rt2x00: move under ralink vendor directory
[cascardo/linux.git] / drivers / net / wireless / ralink / rt2x00 / rt2500pci.c
1 /*
2         Copyright (C) 2004 - 2009 Ivo van Doorn <IvDoorn@gmail.com>
3         <http://rt2x00.serialmonkey.com>
4
5         This program is free software; you can redistribute it and/or modify
6         it under the terms of the GNU General Public License as published by
7         the Free Software Foundation; either version 2 of the License, or
8         (at your option) any later version.
9
10         This program is distributed in the hope that it will be useful,
11         but WITHOUT ANY WARRANTY; without even the implied warranty of
12         MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13         GNU General Public License for more details.
14
15         You should have received a copy of the GNU General Public License
16         along with this program; if not, see <http://www.gnu.org/licenses/>.
17  */
18
19 /*
20         Module: rt2500pci
21         Abstract: rt2500pci device specific routines.
22         Supported chipsets: RT2560.
23  */
24
25 #include <linux/delay.h>
26 #include <linux/etherdevice.h>
27 #include <linux/kernel.h>
28 #include <linux/module.h>
29 #include <linux/pci.h>
30 #include <linux/eeprom_93cx6.h>
31 #include <linux/slab.h>
32
33 #include "rt2x00.h"
34 #include "rt2x00mmio.h"
35 #include "rt2x00pci.h"
36 #include "rt2500pci.h"
37
38 /*
39  * Register access.
40  * All access to the CSR registers will go through the methods
41  * rt2x00mmio_register_read and rt2x00mmio_register_write.
42  * BBP and RF register require indirect register access,
43  * and use the CSR registers BBPCSR and RFCSR to achieve this.
44  * These indirect registers work with busy bits,
45  * and we will try maximal REGISTER_BUSY_COUNT times to access
46  * the register while taking a REGISTER_BUSY_DELAY us delay
47  * between each attampt. When the busy bit is still set at that time,
48  * the access attempt is considered to have failed,
49  * and we will print an error.
50  */
51 #define WAIT_FOR_BBP(__dev, __reg) \
52         rt2x00mmio_regbusy_read((__dev), BBPCSR, BBPCSR_BUSY, (__reg))
53 #define WAIT_FOR_RF(__dev, __reg) \
54         rt2x00mmio_regbusy_read((__dev), RFCSR, RFCSR_BUSY, (__reg))
55
56 static void rt2500pci_bbp_write(struct rt2x00_dev *rt2x00dev,
57                                 const unsigned int word, const u8 value)
58 {
59         u32 reg;
60
61         mutex_lock(&rt2x00dev->csr_mutex);
62
63         /*
64          * Wait until the BBP becomes available, afterwards we
65          * can safely write the new data into the register.
66          */
67         if (WAIT_FOR_BBP(rt2x00dev, &reg)) {
68                 reg = 0;
69                 rt2x00_set_field32(&reg, BBPCSR_VALUE, value);
70                 rt2x00_set_field32(&reg, BBPCSR_REGNUM, word);
71                 rt2x00_set_field32(&reg, BBPCSR_BUSY, 1);
72                 rt2x00_set_field32(&reg, BBPCSR_WRITE_CONTROL, 1);
73
74                 rt2x00mmio_register_write(rt2x00dev, BBPCSR, reg);
75         }
76
77         mutex_unlock(&rt2x00dev->csr_mutex);
78 }
79
80 static void rt2500pci_bbp_read(struct rt2x00_dev *rt2x00dev,
81                                const unsigned int word, u8 *value)
82 {
83         u32 reg;
84
85         mutex_lock(&rt2x00dev->csr_mutex);
86
87         /*
88          * Wait until the BBP becomes available, afterwards we
89          * can safely write the read request into the register.
90          * After the data has been written, we wait until hardware
91          * returns the correct value, if at any time the register
92          * doesn't become available in time, reg will be 0xffffffff
93          * which means we return 0xff to the caller.
94          */
95         if (WAIT_FOR_BBP(rt2x00dev, &reg)) {
96                 reg = 0;
97                 rt2x00_set_field32(&reg, BBPCSR_REGNUM, word);
98                 rt2x00_set_field32(&reg, BBPCSR_BUSY, 1);
99                 rt2x00_set_field32(&reg, BBPCSR_WRITE_CONTROL, 0);
100
101                 rt2x00mmio_register_write(rt2x00dev, BBPCSR, reg);
102
103                 WAIT_FOR_BBP(rt2x00dev, &reg);
104         }
105
106         *value = rt2x00_get_field32(reg, BBPCSR_VALUE);
107
108         mutex_unlock(&rt2x00dev->csr_mutex);
109 }
110
111 static void rt2500pci_rf_write(struct rt2x00_dev *rt2x00dev,
112                                const unsigned int word, const u32 value)
113 {
114         u32 reg;
115
116         mutex_lock(&rt2x00dev->csr_mutex);
117
118         /*
119          * Wait until the RF becomes available, afterwards we
120          * can safely write the new data into the register.
121          */
122         if (WAIT_FOR_RF(rt2x00dev, &reg)) {
123                 reg = 0;
124                 rt2x00_set_field32(&reg, RFCSR_VALUE, value);
125                 rt2x00_set_field32(&reg, RFCSR_NUMBER_OF_BITS, 20);
126                 rt2x00_set_field32(&reg, RFCSR_IF_SELECT, 0);
127                 rt2x00_set_field32(&reg, RFCSR_BUSY, 1);
128
129                 rt2x00mmio_register_write(rt2x00dev, RFCSR, reg);
130                 rt2x00_rf_write(rt2x00dev, word, value);
131         }
132
133         mutex_unlock(&rt2x00dev->csr_mutex);
134 }
135
136 static void rt2500pci_eepromregister_read(struct eeprom_93cx6 *eeprom)
137 {
138         struct rt2x00_dev *rt2x00dev = eeprom->data;
139         u32 reg;
140
141         rt2x00mmio_register_read(rt2x00dev, CSR21, &reg);
142
143         eeprom->reg_data_in = !!rt2x00_get_field32(reg, CSR21_EEPROM_DATA_IN);
144         eeprom->reg_data_out = !!rt2x00_get_field32(reg, CSR21_EEPROM_DATA_OUT);
145         eeprom->reg_data_clock =
146             !!rt2x00_get_field32(reg, CSR21_EEPROM_DATA_CLOCK);
147         eeprom->reg_chip_select =
148             !!rt2x00_get_field32(reg, CSR21_EEPROM_CHIP_SELECT);
149 }
150
151 static void rt2500pci_eepromregister_write(struct eeprom_93cx6 *eeprom)
152 {
153         struct rt2x00_dev *rt2x00dev = eeprom->data;
154         u32 reg = 0;
155
156         rt2x00_set_field32(&reg, CSR21_EEPROM_DATA_IN, !!eeprom->reg_data_in);
157         rt2x00_set_field32(&reg, CSR21_EEPROM_DATA_OUT, !!eeprom->reg_data_out);
158         rt2x00_set_field32(&reg, CSR21_EEPROM_DATA_CLOCK,
159                            !!eeprom->reg_data_clock);
160         rt2x00_set_field32(&reg, CSR21_EEPROM_CHIP_SELECT,
161                            !!eeprom->reg_chip_select);
162
163         rt2x00mmio_register_write(rt2x00dev, CSR21, reg);
164 }
165
166 #ifdef CONFIG_RT2X00_LIB_DEBUGFS
167 static const struct rt2x00debug rt2500pci_rt2x00debug = {
168         .owner  = THIS_MODULE,
169         .csr    = {
170                 .read           = rt2x00mmio_register_read,
171                 .write          = rt2x00mmio_register_write,
172                 .flags          = RT2X00DEBUGFS_OFFSET,
173                 .word_base      = CSR_REG_BASE,
174                 .word_size      = sizeof(u32),
175                 .word_count     = CSR_REG_SIZE / sizeof(u32),
176         },
177         .eeprom = {
178                 .read           = rt2x00_eeprom_read,
179                 .write          = rt2x00_eeprom_write,
180                 .word_base      = EEPROM_BASE,
181                 .word_size      = sizeof(u16),
182                 .word_count     = EEPROM_SIZE / sizeof(u16),
183         },
184         .bbp    = {
185                 .read           = rt2500pci_bbp_read,
186                 .write          = rt2500pci_bbp_write,
187                 .word_base      = BBP_BASE,
188                 .word_size      = sizeof(u8),
189                 .word_count     = BBP_SIZE / sizeof(u8),
190         },
191         .rf     = {
192                 .read           = rt2x00_rf_read,
193                 .write          = rt2500pci_rf_write,
194                 .word_base      = RF_BASE,
195                 .word_size      = sizeof(u32),
196                 .word_count     = RF_SIZE / sizeof(u32),
197         },
198 };
199 #endif /* CONFIG_RT2X00_LIB_DEBUGFS */
200
201 static int rt2500pci_rfkill_poll(struct rt2x00_dev *rt2x00dev)
202 {
203         u32 reg;
204
205         rt2x00mmio_register_read(rt2x00dev, GPIOCSR, &reg);
206         return rt2x00_get_field32(reg, GPIOCSR_VAL0);
207 }
208
209 #ifdef CONFIG_RT2X00_LIB_LEDS
210 static void rt2500pci_brightness_set(struct led_classdev *led_cdev,
211                                      enum led_brightness brightness)
212 {
213         struct rt2x00_led *led =
214             container_of(led_cdev, struct rt2x00_led, led_dev);
215         unsigned int enabled = brightness != LED_OFF;
216         u32 reg;
217
218         rt2x00mmio_register_read(led->rt2x00dev, LEDCSR, &reg);
219
220         if (led->type == LED_TYPE_RADIO || led->type == LED_TYPE_ASSOC)
221                 rt2x00_set_field32(&reg, LEDCSR_LINK, enabled);
222         else if (led->type == LED_TYPE_ACTIVITY)
223                 rt2x00_set_field32(&reg, LEDCSR_ACTIVITY, enabled);
224
225         rt2x00mmio_register_write(led->rt2x00dev, LEDCSR, reg);
226 }
227
228 static int rt2500pci_blink_set(struct led_classdev *led_cdev,
229                                unsigned long *delay_on,
230                                unsigned long *delay_off)
231 {
232         struct rt2x00_led *led =
233             container_of(led_cdev, struct rt2x00_led, led_dev);
234         u32 reg;
235
236         rt2x00mmio_register_read(led->rt2x00dev, LEDCSR, &reg);
237         rt2x00_set_field32(&reg, LEDCSR_ON_PERIOD, *delay_on);
238         rt2x00_set_field32(&reg, LEDCSR_OFF_PERIOD, *delay_off);
239         rt2x00mmio_register_write(led->rt2x00dev, LEDCSR, reg);
240
241         return 0;
242 }
243
244 static void rt2500pci_init_led(struct rt2x00_dev *rt2x00dev,
245                                struct rt2x00_led *led,
246                                enum led_type type)
247 {
248         led->rt2x00dev = rt2x00dev;
249         led->type = type;
250         led->led_dev.brightness_set = rt2500pci_brightness_set;
251         led->led_dev.blink_set = rt2500pci_blink_set;
252         led->flags = LED_INITIALIZED;
253 }
254 #endif /* CONFIG_RT2X00_LIB_LEDS */
255
256 /*
257  * Configuration handlers.
258  */
259 static void rt2500pci_config_filter(struct rt2x00_dev *rt2x00dev,
260                                     const unsigned int filter_flags)
261 {
262         u32 reg;
263
264         /*
265          * Start configuration steps.
266          * Note that the version error will always be dropped
267          * and broadcast frames will always be accepted since
268          * there is no filter for it at this time.
269          */
270         rt2x00mmio_register_read(rt2x00dev, RXCSR0, &reg);
271         rt2x00_set_field32(&reg, RXCSR0_DROP_CRC,
272                            !(filter_flags & FIF_FCSFAIL));
273         rt2x00_set_field32(&reg, RXCSR0_DROP_PHYSICAL,
274                            !(filter_flags & FIF_PLCPFAIL));
275         rt2x00_set_field32(&reg, RXCSR0_DROP_CONTROL,
276                            !(filter_flags & FIF_CONTROL));
277         rt2x00_set_field32(&reg, RXCSR0_DROP_NOT_TO_ME, 1);
278         rt2x00_set_field32(&reg, RXCSR0_DROP_TODS,
279                            !rt2x00dev->intf_ap_count);
280         rt2x00_set_field32(&reg, RXCSR0_DROP_VERSION_ERROR, 1);
281         rt2x00_set_field32(&reg, RXCSR0_DROP_MCAST,
282                            !(filter_flags & FIF_ALLMULTI));
283         rt2x00_set_field32(&reg, RXCSR0_DROP_BCAST, 0);
284         rt2x00mmio_register_write(rt2x00dev, RXCSR0, reg);
285 }
286
287 static void rt2500pci_config_intf(struct rt2x00_dev *rt2x00dev,
288                                   struct rt2x00_intf *intf,
289                                   struct rt2x00intf_conf *conf,
290                                   const unsigned int flags)
291 {
292         struct data_queue *queue = rt2x00dev->bcn;
293         unsigned int bcn_preload;
294         u32 reg;
295
296         if (flags & CONFIG_UPDATE_TYPE) {
297                 /*
298                  * Enable beacon config
299                  */
300                 bcn_preload = PREAMBLE + GET_DURATION(IEEE80211_HEADER, 20);
301                 rt2x00mmio_register_read(rt2x00dev, BCNCSR1, &reg);
302                 rt2x00_set_field32(&reg, BCNCSR1_PRELOAD, bcn_preload);
303                 rt2x00_set_field32(&reg, BCNCSR1_BEACON_CWMIN, queue->cw_min);
304                 rt2x00mmio_register_write(rt2x00dev, BCNCSR1, reg);
305
306                 /*
307                  * Enable synchronisation.
308                  */
309                 rt2x00mmio_register_read(rt2x00dev, CSR14, &reg);
310                 rt2x00_set_field32(&reg, CSR14_TSF_SYNC, conf->sync);
311                 rt2x00mmio_register_write(rt2x00dev, CSR14, reg);
312         }
313
314         if (flags & CONFIG_UPDATE_MAC)
315                 rt2x00mmio_register_multiwrite(rt2x00dev, CSR3,
316                                               conf->mac, sizeof(conf->mac));
317
318         if (flags & CONFIG_UPDATE_BSSID)
319                 rt2x00mmio_register_multiwrite(rt2x00dev, CSR5,
320                                               conf->bssid, sizeof(conf->bssid));
321 }
322
323 static void rt2500pci_config_erp(struct rt2x00_dev *rt2x00dev,
324                                  struct rt2x00lib_erp *erp,
325                                  u32 changed)
326 {
327         int preamble_mask;
328         u32 reg;
329
330         /*
331          * When short preamble is enabled, we should set bit 0x08
332          */
333         if (changed & BSS_CHANGED_ERP_PREAMBLE) {
334                 preamble_mask = erp->short_preamble << 3;
335
336                 rt2x00mmio_register_read(rt2x00dev, TXCSR1, &reg);
337                 rt2x00_set_field32(&reg, TXCSR1_ACK_TIMEOUT, 0x162);
338                 rt2x00_set_field32(&reg, TXCSR1_ACK_CONSUME_TIME, 0xa2);
339                 rt2x00_set_field32(&reg, TXCSR1_TSF_OFFSET, IEEE80211_HEADER);
340                 rt2x00_set_field32(&reg, TXCSR1_AUTORESPONDER, 1);
341                 rt2x00mmio_register_write(rt2x00dev, TXCSR1, reg);
342
343                 rt2x00mmio_register_read(rt2x00dev, ARCSR2, &reg);
344                 rt2x00_set_field32(&reg, ARCSR2_SIGNAL, 0x00);
345                 rt2x00_set_field32(&reg, ARCSR2_SERVICE, 0x04);
346                 rt2x00_set_field32(&reg, ARCSR2_LENGTH,
347                                    GET_DURATION(ACK_SIZE, 10));
348                 rt2x00mmio_register_write(rt2x00dev, ARCSR2, reg);
349
350                 rt2x00mmio_register_read(rt2x00dev, ARCSR3, &reg);
351                 rt2x00_set_field32(&reg, ARCSR3_SIGNAL, 0x01 | preamble_mask);
352                 rt2x00_set_field32(&reg, ARCSR3_SERVICE, 0x04);
353                 rt2x00_set_field32(&reg, ARCSR2_LENGTH,
354                                    GET_DURATION(ACK_SIZE, 20));
355                 rt2x00mmio_register_write(rt2x00dev, ARCSR3, reg);
356
357                 rt2x00mmio_register_read(rt2x00dev, ARCSR4, &reg);
358                 rt2x00_set_field32(&reg, ARCSR4_SIGNAL, 0x02 | preamble_mask);
359                 rt2x00_set_field32(&reg, ARCSR4_SERVICE, 0x04);
360                 rt2x00_set_field32(&reg, ARCSR2_LENGTH,
361                                    GET_DURATION(ACK_SIZE, 55));
362                 rt2x00mmio_register_write(rt2x00dev, ARCSR4, reg);
363
364                 rt2x00mmio_register_read(rt2x00dev, ARCSR5, &reg);
365                 rt2x00_set_field32(&reg, ARCSR5_SIGNAL, 0x03 | preamble_mask);
366                 rt2x00_set_field32(&reg, ARCSR5_SERVICE, 0x84);
367                 rt2x00_set_field32(&reg, ARCSR2_LENGTH,
368                                    GET_DURATION(ACK_SIZE, 110));
369                 rt2x00mmio_register_write(rt2x00dev, ARCSR5, reg);
370         }
371
372         if (changed & BSS_CHANGED_BASIC_RATES)
373                 rt2x00mmio_register_write(rt2x00dev, ARCSR1, erp->basic_rates);
374
375         if (changed & BSS_CHANGED_ERP_SLOT) {
376                 rt2x00mmio_register_read(rt2x00dev, CSR11, &reg);
377                 rt2x00_set_field32(&reg, CSR11_SLOT_TIME, erp->slot_time);
378                 rt2x00mmio_register_write(rt2x00dev, CSR11, reg);
379
380                 rt2x00mmio_register_read(rt2x00dev, CSR18, &reg);
381                 rt2x00_set_field32(&reg, CSR18_SIFS, erp->sifs);
382                 rt2x00_set_field32(&reg, CSR18_PIFS, erp->pifs);
383                 rt2x00mmio_register_write(rt2x00dev, CSR18, reg);
384
385                 rt2x00mmio_register_read(rt2x00dev, CSR19, &reg);
386                 rt2x00_set_field32(&reg, CSR19_DIFS, erp->difs);
387                 rt2x00_set_field32(&reg, CSR19_EIFS, erp->eifs);
388                 rt2x00mmio_register_write(rt2x00dev, CSR19, reg);
389         }
390
391         if (changed & BSS_CHANGED_BEACON_INT) {
392                 rt2x00mmio_register_read(rt2x00dev, CSR12, &reg);
393                 rt2x00_set_field32(&reg, CSR12_BEACON_INTERVAL,
394                                    erp->beacon_int * 16);
395                 rt2x00_set_field32(&reg, CSR12_CFP_MAX_DURATION,
396                                    erp->beacon_int * 16);
397                 rt2x00mmio_register_write(rt2x00dev, CSR12, reg);
398         }
399
400 }
401
402 static void rt2500pci_config_ant(struct rt2x00_dev *rt2x00dev,
403                                  struct antenna_setup *ant)
404 {
405         u32 reg;
406         u8 r14;
407         u8 r2;
408
409         /*
410          * We should never come here because rt2x00lib is supposed
411          * to catch this and send us the correct antenna explicitely.
412          */
413         BUG_ON(ant->rx == ANTENNA_SW_DIVERSITY ||
414                ant->tx == ANTENNA_SW_DIVERSITY);
415
416         rt2x00mmio_register_read(rt2x00dev, BBPCSR1, &reg);
417         rt2500pci_bbp_read(rt2x00dev, 14, &r14);
418         rt2500pci_bbp_read(rt2x00dev, 2, &r2);
419
420         /*
421          * Configure the TX antenna.
422          */
423         switch (ant->tx) {
424         case ANTENNA_A:
425                 rt2x00_set_field8(&r2, BBP_R2_TX_ANTENNA, 0);
426                 rt2x00_set_field32(&reg, BBPCSR1_CCK, 0);
427                 rt2x00_set_field32(&reg, BBPCSR1_OFDM, 0);
428                 break;
429         case ANTENNA_B:
430         default:
431                 rt2x00_set_field8(&r2, BBP_R2_TX_ANTENNA, 2);
432                 rt2x00_set_field32(&reg, BBPCSR1_CCK, 2);
433                 rt2x00_set_field32(&reg, BBPCSR1_OFDM, 2);
434                 break;
435         }
436
437         /*
438          * Configure the RX antenna.
439          */
440         switch (ant->rx) {
441         case ANTENNA_A:
442                 rt2x00_set_field8(&r14, BBP_R14_RX_ANTENNA, 0);
443                 break;
444         case ANTENNA_B:
445         default:
446                 rt2x00_set_field8(&r14, BBP_R14_RX_ANTENNA, 2);
447                 break;
448         }
449
450         /*
451          * RT2525E and RT5222 need to flip TX I/Q
452          */
453         if (rt2x00_rf(rt2x00dev, RF2525E) || rt2x00_rf(rt2x00dev, RF5222)) {
454                 rt2x00_set_field8(&r2, BBP_R2_TX_IQ_FLIP, 1);
455                 rt2x00_set_field32(&reg, BBPCSR1_CCK_FLIP, 1);
456                 rt2x00_set_field32(&reg, BBPCSR1_OFDM_FLIP, 1);
457
458                 /*
459                  * RT2525E does not need RX I/Q Flip.
460                  */
461                 if (rt2x00_rf(rt2x00dev, RF2525E))
462                         rt2x00_set_field8(&r14, BBP_R14_RX_IQ_FLIP, 0);
463         } else {
464                 rt2x00_set_field32(&reg, BBPCSR1_CCK_FLIP, 0);
465                 rt2x00_set_field32(&reg, BBPCSR1_OFDM_FLIP, 0);
466         }
467
468         rt2x00mmio_register_write(rt2x00dev, BBPCSR1, reg);
469         rt2500pci_bbp_write(rt2x00dev, 14, r14);
470         rt2500pci_bbp_write(rt2x00dev, 2, r2);
471 }
472
473 static void rt2500pci_config_channel(struct rt2x00_dev *rt2x00dev,
474                                      struct rf_channel *rf, const int txpower)
475 {
476         u8 r70;
477
478         /*
479          * Set TXpower.
480          */
481         rt2x00_set_field32(&rf->rf3, RF3_TXPOWER, TXPOWER_TO_DEV(txpower));
482
483         /*
484          * Switch on tuning bits.
485          * For RT2523 devices we do not need to update the R1 register.
486          */
487         if (!rt2x00_rf(rt2x00dev, RF2523))
488                 rt2x00_set_field32(&rf->rf1, RF1_TUNER, 1);
489         rt2x00_set_field32(&rf->rf3, RF3_TUNER, 1);
490
491         /*
492          * For RT2525 we should first set the channel to half band higher.
493          */
494         if (rt2x00_rf(rt2x00dev, RF2525)) {
495                 static const u32 vals[] = {
496                         0x00080cbe, 0x00080d02, 0x00080d06, 0x00080d0a,
497                         0x00080d0e, 0x00080d12, 0x00080d16, 0x00080d1a,
498                         0x00080d1e, 0x00080d22, 0x00080d26, 0x00080d2a,
499                         0x00080d2e, 0x00080d3a
500                 };
501
502                 rt2500pci_rf_write(rt2x00dev, 1, rf->rf1);
503                 rt2500pci_rf_write(rt2x00dev, 2, vals[rf->channel - 1]);
504                 rt2500pci_rf_write(rt2x00dev, 3, rf->rf3);
505                 if (rf->rf4)
506                         rt2500pci_rf_write(rt2x00dev, 4, rf->rf4);
507         }
508
509         rt2500pci_rf_write(rt2x00dev, 1, rf->rf1);
510         rt2500pci_rf_write(rt2x00dev, 2, rf->rf2);
511         rt2500pci_rf_write(rt2x00dev, 3, rf->rf3);
512         if (rf->rf4)
513                 rt2500pci_rf_write(rt2x00dev, 4, rf->rf4);
514
515         /*
516          * Channel 14 requires the Japan filter bit to be set.
517          */
518         r70 = 0x46;
519         rt2x00_set_field8(&r70, BBP_R70_JAPAN_FILTER, rf->channel == 14);
520         rt2500pci_bbp_write(rt2x00dev, 70, r70);
521
522         msleep(1);
523
524         /*
525          * Switch off tuning bits.
526          * For RT2523 devices we do not need to update the R1 register.
527          */
528         if (!rt2x00_rf(rt2x00dev, RF2523)) {
529                 rt2x00_set_field32(&rf->rf1, RF1_TUNER, 0);
530                 rt2500pci_rf_write(rt2x00dev, 1, rf->rf1);
531         }
532
533         rt2x00_set_field32(&rf->rf3, RF3_TUNER, 0);
534         rt2500pci_rf_write(rt2x00dev, 3, rf->rf3);
535
536         /*
537          * Clear false CRC during channel switch.
538          */
539         rt2x00mmio_register_read(rt2x00dev, CNT0, &rf->rf1);
540 }
541
542 static void rt2500pci_config_txpower(struct rt2x00_dev *rt2x00dev,
543                                      const int txpower)
544 {
545         u32 rf3;
546
547         rt2x00_rf_read(rt2x00dev, 3, &rf3);
548         rt2x00_set_field32(&rf3, RF3_TXPOWER, TXPOWER_TO_DEV(txpower));
549         rt2500pci_rf_write(rt2x00dev, 3, rf3);
550 }
551
552 static void rt2500pci_config_retry_limit(struct rt2x00_dev *rt2x00dev,
553                                          struct rt2x00lib_conf *libconf)
554 {
555         u32 reg;
556
557         rt2x00mmio_register_read(rt2x00dev, CSR11, &reg);
558         rt2x00_set_field32(&reg, CSR11_LONG_RETRY,
559                            libconf->conf->long_frame_max_tx_count);
560         rt2x00_set_field32(&reg, CSR11_SHORT_RETRY,
561                            libconf->conf->short_frame_max_tx_count);
562         rt2x00mmio_register_write(rt2x00dev, CSR11, reg);
563 }
564
565 static void rt2500pci_config_ps(struct rt2x00_dev *rt2x00dev,
566                                 struct rt2x00lib_conf *libconf)
567 {
568         enum dev_state state =
569             (libconf->conf->flags & IEEE80211_CONF_PS) ?
570                 STATE_SLEEP : STATE_AWAKE;
571         u32 reg;
572
573         if (state == STATE_SLEEP) {
574                 rt2x00mmio_register_read(rt2x00dev, CSR20, &reg);
575                 rt2x00_set_field32(&reg, CSR20_DELAY_AFTER_TBCN,
576                                    (rt2x00dev->beacon_int - 20) * 16);
577                 rt2x00_set_field32(&reg, CSR20_TBCN_BEFORE_WAKEUP,
578                                    libconf->conf->listen_interval - 1);
579
580                 /* We must first disable autowake before it can be enabled */
581                 rt2x00_set_field32(&reg, CSR20_AUTOWAKE, 0);
582                 rt2x00mmio_register_write(rt2x00dev, CSR20, reg);
583
584                 rt2x00_set_field32(&reg, CSR20_AUTOWAKE, 1);
585                 rt2x00mmio_register_write(rt2x00dev, CSR20, reg);
586         } else {
587                 rt2x00mmio_register_read(rt2x00dev, CSR20, &reg);
588                 rt2x00_set_field32(&reg, CSR20_AUTOWAKE, 0);
589                 rt2x00mmio_register_write(rt2x00dev, CSR20, reg);
590         }
591
592         rt2x00dev->ops->lib->set_device_state(rt2x00dev, state);
593 }
594
595 static void rt2500pci_config(struct rt2x00_dev *rt2x00dev,
596                              struct rt2x00lib_conf *libconf,
597                              const unsigned int flags)
598 {
599         if (flags & IEEE80211_CONF_CHANGE_CHANNEL)
600                 rt2500pci_config_channel(rt2x00dev, &libconf->rf,
601                                          libconf->conf->power_level);
602         if ((flags & IEEE80211_CONF_CHANGE_POWER) &&
603             !(flags & IEEE80211_CONF_CHANGE_CHANNEL))
604                 rt2500pci_config_txpower(rt2x00dev,
605                                          libconf->conf->power_level);
606         if (flags & IEEE80211_CONF_CHANGE_RETRY_LIMITS)
607                 rt2500pci_config_retry_limit(rt2x00dev, libconf);
608         if (flags & IEEE80211_CONF_CHANGE_PS)
609                 rt2500pci_config_ps(rt2x00dev, libconf);
610 }
611
612 /*
613  * Link tuning
614  */
615 static void rt2500pci_link_stats(struct rt2x00_dev *rt2x00dev,
616                                  struct link_qual *qual)
617 {
618         u32 reg;
619
620         /*
621          * Update FCS error count from register.
622          */
623         rt2x00mmio_register_read(rt2x00dev, CNT0, &reg);
624         qual->rx_failed = rt2x00_get_field32(reg, CNT0_FCS_ERROR);
625
626         /*
627          * Update False CCA count from register.
628          */
629         rt2x00mmio_register_read(rt2x00dev, CNT3, &reg);
630         qual->false_cca = rt2x00_get_field32(reg, CNT3_FALSE_CCA);
631 }
632
633 static inline void rt2500pci_set_vgc(struct rt2x00_dev *rt2x00dev,
634                                      struct link_qual *qual, u8 vgc_level)
635 {
636         if (qual->vgc_level_reg != vgc_level) {
637                 rt2500pci_bbp_write(rt2x00dev, 17, vgc_level);
638                 qual->vgc_level = vgc_level;
639                 qual->vgc_level_reg = vgc_level;
640         }
641 }
642
643 static void rt2500pci_reset_tuner(struct rt2x00_dev *rt2x00dev,
644                                   struct link_qual *qual)
645 {
646         rt2500pci_set_vgc(rt2x00dev, qual, 0x48);
647 }
648
649 static void rt2500pci_link_tuner(struct rt2x00_dev *rt2x00dev,
650                                  struct link_qual *qual, const u32 count)
651 {
652         /*
653          * To prevent collisions with MAC ASIC on chipsets
654          * up to version C the link tuning should halt after 20
655          * seconds while being associated.
656          */
657         if (rt2x00_rev(rt2x00dev) < RT2560_VERSION_D &&
658             rt2x00dev->intf_associated && count > 20)
659                 return;
660
661         /*
662          * Chipset versions C and lower should directly continue
663          * to the dynamic CCA tuning. Chipset version D and higher
664          * should go straight to dynamic CCA tuning when they
665          * are not associated.
666          */
667         if (rt2x00_rev(rt2x00dev) < RT2560_VERSION_D ||
668             !rt2x00dev->intf_associated)
669                 goto dynamic_cca_tune;
670
671         /*
672          * A too low RSSI will cause too much false CCA which will
673          * then corrupt the R17 tuning. To remidy this the tuning should
674          * be stopped (While making sure the R17 value will not exceed limits)
675          */
676         if (qual->rssi < -80 && count > 20) {
677                 if (qual->vgc_level_reg >= 0x41)
678                         rt2500pci_set_vgc(rt2x00dev, qual, qual->vgc_level);
679                 return;
680         }
681
682         /*
683          * Special big-R17 for short distance
684          */
685         if (qual->rssi >= -58) {
686                 rt2500pci_set_vgc(rt2x00dev, qual, 0x50);
687                 return;
688         }
689
690         /*
691          * Special mid-R17 for middle distance
692          */
693         if (qual->rssi >= -74) {
694                 rt2500pci_set_vgc(rt2x00dev, qual, 0x41);
695                 return;
696         }
697
698         /*
699          * Leave short or middle distance condition, restore r17
700          * to the dynamic tuning range.
701          */
702         if (qual->vgc_level_reg >= 0x41) {
703                 rt2500pci_set_vgc(rt2x00dev, qual, qual->vgc_level);
704                 return;
705         }
706
707 dynamic_cca_tune:
708
709         /*
710          * R17 is inside the dynamic tuning range,
711          * start tuning the link based on the false cca counter.
712          */
713         if (qual->false_cca > 512 && qual->vgc_level_reg < 0x40)
714                 rt2500pci_set_vgc(rt2x00dev, qual, ++qual->vgc_level_reg);
715         else if (qual->false_cca < 100 && qual->vgc_level_reg > 0x32)
716                 rt2500pci_set_vgc(rt2x00dev, qual, --qual->vgc_level_reg);
717 }
718
719 /*
720  * Queue handlers.
721  */
722 static void rt2500pci_start_queue(struct data_queue *queue)
723 {
724         struct rt2x00_dev *rt2x00dev = queue->rt2x00dev;
725         u32 reg;
726
727         switch (queue->qid) {
728         case QID_RX:
729                 rt2x00mmio_register_read(rt2x00dev, RXCSR0, &reg);
730                 rt2x00_set_field32(&reg, RXCSR0_DISABLE_RX, 0);
731                 rt2x00mmio_register_write(rt2x00dev, RXCSR0, reg);
732                 break;
733         case QID_BEACON:
734                 rt2x00mmio_register_read(rt2x00dev, CSR14, &reg);
735                 rt2x00_set_field32(&reg, CSR14_TSF_COUNT, 1);
736                 rt2x00_set_field32(&reg, CSR14_TBCN, 1);
737                 rt2x00_set_field32(&reg, CSR14_BEACON_GEN, 1);
738                 rt2x00mmio_register_write(rt2x00dev, CSR14, reg);
739                 break;
740         default:
741                 break;
742         }
743 }
744
745 static void rt2500pci_kick_queue(struct data_queue *queue)
746 {
747         struct rt2x00_dev *rt2x00dev = queue->rt2x00dev;
748         u32 reg;
749
750         switch (queue->qid) {
751         case QID_AC_VO:
752                 rt2x00mmio_register_read(rt2x00dev, TXCSR0, &reg);
753                 rt2x00_set_field32(&reg, TXCSR0_KICK_PRIO, 1);
754                 rt2x00mmio_register_write(rt2x00dev, TXCSR0, reg);
755                 break;
756         case QID_AC_VI:
757                 rt2x00mmio_register_read(rt2x00dev, TXCSR0, &reg);
758                 rt2x00_set_field32(&reg, TXCSR0_KICK_TX, 1);
759                 rt2x00mmio_register_write(rt2x00dev, TXCSR0, reg);
760                 break;
761         case QID_ATIM:
762                 rt2x00mmio_register_read(rt2x00dev, TXCSR0, &reg);
763                 rt2x00_set_field32(&reg, TXCSR0_KICK_ATIM, 1);
764                 rt2x00mmio_register_write(rt2x00dev, TXCSR0, reg);
765                 break;
766         default:
767                 break;
768         }
769 }
770
771 static void rt2500pci_stop_queue(struct data_queue *queue)
772 {
773         struct rt2x00_dev *rt2x00dev = queue->rt2x00dev;
774         u32 reg;
775
776         switch (queue->qid) {
777         case QID_AC_VO:
778         case QID_AC_VI:
779         case QID_ATIM:
780                 rt2x00mmio_register_read(rt2x00dev, TXCSR0, &reg);
781                 rt2x00_set_field32(&reg, TXCSR0_ABORT, 1);
782                 rt2x00mmio_register_write(rt2x00dev, TXCSR0, reg);
783                 break;
784         case QID_RX:
785                 rt2x00mmio_register_read(rt2x00dev, RXCSR0, &reg);
786                 rt2x00_set_field32(&reg, RXCSR0_DISABLE_RX, 1);
787                 rt2x00mmio_register_write(rt2x00dev, RXCSR0, reg);
788                 break;
789         case QID_BEACON:
790                 rt2x00mmio_register_read(rt2x00dev, CSR14, &reg);
791                 rt2x00_set_field32(&reg, CSR14_TSF_COUNT, 0);
792                 rt2x00_set_field32(&reg, CSR14_TBCN, 0);
793                 rt2x00_set_field32(&reg, CSR14_BEACON_GEN, 0);
794                 rt2x00mmio_register_write(rt2x00dev, CSR14, reg);
795
796                 /*
797                  * Wait for possibly running tbtt tasklets.
798                  */
799                 tasklet_kill(&rt2x00dev->tbtt_tasklet);
800                 break;
801         default:
802                 break;
803         }
804 }
805
806 /*
807  * Initialization functions.
808  */
809 static bool rt2500pci_get_entry_state(struct queue_entry *entry)
810 {
811         struct queue_entry_priv_mmio *entry_priv = entry->priv_data;
812         u32 word;
813
814         if (entry->queue->qid == QID_RX) {
815                 rt2x00_desc_read(entry_priv->desc, 0, &word);
816
817                 return rt2x00_get_field32(word, RXD_W0_OWNER_NIC);
818         } else {
819                 rt2x00_desc_read(entry_priv->desc, 0, &word);
820
821                 return (rt2x00_get_field32(word, TXD_W0_OWNER_NIC) ||
822                         rt2x00_get_field32(word, TXD_W0_VALID));
823         }
824 }
825
826 static void rt2500pci_clear_entry(struct queue_entry *entry)
827 {
828         struct queue_entry_priv_mmio *entry_priv = entry->priv_data;
829         struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb);
830         u32 word;
831
832         if (entry->queue->qid == QID_RX) {
833                 rt2x00_desc_read(entry_priv->desc, 1, &word);
834                 rt2x00_set_field32(&word, RXD_W1_BUFFER_ADDRESS, skbdesc->skb_dma);
835                 rt2x00_desc_write(entry_priv->desc, 1, word);
836
837                 rt2x00_desc_read(entry_priv->desc, 0, &word);
838                 rt2x00_set_field32(&word, RXD_W0_OWNER_NIC, 1);
839                 rt2x00_desc_write(entry_priv->desc, 0, word);
840         } else {
841                 rt2x00_desc_read(entry_priv->desc, 0, &word);
842                 rt2x00_set_field32(&word, TXD_W0_VALID, 0);
843                 rt2x00_set_field32(&word, TXD_W0_OWNER_NIC, 0);
844                 rt2x00_desc_write(entry_priv->desc, 0, word);
845         }
846 }
847
848 static int rt2500pci_init_queues(struct rt2x00_dev *rt2x00dev)
849 {
850         struct queue_entry_priv_mmio *entry_priv;
851         u32 reg;
852
853         /*
854          * Initialize registers.
855          */
856         rt2x00mmio_register_read(rt2x00dev, TXCSR2, &reg);
857         rt2x00_set_field32(&reg, TXCSR2_TXD_SIZE, rt2x00dev->tx[0].desc_size);
858         rt2x00_set_field32(&reg, TXCSR2_NUM_TXD, rt2x00dev->tx[1].limit);
859         rt2x00_set_field32(&reg, TXCSR2_NUM_ATIM, rt2x00dev->atim->limit);
860         rt2x00_set_field32(&reg, TXCSR2_NUM_PRIO, rt2x00dev->tx[0].limit);
861         rt2x00mmio_register_write(rt2x00dev, TXCSR2, reg);
862
863         entry_priv = rt2x00dev->tx[1].entries[0].priv_data;
864         rt2x00mmio_register_read(rt2x00dev, TXCSR3, &reg);
865         rt2x00_set_field32(&reg, TXCSR3_TX_RING_REGISTER,
866                            entry_priv->desc_dma);
867         rt2x00mmio_register_write(rt2x00dev, TXCSR3, reg);
868
869         entry_priv = rt2x00dev->tx[0].entries[0].priv_data;
870         rt2x00mmio_register_read(rt2x00dev, TXCSR5, &reg);
871         rt2x00_set_field32(&reg, TXCSR5_PRIO_RING_REGISTER,
872                            entry_priv->desc_dma);
873         rt2x00mmio_register_write(rt2x00dev, TXCSR5, reg);
874
875         entry_priv = rt2x00dev->atim->entries[0].priv_data;
876         rt2x00mmio_register_read(rt2x00dev, TXCSR4, &reg);
877         rt2x00_set_field32(&reg, TXCSR4_ATIM_RING_REGISTER,
878                            entry_priv->desc_dma);
879         rt2x00mmio_register_write(rt2x00dev, TXCSR4, reg);
880
881         entry_priv = rt2x00dev->bcn->entries[0].priv_data;
882         rt2x00mmio_register_read(rt2x00dev, TXCSR6, &reg);
883         rt2x00_set_field32(&reg, TXCSR6_BEACON_RING_REGISTER,
884                            entry_priv->desc_dma);
885         rt2x00mmio_register_write(rt2x00dev, TXCSR6, reg);
886
887         rt2x00mmio_register_read(rt2x00dev, RXCSR1, &reg);
888         rt2x00_set_field32(&reg, RXCSR1_RXD_SIZE, rt2x00dev->rx->desc_size);
889         rt2x00_set_field32(&reg, RXCSR1_NUM_RXD, rt2x00dev->rx->limit);
890         rt2x00mmio_register_write(rt2x00dev, RXCSR1, reg);
891
892         entry_priv = rt2x00dev->rx->entries[0].priv_data;
893         rt2x00mmio_register_read(rt2x00dev, RXCSR2, &reg);
894         rt2x00_set_field32(&reg, RXCSR2_RX_RING_REGISTER,
895                            entry_priv->desc_dma);
896         rt2x00mmio_register_write(rt2x00dev, RXCSR2, reg);
897
898         return 0;
899 }
900
901 static int rt2500pci_init_registers(struct rt2x00_dev *rt2x00dev)
902 {
903         u32 reg;
904
905         rt2x00mmio_register_write(rt2x00dev, PSCSR0, 0x00020002);
906         rt2x00mmio_register_write(rt2x00dev, PSCSR1, 0x00000002);
907         rt2x00mmio_register_write(rt2x00dev, PSCSR2, 0x00020002);
908         rt2x00mmio_register_write(rt2x00dev, PSCSR3, 0x00000002);
909
910         rt2x00mmio_register_read(rt2x00dev, TIMECSR, &reg);
911         rt2x00_set_field32(&reg, TIMECSR_US_COUNT, 33);
912         rt2x00_set_field32(&reg, TIMECSR_US_64_COUNT, 63);
913         rt2x00_set_field32(&reg, TIMECSR_BEACON_EXPECT, 0);
914         rt2x00mmio_register_write(rt2x00dev, TIMECSR, reg);
915
916         rt2x00mmio_register_read(rt2x00dev, CSR9, &reg);
917         rt2x00_set_field32(&reg, CSR9_MAX_FRAME_UNIT,
918                            rt2x00dev->rx->data_size / 128);
919         rt2x00mmio_register_write(rt2x00dev, CSR9, reg);
920
921         /*
922          * Always use CWmin and CWmax set in descriptor.
923          */
924         rt2x00mmio_register_read(rt2x00dev, CSR11, &reg);
925         rt2x00_set_field32(&reg, CSR11_CW_SELECT, 0);
926         rt2x00mmio_register_write(rt2x00dev, CSR11, reg);
927
928         rt2x00mmio_register_read(rt2x00dev, CSR14, &reg);
929         rt2x00_set_field32(&reg, CSR14_TSF_COUNT, 0);
930         rt2x00_set_field32(&reg, CSR14_TSF_SYNC, 0);
931         rt2x00_set_field32(&reg, CSR14_TBCN, 0);
932         rt2x00_set_field32(&reg, CSR14_TCFP, 0);
933         rt2x00_set_field32(&reg, CSR14_TATIMW, 0);
934         rt2x00_set_field32(&reg, CSR14_BEACON_GEN, 0);
935         rt2x00_set_field32(&reg, CSR14_CFP_COUNT_PRELOAD, 0);
936         rt2x00_set_field32(&reg, CSR14_TBCM_PRELOAD, 0);
937         rt2x00mmio_register_write(rt2x00dev, CSR14, reg);
938
939         rt2x00mmio_register_write(rt2x00dev, CNT3, 0);
940
941         rt2x00mmio_register_read(rt2x00dev, TXCSR8, &reg);
942         rt2x00_set_field32(&reg, TXCSR8_BBP_ID0, 10);
943         rt2x00_set_field32(&reg, TXCSR8_BBP_ID0_VALID, 1);
944         rt2x00_set_field32(&reg, TXCSR8_BBP_ID1, 11);
945         rt2x00_set_field32(&reg, TXCSR8_BBP_ID1_VALID, 1);
946         rt2x00_set_field32(&reg, TXCSR8_BBP_ID2, 13);
947         rt2x00_set_field32(&reg, TXCSR8_BBP_ID2_VALID, 1);
948         rt2x00_set_field32(&reg, TXCSR8_BBP_ID3, 12);
949         rt2x00_set_field32(&reg, TXCSR8_BBP_ID3_VALID, 1);
950         rt2x00mmio_register_write(rt2x00dev, TXCSR8, reg);
951
952         rt2x00mmio_register_read(rt2x00dev, ARTCSR0, &reg);
953         rt2x00_set_field32(&reg, ARTCSR0_ACK_CTS_1MBS, 112);
954         rt2x00_set_field32(&reg, ARTCSR0_ACK_CTS_2MBS, 56);
955         rt2x00_set_field32(&reg, ARTCSR0_ACK_CTS_5_5MBS, 20);
956         rt2x00_set_field32(&reg, ARTCSR0_ACK_CTS_11MBS, 10);
957         rt2x00mmio_register_write(rt2x00dev, ARTCSR0, reg);
958
959         rt2x00mmio_register_read(rt2x00dev, ARTCSR1, &reg);
960         rt2x00_set_field32(&reg, ARTCSR1_ACK_CTS_6MBS, 45);
961         rt2x00_set_field32(&reg, ARTCSR1_ACK_CTS_9MBS, 37);
962         rt2x00_set_field32(&reg, ARTCSR1_ACK_CTS_12MBS, 33);
963         rt2x00_set_field32(&reg, ARTCSR1_ACK_CTS_18MBS, 29);
964         rt2x00mmio_register_write(rt2x00dev, ARTCSR1, reg);
965
966         rt2x00mmio_register_read(rt2x00dev, ARTCSR2, &reg);
967         rt2x00_set_field32(&reg, ARTCSR2_ACK_CTS_24MBS, 29);
968         rt2x00_set_field32(&reg, ARTCSR2_ACK_CTS_36MBS, 25);
969         rt2x00_set_field32(&reg, ARTCSR2_ACK_CTS_48MBS, 25);
970         rt2x00_set_field32(&reg, ARTCSR2_ACK_CTS_54MBS, 25);
971         rt2x00mmio_register_write(rt2x00dev, ARTCSR2, reg);
972
973         rt2x00mmio_register_read(rt2x00dev, RXCSR3, &reg);
974         rt2x00_set_field32(&reg, RXCSR3_BBP_ID0, 47); /* CCK Signal */
975         rt2x00_set_field32(&reg, RXCSR3_BBP_ID0_VALID, 1);
976         rt2x00_set_field32(&reg, RXCSR3_BBP_ID1, 51); /* Rssi */
977         rt2x00_set_field32(&reg, RXCSR3_BBP_ID1_VALID, 1);
978         rt2x00_set_field32(&reg, RXCSR3_BBP_ID2, 42); /* OFDM Rate */
979         rt2x00_set_field32(&reg, RXCSR3_BBP_ID2_VALID, 1);
980         rt2x00_set_field32(&reg, RXCSR3_BBP_ID3, 51); /* RSSI */
981         rt2x00_set_field32(&reg, RXCSR3_BBP_ID3_VALID, 1);
982         rt2x00mmio_register_write(rt2x00dev, RXCSR3, reg);
983
984         rt2x00mmio_register_read(rt2x00dev, PCICSR, &reg);
985         rt2x00_set_field32(&reg, PCICSR_BIG_ENDIAN, 0);
986         rt2x00_set_field32(&reg, PCICSR_RX_TRESHOLD, 0);
987         rt2x00_set_field32(&reg, PCICSR_TX_TRESHOLD, 3);
988         rt2x00_set_field32(&reg, PCICSR_BURST_LENTH, 1);
989         rt2x00_set_field32(&reg, PCICSR_ENABLE_CLK, 1);
990         rt2x00_set_field32(&reg, PCICSR_READ_MULTIPLE, 1);
991         rt2x00_set_field32(&reg, PCICSR_WRITE_INVALID, 1);
992         rt2x00mmio_register_write(rt2x00dev, PCICSR, reg);
993
994         rt2x00mmio_register_write(rt2x00dev, PWRCSR0, 0x3f3b3100);
995
996         rt2x00mmio_register_write(rt2x00dev, GPIOCSR, 0x0000ff00);
997         rt2x00mmio_register_write(rt2x00dev, TESTCSR, 0x000000f0);
998
999         if (rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_AWAKE))
1000                 return -EBUSY;
1001
1002         rt2x00mmio_register_write(rt2x00dev, MACCSR0, 0x00213223);
1003         rt2x00mmio_register_write(rt2x00dev, MACCSR1, 0x00235518);
1004
1005         rt2x00mmio_register_read(rt2x00dev, MACCSR2, &reg);
1006         rt2x00_set_field32(&reg, MACCSR2_DELAY, 64);
1007         rt2x00mmio_register_write(rt2x00dev, MACCSR2, reg);
1008
1009         rt2x00mmio_register_read(rt2x00dev, RALINKCSR, &reg);
1010         rt2x00_set_field32(&reg, RALINKCSR_AR_BBP_DATA0, 17);
1011         rt2x00_set_field32(&reg, RALINKCSR_AR_BBP_ID0, 26);
1012         rt2x00_set_field32(&reg, RALINKCSR_AR_BBP_VALID0, 1);
1013         rt2x00_set_field32(&reg, RALINKCSR_AR_BBP_DATA1, 0);
1014         rt2x00_set_field32(&reg, RALINKCSR_AR_BBP_ID1, 26);
1015         rt2x00_set_field32(&reg, RALINKCSR_AR_BBP_VALID1, 1);
1016         rt2x00mmio_register_write(rt2x00dev, RALINKCSR, reg);
1017
1018         rt2x00mmio_register_write(rt2x00dev, BBPCSR1, 0x82188200);
1019
1020         rt2x00mmio_register_write(rt2x00dev, TXACKCSR0, 0x00000020);
1021
1022         rt2x00mmio_register_read(rt2x00dev, CSR1, &reg);
1023         rt2x00_set_field32(&reg, CSR1_SOFT_RESET, 1);
1024         rt2x00_set_field32(&reg, CSR1_BBP_RESET, 0);
1025         rt2x00_set_field32(&reg, CSR1_HOST_READY, 0);
1026         rt2x00mmio_register_write(rt2x00dev, CSR1, reg);
1027
1028         rt2x00mmio_register_read(rt2x00dev, CSR1, &reg);
1029         rt2x00_set_field32(&reg, CSR1_SOFT_RESET, 0);
1030         rt2x00_set_field32(&reg, CSR1_HOST_READY, 1);
1031         rt2x00mmio_register_write(rt2x00dev, CSR1, reg);
1032
1033         /*
1034          * We must clear the FCS and FIFO error count.
1035          * These registers are cleared on read,
1036          * so we may pass a useless variable to store the value.
1037          */
1038         rt2x00mmio_register_read(rt2x00dev, CNT0, &reg);
1039         rt2x00mmio_register_read(rt2x00dev, CNT4, &reg);
1040
1041         return 0;
1042 }
1043
1044 static int rt2500pci_wait_bbp_ready(struct rt2x00_dev *rt2x00dev)
1045 {
1046         unsigned int i;
1047         u8 value;
1048
1049         for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
1050                 rt2500pci_bbp_read(rt2x00dev, 0, &value);
1051                 if ((value != 0xff) && (value != 0x00))
1052                         return 0;
1053                 udelay(REGISTER_BUSY_DELAY);
1054         }
1055
1056         rt2x00_err(rt2x00dev, "BBP register access failed, aborting\n");
1057         return -EACCES;
1058 }
1059
1060 static int rt2500pci_init_bbp(struct rt2x00_dev *rt2x00dev)
1061 {
1062         unsigned int i;
1063         u16 eeprom;
1064         u8 reg_id;
1065         u8 value;
1066
1067         if (unlikely(rt2500pci_wait_bbp_ready(rt2x00dev)))
1068                 return -EACCES;
1069
1070         rt2500pci_bbp_write(rt2x00dev, 3, 0x02);
1071         rt2500pci_bbp_write(rt2x00dev, 4, 0x19);
1072         rt2500pci_bbp_write(rt2x00dev, 14, 0x1c);
1073         rt2500pci_bbp_write(rt2x00dev, 15, 0x30);
1074         rt2500pci_bbp_write(rt2x00dev, 16, 0xac);
1075         rt2500pci_bbp_write(rt2x00dev, 18, 0x18);
1076         rt2500pci_bbp_write(rt2x00dev, 19, 0xff);
1077         rt2500pci_bbp_write(rt2x00dev, 20, 0x1e);
1078         rt2500pci_bbp_write(rt2x00dev, 21, 0x08);
1079         rt2500pci_bbp_write(rt2x00dev, 22, 0x08);
1080         rt2500pci_bbp_write(rt2x00dev, 23, 0x08);
1081         rt2500pci_bbp_write(rt2x00dev, 24, 0x70);
1082         rt2500pci_bbp_write(rt2x00dev, 25, 0x40);
1083         rt2500pci_bbp_write(rt2x00dev, 26, 0x08);
1084         rt2500pci_bbp_write(rt2x00dev, 27, 0x23);
1085         rt2500pci_bbp_write(rt2x00dev, 30, 0x10);
1086         rt2500pci_bbp_write(rt2x00dev, 31, 0x2b);
1087         rt2500pci_bbp_write(rt2x00dev, 32, 0xb9);
1088         rt2500pci_bbp_write(rt2x00dev, 34, 0x12);
1089         rt2500pci_bbp_write(rt2x00dev, 35, 0x50);
1090         rt2500pci_bbp_write(rt2x00dev, 39, 0xc4);
1091         rt2500pci_bbp_write(rt2x00dev, 40, 0x02);
1092         rt2500pci_bbp_write(rt2x00dev, 41, 0x60);
1093         rt2500pci_bbp_write(rt2x00dev, 53, 0x10);
1094         rt2500pci_bbp_write(rt2x00dev, 54, 0x18);
1095         rt2500pci_bbp_write(rt2x00dev, 56, 0x08);
1096         rt2500pci_bbp_write(rt2x00dev, 57, 0x10);
1097         rt2500pci_bbp_write(rt2x00dev, 58, 0x08);
1098         rt2500pci_bbp_write(rt2x00dev, 61, 0x6d);
1099         rt2500pci_bbp_write(rt2x00dev, 62, 0x10);
1100
1101         for (i = 0; i < EEPROM_BBP_SIZE; i++) {
1102                 rt2x00_eeprom_read(rt2x00dev, EEPROM_BBP_START + i, &eeprom);
1103
1104                 if (eeprom != 0xffff && eeprom != 0x0000) {
1105                         reg_id = rt2x00_get_field16(eeprom, EEPROM_BBP_REG_ID);
1106                         value = rt2x00_get_field16(eeprom, EEPROM_BBP_VALUE);
1107                         rt2500pci_bbp_write(rt2x00dev, reg_id, value);
1108                 }
1109         }
1110
1111         return 0;
1112 }
1113
1114 /*
1115  * Device state switch handlers.
1116  */
1117 static void rt2500pci_toggle_irq(struct rt2x00_dev *rt2x00dev,
1118                                  enum dev_state state)
1119 {
1120         int mask = (state == STATE_RADIO_IRQ_OFF);
1121         u32 reg;
1122         unsigned long flags;
1123
1124         /*
1125          * When interrupts are being enabled, the interrupt registers
1126          * should clear the register to assure a clean state.
1127          */
1128         if (state == STATE_RADIO_IRQ_ON) {
1129                 rt2x00mmio_register_read(rt2x00dev, CSR7, &reg);
1130                 rt2x00mmio_register_write(rt2x00dev, CSR7, reg);
1131         }
1132
1133         /*
1134          * Only toggle the interrupts bits we are going to use.
1135          * Non-checked interrupt bits are disabled by default.
1136          */
1137         spin_lock_irqsave(&rt2x00dev->irqmask_lock, flags);
1138
1139         rt2x00mmio_register_read(rt2x00dev, CSR8, &reg);
1140         rt2x00_set_field32(&reg, CSR8_TBCN_EXPIRE, mask);
1141         rt2x00_set_field32(&reg, CSR8_TXDONE_TXRING, mask);
1142         rt2x00_set_field32(&reg, CSR8_TXDONE_ATIMRING, mask);
1143         rt2x00_set_field32(&reg, CSR8_TXDONE_PRIORING, mask);
1144         rt2x00_set_field32(&reg, CSR8_RXDONE, mask);
1145         rt2x00mmio_register_write(rt2x00dev, CSR8, reg);
1146
1147         spin_unlock_irqrestore(&rt2x00dev->irqmask_lock, flags);
1148
1149         if (state == STATE_RADIO_IRQ_OFF) {
1150                 /*
1151                  * Ensure that all tasklets are finished.
1152                  */
1153                 tasklet_kill(&rt2x00dev->txstatus_tasklet);
1154                 tasklet_kill(&rt2x00dev->rxdone_tasklet);
1155                 tasklet_kill(&rt2x00dev->tbtt_tasklet);
1156         }
1157 }
1158
1159 static int rt2500pci_enable_radio(struct rt2x00_dev *rt2x00dev)
1160 {
1161         /*
1162          * Initialize all registers.
1163          */
1164         if (unlikely(rt2500pci_init_queues(rt2x00dev) ||
1165                      rt2500pci_init_registers(rt2x00dev) ||
1166                      rt2500pci_init_bbp(rt2x00dev)))
1167                 return -EIO;
1168
1169         return 0;
1170 }
1171
1172 static void rt2500pci_disable_radio(struct rt2x00_dev *rt2x00dev)
1173 {
1174         /*
1175          * Disable power
1176          */
1177         rt2x00mmio_register_write(rt2x00dev, PWRCSR0, 0);
1178 }
1179
1180 static int rt2500pci_set_state(struct rt2x00_dev *rt2x00dev,
1181                                enum dev_state state)
1182 {
1183         u32 reg, reg2;
1184         unsigned int i;
1185         char put_to_sleep;
1186         char bbp_state;
1187         char rf_state;
1188
1189         put_to_sleep = (state != STATE_AWAKE);
1190
1191         rt2x00mmio_register_read(rt2x00dev, PWRCSR1, &reg);
1192         rt2x00_set_field32(&reg, PWRCSR1_SET_STATE, 1);
1193         rt2x00_set_field32(&reg, PWRCSR1_BBP_DESIRE_STATE, state);
1194         rt2x00_set_field32(&reg, PWRCSR1_RF_DESIRE_STATE, state);
1195         rt2x00_set_field32(&reg, PWRCSR1_PUT_TO_SLEEP, put_to_sleep);
1196         rt2x00mmio_register_write(rt2x00dev, PWRCSR1, reg);
1197
1198         /*
1199          * Device is not guaranteed to be in the requested state yet.
1200          * We must wait until the register indicates that the
1201          * device has entered the correct state.
1202          */
1203         for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
1204                 rt2x00mmio_register_read(rt2x00dev, PWRCSR1, &reg2);
1205                 bbp_state = rt2x00_get_field32(reg2, PWRCSR1_BBP_CURR_STATE);
1206                 rf_state = rt2x00_get_field32(reg2, PWRCSR1_RF_CURR_STATE);
1207                 if (bbp_state == state && rf_state == state)
1208                         return 0;
1209                 rt2x00mmio_register_write(rt2x00dev, PWRCSR1, reg);
1210                 msleep(10);
1211         }
1212
1213         return -EBUSY;
1214 }
1215
1216 static int rt2500pci_set_device_state(struct rt2x00_dev *rt2x00dev,
1217                                       enum dev_state state)
1218 {
1219         int retval = 0;
1220
1221         switch (state) {
1222         case STATE_RADIO_ON:
1223                 retval = rt2500pci_enable_radio(rt2x00dev);
1224                 break;
1225         case STATE_RADIO_OFF:
1226                 rt2500pci_disable_radio(rt2x00dev);
1227                 break;
1228         case STATE_RADIO_IRQ_ON:
1229         case STATE_RADIO_IRQ_OFF:
1230                 rt2500pci_toggle_irq(rt2x00dev, state);
1231                 break;
1232         case STATE_DEEP_SLEEP:
1233         case STATE_SLEEP:
1234         case STATE_STANDBY:
1235         case STATE_AWAKE:
1236                 retval = rt2500pci_set_state(rt2x00dev, state);
1237                 break;
1238         default:
1239                 retval = -ENOTSUPP;
1240                 break;
1241         }
1242
1243         if (unlikely(retval))
1244                 rt2x00_err(rt2x00dev, "Device failed to enter state %d (%d)\n",
1245                            state, retval);
1246
1247         return retval;
1248 }
1249
1250 /*
1251  * TX descriptor initialization
1252  */
1253 static void rt2500pci_write_tx_desc(struct queue_entry *entry,
1254                                     struct txentry_desc *txdesc)
1255 {
1256         struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb);
1257         struct queue_entry_priv_mmio *entry_priv = entry->priv_data;
1258         __le32 *txd = entry_priv->desc;
1259         u32 word;
1260
1261         /*
1262          * Start writing the descriptor words.
1263          */
1264         rt2x00_desc_read(txd, 1, &word);
1265         rt2x00_set_field32(&word, TXD_W1_BUFFER_ADDRESS, skbdesc->skb_dma);
1266         rt2x00_desc_write(txd, 1, word);
1267
1268         rt2x00_desc_read(txd, 2, &word);
1269         rt2x00_set_field32(&word, TXD_W2_IV_OFFSET, IEEE80211_HEADER);
1270         rt2x00_set_field32(&word, TXD_W2_AIFS, entry->queue->aifs);
1271         rt2x00_set_field32(&word, TXD_W2_CWMIN, entry->queue->cw_min);
1272         rt2x00_set_field32(&word, TXD_W2_CWMAX, entry->queue->cw_max);
1273         rt2x00_desc_write(txd, 2, word);
1274
1275         rt2x00_desc_read(txd, 3, &word);
1276         rt2x00_set_field32(&word, TXD_W3_PLCP_SIGNAL, txdesc->u.plcp.signal);
1277         rt2x00_set_field32(&word, TXD_W3_PLCP_SERVICE, txdesc->u.plcp.service);
1278         rt2x00_set_field32(&word, TXD_W3_PLCP_LENGTH_LOW,
1279                            txdesc->u.plcp.length_low);
1280         rt2x00_set_field32(&word, TXD_W3_PLCP_LENGTH_HIGH,
1281                            txdesc->u.plcp.length_high);
1282         rt2x00_desc_write(txd, 3, word);
1283
1284         rt2x00_desc_read(txd, 10, &word);
1285         rt2x00_set_field32(&word, TXD_W10_RTS,
1286                            test_bit(ENTRY_TXD_RTS_FRAME, &txdesc->flags));
1287         rt2x00_desc_write(txd, 10, word);
1288
1289         /*
1290          * Writing TXD word 0 must the last to prevent a race condition with
1291          * the device, whereby the device may take hold of the TXD before we
1292          * finished updating it.
1293          */
1294         rt2x00_desc_read(txd, 0, &word);
1295         rt2x00_set_field32(&word, TXD_W0_OWNER_NIC, 1);
1296         rt2x00_set_field32(&word, TXD_W0_VALID, 1);
1297         rt2x00_set_field32(&word, TXD_W0_MORE_FRAG,
1298                            test_bit(ENTRY_TXD_MORE_FRAG, &txdesc->flags));
1299         rt2x00_set_field32(&word, TXD_W0_ACK,
1300                            test_bit(ENTRY_TXD_ACK, &txdesc->flags));
1301         rt2x00_set_field32(&word, TXD_W0_TIMESTAMP,
1302                            test_bit(ENTRY_TXD_REQ_TIMESTAMP, &txdesc->flags));
1303         rt2x00_set_field32(&word, TXD_W0_OFDM,
1304                            (txdesc->rate_mode == RATE_MODE_OFDM));
1305         rt2x00_set_field32(&word, TXD_W0_CIPHER_OWNER, 1);
1306         rt2x00_set_field32(&word, TXD_W0_IFS, txdesc->u.plcp.ifs);
1307         rt2x00_set_field32(&word, TXD_W0_RETRY_MODE,
1308                            test_bit(ENTRY_TXD_RETRY_MODE, &txdesc->flags));
1309         rt2x00_set_field32(&word, TXD_W0_DATABYTE_COUNT, txdesc->length);
1310         rt2x00_set_field32(&word, TXD_W0_CIPHER_ALG, CIPHER_NONE);
1311         rt2x00_desc_write(txd, 0, word);
1312
1313         /*
1314          * Register descriptor details in skb frame descriptor.
1315          */
1316         skbdesc->desc = txd;
1317         skbdesc->desc_len = TXD_DESC_SIZE;
1318 }
1319
1320 /*
1321  * TX data initialization
1322  */
1323 static void rt2500pci_write_beacon(struct queue_entry *entry,
1324                                    struct txentry_desc *txdesc)
1325 {
1326         struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
1327         u32 reg;
1328
1329         /*
1330          * Disable beaconing while we are reloading the beacon data,
1331          * otherwise we might be sending out invalid data.
1332          */
1333         rt2x00mmio_register_read(rt2x00dev, CSR14, &reg);
1334         rt2x00_set_field32(&reg, CSR14_BEACON_GEN, 0);
1335         rt2x00mmio_register_write(rt2x00dev, CSR14, reg);
1336
1337         if (rt2x00queue_map_txskb(entry)) {
1338                 rt2x00_err(rt2x00dev, "Fail to map beacon, aborting\n");
1339                 goto out;
1340         }
1341
1342         /*
1343          * Write the TX descriptor for the beacon.
1344          */
1345         rt2500pci_write_tx_desc(entry, txdesc);
1346
1347         /*
1348          * Dump beacon to userspace through debugfs.
1349          */
1350         rt2x00debug_dump_frame(rt2x00dev, DUMP_FRAME_BEACON, entry->skb);
1351 out:
1352         /*
1353          * Enable beaconing again.
1354          */
1355         rt2x00_set_field32(&reg, CSR14_BEACON_GEN, 1);
1356         rt2x00mmio_register_write(rt2x00dev, CSR14, reg);
1357 }
1358
1359 /*
1360  * RX control handlers
1361  */
1362 static void rt2500pci_fill_rxdone(struct queue_entry *entry,
1363                                   struct rxdone_entry_desc *rxdesc)
1364 {
1365         struct queue_entry_priv_mmio *entry_priv = entry->priv_data;
1366         u32 word0;
1367         u32 word2;
1368
1369         rt2x00_desc_read(entry_priv->desc, 0, &word0);
1370         rt2x00_desc_read(entry_priv->desc, 2, &word2);
1371
1372         if (rt2x00_get_field32(word0, RXD_W0_CRC_ERROR))
1373                 rxdesc->flags |= RX_FLAG_FAILED_FCS_CRC;
1374         if (rt2x00_get_field32(word0, RXD_W0_PHYSICAL_ERROR))
1375                 rxdesc->flags |= RX_FLAG_FAILED_PLCP_CRC;
1376
1377         /*
1378          * Obtain the status about this packet.
1379          * When frame was received with an OFDM bitrate,
1380          * the signal is the PLCP value. If it was received with
1381          * a CCK bitrate the signal is the rate in 100kbit/s.
1382          */
1383         rxdesc->signal = rt2x00_get_field32(word2, RXD_W2_SIGNAL);
1384         rxdesc->rssi = rt2x00_get_field32(word2, RXD_W2_RSSI) -
1385             entry->queue->rt2x00dev->rssi_offset;
1386         rxdesc->size = rt2x00_get_field32(word0, RXD_W0_DATABYTE_COUNT);
1387
1388         if (rt2x00_get_field32(word0, RXD_W0_OFDM))
1389                 rxdesc->dev_flags |= RXDONE_SIGNAL_PLCP;
1390         else
1391                 rxdesc->dev_flags |= RXDONE_SIGNAL_BITRATE;
1392         if (rt2x00_get_field32(word0, RXD_W0_MY_BSS))
1393                 rxdesc->dev_flags |= RXDONE_MY_BSS;
1394 }
1395
1396 /*
1397  * Interrupt functions.
1398  */
1399 static void rt2500pci_txdone(struct rt2x00_dev *rt2x00dev,
1400                              const enum data_queue_qid queue_idx)
1401 {
1402         struct data_queue *queue = rt2x00queue_get_tx_queue(rt2x00dev, queue_idx);
1403         struct queue_entry_priv_mmio *entry_priv;
1404         struct queue_entry *entry;
1405         struct txdone_entry_desc txdesc;
1406         u32 word;
1407
1408         while (!rt2x00queue_empty(queue)) {
1409                 entry = rt2x00queue_get_entry(queue, Q_INDEX_DONE);
1410                 entry_priv = entry->priv_data;
1411                 rt2x00_desc_read(entry_priv->desc, 0, &word);
1412
1413                 if (rt2x00_get_field32(word, TXD_W0_OWNER_NIC) ||
1414                     !rt2x00_get_field32(word, TXD_W0_VALID))
1415                         break;
1416
1417                 /*
1418                  * Obtain the status about this packet.
1419                  */
1420                 txdesc.flags = 0;
1421                 switch (rt2x00_get_field32(word, TXD_W0_RESULT)) {
1422                 case 0: /* Success */
1423                 case 1: /* Success with retry */
1424                         __set_bit(TXDONE_SUCCESS, &txdesc.flags);
1425                         break;
1426                 case 2: /* Failure, excessive retries */
1427                         __set_bit(TXDONE_EXCESSIVE_RETRY, &txdesc.flags);
1428                         /* Don't break, this is a failed frame! */
1429                 default: /* Failure */
1430                         __set_bit(TXDONE_FAILURE, &txdesc.flags);
1431                 }
1432                 txdesc.retry = rt2x00_get_field32(word, TXD_W0_RETRY_COUNT);
1433
1434                 rt2x00lib_txdone(entry, &txdesc);
1435         }
1436 }
1437
1438 static inline void rt2500pci_enable_interrupt(struct rt2x00_dev *rt2x00dev,
1439                                               struct rt2x00_field32 irq_field)
1440 {
1441         u32 reg;
1442
1443         /*
1444          * Enable a single interrupt. The interrupt mask register
1445          * access needs locking.
1446          */
1447         spin_lock_irq(&rt2x00dev->irqmask_lock);
1448
1449         rt2x00mmio_register_read(rt2x00dev, CSR8, &reg);
1450         rt2x00_set_field32(&reg, irq_field, 0);
1451         rt2x00mmio_register_write(rt2x00dev, CSR8, reg);
1452
1453         spin_unlock_irq(&rt2x00dev->irqmask_lock);
1454 }
1455
1456 static void rt2500pci_txstatus_tasklet(unsigned long data)
1457 {
1458         struct rt2x00_dev *rt2x00dev = (struct rt2x00_dev *)data;
1459         u32 reg;
1460
1461         /*
1462          * Handle all tx queues.
1463          */
1464         rt2500pci_txdone(rt2x00dev, QID_ATIM);
1465         rt2500pci_txdone(rt2x00dev, QID_AC_VO);
1466         rt2500pci_txdone(rt2x00dev, QID_AC_VI);
1467
1468         /*
1469          * Enable all TXDONE interrupts again.
1470          */
1471         if (test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags)) {
1472                 spin_lock_irq(&rt2x00dev->irqmask_lock);
1473
1474                 rt2x00mmio_register_read(rt2x00dev, CSR8, &reg);
1475                 rt2x00_set_field32(&reg, CSR8_TXDONE_TXRING, 0);
1476                 rt2x00_set_field32(&reg, CSR8_TXDONE_ATIMRING, 0);
1477                 rt2x00_set_field32(&reg, CSR8_TXDONE_PRIORING, 0);
1478                 rt2x00mmio_register_write(rt2x00dev, CSR8, reg);
1479
1480                 spin_unlock_irq(&rt2x00dev->irqmask_lock);
1481         }
1482 }
1483
1484 static void rt2500pci_tbtt_tasklet(unsigned long data)
1485 {
1486         struct rt2x00_dev *rt2x00dev = (struct rt2x00_dev *)data;
1487         rt2x00lib_beacondone(rt2x00dev);
1488         if (test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
1489                 rt2500pci_enable_interrupt(rt2x00dev, CSR8_TBCN_EXPIRE);
1490 }
1491
1492 static void rt2500pci_rxdone_tasklet(unsigned long data)
1493 {
1494         struct rt2x00_dev *rt2x00dev = (struct rt2x00_dev *)data;
1495         if (rt2x00mmio_rxdone(rt2x00dev))
1496                 tasklet_schedule(&rt2x00dev->rxdone_tasklet);
1497         else if (test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
1498                 rt2500pci_enable_interrupt(rt2x00dev, CSR8_RXDONE);
1499 }
1500
1501 static irqreturn_t rt2500pci_interrupt(int irq, void *dev_instance)
1502 {
1503         struct rt2x00_dev *rt2x00dev = dev_instance;
1504         u32 reg, mask;
1505
1506         /*
1507          * Get the interrupt sources & saved to local variable.
1508          * Write register value back to clear pending interrupts.
1509          */
1510         rt2x00mmio_register_read(rt2x00dev, CSR7, &reg);
1511         rt2x00mmio_register_write(rt2x00dev, CSR7, reg);
1512
1513         if (!reg)
1514                 return IRQ_NONE;
1515
1516         if (!test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
1517                 return IRQ_HANDLED;
1518
1519         mask = reg;
1520
1521         /*
1522          * Schedule tasklets for interrupt handling.
1523          */
1524         if (rt2x00_get_field32(reg, CSR7_TBCN_EXPIRE))
1525                 tasklet_hi_schedule(&rt2x00dev->tbtt_tasklet);
1526
1527         if (rt2x00_get_field32(reg, CSR7_RXDONE))
1528                 tasklet_schedule(&rt2x00dev->rxdone_tasklet);
1529
1530         if (rt2x00_get_field32(reg, CSR7_TXDONE_ATIMRING) ||
1531             rt2x00_get_field32(reg, CSR7_TXDONE_PRIORING) ||
1532             rt2x00_get_field32(reg, CSR7_TXDONE_TXRING)) {
1533                 tasklet_schedule(&rt2x00dev->txstatus_tasklet);
1534                 /*
1535                  * Mask out all txdone interrupts.
1536                  */
1537                 rt2x00_set_field32(&mask, CSR8_TXDONE_TXRING, 1);
1538                 rt2x00_set_field32(&mask, CSR8_TXDONE_ATIMRING, 1);
1539                 rt2x00_set_field32(&mask, CSR8_TXDONE_PRIORING, 1);
1540         }
1541
1542         /*
1543          * Disable all interrupts for which a tasklet was scheduled right now,
1544          * the tasklet will reenable the appropriate interrupts.
1545          */
1546         spin_lock(&rt2x00dev->irqmask_lock);
1547
1548         rt2x00mmio_register_read(rt2x00dev, CSR8, &reg);
1549         reg |= mask;
1550         rt2x00mmio_register_write(rt2x00dev, CSR8, reg);
1551
1552         spin_unlock(&rt2x00dev->irqmask_lock);
1553
1554         return IRQ_HANDLED;
1555 }
1556
1557 /*
1558  * Device probe functions.
1559  */
1560 static int rt2500pci_validate_eeprom(struct rt2x00_dev *rt2x00dev)
1561 {
1562         struct eeprom_93cx6 eeprom;
1563         u32 reg;
1564         u16 word;
1565         u8 *mac;
1566
1567         rt2x00mmio_register_read(rt2x00dev, CSR21, &reg);
1568
1569         eeprom.data = rt2x00dev;
1570         eeprom.register_read = rt2500pci_eepromregister_read;
1571         eeprom.register_write = rt2500pci_eepromregister_write;
1572         eeprom.width = rt2x00_get_field32(reg, CSR21_TYPE_93C46) ?
1573             PCI_EEPROM_WIDTH_93C46 : PCI_EEPROM_WIDTH_93C66;
1574         eeprom.reg_data_in = 0;
1575         eeprom.reg_data_out = 0;
1576         eeprom.reg_data_clock = 0;
1577         eeprom.reg_chip_select = 0;
1578
1579         eeprom_93cx6_multiread(&eeprom, EEPROM_BASE, rt2x00dev->eeprom,
1580                                EEPROM_SIZE / sizeof(u16));
1581
1582         /*
1583          * Start validation of the data that has been read.
1584          */
1585         mac = rt2x00_eeprom_addr(rt2x00dev, EEPROM_MAC_ADDR_0);
1586         if (!is_valid_ether_addr(mac)) {
1587                 eth_random_addr(mac);
1588                 rt2x00_eeprom_dbg(rt2x00dev, "MAC: %pM\n", mac);
1589         }
1590
1591         rt2x00_eeprom_read(rt2x00dev, EEPROM_ANTENNA, &word);
1592         if (word == 0xffff) {
1593                 rt2x00_set_field16(&word, EEPROM_ANTENNA_NUM, 2);
1594                 rt2x00_set_field16(&word, EEPROM_ANTENNA_TX_DEFAULT,
1595                                    ANTENNA_SW_DIVERSITY);
1596                 rt2x00_set_field16(&word, EEPROM_ANTENNA_RX_DEFAULT,
1597                                    ANTENNA_SW_DIVERSITY);
1598                 rt2x00_set_field16(&word, EEPROM_ANTENNA_LED_MODE,
1599                                    LED_MODE_DEFAULT);
1600                 rt2x00_set_field16(&word, EEPROM_ANTENNA_DYN_TXAGC, 0);
1601                 rt2x00_set_field16(&word, EEPROM_ANTENNA_HARDWARE_RADIO, 0);
1602                 rt2x00_set_field16(&word, EEPROM_ANTENNA_RF_TYPE, RF2522);
1603                 rt2x00_eeprom_write(rt2x00dev, EEPROM_ANTENNA, word);
1604                 rt2x00_eeprom_dbg(rt2x00dev, "Antenna: 0x%04x\n", word);
1605         }
1606
1607         rt2x00_eeprom_read(rt2x00dev, EEPROM_NIC, &word);
1608         if (word == 0xffff) {
1609                 rt2x00_set_field16(&word, EEPROM_NIC_CARDBUS_ACCEL, 0);
1610                 rt2x00_set_field16(&word, EEPROM_NIC_DYN_BBP_TUNE, 0);
1611                 rt2x00_set_field16(&word, EEPROM_NIC_CCK_TX_POWER, 0);
1612                 rt2x00_eeprom_write(rt2x00dev, EEPROM_NIC, word);
1613                 rt2x00_eeprom_dbg(rt2x00dev, "NIC: 0x%04x\n", word);
1614         }
1615
1616         rt2x00_eeprom_read(rt2x00dev, EEPROM_CALIBRATE_OFFSET, &word);
1617         if (word == 0xffff) {
1618                 rt2x00_set_field16(&word, EEPROM_CALIBRATE_OFFSET_RSSI,
1619                                    DEFAULT_RSSI_OFFSET);
1620                 rt2x00_eeprom_write(rt2x00dev, EEPROM_CALIBRATE_OFFSET, word);
1621                 rt2x00_eeprom_dbg(rt2x00dev, "Calibrate offset: 0x%04x\n",
1622                                   word);
1623         }
1624
1625         return 0;
1626 }
1627
1628 static int rt2500pci_init_eeprom(struct rt2x00_dev *rt2x00dev)
1629 {
1630         u32 reg;
1631         u16 value;
1632         u16 eeprom;
1633
1634         /*
1635          * Read EEPROM word for configuration.
1636          */
1637         rt2x00_eeprom_read(rt2x00dev, EEPROM_ANTENNA, &eeprom);
1638
1639         /*
1640          * Identify RF chipset.
1641          */
1642         value = rt2x00_get_field16(eeprom, EEPROM_ANTENNA_RF_TYPE);
1643         rt2x00mmio_register_read(rt2x00dev, CSR0, &reg);
1644         rt2x00_set_chip(rt2x00dev, RT2560, value,
1645                         rt2x00_get_field32(reg, CSR0_REVISION));
1646
1647         if (!rt2x00_rf(rt2x00dev, RF2522) &&
1648             !rt2x00_rf(rt2x00dev, RF2523) &&
1649             !rt2x00_rf(rt2x00dev, RF2524) &&
1650             !rt2x00_rf(rt2x00dev, RF2525) &&
1651             !rt2x00_rf(rt2x00dev, RF2525E) &&
1652             !rt2x00_rf(rt2x00dev, RF5222)) {
1653                 rt2x00_err(rt2x00dev, "Invalid RF chipset detected\n");
1654                 return -ENODEV;
1655         }
1656
1657         /*
1658          * Identify default antenna configuration.
1659          */
1660         rt2x00dev->default_ant.tx =
1661             rt2x00_get_field16(eeprom, EEPROM_ANTENNA_TX_DEFAULT);
1662         rt2x00dev->default_ant.rx =
1663             rt2x00_get_field16(eeprom, EEPROM_ANTENNA_RX_DEFAULT);
1664
1665         /*
1666          * Store led mode, for correct led behaviour.
1667          */
1668 #ifdef CONFIG_RT2X00_LIB_LEDS
1669         value = rt2x00_get_field16(eeprom, EEPROM_ANTENNA_LED_MODE);
1670
1671         rt2500pci_init_led(rt2x00dev, &rt2x00dev->led_radio, LED_TYPE_RADIO);
1672         if (value == LED_MODE_TXRX_ACTIVITY ||
1673             value == LED_MODE_DEFAULT ||
1674             value == LED_MODE_ASUS)
1675                 rt2500pci_init_led(rt2x00dev, &rt2x00dev->led_qual,
1676                                    LED_TYPE_ACTIVITY);
1677 #endif /* CONFIG_RT2X00_LIB_LEDS */
1678
1679         /*
1680          * Detect if this device has an hardware controlled radio.
1681          */
1682         if (rt2x00_get_field16(eeprom, EEPROM_ANTENNA_HARDWARE_RADIO)) {
1683                 __set_bit(CAPABILITY_HW_BUTTON, &rt2x00dev->cap_flags);
1684                 /*
1685                  * On this device RFKILL initialized during probe does not work.
1686                  */
1687                 __set_bit(REQUIRE_DELAYED_RFKILL, &rt2x00dev->cap_flags);
1688         }
1689
1690         /*
1691          * Check if the BBP tuning should be enabled.
1692          */
1693         rt2x00_eeprom_read(rt2x00dev, EEPROM_NIC, &eeprom);
1694         if (!rt2x00_get_field16(eeprom, EEPROM_NIC_DYN_BBP_TUNE))
1695                 __set_bit(CAPABILITY_LINK_TUNING, &rt2x00dev->cap_flags);
1696
1697         /*
1698          * Read the RSSI <-> dBm offset information.
1699          */
1700         rt2x00_eeprom_read(rt2x00dev, EEPROM_CALIBRATE_OFFSET, &eeprom);
1701         rt2x00dev->rssi_offset =
1702             rt2x00_get_field16(eeprom, EEPROM_CALIBRATE_OFFSET_RSSI);
1703
1704         return 0;
1705 }
1706
1707 /*
1708  * RF value list for RF2522
1709  * Supports: 2.4 GHz
1710  */
1711 static const struct rf_channel rf_vals_bg_2522[] = {
1712         { 1,  0x00002050, 0x000c1fda, 0x00000101, 0 },
1713         { 2,  0x00002050, 0x000c1fee, 0x00000101, 0 },
1714         { 3,  0x00002050, 0x000c2002, 0x00000101, 0 },
1715         { 4,  0x00002050, 0x000c2016, 0x00000101, 0 },
1716         { 5,  0x00002050, 0x000c202a, 0x00000101, 0 },
1717         { 6,  0x00002050, 0x000c203e, 0x00000101, 0 },
1718         { 7,  0x00002050, 0x000c2052, 0x00000101, 0 },
1719         { 8,  0x00002050, 0x000c2066, 0x00000101, 0 },
1720         { 9,  0x00002050, 0x000c207a, 0x00000101, 0 },
1721         { 10, 0x00002050, 0x000c208e, 0x00000101, 0 },
1722         { 11, 0x00002050, 0x000c20a2, 0x00000101, 0 },
1723         { 12, 0x00002050, 0x000c20b6, 0x00000101, 0 },
1724         { 13, 0x00002050, 0x000c20ca, 0x00000101, 0 },
1725         { 14, 0x00002050, 0x000c20fa, 0x00000101, 0 },
1726 };
1727
1728 /*
1729  * RF value list for RF2523
1730  * Supports: 2.4 GHz
1731  */
1732 static const struct rf_channel rf_vals_bg_2523[] = {
1733         { 1,  0x00022010, 0x00000c9e, 0x000e0111, 0x00000a1b },
1734         { 2,  0x00022010, 0x00000ca2, 0x000e0111, 0x00000a1b },
1735         { 3,  0x00022010, 0x00000ca6, 0x000e0111, 0x00000a1b },
1736         { 4,  0x00022010, 0x00000caa, 0x000e0111, 0x00000a1b },
1737         { 5,  0x00022010, 0x00000cae, 0x000e0111, 0x00000a1b },
1738         { 6,  0x00022010, 0x00000cb2, 0x000e0111, 0x00000a1b },
1739         { 7,  0x00022010, 0x00000cb6, 0x000e0111, 0x00000a1b },
1740         { 8,  0x00022010, 0x00000cba, 0x000e0111, 0x00000a1b },
1741         { 9,  0x00022010, 0x00000cbe, 0x000e0111, 0x00000a1b },
1742         { 10, 0x00022010, 0x00000d02, 0x000e0111, 0x00000a1b },
1743         { 11, 0x00022010, 0x00000d06, 0x000e0111, 0x00000a1b },
1744         { 12, 0x00022010, 0x00000d0a, 0x000e0111, 0x00000a1b },
1745         { 13, 0x00022010, 0x00000d0e, 0x000e0111, 0x00000a1b },
1746         { 14, 0x00022010, 0x00000d1a, 0x000e0111, 0x00000a03 },
1747 };
1748
1749 /*
1750  * RF value list for RF2524
1751  * Supports: 2.4 GHz
1752  */
1753 static const struct rf_channel rf_vals_bg_2524[] = {
1754         { 1,  0x00032020, 0x00000c9e, 0x00000101, 0x00000a1b },
1755         { 2,  0x00032020, 0x00000ca2, 0x00000101, 0x00000a1b },
1756         { 3,  0x00032020, 0x00000ca6, 0x00000101, 0x00000a1b },
1757         { 4,  0x00032020, 0x00000caa, 0x00000101, 0x00000a1b },
1758         { 5,  0x00032020, 0x00000cae, 0x00000101, 0x00000a1b },
1759         { 6,  0x00032020, 0x00000cb2, 0x00000101, 0x00000a1b },
1760         { 7,  0x00032020, 0x00000cb6, 0x00000101, 0x00000a1b },
1761         { 8,  0x00032020, 0x00000cba, 0x00000101, 0x00000a1b },
1762         { 9,  0x00032020, 0x00000cbe, 0x00000101, 0x00000a1b },
1763         { 10, 0x00032020, 0x00000d02, 0x00000101, 0x00000a1b },
1764         { 11, 0x00032020, 0x00000d06, 0x00000101, 0x00000a1b },
1765         { 12, 0x00032020, 0x00000d0a, 0x00000101, 0x00000a1b },
1766         { 13, 0x00032020, 0x00000d0e, 0x00000101, 0x00000a1b },
1767         { 14, 0x00032020, 0x00000d1a, 0x00000101, 0x00000a03 },
1768 };
1769
1770 /*
1771  * RF value list for RF2525
1772  * Supports: 2.4 GHz
1773  */
1774 static const struct rf_channel rf_vals_bg_2525[] = {
1775         { 1,  0x00022020, 0x00080c9e, 0x00060111, 0x00000a1b },
1776         { 2,  0x00022020, 0x00080ca2, 0x00060111, 0x00000a1b },
1777         { 3,  0x00022020, 0x00080ca6, 0x00060111, 0x00000a1b },
1778         { 4,  0x00022020, 0x00080caa, 0x00060111, 0x00000a1b },
1779         { 5,  0x00022020, 0x00080cae, 0x00060111, 0x00000a1b },
1780         { 6,  0x00022020, 0x00080cb2, 0x00060111, 0x00000a1b },
1781         { 7,  0x00022020, 0x00080cb6, 0x00060111, 0x00000a1b },
1782         { 8,  0x00022020, 0x00080cba, 0x00060111, 0x00000a1b },
1783         { 9,  0x00022020, 0x00080cbe, 0x00060111, 0x00000a1b },
1784         { 10, 0x00022020, 0x00080d02, 0x00060111, 0x00000a1b },
1785         { 11, 0x00022020, 0x00080d06, 0x00060111, 0x00000a1b },
1786         { 12, 0x00022020, 0x00080d0a, 0x00060111, 0x00000a1b },
1787         { 13, 0x00022020, 0x00080d0e, 0x00060111, 0x00000a1b },
1788         { 14, 0x00022020, 0x00080d1a, 0x00060111, 0x00000a03 },
1789 };
1790
1791 /*
1792  * RF value list for RF2525e
1793  * Supports: 2.4 GHz
1794  */
1795 static const struct rf_channel rf_vals_bg_2525e[] = {
1796         { 1,  0x00022020, 0x00081136, 0x00060111, 0x00000a0b },
1797         { 2,  0x00022020, 0x0008113a, 0x00060111, 0x00000a0b },
1798         { 3,  0x00022020, 0x0008113e, 0x00060111, 0x00000a0b },
1799         { 4,  0x00022020, 0x00081182, 0x00060111, 0x00000a0b },
1800         { 5,  0x00022020, 0x00081186, 0x00060111, 0x00000a0b },
1801         { 6,  0x00022020, 0x0008118a, 0x00060111, 0x00000a0b },
1802         { 7,  0x00022020, 0x0008118e, 0x00060111, 0x00000a0b },
1803         { 8,  0x00022020, 0x00081192, 0x00060111, 0x00000a0b },
1804         { 9,  0x00022020, 0x00081196, 0x00060111, 0x00000a0b },
1805         { 10, 0x00022020, 0x0008119a, 0x00060111, 0x00000a0b },
1806         { 11, 0x00022020, 0x0008119e, 0x00060111, 0x00000a0b },
1807         { 12, 0x00022020, 0x000811a2, 0x00060111, 0x00000a0b },
1808         { 13, 0x00022020, 0x000811a6, 0x00060111, 0x00000a0b },
1809         { 14, 0x00022020, 0x000811ae, 0x00060111, 0x00000a1b },
1810 };
1811
1812 /*
1813  * RF value list for RF5222
1814  * Supports: 2.4 GHz & 5.2 GHz
1815  */
1816 static const struct rf_channel rf_vals_5222[] = {
1817         { 1,  0x00022020, 0x00001136, 0x00000101, 0x00000a0b },
1818         { 2,  0x00022020, 0x0000113a, 0x00000101, 0x00000a0b },
1819         { 3,  0x00022020, 0x0000113e, 0x00000101, 0x00000a0b },
1820         { 4,  0x00022020, 0x00001182, 0x00000101, 0x00000a0b },
1821         { 5,  0x00022020, 0x00001186, 0x00000101, 0x00000a0b },
1822         { 6,  0x00022020, 0x0000118a, 0x00000101, 0x00000a0b },
1823         { 7,  0x00022020, 0x0000118e, 0x00000101, 0x00000a0b },
1824         { 8,  0x00022020, 0x00001192, 0x00000101, 0x00000a0b },
1825         { 9,  0x00022020, 0x00001196, 0x00000101, 0x00000a0b },
1826         { 10, 0x00022020, 0x0000119a, 0x00000101, 0x00000a0b },
1827         { 11, 0x00022020, 0x0000119e, 0x00000101, 0x00000a0b },
1828         { 12, 0x00022020, 0x000011a2, 0x00000101, 0x00000a0b },
1829         { 13, 0x00022020, 0x000011a6, 0x00000101, 0x00000a0b },
1830         { 14, 0x00022020, 0x000011ae, 0x00000101, 0x00000a1b },
1831
1832         /* 802.11 UNI / HyperLan 2 */
1833         { 36, 0x00022010, 0x00018896, 0x00000101, 0x00000a1f },
1834         { 40, 0x00022010, 0x0001889a, 0x00000101, 0x00000a1f },
1835         { 44, 0x00022010, 0x0001889e, 0x00000101, 0x00000a1f },
1836         { 48, 0x00022010, 0x000188a2, 0x00000101, 0x00000a1f },
1837         { 52, 0x00022010, 0x000188a6, 0x00000101, 0x00000a1f },
1838         { 66, 0x00022010, 0x000188aa, 0x00000101, 0x00000a1f },
1839         { 60, 0x00022010, 0x000188ae, 0x00000101, 0x00000a1f },
1840         { 64, 0x00022010, 0x000188b2, 0x00000101, 0x00000a1f },
1841
1842         /* 802.11 HyperLan 2 */
1843         { 100, 0x00022010, 0x00008802, 0x00000101, 0x00000a0f },
1844         { 104, 0x00022010, 0x00008806, 0x00000101, 0x00000a0f },
1845         { 108, 0x00022010, 0x0000880a, 0x00000101, 0x00000a0f },
1846         { 112, 0x00022010, 0x0000880e, 0x00000101, 0x00000a0f },
1847         { 116, 0x00022010, 0x00008812, 0x00000101, 0x00000a0f },
1848         { 120, 0x00022010, 0x00008816, 0x00000101, 0x00000a0f },
1849         { 124, 0x00022010, 0x0000881a, 0x00000101, 0x00000a0f },
1850         { 128, 0x00022010, 0x0000881e, 0x00000101, 0x00000a0f },
1851         { 132, 0x00022010, 0x00008822, 0x00000101, 0x00000a0f },
1852         { 136, 0x00022010, 0x00008826, 0x00000101, 0x00000a0f },
1853
1854         /* 802.11 UNII */
1855         { 140, 0x00022010, 0x0000882a, 0x00000101, 0x00000a0f },
1856         { 149, 0x00022020, 0x000090a6, 0x00000101, 0x00000a07 },
1857         { 153, 0x00022020, 0x000090ae, 0x00000101, 0x00000a07 },
1858         { 157, 0x00022020, 0x000090b6, 0x00000101, 0x00000a07 },
1859         { 161, 0x00022020, 0x000090be, 0x00000101, 0x00000a07 },
1860 };
1861
1862 static int rt2500pci_probe_hw_mode(struct rt2x00_dev *rt2x00dev)
1863 {
1864         struct hw_mode_spec *spec = &rt2x00dev->spec;
1865         struct channel_info *info;
1866         char *tx_power;
1867         unsigned int i;
1868
1869         /*
1870          * Initialize all hw fields.
1871          */
1872         ieee80211_hw_set(rt2x00dev->hw, PS_NULLFUNC_STACK);
1873         ieee80211_hw_set(rt2x00dev->hw, SUPPORTS_PS);
1874         ieee80211_hw_set(rt2x00dev->hw, HOST_BROADCAST_PS_BUFFERING);
1875         ieee80211_hw_set(rt2x00dev->hw, SIGNAL_DBM);
1876
1877         SET_IEEE80211_DEV(rt2x00dev->hw, rt2x00dev->dev);
1878         SET_IEEE80211_PERM_ADDR(rt2x00dev->hw,
1879                                 rt2x00_eeprom_addr(rt2x00dev,
1880                                                    EEPROM_MAC_ADDR_0));
1881
1882         /*
1883          * Disable powersaving as default.
1884          */
1885         rt2x00dev->hw->wiphy->flags &= ~WIPHY_FLAG_PS_ON_BY_DEFAULT;
1886
1887         /*
1888          * Initialize hw_mode information.
1889          */
1890         spec->supported_bands = SUPPORT_BAND_2GHZ;
1891         spec->supported_rates = SUPPORT_RATE_CCK | SUPPORT_RATE_OFDM;
1892
1893         if (rt2x00_rf(rt2x00dev, RF2522)) {
1894                 spec->num_channels = ARRAY_SIZE(rf_vals_bg_2522);
1895                 spec->channels = rf_vals_bg_2522;
1896         } else if (rt2x00_rf(rt2x00dev, RF2523)) {
1897                 spec->num_channels = ARRAY_SIZE(rf_vals_bg_2523);
1898                 spec->channels = rf_vals_bg_2523;
1899         } else if (rt2x00_rf(rt2x00dev, RF2524)) {
1900                 spec->num_channels = ARRAY_SIZE(rf_vals_bg_2524);
1901                 spec->channels = rf_vals_bg_2524;
1902         } else if (rt2x00_rf(rt2x00dev, RF2525)) {
1903                 spec->num_channels = ARRAY_SIZE(rf_vals_bg_2525);
1904                 spec->channels = rf_vals_bg_2525;
1905         } else if (rt2x00_rf(rt2x00dev, RF2525E)) {
1906                 spec->num_channels = ARRAY_SIZE(rf_vals_bg_2525e);
1907                 spec->channels = rf_vals_bg_2525e;
1908         } else if (rt2x00_rf(rt2x00dev, RF5222)) {
1909                 spec->supported_bands |= SUPPORT_BAND_5GHZ;
1910                 spec->num_channels = ARRAY_SIZE(rf_vals_5222);
1911                 spec->channels = rf_vals_5222;
1912         }
1913
1914         /*
1915          * Create channel information array
1916          */
1917         info = kcalloc(spec->num_channels, sizeof(*info), GFP_KERNEL);
1918         if (!info)
1919                 return -ENOMEM;
1920
1921         spec->channels_info = info;
1922
1923         tx_power = rt2x00_eeprom_addr(rt2x00dev, EEPROM_TXPOWER_START);
1924         for (i = 0; i < 14; i++) {
1925                 info[i].max_power = MAX_TXPOWER;
1926                 info[i].default_power1 = TXPOWER_FROM_DEV(tx_power[i]);
1927         }
1928
1929         if (spec->num_channels > 14) {
1930                 for (i = 14; i < spec->num_channels; i++) {
1931                         info[i].max_power = MAX_TXPOWER;
1932                         info[i].default_power1 = DEFAULT_TXPOWER;
1933                 }
1934         }
1935
1936         return 0;
1937 }
1938
1939 static int rt2500pci_probe_hw(struct rt2x00_dev *rt2x00dev)
1940 {
1941         int retval;
1942         u32 reg;
1943
1944         /*
1945          * Allocate eeprom data.
1946          */
1947         retval = rt2500pci_validate_eeprom(rt2x00dev);
1948         if (retval)
1949                 return retval;
1950
1951         retval = rt2500pci_init_eeprom(rt2x00dev);
1952         if (retval)
1953                 return retval;
1954
1955         /*
1956          * Enable rfkill polling by setting GPIO direction of the
1957          * rfkill switch GPIO pin correctly.
1958          */
1959         rt2x00mmio_register_read(rt2x00dev, GPIOCSR, &reg);
1960         rt2x00_set_field32(&reg, GPIOCSR_DIR0, 1);
1961         rt2x00mmio_register_write(rt2x00dev, GPIOCSR, reg);
1962
1963         /*
1964          * Initialize hw specifications.
1965          */
1966         retval = rt2500pci_probe_hw_mode(rt2x00dev);
1967         if (retval)
1968                 return retval;
1969
1970         /*
1971          * This device requires the atim queue and DMA-mapped skbs.
1972          */
1973         __set_bit(REQUIRE_ATIM_QUEUE, &rt2x00dev->cap_flags);
1974         __set_bit(REQUIRE_DMA, &rt2x00dev->cap_flags);
1975         __set_bit(REQUIRE_SW_SEQNO, &rt2x00dev->cap_flags);
1976
1977         /*
1978          * Set the rssi offset.
1979          */
1980         rt2x00dev->rssi_offset = DEFAULT_RSSI_OFFSET;
1981
1982         return 0;
1983 }
1984
1985 /*
1986  * IEEE80211 stack callback functions.
1987  */
1988 static u64 rt2500pci_get_tsf(struct ieee80211_hw *hw,
1989                              struct ieee80211_vif *vif)
1990 {
1991         struct rt2x00_dev *rt2x00dev = hw->priv;
1992         u64 tsf;
1993         u32 reg;
1994
1995         rt2x00mmio_register_read(rt2x00dev, CSR17, &reg);
1996         tsf = (u64) rt2x00_get_field32(reg, CSR17_HIGH_TSFTIMER) << 32;
1997         rt2x00mmio_register_read(rt2x00dev, CSR16, &reg);
1998         tsf |= rt2x00_get_field32(reg, CSR16_LOW_TSFTIMER);
1999
2000         return tsf;
2001 }
2002
2003 static int rt2500pci_tx_last_beacon(struct ieee80211_hw *hw)
2004 {
2005         struct rt2x00_dev *rt2x00dev = hw->priv;
2006         u32 reg;
2007
2008         rt2x00mmio_register_read(rt2x00dev, CSR15, &reg);
2009         return rt2x00_get_field32(reg, CSR15_BEACON_SENT);
2010 }
2011
2012 static const struct ieee80211_ops rt2500pci_mac80211_ops = {
2013         .tx                     = rt2x00mac_tx,
2014         .start                  = rt2x00mac_start,
2015         .stop                   = rt2x00mac_stop,
2016         .add_interface          = rt2x00mac_add_interface,
2017         .remove_interface       = rt2x00mac_remove_interface,
2018         .config                 = rt2x00mac_config,
2019         .configure_filter       = rt2x00mac_configure_filter,
2020         .sw_scan_start          = rt2x00mac_sw_scan_start,
2021         .sw_scan_complete       = rt2x00mac_sw_scan_complete,
2022         .get_stats              = rt2x00mac_get_stats,
2023         .bss_info_changed       = rt2x00mac_bss_info_changed,
2024         .conf_tx                = rt2x00mac_conf_tx,
2025         .get_tsf                = rt2500pci_get_tsf,
2026         .tx_last_beacon         = rt2500pci_tx_last_beacon,
2027         .rfkill_poll            = rt2x00mac_rfkill_poll,
2028         .flush                  = rt2x00mac_flush,
2029         .set_antenna            = rt2x00mac_set_antenna,
2030         .get_antenna            = rt2x00mac_get_antenna,
2031         .get_ringparam          = rt2x00mac_get_ringparam,
2032         .tx_frames_pending      = rt2x00mac_tx_frames_pending,
2033 };
2034
2035 static const struct rt2x00lib_ops rt2500pci_rt2x00_ops = {
2036         .irq_handler            = rt2500pci_interrupt,
2037         .txstatus_tasklet       = rt2500pci_txstatus_tasklet,
2038         .tbtt_tasklet           = rt2500pci_tbtt_tasklet,
2039         .rxdone_tasklet         = rt2500pci_rxdone_tasklet,
2040         .probe_hw               = rt2500pci_probe_hw,
2041         .initialize             = rt2x00mmio_initialize,
2042         .uninitialize           = rt2x00mmio_uninitialize,
2043         .get_entry_state        = rt2500pci_get_entry_state,
2044         .clear_entry            = rt2500pci_clear_entry,
2045         .set_device_state       = rt2500pci_set_device_state,
2046         .rfkill_poll            = rt2500pci_rfkill_poll,
2047         .link_stats             = rt2500pci_link_stats,
2048         .reset_tuner            = rt2500pci_reset_tuner,
2049         .link_tuner             = rt2500pci_link_tuner,
2050         .start_queue            = rt2500pci_start_queue,
2051         .kick_queue             = rt2500pci_kick_queue,
2052         .stop_queue             = rt2500pci_stop_queue,
2053         .flush_queue            = rt2x00mmio_flush_queue,
2054         .write_tx_desc          = rt2500pci_write_tx_desc,
2055         .write_beacon           = rt2500pci_write_beacon,
2056         .fill_rxdone            = rt2500pci_fill_rxdone,
2057         .config_filter          = rt2500pci_config_filter,
2058         .config_intf            = rt2500pci_config_intf,
2059         .config_erp             = rt2500pci_config_erp,
2060         .config_ant             = rt2500pci_config_ant,
2061         .config                 = rt2500pci_config,
2062 };
2063
2064 static void rt2500pci_queue_init(struct data_queue *queue)
2065 {
2066         switch (queue->qid) {
2067         case QID_RX:
2068                 queue->limit = 32;
2069                 queue->data_size = DATA_FRAME_SIZE;
2070                 queue->desc_size = RXD_DESC_SIZE;
2071                 queue->priv_size = sizeof(struct queue_entry_priv_mmio);
2072                 break;
2073
2074         case QID_AC_VO:
2075         case QID_AC_VI:
2076         case QID_AC_BE:
2077         case QID_AC_BK:
2078                 queue->limit = 32;
2079                 queue->data_size = DATA_FRAME_SIZE;
2080                 queue->desc_size = TXD_DESC_SIZE;
2081                 queue->priv_size = sizeof(struct queue_entry_priv_mmio);
2082                 break;
2083
2084         case QID_BEACON:
2085                 queue->limit = 1;
2086                 queue->data_size = MGMT_FRAME_SIZE;
2087                 queue->desc_size = TXD_DESC_SIZE;
2088                 queue->priv_size = sizeof(struct queue_entry_priv_mmio);
2089                 break;
2090
2091         case QID_ATIM:
2092                 queue->limit = 8;
2093                 queue->data_size = DATA_FRAME_SIZE;
2094                 queue->desc_size = TXD_DESC_SIZE;
2095                 queue->priv_size = sizeof(struct queue_entry_priv_mmio);
2096                 break;
2097
2098         default:
2099                 BUG();
2100                 break;
2101         }
2102 }
2103
2104 static const struct rt2x00_ops rt2500pci_ops = {
2105         .name                   = KBUILD_MODNAME,
2106         .max_ap_intf            = 1,
2107         .eeprom_size            = EEPROM_SIZE,
2108         .rf_size                = RF_SIZE,
2109         .tx_queues              = NUM_TX_QUEUES,
2110         .queue_init             = rt2500pci_queue_init,
2111         .lib                    = &rt2500pci_rt2x00_ops,
2112         .hw                     = &rt2500pci_mac80211_ops,
2113 #ifdef CONFIG_RT2X00_LIB_DEBUGFS
2114         .debugfs                = &rt2500pci_rt2x00debug,
2115 #endif /* CONFIG_RT2X00_LIB_DEBUGFS */
2116 };
2117
2118 /*
2119  * RT2500pci module information.
2120  */
2121 static const struct pci_device_id rt2500pci_device_table[] = {
2122         { PCI_DEVICE(0x1814, 0x0201) },
2123         { 0, }
2124 };
2125
2126 MODULE_AUTHOR(DRV_PROJECT);
2127 MODULE_VERSION(DRV_VERSION);
2128 MODULE_DESCRIPTION("Ralink RT2500 PCI & PCMCIA Wireless LAN driver.");
2129 MODULE_SUPPORTED_DEVICE("Ralink RT2560 PCI & PCMCIA chipset based cards");
2130 MODULE_DEVICE_TABLE(pci, rt2500pci_device_table);
2131 MODULE_LICENSE("GPL");
2132
2133 static int rt2500pci_probe(struct pci_dev *pci_dev,
2134                            const struct pci_device_id *id)
2135 {
2136         return rt2x00pci_probe(pci_dev, &rt2500pci_ops);
2137 }
2138
2139 static struct pci_driver rt2500pci_driver = {
2140         .name           = KBUILD_MODNAME,
2141         .id_table       = rt2500pci_device_table,
2142         .probe          = rt2500pci_probe,
2143         .remove         = rt2x00pci_remove,
2144         .suspend        = rt2x00pci_suspend,
2145         .resume         = rt2x00pci_resume,
2146 };
2147
2148 module_pci_driver(rt2500pci_driver);