ipw2x00: move under intel vendor directory
[cascardo/linux.git] / drivers / net / wireless / iwlegacy / 4965-calib.c
1 /******************************************************************************
2  *
3  * This file is provided under a dual BSD/GPLv2 license.  When using or
4  * redistributing this file, you may do so under either license.
5  *
6  * GPL LICENSE SUMMARY
7  *
8  * Copyright(c) 2008 - 2011 Intel Corporation. All rights reserved.
9  *
10  * This program is free software; you can redistribute it and/or modify
11  * it under the terms of version 2 of the GNU General Public License as
12  * published by the Free Software Foundation.
13  *
14  * This program is distributed in the hope that it will be useful, but
15  * WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * General Public License for more details.
18  *
19  * You should have received a copy of the GNU General Public License
20  * along with this program; if not, write to the Free Software
21  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110,
22  * USA
23  *
24  * The full GNU General Public License is included in this distribution
25  * in the file called LICENSE.GPL.
26  *
27  * Contact Information:
28  *  Intel Linux Wireless <ilw@linux.intel.com>
29  * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
30  *
31  * BSD LICENSE
32  *
33  * Copyright(c) 2005 - 2011 Intel Corporation. All rights reserved.
34  * All rights reserved.
35  *
36  * Redistribution and use in source and binary forms, with or without
37  * modification, are permitted provided that the following conditions
38  * are met:
39  *
40  *  * Redistributions of source code must retain the above copyright
41  *    notice, this list of conditions and the following disclaimer.
42  *  * Redistributions in binary form must reproduce the above copyright
43  *    notice, this list of conditions and the following disclaimer in
44  *    the documentation and/or other materials provided with the
45  *    distribution.
46  *  * Neither the name Intel Corporation nor the names of its
47  *    contributors may be used to endorse or promote products derived
48  *    from this software without specific prior written permission.
49  *
50  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
51  * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
52  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
53  * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
54  * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
55  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
56  * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
57  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
58  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
59  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
60  * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
61  *****************************************************************************/
62
63 #include <linux/slab.h>
64 #include <net/mac80211.h>
65
66 #include "common.h"
67 #include "4965.h"
68
69 /*****************************************************************************
70  * INIT calibrations framework
71  *****************************************************************************/
72
73 struct stats_general_data {
74         u32 beacon_silence_rssi_a;
75         u32 beacon_silence_rssi_b;
76         u32 beacon_silence_rssi_c;
77         u32 beacon_energy_a;
78         u32 beacon_energy_b;
79         u32 beacon_energy_c;
80 };
81
82 /*****************************************************************************
83  * RUNTIME calibrations framework
84  *****************************************************************************/
85
86 /* "false alarms" are signals that our DSP tries to lock onto,
87  *   but then determines that they are either noise, or transmissions
88  *   from a distant wireless network (also "noise", really) that get
89  *   "stepped on" by stronger transmissions within our own network.
90  * This algorithm attempts to set a sensitivity level that is high
91  *   enough to receive all of our own network traffic, but not so
92  *   high that our DSP gets too busy trying to lock onto non-network
93  *   activity/noise. */
94 static int
95 il4965_sens_energy_cck(struct il_priv *il, u32 norm_fa, u32 rx_enable_time,
96                        struct stats_general_data *rx_info)
97 {
98         u32 max_nrg_cck = 0;
99         int i = 0;
100         u8 max_silence_rssi = 0;
101         u32 silence_ref = 0;
102         u8 silence_rssi_a = 0;
103         u8 silence_rssi_b = 0;
104         u8 silence_rssi_c = 0;
105         u32 val;
106
107         /* "false_alarms" values below are cross-multiplications to assess the
108          *   numbers of false alarms within the measured period of actual Rx
109          *   (Rx is off when we're txing), vs the min/max expected false alarms
110          *   (some should be expected if rx is sensitive enough) in a
111          *   hypothetical listening period of 200 time units (TU), 204.8 msec:
112          *
113          * MIN_FA/fixed-time < false_alarms/actual-rx-time < MAX_FA/beacon-time
114          *
115          * */
116         u32 false_alarms = norm_fa * 200 * 1024;
117         u32 max_false_alarms = MAX_FA_CCK * rx_enable_time;
118         u32 min_false_alarms = MIN_FA_CCK * rx_enable_time;
119         struct il_sensitivity_data *data = NULL;
120         const struct il_sensitivity_ranges *ranges = il->hw_params.sens;
121
122         data = &(il->sensitivity_data);
123
124         data->nrg_auto_corr_silence_diff = 0;
125
126         /* Find max silence rssi among all 3 receivers.
127          * This is background noise, which may include transmissions from other
128          *    networks, measured during silence before our network's beacon */
129         silence_rssi_a =
130             (u8) ((rx_info->beacon_silence_rssi_a & ALL_BAND_FILTER) >> 8);
131         silence_rssi_b =
132             (u8) ((rx_info->beacon_silence_rssi_b & ALL_BAND_FILTER) >> 8);
133         silence_rssi_c =
134             (u8) ((rx_info->beacon_silence_rssi_c & ALL_BAND_FILTER) >> 8);
135
136         val = max(silence_rssi_b, silence_rssi_c);
137         max_silence_rssi = max(silence_rssi_a, (u8) val);
138
139         /* Store silence rssi in 20-beacon history table */
140         data->nrg_silence_rssi[data->nrg_silence_idx] = max_silence_rssi;
141         data->nrg_silence_idx++;
142         if (data->nrg_silence_idx >= NRG_NUM_PREV_STAT_L)
143                 data->nrg_silence_idx = 0;
144
145         /* Find max silence rssi across 20 beacon history */
146         for (i = 0; i < NRG_NUM_PREV_STAT_L; i++) {
147                 val = data->nrg_silence_rssi[i];
148                 silence_ref = max(silence_ref, val);
149         }
150         D_CALIB("silence a %u, b %u, c %u, 20-bcn max %u\n", silence_rssi_a,
151                 silence_rssi_b, silence_rssi_c, silence_ref);
152
153         /* Find max rx energy (min value!) among all 3 receivers,
154          *   measured during beacon frame.
155          * Save it in 10-beacon history table. */
156         i = data->nrg_energy_idx;
157         val = min(rx_info->beacon_energy_b, rx_info->beacon_energy_c);
158         data->nrg_value[i] = min(rx_info->beacon_energy_a, val);
159
160         data->nrg_energy_idx++;
161         if (data->nrg_energy_idx >= 10)
162                 data->nrg_energy_idx = 0;
163
164         /* Find min rx energy (max value) across 10 beacon history.
165          * This is the minimum signal level that we want to receive well.
166          * Add backoff (margin so we don't miss slightly lower energy frames).
167          * This establishes an upper bound (min value) for energy threshold. */
168         max_nrg_cck = data->nrg_value[0];
169         for (i = 1; i < 10; i++)
170                 max_nrg_cck = (u32) max(max_nrg_cck, (data->nrg_value[i]));
171         max_nrg_cck += 6;
172
173         D_CALIB("rx energy a %u, b %u, c %u, 10-bcn max/min %u\n",
174                 rx_info->beacon_energy_a, rx_info->beacon_energy_b,
175                 rx_info->beacon_energy_c, max_nrg_cck - 6);
176
177         /* Count number of consecutive beacons with fewer-than-desired
178          *   false alarms. */
179         if (false_alarms < min_false_alarms)
180                 data->num_in_cck_no_fa++;
181         else
182                 data->num_in_cck_no_fa = 0;
183         D_CALIB("consecutive bcns with few false alarms = %u\n",
184                 data->num_in_cck_no_fa);
185
186         /* If we got too many false alarms this time, reduce sensitivity */
187         if (false_alarms > max_false_alarms &&
188             data->auto_corr_cck > AUTO_CORR_MAX_TH_CCK) {
189                 D_CALIB("norm FA %u > max FA %u\n", false_alarms,
190                         max_false_alarms);
191                 D_CALIB("... reducing sensitivity\n");
192                 data->nrg_curr_state = IL_FA_TOO_MANY;
193                 /* Store for "fewer than desired" on later beacon */
194                 data->nrg_silence_ref = silence_ref;
195
196                 /* increase energy threshold (reduce nrg value)
197                  *   to decrease sensitivity */
198                 data->nrg_th_cck = data->nrg_th_cck - NRG_STEP_CCK;
199                 /* Else if we got fewer than desired, increase sensitivity */
200         } else if (false_alarms < min_false_alarms) {
201                 data->nrg_curr_state = IL_FA_TOO_FEW;
202
203                 /* Compare silence level with silence level for most recent
204                  *   healthy number or too many false alarms */
205                 data->nrg_auto_corr_silence_diff =
206                     (s32) data->nrg_silence_ref - (s32) silence_ref;
207
208                 D_CALIB("norm FA %u < min FA %u, silence diff %d\n",
209                         false_alarms, min_false_alarms,
210                         data->nrg_auto_corr_silence_diff);
211
212                 /* Increase value to increase sensitivity, but only if:
213                  * 1a) previous beacon did *not* have *too many* false alarms
214                  * 1b) AND there's a significant difference in Rx levels
215                  *      from a previous beacon with too many, or healthy # FAs
216                  * OR 2) We've seen a lot of beacons (100) with too few
217                  *       false alarms */
218                 if (data->nrg_prev_state != IL_FA_TOO_MANY &&
219                     (data->nrg_auto_corr_silence_diff > NRG_DIFF ||
220                      data->num_in_cck_no_fa > MAX_NUMBER_CCK_NO_FA)) {
221
222                         D_CALIB("... increasing sensitivity\n");
223                         /* Increase nrg value to increase sensitivity */
224                         val = data->nrg_th_cck + NRG_STEP_CCK;
225                         data->nrg_th_cck = min((u32) ranges->min_nrg_cck, val);
226                 } else {
227                         D_CALIB("... but not changing sensitivity\n");
228                 }
229
230                 /* Else we got a healthy number of false alarms, keep status quo */
231         } else {
232                 D_CALIB(" FA in safe zone\n");
233                 data->nrg_curr_state = IL_FA_GOOD_RANGE;
234
235                 /* Store for use in "fewer than desired" with later beacon */
236                 data->nrg_silence_ref = silence_ref;
237
238                 /* If previous beacon had too many false alarms,
239                  *   give it some extra margin by reducing sensitivity again
240                  *   (but don't go below measured energy of desired Rx) */
241                 if (IL_FA_TOO_MANY == data->nrg_prev_state) {
242                         D_CALIB("... increasing margin\n");
243                         if (data->nrg_th_cck > (max_nrg_cck + NRG_MARGIN))
244                                 data->nrg_th_cck -= NRG_MARGIN;
245                         else
246                                 data->nrg_th_cck = max_nrg_cck;
247                 }
248         }
249
250         /* Make sure the energy threshold does not go above the measured
251          * energy of the desired Rx signals (reduced by backoff margin),
252          * or else we might start missing Rx frames.
253          * Lower value is higher energy, so we use max()!
254          */
255         data->nrg_th_cck = max(max_nrg_cck, data->nrg_th_cck);
256         D_CALIB("new nrg_th_cck %u\n", data->nrg_th_cck);
257
258         data->nrg_prev_state = data->nrg_curr_state;
259
260         /* Auto-correlation CCK algorithm */
261         if (false_alarms > min_false_alarms) {
262
263                 /* increase auto_corr values to decrease sensitivity
264                  * so the DSP won't be disturbed by the noise
265                  */
266                 if (data->auto_corr_cck < AUTO_CORR_MAX_TH_CCK)
267                         data->auto_corr_cck = AUTO_CORR_MAX_TH_CCK + 1;
268                 else {
269                         val = data->auto_corr_cck + AUTO_CORR_STEP_CCK;
270                         data->auto_corr_cck =
271                             min((u32) ranges->auto_corr_max_cck, val);
272                 }
273                 val = data->auto_corr_cck_mrc + AUTO_CORR_STEP_CCK;
274                 data->auto_corr_cck_mrc =
275                     min((u32) ranges->auto_corr_max_cck_mrc, val);
276         } else if (false_alarms < min_false_alarms &&
277                    (data->nrg_auto_corr_silence_diff > NRG_DIFF ||
278                     data->num_in_cck_no_fa > MAX_NUMBER_CCK_NO_FA)) {
279
280                 /* Decrease auto_corr values to increase sensitivity */
281                 val = data->auto_corr_cck - AUTO_CORR_STEP_CCK;
282                 data->auto_corr_cck = max((u32) ranges->auto_corr_min_cck, val);
283                 val = data->auto_corr_cck_mrc - AUTO_CORR_STEP_CCK;
284                 data->auto_corr_cck_mrc =
285                     max((u32) ranges->auto_corr_min_cck_mrc, val);
286         }
287
288         return 0;
289 }
290
291 static int
292 il4965_sens_auto_corr_ofdm(struct il_priv *il, u32 norm_fa, u32 rx_enable_time)
293 {
294         u32 val;
295         u32 false_alarms = norm_fa * 200 * 1024;
296         u32 max_false_alarms = MAX_FA_OFDM * rx_enable_time;
297         u32 min_false_alarms = MIN_FA_OFDM * rx_enable_time;
298         struct il_sensitivity_data *data = NULL;
299         const struct il_sensitivity_ranges *ranges = il->hw_params.sens;
300
301         data = &(il->sensitivity_data);
302
303         /* If we got too many false alarms this time, reduce sensitivity */
304         if (false_alarms > max_false_alarms) {
305
306                 D_CALIB("norm FA %u > max FA %u)\n", false_alarms,
307                         max_false_alarms);
308
309                 val = data->auto_corr_ofdm + AUTO_CORR_STEP_OFDM;
310                 data->auto_corr_ofdm =
311                     min((u32) ranges->auto_corr_max_ofdm, val);
312
313                 val = data->auto_corr_ofdm_mrc + AUTO_CORR_STEP_OFDM;
314                 data->auto_corr_ofdm_mrc =
315                     min((u32) ranges->auto_corr_max_ofdm_mrc, val);
316
317                 val = data->auto_corr_ofdm_x1 + AUTO_CORR_STEP_OFDM;
318                 data->auto_corr_ofdm_x1 =
319                     min((u32) ranges->auto_corr_max_ofdm_x1, val);
320
321                 val = data->auto_corr_ofdm_mrc_x1 + AUTO_CORR_STEP_OFDM;
322                 data->auto_corr_ofdm_mrc_x1 =
323                     min((u32) ranges->auto_corr_max_ofdm_mrc_x1, val);
324         }
325
326         /* Else if we got fewer than desired, increase sensitivity */
327         else if (false_alarms < min_false_alarms) {
328
329                 D_CALIB("norm FA %u < min FA %u\n", false_alarms,
330                         min_false_alarms);
331
332                 val = data->auto_corr_ofdm - AUTO_CORR_STEP_OFDM;
333                 data->auto_corr_ofdm =
334                     max((u32) ranges->auto_corr_min_ofdm, val);
335
336                 val = data->auto_corr_ofdm_mrc - AUTO_CORR_STEP_OFDM;
337                 data->auto_corr_ofdm_mrc =
338                     max((u32) ranges->auto_corr_min_ofdm_mrc, val);
339
340                 val = data->auto_corr_ofdm_x1 - AUTO_CORR_STEP_OFDM;
341                 data->auto_corr_ofdm_x1 =
342                     max((u32) ranges->auto_corr_min_ofdm_x1, val);
343
344                 val = data->auto_corr_ofdm_mrc_x1 - AUTO_CORR_STEP_OFDM;
345                 data->auto_corr_ofdm_mrc_x1 =
346                     max((u32) ranges->auto_corr_min_ofdm_mrc_x1, val);
347         } else {
348                 D_CALIB("min FA %u < norm FA %u < max FA %u OK\n",
349                         min_false_alarms, false_alarms, max_false_alarms);
350         }
351         return 0;
352 }
353
354 static void
355 il4965_prepare_legacy_sensitivity_tbl(struct il_priv *il,
356                                       struct il_sensitivity_data *data,
357                                       __le16 *tbl)
358 {
359         tbl[HD_AUTO_CORR32_X4_TH_ADD_MIN_IDX] =
360             cpu_to_le16((u16) data->auto_corr_ofdm);
361         tbl[HD_AUTO_CORR32_X4_TH_ADD_MIN_MRC_IDX] =
362             cpu_to_le16((u16) data->auto_corr_ofdm_mrc);
363         tbl[HD_AUTO_CORR32_X1_TH_ADD_MIN_IDX] =
364             cpu_to_le16((u16) data->auto_corr_ofdm_x1);
365         tbl[HD_AUTO_CORR32_X1_TH_ADD_MIN_MRC_IDX] =
366             cpu_to_le16((u16) data->auto_corr_ofdm_mrc_x1);
367
368         tbl[HD_AUTO_CORR40_X4_TH_ADD_MIN_IDX] =
369             cpu_to_le16((u16) data->auto_corr_cck);
370         tbl[HD_AUTO_CORR40_X4_TH_ADD_MIN_MRC_IDX] =
371             cpu_to_le16((u16) data->auto_corr_cck_mrc);
372
373         tbl[HD_MIN_ENERGY_CCK_DET_IDX] = cpu_to_le16((u16) data->nrg_th_cck);
374         tbl[HD_MIN_ENERGY_OFDM_DET_IDX] = cpu_to_le16((u16) data->nrg_th_ofdm);
375
376         tbl[HD_BARKER_CORR_TH_ADD_MIN_IDX] =
377             cpu_to_le16(data->barker_corr_th_min);
378         tbl[HD_BARKER_CORR_TH_ADD_MIN_MRC_IDX] =
379             cpu_to_le16(data->barker_corr_th_min_mrc);
380         tbl[HD_OFDM_ENERGY_TH_IN_IDX] = cpu_to_le16(data->nrg_th_cca);
381
382         D_CALIB("ofdm: ac %u mrc %u x1 %u mrc_x1 %u thresh %u\n",
383                 data->auto_corr_ofdm, data->auto_corr_ofdm_mrc,
384                 data->auto_corr_ofdm_x1, data->auto_corr_ofdm_mrc_x1,
385                 data->nrg_th_ofdm);
386
387         D_CALIB("cck: ac %u mrc %u thresh %u\n", data->auto_corr_cck,
388                 data->auto_corr_cck_mrc, data->nrg_th_cck);
389 }
390
391 /* Prepare a C_SENSITIVITY, send to uCode if values have changed */
392 static int
393 il4965_sensitivity_write(struct il_priv *il)
394 {
395         struct il_sensitivity_cmd cmd;
396         struct il_sensitivity_data *data = NULL;
397         struct il_host_cmd cmd_out = {
398                 .id = C_SENSITIVITY,
399                 .len = sizeof(struct il_sensitivity_cmd),
400                 .flags = CMD_ASYNC,
401                 .data = &cmd,
402         };
403
404         data = &(il->sensitivity_data);
405
406         memset(&cmd, 0, sizeof(cmd));
407
408         il4965_prepare_legacy_sensitivity_tbl(il, data, &cmd.table[0]);
409
410         /* Update uCode's "work" table, and copy it to DSP */
411         cmd.control = C_SENSITIVITY_CONTROL_WORK_TBL;
412
413         /* Don't send command to uCode if nothing has changed */
414         if (!memcmp
415             (&cmd.table[0], &(il->sensitivity_tbl[0]),
416              sizeof(u16) * HD_TBL_SIZE)) {
417                 D_CALIB("No change in C_SENSITIVITY\n");
418                 return 0;
419         }
420
421         /* Copy table for comparison next time */
422         memcpy(&(il->sensitivity_tbl[0]), &(cmd.table[0]),
423                sizeof(u16) * HD_TBL_SIZE);
424
425         return il_send_cmd(il, &cmd_out);
426 }
427
428 void
429 il4965_init_sensitivity(struct il_priv *il)
430 {
431         int ret = 0;
432         int i;
433         struct il_sensitivity_data *data = NULL;
434         const struct il_sensitivity_ranges *ranges = il->hw_params.sens;
435
436         if (il->disable_sens_cal)
437                 return;
438
439         D_CALIB("Start il4965_init_sensitivity\n");
440
441         /* Clear driver's sensitivity algo data */
442         data = &(il->sensitivity_data);
443
444         if (ranges == NULL)
445                 return;
446
447         memset(data, 0, sizeof(struct il_sensitivity_data));
448
449         data->num_in_cck_no_fa = 0;
450         data->nrg_curr_state = IL_FA_TOO_MANY;
451         data->nrg_prev_state = IL_FA_TOO_MANY;
452         data->nrg_silence_ref = 0;
453         data->nrg_silence_idx = 0;
454         data->nrg_energy_idx = 0;
455
456         for (i = 0; i < 10; i++)
457                 data->nrg_value[i] = 0;
458
459         for (i = 0; i < NRG_NUM_PREV_STAT_L; i++)
460                 data->nrg_silence_rssi[i] = 0;
461
462         data->auto_corr_ofdm = ranges->auto_corr_min_ofdm;
463         data->auto_corr_ofdm_mrc = ranges->auto_corr_min_ofdm_mrc;
464         data->auto_corr_ofdm_x1 = ranges->auto_corr_min_ofdm_x1;
465         data->auto_corr_ofdm_mrc_x1 = ranges->auto_corr_min_ofdm_mrc_x1;
466         data->auto_corr_cck = AUTO_CORR_CCK_MIN_VAL_DEF;
467         data->auto_corr_cck_mrc = ranges->auto_corr_min_cck_mrc;
468         data->nrg_th_cck = ranges->nrg_th_cck;
469         data->nrg_th_ofdm = ranges->nrg_th_ofdm;
470         data->barker_corr_th_min = ranges->barker_corr_th_min;
471         data->barker_corr_th_min_mrc = ranges->barker_corr_th_min_mrc;
472         data->nrg_th_cca = ranges->nrg_th_cca;
473
474         data->last_bad_plcp_cnt_ofdm = 0;
475         data->last_fa_cnt_ofdm = 0;
476         data->last_bad_plcp_cnt_cck = 0;
477         data->last_fa_cnt_cck = 0;
478
479         ret |= il4965_sensitivity_write(il);
480         D_CALIB("<<return 0x%X\n", ret);
481 }
482
483 void
484 il4965_sensitivity_calibration(struct il_priv *il, void *resp)
485 {
486         u32 rx_enable_time;
487         u32 fa_cck;
488         u32 fa_ofdm;
489         u32 bad_plcp_cck;
490         u32 bad_plcp_ofdm;
491         u32 norm_fa_ofdm;
492         u32 norm_fa_cck;
493         struct il_sensitivity_data *data = NULL;
494         struct stats_rx_non_phy *rx_info;
495         struct stats_rx_phy *ofdm, *cck;
496         unsigned long flags;
497         struct stats_general_data statis;
498
499         if (il->disable_sens_cal)
500                 return;
501
502         data = &(il->sensitivity_data);
503
504         if (!il_is_any_associated(il)) {
505                 D_CALIB("<< - not associated\n");
506                 return;
507         }
508
509         spin_lock_irqsave(&il->lock, flags);
510
511         rx_info = &(((struct il_notif_stats *)resp)->rx.general);
512         ofdm = &(((struct il_notif_stats *)resp)->rx.ofdm);
513         cck = &(((struct il_notif_stats *)resp)->rx.cck);
514
515         if (rx_info->interference_data_flag != INTERFERENCE_DATA_AVAILABLE) {
516                 D_CALIB("<< invalid data.\n");
517                 spin_unlock_irqrestore(&il->lock, flags);
518                 return;
519         }
520
521         /* Extract Statistics: */
522         rx_enable_time = le32_to_cpu(rx_info->channel_load);
523         fa_cck = le32_to_cpu(cck->false_alarm_cnt);
524         fa_ofdm = le32_to_cpu(ofdm->false_alarm_cnt);
525         bad_plcp_cck = le32_to_cpu(cck->plcp_err);
526         bad_plcp_ofdm = le32_to_cpu(ofdm->plcp_err);
527
528         statis.beacon_silence_rssi_a =
529             le32_to_cpu(rx_info->beacon_silence_rssi_a);
530         statis.beacon_silence_rssi_b =
531             le32_to_cpu(rx_info->beacon_silence_rssi_b);
532         statis.beacon_silence_rssi_c =
533             le32_to_cpu(rx_info->beacon_silence_rssi_c);
534         statis.beacon_energy_a = le32_to_cpu(rx_info->beacon_energy_a);
535         statis.beacon_energy_b = le32_to_cpu(rx_info->beacon_energy_b);
536         statis.beacon_energy_c = le32_to_cpu(rx_info->beacon_energy_c);
537
538         spin_unlock_irqrestore(&il->lock, flags);
539
540         D_CALIB("rx_enable_time = %u usecs\n", rx_enable_time);
541
542         if (!rx_enable_time) {
543                 D_CALIB("<< RX Enable Time == 0!\n");
544                 return;
545         }
546
547         /* These stats increase monotonically, and do not reset
548          *   at each beacon.  Calculate difference from last value, or just
549          *   use the new stats value if it has reset or wrapped around. */
550         if (data->last_bad_plcp_cnt_cck > bad_plcp_cck)
551                 data->last_bad_plcp_cnt_cck = bad_plcp_cck;
552         else {
553                 bad_plcp_cck -= data->last_bad_plcp_cnt_cck;
554                 data->last_bad_plcp_cnt_cck += bad_plcp_cck;
555         }
556
557         if (data->last_bad_plcp_cnt_ofdm > bad_plcp_ofdm)
558                 data->last_bad_plcp_cnt_ofdm = bad_plcp_ofdm;
559         else {
560                 bad_plcp_ofdm -= data->last_bad_plcp_cnt_ofdm;
561                 data->last_bad_plcp_cnt_ofdm += bad_plcp_ofdm;
562         }
563
564         if (data->last_fa_cnt_ofdm > fa_ofdm)
565                 data->last_fa_cnt_ofdm = fa_ofdm;
566         else {
567                 fa_ofdm -= data->last_fa_cnt_ofdm;
568                 data->last_fa_cnt_ofdm += fa_ofdm;
569         }
570
571         if (data->last_fa_cnt_cck > fa_cck)
572                 data->last_fa_cnt_cck = fa_cck;
573         else {
574                 fa_cck -= data->last_fa_cnt_cck;
575                 data->last_fa_cnt_cck += fa_cck;
576         }
577
578         /* Total aborted signal locks */
579         norm_fa_ofdm = fa_ofdm + bad_plcp_ofdm;
580         norm_fa_cck = fa_cck + bad_plcp_cck;
581
582         D_CALIB("cck: fa %u badp %u  ofdm: fa %u badp %u\n", fa_cck,
583                 bad_plcp_cck, fa_ofdm, bad_plcp_ofdm);
584
585         il4965_sens_auto_corr_ofdm(il, norm_fa_ofdm, rx_enable_time);
586         il4965_sens_energy_cck(il, norm_fa_cck, rx_enable_time, &statis);
587
588         il4965_sensitivity_write(il);
589 }
590
591 static inline u8
592 il4965_find_first_chain(u8 mask)
593 {
594         if (mask & ANT_A)
595                 return CHAIN_A;
596         if (mask & ANT_B)
597                 return CHAIN_B;
598         return CHAIN_C;
599 }
600
601 /**
602  * Run disconnected antenna algorithm to find out which antennas are
603  * disconnected.
604  */
605 static void
606 il4965_find_disconn_antenna(struct il_priv *il, u32 * average_sig,
607                             struct il_chain_noise_data *data)
608 {
609         u32 active_chains = 0;
610         u32 max_average_sig;
611         u16 max_average_sig_antenna_i;
612         u8 num_tx_chains;
613         u8 first_chain;
614         u16 i = 0;
615
616         average_sig[0] =
617             data->chain_signal_a /
618             il->cfg->chain_noise_num_beacons;
619         average_sig[1] =
620             data->chain_signal_b /
621             il->cfg->chain_noise_num_beacons;
622         average_sig[2] =
623             data->chain_signal_c /
624             il->cfg->chain_noise_num_beacons;
625
626         if (average_sig[0] >= average_sig[1]) {
627                 max_average_sig = average_sig[0];
628                 max_average_sig_antenna_i = 0;
629                 active_chains = (1 << max_average_sig_antenna_i);
630         } else {
631                 max_average_sig = average_sig[1];
632                 max_average_sig_antenna_i = 1;
633                 active_chains = (1 << max_average_sig_antenna_i);
634         }
635
636         if (average_sig[2] >= max_average_sig) {
637                 max_average_sig = average_sig[2];
638                 max_average_sig_antenna_i = 2;
639                 active_chains = (1 << max_average_sig_antenna_i);
640         }
641
642         D_CALIB("average_sig: a %d b %d c %d\n", average_sig[0], average_sig[1],
643                 average_sig[2]);
644         D_CALIB("max_average_sig = %d, antenna %d\n", max_average_sig,
645                 max_average_sig_antenna_i);
646
647         /* Compare signal strengths for all 3 receivers. */
648         for (i = 0; i < NUM_RX_CHAINS; i++) {
649                 if (i != max_average_sig_antenna_i) {
650                         s32 rssi_delta = (max_average_sig - average_sig[i]);
651
652                         /* If signal is very weak, compared with
653                          * strongest, mark it as disconnected. */
654                         if (rssi_delta > MAXIMUM_ALLOWED_PATHLOSS)
655                                 data->disconn_array[i] = 1;
656                         else
657                                 active_chains |= (1 << i);
658                         D_CALIB("i = %d  rssiDelta = %d  "
659                                 "disconn_array[i] = %d\n", i, rssi_delta,
660                                 data->disconn_array[i]);
661                 }
662         }
663
664         /*
665          * The above algorithm sometimes fails when the ucode
666          * reports 0 for all chains. It's not clear why that
667          * happens to start with, but it is then causing trouble
668          * because this can make us enable more chains than the
669          * hardware really has.
670          *
671          * To be safe, simply mask out any chains that we know
672          * are not on the device.
673          */
674         active_chains &= il->hw_params.valid_rx_ant;
675
676         num_tx_chains = 0;
677         for (i = 0; i < NUM_RX_CHAINS; i++) {
678                 /* loops on all the bits of
679                  * il->hw_setting.valid_tx_ant */
680                 u8 ant_msk = (1 << i);
681                 if (!(il->hw_params.valid_tx_ant & ant_msk))
682                         continue;
683
684                 num_tx_chains++;
685                 if (data->disconn_array[i] == 0)
686                         /* there is a Tx antenna connected */
687                         break;
688                 if (num_tx_chains == il->hw_params.tx_chains_num &&
689                     data->disconn_array[i]) {
690                         /*
691                          * If all chains are disconnected
692                          * connect the first valid tx chain
693                          */
694                         first_chain =
695                             il4965_find_first_chain(il->cfg->valid_tx_ant);
696                         data->disconn_array[first_chain] = 0;
697                         active_chains |= BIT(first_chain);
698                         D_CALIB("All Tx chains are disconnected"
699                                 "- declare %d as connected\n", first_chain);
700                         break;
701                 }
702         }
703
704         if (active_chains != il->hw_params.valid_rx_ant &&
705             active_chains != il->chain_noise_data.active_chains)
706                 D_CALIB("Detected that not all antennas are connected! "
707                         "Connected: %#x, valid: %#x.\n", active_chains,
708                         il->hw_params.valid_rx_ant);
709
710         /* Save for use within RXON, TX, SCAN commands, etc. */
711         data->active_chains = active_chains;
712         D_CALIB("active_chains (bitwise) = 0x%x\n", active_chains);
713 }
714
715 static void
716 il4965_gain_computation(struct il_priv *il, u32 * average_noise,
717                         u16 min_average_noise_antenna_i, u32 min_average_noise,
718                         u8 default_chain)
719 {
720         int i, ret;
721         struct il_chain_noise_data *data = &il->chain_noise_data;
722
723         data->delta_gain_code[min_average_noise_antenna_i] = 0;
724
725         for (i = default_chain; i < NUM_RX_CHAINS; i++) {
726                 s32 delta_g = 0;
727
728                 if (!data->disconn_array[i] &&
729                     data->delta_gain_code[i] ==
730                     CHAIN_NOISE_DELTA_GAIN_INIT_VAL) {
731                         delta_g = average_noise[i] - min_average_noise;
732                         data->delta_gain_code[i] = (u8) ((delta_g * 10) / 15);
733                         data->delta_gain_code[i] =
734                             min(data->delta_gain_code[i],
735                                 (u8) CHAIN_NOISE_MAX_DELTA_GAIN_CODE);
736
737                         data->delta_gain_code[i] =
738                             (data->delta_gain_code[i] | (1 << 2));
739                 } else {
740                         data->delta_gain_code[i] = 0;
741                 }
742         }
743         D_CALIB("delta_gain_codes: a %d b %d c %d\n", data->delta_gain_code[0],
744                 data->delta_gain_code[1], data->delta_gain_code[2]);
745
746         /* Differential gain gets sent to uCode only once */
747         if (!data->radio_write) {
748                 struct il_calib_diff_gain_cmd cmd;
749                 data->radio_write = 1;
750
751                 memset(&cmd, 0, sizeof(cmd));
752                 cmd.hdr.op_code = IL_PHY_CALIBRATE_DIFF_GAIN_CMD;
753                 cmd.diff_gain_a = data->delta_gain_code[0];
754                 cmd.diff_gain_b = data->delta_gain_code[1];
755                 cmd.diff_gain_c = data->delta_gain_code[2];
756                 ret = il_send_cmd_pdu(il, C_PHY_CALIBRATION, sizeof(cmd), &cmd);
757                 if (ret)
758                         D_CALIB("fail sending cmd " "C_PHY_CALIBRATION\n");
759
760                 /* TODO we might want recalculate
761                  * rx_chain in rxon cmd */
762
763                 /* Mark so we run this algo only once! */
764                 data->state = IL_CHAIN_NOISE_CALIBRATED;
765         }
766 }
767
768 /*
769  * Accumulate 16 beacons of signal and noise stats for each of
770  *   3 receivers/antennas/rx-chains, then figure out:
771  * 1)  Which antennas are connected.
772  * 2)  Differential rx gain settings to balance the 3 receivers.
773  */
774 void
775 il4965_chain_noise_calibration(struct il_priv *il, void *stat_resp)
776 {
777         struct il_chain_noise_data *data = NULL;
778
779         u32 chain_noise_a;
780         u32 chain_noise_b;
781         u32 chain_noise_c;
782         u32 chain_sig_a;
783         u32 chain_sig_b;
784         u32 chain_sig_c;
785         u32 average_sig[NUM_RX_CHAINS] = { INITIALIZATION_VALUE };
786         u32 average_noise[NUM_RX_CHAINS] = { INITIALIZATION_VALUE };
787         u32 min_average_noise = MIN_AVERAGE_NOISE_MAX_VALUE;
788         u16 min_average_noise_antenna_i = INITIALIZATION_VALUE;
789         u16 i = 0;
790         u16 rxon_chnum = INITIALIZATION_VALUE;
791         u16 stat_chnum = INITIALIZATION_VALUE;
792         u8 rxon_band24;
793         u8 stat_band24;
794         unsigned long flags;
795         struct stats_rx_non_phy *rx_info;
796
797         if (il->disable_chain_noise_cal)
798                 return;
799
800         data = &(il->chain_noise_data);
801
802         /*
803          * Accumulate just the first "chain_noise_num_beacons" after
804          * the first association, then we're done forever.
805          */
806         if (data->state != IL_CHAIN_NOISE_ACCUMULATE) {
807                 if (data->state == IL_CHAIN_NOISE_ALIVE)
808                         D_CALIB("Wait for noise calib reset\n");
809                 return;
810         }
811
812         spin_lock_irqsave(&il->lock, flags);
813
814         rx_info = &(((struct il_notif_stats *)stat_resp)->rx.general);
815
816         if (rx_info->interference_data_flag != INTERFERENCE_DATA_AVAILABLE) {
817                 D_CALIB(" << Interference data unavailable\n");
818                 spin_unlock_irqrestore(&il->lock, flags);
819                 return;
820         }
821
822         rxon_band24 = !!(il->staging.flags & RXON_FLG_BAND_24G_MSK);
823         rxon_chnum = le16_to_cpu(il->staging.channel);
824
825         stat_band24 =
826             !!(((struct il_notif_stats *)stat_resp)->
827                flag & STATS_REPLY_FLG_BAND_24G_MSK);
828         stat_chnum =
829             le32_to_cpu(((struct il_notif_stats *)stat_resp)->flag) >> 16;
830
831         /* Make sure we accumulate data for just the associated channel
832          *   (even if scanning). */
833         if (rxon_chnum != stat_chnum || rxon_band24 != stat_band24) {
834                 D_CALIB("Stats not from chan=%d, band24=%d\n", rxon_chnum,
835                         rxon_band24);
836                 spin_unlock_irqrestore(&il->lock, flags);
837                 return;
838         }
839
840         /*
841          *  Accumulate beacon stats values across
842          * "chain_noise_num_beacons"
843          */
844         chain_noise_a =
845             le32_to_cpu(rx_info->beacon_silence_rssi_a) & IN_BAND_FILTER;
846         chain_noise_b =
847             le32_to_cpu(rx_info->beacon_silence_rssi_b) & IN_BAND_FILTER;
848         chain_noise_c =
849             le32_to_cpu(rx_info->beacon_silence_rssi_c) & IN_BAND_FILTER;
850
851         chain_sig_a = le32_to_cpu(rx_info->beacon_rssi_a) & IN_BAND_FILTER;
852         chain_sig_b = le32_to_cpu(rx_info->beacon_rssi_b) & IN_BAND_FILTER;
853         chain_sig_c = le32_to_cpu(rx_info->beacon_rssi_c) & IN_BAND_FILTER;
854
855         spin_unlock_irqrestore(&il->lock, flags);
856
857         data->beacon_count++;
858
859         data->chain_noise_a = (chain_noise_a + data->chain_noise_a);
860         data->chain_noise_b = (chain_noise_b + data->chain_noise_b);
861         data->chain_noise_c = (chain_noise_c + data->chain_noise_c);
862
863         data->chain_signal_a = (chain_sig_a + data->chain_signal_a);
864         data->chain_signal_b = (chain_sig_b + data->chain_signal_b);
865         data->chain_signal_c = (chain_sig_c + data->chain_signal_c);
866
867         D_CALIB("chan=%d, band24=%d, beacon=%d\n", rxon_chnum, rxon_band24,
868                 data->beacon_count);
869         D_CALIB("chain_sig: a %d b %d c %d\n", chain_sig_a, chain_sig_b,
870                 chain_sig_c);
871         D_CALIB("chain_noise: a %d b %d c %d\n", chain_noise_a, chain_noise_b,
872                 chain_noise_c);
873
874         /* If this is the "chain_noise_num_beacons", determine:
875          * 1)  Disconnected antennas (using signal strengths)
876          * 2)  Differential gain (using silence noise) to balance receivers */
877         if (data->beacon_count != il->cfg->chain_noise_num_beacons)
878                 return;
879
880         /* Analyze signal for disconnected antenna */
881         il4965_find_disconn_antenna(il, average_sig, data);
882
883         /* Analyze noise for rx balance */
884         average_noise[0] =
885             data->chain_noise_a / il->cfg->chain_noise_num_beacons;
886         average_noise[1] =
887             data->chain_noise_b / il->cfg->chain_noise_num_beacons;
888         average_noise[2] =
889             data->chain_noise_c / il->cfg->chain_noise_num_beacons;
890
891         for (i = 0; i < NUM_RX_CHAINS; i++) {
892                 if (!data->disconn_array[i] &&
893                     average_noise[i] <= min_average_noise) {
894                         /* This means that chain i is active and has
895                          * lower noise values so far: */
896                         min_average_noise = average_noise[i];
897                         min_average_noise_antenna_i = i;
898                 }
899         }
900
901         D_CALIB("average_noise: a %d b %d c %d\n", average_noise[0],
902                 average_noise[1], average_noise[2]);
903
904         D_CALIB("min_average_noise = %d, antenna %d\n", min_average_noise,
905                 min_average_noise_antenna_i);
906
907         il4965_gain_computation(il, average_noise, min_average_noise_antenna_i,
908                                 min_average_noise,
909                                 il4965_find_first_chain(il->cfg->valid_rx_ant));
910
911         /* Some power changes may have been made during the calibration.
912          * Update and commit the RXON
913          */
914         if (il->ops->update_chain_flags)
915                 il->ops->update_chain_flags(il);
916
917         data->state = IL_CHAIN_NOISE_DONE;
918         il_power_update_mode(il, false);
919 }
920
921 void
922 il4965_reset_run_time_calib(struct il_priv *il)
923 {
924         int i;
925         memset(&(il->sensitivity_data), 0, sizeof(struct il_sensitivity_data));
926         memset(&(il->chain_noise_data), 0, sizeof(struct il_chain_noise_data));
927         for (i = 0; i < NUM_RX_CHAINS; i++)
928                 il->chain_noise_data.delta_gain_code[i] =
929                     CHAIN_NOISE_DELTA_GAIN_INIT_VAL;
930
931         /* Ask for stats now, the uCode will send notification
932          * periodically after association */
933         il_send_stats_request(il, CMD_ASYNC, true);
934 }