Merge remote-tracking branches 'asoc/topic/davinci', 'asoc/topic/fsl-card' and 'asoc...
[cascardo/linux.git] / drivers / net / wireless / ralink / rt2x00 / rt2500usb.c
1 /*
2         Copyright (C) 2004 - 2009 Ivo van Doorn <IvDoorn@gmail.com>
3         <http://rt2x00.serialmonkey.com>
4
5         This program is free software; you can redistribute it and/or modify
6         it under the terms of the GNU General Public License as published by
7         the Free Software Foundation; either version 2 of the License, or
8         (at your option) any later version.
9
10         This program is distributed in the hope that it will be useful,
11         but WITHOUT ANY WARRANTY; without even the implied warranty of
12         MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13         GNU General Public License for more details.
14
15         You should have received a copy of the GNU General Public License
16         along with this program; if not, see <http://www.gnu.org/licenses/>.
17  */
18
19 /*
20         Module: rt2500usb
21         Abstract: rt2500usb device specific routines.
22         Supported chipsets: RT2570.
23  */
24
25 #include <linux/delay.h>
26 #include <linux/etherdevice.h>
27 #include <linux/kernel.h>
28 #include <linux/module.h>
29 #include <linux/slab.h>
30 #include <linux/usb.h>
31
32 #include "rt2x00.h"
33 #include "rt2x00usb.h"
34 #include "rt2500usb.h"
35
36 /*
37  * Allow hardware encryption to be disabled.
38  */
39 static bool modparam_nohwcrypt;
40 module_param_named(nohwcrypt, modparam_nohwcrypt, bool, S_IRUGO);
41 MODULE_PARM_DESC(nohwcrypt, "Disable hardware encryption.");
42
43 /*
44  * Register access.
45  * All access to the CSR registers will go through the methods
46  * rt2500usb_register_read and rt2500usb_register_write.
47  * BBP and RF register require indirect register access,
48  * and use the CSR registers BBPCSR and RFCSR to achieve this.
49  * These indirect registers work with busy bits,
50  * and we will try maximal REGISTER_USB_BUSY_COUNT times to access
51  * the register while taking a REGISTER_BUSY_DELAY us delay
52  * between each attampt. When the busy bit is still set at that time,
53  * the access attempt is considered to have failed,
54  * and we will print an error.
55  * If the csr_mutex is already held then the _lock variants must
56  * be used instead.
57  */
58 static inline void rt2500usb_register_read(struct rt2x00_dev *rt2x00dev,
59                                            const unsigned int offset,
60                                            u16 *value)
61 {
62         __le16 reg;
63         rt2x00usb_vendor_request_buff(rt2x00dev, USB_MULTI_READ,
64                                       USB_VENDOR_REQUEST_IN, offset,
65                                       &reg, sizeof(reg));
66         *value = le16_to_cpu(reg);
67 }
68
69 static inline void rt2500usb_register_read_lock(struct rt2x00_dev *rt2x00dev,
70                                                 const unsigned int offset,
71                                                 u16 *value)
72 {
73         __le16 reg;
74         rt2x00usb_vendor_req_buff_lock(rt2x00dev, USB_MULTI_READ,
75                                        USB_VENDOR_REQUEST_IN, offset,
76                                        &reg, sizeof(reg), REGISTER_TIMEOUT);
77         *value = le16_to_cpu(reg);
78 }
79
80 static inline void rt2500usb_register_multiread(struct rt2x00_dev *rt2x00dev,
81                                                 const unsigned int offset,
82                                                 void *value, const u16 length)
83 {
84         rt2x00usb_vendor_request_buff(rt2x00dev, USB_MULTI_READ,
85                                       USB_VENDOR_REQUEST_IN, offset,
86                                       value, length);
87 }
88
89 static inline void rt2500usb_register_write(struct rt2x00_dev *rt2x00dev,
90                                             const unsigned int offset,
91                                             u16 value)
92 {
93         __le16 reg = cpu_to_le16(value);
94         rt2x00usb_vendor_request_buff(rt2x00dev, USB_MULTI_WRITE,
95                                       USB_VENDOR_REQUEST_OUT, offset,
96                                       &reg, sizeof(reg));
97 }
98
99 static inline void rt2500usb_register_write_lock(struct rt2x00_dev *rt2x00dev,
100                                                  const unsigned int offset,
101                                                  u16 value)
102 {
103         __le16 reg = cpu_to_le16(value);
104         rt2x00usb_vendor_req_buff_lock(rt2x00dev, USB_MULTI_WRITE,
105                                        USB_VENDOR_REQUEST_OUT, offset,
106                                        &reg, sizeof(reg), REGISTER_TIMEOUT);
107 }
108
109 static inline void rt2500usb_register_multiwrite(struct rt2x00_dev *rt2x00dev,
110                                                  const unsigned int offset,
111                                                  void *value, const u16 length)
112 {
113         rt2x00usb_vendor_request_buff(rt2x00dev, USB_MULTI_WRITE,
114                                       USB_VENDOR_REQUEST_OUT, offset,
115                                       value, length);
116 }
117
118 static int rt2500usb_regbusy_read(struct rt2x00_dev *rt2x00dev,
119                                   const unsigned int offset,
120                                   struct rt2x00_field16 field,
121                                   u16 *reg)
122 {
123         unsigned int i;
124
125         for (i = 0; i < REGISTER_USB_BUSY_COUNT; i++) {
126                 rt2500usb_register_read_lock(rt2x00dev, offset, reg);
127                 if (!rt2x00_get_field16(*reg, field))
128                         return 1;
129                 udelay(REGISTER_BUSY_DELAY);
130         }
131
132         rt2x00_err(rt2x00dev, "Indirect register access failed: offset=0x%.08x, value=0x%.08x\n",
133                    offset, *reg);
134         *reg = ~0;
135
136         return 0;
137 }
138
139 #define WAIT_FOR_BBP(__dev, __reg) \
140         rt2500usb_regbusy_read((__dev), PHY_CSR8, PHY_CSR8_BUSY, (__reg))
141 #define WAIT_FOR_RF(__dev, __reg) \
142         rt2500usb_regbusy_read((__dev), PHY_CSR10, PHY_CSR10_RF_BUSY, (__reg))
143
144 static void rt2500usb_bbp_write(struct rt2x00_dev *rt2x00dev,
145                                 const unsigned int word, const u8 value)
146 {
147         u16 reg;
148
149         mutex_lock(&rt2x00dev->csr_mutex);
150
151         /*
152          * Wait until the BBP becomes available, afterwards we
153          * can safely write the new data into the register.
154          */
155         if (WAIT_FOR_BBP(rt2x00dev, &reg)) {
156                 reg = 0;
157                 rt2x00_set_field16(&reg, PHY_CSR7_DATA, value);
158                 rt2x00_set_field16(&reg, PHY_CSR7_REG_ID, word);
159                 rt2x00_set_field16(&reg, PHY_CSR7_READ_CONTROL, 0);
160
161                 rt2500usb_register_write_lock(rt2x00dev, PHY_CSR7, reg);
162         }
163
164         mutex_unlock(&rt2x00dev->csr_mutex);
165 }
166
167 static void rt2500usb_bbp_read(struct rt2x00_dev *rt2x00dev,
168                                const unsigned int word, u8 *value)
169 {
170         u16 reg;
171
172         mutex_lock(&rt2x00dev->csr_mutex);
173
174         /*
175          * Wait until the BBP becomes available, afterwards we
176          * can safely write the read request into the register.
177          * After the data has been written, we wait until hardware
178          * returns the correct value, if at any time the register
179          * doesn't become available in time, reg will be 0xffffffff
180          * which means we return 0xff to the caller.
181          */
182         if (WAIT_FOR_BBP(rt2x00dev, &reg)) {
183                 reg = 0;
184                 rt2x00_set_field16(&reg, PHY_CSR7_REG_ID, word);
185                 rt2x00_set_field16(&reg, PHY_CSR7_READ_CONTROL, 1);
186
187                 rt2500usb_register_write_lock(rt2x00dev, PHY_CSR7, reg);
188
189                 if (WAIT_FOR_BBP(rt2x00dev, &reg))
190                         rt2500usb_register_read_lock(rt2x00dev, PHY_CSR7, &reg);
191         }
192
193         *value = rt2x00_get_field16(reg, PHY_CSR7_DATA);
194
195         mutex_unlock(&rt2x00dev->csr_mutex);
196 }
197
198 static void rt2500usb_rf_write(struct rt2x00_dev *rt2x00dev,
199                                const unsigned int word, const u32 value)
200 {
201         u16 reg;
202
203         mutex_lock(&rt2x00dev->csr_mutex);
204
205         /*
206          * Wait until the RF becomes available, afterwards we
207          * can safely write the new data into the register.
208          */
209         if (WAIT_FOR_RF(rt2x00dev, &reg)) {
210                 reg = 0;
211                 rt2x00_set_field16(&reg, PHY_CSR9_RF_VALUE, value);
212                 rt2500usb_register_write_lock(rt2x00dev, PHY_CSR9, reg);
213
214                 reg = 0;
215                 rt2x00_set_field16(&reg, PHY_CSR10_RF_VALUE, value >> 16);
216                 rt2x00_set_field16(&reg, PHY_CSR10_RF_NUMBER_OF_BITS, 20);
217                 rt2x00_set_field16(&reg, PHY_CSR10_RF_IF_SELECT, 0);
218                 rt2x00_set_field16(&reg, PHY_CSR10_RF_BUSY, 1);
219
220                 rt2500usb_register_write_lock(rt2x00dev, PHY_CSR10, reg);
221                 rt2x00_rf_write(rt2x00dev, word, value);
222         }
223
224         mutex_unlock(&rt2x00dev->csr_mutex);
225 }
226
227 #ifdef CONFIG_RT2X00_LIB_DEBUGFS
228 static void _rt2500usb_register_read(struct rt2x00_dev *rt2x00dev,
229                                      const unsigned int offset,
230                                      u32 *value)
231 {
232         u16 tmp;
233
234         rt2500usb_register_read(rt2x00dev, offset, &tmp);
235         *value = tmp;
236 }
237
238 static void _rt2500usb_register_write(struct rt2x00_dev *rt2x00dev,
239                                       const unsigned int offset,
240                                       u32 value)
241 {
242         rt2500usb_register_write(rt2x00dev, offset, value);
243 }
244
245 static const struct rt2x00debug rt2500usb_rt2x00debug = {
246         .owner  = THIS_MODULE,
247         .csr    = {
248                 .read           = _rt2500usb_register_read,
249                 .write          = _rt2500usb_register_write,
250                 .flags          = RT2X00DEBUGFS_OFFSET,
251                 .word_base      = CSR_REG_BASE,
252                 .word_size      = sizeof(u16),
253                 .word_count     = CSR_REG_SIZE / sizeof(u16),
254         },
255         .eeprom = {
256                 .read           = rt2x00_eeprom_read,
257                 .write          = rt2x00_eeprom_write,
258                 .word_base      = EEPROM_BASE,
259                 .word_size      = sizeof(u16),
260                 .word_count     = EEPROM_SIZE / sizeof(u16),
261         },
262         .bbp    = {
263                 .read           = rt2500usb_bbp_read,
264                 .write          = rt2500usb_bbp_write,
265                 .word_base      = BBP_BASE,
266                 .word_size      = sizeof(u8),
267                 .word_count     = BBP_SIZE / sizeof(u8),
268         },
269         .rf     = {
270                 .read           = rt2x00_rf_read,
271                 .write          = rt2500usb_rf_write,
272                 .word_base      = RF_BASE,
273                 .word_size      = sizeof(u32),
274                 .word_count     = RF_SIZE / sizeof(u32),
275         },
276 };
277 #endif /* CONFIG_RT2X00_LIB_DEBUGFS */
278
279 static int rt2500usb_rfkill_poll(struct rt2x00_dev *rt2x00dev)
280 {
281         u16 reg;
282
283         rt2500usb_register_read(rt2x00dev, MAC_CSR19, &reg);
284         return rt2x00_get_field16(reg, MAC_CSR19_VAL7);
285 }
286
287 #ifdef CONFIG_RT2X00_LIB_LEDS
288 static void rt2500usb_brightness_set(struct led_classdev *led_cdev,
289                                      enum led_brightness brightness)
290 {
291         struct rt2x00_led *led =
292             container_of(led_cdev, struct rt2x00_led, led_dev);
293         unsigned int enabled = brightness != LED_OFF;
294         u16 reg;
295
296         rt2500usb_register_read(led->rt2x00dev, MAC_CSR20, &reg);
297
298         if (led->type == LED_TYPE_RADIO || led->type == LED_TYPE_ASSOC)
299                 rt2x00_set_field16(&reg, MAC_CSR20_LINK, enabled);
300         else if (led->type == LED_TYPE_ACTIVITY)
301                 rt2x00_set_field16(&reg, MAC_CSR20_ACTIVITY, enabled);
302
303         rt2500usb_register_write(led->rt2x00dev, MAC_CSR20, reg);
304 }
305
306 static int rt2500usb_blink_set(struct led_classdev *led_cdev,
307                                unsigned long *delay_on,
308                                unsigned long *delay_off)
309 {
310         struct rt2x00_led *led =
311             container_of(led_cdev, struct rt2x00_led, led_dev);
312         u16 reg;
313
314         rt2500usb_register_read(led->rt2x00dev, MAC_CSR21, &reg);
315         rt2x00_set_field16(&reg, MAC_CSR21_ON_PERIOD, *delay_on);
316         rt2x00_set_field16(&reg, MAC_CSR21_OFF_PERIOD, *delay_off);
317         rt2500usb_register_write(led->rt2x00dev, MAC_CSR21, reg);
318
319         return 0;
320 }
321
322 static void rt2500usb_init_led(struct rt2x00_dev *rt2x00dev,
323                                struct rt2x00_led *led,
324                                enum led_type type)
325 {
326         led->rt2x00dev = rt2x00dev;
327         led->type = type;
328         led->led_dev.brightness_set = rt2500usb_brightness_set;
329         led->led_dev.blink_set = rt2500usb_blink_set;
330         led->flags = LED_INITIALIZED;
331 }
332 #endif /* CONFIG_RT2X00_LIB_LEDS */
333
334 /*
335  * Configuration handlers.
336  */
337
338 /*
339  * rt2500usb does not differentiate between shared and pairwise
340  * keys, so we should use the same function for both key types.
341  */
342 static int rt2500usb_config_key(struct rt2x00_dev *rt2x00dev,
343                                 struct rt2x00lib_crypto *crypto,
344                                 struct ieee80211_key_conf *key)
345 {
346         u32 mask;
347         u16 reg;
348         enum cipher curr_cipher;
349
350         if (crypto->cmd == SET_KEY) {
351                 /*
352                  * Disallow to set WEP key other than with index 0,
353                  * it is known that not work at least on some hardware.
354                  * SW crypto will be used in that case.
355                  */
356                 if ((key->cipher == WLAN_CIPHER_SUITE_WEP40 ||
357                      key->cipher == WLAN_CIPHER_SUITE_WEP104) &&
358                     key->keyidx != 0)
359                         return -EOPNOTSUPP;
360
361                 /*
362                  * Pairwise key will always be entry 0, but this
363                  * could collide with a shared key on the same
364                  * position...
365                  */
366                 mask = TXRX_CSR0_KEY_ID.bit_mask;
367
368                 rt2500usb_register_read(rt2x00dev, TXRX_CSR0, &reg);
369                 curr_cipher = rt2x00_get_field16(reg, TXRX_CSR0_ALGORITHM);
370                 reg &= mask;
371
372                 if (reg && reg == mask)
373                         return -ENOSPC;
374
375                 reg = rt2x00_get_field16(reg, TXRX_CSR0_KEY_ID);
376
377                 key->hw_key_idx += reg ? ffz(reg) : 0;
378                 /*
379                  * Hardware requires that all keys use the same cipher
380                  * (e.g. TKIP-only, AES-only, but not TKIP+AES).
381                  * If this is not the first key, compare the cipher with the
382                  * first one and fall back to SW crypto if not the same.
383                  */
384                 if (key->hw_key_idx > 0 && crypto->cipher != curr_cipher)
385                         return -EOPNOTSUPP;
386
387                 rt2500usb_register_multiwrite(rt2x00dev, KEY_ENTRY(key->hw_key_idx),
388                                               crypto->key, sizeof(crypto->key));
389
390                 /*
391                  * The driver does not support the IV/EIV generation
392                  * in hardware. However it demands the data to be provided
393                  * both separately as well as inside the frame.
394                  * We already provided the CONFIG_CRYPTO_COPY_IV to rt2x00lib
395                  * to ensure rt2x00lib will not strip the data from the
396                  * frame after the copy, now we must tell mac80211
397                  * to generate the IV/EIV data.
398                  */
399                 key->flags |= IEEE80211_KEY_FLAG_GENERATE_IV;
400                 key->flags |= IEEE80211_KEY_FLAG_GENERATE_MMIC;
401         }
402
403         /*
404          * TXRX_CSR0_KEY_ID contains only single-bit fields to indicate
405          * a particular key is valid.
406          */
407         rt2500usb_register_read(rt2x00dev, TXRX_CSR0, &reg);
408         rt2x00_set_field16(&reg, TXRX_CSR0_ALGORITHM, crypto->cipher);
409         rt2x00_set_field16(&reg, TXRX_CSR0_IV_OFFSET, IEEE80211_HEADER);
410
411         mask = rt2x00_get_field16(reg, TXRX_CSR0_KEY_ID);
412         if (crypto->cmd == SET_KEY)
413                 mask |= 1 << key->hw_key_idx;
414         else if (crypto->cmd == DISABLE_KEY)
415                 mask &= ~(1 << key->hw_key_idx);
416         rt2x00_set_field16(&reg, TXRX_CSR0_KEY_ID, mask);
417         rt2500usb_register_write(rt2x00dev, TXRX_CSR0, reg);
418
419         return 0;
420 }
421
422 static void rt2500usb_config_filter(struct rt2x00_dev *rt2x00dev,
423                                     const unsigned int filter_flags)
424 {
425         u16 reg;
426
427         /*
428          * Start configuration steps.
429          * Note that the version error will always be dropped
430          * and broadcast frames will always be accepted since
431          * there is no filter for it at this time.
432          */
433         rt2500usb_register_read(rt2x00dev, TXRX_CSR2, &reg);
434         rt2x00_set_field16(&reg, TXRX_CSR2_DROP_CRC,
435                            !(filter_flags & FIF_FCSFAIL));
436         rt2x00_set_field16(&reg, TXRX_CSR2_DROP_PHYSICAL,
437                            !(filter_flags & FIF_PLCPFAIL));
438         rt2x00_set_field16(&reg, TXRX_CSR2_DROP_CONTROL,
439                            !(filter_flags & FIF_CONTROL));
440         rt2x00_set_field16(&reg, TXRX_CSR2_DROP_NOT_TO_ME,
441                            !test_bit(CONFIG_MONITORING, &rt2x00dev->flags));
442         rt2x00_set_field16(&reg, TXRX_CSR2_DROP_TODS,
443                            !test_bit(CONFIG_MONITORING, &rt2x00dev->flags) &&
444                            !rt2x00dev->intf_ap_count);
445         rt2x00_set_field16(&reg, TXRX_CSR2_DROP_VERSION_ERROR, 1);
446         rt2x00_set_field16(&reg, TXRX_CSR2_DROP_MULTICAST,
447                            !(filter_flags & FIF_ALLMULTI));
448         rt2x00_set_field16(&reg, TXRX_CSR2_DROP_BROADCAST, 0);
449         rt2500usb_register_write(rt2x00dev, TXRX_CSR2, reg);
450 }
451
452 static void rt2500usb_config_intf(struct rt2x00_dev *rt2x00dev,
453                                   struct rt2x00_intf *intf,
454                                   struct rt2x00intf_conf *conf,
455                                   const unsigned int flags)
456 {
457         unsigned int bcn_preload;
458         u16 reg;
459
460         if (flags & CONFIG_UPDATE_TYPE) {
461                 /*
462                  * Enable beacon config
463                  */
464                 bcn_preload = PREAMBLE + GET_DURATION(IEEE80211_HEADER, 20);
465                 rt2500usb_register_read(rt2x00dev, TXRX_CSR20, &reg);
466                 rt2x00_set_field16(&reg, TXRX_CSR20_OFFSET, bcn_preload >> 6);
467                 rt2x00_set_field16(&reg, TXRX_CSR20_BCN_EXPECT_WINDOW,
468                                    2 * (conf->type != NL80211_IFTYPE_STATION));
469                 rt2500usb_register_write(rt2x00dev, TXRX_CSR20, reg);
470
471                 /*
472                  * Enable synchronisation.
473                  */
474                 rt2500usb_register_read(rt2x00dev, TXRX_CSR18, &reg);
475                 rt2x00_set_field16(&reg, TXRX_CSR18_OFFSET, 0);
476                 rt2500usb_register_write(rt2x00dev, TXRX_CSR18, reg);
477
478                 rt2500usb_register_read(rt2x00dev, TXRX_CSR19, &reg);
479                 rt2x00_set_field16(&reg, TXRX_CSR19_TSF_SYNC, conf->sync);
480                 rt2500usb_register_write(rt2x00dev, TXRX_CSR19, reg);
481         }
482
483         if (flags & CONFIG_UPDATE_MAC)
484                 rt2500usb_register_multiwrite(rt2x00dev, MAC_CSR2, conf->mac,
485                                               (3 * sizeof(__le16)));
486
487         if (flags & CONFIG_UPDATE_BSSID)
488                 rt2500usb_register_multiwrite(rt2x00dev, MAC_CSR5, conf->bssid,
489                                               (3 * sizeof(__le16)));
490 }
491
492 static void rt2500usb_config_erp(struct rt2x00_dev *rt2x00dev,
493                                  struct rt2x00lib_erp *erp,
494                                  u32 changed)
495 {
496         u16 reg;
497
498         if (changed & BSS_CHANGED_ERP_PREAMBLE) {
499                 rt2500usb_register_read(rt2x00dev, TXRX_CSR10, &reg);
500                 rt2x00_set_field16(&reg, TXRX_CSR10_AUTORESPOND_PREAMBLE,
501                                    !!erp->short_preamble);
502                 rt2500usb_register_write(rt2x00dev, TXRX_CSR10, reg);
503         }
504
505         if (changed & BSS_CHANGED_BASIC_RATES)
506                 rt2500usb_register_write(rt2x00dev, TXRX_CSR11,
507                                          erp->basic_rates);
508
509         if (changed & BSS_CHANGED_BEACON_INT) {
510                 rt2500usb_register_read(rt2x00dev, TXRX_CSR18, &reg);
511                 rt2x00_set_field16(&reg, TXRX_CSR18_INTERVAL,
512                                    erp->beacon_int * 4);
513                 rt2500usb_register_write(rt2x00dev, TXRX_CSR18, reg);
514         }
515
516         if (changed & BSS_CHANGED_ERP_SLOT) {
517                 rt2500usb_register_write(rt2x00dev, MAC_CSR10, erp->slot_time);
518                 rt2500usb_register_write(rt2x00dev, MAC_CSR11, erp->sifs);
519                 rt2500usb_register_write(rt2x00dev, MAC_CSR12, erp->eifs);
520         }
521 }
522
523 static void rt2500usb_config_ant(struct rt2x00_dev *rt2x00dev,
524                                  struct antenna_setup *ant)
525 {
526         u8 r2;
527         u8 r14;
528         u16 csr5;
529         u16 csr6;
530
531         /*
532          * We should never come here because rt2x00lib is supposed
533          * to catch this and send us the correct antenna explicitely.
534          */
535         BUG_ON(ant->rx == ANTENNA_SW_DIVERSITY ||
536                ant->tx == ANTENNA_SW_DIVERSITY);
537
538         rt2500usb_bbp_read(rt2x00dev, 2, &r2);
539         rt2500usb_bbp_read(rt2x00dev, 14, &r14);
540         rt2500usb_register_read(rt2x00dev, PHY_CSR5, &csr5);
541         rt2500usb_register_read(rt2x00dev, PHY_CSR6, &csr6);
542
543         /*
544          * Configure the TX antenna.
545          */
546         switch (ant->tx) {
547         case ANTENNA_HW_DIVERSITY:
548                 rt2x00_set_field8(&r2, BBP_R2_TX_ANTENNA, 1);
549                 rt2x00_set_field16(&csr5, PHY_CSR5_CCK, 1);
550                 rt2x00_set_field16(&csr6, PHY_CSR6_OFDM, 1);
551                 break;
552         case ANTENNA_A:
553                 rt2x00_set_field8(&r2, BBP_R2_TX_ANTENNA, 0);
554                 rt2x00_set_field16(&csr5, PHY_CSR5_CCK, 0);
555                 rt2x00_set_field16(&csr6, PHY_CSR6_OFDM, 0);
556                 break;
557         case ANTENNA_B:
558         default:
559                 rt2x00_set_field8(&r2, BBP_R2_TX_ANTENNA, 2);
560                 rt2x00_set_field16(&csr5, PHY_CSR5_CCK, 2);
561                 rt2x00_set_field16(&csr6, PHY_CSR6_OFDM, 2);
562                 break;
563         }
564
565         /*
566          * Configure the RX antenna.
567          */
568         switch (ant->rx) {
569         case ANTENNA_HW_DIVERSITY:
570                 rt2x00_set_field8(&r14, BBP_R14_RX_ANTENNA, 1);
571                 break;
572         case ANTENNA_A:
573                 rt2x00_set_field8(&r14, BBP_R14_RX_ANTENNA, 0);
574                 break;
575         case ANTENNA_B:
576         default:
577                 rt2x00_set_field8(&r14, BBP_R14_RX_ANTENNA, 2);
578                 break;
579         }
580
581         /*
582          * RT2525E and RT5222 need to flip TX I/Q
583          */
584         if (rt2x00_rf(rt2x00dev, RF2525E) || rt2x00_rf(rt2x00dev, RF5222)) {
585                 rt2x00_set_field8(&r2, BBP_R2_TX_IQ_FLIP, 1);
586                 rt2x00_set_field16(&csr5, PHY_CSR5_CCK_FLIP, 1);
587                 rt2x00_set_field16(&csr6, PHY_CSR6_OFDM_FLIP, 1);
588
589                 /*
590                  * RT2525E does not need RX I/Q Flip.
591                  */
592                 if (rt2x00_rf(rt2x00dev, RF2525E))
593                         rt2x00_set_field8(&r14, BBP_R14_RX_IQ_FLIP, 0);
594         } else {
595                 rt2x00_set_field16(&csr5, PHY_CSR5_CCK_FLIP, 0);
596                 rt2x00_set_field16(&csr6, PHY_CSR6_OFDM_FLIP, 0);
597         }
598
599         rt2500usb_bbp_write(rt2x00dev, 2, r2);
600         rt2500usb_bbp_write(rt2x00dev, 14, r14);
601         rt2500usb_register_write(rt2x00dev, PHY_CSR5, csr5);
602         rt2500usb_register_write(rt2x00dev, PHY_CSR6, csr6);
603 }
604
605 static void rt2500usb_config_channel(struct rt2x00_dev *rt2x00dev,
606                                      struct rf_channel *rf, const int txpower)
607 {
608         /*
609          * Set TXpower.
610          */
611         rt2x00_set_field32(&rf->rf3, RF3_TXPOWER, TXPOWER_TO_DEV(txpower));
612
613         /*
614          * For RT2525E we should first set the channel to half band higher.
615          */
616         if (rt2x00_rf(rt2x00dev, RF2525E)) {
617                 static const u32 vals[] = {
618                         0x000008aa, 0x000008ae, 0x000008ae, 0x000008b2,
619                         0x000008b2, 0x000008b6, 0x000008b6, 0x000008ba,
620                         0x000008ba, 0x000008be, 0x000008b7, 0x00000902,
621                         0x00000902, 0x00000906
622                 };
623
624                 rt2500usb_rf_write(rt2x00dev, 2, vals[rf->channel - 1]);
625                 if (rf->rf4)
626                         rt2500usb_rf_write(rt2x00dev, 4, rf->rf4);
627         }
628
629         rt2500usb_rf_write(rt2x00dev, 1, rf->rf1);
630         rt2500usb_rf_write(rt2x00dev, 2, rf->rf2);
631         rt2500usb_rf_write(rt2x00dev, 3, rf->rf3);
632         if (rf->rf4)
633                 rt2500usb_rf_write(rt2x00dev, 4, rf->rf4);
634 }
635
636 static void rt2500usb_config_txpower(struct rt2x00_dev *rt2x00dev,
637                                      const int txpower)
638 {
639         u32 rf3;
640
641         rt2x00_rf_read(rt2x00dev, 3, &rf3);
642         rt2x00_set_field32(&rf3, RF3_TXPOWER, TXPOWER_TO_DEV(txpower));
643         rt2500usb_rf_write(rt2x00dev, 3, rf3);
644 }
645
646 static void rt2500usb_config_ps(struct rt2x00_dev *rt2x00dev,
647                                 struct rt2x00lib_conf *libconf)
648 {
649         enum dev_state state =
650             (libconf->conf->flags & IEEE80211_CONF_PS) ?
651                 STATE_SLEEP : STATE_AWAKE;
652         u16 reg;
653
654         if (state == STATE_SLEEP) {
655                 rt2500usb_register_read(rt2x00dev, MAC_CSR18, &reg);
656                 rt2x00_set_field16(&reg, MAC_CSR18_DELAY_AFTER_BEACON,
657                                    rt2x00dev->beacon_int - 20);
658                 rt2x00_set_field16(&reg, MAC_CSR18_BEACONS_BEFORE_WAKEUP,
659                                    libconf->conf->listen_interval - 1);
660
661                 /* We must first disable autowake before it can be enabled */
662                 rt2x00_set_field16(&reg, MAC_CSR18_AUTO_WAKE, 0);
663                 rt2500usb_register_write(rt2x00dev, MAC_CSR18, reg);
664
665                 rt2x00_set_field16(&reg, MAC_CSR18_AUTO_WAKE, 1);
666                 rt2500usb_register_write(rt2x00dev, MAC_CSR18, reg);
667         } else {
668                 rt2500usb_register_read(rt2x00dev, MAC_CSR18, &reg);
669                 rt2x00_set_field16(&reg, MAC_CSR18_AUTO_WAKE, 0);
670                 rt2500usb_register_write(rt2x00dev, MAC_CSR18, reg);
671         }
672
673         rt2x00dev->ops->lib->set_device_state(rt2x00dev, state);
674 }
675
676 static void rt2500usb_config(struct rt2x00_dev *rt2x00dev,
677                              struct rt2x00lib_conf *libconf,
678                              const unsigned int flags)
679 {
680         if (flags & IEEE80211_CONF_CHANGE_CHANNEL)
681                 rt2500usb_config_channel(rt2x00dev, &libconf->rf,
682                                          libconf->conf->power_level);
683         if ((flags & IEEE80211_CONF_CHANGE_POWER) &&
684             !(flags & IEEE80211_CONF_CHANGE_CHANNEL))
685                 rt2500usb_config_txpower(rt2x00dev,
686                                          libconf->conf->power_level);
687         if (flags & IEEE80211_CONF_CHANGE_PS)
688                 rt2500usb_config_ps(rt2x00dev, libconf);
689 }
690
691 /*
692  * Link tuning
693  */
694 static void rt2500usb_link_stats(struct rt2x00_dev *rt2x00dev,
695                                  struct link_qual *qual)
696 {
697         u16 reg;
698
699         /*
700          * Update FCS error count from register.
701          */
702         rt2500usb_register_read(rt2x00dev, STA_CSR0, &reg);
703         qual->rx_failed = rt2x00_get_field16(reg, STA_CSR0_FCS_ERROR);
704
705         /*
706          * Update False CCA count from register.
707          */
708         rt2500usb_register_read(rt2x00dev, STA_CSR3, &reg);
709         qual->false_cca = rt2x00_get_field16(reg, STA_CSR3_FALSE_CCA_ERROR);
710 }
711
712 static void rt2500usb_reset_tuner(struct rt2x00_dev *rt2x00dev,
713                                   struct link_qual *qual)
714 {
715         u16 eeprom;
716         u16 value;
717
718         rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE_R24, &eeprom);
719         value = rt2x00_get_field16(eeprom, EEPROM_BBPTUNE_R24_LOW);
720         rt2500usb_bbp_write(rt2x00dev, 24, value);
721
722         rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE_R25, &eeprom);
723         value = rt2x00_get_field16(eeprom, EEPROM_BBPTUNE_R25_LOW);
724         rt2500usb_bbp_write(rt2x00dev, 25, value);
725
726         rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE_R61, &eeprom);
727         value = rt2x00_get_field16(eeprom, EEPROM_BBPTUNE_R61_LOW);
728         rt2500usb_bbp_write(rt2x00dev, 61, value);
729
730         rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE_VGC, &eeprom);
731         value = rt2x00_get_field16(eeprom, EEPROM_BBPTUNE_VGCUPPER);
732         rt2500usb_bbp_write(rt2x00dev, 17, value);
733
734         qual->vgc_level = value;
735 }
736
737 /*
738  * Queue handlers.
739  */
740 static void rt2500usb_start_queue(struct data_queue *queue)
741 {
742         struct rt2x00_dev *rt2x00dev = queue->rt2x00dev;
743         u16 reg;
744
745         switch (queue->qid) {
746         case QID_RX:
747                 rt2500usb_register_read(rt2x00dev, TXRX_CSR2, &reg);
748                 rt2x00_set_field16(&reg, TXRX_CSR2_DISABLE_RX, 0);
749                 rt2500usb_register_write(rt2x00dev, TXRX_CSR2, reg);
750                 break;
751         case QID_BEACON:
752                 rt2500usb_register_read(rt2x00dev, TXRX_CSR19, &reg);
753                 rt2x00_set_field16(&reg, TXRX_CSR19_TSF_COUNT, 1);
754                 rt2x00_set_field16(&reg, TXRX_CSR19_TBCN, 1);
755                 rt2x00_set_field16(&reg, TXRX_CSR19_BEACON_GEN, 1);
756                 rt2500usb_register_write(rt2x00dev, TXRX_CSR19, reg);
757                 break;
758         default:
759                 break;
760         }
761 }
762
763 static void rt2500usb_stop_queue(struct data_queue *queue)
764 {
765         struct rt2x00_dev *rt2x00dev = queue->rt2x00dev;
766         u16 reg;
767
768         switch (queue->qid) {
769         case QID_RX:
770                 rt2500usb_register_read(rt2x00dev, TXRX_CSR2, &reg);
771                 rt2x00_set_field16(&reg, TXRX_CSR2_DISABLE_RX, 1);
772                 rt2500usb_register_write(rt2x00dev, TXRX_CSR2, reg);
773                 break;
774         case QID_BEACON:
775                 rt2500usb_register_read(rt2x00dev, TXRX_CSR19, &reg);
776                 rt2x00_set_field16(&reg, TXRX_CSR19_TSF_COUNT, 0);
777                 rt2x00_set_field16(&reg, TXRX_CSR19_TBCN, 0);
778                 rt2x00_set_field16(&reg, TXRX_CSR19_BEACON_GEN, 0);
779                 rt2500usb_register_write(rt2x00dev, TXRX_CSR19, reg);
780                 break;
781         default:
782                 break;
783         }
784 }
785
786 /*
787  * Initialization functions.
788  */
789 static int rt2500usb_init_registers(struct rt2x00_dev *rt2x00dev)
790 {
791         u16 reg;
792
793         rt2x00usb_vendor_request_sw(rt2x00dev, USB_DEVICE_MODE, 0x0001,
794                                     USB_MODE_TEST, REGISTER_TIMEOUT);
795         rt2x00usb_vendor_request_sw(rt2x00dev, USB_SINGLE_WRITE, 0x0308,
796                                     0x00f0, REGISTER_TIMEOUT);
797
798         rt2500usb_register_read(rt2x00dev, TXRX_CSR2, &reg);
799         rt2x00_set_field16(&reg, TXRX_CSR2_DISABLE_RX, 1);
800         rt2500usb_register_write(rt2x00dev, TXRX_CSR2, reg);
801
802         rt2500usb_register_write(rt2x00dev, MAC_CSR13, 0x1111);
803         rt2500usb_register_write(rt2x00dev, MAC_CSR14, 0x1e11);
804
805         rt2500usb_register_read(rt2x00dev, MAC_CSR1, &reg);
806         rt2x00_set_field16(&reg, MAC_CSR1_SOFT_RESET, 1);
807         rt2x00_set_field16(&reg, MAC_CSR1_BBP_RESET, 1);
808         rt2x00_set_field16(&reg, MAC_CSR1_HOST_READY, 0);
809         rt2500usb_register_write(rt2x00dev, MAC_CSR1, reg);
810
811         rt2500usb_register_read(rt2x00dev, MAC_CSR1, &reg);
812         rt2x00_set_field16(&reg, MAC_CSR1_SOFT_RESET, 0);
813         rt2x00_set_field16(&reg, MAC_CSR1_BBP_RESET, 0);
814         rt2x00_set_field16(&reg, MAC_CSR1_HOST_READY, 0);
815         rt2500usb_register_write(rt2x00dev, MAC_CSR1, reg);
816
817         rt2500usb_register_read(rt2x00dev, TXRX_CSR5, &reg);
818         rt2x00_set_field16(&reg, TXRX_CSR5_BBP_ID0, 13);
819         rt2x00_set_field16(&reg, TXRX_CSR5_BBP_ID0_VALID, 1);
820         rt2x00_set_field16(&reg, TXRX_CSR5_BBP_ID1, 12);
821         rt2x00_set_field16(&reg, TXRX_CSR5_BBP_ID1_VALID, 1);
822         rt2500usb_register_write(rt2x00dev, TXRX_CSR5, reg);
823
824         rt2500usb_register_read(rt2x00dev, TXRX_CSR6, &reg);
825         rt2x00_set_field16(&reg, TXRX_CSR6_BBP_ID0, 10);
826         rt2x00_set_field16(&reg, TXRX_CSR6_BBP_ID0_VALID, 1);
827         rt2x00_set_field16(&reg, TXRX_CSR6_BBP_ID1, 11);
828         rt2x00_set_field16(&reg, TXRX_CSR6_BBP_ID1_VALID, 1);
829         rt2500usb_register_write(rt2x00dev, TXRX_CSR6, reg);
830
831         rt2500usb_register_read(rt2x00dev, TXRX_CSR7, &reg);
832         rt2x00_set_field16(&reg, TXRX_CSR7_BBP_ID0, 7);
833         rt2x00_set_field16(&reg, TXRX_CSR7_BBP_ID0_VALID, 1);
834         rt2x00_set_field16(&reg, TXRX_CSR7_BBP_ID1, 6);
835         rt2x00_set_field16(&reg, TXRX_CSR7_BBP_ID1_VALID, 1);
836         rt2500usb_register_write(rt2x00dev, TXRX_CSR7, reg);
837
838         rt2500usb_register_read(rt2x00dev, TXRX_CSR8, &reg);
839         rt2x00_set_field16(&reg, TXRX_CSR8_BBP_ID0, 5);
840         rt2x00_set_field16(&reg, TXRX_CSR8_BBP_ID0_VALID, 1);
841         rt2x00_set_field16(&reg, TXRX_CSR8_BBP_ID1, 0);
842         rt2x00_set_field16(&reg, TXRX_CSR8_BBP_ID1_VALID, 0);
843         rt2500usb_register_write(rt2x00dev, TXRX_CSR8, reg);
844
845         rt2500usb_register_read(rt2x00dev, TXRX_CSR19, &reg);
846         rt2x00_set_field16(&reg, TXRX_CSR19_TSF_COUNT, 0);
847         rt2x00_set_field16(&reg, TXRX_CSR19_TSF_SYNC, 0);
848         rt2x00_set_field16(&reg, TXRX_CSR19_TBCN, 0);
849         rt2x00_set_field16(&reg, TXRX_CSR19_BEACON_GEN, 0);
850         rt2500usb_register_write(rt2x00dev, TXRX_CSR19, reg);
851
852         rt2500usb_register_write(rt2x00dev, TXRX_CSR21, 0xe78f);
853         rt2500usb_register_write(rt2x00dev, MAC_CSR9, 0xff1d);
854
855         if (rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_AWAKE))
856                 return -EBUSY;
857
858         rt2500usb_register_read(rt2x00dev, MAC_CSR1, &reg);
859         rt2x00_set_field16(&reg, MAC_CSR1_SOFT_RESET, 0);
860         rt2x00_set_field16(&reg, MAC_CSR1_BBP_RESET, 0);
861         rt2x00_set_field16(&reg, MAC_CSR1_HOST_READY, 1);
862         rt2500usb_register_write(rt2x00dev, MAC_CSR1, reg);
863
864         if (rt2x00_rev(rt2x00dev) >= RT2570_VERSION_C) {
865                 rt2500usb_register_read(rt2x00dev, PHY_CSR2, &reg);
866                 rt2x00_set_field16(&reg, PHY_CSR2_LNA, 0);
867         } else {
868                 reg = 0;
869                 rt2x00_set_field16(&reg, PHY_CSR2_LNA, 1);
870                 rt2x00_set_field16(&reg, PHY_CSR2_LNA_MODE, 3);
871         }
872         rt2500usb_register_write(rt2x00dev, PHY_CSR2, reg);
873
874         rt2500usb_register_write(rt2x00dev, MAC_CSR11, 0x0002);
875         rt2500usb_register_write(rt2x00dev, MAC_CSR22, 0x0053);
876         rt2500usb_register_write(rt2x00dev, MAC_CSR15, 0x01ee);
877         rt2500usb_register_write(rt2x00dev, MAC_CSR16, 0x0000);
878
879         rt2500usb_register_read(rt2x00dev, MAC_CSR8, &reg);
880         rt2x00_set_field16(&reg, MAC_CSR8_MAX_FRAME_UNIT,
881                            rt2x00dev->rx->data_size);
882         rt2500usb_register_write(rt2x00dev, MAC_CSR8, reg);
883
884         rt2500usb_register_read(rt2x00dev, TXRX_CSR0, &reg);
885         rt2x00_set_field16(&reg, TXRX_CSR0_ALGORITHM, CIPHER_NONE);
886         rt2x00_set_field16(&reg, TXRX_CSR0_IV_OFFSET, IEEE80211_HEADER);
887         rt2x00_set_field16(&reg, TXRX_CSR0_KEY_ID, 0);
888         rt2500usb_register_write(rt2x00dev, TXRX_CSR0, reg);
889
890         rt2500usb_register_read(rt2x00dev, MAC_CSR18, &reg);
891         rt2x00_set_field16(&reg, MAC_CSR18_DELAY_AFTER_BEACON, 90);
892         rt2500usb_register_write(rt2x00dev, MAC_CSR18, reg);
893
894         rt2500usb_register_read(rt2x00dev, PHY_CSR4, &reg);
895         rt2x00_set_field16(&reg, PHY_CSR4_LOW_RF_LE, 1);
896         rt2500usb_register_write(rt2x00dev, PHY_CSR4, reg);
897
898         rt2500usb_register_read(rt2x00dev, TXRX_CSR1, &reg);
899         rt2x00_set_field16(&reg, TXRX_CSR1_AUTO_SEQUENCE, 1);
900         rt2500usb_register_write(rt2x00dev, TXRX_CSR1, reg);
901
902         return 0;
903 }
904
905 static int rt2500usb_wait_bbp_ready(struct rt2x00_dev *rt2x00dev)
906 {
907         unsigned int i;
908         u8 value;
909
910         for (i = 0; i < REGISTER_USB_BUSY_COUNT; i++) {
911                 rt2500usb_bbp_read(rt2x00dev, 0, &value);
912                 if ((value != 0xff) && (value != 0x00))
913                         return 0;
914                 udelay(REGISTER_BUSY_DELAY);
915         }
916
917         rt2x00_err(rt2x00dev, "BBP register access failed, aborting\n");
918         return -EACCES;
919 }
920
921 static int rt2500usb_init_bbp(struct rt2x00_dev *rt2x00dev)
922 {
923         unsigned int i;
924         u16 eeprom;
925         u8 value;
926         u8 reg_id;
927
928         if (unlikely(rt2500usb_wait_bbp_ready(rt2x00dev)))
929                 return -EACCES;
930
931         rt2500usb_bbp_write(rt2x00dev, 3, 0x02);
932         rt2500usb_bbp_write(rt2x00dev, 4, 0x19);
933         rt2500usb_bbp_write(rt2x00dev, 14, 0x1c);
934         rt2500usb_bbp_write(rt2x00dev, 15, 0x30);
935         rt2500usb_bbp_write(rt2x00dev, 16, 0xac);
936         rt2500usb_bbp_write(rt2x00dev, 18, 0x18);
937         rt2500usb_bbp_write(rt2x00dev, 19, 0xff);
938         rt2500usb_bbp_write(rt2x00dev, 20, 0x1e);
939         rt2500usb_bbp_write(rt2x00dev, 21, 0x08);
940         rt2500usb_bbp_write(rt2x00dev, 22, 0x08);
941         rt2500usb_bbp_write(rt2x00dev, 23, 0x08);
942         rt2500usb_bbp_write(rt2x00dev, 24, 0x80);
943         rt2500usb_bbp_write(rt2x00dev, 25, 0x50);
944         rt2500usb_bbp_write(rt2x00dev, 26, 0x08);
945         rt2500usb_bbp_write(rt2x00dev, 27, 0x23);
946         rt2500usb_bbp_write(rt2x00dev, 30, 0x10);
947         rt2500usb_bbp_write(rt2x00dev, 31, 0x2b);
948         rt2500usb_bbp_write(rt2x00dev, 32, 0xb9);
949         rt2500usb_bbp_write(rt2x00dev, 34, 0x12);
950         rt2500usb_bbp_write(rt2x00dev, 35, 0x50);
951         rt2500usb_bbp_write(rt2x00dev, 39, 0xc4);
952         rt2500usb_bbp_write(rt2x00dev, 40, 0x02);
953         rt2500usb_bbp_write(rt2x00dev, 41, 0x60);
954         rt2500usb_bbp_write(rt2x00dev, 53, 0x10);
955         rt2500usb_bbp_write(rt2x00dev, 54, 0x18);
956         rt2500usb_bbp_write(rt2x00dev, 56, 0x08);
957         rt2500usb_bbp_write(rt2x00dev, 57, 0x10);
958         rt2500usb_bbp_write(rt2x00dev, 58, 0x08);
959         rt2500usb_bbp_write(rt2x00dev, 61, 0x60);
960         rt2500usb_bbp_write(rt2x00dev, 62, 0x10);
961         rt2500usb_bbp_write(rt2x00dev, 75, 0xff);
962
963         for (i = 0; i < EEPROM_BBP_SIZE; i++) {
964                 rt2x00_eeprom_read(rt2x00dev, EEPROM_BBP_START + i, &eeprom);
965
966                 if (eeprom != 0xffff && eeprom != 0x0000) {
967                         reg_id = rt2x00_get_field16(eeprom, EEPROM_BBP_REG_ID);
968                         value = rt2x00_get_field16(eeprom, EEPROM_BBP_VALUE);
969                         rt2500usb_bbp_write(rt2x00dev, reg_id, value);
970                 }
971         }
972
973         return 0;
974 }
975
976 /*
977  * Device state switch handlers.
978  */
979 static int rt2500usb_enable_radio(struct rt2x00_dev *rt2x00dev)
980 {
981         /*
982          * Initialize all registers.
983          */
984         if (unlikely(rt2500usb_init_registers(rt2x00dev) ||
985                      rt2500usb_init_bbp(rt2x00dev)))
986                 return -EIO;
987
988         return 0;
989 }
990
991 static void rt2500usb_disable_radio(struct rt2x00_dev *rt2x00dev)
992 {
993         rt2500usb_register_write(rt2x00dev, MAC_CSR13, 0x2121);
994         rt2500usb_register_write(rt2x00dev, MAC_CSR14, 0x2121);
995
996         /*
997          * Disable synchronisation.
998          */
999         rt2500usb_register_write(rt2x00dev, TXRX_CSR19, 0);
1000
1001         rt2x00usb_disable_radio(rt2x00dev);
1002 }
1003
1004 static int rt2500usb_set_state(struct rt2x00_dev *rt2x00dev,
1005                                enum dev_state state)
1006 {
1007         u16 reg;
1008         u16 reg2;
1009         unsigned int i;
1010         char put_to_sleep;
1011         char bbp_state;
1012         char rf_state;
1013
1014         put_to_sleep = (state != STATE_AWAKE);
1015
1016         reg = 0;
1017         rt2x00_set_field16(&reg, MAC_CSR17_BBP_DESIRE_STATE, state);
1018         rt2x00_set_field16(&reg, MAC_CSR17_RF_DESIRE_STATE, state);
1019         rt2x00_set_field16(&reg, MAC_CSR17_PUT_TO_SLEEP, put_to_sleep);
1020         rt2500usb_register_write(rt2x00dev, MAC_CSR17, reg);
1021         rt2x00_set_field16(&reg, MAC_CSR17_SET_STATE, 1);
1022         rt2500usb_register_write(rt2x00dev, MAC_CSR17, reg);
1023
1024         /*
1025          * Device is not guaranteed to be in the requested state yet.
1026          * We must wait until the register indicates that the
1027          * device has entered the correct state.
1028          */
1029         for (i = 0; i < REGISTER_USB_BUSY_COUNT; i++) {
1030                 rt2500usb_register_read(rt2x00dev, MAC_CSR17, &reg2);
1031                 bbp_state = rt2x00_get_field16(reg2, MAC_CSR17_BBP_CURR_STATE);
1032                 rf_state = rt2x00_get_field16(reg2, MAC_CSR17_RF_CURR_STATE);
1033                 if (bbp_state == state && rf_state == state)
1034                         return 0;
1035                 rt2500usb_register_write(rt2x00dev, MAC_CSR17, reg);
1036                 msleep(30);
1037         }
1038
1039         return -EBUSY;
1040 }
1041
1042 static int rt2500usb_set_device_state(struct rt2x00_dev *rt2x00dev,
1043                                       enum dev_state state)
1044 {
1045         int retval = 0;
1046
1047         switch (state) {
1048         case STATE_RADIO_ON:
1049                 retval = rt2500usb_enable_radio(rt2x00dev);
1050                 break;
1051         case STATE_RADIO_OFF:
1052                 rt2500usb_disable_radio(rt2x00dev);
1053                 break;
1054         case STATE_RADIO_IRQ_ON:
1055         case STATE_RADIO_IRQ_OFF:
1056                 /* No support, but no error either */
1057                 break;
1058         case STATE_DEEP_SLEEP:
1059         case STATE_SLEEP:
1060         case STATE_STANDBY:
1061         case STATE_AWAKE:
1062                 retval = rt2500usb_set_state(rt2x00dev, state);
1063                 break;
1064         default:
1065                 retval = -ENOTSUPP;
1066                 break;
1067         }
1068
1069         if (unlikely(retval))
1070                 rt2x00_err(rt2x00dev, "Device failed to enter state %d (%d)\n",
1071                            state, retval);
1072
1073         return retval;
1074 }
1075
1076 /*
1077  * TX descriptor initialization
1078  */
1079 static void rt2500usb_write_tx_desc(struct queue_entry *entry,
1080                                     struct txentry_desc *txdesc)
1081 {
1082         struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb);
1083         __le32 *txd = (__le32 *) entry->skb->data;
1084         u32 word;
1085
1086         /*
1087          * Start writing the descriptor words.
1088          */
1089         rt2x00_desc_read(txd, 0, &word);
1090         rt2x00_set_field32(&word, TXD_W0_RETRY_LIMIT, txdesc->retry_limit);
1091         rt2x00_set_field32(&word, TXD_W0_MORE_FRAG,
1092                            test_bit(ENTRY_TXD_MORE_FRAG, &txdesc->flags));
1093         rt2x00_set_field32(&word, TXD_W0_ACK,
1094                            test_bit(ENTRY_TXD_ACK, &txdesc->flags));
1095         rt2x00_set_field32(&word, TXD_W0_TIMESTAMP,
1096                            test_bit(ENTRY_TXD_REQ_TIMESTAMP, &txdesc->flags));
1097         rt2x00_set_field32(&word, TXD_W0_OFDM,
1098                            (txdesc->rate_mode == RATE_MODE_OFDM));
1099         rt2x00_set_field32(&word, TXD_W0_NEW_SEQ,
1100                            test_bit(ENTRY_TXD_FIRST_FRAGMENT, &txdesc->flags));
1101         rt2x00_set_field32(&word, TXD_W0_IFS, txdesc->u.plcp.ifs);
1102         rt2x00_set_field32(&word, TXD_W0_DATABYTE_COUNT, txdesc->length);
1103         rt2x00_set_field32(&word, TXD_W0_CIPHER, !!txdesc->cipher);
1104         rt2x00_set_field32(&word, TXD_W0_KEY_ID, txdesc->key_idx);
1105         rt2x00_desc_write(txd, 0, word);
1106
1107         rt2x00_desc_read(txd, 1, &word);
1108         rt2x00_set_field32(&word, TXD_W1_IV_OFFSET, txdesc->iv_offset);
1109         rt2x00_set_field32(&word, TXD_W1_AIFS, entry->queue->aifs);
1110         rt2x00_set_field32(&word, TXD_W1_CWMIN, entry->queue->cw_min);
1111         rt2x00_set_field32(&word, TXD_W1_CWMAX, entry->queue->cw_max);
1112         rt2x00_desc_write(txd, 1, word);
1113
1114         rt2x00_desc_read(txd, 2, &word);
1115         rt2x00_set_field32(&word, TXD_W2_PLCP_SIGNAL, txdesc->u.plcp.signal);
1116         rt2x00_set_field32(&word, TXD_W2_PLCP_SERVICE, txdesc->u.plcp.service);
1117         rt2x00_set_field32(&word, TXD_W2_PLCP_LENGTH_LOW,
1118                            txdesc->u.plcp.length_low);
1119         rt2x00_set_field32(&word, TXD_W2_PLCP_LENGTH_HIGH,
1120                            txdesc->u.plcp.length_high);
1121         rt2x00_desc_write(txd, 2, word);
1122
1123         if (test_bit(ENTRY_TXD_ENCRYPT, &txdesc->flags)) {
1124                 _rt2x00_desc_write(txd, 3, skbdesc->iv[0]);
1125                 _rt2x00_desc_write(txd, 4, skbdesc->iv[1]);
1126         }
1127
1128         /*
1129          * Register descriptor details in skb frame descriptor.
1130          */
1131         skbdesc->flags |= SKBDESC_DESC_IN_SKB;
1132         skbdesc->desc = txd;
1133         skbdesc->desc_len = TXD_DESC_SIZE;
1134 }
1135
1136 /*
1137  * TX data initialization
1138  */
1139 static void rt2500usb_beacondone(struct urb *urb);
1140
1141 static void rt2500usb_write_beacon(struct queue_entry *entry,
1142                                    struct txentry_desc *txdesc)
1143 {
1144         struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
1145         struct usb_device *usb_dev = to_usb_device_intf(rt2x00dev->dev);
1146         struct queue_entry_priv_usb_bcn *bcn_priv = entry->priv_data;
1147         int pipe = usb_sndbulkpipe(usb_dev, entry->queue->usb_endpoint);
1148         int length;
1149         u16 reg, reg0;
1150
1151         /*
1152          * Disable beaconing while we are reloading the beacon data,
1153          * otherwise we might be sending out invalid data.
1154          */
1155         rt2500usb_register_read(rt2x00dev, TXRX_CSR19, &reg);
1156         rt2x00_set_field16(&reg, TXRX_CSR19_BEACON_GEN, 0);
1157         rt2500usb_register_write(rt2x00dev, TXRX_CSR19, reg);
1158
1159         /*
1160          * Add space for the descriptor in front of the skb.
1161          */
1162         skb_push(entry->skb, TXD_DESC_SIZE);
1163         memset(entry->skb->data, 0, TXD_DESC_SIZE);
1164
1165         /*
1166          * Write the TX descriptor for the beacon.
1167          */
1168         rt2500usb_write_tx_desc(entry, txdesc);
1169
1170         /*
1171          * Dump beacon to userspace through debugfs.
1172          */
1173         rt2x00debug_dump_frame(rt2x00dev, DUMP_FRAME_BEACON, entry->skb);
1174
1175         /*
1176          * USB devices cannot blindly pass the skb->len as the
1177          * length of the data to usb_fill_bulk_urb. Pass the skb
1178          * to the driver to determine what the length should be.
1179          */
1180         length = rt2x00dev->ops->lib->get_tx_data_len(entry);
1181
1182         usb_fill_bulk_urb(bcn_priv->urb, usb_dev, pipe,
1183                           entry->skb->data, length, rt2500usb_beacondone,
1184                           entry);
1185
1186         /*
1187          * Second we need to create the guardian byte.
1188          * We only need a single byte, so lets recycle
1189          * the 'flags' field we are not using for beacons.
1190          */
1191         bcn_priv->guardian_data = 0;
1192         usb_fill_bulk_urb(bcn_priv->guardian_urb, usb_dev, pipe,
1193                           &bcn_priv->guardian_data, 1, rt2500usb_beacondone,
1194                           entry);
1195
1196         /*
1197          * Send out the guardian byte.
1198          */
1199         usb_submit_urb(bcn_priv->guardian_urb, GFP_ATOMIC);
1200
1201         /*
1202          * Enable beaconing again.
1203          */
1204         rt2x00_set_field16(&reg, TXRX_CSR19_TSF_COUNT, 1);
1205         rt2x00_set_field16(&reg, TXRX_CSR19_TBCN, 1);
1206         reg0 = reg;
1207         rt2x00_set_field16(&reg, TXRX_CSR19_BEACON_GEN, 1);
1208         /*
1209          * Beacon generation will fail initially.
1210          * To prevent this we need to change the TXRX_CSR19
1211          * register several times (reg0 is the same as reg
1212          * except for TXRX_CSR19_BEACON_GEN, which is 0 in reg0
1213          * and 1 in reg).
1214          */
1215         rt2500usb_register_write(rt2x00dev, TXRX_CSR19, reg);
1216         rt2500usb_register_write(rt2x00dev, TXRX_CSR19, reg0);
1217         rt2500usb_register_write(rt2x00dev, TXRX_CSR19, reg);
1218         rt2500usb_register_write(rt2x00dev, TXRX_CSR19, reg0);
1219         rt2500usb_register_write(rt2x00dev, TXRX_CSR19, reg);
1220 }
1221
1222 static int rt2500usb_get_tx_data_len(struct queue_entry *entry)
1223 {
1224         int length;
1225
1226         /*
1227          * The length _must_ be a multiple of 2,
1228          * but it must _not_ be a multiple of the USB packet size.
1229          */
1230         length = roundup(entry->skb->len, 2);
1231         length += (2 * !(length % entry->queue->usb_maxpacket));
1232
1233         return length;
1234 }
1235
1236 /*
1237  * RX control handlers
1238  */
1239 static void rt2500usb_fill_rxdone(struct queue_entry *entry,
1240                                   struct rxdone_entry_desc *rxdesc)
1241 {
1242         struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
1243         struct queue_entry_priv_usb *entry_priv = entry->priv_data;
1244         struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb);
1245         __le32 *rxd =
1246             (__le32 *)(entry->skb->data +
1247                        (entry_priv->urb->actual_length -
1248                         entry->queue->desc_size));
1249         u32 word0;
1250         u32 word1;
1251
1252         /*
1253          * Copy descriptor to the skbdesc->desc buffer, making it safe from moving of
1254          * frame data in rt2x00usb.
1255          */
1256         memcpy(skbdesc->desc, rxd, skbdesc->desc_len);
1257         rxd = (__le32 *)skbdesc->desc;
1258
1259         /*
1260          * It is now safe to read the descriptor on all architectures.
1261          */
1262         rt2x00_desc_read(rxd, 0, &word0);
1263         rt2x00_desc_read(rxd, 1, &word1);
1264
1265         if (rt2x00_get_field32(word0, RXD_W0_CRC_ERROR))
1266                 rxdesc->flags |= RX_FLAG_FAILED_FCS_CRC;
1267         if (rt2x00_get_field32(word0, RXD_W0_PHYSICAL_ERROR))
1268                 rxdesc->flags |= RX_FLAG_FAILED_PLCP_CRC;
1269
1270         rxdesc->cipher = rt2x00_get_field32(word0, RXD_W0_CIPHER);
1271         if (rt2x00_get_field32(word0, RXD_W0_CIPHER_ERROR))
1272                 rxdesc->cipher_status = RX_CRYPTO_FAIL_KEY;
1273
1274         if (rxdesc->cipher != CIPHER_NONE) {
1275                 _rt2x00_desc_read(rxd, 2, &rxdesc->iv[0]);
1276                 _rt2x00_desc_read(rxd, 3, &rxdesc->iv[1]);
1277                 rxdesc->dev_flags |= RXDONE_CRYPTO_IV;
1278
1279                 /* ICV is located at the end of frame */
1280
1281                 rxdesc->flags |= RX_FLAG_MMIC_STRIPPED;
1282                 if (rxdesc->cipher_status == RX_CRYPTO_SUCCESS)
1283                         rxdesc->flags |= RX_FLAG_DECRYPTED;
1284                 else if (rxdesc->cipher_status == RX_CRYPTO_FAIL_MIC)
1285                         rxdesc->flags |= RX_FLAG_MMIC_ERROR;
1286         }
1287
1288         /*
1289          * Obtain the status about this packet.
1290          * When frame was received with an OFDM bitrate,
1291          * the signal is the PLCP value. If it was received with
1292          * a CCK bitrate the signal is the rate in 100kbit/s.
1293          */
1294         rxdesc->signal = rt2x00_get_field32(word1, RXD_W1_SIGNAL);
1295         rxdesc->rssi =
1296             rt2x00_get_field32(word1, RXD_W1_RSSI) - rt2x00dev->rssi_offset;
1297         rxdesc->size = rt2x00_get_field32(word0, RXD_W0_DATABYTE_COUNT);
1298
1299         if (rt2x00_get_field32(word0, RXD_W0_OFDM))
1300                 rxdesc->dev_flags |= RXDONE_SIGNAL_PLCP;
1301         else
1302                 rxdesc->dev_flags |= RXDONE_SIGNAL_BITRATE;
1303         if (rt2x00_get_field32(word0, RXD_W0_MY_BSS))
1304                 rxdesc->dev_flags |= RXDONE_MY_BSS;
1305
1306         /*
1307          * Adjust the skb memory window to the frame boundaries.
1308          */
1309         skb_trim(entry->skb, rxdesc->size);
1310 }
1311
1312 /*
1313  * Interrupt functions.
1314  */
1315 static void rt2500usb_beacondone(struct urb *urb)
1316 {
1317         struct queue_entry *entry = (struct queue_entry *)urb->context;
1318         struct queue_entry_priv_usb_bcn *bcn_priv = entry->priv_data;
1319
1320         if (!test_bit(DEVICE_STATE_ENABLED_RADIO, &entry->queue->rt2x00dev->flags))
1321                 return;
1322
1323         /*
1324          * Check if this was the guardian beacon,
1325          * if that was the case we need to send the real beacon now.
1326          * Otherwise we should free the sk_buffer, the device
1327          * should be doing the rest of the work now.
1328          */
1329         if (bcn_priv->guardian_urb == urb) {
1330                 usb_submit_urb(bcn_priv->urb, GFP_ATOMIC);
1331         } else if (bcn_priv->urb == urb) {
1332                 dev_kfree_skb(entry->skb);
1333                 entry->skb = NULL;
1334         }
1335 }
1336
1337 /*
1338  * Device probe functions.
1339  */
1340 static int rt2500usb_validate_eeprom(struct rt2x00_dev *rt2x00dev)
1341 {
1342         u16 word;
1343         u8 *mac;
1344         u8 bbp;
1345
1346         rt2x00usb_eeprom_read(rt2x00dev, rt2x00dev->eeprom, EEPROM_SIZE);
1347
1348         /*
1349          * Start validation of the data that has been read.
1350          */
1351         mac = rt2x00_eeprom_addr(rt2x00dev, EEPROM_MAC_ADDR_0);
1352         if (!is_valid_ether_addr(mac)) {
1353                 eth_random_addr(mac);
1354                 rt2x00_eeprom_dbg(rt2x00dev, "MAC: %pM\n", mac);
1355         }
1356
1357         rt2x00_eeprom_read(rt2x00dev, EEPROM_ANTENNA, &word);
1358         if (word == 0xffff) {
1359                 rt2x00_set_field16(&word, EEPROM_ANTENNA_NUM, 2);
1360                 rt2x00_set_field16(&word, EEPROM_ANTENNA_TX_DEFAULT,
1361                                    ANTENNA_SW_DIVERSITY);
1362                 rt2x00_set_field16(&word, EEPROM_ANTENNA_RX_DEFAULT,
1363                                    ANTENNA_SW_DIVERSITY);
1364                 rt2x00_set_field16(&word, EEPROM_ANTENNA_LED_MODE,
1365                                    LED_MODE_DEFAULT);
1366                 rt2x00_set_field16(&word, EEPROM_ANTENNA_DYN_TXAGC, 0);
1367                 rt2x00_set_field16(&word, EEPROM_ANTENNA_HARDWARE_RADIO, 0);
1368                 rt2x00_set_field16(&word, EEPROM_ANTENNA_RF_TYPE, RF2522);
1369                 rt2x00_eeprom_write(rt2x00dev, EEPROM_ANTENNA, word);
1370                 rt2x00_eeprom_dbg(rt2x00dev, "Antenna: 0x%04x\n", word);
1371         }
1372
1373         rt2x00_eeprom_read(rt2x00dev, EEPROM_NIC, &word);
1374         if (word == 0xffff) {
1375                 rt2x00_set_field16(&word, EEPROM_NIC_CARDBUS_ACCEL, 0);
1376                 rt2x00_set_field16(&word, EEPROM_NIC_DYN_BBP_TUNE, 0);
1377                 rt2x00_set_field16(&word, EEPROM_NIC_CCK_TX_POWER, 0);
1378                 rt2x00_eeprom_write(rt2x00dev, EEPROM_NIC, word);
1379                 rt2x00_eeprom_dbg(rt2x00dev, "NIC: 0x%04x\n", word);
1380         }
1381
1382         rt2x00_eeprom_read(rt2x00dev, EEPROM_CALIBRATE_OFFSET, &word);
1383         if (word == 0xffff) {
1384                 rt2x00_set_field16(&word, EEPROM_CALIBRATE_OFFSET_RSSI,
1385                                    DEFAULT_RSSI_OFFSET);
1386                 rt2x00_eeprom_write(rt2x00dev, EEPROM_CALIBRATE_OFFSET, word);
1387                 rt2x00_eeprom_dbg(rt2x00dev, "Calibrate offset: 0x%04x\n",
1388                                   word);
1389         }
1390
1391         rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE, &word);
1392         if (word == 0xffff) {
1393                 rt2x00_set_field16(&word, EEPROM_BBPTUNE_THRESHOLD, 45);
1394                 rt2x00_eeprom_write(rt2x00dev, EEPROM_BBPTUNE, word);
1395                 rt2x00_eeprom_dbg(rt2x00dev, "BBPtune: 0x%04x\n", word);
1396         }
1397
1398         /*
1399          * Switch lower vgc bound to current BBP R17 value,
1400          * lower the value a bit for better quality.
1401          */
1402         rt2500usb_bbp_read(rt2x00dev, 17, &bbp);
1403         bbp -= 6;
1404
1405         rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE_VGC, &word);
1406         if (word == 0xffff) {
1407                 rt2x00_set_field16(&word, EEPROM_BBPTUNE_VGCUPPER, 0x40);
1408                 rt2x00_set_field16(&word, EEPROM_BBPTUNE_VGCLOWER, bbp);
1409                 rt2x00_eeprom_write(rt2x00dev, EEPROM_BBPTUNE_VGC, word);
1410                 rt2x00_eeprom_dbg(rt2x00dev, "BBPtune vgc: 0x%04x\n", word);
1411         } else {
1412                 rt2x00_set_field16(&word, EEPROM_BBPTUNE_VGCLOWER, bbp);
1413                 rt2x00_eeprom_write(rt2x00dev, EEPROM_BBPTUNE_VGC, word);
1414         }
1415
1416         rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE_R17, &word);
1417         if (word == 0xffff) {
1418                 rt2x00_set_field16(&word, EEPROM_BBPTUNE_R17_LOW, 0x48);
1419                 rt2x00_set_field16(&word, EEPROM_BBPTUNE_R17_HIGH, 0x41);
1420                 rt2x00_eeprom_write(rt2x00dev, EEPROM_BBPTUNE_R17, word);
1421                 rt2x00_eeprom_dbg(rt2x00dev, "BBPtune r17: 0x%04x\n", word);
1422         }
1423
1424         rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE_R24, &word);
1425         if (word == 0xffff) {
1426                 rt2x00_set_field16(&word, EEPROM_BBPTUNE_R24_LOW, 0x40);
1427                 rt2x00_set_field16(&word, EEPROM_BBPTUNE_R24_HIGH, 0x80);
1428                 rt2x00_eeprom_write(rt2x00dev, EEPROM_BBPTUNE_R24, word);
1429                 rt2x00_eeprom_dbg(rt2x00dev, "BBPtune r24: 0x%04x\n", word);
1430         }
1431
1432         rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE_R25, &word);
1433         if (word == 0xffff) {
1434                 rt2x00_set_field16(&word, EEPROM_BBPTUNE_R25_LOW, 0x40);
1435                 rt2x00_set_field16(&word, EEPROM_BBPTUNE_R25_HIGH, 0x50);
1436                 rt2x00_eeprom_write(rt2x00dev, EEPROM_BBPTUNE_R25, word);
1437                 rt2x00_eeprom_dbg(rt2x00dev, "BBPtune r25: 0x%04x\n", word);
1438         }
1439
1440         rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE_R61, &word);
1441         if (word == 0xffff) {
1442                 rt2x00_set_field16(&word, EEPROM_BBPTUNE_R61_LOW, 0x60);
1443                 rt2x00_set_field16(&word, EEPROM_BBPTUNE_R61_HIGH, 0x6d);
1444                 rt2x00_eeprom_write(rt2x00dev, EEPROM_BBPTUNE_R61, word);
1445                 rt2x00_eeprom_dbg(rt2x00dev, "BBPtune r61: 0x%04x\n", word);
1446         }
1447
1448         return 0;
1449 }
1450
1451 static int rt2500usb_init_eeprom(struct rt2x00_dev *rt2x00dev)
1452 {
1453         u16 reg;
1454         u16 value;
1455         u16 eeprom;
1456
1457         /*
1458          * Read EEPROM word for configuration.
1459          */
1460         rt2x00_eeprom_read(rt2x00dev, EEPROM_ANTENNA, &eeprom);
1461
1462         /*
1463          * Identify RF chipset.
1464          */
1465         value = rt2x00_get_field16(eeprom, EEPROM_ANTENNA_RF_TYPE);
1466         rt2500usb_register_read(rt2x00dev, MAC_CSR0, &reg);
1467         rt2x00_set_chip(rt2x00dev, RT2570, value, reg);
1468
1469         if (((reg & 0xfff0) != 0) || ((reg & 0x0000000f) == 0)) {
1470                 rt2x00_err(rt2x00dev, "Invalid RT chipset detected\n");
1471                 return -ENODEV;
1472         }
1473
1474         if (!rt2x00_rf(rt2x00dev, RF2522) &&
1475             !rt2x00_rf(rt2x00dev, RF2523) &&
1476             !rt2x00_rf(rt2x00dev, RF2524) &&
1477             !rt2x00_rf(rt2x00dev, RF2525) &&
1478             !rt2x00_rf(rt2x00dev, RF2525E) &&
1479             !rt2x00_rf(rt2x00dev, RF5222)) {
1480                 rt2x00_err(rt2x00dev, "Invalid RF chipset detected\n");
1481                 return -ENODEV;
1482         }
1483
1484         /*
1485          * Identify default antenna configuration.
1486          */
1487         rt2x00dev->default_ant.tx =
1488             rt2x00_get_field16(eeprom, EEPROM_ANTENNA_TX_DEFAULT);
1489         rt2x00dev->default_ant.rx =
1490             rt2x00_get_field16(eeprom, EEPROM_ANTENNA_RX_DEFAULT);
1491
1492         /*
1493          * When the eeprom indicates SW_DIVERSITY use HW_DIVERSITY instead.
1494          * I am not 100% sure about this, but the legacy drivers do not
1495          * indicate antenna swapping in software is required when
1496          * diversity is enabled.
1497          */
1498         if (rt2x00dev->default_ant.tx == ANTENNA_SW_DIVERSITY)
1499                 rt2x00dev->default_ant.tx = ANTENNA_HW_DIVERSITY;
1500         if (rt2x00dev->default_ant.rx == ANTENNA_SW_DIVERSITY)
1501                 rt2x00dev->default_ant.rx = ANTENNA_HW_DIVERSITY;
1502
1503         /*
1504          * Store led mode, for correct led behaviour.
1505          */
1506 #ifdef CONFIG_RT2X00_LIB_LEDS
1507         value = rt2x00_get_field16(eeprom, EEPROM_ANTENNA_LED_MODE);
1508
1509         rt2500usb_init_led(rt2x00dev, &rt2x00dev->led_radio, LED_TYPE_RADIO);
1510         if (value == LED_MODE_TXRX_ACTIVITY ||
1511             value == LED_MODE_DEFAULT ||
1512             value == LED_MODE_ASUS)
1513                 rt2500usb_init_led(rt2x00dev, &rt2x00dev->led_qual,
1514                                    LED_TYPE_ACTIVITY);
1515 #endif /* CONFIG_RT2X00_LIB_LEDS */
1516
1517         /*
1518          * Detect if this device has an hardware controlled radio.
1519          */
1520         if (rt2x00_get_field16(eeprom, EEPROM_ANTENNA_HARDWARE_RADIO))
1521                 __set_bit(CAPABILITY_HW_BUTTON, &rt2x00dev->cap_flags);
1522
1523         /*
1524          * Read the RSSI <-> dBm offset information.
1525          */
1526         rt2x00_eeprom_read(rt2x00dev, EEPROM_CALIBRATE_OFFSET, &eeprom);
1527         rt2x00dev->rssi_offset =
1528             rt2x00_get_field16(eeprom, EEPROM_CALIBRATE_OFFSET_RSSI);
1529
1530         return 0;
1531 }
1532
1533 /*
1534  * RF value list for RF2522
1535  * Supports: 2.4 GHz
1536  */
1537 static const struct rf_channel rf_vals_bg_2522[] = {
1538         { 1,  0x00002050, 0x000c1fda, 0x00000101, 0 },
1539         { 2,  0x00002050, 0x000c1fee, 0x00000101, 0 },
1540         { 3,  0x00002050, 0x000c2002, 0x00000101, 0 },
1541         { 4,  0x00002050, 0x000c2016, 0x00000101, 0 },
1542         { 5,  0x00002050, 0x000c202a, 0x00000101, 0 },
1543         { 6,  0x00002050, 0x000c203e, 0x00000101, 0 },
1544         { 7,  0x00002050, 0x000c2052, 0x00000101, 0 },
1545         { 8,  0x00002050, 0x000c2066, 0x00000101, 0 },
1546         { 9,  0x00002050, 0x000c207a, 0x00000101, 0 },
1547         { 10, 0x00002050, 0x000c208e, 0x00000101, 0 },
1548         { 11, 0x00002050, 0x000c20a2, 0x00000101, 0 },
1549         { 12, 0x00002050, 0x000c20b6, 0x00000101, 0 },
1550         { 13, 0x00002050, 0x000c20ca, 0x00000101, 0 },
1551         { 14, 0x00002050, 0x000c20fa, 0x00000101, 0 },
1552 };
1553
1554 /*
1555  * RF value list for RF2523
1556  * Supports: 2.4 GHz
1557  */
1558 static const struct rf_channel rf_vals_bg_2523[] = {
1559         { 1,  0x00022010, 0x00000c9e, 0x000e0111, 0x00000a1b },
1560         { 2,  0x00022010, 0x00000ca2, 0x000e0111, 0x00000a1b },
1561         { 3,  0x00022010, 0x00000ca6, 0x000e0111, 0x00000a1b },
1562         { 4,  0x00022010, 0x00000caa, 0x000e0111, 0x00000a1b },
1563         { 5,  0x00022010, 0x00000cae, 0x000e0111, 0x00000a1b },
1564         { 6,  0x00022010, 0x00000cb2, 0x000e0111, 0x00000a1b },
1565         { 7,  0x00022010, 0x00000cb6, 0x000e0111, 0x00000a1b },
1566         { 8,  0x00022010, 0x00000cba, 0x000e0111, 0x00000a1b },
1567         { 9,  0x00022010, 0x00000cbe, 0x000e0111, 0x00000a1b },
1568         { 10, 0x00022010, 0x00000d02, 0x000e0111, 0x00000a1b },
1569         { 11, 0x00022010, 0x00000d06, 0x000e0111, 0x00000a1b },
1570         { 12, 0x00022010, 0x00000d0a, 0x000e0111, 0x00000a1b },
1571         { 13, 0x00022010, 0x00000d0e, 0x000e0111, 0x00000a1b },
1572         { 14, 0x00022010, 0x00000d1a, 0x000e0111, 0x00000a03 },
1573 };
1574
1575 /*
1576  * RF value list for RF2524
1577  * Supports: 2.4 GHz
1578  */
1579 static const struct rf_channel rf_vals_bg_2524[] = {
1580         { 1,  0x00032020, 0x00000c9e, 0x00000101, 0x00000a1b },
1581         { 2,  0x00032020, 0x00000ca2, 0x00000101, 0x00000a1b },
1582         { 3,  0x00032020, 0x00000ca6, 0x00000101, 0x00000a1b },
1583         { 4,  0x00032020, 0x00000caa, 0x00000101, 0x00000a1b },
1584         { 5,  0x00032020, 0x00000cae, 0x00000101, 0x00000a1b },
1585         { 6,  0x00032020, 0x00000cb2, 0x00000101, 0x00000a1b },
1586         { 7,  0x00032020, 0x00000cb6, 0x00000101, 0x00000a1b },
1587         { 8,  0x00032020, 0x00000cba, 0x00000101, 0x00000a1b },
1588         { 9,  0x00032020, 0x00000cbe, 0x00000101, 0x00000a1b },
1589         { 10, 0x00032020, 0x00000d02, 0x00000101, 0x00000a1b },
1590         { 11, 0x00032020, 0x00000d06, 0x00000101, 0x00000a1b },
1591         { 12, 0x00032020, 0x00000d0a, 0x00000101, 0x00000a1b },
1592         { 13, 0x00032020, 0x00000d0e, 0x00000101, 0x00000a1b },
1593         { 14, 0x00032020, 0x00000d1a, 0x00000101, 0x00000a03 },
1594 };
1595
1596 /*
1597  * RF value list for RF2525
1598  * Supports: 2.4 GHz
1599  */
1600 static const struct rf_channel rf_vals_bg_2525[] = {
1601         { 1,  0x00022020, 0x00080c9e, 0x00060111, 0x00000a1b },
1602         { 2,  0x00022020, 0x00080ca2, 0x00060111, 0x00000a1b },
1603         { 3,  0x00022020, 0x00080ca6, 0x00060111, 0x00000a1b },
1604         { 4,  0x00022020, 0x00080caa, 0x00060111, 0x00000a1b },
1605         { 5,  0x00022020, 0x00080cae, 0x00060111, 0x00000a1b },
1606         { 6,  0x00022020, 0x00080cb2, 0x00060111, 0x00000a1b },
1607         { 7,  0x00022020, 0x00080cb6, 0x00060111, 0x00000a1b },
1608         { 8,  0x00022020, 0x00080cba, 0x00060111, 0x00000a1b },
1609         { 9,  0x00022020, 0x00080cbe, 0x00060111, 0x00000a1b },
1610         { 10, 0x00022020, 0x00080d02, 0x00060111, 0x00000a1b },
1611         { 11, 0x00022020, 0x00080d06, 0x00060111, 0x00000a1b },
1612         { 12, 0x00022020, 0x00080d0a, 0x00060111, 0x00000a1b },
1613         { 13, 0x00022020, 0x00080d0e, 0x00060111, 0x00000a1b },
1614         { 14, 0x00022020, 0x00080d1a, 0x00060111, 0x00000a03 },
1615 };
1616
1617 /*
1618  * RF value list for RF2525e
1619  * Supports: 2.4 GHz
1620  */
1621 static const struct rf_channel rf_vals_bg_2525e[] = {
1622         { 1,  0x00022010, 0x0000089a, 0x00060111, 0x00000e1b },
1623         { 2,  0x00022010, 0x0000089e, 0x00060111, 0x00000e07 },
1624         { 3,  0x00022010, 0x0000089e, 0x00060111, 0x00000e1b },
1625         { 4,  0x00022010, 0x000008a2, 0x00060111, 0x00000e07 },
1626         { 5,  0x00022010, 0x000008a2, 0x00060111, 0x00000e1b },
1627         { 6,  0x00022010, 0x000008a6, 0x00060111, 0x00000e07 },
1628         { 7,  0x00022010, 0x000008a6, 0x00060111, 0x00000e1b },
1629         { 8,  0x00022010, 0x000008aa, 0x00060111, 0x00000e07 },
1630         { 9,  0x00022010, 0x000008aa, 0x00060111, 0x00000e1b },
1631         { 10, 0x00022010, 0x000008ae, 0x00060111, 0x00000e07 },
1632         { 11, 0x00022010, 0x000008ae, 0x00060111, 0x00000e1b },
1633         { 12, 0x00022010, 0x000008b2, 0x00060111, 0x00000e07 },
1634         { 13, 0x00022010, 0x000008b2, 0x00060111, 0x00000e1b },
1635         { 14, 0x00022010, 0x000008b6, 0x00060111, 0x00000e23 },
1636 };
1637
1638 /*
1639  * RF value list for RF5222
1640  * Supports: 2.4 GHz & 5.2 GHz
1641  */
1642 static const struct rf_channel rf_vals_5222[] = {
1643         { 1,  0x00022020, 0x00001136, 0x00000101, 0x00000a0b },
1644         { 2,  0x00022020, 0x0000113a, 0x00000101, 0x00000a0b },
1645         { 3,  0x00022020, 0x0000113e, 0x00000101, 0x00000a0b },
1646         { 4,  0x00022020, 0x00001182, 0x00000101, 0x00000a0b },
1647         { 5,  0x00022020, 0x00001186, 0x00000101, 0x00000a0b },
1648         { 6,  0x00022020, 0x0000118a, 0x00000101, 0x00000a0b },
1649         { 7,  0x00022020, 0x0000118e, 0x00000101, 0x00000a0b },
1650         { 8,  0x00022020, 0x00001192, 0x00000101, 0x00000a0b },
1651         { 9,  0x00022020, 0x00001196, 0x00000101, 0x00000a0b },
1652         { 10, 0x00022020, 0x0000119a, 0x00000101, 0x00000a0b },
1653         { 11, 0x00022020, 0x0000119e, 0x00000101, 0x00000a0b },
1654         { 12, 0x00022020, 0x000011a2, 0x00000101, 0x00000a0b },
1655         { 13, 0x00022020, 0x000011a6, 0x00000101, 0x00000a0b },
1656         { 14, 0x00022020, 0x000011ae, 0x00000101, 0x00000a1b },
1657
1658         /* 802.11 UNI / HyperLan 2 */
1659         { 36, 0x00022010, 0x00018896, 0x00000101, 0x00000a1f },
1660         { 40, 0x00022010, 0x0001889a, 0x00000101, 0x00000a1f },
1661         { 44, 0x00022010, 0x0001889e, 0x00000101, 0x00000a1f },
1662         { 48, 0x00022010, 0x000188a2, 0x00000101, 0x00000a1f },
1663         { 52, 0x00022010, 0x000188a6, 0x00000101, 0x00000a1f },
1664         { 66, 0x00022010, 0x000188aa, 0x00000101, 0x00000a1f },
1665         { 60, 0x00022010, 0x000188ae, 0x00000101, 0x00000a1f },
1666         { 64, 0x00022010, 0x000188b2, 0x00000101, 0x00000a1f },
1667
1668         /* 802.11 HyperLan 2 */
1669         { 100, 0x00022010, 0x00008802, 0x00000101, 0x00000a0f },
1670         { 104, 0x00022010, 0x00008806, 0x00000101, 0x00000a0f },
1671         { 108, 0x00022010, 0x0000880a, 0x00000101, 0x00000a0f },
1672         { 112, 0x00022010, 0x0000880e, 0x00000101, 0x00000a0f },
1673         { 116, 0x00022010, 0x00008812, 0x00000101, 0x00000a0f },
1674         { 120, 0x00022010, 0x00008816, 0x00000101, 0x00000a0f },
1675         { 124, 0x00022010, 0x0000881a, 0x00000101, 0x00000a0f },
1676         { 128, 0x00022010, 0x0000881e, 0x00000101, 0x00000a0f },
1677         { 132, 0x00022010, 0x00008822, 0x00000101, 0x00000a0f },
1678         { 136, 0x00022010, 0x00008826, 0x00000101, 0x00000a0f },
1679
1680         /* 802.11 UNII */
1681         { 140, 0x00022010, 0x0000882a, 0x00000101, 0x00000a0f },
1682         { 149, 0x00022020, 0x000090a6, 0x00000101, 0x00000a07 },
1683         { 153, 0x00022020, 0x000090ae, 0x00000101, 0x00000a07 },
1684         { 157, 0x00022020, 0x000090b6, 0x00000101, 0x00000a07 },
1685         { 161, 0x00022020, 0x000090be, 0x00000101, 0x00000a07 },
1686 };
1687
1688 static int rt2500usb_probe_hw_mode(struct rt2x00_dev *rt2x00dev)
1689 {
1690         struct hw_mode_spec *spec = &rt2x00dev->spec;
1691         struct channel_info *info;
1692         char *tx_power;
1693         unsigned int i;
1694
1695         /*
1696          * Initialize all hw fields.
1697          *
1698          * Don't set IEEE80211_HW_HOST_BROADCAST_PS_BUFFERING unless we are
1699          * capable of sending the buffered frames out after the DTIM
1700          * transmission using rt2x00lib_beacondone. This will send out
1701          * multicast and broadcast traffic immediately instead of buffering it
1702          * infinitly and thus dropping it after some time.
1703          */
1704         ieee80211_hw_set(rt2x00dev->hw, PS_NULLFUNC_STACK);
1705         ieee80211_hw_set(rt2x00dev->hw, SUPPORTS_PS);
1706         ieee80211_hw_set(rt2x00dev->hw, RX_INCLUDES_FCS);
1707         ieee80211_hw_set(rt2x00dev->hw, SIGNAL_DBM);
1708
1709         /*
1710          * Disable powersaving as default.
1711          */
1712         rt2x00dev->hw->wiphy->flags &= ~WIPHY_FLAG_PS_ON_BY_DEFAULT;
1713
1714         SET_IEEE80211_DEV(rt2x00dev->hw, rt2x00dev->dev);
1715         SET_IEEE80211_PERM_ADDR(rt2x00dev->hw,
1716                                 rt2x00_eeprom_addr(rt2x00dev,
1717                                                    EEPROM_MAC_ADDR_0));
1718
1719         /*
1720          * Initialize hw_mode information.
1721          */
1722         spec->supported_bands = SUPPORT_BAND_2GHZ;
1723         spec->supported_rates = SUPPORT_RATE_CCK | SUPPORT_RATE_OFDM;
1724
1725         if (rt2x00_rf(rt2x00dev, RF2522)) {
1726                 spec->num_channels = ARRAY_SIZE(rf_vals_bg_2522);
1727                 spec->channels = rf_vals_bg_2522;
1728         } else if (rt2x00_rf(rt2x00dev, RF2523)) {
1729                 spec->num_channels = ARRAY_SIZE(rf_vals_bg_2523);
1730                 spec->channels = rf_vals_bg_2523;
1731         } else if (rt2x00_rf(rt2x00dev, RF2524)) {
1732                 spec->num_channels = ARRAY_SIZE(rf_vals_bg_2524);
1733                 spec->channels = rf_vals_bg_2524;
1734         } else if (rt2x00_rf(rt2x00dev, RF2525)) {
1735                 spec->num_channels = ARRAY_SIZE(rf_vals_bg_2525);
1736                 spec->channels = rf_vals_bg_2525;
1737         } else if (rt2x00_rf(rt2x00dev, RF2525E)) {
1738                 spec->num_channels = ARRAY_SIZE(rf_vals_bg_2525e);
1739                 spec->channels = rf_vals_bg_2525e;
1740         } else if (rt2x00_rf(rt2x00dev, RF5222)) {
1741                 spec->supported_bands |= SUPPORT_BAND_5GHZ;
1742                 spec->num_channels = ARRAY_SIZE(rf_vals_5222);
1743                 spec->channels = rf_vals_5222;
1744         }
1745
1746         /*
1747          * Create channel information array
1748          */
1749         info = kcalloc(spec->num_channels, sizeof(*info), GFP_KERNEL);
1750         if (!info)
1751                 return -ENOMEM;
1752
1753         spec->channels_info = info;
1754
1755         tx_power = rt2x00_eeprom_addr(rt2x00dev, EEPROM_TXPOWER_START);
1756         for (i = 0; i < 14; i++) {
1757                 info[i].max_power = MAX_TXPOWER;
1758                 info[i].default_power1 = TXPOWER_FROM_DEV(tx_power[i]);
1759         }
1760
1761         if (spec->num_channels > 14) {
1762                 for (i = 14; i < spec->num_channels; i++) {
1763                         info[i].max_power = MAX_TXPOWER;
1764                         info[i].default_power1 = DEFAULT_TXPOWER;
1765                 }
1766         }
1767
1768         return 0;
1769 }
1770
1771 static int rt2500usb_probe_hw(struct rt2x00_dev *rt2x00dev)
1772 {
1773         int retval;
1774         u16 reg;
1775
1776         /*
1777          * Allocate eeprom data.
1778          */
1779         retval = rt2500usb_validate_eeprom(rt2x00dev);
1780         if (retval)
1781                 return retval;
1782
1783         retval = rt2500usb_init_eeprom(rt2x00dev);
1784         if (retval)
1785                 return retval;
1786
1787         /*
1788          * Enable rfkill polling by setting GPIO direction of the
1789          * rfkill switch GPIO pin correctly.
1790          */
1791         rt2500usb_register_read(rt2x00dev, MAC_CSR19, &reg);
1792         rt2x00_set_field16(&reg, MAC_CSR19_DIR0, 0);
1793         rt2500usb_register_write(rt2x00dev, MAC_CSR19, reg);
1794
1795         /*
1796          * Initialize hw specifications.
1797          */
1798         retval = rt2500usb_probe_hw_mode(rt2x00dev);
1799         if (retval)
1800                 return retval;
1801
1802         /*
1803          * This device requires the atim queue
1804          */
1805         __set_bit(REQUIRE_ATIM_QUEUE, &rt2x00dev->cap_flags);
1806         __set_bit(REQUIRE_BEACON_GUARD, &rt2x00dev->cap_flags);
1807         if (!modparam_nohwcrypt) {
1808                 __set_bit(CAPABILITY_HW_CRYPTO, &rt2x00dev->cap_flags);
1809                 __set_bit(REQUIRE_COPY_IV, &rt2x00dev->cap_flags);
1810         }
1811         __set_bit(REQUIRE_SW_SEQNO, &rt2x00dev->cap_flags);
1812         __set_bit(REQUIRE_PS_AUTOWAKE, &rt2x00dev->cap_flags);
1813
1814         /*
1815          * Set the rssi offset.
1816          */
1817         rt2x00dev->rssi_offset = DEFAULT_RSSI_OFFSET;
1818
1819         return 0;
1820 }
1821
1822 static const struct ieee80211_ops rt2500usb_mac80211_ops = {
1823         .tx                     = rt2x00mac_tx,
1824         .start                  = rt2x00mac_start,
1825         .stop                   = rt2x00mac_stop,
1826         .add_interface          = rt2x00mac_add_interface,
1827         .remove_interface       = rt2x00mac_remove_interface,
1828         .config                 = rt2x00mac_config,
1829         .configure_filter       = rt2x00mac_configure_filter,
1830         .set_tim                = rt2x00mac_set_tim,
1831         .set_key                = rt2x00mac_set_key,
1832         .sw_scan_start          = rt2x00mac_sw_scan_start,
1833         .sw_scan_complete       = rt2x00mac_sw_scan_complete,
1834         .get_stats              = rt2x00mac_get_stats,
1835         .bss_info_changed       = rt2x00mac_bss_info_changed,
1836         .conf_tx                = rt2x00mac_conf_tx,
1837         .rfkill_poll            = rt2x00mac_rfkill_poll,
1838         .flush                  = rt2x00mac_flush,
1839         .set_antenna            = rt2x00mac_set_antenna,
1840         .get_antenna            = rt2x00mac_get_antenna,
1841         .get_ringparam          = rt2x00mac_get_ringparam,
1842         .tx_frames_pending      = rt2x00mac_tx_frames_pending,
1843 };
1844
1845 static const struct rt2x00lib_ops rt2500usb_rt2x00_ops = {
1846         .probe_hw               = rt2500usb_probe_hw,
1847         .initialize             = rt2x00usb_initialize,
1848         .uninitialize           = rt2x00usb_uninitialize,
1849         .clear_entry            = rt2x00usb_clear_entry,
1850         .set_device_state       = rt2500usb_set_device_state,
1851         .rfkill_poll            = rt2500usb_rfkill_poll,
1852         .link_stats             = rt2500usb_link_stats,
1853         .reset_tuner            = rt2500usb_reset_tuner,
1854         .watchdog               = rt2x00usb_watchdog,
1855         .start_queue            = rt2500usb_start_queue,
1856         .kick_queue             = rt2x00usb_kick_queue,
1857         .stop_queue             = rt2500usb_stop_queue,
1858         .flush_queue            = rt2x00usb_flush_queue,
1859         .write_tx_desc          = rt2500usb_write_tx_desc,
1860         .write_beacon           = rt2500usb_write_beacon,
1861         .get_tx_data_len        = rt2500usb_get_tx_data_len,
1862         .fill_rxdone            = rt2500usb_fill_rxdone,
1863         .config_shared_key      = rt2500usb_config_key,
1864         .config_pairwise_key    = rt2500usb_config_key,
1865         .config_filter          = rt2500usb_config_filter,
1866         .config_intf            = rt2500usb_config_intf,
1867         .config_erp             = rt2500usb_config_erp,
1868         .config_ant             = rt2500usb_config_ant,
1869         .config                 = rt2500usb_config,
1870 };
1871
1872 static void rt2500usb_queue_init(struct data_queue *queue)
1873 {
1874         switch (queue->qid) {
1875         case QID_RX:
1876                 queue->limit = 32;
1877                 queue->data_size = DATA_FRAME_SIZE;
1878                 queue->desc_size = RXD_DESC_SIZE;
1879                 queue->priv_size = sizeof(struct queue_entry_priv_usb);
1880                 break;
1881
1882         case QID_AC_VO:
1883         case QID_AC_VI:
1884         case QID_AC_BE:
1885         case QID_AC_BK:
1886                 queue->limit = 32;
1887                 queue->data_size = DATA_FRAME_SIZE;
1888                 queue->desc_size = TXD_DESC_SIZE;
1889                 queue->priv_size = sizeof(struct queue_entry_priv_usb);
1890                 break;
1891
1892         case QID_BEACON:
1893                 queue->limit = 1;
1894                 queue->data_size = MGMT_FRAME_SIZE;
1895                 queue->desc_size = TXD_DESC_SIZE;
1896                 queue->priv_size = sizeof(struct queue_entry_priv_usb_bcn);
1897                 break;
1898
1899         case QID_ATIM:
1900                 queue->limit = 8;
1901                 queue->data_size = DATA_FRAME_SIZE;
1902                 queue->desc_size = TXD_DESC_SIZE;
1903                 queue->priv_size = sizeof(struct queue_entry_priv_usb);
1904                 break;
1905
1906         default:
1907                 BUG();
1908                 break;
1909         }
1910 }
1911
1912 static const struct rt2x00_ops rt2500usb_ops = {
1913         .name                   = KBUILD_MODNAME,
1914         .max_ap_intf            = 1,
1915         .eeprom_size            = EEPROM_SIZE,
1916         .rf_size                = RF_SIZE,
1917         .tx_queues              = NUM_TX_QUEUES,
1918         .queue_init             = rt2500usb_queue_init,
1919         .lib                    = &rt2500usb_rt2x00_ops,
1920         .hw                     = &rt2500usb_mac80211_ops,
1921 #ifdef CONFIG_RT2X00_LIB_DEBUGFS
1922         .debugfs                = &rt2500usb_rt2x00debug,
1923 #endif /* CONFIG_RT2X00_LIB_DEBUGFS */
1924 };
1925
1926 /*
1927  * rt2500usb module information.
1928  */
1929 static struct usb_device_id rt2500usb_device_table[] = {
1930         /* ASUS */
1931         { USB_DEVICE(0x0b05, 0x1706) },
1932         { USB_DEVICE(0x0b05, 0x1707) },
1933         /* Belkin */
1934         { USB_DEVICE(0x050d, 0x7050) }, /* FCC ID: K7SF5D7050A ver. 2.x */
1935         { USB_DEVICE(0x050d, 0x7051) },
1936         /* Cisco Systems */
1937         { USB_DEVICE(0x13b1, 0x000d) },
1938         { USB_DEVICE(0x13b1, 0x0011) },
1939         { USB_DEVICE(0x13b1, 0x001a) },
1940         /* Conceptronic */
1941         { USB_DEVICE(0x14b2, 0x3c02) },
1942         /* D-LINK */
1943         { USB_DEVICE(0x2001, 0x3c00) },
1944         /* Gigabyte */
1945         { USB_DEVICE(0x1044, 0x8001) },
1946         { USB_DEVICE(0x1044, 0x8007) },
1947         /* Hercules */
1948         { USB_DEVICE(0x06f8, 0xe000) },
1949         /* Melco */
1950         { USB_DEVICE(0x0411, 0x005e) },
1951         { USB_DEVICE(0x0411, 0x0066) },
1952         { USB_DEVICE(0x0411, 0x0067) },
1953         { USB_DEVICE(0x0411, 0x008b) },
1954         { USB_DEVICE(0x0411, 0x0097) },
1955         /* MSI */
1956         { USB_DEVICE(0x0db0, 0x6861) },
1957         { USB_DEVICE(0x0db0, 0x6865) },
1958         { USB_DEVICE(0x0db0, 0x6869) },
1959         /* Ralink */
1960         { USB_DEVICE(0x148f, 0x1706) },
1961         { USB_DEVICE(0x148f, 0x2570) },
1962         { USB_DEVICE(0x148f, 0x9020) },
1963         /* Sagem */
1964         { USB_DEVICE(0x079b, 0x004b) },
1965         /* Siemens */
1966         { USB_DEVICE(0x0681, 0x3c06) },
1967         /* SMC */
1968         { USB_DEVICE(0x0707, 0xee13) },
1969         /* Spairon */
1970         { USB_DEVICE(0x114b, 0x0110) },
1971         /* SURECOM */
1972         { USB_DEVICE(0x0769, 0x11f3) },
1973         /* Trust */
1974         { USB_DEVICE(0x0eb0, 0x9020) },
1975         /* VTech */
1976         { USB_DEVICE(0x0f88, 0x3012) },
1977         /* Zinwell */
1978         { USB_DEVICE(0x5a57, 0x0260) },
1979         { 0, }
1980 };
1981
1982 MODULE_AUTHOR(DRV_PROJECT);
1983 MODULE_VERSION(DRV_VERSION);
1984 MODULE_DESCRIPTION("Ralink RT2500 USB Wireless LAN driver.");
1985 MODULE_SUPPORTED_DEVICE("Ralink RT2570 USB chipset based cards");
1986 MODULE_DEVICE_TABLE(usb, rt2500usb_device_table);
1987 MODULE_LICENSE("GPL");
1988
1989 static int rt2500usb_probe(struct usb_interface *usb_intf,
1990                            const struct usb_device_id *id)
1991 {
1992         return rt2x00usb_probe(usb_intf, &rt2500usb_ops);
1993 }
1994
1995 static struct usb_driver rt2500usb_driver = {
1996         .name           = KBUILD_MODNAME,
1997         .id_table       = rt2500usb_device_table,
1998         .probe          = rt2500usb_probe,
1999         .disconnect     = rt2x00usb_disconnect,
2000         .suspend        = rt2x00usb_suspend,
2001         .resume         = rt2x00usb_resume,
2002         .reset_resume   = rt2x00usb_resume,
2003         .disable_hub_initiated_lpm = 1,
2004 };
2005
2006 module_usb_driver(rt2500usb_driver);