regmap: irq: Enable irq retriggering for nested irqs
[cascardo/linux.git] / drivers / net / wireless / ralink / rt2x00 / rt2500usb.c
1 /*
2         Copyright (C) 2004 - 2009 Ivo van Doorn <IvDoorn@gmail.com>
3         <http://rt2x00.serialmonkey.com>
4
5         This program is free software; you can redistribute it and/or modify
6         it under the terms of the GNU General Public License as published by
7         the Free Software Foundation; either version 2 of the License, or
8         (at your option) any later version.
9
10         This program is distributed in the hope that it will be useful,
11         but WITHOUT ANY WARRANTY; without even the implied warranty of
12         MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13         GNU General Public License for more details.
14
15         You should have received a copy of the GNU General Public License
16         along with this program; if not, see <http://www.gnu.org/licenses/>.
17  */
18
19 /*
20         Module: rt2500usb
21         Abstract: rt2500usb device specific routines.
22         Supported chipsets: RT2570.
23  */
24
25 #include <linux/delay.h>
26 #include <linux/etherdevice.h>
27 #include <linux/kernel.h>
28 #include <linux/module.h>
29 #include <linux/slab.h>
30 #include <linux/usb.h>
31
32 #include "rt2x00.h"
33 #include "rt2x00usb.h"
34 #include "rt2500usb.h"
35
36 /*
37  * Allow hardware encryption to be disabled.
38  */
39 static bool modparam_nohwcrypt;
40 module_param_named(nohwcrypt, modparam_nohwcrypt, bool, S_IRUGO);
41 MODULE_PARM_DESC(nohwcrypt, "Disable hardware encryption.");
42
43 /*
44  * Register access.
45  * All access to the CSR registers will go through the methods
46  * rt2500usb_register_read and rt2500usb_register_write.
47  * BBP and RF register require indirect register access,
48  * and use the CSR registers BBPCSR and RFCSR to achieve this.
49  * These indirect registers work with busy bits,
50  * and we will try maximal REGISTER_USB_BUSY_COUNT times to access
51  * the register while taking a REGISTER_BUSY_DELAY us delay
52  * between each attampt. When the busy bit is still set at that time,
53  * the access attempt is considered to have failed,
54  * and we will print an error.
55  * If the csr_mutex is already held then the _lock variants must
56  * be used instead.
57  */
58 static inline void rt2500usb_register_read(struct rt2x00_dev *rt2x00dev,
59                                            const unsigned int offset,
60                                            u16 *value)
61 {
62         __le16 reg;
63         rt2x00usb_vendor_request_buff(rt2x00dev, USB_MULTI_READ,
64                                       USB_VENDOR_REQUEST_IN, offset,
65                                       &reg, sizeof(reg));
66         *value = le16_to_cpu(reg);
67 }
68
69 static inline void rt2500usb_register_read_lock(struct rt2x00_dev *rt2x00dev,
70                                                 const unsigned int offset,
71                                                 u16 *value)
72 {
73         __le16 reg;
74         rt2x00usb_vendor_req_buff_lock(rt2x00dev, USB_MULTI_READ,
75                                        USB_VENDOR_REQUEST_IN, offset,
76                                        &reg, sizeof(reg), REGISTER_TIMEOUT);
77         *value = le16_to_cpu(reg);
78 }
79
80 static inline void rt2500usb_register_multiread(struct rt2x00_dev *rt2x00dev,
81                                                 const unsigned int offset,
82                                                 void *value, const u16 length)
83 {
84         rt2x00usb_vendor_request_buff(rt2x00dev, USB_MULTI_READ,
85                                       USB_VENDOR_REQUEST_IN, offset,
86                                       value, length);
87 }
88
89 static inline void rt2500usb_register_write(struct rt2x00_dev *rt2x00dev,
90                                             const unsigned int offset,
91                                             u16 value)
92 {
93         __le16 reg = cpu_to_le16(value);
94         rt2x00usb_vendor_request_buff(rt2x00dev, USB_MULTI_WRITE,
95                                       USB_VENDOR_REQUEST_OUT, offset,
96                                       &reg, sizeof(reg));
97 }
98
99 static inline void rt2500usb_register_write_lock(struct rt2x00_dev *rt2x00dev,
100                                                  const unsigned int offset,
101                                                  u16 value)
102 {
103         __le16 reg = cpu_to_le16(value);
104         rt2x00usb_vendor_req_buff_lock(rt2x00dev, USB_MULTI_WRITE,
105                                        USB_VENDOR_REQUEST_OUT, offset,
106                                        &reg, sizeof(reg), REGISTER_TIMEOUT);
107 }
108
109 static inline void rt2500usb_register_multiwrite(struct rt2x00_dev *rt2x00dev,
110                                                  const unsigned int offset,
111                                                  void *value, const u16 length)
112 {
113         rt2x00usb_vendor_request_buff(rt2x00dev, USB_MULTI_WRITE,
114                                       USB_VENDOR_REQUEST_OUT, offset,
115                                       value, length);
116 }
117
118 static int rt2500usb_regbusy_read(struct rt2x00_dev *rt2x00dev,
119                                   const unsigned int offset,
120                                   struct rt2x00_field16 field,
121                                   u16 *reg)
122 {
123         unsigned int i;
124
125         for (i = 0; i < REGISTER_USB_BUSY_COUNT; i++) {
126                 rt2500usb_register_read_lock(rt2x00dev, offset, reg);
127                 if (!rt2x00_get_field16(*reg, field))
128                         return 1;
129                 udelay(REGISTER_BUSY_DELAY);
130         }
131
132         rt2x00_err(rt2x00dev, "Indirect register access failed: offset=0x%.08x, value=0x%.08x\n",
133                    offset, *reg);
134         *reg = ~0;
135
136         return 0;
137 }
138
139 #define WAIT_FOR_BBP(__dev, __reg) \
140         rt2500usb_regbusy_read((__dev), PHY_CSR8, PHY_CSR8_BUSY, (__reg))
141 #define WAIT_FOR_RF(__dev, __reg) \
142         rt2500usb_regbusy_read((__dev), PHY_CSR10, PHY_CSR10_RF_BUSY, (__reg))
143
144 static void rt2500usb_bbp_write(struct rt2x00_dev *rt2x00dev,
145                                 const unsigned int word, const u8 value)
146 {
147         u16 reg;
148
149         mutex_lock(&rt2x00dev->csr_mutex);
150
151         /*
152          * Wait until the BBP becomes available, afterwards we
153          * can safely write the new data into the register.
154          */
155         if (WAIT_FOR_BBP(rt2x00dev, &reg)) {
156                 reg = 0;
157                 rt2x00_set_field16(&reg, PHY_CSR7_DATA, value);
158                 rt2x00_set_field16(&reg, PHY_CSR7_REG_ID, word);
159                 rt2x00_set_field16(&reg, PHY_CSR7_READ_CONTROL, 0);
160
161                 rt2500usb_register_write_lock(rt2x00dev, PHY_CSR7, reg);
162         }
163
164         mutex_unlock(&rt2x00dev->csr_mutex);
165 }
166
167 static void rt2500usb_bbp_read(struct rt2x00_dev *rt2x00dev,
168                                const unsigned int word, u8 *value)
169 {
170         u16 reg;
171
172         mutex_lock(&rt2x00dev->csr_mutex);
173
174         /*
175          * Wait until the BBP becomes available, afterwards we
176          * can safely write the read request into the register.
177          * After the data has been written, we wait until hardware
178          * returns the correct value, if at any time the register
179          * doesn't become available in time, reg will be 0xffffffff
180          * which means we return 0xff to the caller.
181          */
182         if (WAIT_FOR_BBP(rt2x00dev, &reg)) {
183                 reg = 0;
184                 rt2x00_set_field16(&reg, PHY_CSR7_REG_ID, word);
185                 rt2x00_set_field16(&reg, PHY_CSR7_READ_CONTROL, 1);
186
187                 rt2500usb_register_write_lock(rt2x00dev, PHY_CSR7, reg);
188
189                 if (WAIT_FOR_BBP(rt2x00dev, &reg))
190                         rt2500usb_register_read_lock(rt2x00dev, PHY_CSR7, &reg);
191         }
192
193         *value = rt2x00_get_field16(reg, PHY_CSR7_DATA);
194
195         mutex_unlock(&rt2x00dev->csr_mutex);
196 }
197
198 static void rt2500usb_rf_write(struct rt2x00_dev *rt2x00dev,
199                                const unsigned int word, const u32 value)
200 {
201         u16 reg;
202
203         mutex_lock(&rt2x00dev->csr_mutex);
204
205         /*
206          * Wait until the RF becomes available, afterwards we
207          * can safely write the new data into the register.
208          */
209         if (WAIT_FOR_RF(rt2x00dev, &reg)) {
210                 reg = 0;
211                 rt2x00_set_field16(&reg, PHY_CSR9_RF_VALUE, value);
212                 rt2500usb_register_write_lock(rt2x00dev, PHY_CSR9, reg);
213
214                 reg = 0;
215                 rt2x00_set_field16(&reg, PHY_CSR10_RF_VALUE, value >> 16);
216                 rt2x00_set_field16(&reg, PHY_CSR10_RF_NUMBER_OF_BITS, 20);
217                 rt2x00_set_field16(&reg, PHY_CSR10_RF_IF_SELECT, 0);
218                 rt2x00_set_field16(&reg, PHY_CSR10_RF_BUSY, 1);
219
220                 rt2500usb_register_write_lock(rt2x00dev, PHY_CSR10, reg);
221                 rt2x00_rf_write(rt2x00dev, word, value);
222         }
223
224         mutex_unlock(&rt2x00dev->csr_mutex);
225 }
226
227 #ifdef CONFIG_RT2X00_LIB_DEBUGFS
228 static void _rt2500usb_register_read(struct rt2x00_dev *rt2x00dev,
229                                      const unsigned int offset,
230                                      u32 *value)
231 {
232         u16 tmp;
233
234         rt2500usb_register_read(rt2x00dev, offset, &tmp);
235         *value = tmp;
236 }
237
238 static void _rt2500usb_register_write(struct rt2x00_dev *rt2x00dev,
239                                       const unsigned int offset,
240                                       u32 value)
241 {
242         rt2500usb_register_write(rt2x00dev, offset, value);
243 }
244
245 static const struct rt2x00debug rt2500usb_rt2x00debug = {
246         .owner  = THIS_MODULE,
247         .csr    = {
248                 .read           = _rt2500usb_register_read,
249                 .write          = _rt2500usb_register_write,
250                 .flags          = RT2X00DEBUGFS_OFFSET,
251                 .word_base      = CSR_REG_BASE,
252                 .word_size      = sizeof(u16),
253                 .word_count     = CSR_REG_SIZE / sizeof(u16),
254         },
255         .eeprom = {
256                 .read           = rt2x00_eeprom_read,
257                 .write          = rt2x00_eeprom_write,
258                 .word_base      = EEPROM_BASE,
259                 .word_size      = sizeof(u16),
260                 .word_count     = EEPROM_SIZE / sizeof(u16),
261         },
262         .bbp    = {
263                 .read           = rt2500usb_bbp_read,
264                 .write          = rt2500usb_bbp_write,
265                 .word_base      = BBP_BASE,
266                 .word_size      = sizeof(u8),
267                 .word_count     = BBP_SIZE / sizeof(u8),
268         },
269         .rf     = {
270                 .read           = rt2x00_rf_read,
271                 .write          = rt2500usb_rf_write,
272                 .word_base      = RF_BASE,
273                 .word_size      = sizeof(u32),
274                 .word_count     = RF_SIZE / sizeof(u32),
275         },
276 };
277 #endif /* CONFIG_RT2X00_LIB_DEBUGFS */
278
279 static int rt2500usb_rfkill_poll(struct rt2x00_dev *rt2x00dev)
280 {
281         u16 reg;
282
283         rt2500usb_register_read(rt2x00dev, MAC_CSR19, &reg);
284         return rt2x00_get_field16(reg, MAC_CSR19_VAL7);
285 }
286
287 #ifdef CONFIG_RT2X00_LIB_LEDS
288 static void rt2500usb_brightness_set(struct led_classdev *led_cdev,
289                                      enum led_brightness brightness)
290 {
291         struct rt2x00_led *led =
292             container_of(led_cdev, struct rt2x00_led, led_dev);
293         unsigned int enabled = brightness != LED_OFF;
294         u16 reg;
295
296         rt2500usb_register_read(led->rt2x00dev, MAC_CSR20, &reg);
297
298         if (led->type == LED_TYPE_RADIO || led->type == LED_TYPE_ASSOC)
299                 rt2x00_set_field16(&reg, MAC_CSR20_LINK, enabled);
300         else if (led->type == LED_TYPE_ACTIVITY)
301                 rt2x00_set_field16(&reg, MAC_CSR20_ACTIVITY, enabled);
302
303         rt2500usb_register_write(led->rt2x00dev, MAC_CSR20, reg);
304 }
305
306 static int rt2500usb_blink_set(struct led_classdev *led_cdev,
307                                unsigned long *delay_on,
308                                unsigned long *delay_off)
309 {
310         struct rt2x00_led *led =
311             container_of(led_cdev, struct rt2x00_led, led_dev);
312         u16 reg;
313
314         rt2500usb_register_read(led->rt2x00dev, MAC_CSR21, &reg);
315         rt2x00_set_field16(&reg, MAC_CSR21_ON_PERIOD, *delay_on);
316         rt2x00_set_field16(&reg, MAC_CSR21_OFF_PERIOD, *delay_off);
317         rt2500usb_register_write(led->rt2x00dev, MAC_CSR21, reg);
318
319         return 0;
320 }
321
322 static void rt2500usb_init_led(struct rt2x00_dev *rt2x00dev,
323                                struct rt2x00_led *led,
324                                enum led_type type)
325 {
326         led->rt2x00dev = rt2x00dev;
327         led->type = type;
328         led->led_dev.brightness_set = rt2500usb_brightness_set;
329         led->led_dev.blink_set = rt2500usb_blink_set;
330         led->flags = LED_INITIALIZED;
331 }
332 #endif /* CONFIG_RT2X00_LIB_LEDS */
333
334 /*
335  * Configuration handlers.
336  */
337
338 /*
339  * rt2500usb does not differentiate between shared and pairwise
340  * keys, so we should use the same function for both key types.
341  */
342 static int rt2500usb_config_key(struct rt2x00_dev *rt2x00dev,
343                                 struct rt2x00lib_crypto *crypto,
344                                 struct ieee80211_key_conf *key)
345 {
346         u32 mask;
347         u16 reg;
348         enum cipher curr_cipher;
349
350         if (crypto->cmd == SET_KEY) {
351                 /*
352                  * Disallow to set WEP key other than with index 0,
353                  * it is known that not work at least on some hardware.
354                  * SW crypto will be used in that case.
355                  */
356                 if ((key->cipher == WLAN_CIPHER_SUITE_WEP40 ||
357                      key->cipher == WLAN_CIPHER_SUITE_WEP104) &&
358                     key->keyidx != 0)
359                         return -EOPNOTSUPP;
360
361                 /*
362                  * Pairwise key will always be entry 0, but this
363                  * could collide with a shared key on the same
364                  * position...
365                  */
366                 mask = TXRX_CSR0_KEY_ID.bit_mask;
367
368                 rt2500usb_register_read(rt2x00dev, TXRX_CSR0, &reg);
369                 curr_cipher = rt2x00_get_field16(reg, TXRX_CSR0_ALGORITHM);
370                 reg &= mask;
371
372                 if (reg && reg == mask)
373                         return -ENOSPC;
374
375                 reg = rt2x00_get_field16(reg, TXRX_CSR0_KEY_ID);
376
377                 key->hw_key_idx += reg ? ffz(reg) : 0;
378                 /*
379                  * Hardware requires that all keys use the same cipher
380                  * (e.g. TKIP-only, AES-only, but not TKIP+AES).
381                  * If this is not the first key, compare the cipher with the
382                  * first one and fall back to SW crypto if not the same.
383                  */
384                 if (key->hw_key_idx > 0 && crypto->cipher != curr_cipher)
385                         return -EOPNOTSUPP;
386
387                 rt2500usb_register_multiwrite(rt2x00dev, KEY_ENTRY(key->hw_key_idx),
388                                               crypto->key, sizeof(crypto->key));
389
390                 /*
391                  * The driver does not support the IV/EIV generation
392                  * in hardware. However it demands the data to be provided
393                  * both separately as well as inside the frame.
394                  * We already provided the CONFIG_CRYPTO_COPY_IV to rt2x00lib
395                  * to ensure rt2x00lib will not strip the data from the
396                  * frame after the copy, now we must tell mac80211
397                  * to generate the IV/EIV data.
398                  */
399                 key->flags |= IEEE80211_KEY_FLAG_GENERATE_IV;
400                 key->flags |= IEEE80211_KEY_FLAG_GENERATE_MMIC;
401         }
402
403         /*
404          * TXRX_CSR0_KEY_ID contains only single-bit fields to indicate
405          * a particular key is valid.
406          */
407         rt2500usb_register_read(rt2x00dev, TXRX_CSR0, &reg);
408         rt2x00_set_field16(&reg, TXRX_CSR0_ALGORITHM, crypto->cipher);
409         rt2x00_set_field16(&reg, TXRX_CSR0_IV_OFFSET, IEEE80211_HEADER);
410
411         mask = rt2x00_get_field16(reg, TXRX_CSR0_KEY_ID);
412         if (crypto->cmd == SET_KEY)
413                 mask |= 1 << key->hw_key_idx;
414         else if (crypto->cmd == DISABLE_KEY)
415                 mask &= ~(1 << key->hw_key_idx);
416         rt2x00_set_field16(&reg, TXRX_CSR0_KEY_ID, mask);
417         rt2500usb_register_write(rt2x00dev, TXRX_CSR0, reg);
418
419         return 0;
420 }
421
422 static void rt2500usb_config_filter(struct rt2x00_dev *rt2x00dev,
423                                     const unsigned int filter_flags)
424 {
425         u16 reg;
426
427         /*
428          * Start configuration steps.
429          * Note that the version error will always be dropped
430          * and broadcast frames will always be accepted since
431          * there is no filter for it at this time.
432          */
433         rt2500usb_register_read(rt2x00dev, TXRX_CSR2, &reg);
434         rt2x00_set_field16(&reg, TXRX_CSR2_DROP_CRC,
435                            !(filter_flags & FIF_FCSFAIL));
436         rt2x00_set_field16(&reg, TXRX_CSR2_DROP_PHYSICAL,
437                            !(filter_flags & FIF_PLCPFAIL));
438         rt2x00_set_field16(&reg, TXRX_CSR2_DROP_CONTROL,
439                            !(filter_flags & FIF_CONTROL));
440         rt2x00_set_field16(&reg, TXRX_CSR2_DROP_NOT_TO_ME, 1);
441         rt2x00_set_field16(&reg, TXRX_CSR2_DROP_TODS,
442                            !rt2x00dev->intf_ap_count);
443         rt2x00_set_field16(&reg, TXRX_CSR2_DROP_VERSION_ERROR, 1);
444         rt2x00_set_field16(&reg, TXRX_CSR2_DROP_MULTICAST,
445                            !(filter_flags & FIF_ALLMULTI));
446         rt2x00_set_field16(&reg, TXRX_CSR2_DROP_BROADCAST, 0);
447         rt2500usb_register_write(rt2x00dev, TXRX_CSR2, reg);
448 }
449
450 static void rt2500usb_config_intf(struct rt2x00_dev *rt2x00dev,
451                                   struct rt2x00_intf *intf,
452                                   struct rt2x00intf_conf *conf,
453                                   const unsigned int flags)
454 {
455         unsigned int bcn_preload;
456         u16 reg;
457
458         if (flags & CONFIG_UPDATE_TYPE) {
459                 /*
460                  * Enable beacon config
461                  */
462                 bcn_preload = PREAMBLE + GET_DURATION(IEEE80211_HEADER, 20);
463                 rt2500usb_register_read(rt2x00dev, TXRX_CSR20, &reg);
464                 rt2x00_set_field16(&reg, TXRX_CSR20_OFFSET, bcn_preload >> 6);
465                 rt2x00_set_field16(&reg, TXRX_CSR20_BCN_EXPECT_WINDOW,
466                                    2 * (conf->type != NL80211_IFTYPE_STATION));
467                 rt2500usb_register_write(rt2x00dev, TXRX_CSR20, reg);
468
469                 /*
470                  * Enable synchronisation.
471                  */
472                 rt2500usb_register_read(rt2x00dev, TXRX_CSR18, &reg);
473                 rt2x00_set_field16(&reg, TXRX_CSR18_OFFSET, 0);
474                 rt2500usb_register_write(rt2x00dev, TXRX_CSR18, reg);
475
476                 rt2500usb_register_read(rt2x00dev, TXRX_CSR19, &reg);
477                 rt2x00_set_field16(&reg, TXRX_CSR19_TSF_SYNC, conf->sync);
478                 rt2500usb_register_write(rt2x00dev, TXRX_CSR19, reg);
479         }
480
481         if (flags & CONFIG_UPDATE_MAC)
482                 rt2500usb_register_multiwrite(rt2x00dev, MAC_CSR2, conf->mac,
483                                               (3 * sizeof(__le16)));
484
485         if (flags & CONFIG_UPDATE_BSSID)
486                 rt2500usb_register_multiwrite(rt2x00dev, MAC_CSR5, conf->bssid,
487                                               (3 * sizeof(__le16)));
488 }
489
490 static void rt2500usb_config_erp(struct rt2x00_dev *rt2x00dev,
491                                  struct rt2x00lib_erp *erp,
492                                  u32 changed)
493 {
494         u16 reg;
495
496         if (changed & BSS_CHANGED_ERP_PREAMBLE) {
497                 rt2500usb_register_read(rt2x00dev, TXRX_CSR10, &reg);
498                 rt2x00_set_field16(&reg, TXRX_CSR10_AUTORESPOND_PREAMBLE,
499                                    !!erp->short_preamble);
500                 rt2500usb_register_write(rt2x00dev, TXRX_CSR10, reg);
501         }
502
503         if (changed & BSS_CHANGED_BASIC_RATES)
504                 rt2500usb_register_write(rt2x00dev, TXRX_CSR11,
505                                          erp->basic_rates);
506
507         if (changed & BSS_CHANGED_BEACON_INT) {
508                 rt2500usb_register_read(rt2x00dev, TXRX_CSR18, &reg);
509                 rt2x00_set_field16(&reg, TXRX_CSR18_INTERVAL,
510                                    erp->beacon_int * 4);
511                 rt2500usb_register_write(rt2x00dev, TXRX_CSR18, reg);
512         }
513
514         if (changed & BSS_CHANGED_ERP_SLOT) {
515                 rt2500usb_register_write(rt2x00dev, MAC_CSR10, erp->slot_time);
516                 rt2500usb_register_write(rt2x00dev, MAC_CSR11, erp->sifs);
517                 rt2500usb_register_write(rt2x00dev, MAC_CSR12, erp->eifs);
518         }
519 }
520
521 static void rt2500usb_config_ant(struct rt2x00_dev *rt2x00dev,
522                                  struct antenna_setup *ant)
523 {
524         u8 r2;
525         u8 r14;
526         u16 csr5;
527         u16 csr6;
528
529         /*
530          * We should never come here because rt2x00lib is supposed
531          * to catch this and send us the correct antenna explicitely.
532          */
533         BUG_ON(ant->rx == ANTENNA_SW_DIVERSITY ||
534                ant->tx == ANTENNA_SW_DIVERSITY);
535
536         rt2500usb_bbp_read(rt2x00dev, 2, &r2);
537         rt2500usb_bbp_read(rt2x00dev, 14, &r14);
538         rt2500usb_register_read(rt2x00dev, PHY_CSR5, &csr5);
539         rt2500usb_register_read(rt2x00dev, PHY_CSR6, &csr6);
540
541         /*
542          * Configure the TX antenna.
543          */
544         switch (ant->tx) {
545         case ANTENNA_HW_DIVERSITY:
546                 rt2x00_set_field8(&r2, BBP_R2_TX_ANTENNA, 1);
547                 rt2x00_set_field16(&csr5, PHY_CSR5_CCK, 1);
548                 rt2x00_set_field16(&csr6, PHY_CSR6_OFDM, 1);
549                 break;
550         case ANTENNA_A:
551                 rt2x00_set_field8(&r2, BBP_R2_TX_ANTENNA, 0);
552                 rt2x00_set_field16(&csr5, PHY_CSR5_CCK, 0);
553                 rt2x00_set_field16(&csr6, PHY_CSR6_OFDM, 0);
554                 break;
555         case ANTENNA_B:
556         default:
557                 rt2x00_set_field8(&r2, BBP_R2_TX_ANTENNA, 2);
558                 rt2x00_set_field16(&csr5, PHY_CSR5_CCK, 2);
559                 rt2x00_set_field16(&csr6, PHY_CSR6_OFDM, 2);
560                 break;
561         }
562
563         /*
564          * Configure the RX antenna.
565          */
566         switch (ant->rx) {
567         case ANTENNA_HW_DIVERSITY:
568                 rt2x00_set_field8(&r14, BBP_R14_RX_ANTENNA, 1);
569                 break;
570         case ANTENNA_A:
571                 rt2x00_set_field8(&r14, BBP_R14_RX_ANTENNA, 0);
572                 break;
573         case ANTENNA_B:
574         default:
575                 rt2x00_set_field8(&r14, BBP_R14_RX_ANTENNA, 2);
576                 break;
577         }
578
579         /*
580          * RT2525E and RT5222 need to flip TX I/Q
581          */
582         if (rt2x00_rf(rt2x00dev, RF2525E) || rt2x00_rf(rt2x00dev, RF5222)) {
583                 rt2x00_set_field8(&r2, BBP_R2_TX_IQ_FLIP, 1);
584                 rt2x00_set_field16(&csr5, PHY_CSR5_CCK_FLIP, 1);
585                 rt2x00_set_field16(&csr6, PHY_CSR6_OFDM_FLIP, 1);
586
587                 /*
588                  * RT2525E does not need RX I/Q Flip.
589                  */
590                 if (rt2x00_rf(rt2x00dev, RF2525E))
591                         rt2x00_set_field8(&r14, BBP_R14_RX_IQ_FLIP, 0);
592         } else {
593                 rt2x00_set_field16(&csr5, PHY_CSR5_CCK_FLIP, 0);
594                 rt2x00_set_field16(&csr6, PHY_CSR6_OFDM_FLIP, 0);
595         }
596
597         rt2500usb_bbp_write(rt2x00dev, 2, r2);
598         rt2500usb_bbp_write(rt2x00dev, 14, r14);
599         rt2500usb_register_write(rt2x00dev, PHY_CSR5, csr5);
600         rt2500usb_register_write(rt2x00dev, PHY_CSR6, csr6);
601 }
602
603 static void rt2500usb_config_channel(struct rt2x00_dev *rt2x00dev,
604                                      struct rf_channel *rf, const int txpower)
605 {
606         /*
607          * Set TXpower.
608          */
609         rt2x00_set_field32(&rf->rf3, RF3_TXPOWER, TXPOWER_TO_DEV(txpower));
610
611         /*
612          * For RT2525E we should first set the channel to half band higher.
613          */
614         if (rt2x00_rf(rt2x00dev, RF2525E)) {
615                 static const u32 vals[] = {
616                         0x000008aa, 0x000008ae, 0x000008ae, 0x000008b2,
617                         0x000008b2, 0x000008b6, 0x000008b6, 0x000008ba,
618                         0x000008ba, 0x000008be, 0x000008b7, 0x00000902,
619                         0x00000902, 0x00000906
620                 };
621
622                 rt2500usb_rf_write(rt2x00dev, 2, vals[rf->channel - 1]);
623                 if (rf->rf4)
624                         rt2500usb_rf_write(rt2x00dev, 4, rf->rf4);
625         }
626
627         rt2500usb_rf_write(rt2x00dev, 1, rf->rf1);
628         rt2500usb_rf_write(rt2x00dev, 2, rf->rf2);
629         rt2500usb_rf_write(rt2x00dev, 3, rf->rf3);
630         if (rf->rf4)
631                 rt2500usb_rf_write(rt2x00dev, 4, rf->rf4);
632 }
633
634 static void rt2500usb_config_txpower(struct rt2x00_dev *rt2x00dev,
635                                      const int txpower)
636 {
637         u32 rf3;
638
639         rt2x00_rf_read(rt2x00dev, 3, &rf3);
640         rt2x00_set_field32(&rf3, RF3_TXPOWER, TXPOWER_TO_DEV(txpower));
641         rt2500usb_rf_write(rt2x00dev, 3, rf3);
642 }
643
644 static void rt2500usb_config_ps(struct rt2x00_dev *rt2x00dev,
645                                 struct rt2x00lib_conf *libconf)
646 {
647         enum dev_state state =
648             (libconf->conf->flags & IEEE80211_CONF_PS) ?
649                 STATE_SLEEP : STATE_AWAKE;
650         u16 reg;
651
652         if (state == STATE_SLEEP) {
653                 rt2500usb_register_read(rt2x00dev, MAC_CSR18, &reg);
654                 rt2x00_set_field16(&reg, MAC_CSR18_DELAY_AFTER_BEACON,
655                                    rt2x00dev->beacon_int - 20);
656                 rt2x00_set_field16(&reg, MAC_CSR18_BEACONS_BEFORE_WAKEUP,
657                                    libconf->conf->listen_interval - 1);
658
659                 /* We must first disable autowake before it can be enabled */
660                 rt2x00_set_field16(&reg, MAC_CSR18_AUTO_WAKE, 0);
661                 rt2500usb_register_write(rt2x00dev, MAC_CSR18, reg);
662
663                 rt2x00_set_field16(&reg, MAC_CSR18_AUTO_WAKE, 1);
664                 rt2500usb_register_write(rt2x00dev, MAC_CSR18, reg);
665         } else {
666                 rt2500usb_register_read(rt2x00dev, MAC_CSR18, &reg);
667                 rt2x00_set_field16(&reg, MAC_CSR18_AUTO_WAKE, 0);
668                 rt2500usb_register_write(rt2x00dev, MAC_CSR18, reg);
669         }
670
671         rt2x00dev->ops->lib->set_device_state(rt2x00dev, state);
672 }
673
674 static void rt2500usb_config(struct rt2x00_dev *rt2x00dev,
675                              struct rt2x00lib_conf *libconf,
676                              const unsigned int flags)
677 {
678         if (flags & IEEE80211_CONF_CHANGE_CHANNEL)
679                 rt2500usb_config_channel(rt2x00dev, &libconf->rf,
680                                          libconf->conf->power_level);
681         if ((flags & IEEE80211_CONF_CHANGE_POWER) &&
682             !(flags & IEEE80211_CONF_CHANGE_CHANNEL))
683                 rt2500usb_config_txpower(rt2x00dev,
684                                          libconf->conf->power_level);
685         if (flags & IEEE80211_CONF_CHANGE_PS)
686                 rt2500usb_config_ps(rt2x00dev, libconf);
687 }
688
689 /*
690  * Link tuning
691  */
692 static void rt2500usb_link_stats(struct rt2x00_dev *rt2x00dev,
693                                  struct link_qual *qual)
694 {
695         u16 reg;
696
697         /*
698          * Update FCS error count from register.
699          */
700         rt2500usb_register_read(rt2x00dev, STA_CSR0, &reg);
701         qual->rx_failed = rt2x00_get_field16(reg, STA_CSR0_FCS_ERROR);
702
703         /*
704          * Update False CCA count from register.
705          */
706         rt2500usb_register_read(rt2x00dev, STA_CSR3, &reg);
707         qual->false_cca = rt2x00_get_field16(reg, STA_CSR3_FALSE_CCA_ERROR);
708 }
709
710 static void rt2500usb_reset_tuner(struct rt2x00_dev *rt2x00dev,
711                                   struct link_qual *qual)
712 {
713         u16 eeprom;
714         u16 value;
715
716         rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE_R24, &eeprom);
717         value = rt2x00_get_field16(eeprom, EEPROM_BBPTUNE_R24_LOW);
718         rt2500usb_bbp_write(rt2x00dev, 24, value);
719
720         rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE_R25, &eeprom);
721         value = rt2x00_get_field16(eeprom, EEPROM_BBPTUNE_R25_LOW);
722         rt2500usb_bbp_write(rt2x00dev, 25, value);
723
724         rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE_R61, &eeprom);
725         value = rt2x00_get_field16(eeprom, EEPROM_BBPTUNE_R61_LOW);
726         rt2500usb_bbp_write(rt2x00dev, 61, value);
727
728         rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE_VGC, &eeprom);
729         value = rt2x00_get_field16(eeprom, EEPROM_BBPTUNE_VGCUPPER);
730         rt2500usb_bbp_write(rt2x00dev, 17, value);
731
732         qual->vgc_level = value;
733 }
734
735 /*
736  * Queue handlers.
737  */
738 static void rt2500usb_start_queue(struct data_queue *queue)
739 {
740         struct rt2x00_dev *rt2x00dev = queue->rt2x00dev;
741         u16 reg;
742
743         switch (queue->qid) {
744         case QID_RX:
745                 rt2500usb_register_read(rt2x00dev, TXRX_CSR2, &reg);
746                 rt2x00_set_field16(&reg, TXRX_CSR2_DISABLE_RX, 0);
747                 rt2500usb_register_write(rt2x00dev, TXRX_CSR2, reg);
748                 break;
749         case QID_BEACON:
750                 rt2500usb_register_read(rt2x00dev, TXRX_CSR19, &reg);
751                 rt2x00_set_field16(&reg, TXRX_CSR19_TSF_COUNT, 1);
752                 rt2x00_set_field16(&reg, TXRX_CSR19_TBCN, 1);
753                 rt2x00_set_field16(&reg, TXRX_CSR19_BEACON_GEN, 1);
754                 rt2500usb_register_write(rt2x00dev, TXRX_CSR19, reg);
755                 break;
756         default:
757                 break;
758         }
759 }
760
761 static void rt2500usb_stop_queue(struct data_queue *queue)
762 {
763         struct rt2x00_dev *rt2x00dev = queue->rt2x00dev;
764         u16 reg;
765
766         switch (queue->qid) {
767         case QID_RX:
768                 rt2500usb_register_read(rt2x00dev, TXRX_CSR2, &reg);
769                 rt2x00_set_field16(&reg, TXRX_CSR2_DISABLE_RX, 1);
770                 rt2500usb_register_write(rt2x00dev, TXRX_CSR2, reg);
771                 break;
772         case QID_BEACON:
773                 rt2500usb_register_read(rt2x00dev, TXRX_CSR19, &reg);
774                 rt2x00_set_field16(&reg, TXRX_CSR19_TSF_COUNT, 0);
775                 rt2x00_set_field16(&reg, TXRX_CSR19_TBCN, 0);
776                 rt2x00_set_field16(&reg, TXRX_CSR19_BEACON_GEN, 0);
777                 rt2500usb_register_write(rt2x00dev, TXRX_CSR19, reg);
778                 break;
779         default:
780                 break;
781         }
782 }
783
784 /*
785  * Initialization functions.
786  */
787 static int rt2500usb_init_registers(struct rt2x00_dev *rt2x00dev)
788 {
789         u16 reg;
790
791         rt2x00usb_vendor_request_sw(rt2x00dev, USB_DEVICE_MODE, 0x0001,
792                                     USB_MODE_TEST, REGISTER_TIMEOUT);
793         rt2x00usb_vendor_request_sw(rt2x00dev, USB_SINGLE_WRITE, 0x0308,
794                                     0x00f0, REGISTER_TIMEOUT);
795
796         rt2500usb_register_read(rt2x00dev, TXRX_CSR2, &reg);
797         rt2x00_set_field16(&reg, TXRX_CSR2_DISABLE_RX, 1);
798         rt2500usb_register_write(rt2x00dev, TXRX_CSR2, reg);
799
800         rt2500usb_register_write(rt2x00dev, MAC_CSR13, 0x1111);
801         rt2500usb_register_write(rt2x00dev, MAC_CSR14, 0x1e11);
802
803         rt2500usb_register_read(rt2x00dev, MAC_CSR1, &reg);
804         rt2x00_set_field16(&reg, MAC_CSR1_SOFT_RESET, 1);
805         rt2x00_set_field16(&reg, MAC_CSR1_BBP_RESET, 1);
806         rt2x00_set_field16(&reg, MAC_CSR1_HOST_READY, 0);
807         rt2500usb_register_write(rt2x00dev, MAC_CSR1, reg);
808
809         rt2500usb_register_read(rt2x00dev, MAC_CSR1, &reg);
810         rt2x00_set_field16(&reg, MAC_CSR1_SOFT_RESET, 0);
811         rt2x00_set_field16(&reg, MAC_CSR1_BBP_RESET, 0);
812         rt2x00_set_field16(&reg, MAC_CSR1_HOST_READY, 0);
813         rt2500usb_register_write(rt2x00dev, MAC_CSR1, reg);
814
815         rt2500usb_register_read(rt2x00dev, TXRX_CSR5, &reg);
816         rt2x00_set_field16(&reg, TXRX_CSR5_BBP_ID0, 13);
817         rt2x00_set_field16(&reg, TXRX_CSR5_BBP_ID0_VALID, 1);
818         rt2x00_set_field16(&reg, TXRX_CSR5_BBP_ID1, 12);
819         rt2x00_set_field16(&reg, TXRX_CSR5_BBP_ID1_VALID, 1);
820         rt2500usb_register_write(rt2x00dev, TXRX_CSR5, reg);
821
822         rt2500usb_register_read(rt2x00dev, TXRX_CSR6, &reg);
823         rt2x00_set_field16(&reg, TXRX_CSR6_BBP_ID0, 10);
824         rt2x00_set_field16(&reg, TXRX_CSR6_BBP_ID0_VALID, 1);
825         rt2x00_set_field16(&reg, TXRX_CSR6_BBP_ID1, 11);
826         rt2x00_set_field16(&reg, TXRX_CSR6_BBP_ID1_VALID, 1);
827         rt2500usb_register_write(rt2x00dev, TXRX_CSR6, reg);
828
829         rt2500usb_register_read(rt2x00dev, TXRX_CSR7, &reg);
830         rt2x00_set_field16(&reg, TXRX_CSR7_BBP_ID0, 7);
831         rt2x00_set_field16(&reg, TXRX_CSR7_BBP_ID0_VALID, 1);
832         rt2x00_set_field16(&reg, TXRX_CSR7_BBP_ID1, 6);
833         rt2x00_set_field16(&reg, TXRX_CSR7_BBP_ID1_VALID, 1);
834         rt2500usb_register_write(rt2x00dev, TXRX_CSR7, reg);
835
836         rt2500usb_register_read(rt2x00dev, TXRX_CSR8, &reg);
837         rt2x00_set_field16(&reg, TXRX_CSR8_BBP_ID0, 5);
838         rt2x00_set_field16(&reg, TXRX_CSR8_BBP_ID0_VALID, 1);
839         rt2x00_set_field16(&reg, TXRX_CSR8_BBP_ID1, 0);
840         rt2x00_set_field16(&reg, TXRX_CSR8_BBP_ID1_VALID, 0);
841         rt2500usb_register_write(rt2x00dev, TXRX_CSR8, reg);
842
843         rt2500usb_register_read(rt2x00dev, TXRX_CSR19, &reg);
844         rt2x00_set_field16(&reg, TXRX_CSR19_TSF_COUNT, 0);
845         rt2x00_set_field16(&reg, TXRX_CSR19_TSF_SYNC, 0);
846         rt2x00_set_field16(&reg, TXRX_CSR19_TBCN, 0);
847         rt2x00_set_field16(&reg, TXRX_CSR19_BEACON_GEN, 0);
848         rt2500usb_register_write(rt2x00dev, TXRX_CSR19, reg);
849
850         rt2500usb_register_write(rt2x00dev, TXRX_CSR21, 0xe78f);
851         rt2500usb_register_write(rt2x00dev, MAC_CSR9, 0xff1d);
852
853         if (rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_AWAKE))
854                 return -EBUSY;
855
856         rt2500usb_register_read(rt2x00dev, MAC_CSR1, &reg);
857         rt2x00_set_field16(&reg, MAC_CSR1_SOFT_RESET, 0);
858         rt2x00_set_field16(&reg, MAC_CSR1_BBP_RESET, 0);
859         rt2x00_set_field16(&reg, MAC_CSR1_HOST_READY, 1);
860         rt2500usb_register_write(rt2x00dev, MAC_CSR1, reg);
861
862         if (rt2x00_rev(rt2x00dev) >= RT2570_VERSION_C) {
863                 rt2500usb_register_read(rt2x00dev, PHY_CSR2, &reg);
864                 rt2x00_set_field16(&reg, PHY_CSR2_LNA, 0);
865         } else {
866                 reg = 0;
867                 rt2x00_set_field16(&reg, PHY_CSR2_LNA, 1);
868                 rt2x00_set_field16(&reg, PHY_CSR2_LNA_MODE, 3);
869         }
870         rt2500usb_register_write(rt2x00dev, PHY_CSR2, reg);
871
872         rt2500usb_register_write(rt2x00dev, MAC_CSR11, 0x0002);
873         rt2500usb_register_write(rt2x00dev, MAC_CSR22, 0x0053);
874         rt2500usb_register_write(rt2x00dev, MAC_CSR15, 0x01ee);
875         rt2500usb_register_write(rt2x00dev, MAC_CSR16, 0x0000);
876
877         rt2500usb_register_read(rt2x00dev, MAC_CSR8, &reg);
878         rt2x00_set_field16(&reg, MAC_CSR8_MAX_FRAME_UNIT,
879                            rt2x00dev->rx->data_size);
880         rt2500usb_register_write(rt2x00dev, MAC_CSR8, reg);
881
882         rt2500usb_register_read(rt2x00dev, TXRX_CSR0, &reg);
883         rt2x00_set_field16(&reg, TXRX_CSR0_ALGORITHM, CIPHER_NONE);
884         rt2x00_set_field16(&reg, TXRX_CSR0_IV_OFFSET, IEEE80211_HEADER);
885         rt2x00_set_field16(&reg, TXRX_CSR0_KEY_ID, 0);
886         rt2500usb_register_write(rt2x00dev, TXRX_CSR0, reg);
887
888         rt2500usb_register_read(rt2x00dev, MAC_CSR18, &reg);
889         rt2x00_set_field16(&reg, MAC_CSR18_DELAY_AFTER_BEACON, 90);
890         rt2500usb_register_write(rt2x00dev, MAC_CSR18, reg);
891
892         rt2500usb_register_read(rt2x00dev, PHY_CSR4, &reg);
893         rt2x00_set_field16(&reg, PHY_CSR4_LOW_RF_LE, 1);
894         rt2500usb_register_write(rt2x00dev, PHY_CSR4, reg);
895
896         rt2500usb_register_read(rt2x00dev, TXRX_CSR1, &reg);
897         rt2x00_set_field16(&reg, TXRX_CSR1_AUTO_SEQUENCE, 1);
898         rt2500usb_register_write(rt2x00dev, TXRX_CSR1, reg);
899
900         return 0;
901 }
902
903 static int rt2500usb_wait_bbp_ready(struct rt2x00_dev *rt2x00dev)
904 {
905         unsigned int i;
906         u8 value;
907
908         for (i = 0; i < REGISTER_USB_BUSY_COUNT; i++) {
909                 rt2500usb_bbp_read(rt2x00dev, 0, &value);
910                 if ((value != 0xff) && (value != 0x00))
911                         return 0;
912                 udelay(REGISTER_BUSY_DELAY);
913         }
914
915         rt2x00_err(rt2x00dev, "BBP register access failed, aborting\n");
916         return -EACCES;
917 }
918
919 static int rt2500usb_init_bbp(struct rt2x00_dev *rt2x00dev)
920 {
921         unsigned int i;
922         u16 eeprom;
923         u8 value;
924         u8 reg_id;
925
926         if (unlikely(rt2500usb_wait_bbp_ready(rt2x00dev)))
927                 return -EACCES;
928
929         rt2500usb_bbp_write(rt2x00dev, 3, 0x02);
930         rt2500usb_bbp_write(rt2x00dev, 4, 0x19);
931         rt2500usb_bbp_write(rt2x00dev, 14, 0x1c);
932         rt2500usb_bbp_write(rt2x00dev, 15, 0x30);
933         rt2500usb_bbp_write(rt2x00dev, 16, 0xac);
934         rt2500usb_bbp_write(rt2x00dev, 18, 0x18);
935         rt2500usb_bbp_write(rt2x00dev, 19, 0xff);
936         rt2500usb_bbp_write(rt2x00dev, 20, 0x1e);
937         rt2500usb_bbp_write(rt2x00dev, 21, 0x08);
938         rt2500usb_bbp_write(rt2x00dev, 22, 0x08);
939         rt2500usb_bbp_write(rt2x00dev, 23, 0x08);
940         rt2500usb_bbp_write(rt2x00dev, 24, 0x80);
941         rt2500usb_bbp_write(rt2x00dev, 25, 0x50);
942         rt2500usb_bbp_write(rt2x00dev, 26, 0x08);
943         rt2500usb_bbp_write(rt2x00dev, 27, 0x23);
944         rt2500usb_bbp_write(rt2x00dev, 30, 0x10);
945         rt2500usb_bbp_write(rt2x00dev, 31, 0x2b);
946         rt2500usb_bbp_write(rt2x00dev, 32, 0xb9);
947         rt2500usb_bbp_write(rt2x00dev, 34, 0x12);
948         rt2500usb_bbp_write(rt2x00dev, 35, 0x50);
949         rt2500usb_bbp_write(rt2x00dev, 39, 0xc4);
950         rt2500usb_bbp_write(rt2x00dev, 40, 0x02);
951         rt2500usb_bbp_write(rt2x00dev, 41, 0x60);
952         rt2500usb_bbp_write(rt2x00dev, 53, 0x10);
953         rt2500usb_bbp_write(rt2x00dev, 54, 0x18);
954         rt2500usb_bbp_write(rt2x00dev, 56, 0x08);
955         rt2500usb_bbp_write(rt2x00dev, 57, 0x10);
956         rt2500usb_bbp_write(rt2x00dev, 58, 0x08);
957         rt2500usb_bbp_write(rt2x00dev, 61, 0x60);
958         rt2500usb_bbp_write(rt2x00dev, 62, 0x10);
959         rt2500usb_bbp_write(rt2x00dev, 75, 0xff);
960
961         for (i = 0; i < EEPROM_BBP_SIZE; i++) {
962                 rt2x00_eeprom_read(rt2x00dev, EEPROM_BBP_START + i, &eeprom);
963
964                 if (eeprom != 0xffff && eeprom != 0x0000) {
965                         reg_id = rt2x00_get_field16(eeprom, EEPROM_BBP_REG_ID);
966                         value = rt2x00_get_field16(eeprom, EEPROM_BBP_VALUE);
967                         rt2500usb_bbp_write(rt2x00dev, reg_id, value);
968                 }
969         }
970
971         return 0;
972 }
973
974 /*
975  * Device state switch handlers.
976  */
977 static int rt2500usb_enable_radio(struct rt2x00_dev *rt2x00dev)
978 {
979         /*
980          * Initialize all registers.
981          */
982         if (unlikely(rt2500usb_init_registers(rt2x00dev) ||
983                      rt2500usb_init_bbp(rt2x00dev)))
984                 return -EIO;
985
986         return 0;
987 }
988
989 static void rt2500usb_disable_radio(struct rt2x00_dev *rt2x00dev)
990 {
991         rt2500usb_register_write(rt2x00dev, MAC_CSR13, 0x2121);
992         rt2500usb_register_write(rt2x00dev, MAC_CSR14, 0x2121);
993
994         /*
995          * Disable synchronisation.
996          */
997         rt2500usb_register_write(rt2x00dev, TXRX_CSR19, 0);
998
999         rt2x00usb_disable_radio(rt2x00dev);
1000 }
1001
1002 static int rt2500usb_set_state(struct rt2x00_dev *rt2x00dev,
1003                                enum dev_state state)
1004 {
1005         u16 reg;
1006         u16 reg2;
1007         unsigned int i;
1008         char put_to_sleep;
1009         char bbp_state;
1010         char rf_state;
1011
1012         put_to_sleep = (state != STATE_AWAKE);
1013
1014         reg = 0;
1015         rt2x00_set_field16(&reg, MAC_CSR17_BBP_DESIRE_STATE, state);
1016         rt2x00_set_field16(&reg, MAC_CSR17_RF_DESIRE_STATE, state);
1017         rt2x00_set_field16(&reg, MAC_CSR17_PUT_TO_SLEEP, put_to_sleep);
1018         rt2500usb_register_write(rt2x00dev, MAC_CSR17, reg);
1019         rt2x00_set_field16(&reg, MAC_CSR17_SET_STATE, 1);
1020         rt2500usb_register_write(rt2x00dev, MAC_CSR17, reg);
1021
1022         /*
1023          * Device is not guaranteed to be in the requested state yet.
1024          * We must wait until the register indicates that the
1025          * device has entered the correct state.
1026          */
1027         for (i = 0; i < REGISTER_USB_BUSY_COUNT; i++) {
1028                 rt2500usb_register_read(rt2x00dev, MAC_CSR17, &reg2);
1029                 bbp_state = rt2x00_get_field16(reg2, MAC_CSR17_BBP_CURR_STATE);
1030                 rf_state = rt2x00_get_field16(reg2, MAC_CSR17_RF_CURR_STATE);
1031                 if (bbp_state == state && rf_state == state)
1032                         return 0;
1033                 rt2500usb_register_write(rt2x00dev, MAC_CSR17, reg);
1034                 msleep(30);
1035         }
1036
1037         return -EBUSY;
1038 }
1039
1040 static int rt2500usb_set_device_state(struct rt2x00_dev *rt2x00dev,
1041                                       enum dev_state state)
1042 {
1043         int retval = 0;
1044
1045         switch (state) {
1046         case STATE_RADIO_ON:
1047                 retval = rt2500usb_enable_radio(rt2x00dev);
1048                 break;
1049         case STATE_RADIO_OFF:
1050                 rt2500usb_disable_radio(rt2x00dev);
1051                 break;
1052         case STATE_RADIO_IRQ_ON:
1053         case STATE_RADIO_IRQ_OFF:
1054                 /* No support, but no error either */
1055                 break;
1056         case STATE_DEEP_SLEEP:
1057         case STATE_SLEEP:
1058         case STATE_STANDBY:
1059         case STATE_AWAKE:
1060                 retval = rt2500usb_set_state(rt2x00dev, state);
1061                 break;
1062         default:
1063                 retval = -ENOTSUPP;
1064                 break;
1065         }
1066
1067         if (unlikely(retval))
1068                 rt2x00_err(rt2x00dev, "Device failed to enter state %d (%d)\n",
1069                            state, retval);
1070
1071         return retval;
1072 }
1073
1074 /*
1075  * TX descriptor initialization
1076  */
1077 static void rt2500usb_write_tx_desc(struct queue_entry *entry,
1078                                     struct txentry_desc *txdesc)
1079 {
1080         struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb);
1081         __le32 *txd = (__le32 *) entry->skb->data;
1082         u32 word;
1083
1084         /*
1085          * Start writing the descriptor words.
1086          */
1087         rt2x00_desc_read(txd, 0, &word);
1088         rt2x00_set_field32(&word, TXD_W0_RETRY_LIMIT, txdesc->retry_limit);
1089         rt2x00_set_field32(&word, TXD_W0_MORE_FRAG,
1090                            test_bit(ENTRY_TXD_MORE_FRAG, &txdesc->flags));
1091         rt2x00_set_field32(&word, TXD_W0_ACK,
1092                            test_bit(ENTRY_TXD_ACK, &txdesc->flags));
1093         rt2x00_set_field32(&word, TXD_W0_TIMESTAMP,
1094                            test_bit(ENTRY_TXD_REQ_TIMESTAMP, &txdesc->flags));
1095         rt2x00_set_field32(&word, TXD_W0_OFDM,
1096                            (txdesc->rate_mode == RATE_MODE_OFDM));
1097         rt2x00_set_field32(&word, TXD_W0_NEW_SEQ,
1098                            test_bit(ENTRY_TXD_FIRST_FRAGMENT, &txdesc->flags));
1099         rt2x00_set_field32(&word, TXD_W0_IFS, txdesc->u.plcp.ifs);
1100         rt2x00_set_field32(&word, TXD_W0_DATABYTE_COUNT, txdesc->length);
1101         rt2x00_set_field32(&word, TXD_W0_CIPHER, !!txdesc->cipher);
1102         rt2x00_set_field32(&word, TXD_W0_KEY_ID, txdesc->key_idx);
1103         rt2x00_desc_write(txd, 0, word);
1104
1105         rt2x00_desc_read(txd, 1, &word);
1106         rt2x00_set_field32(&word, TXD_W1_IV_OFFSET, txdesc->iv_offset);
1107         rt2x00_set_field32(&word, TXD_W1_AIFS, entry->queue->aifs);
1108         rt2x00_set_field32(&word, TXD_W1_CWMIN, entry->queue->cw_min);
1109         rt2x00_set_field32(&word, TXD_W1_CWMAX, entry->queue->cw_max);
1110         rt2x00_desc_write(txd, 1, word);
1111
1112         rt2x00_desc_read(txd, 2, &word);
1113         rt2x00_set_field32(&word, TXD_W2_PLCP_SIGNAL, txdesc->u.plcp.signal);
1114         rt2x00_set_field32(&word, TXD_W2_PLCP_SERVICE, txdesc->u.plcp.service);
1115         rt2x00_set_field32(&word, TXD_W2_PLCP_LENGTH_LOW,
1116                            txdesc->u.plcp.length_low);
1117         rt2x00_set_field32(&word, TXD_W2_PLCP_LENGTH_HIGH,
1118                            txdesc->u.plcp.length_high);
1119         rt2x00_desc_write(txd, 2, word);
1120
1121         if (test_bit(ENTRY_TXD_ENCRYPT, &txdesc->flags)) {
1122                 _rt2x00_desc_write(txd, 3, skbdesc->iv[0]);
1123                 _rt2x00_desc_write(txd, 4, skbdesc->iv[1]);
1124         }
1125
1126         /*
1127          * Register descriptor details in skb frame descriptor.
1128          */
1129         skbdesc->flags |= SKBDESC_DESC_IN_SKB;
1130         skbdesc->desc = txd;
1131         skbdesc->desc_len = TXD_DESC_SIZE;
1132 }
1133
1134 /*
1135  * TX data initialization
1136  */
1137 static void rt2500usb_beacondone(struct urb *urb);
1138
1139 static void rt2500usb_write_beacon(struct queue_entry *entry,
1140                                    struct txentry_desc *txdesc)
1141 {
1142         struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
1143         struct usb_device *usb_dev = to_usb_device_intf(rt2x00dev->dev);
1144         struct queue_entry_priv_usb_bcn *bcn_priv = entry->priv_data;
1145         int pipe = usb_sndbulkpipe(usb_dev, entry->queue->usb_endpoint);
1146         int length;
1147         u16 reg, reg0;
1148
1149         /*
1150          * Disable beaconing while we are reloading the beacon data,
1151          * otherwise we might be sending out invalid data.
1152          */
1153         rt2500usb_register_read(rt2x00dev, TXRX_CSR19, &reg);
1154         rt2x00_set_field16(&reg, TXRX_CSR19_BEACON_GEN, 0);
1155         rt2500usb_register_write(rt2x00dev, TXRX_CSR19, reg);
1156
1157         /*
1158          * Add space for the descriptor in front of the skb.
1159          */
1160         skb_push(entry->skb, TXD_DESC_SIZE);
1161         memset(entry->skb->data, 0, TXD_DESC_SIZE);
1162
1163         /*
1164          * Write the TX descriptor for the beacon.
1165          */
1166         rt2500usb_write_tx_desc(entry, txdesc);
1167
1168         /*
1169          * Dump beacon to userspace through debugfs.
1170          */
1171         rt2x00debug_dump_frame(rt2x00dev, DUMP_FRAME_BEACON, entry->skb);
1172
1173         /*
1174          * USB devices cannot blindly pass the skb->len as the
1175          * length of the data to usb_fill_bulk_urb. Pass the skb
1176          * to the driver to determine what the length should be.
1177          */
1178         length = rt2x00dev->ops->lib->get_tx_data_len(entry);
1179
1180         usb_fill_bulk_urb(bcn_priv->urb, usb_dev, pipe,
1181                           entry->skb->data, length, rt2500usb_beacondone,
1182                           entry);
1183
1184         /*
1185          * Second we need to create the guardian byte.
1186          * We only need a single byte, so lets recycle
1187          * the 'flags' field we are not using for beacons.
1188          */
1189         bcn_priv->guardian_data = 0;
1190         usb_fill_bulk_urb(bcn_priv->guardian_urb, usb_dev, pipe,
1191                           &bcn_priv->guardian_data, 1, rt2500usb_beacondone,
1192                           entry);
1193
1194         /*
1195          * Send out the guardian byte.
1196          */
1197         usb_submit_urb(bcn_priv->guardian_urb, GFP_ATOMIC);
1198
1199         /*
1200          * Enable beaconing again.
1201          */
1202         rt2x00_set_field16(&reg, TXRX_CSR19_TSF_COUNT, 1);
1203         rt2x00_set_field16(&reg, TXRX_CSR19_TBCN, 1);
1204         reg0 = reg;
1205         rt2x00_set_field16(&reg, TXRX_CSR19_BEACON_GEN, 1);
1206         /*
1207          * Beacon generation will fail initially.
1208          * To prevent this we need to change the TXRX_CSR19
1209          * register several times (reg0 is the same as reg
1210          * except for TXRX_CSR19_BEACON_GEN, which is 0 in reg0
1211          * and 1 in reg).
1212          */
1213         rt2500usb_register_write(rt2x00dev, TXRX_CSR19, reg);
1214         rt2500usb_register_write(rt2x00dev, TXRX_CSR19, reg0);
1215         rt2500usb_register_write(rt2x00dev, TXRX_CSR19, reg);
1216         rt2500usb_register_write(rt2x00dev, TXRX_CSR19, reg0);
1217         rt2500usb_register_write(rt2x00dev, TXRX_CSR19, reg);
1218 }
1219
1220 static int rt2500usb_get_tx_data_len(struct queue_entry *entry)
1221 {
1222         int length;
1223
1224         /*
1225          * The length _must_ be a multiple of 2,
1226          * but it must _not_ be a multiple of the USB packet size.
1227          */
1228         length = roundup(entry->skb->len, 2);
1229         length += (2 * !(length % entry->queue->usb_maxpacket));
1230
1231         return length;
1232 }
1233
1234 /*
1235  * RX control handlers
1236  */
1237 static void rt2500usb_fill_rxdone(struct queue_entry *entry,
1238                                   struct rxdone_entry_desc *rxdesc)
1239 {
1240         struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
1241         struct queue_entry_priv_usb *entry_priv = entry->priv_data;
1242         struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb);
1243         __le32 *rxd =
1244             (__le32 *)(entry->skb->data +
1245                        (entry_priv->urb->actual_length -
1246                         entry->queue->desc_size));
1247         u32 word0;
1248         u32 word1;
1249
1250         /*
1251          * Copy descriptor to the skbdesc->desc buffer, making it safe from moving of
1252          * frame data in rt2x00usb.
1253          */
1254         memcpy(skbdesc->desc, rxd, skbdesc->desc_len);
1255         rxd = (__le32 *)skbdesc->desc;
1256
1257         /*
1258          * It is now safe to read the descriptor on all architectures.
1259          */
1260         rt2x00_desc_read(rxd, 0, &word0);
1261         rt2x00_desc_read(rxd, 1, &word1);
1262
1263         if (rt2x00_get_field32(word0, RXD_W0_CRC_ERROR))
1264                 rxdesc->flags |= RX_FLAG_FAILED_FCS_CRC;
1265         if (rt2x00_get_field32(word0, RXD_W0_PHYSICAL_ERROR))
1266                 rxdesc->flags |= RX_FLAG_FAILED_PLCP_CRC;
1267
1268         rxdesc->cipher = rt2x00_get_field32(word0, RXD_W0_CIPHER);
1269         if (rt2x00_get_field32(word0, RXD_W0_CIPHER_ERROR))
1270                 rxdesc->cipher_status = RX_CRYPTO_FAIL_KEY;
1271
1272         if (rxdesc->cipher != CIPHER_NONE) {
1273                 _rt2x00_desc_read(rxd, 2, &rxdesc->iv[0]);
1274                 _rt2x00_desc_read(rxd, 3, &rxdesc->iv[1]);
1275                 rxdesc->dev_flags |= RXDONE_CRYPTO_IV;
1276
1277                 /* ICV is located at the end of frame */
1278
1279                 rxdesc->flags |= RX_FLAG_MMIC_STRIPPED;
1280                 if (rxdesc->cipher_status == RX_CRYPTO_SUCCESS)
1281                         rxdesc->flags |= RX_FLAG_DECRYPTED;
1282                 else if (rxdesc->cipher_status == RX_CRYPTO_FAIL_MIC)
1283                         rxdesc->flags |= RX_FLAG_MMIC_ERROR;
1284         }
1285
1286         /*
1287          * Obtain the status about this packet.
1288          * When frame was received with an OFDM bitrate,
1289          * the signal is the PLCP value. If it was received with
1290          * a CCK bitrate the signal is the rate in 100kbit/s.
1291          */
1292         rxdesc->signal = rt2x00_get_field32(word1, RXD_W1_SIGNAL);
1293         rxdesc->rssi =
1294             rt2x00_get_field32(word1, RXD_W1_RSSI) - rt2x00dev->rssi_offset;
1295         rxdesc->size = rt2x00_get_field32(word0, RXD_W0_DATABYTE_COUNT);
1296
1297         if (rt2x00_get_field32(word0, RXD_W0_OFDM))
1298                 rxdesc->dev_flags |= RXDONE_SIGNAL_PLCP;
1299         else
1300                 rxdesc->dev_flags |= RXDONE_SIGNAL_BITRATE;
1301         if (rt2x00_get_field32(word0, RXD_W0_MY_BSS))
1302                 rxdesc->dev_flags |= RXDONE_MY_BSS;
1303
1304         /*
1305          * Adjust the skb memory window to the frame boundaries.
1306          */
1307         skb_trim(entry->skb, rxdesc->size);
1308 }
1309
1310 /*
1311  * Interrupt functions.
1312  */
1313 static void rt2500usb_beacondone(struct urb *urb)
1314 {
1315         struct queue_entry *entry = (struct queue_entry *)urb->context;
1316         struct queue_entry_priv_usb_bcn *bcn_priv = entry->priv_data;
1317
1318         if (!test_bit(DEVICE_STATE_ENABLED_RADIO, &entry->queue->rt2x00dev->flags))
1319                 return;
1320
1321         /*
1322          * Check if this was the guardian beacon,
1323          * if that was the case we need to send the real beacon now.
1324          * Otherwise we should free the sk_buffer, the device
1325          * should be doing the rest of the work now.
1326          */
1327         if (bcn_priv->guardian_urb == urb) {
1328                 usb_submit_urb(bcn_priv->urb, GFP_ATOMIC);
1329         } else if (bcn_priv->urb == urb) {
1330                 dev_kfree_skb(entry->skb);
1331                 entry->skb = NULL;
1332         }
1333 }
1334
1335 /*
1336  * Device probe functions.
1337  */
1338 static int rt2500usb_validate_eeprom(struct rt2x00_dev *rt2x00dev)
1339 {
1340         u16 word;
1341         u8 *mac;
1342         u8 bbp;
1343
1344         rt2x00usb_eeprom_read(rt2x00dev, rt2x00dev->eeprom, EEPROM_SIZE);
1345
1346         /*
1347          * Start validation of the data that has been read.
1348          */
1349         mac = rt2x00_eeprom_addr(rt2x00dev, EEPROM_MAC_ADDR_0);
1350         if (!is_valid_ether_addr(mac)) {
1351                 eth_random_addr(mac);
1352                 rt2x00_eeprom_dbg(rt2x00dev, "MAC: %pM\n", mac);
1353         }
1354
1355         rt2x00_eeprom_read(rt2x00dev, EEPROM_ANTENNA, &word);
1356         if (word == 0xffff) {
1357                 rt2x00_set_field16(&word, EEPROM_ANTENNA_NUM, 2);
1358                 rt2x00_set_field16(&word, EEPROM_ANTENNA_TX_DEFAULT,
1359                                    ANTENNA_SW_DIVERSITY);
1360                 rt2x00_set_field16(&word, EEPROM_ANTENNA_RX_DEFAULT,
1361                                    ANTENNA_SW_DIVERSITY);
1362                 rt2x00_set_field16(&word, EEPROM_ANTENNA_LED_MODE,
1363                                    LED_MODE_DEFAULT);
1364                 rt2x00_set_field16(&word, EEPROM_ANTENNA_DYN_TXAGC, 0);
1365                 rt2x00_set_field16(&word, EEPROM_ANTENNA_HARDWARE_RADIO, 0);
1366                 rt2x00_set_field16(&word, EEPROM_ANTENNA_RF_TYPE, RF2522);
1367                 rt2x00_eeprom_write(rt2x00dev, EEPROM_ANTENNA, word);
1368                 rt2x00_eeprom_dbg(rt2x00dev, "Antenna: 0x%04x\n", word);
1369         }
1370
1371         rt2x00_eeprom_read(rt2x00dev, EEPROM_NIC, &word);
1372         if (word == 0xffff) {
1373                 rt2x00_set_field16(&word, EEPROM_NIC_CARDBUS_ACCEL, 0);
1374                 rt2x00_set_field16(&word, EEPROM_NIC_DYN_BBP_TUNE, 0);
1375                 rt2x00_set_field16(&word, EEPROM_NIC_CCK_TX_POWER, 0);
1376                 rt2x00_eeprom_write(rt2x00dev, EEPROM_NIC, word);
1377                 rt2x00_eeprom_dbg(rt2x00dev, "NIC: 0x%04x\n", word);
1378         }
1379
1380         rt2x00_eeprom_read(rt2x00dev, EEPROM_CALIBRATE_OFFSET, &word);
1381         if (word == 0xffff) {
1382                 rt2x00_set_field16(&word, EEPROM_CALIBRATE_OFFSET_RSSI,
1383                                    DEFAULT_RSSI_OFFSET);
1384                 rt2x00_eeprom_write(rt2x00dev, EEPROM_CALIBRATE_OFFSET, word);
1385                 rt2x00_eeprom_dbg(rt2x00dev, "Calibrate offset: 0x%04x\n",
1386                                   word);
1387         }
1388
1389         rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE, &word);
1390         if (word == 0xffff) {
1391                 rt2x00_set_field16(&word, EEPROM_BBPTUNE_THRESHOLD, 45);
1392                 rt2x00_eeprom_write(rt2x00dev, EEPROM_BBPTUNE, word);
1393                 rt2x00_eeprom_dbg(rt2x00dev, "BBPtune: 0x%04x\n", word);
1394         }
1395
1396         /*
1397          * Switch lower vgc bound to current BBP R17 value,
1398          * lower the value a bit for better quality.
1399          */
1400         rt2500usb_bbp_read(rt2x00dev, 17, &bbp);
1401         bbp -= 6;
1402
1403         rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE_VGC, &word);
1404         if (word == 0xffff) {
1405                 rt2x00_set_field16(&word, EEPROM_BBPTUNE_VGCUPPER, 0x40);
1406                 rt2x00_set_field16(&word, EEPROM_BBPTUNE_VGCLOWER, bbp);
1407                 rt2x00_eeprom_write(rt2x00dev, EEPROM_BBPTUNE_VGC, word);
1408                 rt2x00_eeprom_dbg(rt2x00dev, "BBPtune vgc: 0x%04x\n", word);
1409         } else {
1410                 rt2x00_set_field16(&word, EEPROM_BBPTUNE_VGCLOWER, bbp);
1411                 rt2x00_eeprom_write(rt2x00dev, EEPROM_BBPTUNE_VGC, word);
1412         }
1413
1414         rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE_R17, &word);
1415         if (word == 0xffff) {
1416                 rt2x00_set_field16(&word, EEPROM_BBPTUNE_R17_LOW, 0x48);
1417                 rt2x00_set_field16(&word, EEPROM_BBPTUNE_R17_HIGH, 0x41);
1418                 rt2x00_eeprom_write(rt2x00dev, EEPROM_BBPTUNE_R17, word);
1419                 rt2x00_eeprom_dbg(rt2x00dev, "BBPtune r17: 0x%04x\n", word);
1420         }
1421
1422         rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE_R24, &word);
1423         if (word == 0xffff) {
1424                 rt2x00_set_field16(&word, EEPROM_BBPTUNE_R24_LOW, 0x40);
1425                 rt2x00_set_field16(&word, EEPROM_BBPTUNE_R24_HIGH, 0x80);
1426                 rt2x00_eeprom_write(rt2x00dev, EEPROM_BBPTUNE_R24, word);
1427                 rt2x00_eeprom_dbg(rt2x00dev, "BBPtune r24: 0x%04x\n", word);
1428         }
1429
1430         rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE_R25, &word);
1431         if (word == 0xffff) {
1432                 rt2x00_set_field16(&word, EEPROM_BBPTUNE_R25_LOW, 0x40);
1433                 rt2x00_set_field16(&word, EEPROM_BBPTUNE_R25_HIGH, 0x50);
1434                 rt2x00_eeprom_write(rt2x00dev, EEPROM_BBPTUNE_R25, word);
1435                 rt2x00_eeprom_dbg(rt2x00dev, "BBPtune r25: 0x%04x\n", word);
1436         }
1437
1438         rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE_R61, &word);
1439         if (word == 0xffff) {
1440                 rt2x00_set_field16(&word, EEPROM_BBPTUNE_R61_LOW, 0x60);
1441                 rt2x00_set_field16(&word, EEPROM_BBPTUNE_R61_HIGH, 0x6d);
1442                 rt2x00_eeprom_write(rt2x00dev, EEPROM_BBPTUNE_R61, word);
1443                 rt2x00_eeprom_dbg(rt2x00dev, "BBPtune r61: 0x%04x\n", word);
1444         }
1445
1446         return 0;
1447 }
1448
1449 static int rt2500usb_init_eeprom(struct rt2x00_dev *rt2x00dev)
1450 {
1451         u16 reg;
1452         u16 value;
1453         u16 eeprom;
1454
1455         /*
1456          * Read EEPROM word for configuration.
1457          */
1458         rt2x00_eeprom_read(rt2x00dev, EEPROM_ANTENNA, &eeprom);
1459
1460         /*
1461          * Identify RF chipset.
1462          */
1463         value = rt2x00_get_field16(eeprom, EEPROM_ANTENNA_RF_TYPE);
1464         rt2500usb_register_read(rt2x00dev, MAC_CSR0, &reg);
1465         rt2x00_set_chip(rt2x00dev, RT2570, value, reg);
1466
1467         if (((reg & 0xfff0) != 0) || ((reg & 0x0000000f) == 0)) {
1468                 rt2x00_err(rt2x00dev, "Invalid RT chipset detected\n");
1469                 return -ENODEV;
1470         }
1471
1472         if (!rt2x00_rf(rt2x00dev, RF2522) &&
1473             !rt2x00_rf(rt2x00dev, RF2523) &&
1474             !rt2x00_rf(rt2x00dev, RF2524) &&
1475             !rt2x00_rf(rt2x00dev, RF2525) &&
1476             !rt2x00_rf(rt2x00dev, RF2525E) &&
1477             !rt2x00_rf(rt2x00dev, RF5222)) {
1478                 rt2x00_err(rt2x00dev, "Invalid RF chipset detected\n");
1479                 return -ENODEV;
1480         }
1481
1482         /*
1483          * Identify default antenna configuration.
1484          */
1485         rt2x00dev->default_ant.tx =
1486             rt2x00_get_field16(eeprom, EEPROM_ANTENNA_TX_DEFAULT);
1487         rt2x00dev->default_ant.rx =
1488             rt2x00_get_field16(eeprom, EEPROM_ANTENNA_RX_DEFAULT);
1489
1490         /*
1491          * When the eeprom indicates SW_DIVERSITY use HW_DIVERSITY instead.
1492          * I am not 100% sure about this, but the legacy drivers do not
1493          * indicate antenna swapping in software is required when
1494          * diversity is enabled.
1495          */
1496         if (rt2x00dev->default_ant.tx == ANTENNA_SW_DIVERSITY)
1497                 rt2x00dev->default_ant.tx = ANTENNA_HW_DIVERSITY;
1498         if (rt2x00dev->default_ant.rx == ANTENNA_SW_DIVERSITY)
1499                 rt2x00dev->default_ant.rx = ANTENNA_HW_DIVERSITY;
1500
1501         /*
1502          * Store led mode, for correct led behaviour.
1503          */
1504 #ifdef CONFIG_RT2X00_LIB_LEDS
1505         value = rt2x00_get_field16(eeprom, EEPROM_ANTENNA_LED_MODE);
1506
1507         rt2500usb_init_led(rt2x00dev, &rt2x00dev->led_radio, LED_TYPE_RADIO);
1508         if (value == LED_MODE_TXRX_ACTIVITY ||
1509             value == LED_MODE_DEFAULT ||
1510             value == LED_MODE_ASUS)
1511                 rt2500usb_init_led(rt2x00dev, &rt2x00dev->led_qual,
1512                                    LED_TYPE_ACTIVITY);
1513 #endif /* CONFIG_RT2X00_LIB_LEDS */
1514
1515         /*
1516          * Detect if this device has an hardware controlled radio.
1517          */
1518         if (rt2x00_get_field16(eeprom, EEPROM_ANTENNA_HARDWARE_RADIO))
1519                 __set_bit(CAPABILITY_HW_BUTTON, &rt2x00dev->cap_flags);
1520
1521         /*
1522          * Read the RSSI <-> dBm offset information.
1523          */
1524         rt2x00_eeprom_read(rt2x00dev, EEPROM_CALIBRATE_OFFSET, &eeprom);
1525         rt2x00dev->rssi_offset =
1526             rt2x00_get_field16(eeprom, EEPROM_CALIBRATE_OFFSET_RSSI);
1527
1528         return 0;
1529 }
1530
1531 /*
1532  * RF value list for RF2522
1533  * Supports: 2.4 GHz
1534  */
1535 static const struct rf_channel rf_vals_bg_2522[] = {
1536         { 1,  0x00002050, 0x000c1fda, 0x00000101, 0 },
1537         { 2,  0x00002050, 0x000c1fee, 0x00000101, 0 },
1538         { 3,  0x00002050, 0x000c2002, 0x00000101, 0 },
1539         { 4,  0x00002050, 0x000c2016, 0x00000101, 0 },
1540         { 5,  0x00002050, 0x000c202a, 0x00000101, 0 },
1541         { 6,  0x00002050, 0x000c203e, 0x00000101, 0 },
1542         { 7,  0x00002050, 0x000c2052, 0x00000101, 0 },
1543         { 8,  0x00002050, 0x000c2066, 0x00000101, 0 },
1544         { 9,  0x00002050, 0x000c207a, 0x00000101, 0 },
1545         { 10, 0x00002050, 0x000c208e, 0x00000101, 0 },
1546         { 11, 0x00002050, 0x000c20a2, 0x00000101, 0 },
1547         { 12, 0x00002050, 0x000c20b6, 0x00000101, 0 },
1548         { 13, 0x00002050, 0x000c20ca, 0x00000101, 0 },
1549         { 14, 0x00002050, 0x000c20fa, 0x00000101, 0 },
1550 };
1551
1552 /*
1553  * RF value list for RF2523
1554  * Supports: 2.4 GHz
1555  */
1556 static const struct rf_channel rf_vals_bg_2523[] = {
1557         { 1,  0x00022010, 0x00000c9e, 0x000e0111, 0x00000a1b },
1558         { 2,  0x00022010, 0x00000ca2, 0x000e0111, 0x00000a1b },
1559         { 3,  0x00022010, 0x00000ca6, 0x000e0111, 0x00000a1b },
1560         { 4,  0x00022010, 0x00000caa, 0x000e0111, 0x00000a1b },
1561         { 5,  0x00022010, 0x00000cae, 0x000e0111, 0x00000a1b },
1562         { 6,  0x00022010, 0x00000cb2, 0x000e0111, 0x00000a1b },
1563         { 7,  0x00022010, 0x00000cb6, 0x000e0111, 0x00000a1b },
1564         { 8,  0x00022010, 0x00000cba, 0x000e0111, 0x00000a1b },
1565         { 9,  0x00022010, 0x00000cbe, 0x000e0111, 0x00000a1b },
1566         { 10, 0x00022010, 0x00000d02, 0x000e0111, 0x00000a1b },
1567         { 11, 0x00022010, 0x00000d06, 0x000e0111, 0x00000a1b },
1568         { 12, 0x00022010, 0x00000d0a, 0x000e0111, 0x00000a1b },
1569         { 13, 0x00022010, 0x00000d0e, 0x000e0111, 0x00000a1b },
1570         { 14, 0x00022010, 0x00000d1a, 0x000e0111, 0x00000a03 },
1571 };
1572
1573 /*
1574  * RF value list for RF2524
1575  * Supports: 2.4 GHz
1576  */
1577 static const struct rf_channel rf_vals_bg_2524[] = {
1578         { 1,  0x00032020, 0x00000c9e, 0x00000101, 0x00000a1b },
1579         { 2,  0x00032020, 0x00000ca2, 0x00000101, 0x00000a1b },
1580         { 3,  0x00032020, 0x00000ca6, 0x00000101, 0x00000a1b },
1581         { 4,  0x00032020, 0x00000caa, 0x00000101, 0x00000a1b },
1582         { 5,  0x00032020, 0x00000cae, 0x00000101, 0x00000a1b },
1583         { 6,  0x00032020, 0x00000cb2, 0x00000101, 0x00000a1b },
1584         { 7,  0x00032020, 0x00000cb6, 0x00000101, 0x00000a1b },
1585         { 8,  0x00032020, 0x00000cba, 0x00000101, 0x00000a1b },
1586         { 9,  0x00032020, 0x00000cbe, 0x00000101, 0x00000a1b },
1587         { 10, 0x00032020, 0x00000d02, 0x00000101, 0x00000a1b },
1588         { 11, 0x00032020, 0x00000d06, 0x00000101, 0x00000a1b },
1589         { 12, 0x00032020, 0x00000d0a, 0x00000101, 0x00000a1b },
1590         { 13, 0x00032020, 0x00000d0e, 0x00000101, 0x00000a1b },
1591         { 14, 0x00032020, 0x00000d1a, 0x00000101, 0x00000a03 },
1592 };
1593
1594 /*
1595  * RF value list for RF2525
1596  * Supports: 2.4 GHz
1597  */
1598 static const struct rf_channel rf_vals_bg_2525[] = {
1599         { 1,  0x00022020, 0x00080c9e, 0x00060111, 0x00000a1b },
1600         { 2,  0x00022020, 0x00080ca2, 0x00060111, 0x00000a1b },
1601         { 3,  0x00022020, 0x00080ca6, 0x00060111, 0x00000a1b },
1602         { 4,  0x00022020, 0x00080caa, 0x00060111, 0x00000a1b },
1603         { 5,  0x00022020, 0x00080cae, 0x00060111, 0x00000a1b },
1604         { 6,  0x00022020, 0x00080cb2, 0x00060111, 0x00000a1b },
1605         { 7,  0x00022020, 0x00080cb6, 0x00060111, 0x00000a1b },
1606         { 8,  0x00022020, 0x00080cba, 0x00060111, 0x00000a1b },
1607         { 9,  0x00022020, 0x00080cbe, 0x00060111, 0x00000a1b },
1608         { 10, 0x00022020, 0x00080d02, 0x00060111, 0x00000a1b },
1609         { 11, 0x00022020, 0x00080d06, 0x00060111, 0x00000a1b },
1610         { 12, 0x00022020, 0x00080d0a, 0x00060111, 0x00000a1b },
1611         { 13, 0x00022020, 0x00080d0e, 0x00060111, 0x00000a1b },
1612         { 14, 0x00022020, 0x00080d1a, 0x00060111, 0x00000a03 },
1613 };
1614
1615 /*
1616  * RF value list for RF2525e
1617  * Supports: 2.4 GHz
1618  */
1619 static const struct rf_channel rf_vals_bg_2525e[] = {
1620         { 1,  0x00022010, 0x0000089a, 0x00060111, 0x00000e1b },
1621         { 2,  0x00022010, 0x0000089e, 0x00060111, 0x00000e07 },
1622         { 3,  0x00022010, 0x0000089e, 0x00060111, 0x00000e1b },
1623         { 4,  0x00022010, 0x000008a2, 0x00060111, 0x00000e07 },
1624         { 5,  0x00022010, 0x000008a2, 0x00060111, 0x00000e1b },
1625         { 6,  0x00022010, 0x000008a6, 0x00060111, 0x00000e07 },
1626         { 7,  0x00022010, 0x000008a6, 0x00060111, 0x00000e1b },
1627         { 8,  0x00022010, 0x000008aa, 0x00060111, 0x00000e07 },
1628         { 9,  0x00022010, 0x000008aa, 0x00060111, 0x00000e1b },
1629         { 10, 0x00022010, 0x000008ae, 0x00060111, 0x00000e07 },
1630         { 11, 0x00022010, 0x000008ae, 0x00060111, 0x00000e1b },
1631         { 12, 0x00022010, 0x000008b2, 0x00060111, 0x00000e07 },
1632         { 13, 0x00022010, 0x000008b2, 0x00060111, 0x00000e1b },
1633         { 14, 0x00022010, 0x000008b6, 0x00060111, 0x00000e23 },
1634 };
1635
1636 /*
1637  * RF value list for RF5222
1638  * Supports: 2.4 GHz & 5.2 GHz
1639  */
1640 static const struct rf_channel rf_vals_5222[] = {
1641         { 1,  0x00022020, 0x00001136, 0x00000101, 0x00000a0b },
1642         { 2,  0x00022020, 0x0000113a, 0x00000101, 0x00000a0b },
1643         { 3,  0x00022020, 0x0000113e, 0x00000101, 0x00000a0b },
1644         { 4,  0x00022020, 0x00001182, 0x00000101, 0x00000a0b },
1645         { 5,  0x00022020, 0x00001186, 0x00000101, 0x00000a0b },
1646         { 6,  0x00022020, 0x0000118a, 0x00000101, 0x00000a0b },
1647         { 7,  0x00022020, 0x0000118e, 0x00000101, 0x00000a0b },
1648         { 8,  0x00022020, 0x00001192, 0x00000101, 0x00000a0b },
1649         { 9,  0x00022020, 0x00001196, 0x00000101, 0x00000a0b },
1650         { 10, 0x00022020, 0x0000119a, 0x00000101, 0x00000a0b },
1651         { 11, 0x00022020, 0x0000119e, 0x00000101, 0x00000a0b },
1652         { 12, 0x00022020, 0x000011a2, 0x00000101, 0x00000a0b },
1653         { 13, 0x00022020, 0x000011a6, 0x00000101, 0x00000a0b },
1654         { 14, 0x00022020, 0x000011ae, 0x00000101, 0x00000a1b },
1655
1656         /* 802.11 UNI / HyperLan 2 */
1657         { 36, 0x00022010, 0x00018896, 0x00000101, 0x00000a1f },
1658         { 40, 0x00022010, 0x0001889a, 0x00000101, 0x00000a1f },
1659         { 44, 0x00022010, 0x0001889e, 0x00000101, 0x00000a1f },
1660         { 48, 0x00022010, 0x000188a2, 0x00000101, 0x00000a1f },
1661         { 52, 0x00022010, 0x000188a6, 0x00000101, 0x00000a1f },
1662         { 66, 0x00022010, 0x000188aa, 0x00000101, 0x00000a1f },
1663         { 60, 0x00022010, 0x000188ae, 0x00000101, 0x00000a1f },
1664         { 64, 0x00022010, 0x000188b2, 0x00000101, 0x00000a1f },
1665
1666         /* 802.11 HyperLan 2 */
1667         { 100, 0x00022010, 0x00008802, 0x00000101, 0x00000a0f },
1668         { 104, 0x00022010, 0x00008806, 0x00000101, 0x00000a0f },
1669         { 108, 0x00022010, 0x0000880a, 0x00000101, 0x00000a0f },
1670         { 112, 0x00022010, 0x0000880e, 0x00000101, 0x00000a0f },
1671         { 116, 0x00022010, 0x00008812, 0x00000101, 0x00000a0f },
1672         { 120, 0x00022010, 0x00008816, 0x00000101, 0x00000a0f },
1673         { 124, 0x00022010, 0x0000881a, 0x00000101, 0x00000a0f },
1674         { 128, 0x00022010, 0x0000881e, 0x00000101, 0x00000a0f },
1675         { 132, 0x00022010, 0x00008822, 0x00000101, 0x00000a0f },
1676         { 136, 0x00022010, 0x00008826, 0x00000101, 0x00000a0f },
1677
1678         /* 802.11 UNII */
1679         { 140, 0x00022010, 0x0000882a, 0x00000101, 0x00000a0f },
1680         { 149, 0x00022020, 0x000090a6, 0x00000101, 0x00000a07 },
1681         { 153, 0x00022020, 0x000090ae, 0x00000101, 0x00000a07 },
1682         { 157, 0x00022020, 0x000090b6, 0x00000101, 0x00000a07 },
1683         { 161, 0x00022020, 0x000090be, 0x00000101, 0x00000a07 },
1684 };
1685
1686 static int rt2500usb_probe_hw_mode(struct rt2x00_dev *rt2x00dev)
1687 {
1688         struct hw_mode_spec *spec = &rt2x00dev->spec;
1689         struct channel_info *info;
1690         char *tx_power;
1691         unsigned int i;
1692
1693         /*
1694          * Initialize all hw fields.
1695          *
1696          * Don't set IEEE80211_HW_HOST_BROADCAST_PS_BUFFERING unless we are
1697          * capable of sending the buffered frames out after the DTIM
1698          * transmission using rt2x00lib_beacondone. This will send out
1699          * multicast and broadcast traffic immediately instead of buffering it
1700          * infinitly and thus dropping it after some time.
1701          */
1702         ieee80211_hw_set(rt2x00dev->hw, PS_NULLFUNC_STACK);
1703         ieee80211_hw_set(rt2x00dev->hw, SUPPORTS_PS);
1704         ieee80211_hw_set(rt2x00dev->hw, RX_INCLUDES_FCS);
1705         ieee80211_hw_set(rt2x00dev->hw, SIGNAL_DBM);
1706
1707         /*
1708          * Disable powersaving as default.
1709          */
1710         rt2x00dev->hw->wiphy->flags &= ~WIPHY_FLAG_PS_ON_BY_DEFAULT;
1711
1712         SET_IEEE80211_DEV(rt2x00dev->hw, rt2x00dev->dev);
1713         SET_IEEE80211_PERM_ADDR(rt2x00dev->hw,
1714                                 rt2x00_eeprom_addr(rt2x00dev,
1715                                                    EEPROM_MAC_ADDR_0));
1716
1717         /*
1718          * Initialize hw_mode information.
1719          */
1720         spec->supported_bands = SUPPORT_BAND_2GHZ;
1721         spec->supported_rates = SUPPORT_RATE_CCK | SUPPORT_RATE_OFDM;
1722
1723         if (rt2x00_rf(rt2x00dev, RF2522)) {
1724                 spec->num_channels = ARRAY_SIZE(rf_vals_bg_2522);
1725                 spec->channels = rf_vals_bg_2522;
1726         } else if (rt2x00_rf(rt2x00dev, RF2523)) {
1727                 spec->num_channels = ARRAY_SIZE(rf_vals_bg_2523);
1728                 spec->channels = rf_vals_bg_2523;
1729         } else if (rt2x00_rf(rt2x00dev, RF2524)) {
1730                 spec->num_channels = ARRAY_SIZE(rf_vals_bg_2524);
1731                 spec->channels = rf_vals_bg_2524;
1732         } else if (rt2x00_rf(rt2x00dev, RF2525)) {
1733                 spec->num_channels = ARRAY_SIZE(rf_vals_bg_2525);
1734                 spec->channels = rf_vals_bg_2525;
1735         } else if (rt2x00_rf(rt2x00dev, RF2525E)) {
1736                 spec->num_channels = ARRAY_SIZE(rf_vals_bg_2525e);
1737                 spec->channels = rf_vals_bg_2525e;
1738         } else if (rt2x00_rf(rt2x00dev, RF5222)) {
1739                 spec->supported_bands |= SUPPORT_BAND_5GHZ;
1740                 spec->num_channels = ARRAY_SIZE(rf_vals_5222);
1741                 spec->channels = rf_vals_5222;
1742         }
1743
1744         /*
1745          * Create channel information array
1746          */
1747         info = kcalloc(spec->num_channels, sizeof(*info), GFP_KERNEL);
1748         if (!info)
1749                 return -ENOMEM;
1750
1751         spec->channels_info = info;
1752
1753         tx_power = rt2x00_eeprom_addr(rt2x00dev, EEPROM_TXPOWER_START);
1754         for (i = 0; i < 14; i++) {
1755                 info[i].max_power = MAX_TXPOWER;
1756                 info[i].default_power1 = TXPOWER_FROM_DEV(tx_power[i]);
1757         }
1758
1759         if (spec->num_channels > 14) {
1760                 for (i = 14; i < spec->num_channels; i++) {
1761                         info[i].max_power = MAX_TXPOWER;
1762                         info[i].default_power1 = DEFAULT_TXPOWER;
1763                 }
1764         }
1765
1766         return 0;
1767 }
1768
1769 static int rt2500usb_probe_hw(struct rt2x00_dev *rt2x00dev)
1770 {
1771         int retval;
1772         u16 reg;
1773
1774         /*
1775          * Allocate eeprom data.
1776          */
1777         retval = rt2500usb_validate_eeprom(rt2x00dev);
1778         if (retval)
1779                 return retval;
1780
1781         retval = rt2500usb_init_eeprom(rt2x00dev);
1782         if (retval)
1783                 return retval;
1784
1785         /*
1786          * Enable rfkill polling by setting GPIO direction of the
1787          * rfkill switch GPIO pin correctly.
1788          */
1789         rt2500usb_register_read(rt2x00dev, MAC_CSR19, &reg);
1790         rt2x00_set_field16(&reg, MAC_CSR19_DIR0, 0);
1791         rt2500usb_register_write(rt2x00dev, MAC_CSR19, reg);
1792
1793         /*
1794          * Initialize hw specifications.
1795          */
1796         retval = rt2500usb_probe_hw_mode(rt2x00dev);
1797         if (retval)
1798                 return retval;
1799
1800         /*
1801          * This device requires the atim queue
1802          */
1803         __set_bit(REQUIRE_ATIM_QUEUE, &rt2x00dev->cap_flags);
1804         __set_bit(REQUIRE_BEACON_GUARD, &rt2x00dev->cap_flags);
1805         if (!modparam_nohwcrypt) {
1806                 __set_bit(CAPABILITY_HW_CRYPTO, &rt2x00dev->cap_flags);
1807                 __set_bit(REQUIRE_COPY_IV, &rt2x00dev->cap_flags);
1808         }
1809         __set_bit(REQUIRE_SW_SEQNO, &rt2x00dev->cap_flags);
1810         __set_bit(REQUIRE_PS_AUTOWAKE, &rt2x00dev->cap_flags);
1811
1812         /*
1813          * Set the rssi offset.
1814          */
1815         rt2x00dev->rssi_offset = DEFAULT_RSSI_OFFSET;
1816
1817         return 0;
1818 }
1819
1820 static const struct ieee80211_ops rt2500usb_mac80211_ops = {
1821         .tx                     = rt2x00mac_tx,
1822         .start                  = rt2x00mac_start,
1823         .stop                   = rt2x00mac_stop,
1824         .add_interface          = rt2x00mac_add_interface,
1825         .remove_interface       = rt2x00mac_remove_interface,
1826         .config                 = rt2x00mac_config,
1827         .configure_filter       = rt2x00mac_configure_filter,
1828         .set_tim                = rt2x00mac_set_tim,
1829         .set_key                = rt2x00mac_set_key,
1830         .sw_scan_start          = rt2x00mac_sw_scan_start,
1831         .sw_scan_complete       = rt2x00mac_sw_scan_complete,
1832         .get_stats              = rt2x00mac_get_stats,
1833         .bss_info_changed       = rt2x00mac_bss_info_changed,
1834         .conf_tx                = rt2x00mac_conf_tx,
1835         .rfkill_poll            = rt2x00mac_rfkill_poll,
1836         .flush                  = rt2x00mac_flush,
1837         .set_antenna            = rt2x00mac_set_antenna,
1838         .get_antenna            = rt2x00mac_get_antenna,
1839         .get_ringparam          = rt2x00mac_get_ringparam,
1840         .tx_frames_pending      = rt2x00mac_tx_frames_pending,
1841 };
1842
1843 static const struct rt2x00lib_ops rt2500usb_rt2x00_ops = {
1844         .probe_hw               = rt2500usb_probe_hw,
1845         .initialize             = rt2x00usb_initialize,
1846         .uninitialize           = rt2x00usb_uninitialize,
1847         .clear_entry            = rt2x00usb_clear_entry,
1848         .set_device_state       = rt2500usb_set_device_state,
1849         .rfkill_poll            = rt2500usb_rfkill_poll,
1850         .link_stats             = rt2500usb_link_stats,
1851         .reset_tuner            = rt2500usb_reset_tuner,
1852         .watchdog               = rt2x00usb_watchdog,
1853         .start_queue            = rt2500usb_start_queue,
1854         .kick_queue             = rt2x00usb_kick_queue,
1855         .stop_queue             = rt2500usb_stop_queue,
1856         .flush_queue            = rt2x00usb_flush_queue,
1857         .write_tx_desc          = rt2500usb_write_tx_desc,
1858         .write_beacon           = rt2500usb_write_beacon,
1859         .get_tx_data_len        = rt2500usb_get_tx_data_len,
1860         .fill_rxdone            = rt2500usb_fill_rxdone,
1861         .config_shared_key      = rt2500usb_config_key,
1862         .config_pairwise_key    = rt2500usb_config_key,
1863         .config_filter          = rt2500usb_config_filter,
1864         .config_intf            = rt2500usb_config_intf,
1865         .config_erp             = rt2500usb_config_erp,
1866         .config_ant             = rt2500usb_config_ant,
1867         .config                 = rt2500usb_config,
1868 };
1869
1870 static void rt2500usb_queue_init(struct data_queue *queue)
1871 {
1872         switch (queue->qid) {
1873         case QID_RX:
1874                 queue->limit = 32;
1875                 queue->data_size = DATA_FRAME_SIZE;
1876                 queue->desc_size = RXD_DESC_SIZE;
1877                 queue->priv_size = sizeof(struct queue_entry_priv_usb);
1878                 break;
1879
1880         case QID_AC_VO:
1881         case QID_AC_VI:
1882         case QID_AC_BE:
1883         case QID_AC_BK:
1884                 queue->limit = 32;
1885                 queue->data_size = DATA_FRAME_SIZE;
1886                 queue->desc_size = TXD_DESC_SIZE;
1887                 queue->priv_size = sizeof(struct queue_entry_priv_usb);
1888                 break;
1889
1890         case QID_BEACON:
1891                 queue->limit = 1;
1892                 queue->data_size = MGMT_FRAME_SIZE;
1893                 queue->desc_size = TXD_DESC_SIZE;
1894                 queue->priv_size = sizeof(struct queue_entry_priv_usb_bcn);
1895                 break;
1896
1897         case QID_ATIM:
1898                 queue->limit = 8;
1899                 queue->data_size = DATA_FRAME_SIZE;
1900                 queue->desc_size = TXD_DESC_SIZE;
1901                 queue->priv_size = sizeof(struct queue_entry_priv_usb);
1902                 break;
1903
1904         default:
1905                 BUG();
1906                 break;
1907         }
1908 }
1909
1910 static const struct rt2x00_ops rt2500usb_ops = {
1911         .name                   = KBUILD_MODNAME,
1912         .max_ap_intf            = 1,
1913         .eeprom_size            = EEPROM_SIZE,
1914         .rf_size                = RF_SIZE,
1915         .tx_queues              = NUM_TX_QUEUES,
1916         .queue_init             = rt2500usb_queue_init,
1917         .lib                    = &rt2500usb_rt2x00_ops,
1918         .hw                     = &rt2500usb_mac80211_ops,
1919 #ifdef CONFIG_RT2X00_LIB_DEBUGFS
1920         .debugfs                = &rt2500usb_rt2x00debug,
1921 #endif /* CONFIG_RT2X00_LIB_DEBUGFS */
1922 };
1923
1924 /*
1925  * rt2500usb module information.
1926  */
1927 static struct usb_device_id rt2500usb_device_table[] = {
1928         /* ASUS */
1929         { USB_DEVICE(0x0b05, 0x1706) },
1930         { USB_DEVICE(0x0b05, 0x1707) },
1931         /* Belkin */
1932         { USB_DEVICE(0x050d, 0x7050) }, /* FCC ID: K7SF5D7050A ver. 2.x */
1933         { USB_DEVICE(0x050d, 0x7051) },
1934         /* Cisco Systems */
1935         { USB_DEVICE(0x13b1, 0x000d) },
1936         { USB_DEVICE(0x13b1, 0x0011) },
1937         { USB_DEVICE(0x13b1, 0x001a) },
1938         /* Conceptronic */
1939         { USB_DEVICE(0x14b2, 0x3c02) },
1940         /* D-LINK */
1941         { USB_DEVICE(0x2001, 0x3c00) },
1942         /* Gigabyte */
1943         { USB_DEVICE(0x1044, 0x8001) },
1944         { USB_DEVICE(0x1044, 0x8007) },
1945         /* Hercules */
1946         { USB_DEVICE(0x06f8, 0xe000) },
1947         /* Melco */
1948         { USB_DEVICE(0x0411, 0x005e) },
1949         { USB_DEVICE(0x0411, 0x0066) },
1950         { USB_DEVICE(0x0411, 0x0067) },
1951         { USB_DEVICE(0x0411, 0x008b) },
1952         { USB_DEVICE(0x0411, 0x0097) },
1953         /* MSI */
1954         { USB_DEVICE(0x0db0, 0x6861) },
1955         { USB_DEVICE(0x0db0, 0x6865) },
1956         { USB_DEVICE(0x0db0, 0x6869) },
1957         /* Ralink */
1958         { USB_DEVICE(0x148f, 0x1706) },
1959         { USB_DEVICE(0x148f, 0x2570) },
1960         { USB_DEVICE(0x148f, 0x9020) },
1961         /* Sagem */
1962         { USB_DEVICE(0x079b, 0x004b) },
1963         /* Siemens */
1964         { USB_DEVICE(0x0681, 0x3c06) },
1965         /* SMC */
1966         { USB_DEVICE(0x0707, 0xee13) },
1967         /* Spairon */
1968         { USB_DEVICE(0x114b, 0x0110) },
1969         /* SURECOM */
1970         { USB_DEVICE(0x0769, 0x11f3) },
1971         /* Trust */
1972         { USB_DEVICE(0x0eb0, 0x9020) },
1973         /* VTech */
1974         { USB_DEVICE(0x0f88, 0x3012) },
1975         /* Zinwell */
1976         { USB_DEVICE(0x5a57, 0x0260) },
1977         { 0, }
1978 };
1979
1980 MODULE_AUTHOR(DRV_PROJECT);
1981 MODULE_VERSION(DRV_VERSION);
1982 MODULE_DESCRIPTION("Ralink RT2500 USB Wireless LAN driver.");
1983 MODULE_SUPPORTED_DEVICE("Ralink RT2570 USB chipset based cards");
1984 MODULE_DEVICE_TABLE(usb, rt2500usb_device_table);
1985 MODULE_LICENSE("GPL");
1986
1987 static int rt2500usb_probe(struct usb_interface *usb_intf,
1988                            const struct usb_device_id *id)
1989 {
1990         return rt2x00usb_probe(usb_intf, &rt2500usb_ops);
1991 }
1992
1993 static struct usb_driver rt2500usb_driver = {
1994         .name           = KBUILD_MODNAME,
1995         .id_table       = rt2500usb_device_table,
1996         .probe          = rt2500usb_probe,
1997         .disconnect     = rt2x00usb_disconnect,
1998         .suspend        = rt2x00usb_suspend,
1999         .resume         = rt2x00usb_resume,
2000         .reset_resume   = rt2x00usb_resume,
2001         .disable_hub_initiated_lpm = 1,
2002 };
2003
2004 module_usb_driver(rt2500usb_driver);