS_ASSOCIATED | STATUS_ASSOCIATING)) {
9078                 wrqu->ap_addr.sa_family = ARPHRD_ETHER;
9079                 memcpy(wrqu->ap_addr.sa_data, priv->bssid, ETH_ALEN);
9080         } else
9081                 memset(wrqu->ap_addr.sa_data, 0, ETH_ALEN);
9082
9083         IPW_DEBUG_WX("Getting WAP BSSID: %pM\n",
9084                      wrqu->ap_addr.sa_data);
9085         mutex_unlock(&priv->mutex);
9086         return 0;
9087 }
9088
9089 static int ipw_wx_set_essid(struct net_device *dev,
9090                             struct iw_request_info *info,
9091                             union iwreq_data *wrqu, char *extra)
9092 {
9093         struct ipw_priv *priv = libipw_priv(dev);
9094         int length;
9095         DECLARE_SSID_BUF(ssid);
9096
9097         mutex_lock(&priv->mutex);
9098
9099         if (!wrqu->essid.flags)
9100         {
9101                 IPW_DEBUG_WX("Setting ESSID to ANY\n");
9102                 ipw_disassociate(priv);
9103                 priv->config &= ~CFG_STATIC_ESSID;
9104                 ipw_associate(priv);
9105                 mutex_unlock(&priv->mutex);
9106                 return 0;
9107         }
9108
9109         length = min((int)wrqu->essid.length, IW_ESSID_MAX_SIZE);
9110
9111         priv->config |= CFG_STATIC_ESSID;
9112
9113         if (priv->essid_len == length && !memcmp(priv->essid, extra, length)
9114             && (priv->status & (STATUS_ASSOCIATED | STATUS_ASSOCIATING))) {
9115                 IPW_DEBUG_WX("ESSID set to current ESSID.\n");
9116                 mutex_unlock(&priv->mutex);
9117                 return 0;
9118         }
9119
9120         IPW_DEBUG_WX("Setting ESSID: '%s' (%d)\n",
9121                      print_ssid(ssid, extra, length), length);
9122
9123         priv->essid_len = length;
9124         memcpy(priv->essid, extra, priv->essid_len);
9125
9126         /* Network configuration changed -- force [re]association */
9127         IPW_DEBUG_ASSOC("[re]association triggered due to ESSID change.\n");
9128         if (!ipw_disassociate(priv))
9129                 ipw_associate(priv);
9130
9131         mutex_unlock(&priv->mutex);
9132         return 0;
9133 }
9134
9135 static int ipw_wx_get_essid(struct net_device *dev,
9136                             struct iw_request_info *info,
9137                             union iwreq_data *wrqu, char *extra)
9138 {
9139         struct ipw_priv *priv = libipw_priv(dev);
9140         DECLARE_SSID_BUF(ssid);
9141
9142         /* If we are associated, trying to associate, or have a statically
9143          * configured ESSID then return that; otherwise return ANY */
9144         mutex_lock(&priv->mutex);
9145         if (priv->config & CFG_STATIC_ESSID ||
9146             priv->status & (STATUS_ASSOCIATED | STATUS_ASSOCIATING)) {
9147                 IPW_DEBUG_WX("Getting essid: '%s'\n",
9148                              print_ssid(ssid, priv->essid, priv->essid_len));
9149                 memcpy(extra, priv->essid, priv->essid_len);
9150                 wrqu->essid.length = priv->essid_len;
9151                 wrqu->essid.flags = 1;  /* active */
9152         } else {
9153                 IPW_DEBUG_WX("Getting essid: ANY\n");
9154                 wrqu->essid.length = 0;
9155                 wrqu->essid.flags = 0;  /* active */
9156         }
9157         mutex_unlock(&priv->mutex);
9158         return 0;
9159 }
9160
9161 static int ipw_wx_set_nick(struct net_device *dev,
9162                            struct iw_request_info *info,
9163                            union iwreq_data *wrqu, char *extra)
9164 {
9165         struct ipw_priv *priv = libipw_priv(dev);
9166
9167         IPW_DEBUG_WX("Setting nick to '%s'\n", extra);
9168         if (wrqu->data.length > IW_ESSID_MAX_SIZE)
9169                 return -E2BIG;
9170         mutex_lock(&priv->mutex);
9171         wrqu->data.length = min((size_t) wrqu->data.length, sizeof(priv->nick));
9172         memset(priv->nick, 0, sizeof(priv->nick));
9173         memcpy(priv->nick, extra, wrqu->data.length);
9174         IPW_DEBUG_TRACE("<<\n");
9175         mutex_unlock(&priv->mutex);
9176         return 0;
9177
9178 }
9179
9180 static int ipw_wx_get_nick(struct net_device *dev,
9181                            struct iw_request_info *info,
9182                            union iwreq_data *wrqu, char *extra)
9183 {
9184         struct ipw_priv *priv = libipw_priv(dev);
9185         IPW_DEBUG_WX("Getting nick\n");
9186         mutex_lock(&priv->mutex);
9187         wrqu->data.length = strlen(priv->nick);
9188         memcpy(extra, priv->nick, wrqu->data.length);
9189         wrqu->data.flags = 1;   /* active */
9190         mutex_unlock(&priv->mutex);
9191         return 0;
9192 }
9193
9194 static int ipw_wx_set_sens(struct net_device *dev,
9195                             struct iw_request_info *info,
9196                             union iwreq_data *wrqu, char *extra)
9197 {
9198         struct ipw_priv *priv = libipw_priv(dev);
9199         int err = 0;
9200
9201         IPW_DEBUG_WX("Setting roaming threshold to %d\n", wrqu->sens.value);
9202         IPW_DEBUG_WX("Setting disassociate threshold to %d\n", 3*wrqu->sens.value);
9203         mutex_lock(&priv->mutex);
9204
9205         if (wrqu->sens.fixed == 0)
9206         {
9207                 priv->roaming_threshold = IPW_MB_ROAMING_THRESHOLD_DEFAULT;
9208                 priv->disassociate_threshold = IPW_MB_DISASSOCIATE_THRESHOLD_DEFAULT;
9209                 goto out;
9210         }
9211         if ((wrqu->sens.value > IPW_MB_ROAMING_THRESHOLD_MAX) ||
9212             (wrqu->sens.value < IPW_MB_ROAMING_THRESHOLD_MIN)) {
9213                 err = -EINVAL;
9214                 goto out;
9215         }
9216
9217         priv->roaming_threshold = wrqu->sens.value;
9218         priv->disassociate_threshold = 3*wrqu->sens.value;
9219       out:
9220         mutex_unlock(&priv->mutex);
9221         return err;
9222 }
9223
9224 static int ipw_wx_get_sens(struct net_device *dev,
9225                             struct iw_request_info *info,
9226                             union iwreq_data *wrqu, char *extra)
9227 {
9228         struct ipw_priv *priv = libipw_priv(dev);
9229         mutex_lock(&priv->mutex);
9230         wrqu->sens.fixed = 1;
9231         wrqu->sens.value = priv->roaming_threshold;
9232         mutex_unlock(&priv->mutex);
9233
9234         IPW_DEBUG_WX("GET roaming threshold -> %s %d\n",
9235                      wrqu->power.disabled ? "OFF" : "ON", wrqu->power.value);
9236
9237         return 0;
9238 }
9239
9240 static int ipw_wx_set_rate(struct net_device *dev,
9241                            struct iw_request_info *info,
9242                            union iwreq_data *wrqu, char *extra)
9243 {
9244         /* TODO: We should use semaphores or locks for access to priv */
9245         struct ipw_priv *priv = libipw_priv(dev);
9246         u32 target_rate = wrqu->bitrate.value;
9247         u32 fixed, mask;
9248
9249         /* value = -1, fixed = 0 means auto only, so we should use all rates offered by AP */
9250         /* value = X, fixed = 1 means only rate X */
9251         /* value = X, fixed = 0 means all rates lower equal X */
9252
9253         if (target_rate == -1) {
9254                 fixed = 0;
9255                 mask = LIBIPW_DEFAULT_RATES_MASK;
9256                 /* Now we should reassociate */
9257                 goto apply;
9258         }
9259
9260         mask = 0;
9261         fixed = wrqu->bitrate.fixed;
9262
9263         if (target_rate == 1000000 || !fixed)
9264                 mask |= LIBIPW_CCK_RATE_1MB_MASK;
9265         if (target_rate == 1000000)
9266                 goto apply;
9267
9268         if (target_rate == 2000000 || !fixed)
9269                 mask |= LIBIPW_CCK_RATE_2MB_MASK;
9270         if (target_rate == 2000000)
9271                 goto apply;
9272
9273         if (target_rate == 5500000 || !fixed)
9274                 mask |= LIBIPW_CCK_RATE_5MB_MASK;
9275         if (target_rate == 5500000)
9276                 goto apply;
9277
9278         if (target_rate == 6000000 || !fixed)
9279                 mask |= LIBIPW_OFDM_RATE_6MB_MASK;
9280         if (target_rate == 6000000)
9281                 goto apply;
9282
9283         if (target_rate == 9000000 || !fixed)
9284                 mask |= LIBIPW_OFDM_RATE_9MB_MASK;
9285         if (target_rate == 9000000)
9286                 goto apply;
9287
9288         if (target_rate == 11000000 || !fixed)
9289                 mask |= LIBIPW_CCK_RATE_11MB_MASK;
9290         if (target_rate == 11000000)
9291                 goto apply;
9292
9293         if (target_rate == 12000000 || !fixed)
9294                 mask |= LIBIPW_OFDM_RATE_12MB_MASK;
9295         if (target_rate == 12000000)
9296                 goto apply;
9297
9298         if (target_rate == 18000000 || !fixed)
9299                 mask |= LIBIPW_OFDM_RATE_18MB_MASK;
9300         if (target_rate == 18000000)
9301                 goto apply;
9302
9303         if (target_rate == 24000000 || !fixed)
9304                 mask |= LIBIPW_OFDM_RATE_24MB_MASK;
9305         if (target_rate == 24000000)
9306                 goto apply;
9307
9308         if (target_rate == 36000000 || !fixed)
9309                 mask |= LIBIPW_OFDM_RATE_36MB_MASK;
9310         if (target_rate == 36000000)
9311                 goto apply;
9312
9313         if (target_rate == 48000000 || !fixed)
9314                 mask |= LIBIPW_OFDM_RATE_48MB_MASK;
9315         if (target_rate == 48000000)
9316                 goto apply;
9317
9318         if (target_rate == 54000000 || !fixed)
9319                 mask |= LIBIPW_OFDM_RATE_54MB_MASK;
9320         if (target_rate == 54000000)
9321                 goto apply;
9322
9323         IPW_DEBUG_WX("invalid rate specified, returning error\n");
9324         return -EINVAL;
9325
9326       apply:
9327         IPW_DEBUG_WX("Setting rate mask to 0x%08X [%s]\n",
9328                      mask, fixed ? "fixed" : "sub-rates");
9329         mutex_lock(&priv->mutex);
9330         if (mask == LIBIPW_DEFAULT_RATES_MASK) {
9331                 priv->config &= ~CFG_FIXED_RATE;
9332                 ipw_set_fixed_rate(priv, priv->ieee->mode);
9333         } else
9334                 priv->config |= CFG_FIXED_RATE;
9335
9336         if (priv->rates_mask == mask) {
9337                 IPW_DEBUG_WX("Mask set to current mask.\n");
9338                 mutex_unlock(&priv->mutex);
9339                 return 0;
9340         }
9341
9342         priv->rates_mask = mask;
9343
9344         /* Network configuration changed -- force [re]association */
9345         IPW_DEBUG_ASSOC("[re]association triggered due to rates change.\n");
9346         if (!ipw_disassociate(priv))
9347                 ipw_associate(priv);
9348
9349         mutex_unlock(&priv->mutex);
9350         return 0;
9351 }
9352
9353 static int ipw_wx_get_rate(struct net_device *dev,
9354                            struct iw_request_info *info,
9355                            union iwreq_data *wrqu, char *extra)
9356 {
9357         struct ipw_priv *priv = libipw_priv(dev);
9358         mutex_lock(&priv->mutex);
9359         wrqu->bitrate.value = priv->last_rate;
9360         wrqu->bitrate.fixed = (priv->config & CFG_FIXED_RATE) ? 1 : 0;
9361         mutex_unlock(&priv->mutex);
9362         IPW_DEBUG_WX("GET Rate -> %d\n", wrqu->bitrate.value);
9363         return 0;
9364 }
9365
9366 static int ipw_wx_set_rts(struct net_device *dev,
9367                           struct iw_request_info *info,
9368                           union iwreq_data *wrqu, char *extra)
9369 {
9370         struct ipw_priv *priv = libipw_priv(dev);
9371         mutex_lock(&priv->mutex);
9372         if (wrqu->rts.disabled || !wrqu->rts.fixed)
9373                 priv->rts_threshold = DEFAULT_RTS_THRESHOLD;
9374         else {
9375                 if (wrqu->rts.value < MIN_RTS_THRESHOLD ||
9376                     wrqu->rts.value > MAX_RTS_THRESHOLD) {
9377                         mutex_unlock(&priv->mutex);
9378                         return -EINVAL;
9379                 }
9380                 priv->rts_threshold = wrqu->rts.value;
9381         }
9382
9383         ipw_send_rts_threshold(priv, priv->rts_threshold);
9384         mutex_unlock(&priv->mutex);
9385         IPW_DEBUG_WX("SET RTS Threshold -> %d\n", priv->rts_threshold);
9386         return 0;
9387 }
9388
9389 static int ipw_wx_get_rts(struct net_device *dev,
9390                           struct iw_request_info *info,
9391                           union iwreq_data *wrqu, char *extra)
9392 {
9393         struct ipw_priv *priv = libipw_priv(dev);
9394         mutex_lock(&priv->mutex);
9395         wrqu->rts.value = priv->rts_threshold;
9396         wrqu->rts.fixed = 0;    /* no auto select */
9397         wrqu->rts.disabled = (wrqu->rts.value == DEFAULT_RTS_THRESHOLD);
9398         mutex_unlock(&priv->mutex);
9399         IPW_DEBUG_WX("GET RTS Threshold -> %d\n", wrqu->rts.value);
9400         return 0;
9401 }
9402
9403 static int ipw_wx_set_txpow(struct net_device *dev,
9404                             struct iw_request_info *info,
9405                             union iwreq_data *wrqu, char *extra)
9406 {
9407         struct ipw_priv *priv = libipw_priv(dev);
9408         int err = 0;
9409
9410         mutex_lock(&priv->mutex);
9411         if (ipw_radio_kill_sw(priv, wrqu->power.disabled)) {
9412                 err = -EINPROGRESS;
9413                 goto out;
9414         }
9415
9416         if (!wrqu->power.fixed)
9417                 wrqu->power.value = IPW_TX_POWER_DEFAULT;
9418
9419         if (wrqu->power.flags != IW_TXPOW_DBM) {
9420                 err = -EINVAL;
9421                 goto out;
9422         }
9423
9424         if ((wrqu->power.value > IPW_TX_POWER_MAX) ||
9425             (wrqu->power.value < IPW_TX_POWER_MIN)) {
9426                 err = -EINVAL;
9427                 goto out;
9428         }
9429
9430         priv->tx_power = wrqu->power.value;
9431         err = ipw_set_tx_power(priv);
9432       out:
9433         mutex_unlock(&priv->mutex);
9434         return err;
9435 }
9436
9437 static int ipw_wx_get_txpow(struct net_device *dev,
9438                             struct iw_request_info *info,
9439                             union iwreq_data *wrqu, char *extra)
9440 {
9441         struct ipw_priv *priv = libipw_priv(dev);
9442         mutex_lock(&priv->mutex);
9443         wrqu->power.value = priv->tx_power;
9444         wrqu->power.fixed = 1;
9445         wrqu->power.flags = IW_TXPOW_DBM;
9446         wrqu->power.disabled = (priv->status & STATUS_RF_KILL_MASK) ? 1 : 0;
9447         mutex_unlock(&priv->mutex);
9448
9449         IPW_DEBUG_WX("GET TX Power -> %s %d\n",
9450                      wrqu->power.disabled ? "OFF" : "ON", wrqu->power.value);
9451
9452         return 0;
9453 }
9454
9455 static int ipw_wx_set_frag(struct net_device *dev,
9456                            struct iw_request_info *info,
9457                            union iwreq_data *wrqu, char *extra)
9458 {
9459         struct ipw_priv *priv = libipw_priv(dev);
9460         mutex_lock(&priv->mutex);
9461         if (wrqu->frag.disabled || !wrqu->frag.fixed)
9462                 priv->ieee->fts = DEFAULT_FTS;
9463         else {
9464                 if (wrqu->frag.value < MIN_FRAG_THRESHOLD ||
9465                     wrqu->frag.value > MAX_FRAG_THRESHOLD) {
9466                         mutex_unlock(&priv->mutex);
9467                         return -EINVAL;
9468                 }
9469
9470                 priv->ieee->fts = wrqu->frag.value & ~0x1;
9471         }
9472
9473         ipw_send_frag_threshold(priv, wrqu->frag.value);
9474         mutex_unlock(&priv->mutex);
9475         IPW_DEBUG_WX("SET Frag Threshold -> %d\n", wrqu->frag.value);
9476         return 0;
9477 }
9478
9479 static int ipw_wx_get_frag(struct net_device *dev,
9480                            struct iw_request_info *info,
9481                            union iwreq_data *wrqu, char *extra)
9482 {
9483         struct ipw_priv *priv = libipw_priv(dev);
9484         mutex_lock(&priv->mutex);
9485         wrqu->frag.value = priv->ieee->fts;
9486         wrqu->frag.fixed = 0;   /* no auto select */
9487         wrqu->frag.disabled = (wrqu->frag.value == DEFAULT_FTS);
9488         mutex_unlock(&priv->mutex);
9489         IPW_DEBUG_WX("GET Frag Threshold -> %d\n", wrqu->frag.value);
9490
9491         return 0;
9492 }
9493
9494 static int ipw_wx_set_retry(struct net_device *dev,
9495                             struct iw_request_info *info,
9496                             union iwreq_data *wrqu, char *extra)
9497 {
9498         struct ipw_priv *priv = libipw_priv(dev);
9499
9500         if (wrqu->retry.flags & IW_RETRY_LIFETIME || wrqu->retry.disabled)
9501                 return -EINVAL;
9502
9503         if (!(wrqu->retry.flags & IW_RETRY_LIMIT))
9504                 return 0;
9505
9506         if (wrqu->retry.value < 0 || wrqu->retry.value >= 255)
9507                 return -EINVAL;
9508
9509         mutex_lock(&priv->mutex);
9510         if (wrqu->retry.flags & IW_RETRY_SHORT)
9511                 priv->short_retry_limit = (u8) wrqu->retry.value;
9512         else if (wrqu->retry.flags & IW_RETRY_LONG)
9513                 priv->long_retry_limit = (u8) wrqu->retry.value;
9514         else {
9515                 priv->short_retry_limit = (u8) wrqu->retry.value;
9516                 priv->long_retry_limit = (u8) wrqu->retry.value;
9517         }
9518
9519         ipw_send_retry_limit(priv, priv->short_retry_limit,
9520                              priv->long_retry_limit);
9521         mutex_unlock(&priv->mutex);
9522         IPW_DEBUG_WX("SET retry limit -> short:%d long:%d\n",
9523                      priv->short_retry_limit, priv->long_retry_limit);
9524         return 0;
9525 }
9526
9527 static int ipw_wx_get_retry(struct net_device *dev,
9528                             struct iw_request_info *info,
9529                             union iwreq_data *wrqu, char *extra)
9530 {
9531         struct ipw_priv *priv = libipw_priv(dev);
9532
9533         mutex_lock(&priv->mutex);
9534         wrqu->retry.disabled = 0;
9535
9536         if ((wrqu->retry.flags & IW_RETRY_TYPE) == IW_RETRY_LIFETIME) {
9537                 mutex_unlock(&priv->mutex);
9538                 return -EINVAL;
9539         }
9540
9541         if (wrqu->retry.flags & IW_RETRY_LONG) {
9542                 wrqu->retry.flags = IW_RETRY_LIMIT | IW_RETRY_LONG;
9543                 wrqu->retry.value = priv->long_retry_limit;
9544         } else if (wrqu->retry.flags & IW_RETRY_SHORT) {
9545                 wrqu->retry.flags = IW_RETRY_LIMIT | IW_RETRY_SHORT;
9546                 wrqu->retry.value = priv->short_retry_limit;
9547         } else {
9548                 wrqu->retry.flags = IW_RETRY_LIMIT;
9549                 wrqu->retry.value = priv->short_retry_limit;
9550         }
9551         mutex_unlock(&priv->mutex);
9552
9553         IPW_DEBUG_WX("GET retry -> %d\n", wrqu->retry.value);
9554
9555         return 0;
9556 }
9557
9558 static int ipw_wx_set_scan(struct net_device *dev,
9559                            struct iw_request_info *info,
9560                            union iwreq_data *wrqu, char *extra)
9561 {
9562         struct ipw_priv *priv = libipw_priv(dev);
9563         struct iw_scan_req *req = (struct iw_scan_req *)extra;
9564         struct delayed_work *work = NULL;
9565
9566         mutex_lock(&priv->mutex);
9567
9568         priv->user_requested_scan = 1;
9569
9570         if (wrqu->data.length == sizeof(struct iw_scan_req)) {
9571                 if (wrqu->data.flags & IW_SCAN_THIS_ESSID) {
9572                         int len = min((int)req->essid_len,
9573                                       (int)sizeof(priv->direct_scan_ssid));
9574                         memcpy(priv->direct_scan_ssid, req->essid, len);
9575                         priv->direct_scan_ssid_len = len;
9576                         work = &priv->request_direct_scan;
9577                 } else if (req->scan_type == IW_SCAN_TYPE_PASSIVE) {
9578                         work = &priv->request_passive_scan;
9579                 }
9580         } else {
9581                 /* Normal active broadcast scan */
9582                 work = &priv->request_scan;
9583         }
9584
9585         mutex_unlock(&priv->mutex);
9586
9587         IPW_DEBUG_WX("Start scan\n");
9588
9589         schedule_delayed_work(work, 0);
9590
9591         return 0;
9592 }
9593
9594 static int ipw_wx_get_scan(struct net_device *dev,
9595                            struct iw_request_info *info,
9596                            union iwreq_data *wrqu, char *extra)
9597 {
9598         struct ipw_priv *priv = libipw_priv(dev);
9599         return libipw_wx_get_scan(priv->ieee, info, wrqu, extra);
9600 }
9601
9602 static int ipw_wx_set_encode(struct net_device *dev,
9603                              struct iw_request_info *info,
9604                              union iwreq_data *wrqu, char *key)
9605 {
9606         struct ipw_priv *priv = libipw_priv(dev);
9607         int ret;
9608         u32 cap = priv->capability;
9609
9610         mutex_lock(&priv->mutex);
9611         ret = libipw_wx_set_encode(priv->ieee, info, wrqu, key);
9612
9613         /* In IBSS mode, we need to notify the firmware to update
9614          * the beacon info after we changed the capability. */
9615         if (cap != priv->capability &&
9616             priv->ieee->iw_mode == IW_MODE_ADHOC &&
9617             priv->status & STATUS_ASSOCIATED)
9618                 ipw_disassociate(priv);
9619
9620         mutex_unlock(&priv->mutex);
9621         return ret;
9622 }
9623
9624 static int ipw_wx_get_encode(struct net_device *dev,
9625                              struct iw_request_info *info,
9626                              union iwreq_data *wrqu, char *key)
9627 {
9628         struct ipw_priv *priv = libipw_priv(dev);
9629         return libipw_wx_get_encode(priv->ieee, info, wrqu, key);
9630 }
9631
9632 static int ipw_wx_set_power(struct net_device *dev,
9633                             struct iw_request_info *info,
9634                             union iwreq_data *wrqu, char *extra)
9635 {
9636         struct ipw_priv *priv = libipw_priv(dev);
9637         int err;
9638         mutex_lock(&priv->mutex);
9639         if (wrqu->power.disabled) {
9640                 priv->power_mode = IPW_POWER_LEVEL(priv->power_mode);
9641                 err = ipw_send_power_mode(priv, IPW_POWER_MODE_CAM);
9642                 if (err) {
9643                         IPW_DEBUG_WX("failed setting power mode.\n");
9644                         mutex_unlock(&priv->mutex);
9645                         return err;
9646                 }
9647                 IPW_DEBUG_WX("SET Power Management Mode -> off\n");
9648                 mutex_unlock(&priv->mutex);
9649                 return 0;
9650         }
9651
9652         switch (wrqu->power.flags & IW_POWER_MODE) {
9653         case IW_POWER_ON:       /* If not specified */
9654         case IW_POWER_MODE:     /* If set all mask */
9655         case IW_POWER_ALL_R:    /* If explicitly state all */
9656                 break;
9657         default:                /* Otherwise we don't support it */
9658                 IPW_DEBUG_WX("SET PM Mode: %X not supported.\n",
9659                              wrqu->power.flags);
9660                 mutex_unlock(&priv->mutex);
9661                 return -EOPNOTSUPP;
9662         }
9663
9664         /* If the user hasn't specified a power management mode yet, default
9665          * to BATTERY */
9666         if (IPW_POWER_LEVEL(priv->power_mode) == IPW_POWER_AC)
9667                 priv->power_mode = IPW_POWER_ENABLED | IPW_POWER_BATTERY;
9668         else
9669                 priv->power_mode = IPW_POWER_ENABLED | priv->power_mode;
9670
9671         err = ipw_send_power_mode(priv, IPW_POWER_LEVEL(priv->power_mode));
9672         if (err) {
9673                 IPW_DEBUG_WX("failed setting power mode.\n");
9674                 mutex_unlock(&priv->mutex);
9675                 return err;
9676         }
9677
9678         IPW_DEBUG_WX("SET Power Management Mode -> 0x%02X\n", priv->power_mode);
9679         mutex_unlock(&priv->mutex);
9680         return 0;
9681 }
9682
9683 static int ipw_wx_get_power(struct net_device *dev,
9684                             struct iw_request_info *info,
9685                             union iwreq_data *wrqu, char *extra)
9686 {
9687         struct ipw_priv *priv = libipw_priv(dev);
9688         mutex_lock(&priv->mutex);
9689         if (!(priv->power_mode & IPW_POWER_ENABLED))
9690                 wrqu->power.disabled = 1;
9691         else
9692                 wrqu->power.disabled = 0;
9693
9694         mutex_unlock(&priv->mutex);
9695         IPW_DEBUG_WX("GET Power Management Mode -> %02X\n", priv->power_mode);
9696
9697         return 0;
9698 }
9699
9700 static int ipw_wx_set_powermode(struct net_device *dev,
9701                                 struct iw_request_info *info,
9702                                 union iwreq_data *wrqu, char *extra)
9703 {
9704         struct ipw_priv *priv = libipw_priv(dev);
9705         int mode = *(int *)extra;
9706         int err;
9707
9708         mutex_lock(&priv->mutex);
9709         if ((mode < 1) || (mode > IPW_POWER_LIMIT))
9710                 mode = IPW_POWER_AC;
9711
9712         if (IPW_POWER_LEVEL(priv->power_mode) != mode) {
9713                 err = ipw_send_power_mode(priv, mode);
9714                 if (err) {
9715                         IPW_DEBUG_WX("failed setting power mode.\n");
9716                         mutex_unlock(&priv->mutex);
9717                         return err;
9718                 }
9719                 priv->power_mode = IPW_POWER_ENABLED | mode;
9720         }
9721         mutex_unlock(&priv->mutex);
9722         return 0;
9723 }
9724
9725 #define MAX_WX_STRING 80
9726 static int ipw_wx_get_powermode(struct net_device *dev,
9727                                 struct iw_request_info *info,
9728                                 union iwreq_data *wrqu, char *extra)
9729 {
9730         struct ipw_priv *priv = libipw_priv(dev);
9731         int level = IPW_POWER_LEVEL(priv->power_mode);
9732         char *p = extra;
9733
9734         p += snprintf(p, MAX_WX_STRING, "Power save level: %d ", level);
9735
9736         switch (level) {
9737         case IPW_POWER_AC:
9738                 p += snprintf(p, MAX_WX_STRING - (p - extra), "(AC)");
9739                 break;
9740         case IPW_POWER_BATTERY:
9741                 p += snprintf(p, MAX_WX_STRING - (p - extra), "(BATTERY)");
9742                 break;
9743         default:
9744                 p += snprintf(p, MAX_WX_STRING - (p - extra),
9745                               "(Timeout %dms, Period %dms)",
9746                               timeout_duration[level - 1] / 1000,
9747                               period_duration[level - 1] / 1000);
9748         }
9749
9750         if (!(priv->power_mode & IPW_POWER_ENABLED))
9751                 p += snprintf(p, MAX_WX_STRING - (p - extra), " OFF");
9752
9753         wrqu->data.length = p - extra + 1;
9754
9755         return 0;
9756 }
9757
9758 static int ipw_wx_set_wireless_mode(struct net_device *dev,
9759                                     struct iw_request_info *info,
9760                                     union iwreq_data *wrqu, char *extra)
9761 {
9762         struct ipw_priv *priv = libipw_priv(dev);
9763         int mode = *(int *)extra;
9764         u8 band = 0, modulation = 0;
9765
9766         if (mode == 0 || mode & ~IEEE_MODE_MASK) {
9767                 IPW_WARNING("Attempt to set invalid wireless mode: %d\n", mode);
9768                 return -EINVAL;
9769         }
9770         mutex_lock(&priv->mutex);
9771         if (priv->adapter == IPW_2915ABG) {
9772                 priv->ieee->abg_true = 1;
9773                 if (mode & IEEE_A) {
9774                         band |= LIBIPW_52GHZ_BAND;
9775                         modulation |= LIBIPW_OFDM_MODULATION;
9776                 } else
9777                         priv->ieee->abg_true = 0;
9778         } else {
9779                 if (mode & IEEE_A) {
9780                         IPW_WARNING("Attempt to set 2200BG into "
9781                                     "802.11a mode\n");
9782                         mutex_unlock(&priv->mutex);
9783                         return -EINVAL;
9784                 }
9785
9786                 priv->ieee->abg_true = 0;
9787         }
9788
9789         if (mode & IEEE_B) {
9790                 band |= LIBIPW_24GHZ_BAND;
9791                 modulation |= LIBIPW_CCK_MODULATION;
9792         } else
9793                 priv->ieee->abg_true = 0;
9794
9795         if (mode & IEEE_G) {
9796                 band |= LIBIPW_24GHZ_BAND;
9797                 modulation |= LIBIPW_OFDM_MODULATION;
9798         } else
9799                 priv->ieee->abg_true = 0;
9800
9801         priv->ieee->mode = mode;
9802         priv->ieee->freq_band = band;
9803         priv->ieee->modulation = modulation;
9804         init_supported_rates(priv, &priv->rates);
9805
9806         /* Network configuration changed -- force [re]association */
9807         IPW_DEBUG_ASSOC("[re]association triggered due to mode change.\n");
9808         if (!ipw_disassociate(priv)) {
9809                 ipw_send_supported_rates(priv, &priv->rates);
9810                 ipw_associate(priv);
9811         }
9812
9813         /* Update the band LEDs */
9814         ipw_led_band_on(priv);
9815
9816         IPW_DEBUG_WX("PRIV SET MODE: %c%c%c\n",
9817                      mode & IEEE_A ? 'a' : '.',
9818                      mode & IEEE_B ? 'b' : '.', mode & IEEE_G ? 'g' : '.');
9819         mutex_unlock(&priv->mutex);
9820         return 0;
9821 }
9822
9823 static int ipw_wx_get_wireless_mode(struct net_device *dev,
9824                                     struct iw_request_info *info,
9825                                     union iwreq_data *wrqu, char *extra)
9826 {
9827         struct ipw_priv *priv = libipw_priv(dev);
9828         mutex_lock(&priv->mutex);
9829         switch (priv->ieee->mode) {
9830         case IEEE_A:
9831                 strncpy(extra, "802.11a (1)", MAX_WX_STRING);
9832                 break;
9833         case IEEE_B:
9834                 strncpy(extra, "802.11b (2)", MAX_WX_STRING);
9835                 break;
9836         case IEEE_A | IEEE_B:
9837                 strncpy(extra, "802.11ab (3)", MAX_WX_STRING);
9838                 break;
9839         case IEEE_G:
9840                 strncpy(extra, "802.11g (4)", MAX_WX_STRING);
9841                 break;
9842         case IEEE_A | IEEE_G:
9843                 strncpy(extra, "802.11ag (5)", MAX_WX_STRING);
9844                 break;
9845         case IEEE_B | IEEE_G:
9846                 strncpy(extra, "802.11bg (6)", MAX_WX_STRING);
9847                 break;
9848         case IEEE_A | IEEE_B | IEEE_G:
9849                 strncpy(extra, "802.11abg (7)", MAX_WX_STRING);
9850                 break;
9851         default:
9852                 strncpy(extra, "unknown", MAX_WX_STRING);
9853                 break;
9854         }
9855
9856         IPW_DEBUG_WX("PRIV GET MODE: %s\n", extra);
9857
9858         wrqu->data.length = strlen(extra) + 1;
9859         mutex_unlock(&priv->mutex);
9860
9861         return 0;
9862 }
9863
9864 static int ipw_wx_set_preamble(struct net_device *dev,
9865                                struct iw_request_info *info,
9866                                union iwreq_data *wrqu, char *extra)
9867 {
9868         struct ipw_priv *priv = libipw_priv(dev);
9869         int mode = *(int *)extra;
9870         mutex_lock(&priv->mutex);
9871         /* Switching from SHORT -> LONG requires a disassociation */
9872         if (mode == 1) {
9873                 if (!(priv->config & CFG_PREAMBLE_LONG)) {
9874                         priv->config |= CFG_PREAMBLE_LONG;
9875
9876                         /* Network configuration changed -- force [re]association */
9877                         IPW_DEBUG_ASSOC
9878                             ("[re]association triggered due to preamble change.\n");
9879                         if (!ipw_disassociate(priv))
9880                                 ipw_associate(priv);
9881                 }
9882                 goto done;
9883         }
9884
9885         if (mode == 0) {
9886                 priv->config &= ~CFG_PREAMBLE_LONG;
9887                 goto done;
9888         }
9889         mutex_unlock(&priv->mutex);
9890         return -EINVAL;
9891
9892       done:
9893         mutex_unlock(&priv->mutex);
9894         return 0;
9895 }
9896
9897 static int ipw_wx_get_preamble(struct net_device *dev,
9898                                struct iw_request_info *info,
9899                                union iwreq_data *wrqu, char *extra)
9900 {
9901         struct ipw_priv *priv = libipw_priv(dev);
9902         mutex_lock(&priv->mutex);
9903         if (priv->config & CFG_PREAMBLE_LONG)
9904                 snprintf(wrqu->name, IFNAMSIZ, "long (1)");
9905         else
9906                 snprintf(wrqu->name, IFNAMSIZ, "auto (0)");
9907         mutex_unlock(&priv->mutex);
9908         return 0;
9909 }
9910
9911 #ifdef CONFIG_IPW2200_MONITOR
9912 static int ipw_wx_set_monitor(struct net_device *dev,
9913                               struct iw_request_info *info,
9914                               union iwreq_data *wrqu, char *extra)
9915 {
9916         struct ipw_priv *priv = libipw_priv(dev);
9917         int *parms = (int *)extra;
9918         int enable = (parms[0] > 0);
9919         mutex_lock(&priv->mutex);
9920         IPW_DEBUG_WX("SET MONITOR: %d %d\n", enable, parms[1]);
9921         if (enable) {
9922                 if (priv->ieee->iw_mode != IW_MODE_MONITOR) {
9923 #ifdef CONFIG_IPW2200_RADIOTAP
9924                         priv->net_dev->type = ARPHRD_IEEE80211_RADIOTAP;
9925 #else
9926                         priv->net_dev->type = ARPHRD_IEEE80211;
9927 #endif
9928                         schedule_work(&priv->adapter_restart);
9929                 }
9930
9931                 ipw_set_channel(priv, parms[1]);
9932         } else {
9933                 if (priv->ieee->iw_mode != IW_MODE_MONITOR) {
9934                         mutex_unlock(&priv->mutex);
9935                         return 0;
9936                 }
9937                 priv->net_dev->type = ARPHRD_ETHER;
9938                 schedule_work(&priv->adapter_restart);
9939         }
9940         mutex_unlock(&priv->mutex);
9941         return 0;
9942 }
9943
9944 #endif                          /* CONFIG_IPW2200_MONITOR */
9945
9946 static int ipw_wx_reset(struct net_device *dev,
9947                         struct iw_request_info *info,
9948                         union iwreq_data *wrqu, char *extra)
9949 {
9950         struct ipw_priv *priv = libipw_priv(dev);
9951         IPW_DEBUG_WX("RESET\n");
9952         schedule_work(&priv->adapter_restart);
9953         return 0;
9954 }
9955
9956 static int ipw_wx_sw_reset(struct net_device *dev,
9957                            struct iw_request_info *info,
9958                            union iwreq_data *wrqu, char *extra)
9959 {
9960         struct ipw_priv *priv = libipw_priv(dev);
9961         union iwreq_data wrqu_sec = {
9962                 .encoding = {
9963                              .flags = IW_ENCODE_DISABLED,
9964                              },
9965         };
9966         int ret;
9967
9968         IPW_DEBUG_WX("SW_RESET\n");
9969
9970         mutex_lock(&priv->mutex);
9971
9972         ret = ipw_sw_reset(priv, 2);
9973         if (!ret) {
9974                 free_firmware();
9975                 ipw_adapter_restart(priv);
9976         }
9977
9978         /* The SW reset bit might have been toggled on by the 'disable'
9979          * module parameter, so take appropriate action */
9980         ipw_radio_kill_sw(priv, priv->status & STATUS_RF_KILL_SW);
9981
9982         mutex_unlock(&priv->mutex);
9983         libipw_wx_set_encode(priv->ieee, info, &wrqu_sec, NULL);
9984         mutex_lock(&priv->mutex);
9985
9986         if (!(priv->status & STATUS_RF_KILL_MASK)) {
9987                 /* Configuration likely changed -- force [re]association */
9988                 IPW_DEBUG_ASSOC("[re]association triggered due to sw "
9989                                 "reset.\n");
9990                 if (!ipw_disassociate(priv))
9991                         ipw_associate(priv);
9992         }
9993
9994         mutex_unlock(&priv->mutex);
9995
9996         return 0;
9997 }
9998
9999 /* Rebase the WE IOCTLs to zero for the handler array */
10000 static iw_handler ipw_wx_handlers[] = {
10001         IW_HANDLER(SIOCGIWNAME, (iw_handler)cfg80211_wext_giwname),
10002         IW_HANDLER(SIOCSIWFREQ, ipw_wx_set_freq),
10003         IW_HANDLER(SIOCGIWFREQ, ipw_wx_get_freq),
10004         IW_HANDLER(SIOCSIWMODE, ipw_wx_set_mode),
10005         IW_HANDLER(SIOCGIWMODE, ipw_wx_get_mode),
10006         IW_HANDLER(SIOCSIWSENS, ipw_wx_set_sens),
10007         IW_HANDLER(SIOCGIWSENS, ipw_wx_get_sens),
10008         IW_HANDLER(SIOCGIWRANGE, ipw_wx_get_range),
10009         IW_HANDLER(SIOCSIWAP, ipw_wx_set_wap),
10010         IW_HANDLER(SIOCGIWAP, ipw_wx_get_wap),
10011         IW_HANDLER(SIOCSIWSCAN, ipw_wx_set_scan),
10012         IW_HANDLER(SIOCGIWSCAN, ipw_wx_get_scan),
10013         IW_HANDLER(SIOCSIWESSID, ipw_wx_set_essid),
10014         IW_HANDLER(SIOCGIWESSID, ipw_wx_get_essid),
10015         IW_HANDLER(SIOCSIWNICKN, ipw_wx_set_nick),
10016         IW_HANDLER(SIOCGIWNICKN, ipw_wx_get_nick),
10017         IW_HANDLER(SIOCSIWRATE, ipw_wx_set_rate),
10018         IW_HANDLER(SIOCGIWRATE, ipw_wx_get_rate),
10019         IW_HANDLER(SIOCSIWRTS, ipw_wx_set_rts),
10020         IW_HANDLER(SIOCGIWRTS, ipw_wx_get_rts),
10021         IW_HANDLER(SIOCSIWFRAG, ipw_wx_set_frag),
10022         IW_HANDLER(SIOCGIWFRAG, ipw_wx_get_frag),
10023         IW_HANDLER(SIOCSIWTXPOW, ipw_wx_set_txpow),
10024         IW_HANDLER(SIOCGIWTXPOW, ipw_wx_get_txpow),
10025         IW_HANDLER(SIOCSIWRETRY, ipw_wx_set_retry),
10026         IW_HANDLER(SIOCGIWRETRY, ipw_wx_get_retry),
10027         IW_HANDLER(SIOCSIWENCODE, ipw_wx_set_encode),
10028         IW_HANDLER(SIOCGIWENCODE, ipw_wx_get_encode),
10029         IW_HANDLER(SIOCSIWPOWER, ipw_wx_set_power),
10030         IW_HANDLER(SIOCGIWPOWER, ipw_wx_get_power),
10031         IW_HANDLER(SIOCSIWSPY, iw_handler_set_spy),
10032         IW_HANDLER(SIOCGIWSPY, iw_handler_get_spy),
10033         IW_HANDLER(SIOCSIWTHRSPY, iw_handler_set_thrspy),
10034         IW_HANDLER(SIOCGIWTHRSPY, iw_handler_get_thrspy),
10035         IW_HANDLER(SIOCSIWGENIE, ipw_wx_set_genie),
10036         IW_HANDLER(SIOCGIWGENIE, ipw_wx_get_genie),
10037         IW_HANDLER(SIOCSIWMLME, ipw_wx_set_mlme),
10038         IW_HANDLER(SIOCSIWAUTH, ipw_wx_set_auth),
10039         IW_HANDLER(SIOCGIWAUTH, ipw_wx_get_auth),
10040         IW_HANDLER(SIOCSIWENCODEEXT, ipw_wx_set_encodeext),
10041         IW_HANDLER(SIOCGIWENCODEEXT, ipw_wx_get_encodeext),
10042 };
10043
10044 enum {
10045         IPW_PRIV_SET_POWER = SIOCIWFIRSTPRIV,
10046         IPW_PRIV_GET_POWER,
10047         IPW_PRIV_SET_MODE,
10048         IPW_PRIV_GET_MODE,
10049         IPW_PRIV_SET_PREAMBLE,
10050         IPW_PRIV_GET_PREAMBLE,
10051         IPW_PRIV_RESET,
10052         IPW_PRIV_SW_RESET,
10053 #ifdef CONFIG_IPW2200_MONITOR
10054         IPW_PRIV_SET_MONITOR,
10055 #endif
10056 };
10057
10058 static struct iw_priv_args ipw_priv_args[] = {
10059         {
10060          .cmd = IPW_PRIV_SET_POWER,
10061          .set_args = IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 1,
10062          .name = "set_power"},
10063         {
10064          .cmd = IPW_PRIV_GET_POWER,
10065          .get_args = IW_PRIV_TYPE_CHAR | IW_PRIV_SIZE_FIXED | MAX_WX_STRING,
10066          .name = "get_power"},
10067         {
10068          .cmd = IPW_PRIV_SET_MODE,
10069          .set_args = IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 1,
10070          .name = "set_mode"},
10071         {
10072          .cmd = IPW_PRIV_GET_MODE,
10073          .get_args = IW_PRIV_TYPE_CHAR | IW_PRIV_SIZE_FIXED | MAX_WX_STRING,
10074          .name = "get_mode"},
10075         {
10076          .cmd = IPW_PRIV_SET_PREAMBLE,
10077          .set_args = IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 1,
10078          .name = "set_preamble"},
10079         {
10080          .cmd = IPW_PRIV_GET_PREAMBLE,
10081          .get_args = IW_PRIV_TYPE_CHAR | IW_PRIV_SIZE_FIXED | IFNAMSIZ,
10082          .name = "get_preamble"},
10083         {
10084          IPW_PRIV_RESET,
10085          IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 0, 0, "reset"},
10086         {
10087          IPW_PRIV_SW_RESET,
10088          IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 0, 0, "sw_reset"},
10089 #ifdef CONFIG_IPW2200_MONITOR
10090         {
10091          IPW_PRIV_SET_MONITOR,
10092          IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 2, 0, "monitor"},
10093 #endif                          /* CONFIG_IPW2200_MONITOR */
10094 };
10095
10096 static iw_handler ipw_priv_handler[] = {
10097         ipw_wx_set_powermode,
10098         ipw_wx_get_powermode,
10099         ipw_wx_set_wireless_mode,
10100         ipw_wx_get_wireless_mode,
10101         ipw_wx_set_preamble,
10102         ipw_wx_get_preamble,
10103         ipw_wx_reset,
10104         ipw_wx_sw_reset,
10105 #ifdef CONFIG_IPW2200_MONITOR
10106         ipw_wx_set_monitor,
10107 #endif
10108 };
10109
10110 static struct iw_handler_def ipw_wx_handler_def = {
10111         .standard = ipw_wx_handlers,
10112         .num_standard = ARRAY_SIZE(ipw_wx_handlers),
10113         .num_private = ARRAY_SIZE(ipw_priv_handler),
10114         .num_private_args = ARRAY_SIZE(ipw_priv_args),
10115         .private = ipw_priv_handler,
10116         .private_args = ipw_priv_args,
10117         .get_wireless_stats = ipw_get_wireless_stats,
10118 };
10119
10120 /*
10121  * Get wireless statistics.
10122  * Called by /proc/net/wireless
10123  * Also called by SIOCGIWSTATS
10124  */
10125 static struct iw_statistics *ipw_get_wireless_stats(struct net_device *dev)
10126 {
10127         struct ipw_priv *priv = libipw_priv(dev);
10128         struct iw_statistics *wstats;
10129
10130         wstats = &priv->wstats;
10131
10132         /* if hw is disabled, then ipw_get_ordinal() can't be called.
10133          * netdev->get_wireless_stats seems to be called before fw is
10134          * initialized.  STATUS_ASSOCIATED will only be set if the hw is up
10135          * and associated; if not associcated, the values are all meaningless
10136          * anyway, so set them all to NULL and INVALID */
10137         if (!(priv->status & STATUS_ASSOCIATED)) {
10138                 wstats->miss.beacon = 0;
10139                 wstats->discard.retries = 0;
10140                 wstats->qual.qual = 0;
10141                 wstats->qual.level = 0;
10142                 wstats->qual.noise = 0;
10143                 wstats->qual.updated = 7;
10144                 wstats->qual.updated |= IW_QUAL_NOISE_INVALID |
10145                     IW_QUAL_QUAL_INVALID | IW_QUAL_LEVEL_INVALID;
10146                 return wstats;
10147         }
10148
10149         wstats->qual.qual = priv->quality;
10150         wstats->qual.level = priv->exp_avg_rssi;
10151         wstats->qual.noise = priv->exp_avg_noise;
10152         wstats->qual.updated = IW_QUAL_QUAL_UPDATED | IW_QUAL_LEVEL_UPDATED |
10153             IW_QUAL_NOISE_UPDATED | IW_QUAL_DBM;
10154
10155         wstats->miss.beacon = average_value(&priv->average_missed_beacons);
10156         wstats->discard.retries = priv->last_tx_failures;
10157         wstats->discard.code = priv->ieee->ieee_stats.rx_discards_undecryptable;
10158
10159 /*      if (ipw_get_ordinal(priv, IPW_ORD_STAT_TX_RETRY, &tx_retry, &len))
10160         goto fail_get_ordinal;
10161         wstats->discard.retries += tx_retry; */
10162
10163         return wstats;
10164 }
10165
10166 /* net device stuff */
10167
10168 static  void init_sys_config(struct ipw_sys_config *sys_config)
10169 {
10170         memset(sys_config, 0, sizeof(struct ipw_sys_config));
10171         sys_config->bt_coexistence = 0;
10172         sys_config->answer_broadcast_ssid_probe = 0;
10173         sys_config->accept_all_data_frames = 0;
10174         sys_config->accept_non_directed_frames = 1;
10175         sys_config->exclude_unicast_unencrypted = 0;
10176         sys_config->disable_unicast_decryption = 1;
10177         sys_config->exclude_multicast_unencrypted = 0;
10178         sys_config->disable_multicast_decryption = 1;
10179         if (antenna < CFG_SYS_ANTENNA_BOTH || antenna > CFG_SYS_ANTENNA_B)
10180                 antenna = CFG_SYS_ANTENNA_BOTH;
10181         sys_config->antenna_diversity = antenna;
10182         sys_config->pass_crc_to_host = 0;       /* TODO: See if 1 gives us FCS */
10183         sys_config->dot11g_auto_detection = 0;
10184         sys_config->enable_cts_to_self = 0;
10185         sys_config->bt_coexist_collision_thr = 0;
10186         sys_config->pass_noise_stats_to_host = 1;       /* 1 -- fix for 256 */
10187         sys_config->silence_threshold = 0x1e;
10188 }
10189
10190 static int ipw_net_open(struct net_device *dev)
10191 {
10192         IPW_DEBUG_INFO("dev->open\n");
10193         netif_start_queue(dev);
10194         return 0;
10195 }
10196
10197 static int ipw_net_stop(struct net_device *dev)
10198 {
10199         IPW_DEBUG_INFO("dev->close\n");
10200         netif_stop_queue(dev);
10201         return 0;
10202 }
10203
10204 /*
10205 todo:
10206
10207 modify to send one tfd per fragment instead of using chunking.  otherwise
10208 we need to heavily modify the libipw_skb_to_txb.
10209 */
10210
10211 static int ipw_tx_skb(struct ipw_priv *priv, struct libipw_txb *txb,
10212                              int pri)
10213 {
10214         struct libipw_hdr_3addrqos *hdr = (struct libipw_hdr_3addrqos *)
10215             txb->fragments[0]->data;
10216         int i = 0;
10217         struct tfd_frame *tfd;
10218 #ifdef CONFIG_IPW2200_QOS
10219         int tx_id = ipw_get_tx_queue_number(priv, pri);
10220         struct clx2_tx_queue *txq = &priv->txq[tx_id];
10221 #else
10222         struct clx2_tx_queue *txq = &priv->txq[0];
10223 #endif
10224         struct clx2_queue *q = &txq->q;
10225         u8 id, hdr_len, unicast;
10226         int fc;
10227
10228         if (!(priv->status & STATUS_ASSOCIATED))
10229                 goto drop;
10230
10231         hdr_len = libipw_get_hdrlen(le16_to_cpu(hdr->frame_ctl));
10232         switch (priv->ieee->iw_mode) {
10233         case IW_MODE_ADHOC:
10234                 unicast = !is_multicast_ether_addr(hdr->addr1);
10235                 id = ipw_find_station(priv, hdr->addr1);
10236                 if (id == IPW_INVALID_STATION) {
10237                         id = ipw_add_station(priv, hdr->addr1);
10238                         if (id == IPW_INVALID_STATION) {
10239                                 IPW_WARNING("Attempt to send data to "
10240                                             "invalid cell: %pM\n",
10241                                             hdr->addr1);
10242                                 goto drop;
10243                         }
10244                 }
10245                 break;
10246
10247         case IW_MODE_INFRA:
10248         default:
10249                 unicast = !is_multicast_ether_addr(hdr->addr3);
10250                 id = 0;
10251                 break;
10252         }
10253
10254         tfd = &txq->bd[q->first_empty];
10255         txq->txb[q->first_empty] = txb;
10256         memset(tfd, 0, sizeof(*tfd));
10257         tfd->u.data.station_number = id;
10258
10259         tfd->control_flags.message_type = TX_FRAME_TYPE;
10260         tfd->control_flags.control_bits = TFD_NEED_IRQ_MASK;
10261
10262         tfd->u.data.cmd_id = DINO_CMD_TX;
10263         tfd->u.data.len = cpu_to_le16(txb->payload_size);
10264
10265         if (priv->assoc_request.ieee_mode == IPW_B_MODE)
10266                 tfd->u.data.tx_flags_ext |= DCT_FLAG_EXT_MODE_CCK;
10267         else
10268                 tfd->u.data.tx_flags_ext |= DCT_FLAG_EXT_MODE_OFDM;
10269
10270         if (priv->assoc_request.preamble_length == DCT_FLAG_SHORT_PREAMBLE)
10271                 tfd->u.data.tx_flags |= DCT_FLAG_SHORT_PREAMBLE;
10272
10273         fc = le16_to_cpu(hdr->frame_ctl);
10274         hdr->frame_ctl = cpu_to_le16(fc & ~IEEE80211_FCTL_MOREFRAGS);
10275
10276         memcpy(&tfd->u.data.tfd.tfd_24.mchdr, hdr, hdr_len);
10277
10278         if (likely(unicast))
10279                 tfd->u.data.tx_flags |= DCT_FLAG_ACK_REQD;
10280
10281         if (txb->encrypted && !priv->ieee->host_encrypt) {
10282                 switch (priv->ieee->sec.level) {
10283                 case SEC_LEVEL_3:
10284                         tfd->u.data.tfd.tfd_24.mchdr.frame_ctl |=
10285                             cpu_to_le16(IEEE80211_FCTL_PROTECTED);
10286                         /* XXX: ACK flag must be set for CCMP even if it
10287                          * is a multicast/broadcast packet, because CCMP
10288                          * group communication encrypted by GTK is
10289                          * actually done by the AP. */
10290                         if (!unicast)
10291                                 tfd->u.data.tx_flags |= DCT_FLAG_ACK_REQD;
10292
10293                         tfd->u.data.tx_flags &= ~DCT_FLAG_NO_WEP;
10294                         tfd->u.data.tx_flags_ext |= DCT_FLAG_EXT_SECURITY_CCM;
10295                         tfd->u.data.key_index = 0;
10296                         tfd->u.data.key_index |= DCT_WEP_INDEX_USE_IMMEDIATE;
10297                         break;
10298                 case SEC_LEVEL_2:
10299                         tfd->u.data.tfd.tfd_24.mchdr.frame_ctl |=
10300                             cpu_to_le16(IEEE80211_FCTL_PROTECTED);
10301                         tfd->u.data.tx_flags &= ~DCT_FLAG_NO_WEP;
10302                         tfd->u.data.tx_flags_ext |= DCT_FLAG_EXT_SECURITY_TKIP;
10303                         tfd->u.data.key_index = DCT_WEP_INDEX_USE_IMMEDIATE;
10304                         break;
10305                 case SEC_LEVEL_1:
10306                         tfd->u.data.tfd.tfd_24.mchdr.frame_ctl |=
10307                             cpu_to_le16(IEEE80211_FCTL_PROTECTED);
10308                         tfd->u.data.key_index = priv->ieee->crypt_info.tx_keyidx;
10309                         if (priv->ieee->sec.key_sizes[priv->ieee->crypt_info.tx_keyidx] <=
10310                             40)
10311                                 tfd->u.data.key_index |= DCT_WEP_KEY_64Bit;
10312                         else
10313                                 tfd->u.data.key_index |= DCT_WEP_KEY_128Bit;
10314                         break;
10315                 case SEC_LEVEL_0:
10316                         break;
10317                 default:
10318                         printk(KERN_ERR "Unknown security level %d\n",
10319                                priv->ieee->sec.level);
10320                         break;
10321                 }
10322         } else
10323                 /* No hardware encryption */
10324                 tfd->u.data.tx_flags |= DCT_FLAG_NO_WEP;
10325
10326 #ifdef CONFIG_IPW2200_QOS
10327         if (fc & IEEE80211_STYPE_QOS_DATA)
10328                 ipw_qos_set_tx_queue_command(priv, pri, &(tfd->u.data));
10329 #endif                          /* CONFIG_IPW2200_QOS */
10330
10331         /* payload */
10332         tfd->u.data.num_chunks = cpu_to_le32(min((u8) (NUM_TFD_CHUNKS - 2),
10333                                                  txb->nr_frags));
10334         IPW_DEBUG_FRAG("%i fragments being sent as %i chunks.\n",
10335                        txb->nr_frags, le32_to_cpu(tfd->u.data.num_chunks));
10336         for (i = 0; i < le32_to_cpu(tfd->u.data.num_chunks); i++) {
10337                 IPW_DEBUG_FRAG("Adding fragment %i of %i (%d bytes).\n",
10338                                i, le32_to_cpu(tfd->u.data.num_chunks),
10339                                txb->fragments[i]->len - hdr_len);
10340                 IPW_DEBUG_TX("Dumping TX packet frag %i of %i (%d bytes):\n",
10341                              i, tfd->u.data.num_chunks,
10342                              txb->fragments[i]->len - hdr_len);
10343                 printk_buf(IPW_DL_TX, txb->fragments[i]->data + hdr_len,
10344                            txb->fragments[i]->len - hdr_len);
10345
10346                 tfd->u.data.chunk_ptr[i] =
10347                     cpu_to_le32(pci_map_single
10348                                 (priv->pci_dev,
10349                                  txb->fragments[i]->data + hdr_len,
10350                                  txb->fragments[i]->len - hdr_len,
10351                                  PCI_DMA_TODEVICE));
10352                 tfd->u.data.chunk_len[i] =
10353                     cpu_to_le16(txb->fragments[i]->len - hdr_len);
10354         }
10355
10356         if (i != txb->nr_frags) {
10357                 struct sk_buff *skb;
10358                 u16 remaining_bytes = 0;
10359                 int j;
10360
10361                 for (j = i; j < txb->nr_frags; j++)
10362                         remaining_bytes += txb->fragments[j]->len - hdr_len;
10363
10364                 printk(KERN_INFO "Trying to reallocate for %d bytes\n",
10365                        remaining_bytes);
10366                 skb = alloc_skb(remaining_bytes, GFP_ATOMIC);
10367                 if (skb != NULL) {
10368                         tfd->u.data.chunk_len[i] = cpu_to_le16(remaining_bytes);
10369                         for (j = i; j < txb->nr_frags; j++) {
10370                                 int size = txb->fragments[j]->len - hdr_len;
10371
10372                                 printk(KERN_INFO "Adding frag %d %d...\n",
10373                                        j, size);
10374                                 memcpy(skb_put(skb, size),
10375                                        txb->fragments[j]->data + hdr_len, size);
10376                         }
10377                         dev_kfree_skb_any(txb->fragments[i]);
10378                         txb->fragments[i] = skb;
10379                         tfd->u.data.chunk_ptr[i] =
10380                             cpu_to_le32(pci_map_single
10381                                         (priv->pci_dev, skb->data,
10382                                          remaining_bytes,
10383                                          PCI_DMA_TODEVICE));
10384
10385                         le32_add_cpu(&tfd->u.data.num_chunks, 1);
10386                 }
10387         }
10388
10389         /* kick DMA */
10390         q->first_empty = ipw_queue_inc_wrap(q->first_empty, q->n_bd);
10391         ipw_write32(priv, q->reg_w, q->first_empty);
10392
10393         if (ipw_tx_queue_space(q) < q->high_mark)
10394                 netif_stop_queue(priv->net_dev);
10395
10396         return NETDEV_TX_OK;
10397
10398       drop:
10399         IPW_DEBUG_DROP("Silently dropping Tx packet.\n");
10400         libipw_txb_free(txb);
10401         return NETDEV_TX_OK;
10402 }
10403
10404 static int ipw_net_is_queue_full(struct net_device *dev, int pri)
10405 {
10406         struct ipw_priv *priv = libipw_priv(dev);
10407 #ifdef CONFIG_IPW2200_QOS
10408         int tx_id = ipw_get_tx_queue_number(priv, pri);
10409         struct clx2_tx_queue *txq = &priv->txq[tx_id];
10410 #else
10411         struct clx2_tx_queue *txq = &priv->txq[0];
10412 #endif                          /* CONFIG_IPW2200_QOS */
10413
10414         if (ipw_tx_queue_space(&txq->q) < txq->q.high_mark)
10415                 return 1;
10416
10417         return 0;
10418 }
10419
10420 #ifdef CONFIG_IPW2200_PROMISCUOUS
10421 static void ipw_handle_promiscuous_tx(struct ipw_priv *priv,
10422                                       struct libipw_txb *txb)
10423 {
10424         struct libipw_rx_stats dummystats;
10425         struct ieee80211_hdr *hdr;
10426         u8 n;
10427         u16 filter = priv->prom_priv->filter;
10428         int hdr_only = 0;
10429
10430         if (filter & IPW_PROM_NO_TX)
10431                 return;
10432
10433         memset(&dummystats, 0, sizeof(dummystats));
10434
10435         /* Filtering of fragment chains is done against the first fragment */
10436         hdr = (void *)txb->fragments[0]->data;
10437         if (libipw_is_management(le16_to_cpu(hdr->frame_control))) {
10438                 if (filter & IPW_PROM_NO_MGMT)
10439                         return;
10440                 if (filter & IPW_PROM_MGMT_HEADER_ONLY)
10441                         hdr_only = 1;
10442         } else if (libipw_is_control(le16_to_cpu(hdr->frame_control))) {
10443                 if (filter & IPW_PROM_NO_CTL)
10444                         return;
10445                 if (filter & IPW_PROM_CTL_HEADER_ONLY)
10446                         hdr_only = 1;
10447         } else if (libipw_is_data(le16_to_cpu(hdr->frame_control))) {
10448                 if (filter & IPW_PROM_NO_DATA)
10449                         return;
10450                 if (filter & IPW_PROM_DATA_HEADER_ONLY)
10451                         hdr_only = 1;
10452         }
10453
10454         for(n=0; n<txb->nr_frags; ++n) {
10455                 struct sk_buff *src = txb->fragments[n];
10456                 struct sk_buff *dst;
10457                 struct ieee80211_radiotap_header *rt_hdr;
10458                 int len;
10459
10460                 if (hdr_only) {
10461                         hdr = (void *)src->data;
10462                         len = libipw_get_hdrlen(le16_to_cpu(hdr->frame_control));
10463                 } else
10464                         len = src->len;
10465
10466                 dst = alloc_skb(len + sizeof(*rt_hdr) + sizeof(u16)*2, GFP_ATOMIC);
10467                 if (!dst)
10468                         continue;
10469
10470                 rt_hdr = (void *)skb_put(dst, sizeof(*rt_hdr));
10471
10472                 rt_hdr->it_version = PKTHDR_RADIOTAP_VERSION;
10473                 rt_hdr->it_pad = 0;
10474                 rt_hdr->it_present = 0; /* after all, it's just an idea */
10475                 rt_hdr->it_present |=  cpu_to_le32(1 << IEEE80211_RADIOTAP_CHANNEL);
10476
10477                 *(__le16*)skb_put(dst, sizeof(u16)) = cpu_to_le16(
10478                         ieee80211chan2mhz(priv->channel));
10479                 if (priv->channel > 14)         /* 802.11a */
10480                         *(__le16*)skb_put(dst, sizeof(u16)) =
10481                                 cpu_to_le16(IEEE80211_CHAN_OFDM |
10482                                              IEEE80211_CHAN_5GHZ);
10483                 else if (priv->ieee->mode == IEEE_B) /* 802.11b */
10484                         *(__le16*)skb_put(dst, sizeof(u16)) =
10485                                 cpu_to_le16(IEEE80211_CHAN_CCK |
10486                                              IEEE80211_CHAN_2GHZ);
10487                 else            /* 802.11g */
10488                         *(__le16*)skb_put(dst, sizeof(u16)) =
10489                                 cpu_to_le16(IEEE80211_CHAN_OFDM |
10490                                  IEEE80211_CHAN_2GHZ);
10491
10492                 rt_hdr->it_len = cpu_to_le16(dst->len);
10493
10494                 skb_copy_from_linear_data(src, skb_put(dst, len), len);
10495
10496                 if (!libipw_rx(priv->prom_priv->ieee, dst, &dummystats))
10497                         dev_kfree_skb_any(dst);
10498         }
10499 }
10500 #endif
10501
10502 static netdev_tx_t ipw_net_hard_start_xmit(struct libipw_txb *txb,
10503                                            struct net_device *dev, int pri)
10504 {
10505         struct ipw_priv *priv = libipw_priv(dev);
10506         unsigned long flags;
10507         netdev_tx_t ret;
10508
10509         IPW_DEBUG_TX("dev->xmit(%d bytes)\n", txb->payload_size);
10510         spin_lock_irqsave(&priv->lock, flags);
10511
10512 #ifdef CONFIG_IPW2200_PROMISCUOUS
10513         if (rtap_iface && netif_running(priv->prom_net_dev))
10514                 ipw_handle_promiscuous_tx(priv, txb);
10515 #endif
10516
10517         ret = ipw_tx_skb(priv, txb, pri);
10518         if (ret == NETDEV_TX_OK)
10519                 __ipw_led_activity_on(priv);
10520         spin_unlock_irqrestore(&priv->lock, flags);
10521
10522         return ret;
10523 }
10524
10525 static void ipw_net_set_multicast_list(struct net_device *dev)
10526 {
10527
10528 }
10529
10530 static int ipw_net_set_mac_address(struct net_device *dev, void *p)
10531 {
10532         struct ipw_priv *priv = libipw_priv(dev);
10533         struct sockaddr *addr = p;
10534
10535         if (!is_valid_ether_addr(addr->sa_data))
10536                 return -EADDRNOTAVAIL;
10537         mutex_lock(&priv->mutex);
10538         priv->config |= CFG_CUSTOM_MAC;
10539         memcpy(priv->mac_addr, addr->sa_data, ETH_ALEN);
10540         printk(KERN_INFO "%s: Setting MAC to %pM\n",
10541                priv->net_dev->name, priv->mac_addr);
10542         schedule_work(&priv->adapter_restart);
10543         mutex_unlock(&priv->mutex);
10544         return 0;
10545 }
10546
10547 static void ipw_ethtool_get_drvinfo(struct net_device *dev,
10548                                     struct ethtool_drvinfo *info)
10549 {
10550         struct ipw_priv *p = libipw_priv(dev);
10551         char vers[64];
10552         char date[32];
10553         u32 len;
10554
10555         strlcpy(info->driver, DRV_NAME, sizeof(info->driver));
10556         strlcpy(info->version, DRV_VERSION, sizeof(info->version));
10557
10558         len = sizeof(vers);
10559         ipw_get_ordinal(p, IPW_ORD_STAT_FW_VERSION, vers, &len);
10560         len = sizeof(date);
10561         ipw_get_ordinal(p, IPW_ORD_STAT_FW_DATE, date, &len);
10562
10563         snprintf(info->fw_version, sizeof(info->fw_version), "%s (%s)",
10564                  vers, date);
10565         strlcpy(info->bus_info, pci_name(p->pci_dev),
10566                 sizeof(info->bus_info));
10567         info->eedump_len = IPW_EEPROM_IMAGE_SIZE;
10568 }
10569
10570 static u32 ipw_ethtool_get_link(struct net_device *dev)
10571 {
10572         struct ipw_priv *priv = libipw_priv(dev);
10573         return (priv->status & STATUS_ASSOCIATED) != 0;
10574 }
10575
10576 static int ipw_ethtool_get_eeprom_len(struct net_device *dev)
10577 {
10578         return IPW_EEPROM_IMAGE_SIZE;
10579 }
10580
10581 static int ipw_ethtool_get_eeprom(struct net_device *dev,
10582                                   struct ethtool_eeprom *eeprom, u8 * bytes)
10583 {
10584         struct ipw_priv *p = libipw_priv(dev);
10585
10586         if (eeprom->offset + eeprom->len > IPW_EEPROM_IMAGE_SIZE)
10587                 return -EINVAL;
10588         mutex_lock(&p->mutex);
10589         memcpy(bytes, &p->eeprom[eeprom->offset], eeprom->len);
10590         mutex_unlock(&p->mutex);
10591         return 0;
10592 }
10593
10594 static int ipw_ethtool_set_eeprom(struct net_device *dev,
10595                                   struct ethtool_eeprom *eeprom, u8 * bytes)
10596 {
10597         struct ipw_priv *p = libipw_priv(dev);
10598         int i;
10599
10600         if (eeprom->offset + eeprom->len > IPW_EEPROM_IMAGE_SIZE)
10601                 return -EINVAL;
10602         mutex_lock(&p->mutex);
10603         memcpy(&p->eeprom[eeprom->offset], bytes, eeprom->len);
10604         for (i = 0; i < IPW_EEPROM_IMAGE_SIZE; i++)
10605                 ipw_write8(p, i + IPW_EEPROM_DATA, p->eeprom[i]);
10606         mutex_unlock(&p->mutex);
10607         return 0;
10608 }
10609
10610 static const struct ethtool_ops ipw_ethtool_ops = {
10611         .get_link = ipw_ethtool_get_link,
10612         .get_drvinfo = ipw_ethtool_get_drvinfo,
10613         .get_eeprom_len = ipw_ethtool_get_eeprom_len,
10614         .get_eeprom = ipw_ethtool_get_eeprom,
10615         .set_eeprom = ipw_ethtool_set_eeprom,
10616 };
10617
10618 static irqreturn_t ipw_isr(int irq, void *data)
10619 {
10620         struct ipw_priv *priv = data;
10621         u32 inta, inta_mask;
10622
10623         if (!priv)
10624                 return IRQ_NONE;
10625
10626         spin_lock(&priv->irq_lock);
10627
10628         if (!(priv->status & STATUS_INT_ENABLED)) {
10629                 /* IRQ is disabled */
10630                 goto none;
10631         }
10632
10633         inta = ipw_read32(priv, IPW_INTA_RW);
10634         inta_mask = ipw_read32(priv, IPW_INTA_MASK_R);
10635
10636         if (inta == 0xFFFFFFFF) {
10637                 /* Hardware disappeared */
10638                 IPW_WARNING("IRQ INTA == 0xFFFFFFFF\n");
10639                 goto none;
10640         }
10641
10642         if (!(inta & (IPW_INTA_MASK_ALL & inta_mask))) {
10643                 /* Shared interrupt */
10644                 goto none;
10645         }
10646
10647         /* tell the device to stop sending interrupts */
10648         __ipw_disable_interrupts(priv);
10649
10650         /* ack current interrupts */
10651         inta &= (IPW_INTA_MASK_ALL & inta_mask);
10652         ipw_write32(priv, IPW_INTA_RW, inta);
10653
10654         /* Cache INTA value for our tasklet */
10655         priv->isr_inta = inta;
10656
10657         tasklet_schedule(&priv->irq_tasklet);
10658
10659         spin_unlock(&priv->irq_lock);
10660
10661         return IRQ_HANDLED;
10662       none:
10663         spin_unlock(&priv->irq_lock);
10664         return IRQ_NONE;
10665 }
10666
10667 static void ipw_rf_kill(void *adapter)
10668 {
10669         struct ipw_priv *priv = adapter;
10670         unsigned long flags;
10671
10672         spin_lock_irqsave(&priv->lock, flags);
10673
10674         if (rf_kill_active(priv)) {
10675                 IPW_DEBUG_RF_KILL("RF Kill active, rescheduling GPIO check\n");
10676                 schedule_delayed_work(&priv->rf_kill, 2 * HZ);
10677                 goto exit_unlock;
10678         }
10679
10680         /* RF Kill is now disabled, so bring the device back up */
10681
10682         if (!(priv->status & STATUS_RF_KILL_MASK)) {
10683                 IPW_DEBUG_RF_KILL("HW RF Kill no longer active, restarting "
10684                                   "device\n");
10685
10686                 /* we can not do an adapter restart while inside an irq lock */
10687                 schedule_work(&priv->adapter_restart);
10688         } else
10689                 IPW_DEBUG_RF_KILL("HW RF Kill deactivated.  SW RF Kill still "
10690                                   "enabled\n");
10691
10692       exit_unlock:
10693         spin_unlock_irqrestore(&priv->lock, flags);
10694 }
10695
10696 static void ipw_bg_rf_kill(struct work_struct *work)
10697 {
10698         struct ipw_priv *priv =
10699                 container_of(work, struct ipw_priv, rf_kill.work);
10700         mutex_lock(&priv->mutex);
10701         ipw_rf_kill(priv);
10702         mutex_unlock(&priv->mutex);
10703 }
10704
10705 static void ipw_link_up(struct ipw_priv *priv)
10706 {
10707         priv->last_seq_num = -1;
10708         priv->last_frag_num = -1;
10709         priv->last_packet_time = 0;
10710
10711         netif_carrier_on(priv->net_dev);
10712
10713         cancel_delayed_work(&priv->request_scan);
10714         cancel_delayed_work(&priv->request_direct_scan);
10715         cancel_delayed_work(&priv->request_passive_scan);
10716         cancel_delayed_work(&priv->scan_event);
10717         ipw_reset_stats(priv);
10718         /* Ensure the rate is updated immediately */
10719         priv->last_rate = ipw_get_current_rate(priv);
10720         ipw_gather_stats(priv);
10721         ipw_led_link_up(priv);
10722         notify_wx_assoc_event(priv);
10723
10724         if (priv->config & CFG_BACKGROUND_SCAN)
10725                 schedule_delayed_work(&priv->request_scan, HZ);
10726 }
10727
10728 static void ipw_bg_link_up(struct work_struct *work)
10729 {
10730         struct ipw_priv *priv =
10731                 container_of(work, struct ipw_priv, link_up);
10732         mutex_lock(&priv->mutex);
10733         ipw_link_up(priv);
10734         mutex_unlock(&priv->mutex);
10735 }
10736
10737 static void ipw_link_down(struct ipw_priv *priv)
10738 {
10739         ipw_led_link_down(priv);
10740         netif_carrier_off(priv->net_dev);
10741         notify_wx_assoc_event(priv);
10742
10743         /* Cancel any queued work ... */
10744         cancel_delayed_work(&priv->request_scan);
10745         cancel_delayed_work(&priv->request_direct_scan);
10746         cancel_delayed_work(&priv->request_passive_scan);
10747         cancel_delayed_work(&priv->adhoc_check);
10748         cancel_delayed_work(&priv->gather_stats);
10749
10750         ipw_reset_stats(priv);
10751
10752         if (!(priv->status & STATUS_EXIT_PENDING)) {
10753                 /* Queue up another scan... */
10754                 schedule_delayed_work(&priv->request_scan, 0);
10755         } else
10756                 cancel_delayed_work(&priv->scan_event);
10757 }
10758
10759 static void ipw_bg_link_down(struct work_struct *work)
10760 {
10761         struct ipw_priv *priv =
10762                 container_of(work, struct ipw_priv, link_down);
10763         mutex_lock(&priv->mutex);
10764         ipw_link_down(priv);
10765         mutex_unlock(&priv->mutex);
10766 }
10767
10768 static int ipw_setup_deferred_work(struct ipw_priv *priv)
10769 {
10770         int ret = 0;
10771
10772         init_waitqueue_head(&priv->wait_command_queue);
10773         init_waitqueue_head(&priv->wait_state);
10774
10775         INIT_DELAYED_WORK(&priv->adhoc_check, ipw_bg_adhoc_check);
10776         INIT_WORK(&priv->associate, ipw_bg_associate);
10777         INIT_WORK(&priv->disassociate, ipw_bg_disassociate);
10778         INIT_WORK(&priv->system_config, ipw_system_config);
10779         INIT_WORK(&priv->rx_replenish, ipw_bg_rx_queue_replenish);
10780         INIT_WORK(&priv->adapter_restart, ipw_bg_adapter_restart);
10781         INIT_DELAYED_WORK(&priv->rf_kill, ipw_bg_rf_kill);
10782         INIT_WORK(&priv->up, ipw_bg_up);
10783         INIT_WORK(&priv->down, ipw_bg_down);
10784         INIT_DELAYED_WORK(&priv->request_scan, ipw_request_scan);
10785         INIT_DELAYED_WORK(&priv->request_direct_scan, ipw_request_direct_scan);
10786         INIT_DELAYED_WORK(&priv->request_passive_scan, ipw_request_passive_scan);
10787         INIT_DELAYED_WORK(&priv->scan_event, ipw_scan_event);
10788         INIT_DELAYED_WORK(&priv->gather_stats, ipw_bg_gather_stats);
10789         INIT_WORK(&priv->abort_scan, ipw_bg_abort_scan);
10790         INIT_WORK(&priv->roam, ipw_bg_roam);
10791         INIT_DELAYED_WORK(&priv->scan_check, ipw_bg_scan_check);
10792         INIT_WORK(&priv->link_up, ipw_bg_link_up);
10793         INIT_WORK(&priv->link_down, ipw_bg_link_down);
10794         INIT_DELAYED_WORK(&priv->led_link_on, ipw_bg_led_link_on);
10795         INIT_DELAYED_WORK(&priv->led_link_off, ipw_bg_led_link_off);
10796         INIT_DELAYED_WORK(&priv->led_act_off, ipw_bg_led_activity_off);
10797         INIT_WORK(&priv->merge_networks, ipw_merge_adhoc_network);
10798
10799 #ifdef CONFIG_IPW2200_QOS
10800         INIT_WORK(&priv->qos_activate, ipw_bg_qos_activate);
10801 #endif                          /* CONFIG_IPW2200_QOS */
10802
10803         tasklet_init(&priv->irq_tasklet, (void (*)(unsigned long))
10804                      ipw_irq_tasklet, (unsigned long)priv);
10805
10806         return ret;
10807 }
10808
10809 static void shim__set_security(struct net_device *dev,
10810                                struct libipw_security *sec)
10811 {
10812         struct ipw_priv *priv = libipw_priv(dev);
10813         int i;
10814         for (i = 0; i < 4; i++) {
10815                 if (sec->flags & (1 << i)) {
10816                         priv->ieee->sec.encode_alg[i] = sec->encode_alg[i];
10817                         priv->ieee->sec.key_sizes[i] = sec->key_sizes[i];
10818                         if (sec->key_sizes[i] == 0)
10819                                 priv->ieee->sec.flags &= ~(1 << i);
10820                         else {
10821                                 memcpy(priv->ieee->sec.keys[i], sec->keys[i],
10822                                        sec->key_sizes[i]);
10823                                 priv->ieee->sec.flags |= (1 << i);
10824                         }
10825                         priv->status |= STATUS_SECURITY_UPDATED;
10826                 } else if (sec->level != SEC_LEVEL_1)
10827                         priv->ieee->sec.flags &= ~(1 << i);
10828         }
10829
10830         if (sec->flags & SEC_ACTIVE_KEY) {
10831                 if (sec->active_key <= 3) {
10832                         priv->ieee->sec.active_key = sec->active_key;
10833                         priv->ieee->sec.flags |= SEC_ACTIVE_KEY;
10834                 } else
10835                         priv->ieee->sec.flags &= ~SEC_ACTIVE_KEY;
10836                 priv->status |= STATUS_SECURITY_UPDATED;
10837         } else
10838                 priv->ieee->sec.flags &= ~SEC_ACTIVE_KEY;
10839
10840         if ((sec->flags & SEC_AUTH_MODE) &&
10841             (priv->ieee->sec.auth_mode != sec->auth_mode)) {
10842                 priv->ieee->sec.auth_mode = sec->auth_mode;
10843                 priv->ieee->sec.flags |= SEC_AUTH_MODE;
10844                 if (sec->auth_mode == WLAN_AUTH_SHARED_KEY)
10845                         priv->capability |= CAP_SHARED_KEY;
10846                 else
10847                         priv->capability &= ~CAP_SHARED_KEY;
10848                 priv->status |= STATUS_SECURITY_UPDATED;
10849         }
10850
10851         if (sec->flags & SEC_ENABLED && priv->ieee->sec.enabled != sec->enabled) {
10852                 priv->ieee->sec.flags |= SEC_ENABLED;
10853                 priv->ieee->sec.enabled = sec->enabled;
10854                 priv->status |= STATUS_SECURITY_UPDATED;
10855                 if (sec->enabled)
10856                         priv->capability |= CAP_PRIVACY_ON;
10857                 else
10858                         priv->capability &= ~CAP_PRIVACY_ON;
10859         }
10860
10861         if (sec->flags & SEC_ENCRYPT)
10862                 priv->ieee->sec.encrypt = sec->encrypt;
10863
10864         if (sec->flags & SEC_LEVEL && priv->ieee->sec.level != sec->level) {
10865                 priv->ieee->sec.level = sec->level;
10866                 priv->ieee->sec.flags |= SEC_LEVEL;
10867                 priv->status |= STATUS_SECURITY_UPDATED;
10868         }
10869
10870         if (!priv->ieee->host_encrypt && (sec->flags & SEC_ENCRYPT))
10871                 ipw_set_hwcrypto_keys(priv);
10872
10873         /* To match current functionality of ipw2100 (which works well w/
10874          * various supplicants, we don't force a disassociate if the
10875          * privacy capability changes ... */
10876 #if 0
10877         if ((priv->status & (STATUS_ASSOCIATED | STATUS_ASSOCIATING)) &&
10878             (((priv->assoc_request.capability &
10879                cpu_to_le16(WLAN_CAPABILITY_PRIVACY)) && !sec->enabled) ||
10880              (!(priv->assoc_request.capability &
10881                 cpu_to_le16(WLAN_CAPABILITY_PRIVACY)) && sec->enabled))) {
10882                 IPW_DEBUG_ASSOC("Disassociating due to capability "
10883                                 "change.\n");
10884                 ipw_disassociate(priv);
10885         }
10886 #endif
10887 }
10888
10889 static int init_supported_rates(struct ipw_priv *priv,
10890                                 struct ipw_supported_rates *rates)
10891 {
10892         /* TODO: Mask out rates based on priv->rates_mask */
10893
10894         memset(rates, 0, sizeof(*rates));
10895         /* configure supported rates */
10896         switch (priv->ieee->freq_band) {
10897         case LIBIPW_52GHZ_BAND:
10898                 rates->ieee_mode = IPW_A_MODE;
10899                 rates->purpose = IPW_RATE_CAPABILITIES;
10900                 ipw_add_ofdm_scan_rates(rates, LIBIPW_CCK_MODULATION,
10901                                         LIBIPW_OFDM_DEFAULT_RATES_MASK);
10902                 break;
10903
10904         default:                /* Mixed or 2.4Ghz */
10905                 rates->ieee_mode = IPW_G_MODE;
10906                 rates->purpose = IPW_RATE_CAPABILITIES;
10907                 ipw_add_cck_scan_rates(rates, LIBIPW_CCK_MODULATION,
10908                                        LIBIPW_CCK_DEFAULT_RATES_MASK);
10909                 if (priv->ieee->modulation & LIBIPW_OFDM_MODULATION) {
10910                         ipw_add_ofdm_scan_rates(rates, LIBIPW_CCK_MODULATION,
10911                                                 LIBIPW_OFDM_DEFAULT_RATES_MASK);
10912                 }
10913                 break;
10914         }
10915
10916         return 0;
10917 }
10918
10919 static int ipw_config(struct ipw_priv *priv)
10920 {
10921         /* This is only called from ipw_up, which resets/reloads the firmware
10922            so, we don't need to first disable the card before we configure
10923            it */
10924         if (ipw_set_tx_power(priv))
10925                 goto error;
10926
10927         /* initialize adapter address */
10928         if (ipw_send_adapter_address(priv, priv->net_dev->dev_addr))
10929                 goto error;
10930
10931         /* set basic system config settings */
10932         init_sys_config(&priv->sys_config);
10933
10934         /* Support Bluetooth if we have BT h/w on board, and user wants to.
10935          * Does not support BT priority yet (don't abort or defer our Tx) */
10936         if (bt_coexist) {
10937                 unsigned char bt_caps = priv->eeprom[EEPROM_SKU_CAPABILITY];
10938
10939                 if (bt_caps & EEPROM_SKU_CAP_BT_CHANNEL_SIG)
10940                         priv->sys_config.bt_coexistence
10941                             |= CFG_BT_COEXISTENCE_SIGNAL_CHNL;
10942                 if (bt_caps & EEPROM_SKU_CAP_BT_OOB)
10943                         priv->sys_config.bt_coexistence
10944                             |= CFG_BT_COEXISTENCE_OOB;
10945         }
10946
10947 #ifdef CONFIG_IPW2200_PROMISCUOUS
10948         if (priv->prom_net_dev && netif_running(priv->prom_net_dev)) {
10949                 priv->sys_config.accept_all_data_frames = 1;
10950                 priv->sys_config.accept_non_directed_frames = 1;
10951                 priv->sys_config.accept_all_mgmt_bcpr = 1;
10952                 priv->sys_config.accept_all_mgmt_frames = 1;
10953         }
10954 #endif
10955
10956         if (priv->ieee->iw_mode == IW_MODE_ADHOC)
10957                 priv->sys_config.answer_broadcast_ssid_probe = 1;
10958         else
10959                 priv->sys_config.answer_broadcast_ssid_probe = 0;
10960
10961         if (ipw_send_system_config(priv))
10962                 goto error;
10963
10964         init_supported_rates(priv, &priv->rates);
10965         if (ipw_send_supported_rates(priv, &priv->rates))
10966                 goto error;
10967
10968         /* Set request-to-send threshold */
10969         if (priv->rts_threshold) {
10970                 if (ipw_send_rts_threshold(priv, priv->rts_threshold))
10971                         goto error;
10972         }
10973 #ifdef CONFIG_IPW2200_QOS
10974         IPW_DEBUG_QOS("QoS: call ipw_qos_activate\n");
10975         ipw_qos_activate(priv, NULL);
10976 #endif                          /* CONFIG_IPW2200_QOS */
10977
10978         if (ipw_set_random_seed(priv))
10979                 goto error;
10980
10981         /* final state transition to the RUN state */
10982         if (ipw_send_host_complete(priv))
10983                 goto error;
10984
10985         priv->status |= STATUS_INIT;
10986
10987         ipw_led_init(priv);
10988         ipw_led_radio_on(priv);
10989         priv->notif_missed_beacons = 0;
10990
10991         /* Set hardware WEP key if it is configured. */
10992         if ((priv->capability & CAP_PRIVACY_ON) &&
10993             (priv->ieee->sec.level == SEC_LEVEL_1) &&
10994             !(priv->ieee->host_encrypt || priv->ieee->host_decrypt))
10995                 ipw_set_hwcrypto_keys(priv);
10996
10997         return 0;
10998
10999       error:
11000         return -EIO;
11001 }
11002
11003 /*
11004  * NOTE:
11005  *
11006  * These tables have been tested in conjunction with the
11007  * Intel PRO/Wireless 2200BG and 2915ABG Network Connection Adapters.
11008  *
11009  * Altering this values, using it on other hardware, or in geographies
11010  * not intended for resale of the above mentioned Intel adapters has
11011  * not been tested.
11012  *
11013  * Remember to update the table in README.ipw2200 when changing this
11014  * table.
11015  *
11016  */
11017 static const struct libipw_geo ipw_geos[] = {
11018         {                       /* Restricted */
11019          "---",
11020          .bg_channels = 11,
11021          .bg = {{2412, 1}, {2417, 2}, {2422, 3},
11022                 {2427, 4}, {2432, 5}, {2437, 6},
11023                 {2442, 7}, {2447, 8}, {2452, 9},
11024                 {2457, 10}, {2462, 11}},
11025          },
11026
11027         {                       /* Custom US/Canada */
11028          "ZZF",
11029          .bg_channels = 11,
11030          .bg = {{2412, 1}, {2417, 2}, {2422, 3},
11031                 {2427, 4}, {2432, 5}, {2437, 6},
11032                 {2442, 7}, {2447, 8}, {2452, 9},
11033                 {2457, 10}, {2462, 11}},
11034          .a_channels = 8,
11035          .a = {{5180, 36},
11036                {5200, 40},
11037                {5220, 44},
11038                {5240, 48},
11039                {5260, 52, LIBIPW_CH_PASSIVE_ONLY},
11040                {5280, 56, LIBIPW_CH_PASSIVE_ONLY},
11041                {5300, 60, LIBIPW_CH_PASSIVE_ONLY},
11042                {5320, 64, LIBIPW_CH_PASSIVE_ONLY}},
11043          },
11044
11045         {                       /* Rest of World */
11046          "ZZD",
11047          .bg_channels = 13,
11048          .bg = {{2412, 1}, {2417, 2}, {2422, 3},
11049                 {2427, 4}, {2432, 5}, {2437, 6},
11050                 {2442, 7}, {2447, 8}, {2452, 9},
11051                 {2457, 10}, {2462, 11}, {2467, 12},
11052                 {2472, 13}},
11053          },
11054
11055         {                       /* Custom USA & Europe & High */
11056          "ZZA",
11057          .bg_channels = 11,
11058          .bg = {{2412, 1}, {2417, 2}, {2422, 3},
11059                 {2427, 4}, {2432, 5}, {2437, 6},
11060                 {2442, 7}, {2447, 8}, {2452, 9},
11061                 {2457, 10}, {2462, 11}},
11062          .a_channels = 13,
11063          .a = {{5180, 36},
11064                {5200, 40},
11065                {5220, 44},
11066                {5240, 48},
11067                {5260, 52, LIBIPW_CH_PASSIVE_ONLY},
11068                {5280, 56, LIBIPW_CH_PASSIVE_ONLY},
11069                {5300, 60, LIBIPW_CH_PASSIVE_ONLY},
11070                {5320, 64, LIBIPW_CH_PASSIVE_ONLY},
11071                {5745, 149},
11072                {5765, 153},
11073                {5785, 157},
11074                {5805, 161},
11075                {5825, 165}},
11076          },
11077
11078         {                       /* Custom NA & Europe */
11079          "ZZB",
11080          .bg_channels = 11,
11081          .bg = {{2412, 1}, {2417, 2}, {2422, 3},
11082                 {2427, 4}, {2432, 5}, {2437, 6},
11083                 {2442, 7}, {2447, 8}, {2452, 9},
11084                 {2457, 10}, {2462, 11}},
11085          .a_channels = 13,
11086          .a = {{5180, 36},
11087                {5200, 40},
11088                {5220, 44},
11089                {5240, 48},
11090                {5260, 52, LIBIPW_CH_PASSIVE_ONLY},
11091                {5280, 56, LIBIPW_CH_PASSIVE_ONLY},
11092                {5300, 60, LIBIPW_CH_PASSIVE_ONLY},
11093                {5320, 64, LIBIPW_CH_PASSIVE_ONLY},
11094                {5745, 149, LIBIPW_CH_PASSIVE_ONLY},
11095                {5765, 153, LIBIPW_CH_PASSIVE_ONLY},
11096                {5785, 157, LIBIPW_CH_PASSIVE_ONLY},
11097                {5805, 161, LIBIPW_CH_PASSIVE_ONLY},
11098                {5825, 165, LIBIPW_CH_PASSIVE_ONLY}},
11099          },
11100
11101         {                       /* Custom Japan */
11102          "ZZC",
11103          .bg_channels = 11,
11104          .bg = {{2412, 1}, {2417, 2}, {2422, 3},
11105                 {2427, 4}, {2432, 5}, {2437, 6},
11106                 {2442, 7}, {2447, 8}, {2452, 9},
11107                 {2457, 10}, {2462, 11}},
11108          .a_channels = 4,
11109          .a = {{5170, 34}, {5190, 38},
11110                {5210, 42}, {5230, 46}},
11111          },
11112
11113         {                       /* Custom */
11114          "ZZM",
11115          .bg_channels = 11,
11116          .bg = {{2412, 1}, {2417, 2}, {2422, 3},
11117                 {2427, 4}, {2432, 5}, {2437, 6},
11118                 {2442, 7}, {2447, 8}, {2452, 9},
11119                 {2457, 10}, {2462, 11}},
11120          },
11121
11122         {                       /* Europe */
11123          "ZZE",
11124          .bg_channels = 13,
11125          .bg = {{2412, 1}, {2417, 2}, {2422, 3},
11126                 {2427, 4}, {2432, 5}, {2437, 6},
11127                 {2442, 7}, {2447, 8}, {2452, 9},
11128                 {2457, 10}, {2462, 11}, {2467, 12},
11129                 {2472, 13}},
11130          .a_channels = 19,
11131          .a = {{5180, 36},
11132                {5200, 40},
11133                {5220, 44},
11134                {5240, 48},
11135                {5260, 52, LIBIPW_CH_PASSIVE_ONLY},
11136                {5280, 56, LIBIPW_CH_PASSIVE_ONLY},
11137                {5300, 60, LIBIPW_CH_PASSIVE_ONLY},
11138                {5320, 64, LIBIPW_CH_PASSIVE_ONLY},
11139                {5500, 100, LIBIPW_CH_PASSIVE_ONLY},
11140                {5520, 104, LIBIPW_CH_PASSIVE_ONLY},
11141                {5540, 108, LIBIPW_CH_PASSIVE_ONLY},
11142                {5560, 112, LIBIPW_CH_PASSIVE_ONLY},
11143                {5580, 116, LIBIPW_CH_PASSIVE_ONLY},
11144                {5600, 120, LIBIPW_CH_PASSIVE_ONLY},
11145                {5620, 124, LIBIPW_CH_PASSIVE_ONLY},
11146                {5640, 128, LIBIPW_CH_PASSIVE_ONLY},
11147                {5660, 132, LIBIPW_CH_PASSIVE_ONLY},
11148                {5680, 136, LIBIPW_CH_PASSIVE_ONLY},
11149                {5700, 140, LIBIPW_CH_PASSIVE_ONLY}},
11150          },
11151
11152         {                       /* Custom Japan */
11153          "ZZJ",
11154          .bg_channels = 14,
11155          .bg = {{2412, 1}, {2417, 2}, {2422, 3},
11156                 {2427, 4}, {2432, 5}, {2437, 6},
11157                 {2442, 7}, {2447, 8}, {2452, 9},
11158                 {2457, 10}, {2462, 11}, {2467, 12},
11159                 {2472, 13}, {2484, 14, LIBIPW_CH_B_ONLY}},
11160          .a_channels = 4,
11161          .a = {{5170, 34}, {5190, 38},
11162                {5210, 42}, {5230, 46}},
11163          },
11164
11165         {                       /* Rest of World */
11166          "ZZR",
11167          .bg_channels = 14,
11168          .bg = {{2412, 1}, {2417, 2}, {2422, 3},
11169                 {2427, 4}, {2432, 5}, {2437, 6},
11170                 {2442, 7}, {2447, 8}, {2452, 9},
11171                 {2457, 10}, {2462, 11}, {2467, 12},
11172                 {2472, 13}, {2484, 14, LIBIPW_CH_B_ONLY |
11173                              LIBIPW_CH_PASSIVE_ONLY}},
11174          },
11175
11176         {                       /* High Band */
11177          "ZZH",
11178          .bg_channels = 13,
11179          .bg = {{2412, 1}, {2417, 2}, {2422, 3},
11180                 {2427, 4}, {2432, 5}, {2437, 6},
11181                 {2442, 7}, {2447, 8}, {2452, 9},
11182                 {2457, 10}, {2462, 11},
11183                 {2467, 12, LIBIPW_CH_PASSIVE_ONLY},
11184                 {2472, 13, LIBIPW_CH_PASSIVE_ONLY}},
11185          .a_channels = 4,
11186          .a = {{5745, 149}, {5765, 153},
11187                {5785, 157}, {5805, 161}},
11188          },
11189
11190         {                       /* Custom Europe */
11191          "ZZG",
11192          .bg_channels = 13,
11193          .bg = {{2412, 1}, {2417, 2}, {2422, 3},
11194                 {2427, 4}, {2432, 5}, {2437, 6},
11195                 {2442, 7}, {2447, 8}, {2452, 9},
11196                 {2457, 10}, {2462, 11},
11197                 {2467, 12}, {2472, 13}},
11198          .a_channels = 4,
11199          .a = {{5180, 36}, {5200, 40},
11200                {5220, 44}, {5240, 48}},
11201          },
11202
11203         {                       /* Europe */
11204          "ZZK",
11205          .bg_channels = 13,
11206          .bg = {{2412, 1}, {2417, 2}, {2422, 3},
11207                 {2427, 4}, {2432, 5}, {2437, 6},
11208                 {2442, 7}, {2447, 8}, {2452, 9},
11209                 {2457, 10}, {2462, 11},
11210                 {2467, 12, LIBIPW_CH_PASSIVE_ONLY},
11211                 {2472, 13, LIBIPW_CH_PASSIVE_ONLY}},
11212          .a_channels = 24,
11213          .a = {{5180, 36, LIBIPW_CH_PASSIVE_ONLY},
11214                {5200, 40, LIBIPW_CH_PASSIVE_ONLY},
11215                {5220, 44, LIBIPW_CH_PASSIVE_ONLY},
11216                {5240, 48, LIBIPW_CH_PASSIVE_ONLY},
11217                {5260, 52, LIBIPW_CH_PASSIVE_ONLY},
11218                {5280, 56, LIBIPW_CH_PASSIVE_ONLY},
11219                {5300, 60, LIBIPW_CH_PASSIVE_ONLY},
11220                {5320, 64, LIBIPW_CH_PASSIVE_ONLY},
11221                {5500, 100, LIBIPW_CH_PASSIVE_ONLY},
11222                {5520, 104, LIBIPW_CH_PASSIVE_ONLY},
11223                {5540, 108, LIBIPW_CH_PASSIVE_ONLY},
11224                {5560, 112, LIBIPW_CH_PASSIVE_ONLY},
11225                {5580, 116, LIBIPW_CH_PASSIVE_ONLY},
11226                {5600, 120, LIBIPW_CH_PASSIVE_ONLY},
11227                {5620, 124, LIBIPW_CH_PASSIVE_ONLY},
11228                {5640, 128, LIBIPW_CH_PASSIVE_ONLY},
11229                {5660, 132, LIBIPW_CH_PASSIVE_ONLY},
11230                {5680, 136, LIBIPW_CH_PASSIVE_ONLY},
11231                {5700, 140, LIBIPW_CH_PASSIVE_ONLY},
11232                {5745, 149, LIBIPW_CH_PASSIVE_ONLY},
11233                {5765, 153, LIBIPW_CH_PASSIVE_ONLY},
11234                {5785, 157, LIBIPW_CH_PASSIVE_ONLY},
11235                {5805, 161, LIBIPW_CH_PASSIVE_ONLY},
11236                {5825, 165, LIBIPW_CH_PASSIVE_ONLY}},
11237          },
11238
11239         {                       /* Europe */
11240          "ZZL",
11241          .bg_channels = 11,
11242          .bg = {{2412, 1}, {2417, 2}, {2422, 3},
11243                 {2427, 4}, {2432, 5}, {2437, 6},
11244                 {2442, 7}, {2447, 8}, {2452, 9},
11245                 {2457, 10}, {2462, 11}},
11246          .a_channels = 13,
11247          .a = {{5180, 36, LIBIPW_CH_PASSIVE_ONLY},
11248                {5200, 40, LIBIPW_CH_PASSIVE_ONLY},
11249                {5220, 44, LIBIPW_CH_PASSIVE_ONLY},
11250                {5240, 48, LIBIPW_CH_PASSIVE_ONLY},
11251                {5260, 52, LIBIPW_CH_PASSIVE_ONLY},
11252                {5280, 56, LIBIPW_CH_PASSIVE_ONLY},
11253                {5300, 60, LIBIPW_CH_PASSIVE_ONLY},
11254                {5320, 64, LIBIPW_CH_PASSIVE_ONLY},
11255                {5745, 149, LIBIPW_CH_PASSIVE_ONLY},
11256                {5765, 153, LIBIPW_CH_PASSIVE_ONLY},
11257                {5785, 157, LIBIPW_CH_PASSIVE_ONLY},
11258                {5805, 161, LIBIPW_CH_PASSIVE_ONLY},
11259                {5825, 165, LIBIPW_CH_PASSIVE_ONLY}},
11260          }
11261 };
11262
11263 static void ipw_set_geo(struct ipw_priv *priv)
11264 {
11265         int j;
11266
11267         for (j = 0; j < ARRAY_SIZE(ipw_geos); j++) {
11268                 if (!memcmp(&priv->eeprom[EEPROM_COUNTRY_CODE],
11269                             ipw_geos[j].name, 3))
11270                         break;
11271         }
11272
11273         if (j == ARRAY_SIZE(ipw_geos)) {
11274                 IPW_WARNING("SKU [%c%c%c] not recognized.\n",
11275                             priv->eeprom[EEPROM_COUNTRY_CODE + 0],
11276                             priv->eeprom[EEPROM_COUNTRY_CODE + 1],
11277                             priv->eeprom[EEPROM_COUNTRY_CODE + 2]);
11278                 j = 0;
11279         }
11280
11281         libipw_set_geo(priv->ieee, &ipw_geos[j]);
11282 }
11283
11284 #define MAX_HW_RESTARTS 5
11285 static int ipw_up(struct ipw_priv *priv)
11286 {
11287         int rc, i;
11288
11289         /* Age scan list entries found before suspend */
11290         if (priv->suspend_time) {
11291                 libipw_networks_age(priv->ieee, priv->suspend_time);
11292                 priv->suspend_time = 0;
11293         }
11294
11295         if (priv->status & STATUS_EXIT_PENDING)
11296                 return -EIO;
11297
11298         if (cmdlog && !priv->cmdlog) {
11299                 priv->cmdlog = kcalloc(cmdlog, sizeof(*priv->cmdlog),
11300                                        GFP_KERNEL);
11301                 if (priv->cmdlog == NULL) {
11302                         IPW_ERROR("Error allocating %d command log entries.\n",
11303                                   cmdlog);
11304                         return -ENOMEM;
11305                 } else {
11306                         priv->cmdlog_len = cmdlog;
11307                 }
11308         }
11309
11310         for (i = 0; i < MAX_HW_RESTARTS; i++) {
11311                 /* Load the microcode, firmware, and eeprom.
11312                  * Also start the clocks. */
11313                 rc = ipw_load(priv);
11314                 if (rc) {
11315                         IPW_ERROR("Unable to load firmware: %d\n", rc);
11316                         return rc;
11317                 }
11318
11319                 ipw_init_ordinals(priv);
11320                 if (!(priv->config & CFG_CUSTOM_MAC))
11321                         eeprom_parse_mac(priv, priv->mac_addr);
11322                 memcpy(priv->net_dev->dev_addr, priv->mac_addr, ETH_ALEN);
11323
11324                 ipw_set_geo(priv);
11325
11326                 if (priv->status & STATUS_RF_KILL_SW) {
11327                         IPW_WARNING("Radio disabled by module parameter.\n");
11328                         return 0;
11329                 } else if (rf_kill_active(priv)) {
11330                         IPW_WARNING("Radio Frequency Kill Switch is On:\n"
11331                                     "Kill switch must be turned off for "
11332                                     "wireless networking to work.\n");
11333                         schedule_delayed_work(&priv->rf_kill, 2 * HZ);
11334                         return 0;
11335                 }
11336
11337                 rc = ipw_config(priv);
11338                 if (!rc) {
11339                         IPW_DEBUG_INFO("Configured device on count %i\n", i);
11340
11341                         /* If configure to try and auto-associate, kick
11342                          * off a scan. */
11343                         schedule_delayed_work(&priv->request_scan, 0);
11344
11345                         return 0;
11346                 }
11347
11348                 IPW_DEBUG_INFO("Device configuration failed: 0x%08X\n", rc);
11349                 IPW_DEBUG_INFO("Failed to config device on retry %d of %d\n",
11350                                i, MAX_HW_RESTARTS);
11351
11352                 /* We had an error bringing up the hardware, so take it
11353                  * all the way back down so we can try again */
11354                 ipw_down(priv);
11355         }
11356
11357         /* tried to restart and config the device for as long as our
11358          * patience could withstand */
11359         IPW_ERROR("Unable to initialize device after %d attempts.\n", i);
11360
11361         return -EIO;
11362 }
11363
11364 static void ipw_bg_up(struct work_struct *work)
11365 {
11366         struct ipw_priv *priv =
11367                 container_of(work, struct ipw_priv, up);
11368         mutex_lock(&priv->mutex);
11369         ipw_up(priv);
11370         mutex_unlock(&priv->mutex);
11371 }
11372
11373 static void ipw_deinit(struct ipw_priv *priv)
11374 {
11375         int i;
11376
11377         if (priv->status & STATUS_SCANNING) {
11378                 IPW_DEBUG_INFO("Aborting scan during shutdown.\n");
11379                 ipw_abort_scan(priv);
11380         }
11381
11382         if (priv->status & STATUS_ASSOCIATED) {
11383                 IPW_DEBUG_INFO("Disassociating during shutdown.\n");
11384                 ipw_disassociate(priv);
11385         }
11386
11387         ipw_led_shutdown(priv);
11388
11389         /* Wait up to 1s for status to change to not scanning and not
11390          * associated (disassociation can take a while for a ful 802.11
11391          * exchange */
11392         for (i = 1000; i && (priv->status &
11393                              (STATUS_DISASSOCIATING |
11394                               STATUS_ASSOCIATED | STATUS_SCANNING)); i--)
11395                 udelay(10);
11396
11397         if (priv->status & (STATUS_DISASSOCIATING |
11398                             STATUS_ASSOCIATED | STATUS_SCANNING))
11399                 IPW_DEBUG_INFO("Still associated or scanning...\n");
11400         else
11401                 IPW_DEBUG_INFO("Took %dms to de-init\n", 1000 - i);
11402
11403         /* Attempt to disable the card */
11404         ipw_send_card_disable(priv, 0);
11405
11406         priv->status &= ~STATUS_INIT;
11407 }
11408
11409 static void ipw_down(struct ipw_priv *priv)
11410 {
11411         int exit_pending = priv->status & STATUS_EXIT_PENDING;
11412
11413         priv->status |= STATUS_EXIT_PENDING;
11414
11415         if (ipw_is_init(priv))
11416                 ipw_deinit(priv);
11417
11418         /* Wipe out the EXIT_PENDING status bit if we are not actually
11419          * exiting the module */
11420         if (!exit_pending)
11421                 priv->status &= ~STATUS_EXIT_PENDING;
11422
11423         /* tell the device to stop sending interrupts */
11424         ipw_disable_interrupts(priv);
11425
11426         /* Clear all bits but the RF Kill */
11427         priv->status &= STATUS_RF_KILL_MASK | STATUS_EXIT_PENDING;
11428         netif_carrier_off(priv->net_dev);
11429
11430         ipw_stop_nic(priv);
11431
11432         ipw_led_radio_off(priv);
11433 }
11434
11435 static void ipw_bg_down(struct work_struct *work)
11436 {
11437         struct ipw_priv *priv =
11438                 container_of(work, struct ipw_priv, down);
11439         mutex_lock(&priv->mutex);
11440         ipw_down(priv);
11441         mutex_unlock(&priv->mutex);
11442 }
11443
11444 static int ipw_wdev_init(struct net_device *dev)
11445 {
11446         int i, rc = 0;
11447         struct ipw_priv *priv = libipw_priv(dev);
11448         const struct libipw_geo *geo = libipw_get_geo(priv->ieee);
11449         struct wireless_dev *wdev = &priv->ieee->wdev;
11450
11451         memcpy(wdev->wiphy->perm_addr, priv->mac_addr, ETH_ALEN);
11452
11453         /* fill-out priv->ieee->bg_band */
11454         if (geo->bg_channels) {
11455                 struct ieee80211_supported_band *bg_band = &priv->ieee->bg_band;
11456
11457                 bg_band->band = IEEE80211_BAND_2GHZ;
11458                 bg_band->n_channels = geo->bg_channels;
11459                 bg_band->channels = kcalloc(geo->bg_channels,
11460                                             sizeof(struct ieee80211_channel),
11461                                             GFP_KERNEL);
11462                 if (!bg_band->channels) {
11463                         rc = -ENOMEM;
11464                         goto out;
11465                 }
11466                 /* translate geo->bg to bg_band.channels */
11467                 for (i = 0; i < geo->bg_channels; i++) {
11468                         bg_band->channels[i].band = IEEE80211_BAND_2GHZ;
11469                         bg_band->channels[i].center_freq = geo->bg[i].freq;
11470                         bg_band->channels[i].hw_value = geo->bg[i].channel;
11471                         bg_band->channels[i].max_power = geo->bg[i].max_power;
11472                         if (geo->bg[i].flags & LIBIPW_CH_PASSIVE_ONLY)
11473                                 bg_band->channels[i].flags |=
11474                                         IEEE80211_CHAN_PASSIVE_SCAN;
11475                         if (geo->bg[i].flags & LIBIPW_CH_NO_IBSS)
11476                                 bg_band->channels[i].flags |=
11477                                         IEEE80211_CHAN_NO_IBSS;
11478                         if (geo->bg[i].flags & LIBIPW_CH_RADAR_DETECT)
11479                                 bg_band->channels[i].flags |=
11480                                         IEEE80211_CHAN_RADAR;
11481                         /* No equivalent for LIBIPW_CH_80211H_RULES,
11482                            LIBIPW_CH_UNIFORM_SPREADING, or
11483                            LIBIPW_CH_B_ONLY... */
11484                 }
11485                 /* point at bitrate info */
11486                 bg_band->bitrates = ipw2200_bg_rates;
11487                 bg_band->n_bitrates = ipw2200_num_bg_rates;
11488
11489                 wdev->wiphy->bands[IEEE80211_BAND_2GHZ] = bg_band;
11490         }
11491
11492         /* fill-out priv->ieee->a_band */
11493         if (geo->a_channels) {
11494                 struct ieee80211_supported_band *a_band = &priv->ieee->a_band;
11495
11496                 a_band->band = IEEE80211_BAND_5GHZ;
11497                 a_band->n_channels = geo->a_channels;
11498                 a_band->channels = kcalloc(geo->a_channels,
11499                                            sizeof(struct ieee80211_channel),
11500                                            GFP_KERNEL);
11501                 if (!a_band->channels) {
11502                         rc = -ENOMEM;
11503                         goto out;
11504                 }
11505                 /* translate geo->a to a_band.channels */
11506                 for (i = 0; i < geo->a_channels; i++) {
11507                         a_band->channels[i].band = IEEE80211_BAND_5GHZ;
11508                         a_band->channels[i].center_freq = geo->a[i].freq;
11509                         a_band->channels[i].hw_value = geo->a[i].channel;
11510                         a_band->channels[i].max_power = geo->a[i].max_power;
11511                         if (geo->a[i].flags & LIBIPW_CH_PASSIVE_ONLY)
11512                                 a_band->channels[i].flags |=
11513                                         IEEE80211_CHAN_PASSIVE_SCAN;
11514                         if (geo->a[i].flags & LIBIPW_CH_NO_IBSS)
11515                                 a_band->channels[i].flags |=
11516                                         IEEE80211_CHAN_NO_IBSS;
11517                         if (geo->a[i].flags & LIBIPW_CH_RADAR_DETECT)
11518                                 a_band->channels[i].flags |=
11519                                         IEEE80211_CHAN_RADAR;
11520                         /* No equivalent for LIBIPW_CH_80211H_RULES,
11521                            LIBIPW_CH_UNIFORM_SPREADING, or
11522                            LIBIPW_CH_B_ONLY... */
11523                 }
11524                 /* point at bitrate info */
11525                 a_band->bitrates = ipw2200_a_rates;
11526                 a_band->n_bitrates = ipw2200_num_a_rates;
11527
11528                 wdev->wiphy->bands[IEEE80211_BAND_5GHZ] = a_band;
11529         }
11530
11531         wdev->wiphy->cipher_suites = ipw_cipher_suites;
11532         wdev->wiphy->n_cipher_suites = ARRAY_SIZE(ipw_cipher_suites);
11533
11534         set_wiphy_dev(wdev->wiphy, &priv->pci_dev->dev);
11535
11536         /* With that information in place, we can now register the wiphy... */
11537         if (wiphy_register(wdev->wiphy))
11538                 rc = -EIO;
11539 out:
11540         return rc;
11541 }
11542
11543 /* PCI driver stuff */
11544 static DEFINE_PCI_DEVICE_TABLE(card_ids) = {
11545         {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2701, 0, 0, 0},
11546         {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2702, 0, 0, 0},
11547         {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2711, 0, 0, 0},
11548         {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2712, 0, 0, 0},
11549         {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2721, 0, 0, 0},
11550         {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2722, 0, 0, 0},
11551         {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2731, 0, 0, 0},
11552         {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2732, 0, 0, 0},
11553         {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2741, 0, 0, 0},
11554         {PCI_VENDOR_ID_INTEL, 0x1043, 0x103c, 0x2741, 0, 0, 0},
11555         {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2742, 0, 0, 0},
11556         {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2751, 0, 0, 0},
11557         {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2752, 0, 0, 0},
11558         {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2753, 0, 0, 0},
11559         {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2754, 0, 0, 0},
11560         {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2761, 0, 0, 0},
11561         {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2762, 0, 0, 0},
11562         {PCI_VDEVICE(INTEL, 0x104f), 0},
11563         {PCI_VDEVICE(INTEL, 0x4220), 0},        /* BG */
11564         {PCI_VDEVICE(INTEL, 0x4221), 0},        /* BG */
11565         {PCI_VDEVICE(INTEL, 0x4223), 0},        /* ABG */
11566         {PCI_VDEVICE(INTEL, 0x4224), 0},        /* ABG */
11567
11568         /* required last entry */
11569         {0,}
11570 };
11571
11572 MODULE_DEVICE_TABLE(pci, card_ids);
11573
11574 static struct attribute *ipw_sysfs_entries[] = {
11575         &dev_attr_rf_kill.attr,
11576         &dev_attr_direct_dword.attr,
11577         &dev_attr_indirect_byte.attr,
11578         &dev_attr_indirect_dword.attr,
11579         &dev_attr_mem_gpio_reg.attr,
11580         &dev_attr_command_event_reg.attr,
11581         &dev_attr_nic_type.attr,
11582         &dev_attr_status.attr,
11583         &dev_attr_cfg.attr,
11584         &dev_attr_error.attr,
11585         &dev_attr_event_log.attr,
11586         &dev_attr_cmd_log.attr,
11587         &dev_attr_eeprom_delay.attr,
11588         &dev_attr_ucode_version.attr,
11589         &dev_attr_rtc.attr,
11590         &dev_attr_scan_age.attr,
11591         &dev_attr_led.attr,
11592         &dev_attr_speed_scan.attr,
11593         &dev_attr_net_stats.attr,
11594         &dev_attr_channels.attr,
11595 #ifdef CONFIG_IPW2200_PROMISCUOUS
11596         &dev_attr_rtap_iface.attr,
11597         &dev_attr_rtap_filter.attr,
11598 #endif
11599         NULL
11600 };
11601
11602 static struct attribute_group ipw_attribute_group = {
11603         .name = NULL,           /* put in device directory */
11604         .attrs = ipw_sysfs_entries,
11605 };
11606
11607 #ifdef CONFIG_IPW2200_PROMISCUOUS
11608 static int ipw_prom_open(struct net_device *dev)
11609 {
11610         struct ipw_prom_priv *prom_priv = libipw_priv(dev);
11611         struct ipw_priv *priv = prom_priv->priv;
11612
11613         IPW_DEBUG_INFO("prom dev->open\n");
11614         netif_carrier_off(dev);
11615
11616         if (priv->ieee->iw_mode != IW_MODE_MONITOR) {
11617                 priv->sys_config.accept_all_data_frames = 1;
11618                 priv->sys_config.accept_non_directed_frames = 1;
11619                 priv->sys_config.accept_all_mgmt_bcpr = 1;
11620                 priv->sys_config.accept_all_mgmt_frames = 1;
11621
11622                 ipw_send_system_config(priv);
11623         }
11624
11625         return 0;
11626 }
11627
11628 static int ipw_prom_stop(struct net_device *dev)
11629 {
11630         struct ipw_prom_priv *prom_priv = libipw_priv(dev);
11631         struct ipw_priv *priv = prom_priv->priv;
11632
11633         IPW_DEBUG_INFO("prom dev->stop\n");
11634
11635         if (priv->ieee->iw_mode != IW_MODE_MONITOR) {
11636                 priv->sys_config.accept_all_data_frames = 0;
11637                 priv->sys_config.accept_non_directed_frames = 0;
11638                 priv->sys_config.accept_all_mgmt_bcpr = 0;
11639                 priv->sys_config.accept_all_mgmt_frames = 0;
11640
11641                 ipw_send_system_config(priv);
11642         }
11643
11644         return 0;
11645 }
11646
11647 static netdev_tx_t ipw_prom_hard_start_xmit(struct sk_buff *skb,
11648                                             struct net_device *dev)
11649 {
11650         IPW_DEBUG_INFO("prom dev->xmit\n");
11651         dev_kfree_skb(skb);
11652         return NETDEV_TX_OK;
11653 }
11654
11655 static const struct net_device_ops ipw_prom_netdev_ops = {
11656         .ndo_open               = ipw_prom_open,
11657         .ndo_stop               = ipw_prom_stop,
11658         .ndo_start_xmit         = ipw_prom_hard_start_xmit,
11659         .ndo_change_mtu         = libipw_change_mtu,
11660         .ndo_set_mac_address    = eth_mac_addr,
11661         .ndo_validate_addr      = eth_validate_addr,
11662 };
11663
11664 static int ipw_prom_alloc(struct ipw_priv *priv)
11665 {
11666         int rc = 0;
11667
11668         if (priv->prom_net_dev)
11669                 return -EPERM;
11670
11671         priv->prom_net_dev = alloc_libipw(sizeof(struct ipw_prom_priv), 1);
11672         if (priv->prom_net_dev == NULL)
11673                 return -ENOMEM;
11674
11675         priv->prom_priv = libipw_priv(priv->prom_net_dev);
11676         priv->prom_priv->ieee = netdev_priv(priv->prom_net_dev);
11677         priv->prom_priv->priv = priv;
11678
11679         strcpy(priv->prom_net_dev->name, "rtap%d");
11680         memcpy(priv->prom_net_dev->dev_addr, priv->mac_addr, ETH_ALEN);
11681
11682         priv->prom_net_dev->type = ARPHRD_IEEE80211_RADIOTAP;
11683         priv->prom_net_dev->netdev_ops = &ipw_prom_netdev_ops;
11684
11685         priv->prom_priv->ieee->iw_mode = IW_MODE_MONITOR;
11686         SET_NETDEV_DEV(priv->prom_net_dev, &priv->pci_dev->dev);
11687
11688         rc = register_netdev(priv->prom_net_dev);
11689         if (rc) {
11690                 free_libipw(priv->prom_net_dev, 1);
11691                 priv->prom_net_dev = NULL;
11692                 return rc;
11693         }
11694
11695         return 0;
11696 }
11697
11698 static void ipw_prom_free(struct ipw_priv *priv)
11699 {
11700         if (!priv->prom_net_dev)
11701                 return;
11702
11703         unregister_netdev(priv->prom_net_dev);
11704         free_libipw(priv->prom_net_dev, 1);
11705
11706         priv->prom_net_dev = NULL;
11707 }
11708
11709 #endif
11710
11711 static const struct net_device_ops ipw_netdev_ops = {
11712         .ndo_open               = ipw_net_open,
11713         .ndo_stop               = ipw_net_stop,
11714         .ndo_set_rx_mode        = ipw_net_set_multicast_list,
11715         .ndo_set_mac_address    = ipw_net_set_mac_address,
11716         .ndo_start_xmit         = libipw_xmit,
11717         .ndo_change_mtu         = libipw_change_mtu,
11718         .ndo_validate_addr      = eth_validate_addr,
11719 };
11720
11721 static int ipw_pci_probe(struct pci_dev *pdev,
11722                                    const struct pci_device_id *ent)
11723 {
11724         int err = 0;
11725         struct net_device *net_dev;
11726         void __iomem *base;
11727         u32 length, val;
11728         struct ipw_priv *priv;
11729         int i;
11730
11731         net_dev = alloc_libipw(sizeof(struct ipw_priv), 0);
11732         if (net_dev == NULL) {
11733                 err = -ENOMEM;
11734                 goto out;
11735         }
11736
11737         priv = libipw_priv(net_dev);
11738         priv->ieee = netdev_priv(net_dev);
11739
11740         priv->net_dev = net_dev;
11741         priv->pci_dev = pdev;
11742         ipw_debug_level = debug;
11743         spin_lock_init(&priv->irq_lock);
11744         spin_lock_init(&priv->lock);
11745         for (i = 0; i < IPW_IBSS_MAC_HASH_SIZE; i++)
11746                 INIT_LIST_HEAD(&priv->ibss_mac_hash[i]);
11747
11748         mutex_init(&priv->mutex);
11749         if (pci_enable_device(pdev)) {
11750                 err = -ENODEV;
11751                 goto out_free_libipw;
11752         }
11753
11754         pci_set_master(pdev);
11755
11756         err = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
11757         if (!err)
11758                 err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32));
11759         if (err) {
11760                 printk(KERN_WARNING DRV_NAME ": No suitable DMA available.\n");
11761                 goto out_pci_disable_device;
11762         }
11763
11764         pci_set_drvdata(pdev, priv);
11765
11766         err = pci_request_regions(pdev, DRV_NAME);
11767         if (err)
11768                 goto out_pci_disable_device;
11769
11770         /* We disable the RETRY_TIMEOUT register (0x41) to keep
11771          * PCI Tx retries from interfering with C3 CPU state */
11772         pci_read_config_dword(pdev, 0x40, &val);
11773         if ((val & 0x0000ff00) != 0)
11774                 pci_write_config_dword(pdev, 0x40, val & 0xffff00ff);
11775
11776         length = pci_resource_len(pdev, 0);
11777         priv->hw_len = length;
11778
11779         base = pci_ioremap_bar(pdev, 0);
11780         if (!base) {
11781                 err = -ENODEV;
11782                 goto out_pci_release_regions;
11783         }
11784
11785         priv->hw_base = base;
11786         IPW_DEBUG_INFO("pci_resource_len = 0x%08x\n", length);
11787         IPW_DEBUG_INFO("pci_resource_base = %p\n", base);
11788
11789         err = ipw_setup_deferred_work(priv);
11790         if (err) {
11791                 IPW_ERROR("Unable to setup deferred work\n");
11792                 goto out_iounmap;
11793         }
11794
11795         ipw_sw_reset(priv, 1);
11796
11797         err = request_irq(pdev->irq, ipw_isr, IRQF_SHARED, DRV_NAME, priv);
11798         if (err) {
11799                 IPW_ERROR("Error allocating IRQ %d\n", pdev->irq);
11800                 goto out_iounmap;
11801         }
11802
11803         SET_NETDEV_DEV(net_dev, &pdev->dev);
11804
11805         mutex_lock(&priv->mutex);
11806
11807         priv->ieee->hard_start_xmit = ipw_net_hard_start_xmit;
11808         priv->ieee->set_security = shim__set_security;
11809         priv->ieee->is_queue_full = ipw_net_is_queue_full;
11810
11811 #ifdef CONFIG_IPW2200_QOS
11812         priv->ieee->is_qos_active = ipw_is_qos_active;
11813         priv->ieee->handle_probe_response = ipw_handle_beacon;
11814         priv->ieee->handle_beacon = ipw_handle_probe_response;
11815         priv->ieee->handle_assoc_response = ipw_handle_assoc_response;
11816 #endif                          /* CONFIG_IPW2200_QOS */
11817
11818         priv->ieee->perfect_rssi = -20;
11819         priv->ieee->worst_rssi = -85;
11820
11821         net_dev->netdev_ops = &ipw_netdev_ops;
11822         priv->wireless_data.spy_data = &priv->ieee->spy_data;
11823         net_dev->wireless_data = &priv->wireless_data;
11824         net_dev->wireless_handlers = &ipw_wx_handler_def;
11825         net_dev->ethtool_ops = &ipw_ethtool_ops;
11826
11827         err = sysfs_create_group(&pdev->dev.kobj, &ipw_attribute_group);
11828         if (err) {
11829                 IPW_ERROR("failed to create sysfs device attributes\n");
11830                 mutex_unlock(&priv->mutex);
11831                 goto out_release_irq;
11832         }
11833
11834         if (ipw_up(priv)) {
11835                 mutex_unlock(&priv->mutex);
11836                 err = -EIO;
11837                 goto out_remove_sysfs;
11838         }
11839
11840         mutex_unlock(&priv->mutex);
11841
11842         err = ipw_wdev_init(net_dev);
11843         if (err) {
11844                 IPW_ERROR("failed to register wireless device\n");
11845                 goto out_remove_sysfs;
11846         }
11847
11848         err = register_netdev(net_dev);
11849         if (err) {
11850                 IPW_ERROR("failed to register network device\n");
11851                 goto out_unregister_wiphy;
11852         }
11853
11854 #ifdef CONFIG_IPW2200_PROMISCUOUS
11855         if (rtap_iface) {
11856                 err = ipw_prom_alloc(priv);
11857                 if (err) {
11858                         IPW_ERROR("Failed to register promiscuous network "
11859                                   "device (error %d).\n", err);
11860                         unregister_netdev(priv->net_dev);
11861                         goto out_unregister_wiphy;
11862                 }
11863         }
11864 #endif
11865
11866         printk(KERN_INFO DRV_NAME ": Detected geography %s (%d 802.11bg "
11867                "channels, %d 802.11a channels)\n",
11868                priv->ieee->geo.name, priv->ieee->geo.bg_channels,
11869                priv->ieee->geo.a_channels);
11870
11871         return 0;
11872
11873       out_unregister_wiphy:
11874         wiphy_unregister(priv->ieee->wdev.wiphy);
11875         kfree(priv->ieee->a_band.channels);
11876         kfree(priv->ieee->bg_band.channels);
11877       out_remove_sysfs:
11878         sysfs_remove_group(&pdev->dev.kobj, &ipw_attribute_group);
11879       out_release_irq:
11880         free_irq(pdev->irq, priv);
11881       out_iounmap:
11882         iounmap(priv->hw_base);
11883       out_pci_release_regions:
11884         pci_release_regions(pdev);
11885       out_pci_disable_device:
11886         pci_disable_device(pdev);
11887         pci_set_drvdata(pdev, NULL);
11888       out_free_libipw:
11889         free_libipw(priv->net_dev, 0);
11890       out:
11891         return err;
11892 }
11893
11894 static void ipw_pci_remove(struct pci_dev *pdev)
11895 {
11896         struct ipw_priv *priv = pci_get_drvdata(pdev);
11897         struct list_head *p, *q;
11898         int i;
11899
11900         if (!priv)
11901                 return;
11902
11903         mutex_lock(&priv->mutex);
11904
11905         priv->status |= STATUS_EXIT_PENDING;
11906         ipw_down(priv);
11907         sysfs_remove_group(&pdev->dev.kobj, &ipw_attribute_group);
11908
11909         mutex_unlock(&priv->mutex);
11910
11911         unregister_netdev(priv->net_dev);
11912
11913         if (priv->rxq) {
11914                 ipw_rx_queue_free(priv, priv->rxq);
11915                 priv->rxq = NULL;
11916         }
11917         ipw_tx_queue_free(priv);
11918
11919         if (priv->cmdlog) {
11920                 kfree(priv->cmdlog);
11921                 priv->cmdlog = NULL;
11922         }
11923
11924         /* make sure all works are inactive */
11925         cancel_delayed_work_sync(&priv->adhoc_check);
11926         cancel_work_sync(&priv->associate);
11927         cancel_work_sync(&priv->disassociate);
11928         cancel_work_sync(&priv->system_config);
11929         cancel_work_sync(&priv->rx_replenish);
11930         cancel_work_sync(&priv->adapter_restart);
11931         cancel_delayed_work_sync(&priv->rf_kill);
11932         cancel_work_sync(&priv->up);
11933         cancel_work_sync(&priv->down);
11934         cancel_delayed_work_sync(&priv->request_scan);
11935         cancel_delayed_work_sync(&priv->request_direct_scan);
11936         cancel_delayed_work_sync(&priv->request_passive_scan);
11937         cancel_delayed_work_sync(&priv->scan_event);
11938         cancel_delayed_work_sync(&priv->gather_stats);
11939         cancel_work_sync(&priv->abort_scan);
11940         cancel_work_sync(&priv->roam);
11941         cancel_delayed_work_sync(&priv->scan_check);
11942         cancel_work_sync(&priv->link_up);
11943         cancel_work_sync(&priv->link_down);
11944         cancel_delayed_work_sync(&priv->led_link_on);
11945         cancel_delayed_work_sync(&priv->led_link_off);
11946         cancel_delayed_work_sync(&priv->led_act_off);
11947         cancel_work_sync(&priv->merge_networks);
11948
11949         /* Free MAC hash list for ADHOC */
11950         for (i = 0; i < IPW_IBSS_MAC_HASH_SIZE; i++) {
11951                 list_for_each_safe(p, q, &priv->ibss_mac_hash[i]) {
11952                         list_del(p);
11953                         kfree(list_entry(p, struct ipw_ibss_seq, list));
11954                 }
11955         }
11956
11957         kfree(priv->error);
11958         priv->error = NULL;
11959
11960 #ifdef CONFIG_IPW2200_PROMISCUOUS
11961         ipw_prom_free(priv);
11962 #endif
11963
11964         free_irq(pdev->irq, priv);
11965         iounmap(priv->hw_base);
11966         pci_release_regions(pdev);
11967         pci_disable_device(pdev);
11968         pci_set_drvdata(pdev, NULL);
11969         /* wiphy_unregister needs to be here, before free_libipw */
11970         wiphy_unregister(priv->ieee->wdev.wiphy);
11971         kfree(priv->ieee->a_band.channels);
11972         kfree(priv->ieee->bg_band.channels);
11973         free_libipw(priv->net_dev, 0);
11974         free_firmware();
11975 }
11976
11977 #ifdef CONFIG_PM
11978 static int ipw_pci_suspend(struct pci_dev *pdev, pm_message_t state)
11979 {
11980         struct ipw_priv *priv = pci_get_drvdata(pdev);
11981         struct net_device *dev = priv->net_dev;
11982
11983         printk(KERN_INFO "%s: Going into suspend...\n", dev->name);
11984
11985         /* Take down the device; powers it off, etc. */
11986         ipw_down(priv);
11987
11988         /* Remove the PRESENT state of the device */
11989         netif_device_detach(dev);
11990
11991         pci_save_state(pdev);
11992         pci_disable_device(pdev);
11993         pci_set_power_state(pdev, pci_choose_state(pdev, state));
11994
11995         priv->suspend_at = get_seconds();
11996
11997         return 0;
11998 }
11999
12000 static int ipw_pci_resume(struct pci_dev *pdev)
12001 {
12002         struct ipw_priv *priv = pci_get_drvdata(pdev);
12003         struct net_device *dev = priv->net_dev;
12004         int err;
12005         u32 val;
12006
12007         printk(KERN_INFO "%s: Coming out of suspend...\n", dev->name);
12008
12009         pci_set_power_state(pdev, PCI_D0);
12010         err = pci_enable_device(pdev);
12011         if (err) {
12012                 printk(KERN_ERR "%s: pci_enable_device failed on resume\n",
12013                        dev->name);
12014                 return err;
12015         }
12016         pci_restore_state(pdev);
12017
12018         /*
12019          * Suspend/Resume resets the PCI configuration space, so we have to
12020          * re-disable the RETRY_TIMEOUT register (0x41) to keep PCI Tx retries
12021          * from interfering with C3 CPU state. pci_restore_state won't help
12022          * here since it only restores the first 64 bytes pci config header.
12023          */
12024         pci_read_config_dword(pdev, 0x40, &val);
12025         if ((val & 0x0000ff00) != 0)
12026                 pci_write_config_dword(pdev, 0x40, val & 0xffff00ff);
12027
12028         /* Set the device back into the PRESENT state; this will also wake
12029          * the queue of needed */
12030         netif_device_attach(dev);
12031
12032         priv->suspend_time = get_seconds() - priv->suspend_at;
12033
12034         /* Bring the device back up */
12035         schedule_work(&priv->up);
12036
12037         return 0;
12038 }
12039 #endif
12040
12041 static void ipw_pci_shutdown(struct pci_dev *pdev)
12042 {
12043         struct ipw_priv *priv = pci_get_drvdata(pdev);
12044
12045         /* Take down the device; powers it off, etc. */
12046         ipw_down(priv);
12047
12048         pci_disable_device(pdev);
12049 }
12050
12051 /* driver initialization stuff */
12052 static struct pci_driver ipw_driver = {
12053         .name = DRV_NAME,
12054         .id_table = card_ids,
12055         .probe = ipw_pci_probe,
12056         .remove = ipw_pci_remove,
12057 #ifdef CONFIG_PM
12058         .suspend = ipw_pci_suspend,
12059         .resume = ipw_pci_resume,
12060 #endif
12061         .shutdown = ipw_pci_shutdown,
12062 };
12063
12064 static int __init ipw_init(void)
12065 {
12066         int ret;
12067
12068         printk(KERN_INFO DRV_NAME ": " DRV_DESCRIPTION ", " DRV_VERSION "\n");
12069         printk(KERN_INFO DRV_NAME ": " DRV_COPYRIGHT "\n");
12070
12071         ret = pci_register_driver(&ipw_driver);
12072         if (ret) {
12073                 IPW_ERROR("Unable to initialize PCI module\n");
12074                 return ret;
12075         }
12076
12077         ret = driver_create_file(&ipw_driver.driver, &driver_attr_debug_level);
12078         if (ret) {
12079                 IPW_ERROR("Unable to create driver sysfs file\n");
12080                 pci_unregister_driver(&ipw_driver);
12081                 return ret;
12082         }
12083
12084         return ret;
12085 }
12086
12087 static void __exit ipw_exit(void)
12088 {
12089         driver_remove_file(&ipw_driver.driver, &driver_attr_debug_level);
12090         pci_unregister_driver(&ipw_driver);
12091 }
12092
12093 module_param(disable, int, 0444);
12094 MODULE_PARM_DESC(disable, "manually disable the radio (default 0 [radio on])");
12095
12096 module_param(associate, int, 0444);
12097 MODULE_PARM_DESC(associate, "auto associate when scanning (default off)");
12098
12099 module_param(auto_create, int, 0444);
12100 MODULE_PARM_DESC(auto_create, "auto create adhoc network (default on)");
12101
12102 module_param_named(led, led_support, int, 0444);
12103 MODULE_PARM_DESC(led, "enable led control on some systems (default 1 on)");
12104
12105 module_param(debug, int, 0444);
12106 MODULE_PARM_DESC(debug, "debug output mask");
12107
12108 module_param_named(channel, default_channel, int, 0444);
12109 MODULE_PARM_DESC(channel, "channel to limit associate to (default 0 [ANY])");
12110
12111 #ifdef CONFIG_IPW2200_PROMISCUOUS
12112 module_param(rtap_iface, int, 0444);
12113 MODULE_PARM_DESC(rtap_iface, "create the rtap interface (1 - create, default 0)");
12114 #endif
12115
12116 #ifdef CONFIG_IPW2200_QOS
12117 module_param(qos_enable, int, 0444);
12118 MODULE_PARM_DESC(qos_enable, "enable all QoS functionalitis");
12119
12120 module_param(qos_burst_enable, int, 0444);
12121 MODULE_PARM_DESC(qos_burst_enable, "enable QoS burst mode");
12122
12123 module_param(qos_no_ack_mask, int, 0444);
12124 MODULE_PARM_DESC(qos_no_ack_mask, "mask Tx_Queue to no ack");
12125
12126 module_param(burst_duration_CCK, int, 0444);
12127 MODULE_PARM_DESC(burst_duration_CCK, "set CCK burst value");
12128
12129 module_param(burst_duration_OFDM, int, 0444);
12130 MODULE_PARM_DESC(burst_duration_OFDM, "set OFDM burst value");
12131 #endif                          /* CONFIG_IPW2200_QOS */
12132
12133 #ifdef CONFIG_IPW2200_MONITOR
12134 module_param_named(mode, network_mode, int, 0444);
12135 MODULE_PARM_DESC(mode, "network mode (0=BSS,1=IBSS,2=Monitor)");
12136 #else
12137 module_param_named(mode, network_mode, int, 0444);
12138 MODULE_PARM_DESC(mode, "network mode (0=BSS,1=IBSS)");
12139 #endif
12140
12141 module_param(bt_coexist, int, 0444);
12142 MODULE_PARM_DESC(bt_coexist, "enable bluetooth coexistence (default off)");
12143
12144 module_param(hwcrypto, int, 0444);
12145 MODULE_PARM_DESC(hwcrypto, "enable hardware crypto (default off)");
12146
12147 module_param(cmdlog, int, 0444);
12148 MODULE_PARM_DESC(cmdlog,
12149                  "allocate a ring buffer for logging firmware commands");
12150
12151 module_param(roaming, int, 0444);
12152 MODULE_PARM_DESC(roaming, "enable roaming support (default on)");
12153
12154 module_param(antenna, int, 0444);
12155 MODULE_PARM_DESC(antenna, "select antenna 1=Main, 3=Aux, default 0 [both], 2=slow_diversity (choose the one with lower background noise)");
12156
12157 module_exit(ipw_exit);
12158 module_init(ipw_init);