rt2x00: move under ralink vendor directory
[cascardo/linux.git] / drivers / net / wireless / ralink / rt2x00 / rt61pci.c
1 /*
2         Copyright (C) 2004 - 2009 Ivo van Doorn <IvDoorn@gmail.com>
3         <http://rt2x00.serialmonkey.com>
4
5         This program is free software; you can redistribute it and/or modify
6         it under the terms of the GNU General Public License as published by
7         the Free Software Foundation; either version 2 of the License, or
8         (at your option) any later version.
9
10         This program is distributed in the hope that it will be useful,
11         but WITHOUT ANY WARRANTY; without even the implied warranty of
12         MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13         GNU General Public License for more details.
14
15         You should have received a copy of the GNU General Public License
16         along with this program; if not, see <http://www.gnu.org/licenses/>.
17  */
18
19 /*
20         Module: rt61pci
21         Abstract: rt61pci device specific routines.
22         Supported chipsets: RT2561, RT2561s, RT2661.
23  */
24
25 #include <linux/crc-itu-t.h>
26 #include <linux/delay.h>
27 #include <linux/etherdevice.h>
28 #include <linux/kernel.h>
29 #include <linux/module.h>
30 #include <linux/slab.h>
31 #include <linux/pci.h>
32 #include <linux/eeprom_93cx6.h>
33
34 #include "rt2x00.h"
35 #include "rt2x00mmio.h"
36 #include "rt2x00pci.h"
37 #include "rt61pci.h"
38
39 /*
40  * Allow hardware encryption to be disabled.
41  */
42 static bool modparam_nohwcrypt = false;
43 module_param_named(nohwcrypt, modparam_nohwcrypt, bool, S_IRUGO);
44 MODULE_PARM_DESC(nohwcrypt, "Disable hardware encryption.");
45
46 /*
47  * Register access.
48  * BBP and RF register require indirect register access,
49  * and use the CSR registers PHY_CSR3 and PHY_CSR4 to achieve this.
50  * These indirect registers work with busy bits,
51  * and we will try maximal REGISTER_BUSY_COUNT times to access
52  * the register while taking a REGISTER_BUSY_DELAY us delay
53  * between each attempt. When the busy bit is still set at that time,
54  * the access attempt is considered to have failed,
55  * and we will print an error.
56  */
57 #define WAIT_FOR_BBP(__dev, __reg) \
58         rt2x00mmio_regbusy_read((__dev), PHY_CSR3, PHY_CSR3_BUSY, (__reg))
59 #define WAIT_FOR_RF(__dev, __reg) \
60         rt2x00mmio_regbusy_read((__dev), PHY_CSR4, PHY_CSR4_BUSY, (__reg))
61 #define WAIT_FOR_MCU(__dev, __reg) \
62         rt2x00mmio_regbusy_read((__dev), H2M_MAILBOX_CSR, \
63                                 H2M_MAILBOX_CSR_OWNER, (__reg))
64
65 static void rt61pci_bbp_write(struct rt2x00_dev *rt2x00dev,
66                               const unsigned int word, const u8 value)
67 {
68         u32 reg;
69
70         mutex_lock(&rt2x00dev->csr_mutex);
71
72         /*
73          * Wait until the BBP becomes available, afterwards we
74          * can safely write the new data into the register.
75          */
76         if (WAIT_FOR_BBP(rt2x00dev, &reg)) {
77                 reg = 0;
78                 rt2x00_set_field32(&reg, PHY_CSR3_VALUE, value);
79                 rt2x00_set_field32(&reg, PHY_CSR3_REGNUM, word);
80                 rt2x00_set_field32(&reg, PHY_CSR3_BUSY, 1);
81                 rt2x00_set_field32(&reg, PHY_CSR3_READ_CONTROL, 0);
82
83                 rt2x00mmio_register_write(rt2x00dev, PHY_CSR3, reg);
84         }
85
86         mutex_unlock(&rt2x00dev->csr_mutex);
87 }
88
89 static void rt61pci_bbp_read(struct rt2x00_dev *rt2x00dev,
90                              const unsigned int word, u8 *value)
91 {
92         u32 reg;
93
94         mutex_lock(&rt2x00dev->csr_mutex);
95
96         /*
97          * Wait until the BBP becomes available, afterwards we
98          * can safely write the read request into the register.
99          * After the data has been written, we wait until hardware
100          * returns the correct value, if at any time the register
101          * doesn't become available in time, reg will be 0xffffffff
102          * which means we return 0xff to the caller.
103          */
104         if (WAIT_FOR_BBP(rt2x00dev, &reg)) {
105                 reg = 0;
106                 rt2x00_set_field32(&reg, PHY_CSR3_REGNUM, word);
107                 rt2x00_set_field32(&reg, PHY_CSR3_BUSY, 1);
108                 rt2x00_set_field32(&reg, PHY_CSR3_READ_CONTROL, 1);
109
110                 rt2x00mmio_register_write(rt2x00dev, PHY_CSR3, reg);
111
112                 WAIT_FOR_BBP(rt2x00dev, &reg);
113         }
114
115         *value = rt2x00_get_field32(reg, PHY_CSR3_VALUE);
116
117         mutex_unlock(&rt2x00dev->csr_mutex);
118 }
119
120 static void rt61pci_rf_write(struct rt2x00_dev *rt2x00dev,
121                              const unsigned int word, const u32 value)
122 {
123         u32 reg;
124
125         mutex_lock(&rt2x00dev->csr_mutex);
126
127         /*
128          * Wait until the RF becomes available, afterwards we
129          * can safely write the new data into the register.
130          */
131         if (WAIT_FOR_RF(rt2x00dev, &reg)) {
132                 reg = 0;
133                 rt2x00_set_field32(&reg, PHY_CSR4_VALUE, value);
134                 rt2x00_set_field32(&reg, PHY_CSR4_NUMBER_OF_BITS, 21);
135                 rt2x00_set_field32(&reg, PHY_CSR4_IF_SELECT, 0);
136                 rt2x00_set_field32(&reg, PHY_CSR4_BUSY, 1);
137
138                 rt2x00mmio_register_write(rt2x00dev, PHY_CSR4, reg);
139                 rt2x00_rf_write(rt2x00dev, word, value);
140         }
141
142         mutex_unlock(&rt2x00dev->csr_mutex);
143 }
144
145 static void rt61pci_mcu_request(struct rt2x00_dev *rt2x00dev,
146                                 const u8 command, const u8 token,
147                                 const u8 arg0, const u8 arg1)
148 {
149         u32 reg;
150
151         mutex_lock(&rt2x00dev->csr_mutex);
152
153         /*
154          * Wait until the MCU becomes available, afterwards we
155          * can safely write the new data into the register.
156          */
157         if (WAIT_FOR_MCU(rt2x00dev, &reg)) {
158                 rt2x00_set_field32(&reg, H2M_MAILBOX_CSR_OWNER, 1);
159                 rt2x00_set_field32(&reg, H2M_MAILBOX_CSR_CMD_TOKEN, token);
160                 rt2x00_set_field32(&reg, H2M_MAILBOX_CSR_ARG0, arg0);
161                 rt2x00_set_field32(&reg, H2M_MAILBOX_CSR_ARG1, arg1);
162                 rt2x00mmio_register_write(rt2x00dev, H2M_MAILBOX_CSR, reg);
163
164                 rt2x00mmio_register_read(rt2x00dev, HOST_CMD_CSR, &reg);
165                 rt2x00_set_field32(&reg, HOST_CMD_CSR_HOST_COMMAND, command);
166                 rt2x00_set_field32(&reg, HOST_CMD_CSR_INTERRUPT_MCU, 1);
167                 rt2x00mmio_register_write(rt2x00dev, HOST_CMD_CSR, reg);
168         }
169
170         mutex_unlock(&rt2x00dev->csr_mutex);
171
172 }
173
174 static void rt61pci_eepromregister_read(struct eeprom_93cx6 *eeprom)
175 {
176         struct rt2x00_dev *rt2x00dev = eeprom->data;
177         u32 reg;
178
179         rt2x00mmio_register_read(rt2x00dev, E2PROM_CSR, &reg);
180
181         eeprom->reg_data_in = !!rt2x00_get_field32(reg, E2PROM_CSR_DATA_IN);
182         eeprom->reg_data_out = !!rt2x00_get_field32(reg, E2PROM_CSR_DATA_OUT);
183         eeprom->reg_data_clock =
184             !!rt2x00_get_field32(reg, E2PROM_CSR_DATA_CLOCK);
185         eeprom->reg_chip_select =
186             !!rt2x00_get_field32(reg, E2PROM_CSR_CHIP_SELECT);
187 }
188
189 static void rt61pci_eepromregister_write(struct eeprom_93cx6 *eeprom)
190 {
191         struct rt2x00_dev *rt2x00dev = eeprom->data;
192         u32 reg = 0;
193
194         rt2x00_set_field32(&reg, E2PROM_CSR_DATA_IN, !!eeprom->reg_data_in);
195         rt2x00_set_field32(&reg, E2PROM_CSR_DATA_OUT, !!eeprom->reg_data_out);
196         rt2x00_set_field32(&reg, E2PROM_CSR_DATA_CLOCK,
197                            !!eeprom->reg_data_clock);
198         rt2x00_set_field32(&reg, E2PROM_CSR_CHIP_SELECT,
199                            !!eeprom->reg_chip_select);
200
201         rt2x00mmio_register_write(rt2x00dev, E2PROM_CSR, reg);
202 }
203
204 #ifdef CONFIG_RT2X00_LIB_DEBUGFS
205 static const struct rt2x00debug rt61pci_rt2x00debug = {
206         .owner  = THIS_MODULE,
207         .csr    = {
208                 .read           = rt2x00mmio_register_read,
209                 .write          = rt2x00mmio_register_write,
210                 .flags          = RT2X00DEBUGFS_OFFSET,
211                 .word_base      = CSR_REG_BASE,
212                 .word_size      = sizeof(u32),
213                 .word_count     = CSR_REG_SIZE / sizeof(u32),
214         },
215         .eeprom = {
216                 .read           = rt2x00_eeprom_read,
217                 .write          = rt2x00_eeprom_write,
218                 .word_base      = EEPROM_BASE,
219                 .word_size      = sizeof(u16),
220                 .word_count     = EEPROM_SIZE / sizeof(u16),
221         },
222         .bbp    = {
223                 .read           = rt61pci_bbp_read,
224                 .write          = rt61pci_bbp_write,
225                 .word_base      = BBP_BASE,
226                 .word_size      = sizeof(u8),
227                 .word_count     = BBP_SIZE / sizeof(u8),
228         },
229         .rf     = {
230                 .read           = rt2x00_rf_read,
231                 .write          = rt61pci_rf_write,
232                 .word_base      = RF_BASE,
233                 .word_size      = sizeof(u32),
234                 .word_count     = RF_SIZE / sizeof(u32),
235         },
236 };
237 #endif /* CONFIG_RT2X00_LIB_DEBUGFS */
238
239 static int rt61pci_rfkill_poll(struct rt2x00_dev *rt2x00dev)
240 {
241         u32 reg;
242
243         rt2x00mmio_register_read(rt2x00dev, MAC_CSR13, &reg);
244         return rt2x00_get_field32(reg, MAC_CSR13_VAL5);
245 }
246
247 #ifdef CONFIG_RT2X00_LIB_LEDS
248 static void rt61pci_brightness_set(struct led_classdev *led_cdev,
249                                    enum led_brightness brightness)
250 {
251         struct rt2x00_led *led =
252             container_of(led_cdev, struct rt2x00_led, led_dev);
253         unsigned int enabled = brightness != LED_OFF;
254         unsigned int a_mode =
255             (enabled && led->rt2x00dev->curr_band == IEEE80211_BAND_5GHZ);
256         unsigned int bg_mode =
257             (enabled && led->rt2x00dev->curr_band == IEEE80211_BAND_2GHZ);
258
259         if (led->type == LED_TYPE_RADIO) {
260                 rt2x00_set_field16(&led->rt2x00dev->led_mcu_reg,
261                                    MCU_LEDCS_RADIO_STATUS, enabled);
262
263                 rt61pci_mcu_request(led->rt2x00dev, MCU_LED, 0xff,
264                                     (led->rt2x00dev->led_mcu_reg & 0xff),
265                                     ((led->rt2x00dev->led_mcu_reg >> 8)));
266         } else if (led->type == LED_TYPE_ASSOC) {
267                 rt2x00_set_field16(&led->rt2x00dev->led_mcu_reg,
268                                    MCU_LEDCS_LINK_BG_STATUS, bg_mode);
269                 rt2x00_set_field16(&led->rt2x00dev->led_mcu_reg,
270                                    MCU_LEDCS_LINK_A_STATUS, a_mode);
271
272                 rt61pci_mcu_request(led->rt2x00dev, MCU_LED, 0xff,
273                                     (led->rt2x00dev->led_mcu_reg & 0xff),
274                                     ((led->rt2x00dev->led_mcu_reg >> 8)));
275         } else if (led->type == LED_TYPE_QUALITY) {
276                 /*
277                  * The brightness is divided into 6 levels (0 - 5),
278                  * this means we need to convert the brightness
279                  * argument into the matching level within that range.
280                  */
281                 rt61pci_mcu_request(led->rt2x00dev, MCU_LED_STRENGTH, 0xff,
282                                     brightness / (LED_FULL / 6), 0);
283         }
284 }
285
286 static int rt61pci_blink_set(struct led_classdev *led_cdev,
287                              unsigned long *delay_on,
288                              unsigned long *delay_off)
289 {
290         struct rt2x00_led *led =
291             container_of(led_cdev, struct rt2x00_led, led_dev);
292         u32 reg;
293
294         rt2x00mmio_register_read(led->rt2x00dev, MAC_CSR14, &reg);
295         rt2x00_set_field32(&reg, MAC_CSR14_ON_PERIOD, *delay_on);
296         rt2x00_set_field32(&reg, MAC_CSR14_OFF_PERIOD, *delay_off);
297         rt2x00mmio_register_write(led->rt2x00dev, MAC_CSR14, reg);
298
299         return 0;
300 }
301
302 static void rt61pci_init_led(struct rt2x00_dev *rt2x00dev,
303                              struct rt2x00_led *led,
304                              enum led_type type)
305 {
306         led->rt2x00dev = rt2x00dev;
307         led->type = type;
308         led->led_dev.brightness_set = rt61pci_brightness_set;
309         led->led_dev.blink_set = rt61pci_blink_set;
310         led->flags = LED_INITIALIZED;
311 }
312 #endif /* CONFIG_RT2X00_LIB_LEDS */
313
314 /*
315  * Configuration handlers.
316  */
317 static int rt61pci_config_shared_key(struct rt2x00_dev *rt2x00dev,
318                                      struct rt2x00lib_crypto *crypto,
319                                      struct ieee80211_key_conf *key)
320 {
321         struct hw_key_entry key_entry;
322         struct rt2x00_field32 field;
323         u32 mask;
324         u32 reg;
325
326         if (crypto->cmd == SET_KEY) {
327                 /*
328                  * rt2x00lib can't determine the correct free
329                  * key_idx for shared keys. We have 1 register
330                  * with key valid bits. The goal is simple, read
331                  * the register, if that is full we have no slots
332                  * left.
333                  * Note that each BSS is allowed to have up to 4
334                  * shared keys, so put a mask over the allowed
335                  * entries.
336                  */
337                 mask = (0xf << crypto->bssidx);
338
339                 rt2x00mmio_register_read(rt2x00dev, SEC_CSR0, &reg);
340                 reg &= mask;
341
342                 if (reg && reg == mask)
343                         return -ENOSPC;
344
345                 key->hw_key_idx += reg ? ffz(reg) : 0;
346
347                 /*
348                  * Upload key to hardware
349                  */
350                 memcpy(key_entry.key, crypto->key,
351                        sizeof(key_entry.key));
352                 memcpy(key_entry.tx_mic, crypto->tx_mic,
353                        sizeof(key_entry.tx_mic));
354                 memcpy(key_entry.rx_mic, crypto->rx_mic,
355                        sizeof(key_entry.rx_mic));
356
357                 reg = SHARED_KEY_ENTRY(key->hw_key_idx);
358                 rt2x00mmio_register_multiwrite(rt2x00dev, reg,
359                                                &key_entry, sizeof(key_entry));
360
361                 /*
362                  * The cipher types are stored over 2 registers.
363                  * bssidx 0 and 1 keys are stored in SEC_CSR1 and
364                  * bssidx 1 and 2 keys are stored in SEC_CSR5.
365                  * Using the correct defines correctly will cause overhead,
366                  * so just calculate the correct offset.
367                  */
368                 if (key->hw_key_idx < 8) {
369                         field.bit_offset = (3 * key->hw_key_idx);
370                         field.bit_mask = 0x7 << field.bit_offset;
371
372                         rt2x00mmio_register_read(rt2x00dev, SEC_CSR1, &reg);
373                         rt2x00_set_field32(&reg, field, crypto->cipher);
374                         rt2x00mmio_register_write(rt2x00dev, SEC_CSR1, reg);
375                 } else {
376                         field.bit_offset = (3 * (key->hw_key_idx - 8));
377                         field.bit_mask = 0x7 << field.bit_offset;
378
379                         rt2x00mmio_register_read(rt2x00dev, SEC_CSR5, &reg);
380                         rt2x00_set_field32(&reg, field, crypto->cipher);
381                         rt2x00mmio_register_write(rt2x00dev, SEC_CSR5, reg);
382                 }
383
384                 /*
385                  * The driver does not support the IV/EIV generation
386                  * in hardware. However it doesn't support the IV/EIV
387                  * inside the ieee80211 frame either, but requires it
388                  * to be provided separately for the descriptor.
389                  * rt2x00lib will cut the IV/EIV data out of all frames
390                  * given to us by mac80211, but we must tell mac80211
391                  * to generate the IV/EIV data.
392                  */
393                 key->flags |= IEEE80211_KEY_FLAG_GENERATE_IV;
394         }
395
396         /*
397          * SEC_CSR0 contains only single-bit fields to indicate
398          * a particular key is valid. Because using the FIELD32()
399          * defines directly will cause a lot of overhead, we use
400          * a calculation to determine the correct bit directly.
401          */
402         mask = 1 << key->hw_key_idx;
403
404         rt2x00mmio_register_read(rt2x00dev, SEC_CSR0, &reg);
405         if (crypto->cmd == SET_KEY)
406                 reg |= mask;
407         else if (crypto->cmd == DISABLE_KEY)
408                 reg &= ~mask;
409         rt2x00mmio_register_write(rt2x00dev, SEC_CSR0, reg);
410
411         return 0;
412 }
413
414 static int rt61pci_config_pairwise_key(struct rt2x00_dev *rt2x00dev,
415                                        struct rt2x00lib_crypto *crypto,
416                                        struct ieee80211_key_conf *key)
417 {
418         struct hw_pairwise_ta_entry addr_entry;
419         struct hw_key_entry key_entry;
420         u32 mask;
421         u32 reg;
422
423         if (crypto->cmd == SET_KEY) {
424                 /*
425                  * rt2x00lib can't determine the correct free
426                  * key_idx for pairwise keys. We have 2 registers
427                  * with key valid bits. The goal is simple: read
428                  * the first register. If that is full, move to
429                  * the next register.
430                  * When both registers are full, we drop the key.
431                  * Otherwise, we use the first invalid entry.
432                  */
433                 rt2x00mmio_register_read(rt2x00dev, SEC_CSR2, &reg);
434                 if (reg && reg == ~0) {
435                         key->hw_key_idx = 32;
436                         rt2x00mmio_register_read(rt2x00dev, SEC_CSR3, &reg);
437                         if (reg && reg == ~0)
438                                 return -ENOSPC;
439                 }
440
441                 key->hw_key_idx += reg ? ffz(reg) : 0;
442
443                 /*
444                  * Upload key to hardware
445                  */
446                 memcpy(key_entry.key, crypto->key,
447                        sizeof(key_entry.key));
448                 memcpy(key_entry.tx_mic, crypto->tx_mic,
449                        sizeof(key_entry.tx_mic));
450                 memcpy(key_entry.rx_mic, crypto->rx_mic,
451                        sizeof(key_entry.rx_mic));
452
453                 memset(&addr_entry, 0, sizeof(addr_entry));
454                 memcpy(&addr_entry, crypto->address, ETH_ALEN);
455                 addr_entry.cipher = crypto->cipher;
456
457                 reg = PAIRWISE_KEY_ENTRY(key->hw_key_idx);
458                 rt2x00mmio_register_multiwrite(rt2x00dev, reg,
459                                                &key_entry, sizeof(key_entry));
460
461                 reg = PAIRWISE_TA_ENTRY(key->hw_key_idx);
462                 rt2x00mmio_register_multiwrite(rt2x00dev, reg,
463                                                &addr_entry, sizeof(addr_entry));
464
465                 /*
466                  * Enable pairwise lookup table for given BSS idx.
467                  * Without this, received frames will not be decrypted
468                  * by the hardware.
469                  */
470                 rt2x00mmio_register_read(rt2x00dev, SEC_CSR4, &reg);
471                 reg |= (1 << crypto->bssidx);
472                 rt2x00mmio_register_write(rt2x00dev, SEC_CSR4, reg);
473
474                 /*
475                  * The driver does not support the IV/EIV generation
476                  * in hardware. However it doesn't support the IV/EIV
477                  * inside the ieee80211 frame either, but requires it
478                  * to be provided separately for the descriptor.
479                  * rt2x00lib will cut the IV/EIV data out of all frames
480                  * given to us by mac80211, but we must tell mac80211
481                  * to generate the IV/EIV data.
482                  */
483                 key->flags |= IEEE80211_KEY_FLAG_GENERATE_IV;
484         }
485
486         /*
487          * SEC_CSR2 and SEC_CSR3 contain only single-bit fields to indicate
488          * a particular key is valid. Because using the FIELD32()
489          * defines directly will cause a lot of overhead, we use
490          * a calculation to determine the correct bit directly.
491          */
492         if (key->hw_key_idx < 32) {
493                 mask = 1 << key->hw_key_idx;
494
495                 rt2x00mmio_register_read(rt2x00dev, SEC_CSR2, &reg);
496                 if (crypto->cmd == SET_KEY)
497                         reg |= mask;
498                 else if (crypto->cmd == DISABLE_KEY)
499                         reg &= ~mask;
500                 rt2x00mmio_register_write(rt2x00dev, SEC_CSR2, reg);
501         } else {
502                 mask = 1 << (key->hw_key_idx - 32);
503
504                 rt2x00mmio_register_read(rt2x00dev, SEC_CSR3, &reg);
505                 if (crypto->cmd == SET_KEY)
506                         reg |= mask;
507                 else if (crypto->cmd == DISABLE_KEY)
508                         reg &= ~mask;
509                 rt2x00mmio_register_write(rt2x00dev, SEC_CSR3, reg);
510         }
511
512         return 0;
513 }
514
515 static void rt61pci_config_filter(struct rt2x00_dev *rt2x00dev,
516                                   const unsigned int filter_flags)
517 {
518         u32 reg;
519
520         /*
521          * Start configuration steps.
522          * Note that the version error will always be dropped
523          * and broadcast frames will always be accepted since
524          * there is no filter for it at this time.
525          */
526         rt2x00mmio_register_read(rt2x00dev, TXRX_CSR0, &reg);
527         rt2x00_set_field32(&reg, TXRX_CSR0_DROP_CRC,
528                            !(filter_flags & FIF_FCSFAIL));
529         rt2x00_set_field32(&reg, TXRX_CSR0_DROP_PHYSICAL,
530                            !(filter_flags & FIF_PLCPFAIL));
531         rt2x00_set_field32(&reg, TXRX_CSR0_DROP_CONTROL,
532                            !(filter_flags & (FIF_CONTROL | FIF_PSPOLL)));
533         rt2x00_set_field32(&reg, TXRX_CSR0_DROP_NOT_TO_ME, 1);
534         rt2x00_set_field32(&reg, TXRX_CSR0_DROP_TO_DS,
535                            !rt2x00dev->intf_ap_count);
536         rt2x00_set_field32(&reg, TXRX_CSR0_DROP_VERSION_ERROR, 1);
537         rt2x00_set_field32(&reg, TXRX_CSR0_DROP_MULTICAST,
538                            !(filter_flags & FIF_ALLMULTI));
539         rt2x00_set_field32(&reg, TXRX_CSR0_DROP_BROADCAST, 0);
540         rt2x00_set_field32(&reg, TXRX_CSR0_DROP_ACK_CTS,
541                            !(filter_flags & FIF_CONTROL));
542         rt2x00mmio_register_write(rt2x00dev, TXRX_CSR0, reg);
543 }
544
545 static void rt61pci_config_intf(struct rt2x00_dev *rt2x00dev,
546                                 struct rt2x00_intf *intf,
547                                 struct rt2x00intf_conf *conf,
548                                 const unsigned int flags)
549 {
550         u32 reg;
551
552         if (flags & CONFIG_UPDATE_TYPE) {
553                 /*
554                  * Enable synchronisation.
555                  */
556                 rt2x00mmio_register_read(rt2x00dev, TXRX_CSR9, &reg);
557                 rt2x00_set_field32(&reg, TXRX_CSR9_TSF_SYNC, conf->sync);
558                 rt2x00mmio_register_write(rt2x00dev, TXRX_CSR9, reg);
559         }
560
561         if (flags & CONFIG_UPDATE_MAC) {
562                 reg = le32_to_cpu(conf->mac[1]);
563                 rt2x00_set_field32(&reg, MAC_CSR3_UNICAST_TO_ME_MASK, 0xff);
564                 conf->mac[1] = cpu_to_le32(reg);
565
566                 rt2x00mmio_register_multiwrite(rt2x00dev, MAC_CSR2,
567                                                conf->mac, sizeof(conf->mac));
568         }
569
570         if (flags & CONFIG_UPDATE_BSSID) {
571                 reg = le32_to_cpu(conf->bssid[1]);
572                 rt2x00_set_field32(&reg, MAC_CSR5_BSS_ID_MASK, 3);
573                 conf->bssid[1] = cpu_to_le32(reg);
574
575                 rt2x00mmio_register_multiwrite(rt2x00dev, MAC_CSR4,
576                                                conf->bssid,
577                                                sizeof(conf->bssid));
578         }
579 }
580
581 static void rt61pci_config_erp(struct rt2x00_dev *rt2x00dev,
582                                struct rt2x00lib_erp *erp,
583                                u32 changed)
584 {
585         u32 reg;
586
587         rt2x00mmio_register_read(rt2x00dev, TXRX_CSR0, &reg);
588         rt2x00_set_field32(&reg, TXRX_CSR0_RX_ACK_TIMEOUT, 0x32);
589         rt2x00_set_field32(&reg, TXRX_CSR0_TSF_OFFSET, IEEE80211_HEADER);
590         rt2x00mmio_register_write(rt2x00dev, TXRX_CSR0, reg);
591
592         if (changed & BSS_CHANGED_ERP_PREAMBLE) {
593                 rt2x00mmio_register_read(rt2x00dev, TXRX_CSR4, &reg);
594                 rt2x00_set_field32(&reg, TXRX_CSR4_AUTORESPOND_ENABLE, 1);
595                 rt2x00_set_field32(&reg, TXRX_CSR4_AUTORESPOND_PREAMBLE,
596                                    !!erp->short_preamble);
597                 rt2x00mmio_register_write(rt2x00dev, TXRX_CSR4, reg);
598         }
599
600         if (changed & BSS_CHANGED_BASIC_RATES)
601                 rt2x00mmio_register_write(rt2x00dev, TXRX_CSR5,
602                                           erp->basic_rates);
603
604         if (changed & BSS_CHANGED_BEACON_INT) {
605                 rt2x00mmio_register_read(rt2x00dev, TXRX_CSR9, &reg);
606                 rt2x00_set_field32(&reg, TXRX_CSR9_BEACON_INTERVAL,
607                                    erp->beacon_int * 16);
608                 rt2x00mmio_register_write(rt2x00dev, TXRX_CSR9, reg);
609         }
610
611         if (changed & BSS_CHANGED_ERP_SLOT) {
612                 rt2x00mmio_register_read(rt2x00dev, MAC_CSR9, &reg);
613                 rt2x00_set_field32(&reg, MAC_CSR9_SLOT_TIME, erp->slot_time);
614                 rt2x00mmio_register_write(rt2x00dev, MAC_CSR9, reg);
615
616                 rt2x00mmio_register_read(rt2x00dev, MAC_CSR8, &reg);
617                 rt2x00_set_field32(&reg, MAC_CSR8_SIFS, erp->sifs);
618                 rt2x00_set_field32(&reg, MAC_CSR8_SIFS_AFTER_RX_OFDM, 3);
619                 rt2x00_set_field32(&reg, MAC_CSR8_EIFS, erp->eifs);
620                 rt2x00mmio_register_write(rt2x00dev, MAC_CSR8, reg);
621         }
622 }
623
624 static void rt61pci_config_antenna_5x(struct rt2x00_dev *rt2x00dev,
625                                       struct antenna_setup *ant)
626 {
627         u8 r3;
628         u8 r4;
629         u8 r77;
630
631         rt61pci_bbp_read(rt2x00dev, 3, &r3);
632         rt61pci_bbp_read(rt2x00dev, 4, &r4);
633         rt61pci_bbp_read(rt2x00dev, 77, &r77);
634
635         rt2x00_set_field8(&r3, BBP_R3_SMART_MODE, rt2x00_rf(rt2x00dev, RF5325));
636
637         /*
638          * Configure the RX antenna.
639          */
640         switch (ant->rx) {
641         case ANTENNA_HW_DIVERSITY:
642                 rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA_CONTROL, 2);
643                 rt2x00_set_field8(&r4, BBP_R4_RX_FRAME_END,
644                                   (rt2x00dev->curr_band != IEEE80211_BAND_5GHZ));
645                 break;
646         case ANTENNA_A:
647                 rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA_CONTROL, 1);
648                 rt2x00_set_field8(&r4, BBP_R4_RX_FRAME_END, 0);
649                 if (rt2x00dev->curr_band == IEEE80211_BAND_5GHZ)
650                         rt2x00_set_field8(&r77, BBP_R77_RX_ANTENNA, 0);
651                 else
652                         rt2x00_set_field8(&r77, BBP_R77_RX_ANTENNA, 3);
653                 break;
654         case ANTENNA_B:
655         default:
656                 rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA_CONTROL, 1);
657                 rt2x00_set_field8(&r4, BBP_R4_RX_FRAME_END, 0);
658                 if (rt2x00dev->curr_band == IEEE80211_BAND_5GHZ)
659                         rt2x00_set_field8(&r77, BBP_R77_RX_ANTENNA, 3);
660                 else
661                         rt2x00_set_field8(&r77, BBP_R77_RX_ANTENNA, 0);
662                 break;
663         }
664
665         rt61pci_bbp_write(rt2x00dev, 77, r77);
666         rt61pci_bbp_write(rt2x00dev, 3, r3);
667         rt61pci_bbp_write(rt2x00dev, 4, r4);
668 }
669
670 static void rt61pci_config_antenna_2x(struct rt2x00_dev *rt2x00dev,
671                                       struct antenna_setup *ant)
672 {
673         u8 r3;
674         u8 r4;
675         u8 r77;
676
677         rt61pci_bbp_read(rt2x00dev, 3, &r3);
678         rt61pci_bbp_read(rt2x00dev, 4, &r4);
679         rt61pci_bbp_read(rt2x00dev, 77, &r77);
680
681         rt2x00_set_field8(&r3, BBP_R3_SMART_MODE, rt2x00_rf(rt2x00dev, RF2529));
682         rt2x00_set_field8(&r4, BBP_R4_RX_FRAME_END,
683                           !rt2x00_has_cap_frame_type(rt2x00dev));
684
685         /*
686          * Configure the RX antenna.
687          */
688         switch (ant->rx) {
689         case ANTENNA_HW_DIVERSITY:
690                 rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA_CONTROL, 2);
691                 break;
692         case ANTENNA_A:
693                 rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA_CONTROL, 1);
694                 rt2x00_set_field8(&r77, BBP_R77_RX_ANTENNA, 3);
695                 break;
696         case ANTENNA_B:
697         default:
698                 rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA_CONTROL, 1);
699                 rt2x00_set_field8(&r77, BBP_R77_RX_ANTENNA, 0);
700                 break;
701         }
702
703         rt61pci_bbp_write(rt2x00dev, 77, r77);
704         rt61pci_bbp_write(rt2x00dev, 3, r3);
705         rt61pci_bbp_write(rt2x00dev, 4, r4);
706 }
707
708 static void rt61pci_config_antenna_2529_rx(struct rt2x00_dev *rt2x00dev,
709                                            const int p1, const int p2)
710 {
711         u32 reg;
712
713         rt2x00mmio_register_read(rt2x00dev, MAC_CSR13, &reg);
714
715         rt2x00_set_field32(&reg, MAC_CSR13_DIR4, 0);
716         rt2x00_set_field32(&reg, MAC_CSR13_VAL4, p1);
717
718         rt2x00_set_field32(&reg, MAC_CSR13_DIR3, 0);
719         rt2x00_set_field32(&reg, MAC_CSR13_VAL3, !p2);
720
721         rt2x00mmio_register_write(rt2x00dev, MAC_CSR13, reg);
722 }
723
724 static void rt61pci_config_antenna_2529(struct rt2x00_dev *rt2x00dev,
725                                         struct antenna_setup *ant)
726 {
727         u8 r3;
728         u8 r4;
729         u8 r77;
730
731         rt61pci_bbp_read(rt2x00dev, 3, &r3);
732         rt61pci_bbp_read(rt2x00dev, 4, &r4);
733         rt61pci_bbp_read(rt2x00dev, 77, &r77);
734
735         /*
736          * Configure the RX antenna.
737          */
738         switch (ant->rx) {
739         case ANTENNA_A:
740                 rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA_CONTROL, 1);
741                 rt2x00_set_field8(&r77, BBP_R77_RX_ANTENNA, 0);
742                 rt61pci_config_antenna_2529_rx(rt2x00dev, 0, 0);
743                 break;
744         case ANTENNA_HW_DIVERSITY:
745                 /*
746                  * FIXME: Antenna selection for the rf 2529 is very confusing
747                  * in the legacy driver. Just default to antenna B until the
748                  * legacy code can be properly translated into rt2x00 code.
749                  */
750         case ANTENNA_B:
751         default:
752                 rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA_CONTROL, 1);
753                 rt2x00_set_field8(&r77, BBP_R77_RX_ANTENNA, 3);
754                 rt61pci_config_antenna_2529_rx(rt2x00dev, 1, 1);
755                 break;
756         }
757
758         rt61pci_bbp_write(rt2x00dev, 77, r77);
759         rt61pci_bbp_write(rt2x00dev, 3, r3);
760         rt61pci_bbp_write(rt2x00dev, 4, r4);
761 }
762
763 struct antenna_sel {
764         u8 word;
765         /*
766          * value[0] -> non-LNA
767          * value[1] -> LNA
768          */
769         u8 value[2];
770 };
771
772 static const struct antenna_sel antenna_sel_a[] = {
773         { 96,  { 0x58, 0x78 } },
774         { 104, { 0x38, 0x48 } },
775         { 75,  { 0xfe, 0x80 } },
776         { 86,  { 0xfe, 0x80 } },
777         { 88,  { 0xfe, 0x80 } },
778         { 35,  { 0x60, 0x60 } },
779         { 97,  { 0x58, 0x58 } },
780         { 98,  { 0x58, 0x58 } },
781 };
782
783 static const struct antenna_sel antenna_sel_bg[] = {
784         { 96,  { 0x48, 0x68 } },
785         { 104, { 0x2c, 0x3c } },
786         { 75,  { 0xfe, 0x80 } },
787         { 86,  { 0xfe, 0x80 } },
788         { 88,  { 0xfe, 0x80 } },
789         { 35,  { 0x50, 0x50 } },
790         { 97,  { 0x48, 0x48 } },
791         { 98,  { 0x48, 0x48 } },
792 };
793
794 static void rt61pci_config_ant(struct rt2x00_dev *rt2x00dev,
795                                struct antenna_setup *ant)
796 {
797         const struct antenna_sel *sel;
798         unsigned int lna;
799         unsigned int i;
800         u32 reg;
801
802         /*
803          * We should never come here because rt2x00lib is supposed
804          * to catch this and send us the correct antenna explicitely.
805          */
806         BUG_ON(ant->rx == ANTENNA_SW_DIVERSITY ||
807                ant->tx == ANTENNA_SW_DIVERSITY);
808
809         if (rt2x00dev->curr_band == IEEE80211_BAND_5GHZ) {
810                 sel = antenna_sel_a;
811                 lna = rt2x00_has_cap_external_lna_a(rt2x00dev);
812         } else {
813                 sel = antenna_sel_bg;
814                 lna = rt2x00_has_cap_external_lna_bg(rt2x00dev);
815         }
816
817         for (i = 0; i < ARRAY_SIZE(antenna_sel_a); i++)
818                 rt61pci_bbp_write(rt2x00dev, sel[i].word, sel[i].value[lna]);
819
820         rt2x00mmio_register_read(rt2x00dev, PHY_CSR0, &reg);
821
822         rt2x00_set_field32(&reg, PHY_CSR0_PA_PE_BG,
823                            rt2x00dev->curr_band == IEEE80211_BAND_2GHZ);
824         rt2x00_set_field32(&reg, PHY_CSR0_PA_PE_A,
825                            rt2x00dev->curr_band == IEEE80211_BAND_5GHZ);
826
827         rt2x00mmio_register_write(rt2x00dev, PHY_CSR0, reg);
828
829         if (rt2x00_rf(rt2x00dev, RF5225) || rt2x00_rf(rt2x00dev, RF5325))
830                 rt61pci_config_antenna_5x(rt2x00dev, ant);
831         else if (rt2x00_rf(rt2x00dev, RF2527))
832                 rt61pci_config_antenna_2x(rt2x00dev, ant);
833         else if (rt2x00_rf(rt2x00dev, RF2529)) {
834                 if (rt2x00_has_cap_double_antenna(rt2x00dev))
835                         rt61pci_config_antenna_2x(rt2x00dev, ant);
836                 else
837                         rt61pci_config_antenna_2529(rt2x00dev, ant);
838         }
839 }
840
841 static void rt61pci_config_lna_gain(struct rt2x00_dev *rt2x00dev,
842                                     struct rt2x00lib_conf *libconf)
843 {
844         u16 eeprom;
845         short lna_gain = 0;
846
847         if (libconf->conf->chandef.chan->band == IEEE80211_BAND_2GHZ) {
848                 if (rt2x00_has_cap_external_lna_bg(rt2x00dev))
849                         lna_gain += 14;
850
851                 rt2x00_eeprom_read(rt2x00dev, EEPROM_RSSI_OFFSET_BG, &eeprom);
852                 lna_gain -= rt2x00_get_field16(eeprom, EEPROM_RSSI_OFFSET_BG_1);
853         } else {
854                 if (rt2x00_has_cap_external_lna_a(rt2x00dev))
855                         lna_gain += 14;
856
857                 rt2x00_eeprom_read(rt2x00dev, EEPROM_RSSI_OFFSET_A, &eeprom);
858                 lna_gain -= rt2x00_get_field16(eeprom, EEPROM_RSSI_OFFSET_A_1);
859         }
860
861         rt2x00dev->lna_gain = lna_gain;
862 }
863
864 static void rt61pci_config_channel(struct rt2x00_dev *rt2x00dev,
865                                    struct rf_channel *rf, const int txpower)
866 {
867         u8 r3;
868         u8 r94;
869         u8 smart;
870
871         rt2x00_set_field32(&rf->rf3, RF3_TXPOWER, TXPOWER_TO_DEV(txpower));
872         rt2x00_set_field32(&rf->rf4, RF4_FREQ_OFFSET, rt2x00dev->freq_offset);
873
874         smart = !(rt2x00_rf(rt2x00dev, RF5225) || rt2x00_rf(rt2x00dev, RF2527));
875
876         rt61pci_bbp_read(rt2x00dev, 3, &r3);
877         rt2x00_set_field8(&r3, BBP_R3_SMART_MODE, smart);
878         rt61pci_bbp_write(rt2x00dev, 3, r3);
879
880         r94 = 6;
881         if (txpower > MAX_TXPOWER && txpower <= (MAX_TXPOWER + r94))
882                 r94 += txpower - MAX_TXPOWER;
883         else if (txpower < MIN_TXPOWER && txpower >= (MIN_TXPOWER - r94))
884                 r94 += txpower;
885         rt61pci_bbp_write(rt2x00dev, 94, r94);
886
887         rt61pci_rf_write(rt2x00dev, 1, rf->rf1);
888         rt61pci_rf_write(rt2x00dev, 2, rf->rf2);
889         rt61pci_rf_write(rt2x00dev, 3, rf->rf3 & ~0x00000004);
890         rt61pci_rf_write(rt2x00dev, 4, rf->rf4);
891
892         udelay(200);
893
894         rt61pci_rf_write(rt2x00dev, 1, rf->rf1);
895         rt61pci_rf_write(rt2x00dev, 2, rf->rf2);
896         rt61pci_rf_write(rt2x00dev, 3, rf->rf3 | 0x00000004);
897         rt61pci_rf_write(rt2x00dev, 4, rf->rf4);
898
899         udelay(200);
900
901         rt61pci_rf_write(rt2x00dev, 1, rf->rf1);
902         rt61pci_rf_write(rt2x00dev, 2, rf->rf2);
903         rt61pci_rf_write(rt2x00dev, 3, rf->rf3 & ~0x00000004);
904         rt61pci_rf_write(rt2x00dev, 4, rf->rf4);
905
906         msleep(1);
907 }
908
909 static void rt61pci_config_txpower(struct rt2x00_dev *rt2x00dev,
910                                    const int txpower)
911 {
912         struct rf_channel rf;
913
914         rt2x00_rf_read(rt2x00dev, 1, &rf.rf1);
915         rt2x00_rf_read(rt2x00dev, 2, &rf.rf2);
916         rt2x00_rf_read(rt2x00dev, 3, &rf.rf3);
917         rt2x00_rf_read(rt2x00dev, 4, &rf.rf4);
918
919         rt61pci_config_channel(rt2x00dev, &rf, txpower);
920 }
921
922 static void rt61pci_config_retry_limit(struct rt2x00_dev *rt2x00dev,
923                                     struct rt2x00lib_conf *libconf)
924 {
925         u32 reg;
926
927         rt2x00mmio_register_read(rt2x00dev, TXRX_CSR4, &reg);
928         rt2x00_set_field32(&reg, TXRX_CSR4_OFDM_TX_RATE_DOWN, 1);
929         rt2x00_set_field32(&reg, TXRX_CSR4_OFDM_TX_RATE_STEP, 0);
930         rt2x00_set_field32(&reg, TXRX_CSR4_OFDM_TX_FALLBACK_CCK, 0);
931         rt2x00_set_field32(&reg, TXRX_CSR4_LONG_RETRY_LIMIT,
932                            libconf->conf->long_frame_max_tx_count);
933         rt2x00_set_field32(&reg, TXRX_CSR4_SHORT_RETRY_LIMIT,
934                            libconf->conf->short_frame_max_tx_count);
935         rt2x00mmio_register_write(rt2x00dev, TXRX_CSR4, reg);
936 }
937
938 static void rt61pci_config_ps(struct rt2x00_dev *rt2x00dev,
939                                 struct rt2x00lib_conf *libconf)
940 {
941         enum dev_state state =
942             (libconf->conf->flags & IEEE80211_CONF_PS) ?
943                 STATE_SLEEP : STATE_AWAKE;
944         u32 reg;
945
946         if (state == STATE_SLEEP) {
947                 rt2x00mmio_register_read(rt2x00dev, MAC_CSR11, &reg);
948                 rt2x00_set_field32(&reg, MAC_CSR11_DELAY_AFTER_TBCN,
949                                    rt2x00dev->beacon_int - 10);
950                 rt2x00_set_field32(&reg, MAC_CSR11_TBCN_BEFORE_WAKEUP,
951                                    libconf->conf->listen_interval - 1);
952                 rt2x00_set_field32(&reg, MAC_CSR11_WAKEUP_LATENCY, 5);
953
954                 /* We must first disable autowake before it can be enabled */
955                 rt2x00_set_field32(&reg, MAC_CSR11_AUTOWAKE, 0);
956                 rt2x00mmio_register_write(rt2x00dev, MAC_CSR11, reg);
957
958                 rt2x00_set_field32(&reg, MAC_CSR11_AUTOWAKE, 1);
959                 rt2x00mmio_register_write(rt2x00dev, MAC_CSR11, reg);
960
961                 rt2x00mmio_register_write(rt2x00dev, SOFT_RESET_CSR,
962                                           0x00000005);
963                 rt2x00mmio_register_write(rt2x00dev, IO_CNTL_CSR, 0x0000001c);
964                 rt2x00mmio_register_write(rt2x00dev, PCI_USEC_CSR, 0x00000060);
965
966                 rt61pci_mcu_request(rt2x00dev, MCU_SLEEP, 0xff, 0, 0);
967         } else {
968                 rt2x00mmio_register_read(rt2x00dev, MAC_CSR11, &reg);
969                 rt2x00_set_field32(&reg, MAC_CSR11_DELAY_AFTER_TBCN, 0);
970                 rt2x00_set_field32(&reg, MAC_CSR11_TBCN_BEFORE_WAKEUP, 0);
971                 rt2x00_set_field32(&reg, MAC_CSR11_AUTOWAKE, 0);
972                 rt2x00_set_field32(&reg, MAC_CSR11_WAKEUP_LATENCY, 0);
973                 rt2x00mmio_register_write(rt2x00dev, MAC_CSR11, reg);
974
975                 rt2x00mmio_register_write(rt2x00dev, SOFT_RESET_CSR,
976                                           0x00000007);
977                 rt2x00mmio_register_write(rt2x00dev, IO_CNTL_CSR, 0x00000018);
978                 rt2x00mmio_register_write(rt2x00dev, PCI_USEC_CSR, 0x00000020);
979
980                 rt61pci_mcu_request(rt2x00dev, MCU_WAKEUP, 0xff, 0, 0);
981         }
982 }
983
984 static void rt61pci_config(struct rt2x00_dev *rt2x00dev,
985                            struct rt2x00lib_conf *libconf,
986                            const unsigned int flags)
987 {
988         /* Always recalculate LNA gain before changing configuration */
989         rt61pci_config_lna_gain(rt2x00dev, libconf);
990
991         if (flags & IEEE80211_CONF_CHANGE_CHANNEL)
992                 rt61pci_config_channel(rt2x00dev, &libconf->rf,
993                                        libconf->conf->power_level);
994         if ((flags & IEEE80211_CONF_CHANGE_POWER) &&
995             !(flags & IEEE80211_CONF_CHANGE_CHANNEL))
996                 rt61pci_config_txpower(rt2x00dev, libconf->conf->power_level);
997         if (flags & IEEE80211_CONF_CHANGE_RETRY_LIMITS)
998                 rt61pci_config_retry_limit(rt2x00dev, libconf);
999         if (flags & IEEE80211_CONF_CHANGE_PS)
1000                 rt61pci_config_ps(rt2x00dev, libconf);
1001 }
1002
1003 /*
1004  * Link tuning
1005  */
1006 static void rt61pci_link_stats(struct rt2x00_dev *rt2x00dev,
1007                                struct link_qual *qual)
1008 {
1009         u32 reg;
1010
1011         /*
1012          * Update FCS error count from register.
1013          */
1014         rt2x00mmio_register_read(rt2x00dev, STA_CSR0, &reg);
1015         qual->rx_failed = rt2x00_get_field32(reg, STA_CSR0_FCS_ERROR);
1016
1017         /*
1018          * Update False CCA count from register.
1019          */
1020         rt2x00mmio_register_read(rt2x00dev, STA_CSR1, &reg);
1021         qual->false_cca = rt2x00_get_field32(reg, STA_CSR1_FALSE_CCA_ERROR);
1022 }
1023
1024 static inline void rt61pci_set_vgc(struct rt2x00_dev *rt2x00dev,
1025                                    struct link_qual *qual, u8 vgc_level)
1026 {
1027         if (qual->vgc_level != vgc_level) {
1028                 rt61pci_bbp_write(rt2x00dev, 17, vgc_level);
1029                 qual->vgc_level = vgc_level;
1030                 qual->vgc_level_reg = vgc_level;
1031         }
1032 }
1033
1034 static void rt61pci_reset_tuner(struct rt2x00_dev *rt2x00dev,
1035                                 struct link_qual *qual)
1036 {
1037         rt61pci_set_vgc(rt2x00dev, qual, 0x20);
1038 }
1039
1040 static void rt61pci_link_tuner(struct rt2x00_dev *rt2x00dev,
1041                                struct link_qual *qual, const u32 count)
1042 {
1043         u8 up_bound;
1044         u8 low_bound;
1045
1046         /*
1047          * Determine r17 bounds.
1048          */
1049         if (rt2x00dev->curr_band == IEEE80211_BAND_5GHZ) {
1050                 low_bound = 0x28;
1051                 up_bound = 0x48;
1052                 if (rt2x00_has_cap_external_lna_a(rt2x00dev)) {
1053                         low_bound += 0x10;
1054                         up_bound += 0x10;
1055                 }
1056         } else {
1057                 low_bound = 0x20;
1058                 up_bound = 0x40;
1059                 if (rt2x00_has_cap_external_lna_bg(rt2x00dev)) {
1060                         low_bound += 0x10;
1061                         up_bound += 0x10;
1062                 }
1063         }
1064
1065         /*
1066          * If we are not associated, we should go straight to the
1067          * dynamic CCA tuning.
1068          */
1069         if (!rt2x00dev->intf_associated)
1070                 goto dynamic_cca_tune;
1071
1072         /*
1073          * Special big-R17 for very short distance
1074          */
1075         if (qual->rssi >= -35) {
1076                 rt61pci_set_vgc(rt2x00dev, qual, 0x60);
1077                 return;
1078         }
1079
1080         /*
1081          * Special big-R17 for short distance
1082          */
1083         if (qual->rssi >= -58) {
1084                 rt61pci_set_vgc(rt2x00dev, qual, up_bound);
1085                 return;
1086         }
1087
1088         /*
1089          * Special big-R17 for middle-short distance
1090          */
1091         if (qual->rssi >= -66) {
1092                 rt61pci_set_vgc(rt2x00dev, qual, low_bound + 0x10);
1093                 return;
1094         }
1095
1096         /*
1097          * Special mid-R17 for middle distance
1098          */
1099         if (qual->rssi >= -74) {
1100                 rt61pci_set_vgc(rt2x00dev, qual, low_bound + 0x08);
1101                 return;
1102         }
1103
1104         /*
1105          * Special case: Change up_bound based on the rssi.
1106          * Lower up_bound when rssi is weaker then -74 dBm.
1107          */
1108         up_bound -= 2 * (-74 - qual->rssi);
1109         if (low_bound > up_bound)
1110                 up_bound = low_bound;
1111
1112         if (qual->vgc_level > up_bound) {
1113                 rt61pci_set_vgc(rt2x00dev, qual, up_bound);
1114                 return;
1115         }
1116
1117 dynamic_cca_tune:
1118
1119         /*
1120          * r17 does not yet exceed upper limit, continue and base
1121          * the r17 tuning on the false CCA count.
1122          */
1123         if ((qual->false_cca > 512) && (qual->vgc_level < up_bound))
1124                 rt61pci_set_vgc(rt2x00dev, qual, ++qual->vgc_level);
1125         else if ((qual->false_cca < 100) && (qual->vgc_level > low_bound))
1126                 rt61pci_set_vgc(rt2x00dev, qual, --qual->vgc_level);
1127 }
1128
1129 /*
1130  * Queue handlers.
1131  */
1132 static void rt61pci_start_queue(struct data_queue *queue)
1133 {
1134         struct rt2x00_dev *rt2x00dev = queue->rt2x00dev;
1135         u32 reg;
1136
1137         switch (queue->qid) {
1138         case QID_RX:
1139                 rt2x00mmio_register_read(rt2x00dev, TXRX_CSR0, &reg);
1140                 rt2x00_set_field32(&reg, TXRX_CSR0_DISABLE_RX, 0);
1141                 rt2x00mmio_register_write(rt2x00dev, TXRX_CSR0, reg);
1142                 break;
1143         case QID_BEACON:
1144                 rt2x00mmio_register_read(rt2x00dev, TXRX_CSR9, &reg);
1145                 rt2x00_set_field32(&reg, TXRX_CSR9_TSF_TICKING, 1);
1146                 rt2x00_set_field32(&reg, TXRX_CSR9_TBTT_ENABLE, 1);
1147                 rt2x00_set_field32(&reg, TXRX_CSR9_BEACON_GEN, 1);
1148                 rt2x00mmio_register_write(rt2x00dev, TXRX_CSR9, reg);
1149                 break;
1150         default:
1151                 break;
1152         }
1153 }
1154
1155 static void rt61pci_kick_queue(struct data_queue *queue)
1156 {
1157         struct rt2x00_dev *rt2x00dev = queue->rt2x00dev;
1158         u32 reg;
1159
1160         switch (queue->qid) {
1161         case QID_AC_VO:
1162                 rt2x00mmio_register_read(rt2x00dev, TX_CNTL_CSR, &reg);
1163                 rt2x00_set_field32(&reg, TX_CNTL_CSR_KICK_TX_AC0, 1);
1164                 rt2x00mmio_register_write(rt2x00dev, TX_CNTL_CSR, reg);
1165                 break;
1166         case QID_AC_VI:
1167                 rt2x00mmio_register_read(rt2x00dev, TX_CNTL_CSR, &reg);
1168                 rt2x00_set_field32(&reg, TX_CNTL_CSR_KICK_TX_AC1, 1);
1169                 rt2x00mmio_register_write(rt2x00dev, TX_CNTL_CSR, reg);
1170                 break;
1171         case QID_AC_BE:
1172                 rt2x00mmio_register_read(rt2x00dev, TX_CNTL_CSR, &reg);
1173                 rt2x00_set_field32(&reg, TX_CNTL_CSR_KICK_TX_AC2, 1);
1174                 rt2x00mmio_register_write(rt2x00dev, TX_CNTL_CSR, reg);
1175                 break;
1176         case QID_AC_BK:
1177                 rt2x00mmio_register_read(rt2x00dev, TX_CNTL_CSR, &reg);
1178                 rt2x00_set_field32(&reg, TX_CNTL_CSR_KICK_TX_AC3, 1);
1179                 rt2x00mmio_register_write(rt2x00dev, TX_CNTL_CSR, reg);
1180                 break;
1181         default:
1182                 break;
1183         }
1184 }
1185
1186 static void rt61pci_stop_queue(struct data_queue *queue)
1187 {
1188         struct rt2x00_dev *rt2x00dev = queue->rt2x00dev;
1189         u32 reg;
1190
1191         switch (queue->qid) {
1192         case QID_AC_VO:
1193                 rt2x00mmio_register_read(rt2x00dev, TX_CNTL_CSR, &reg);
1194                 rt2x00_set_field32(&reg, TX_CNTL_CSR_ABORT_TX_AC0, 1);
1195                 rt2x00mmio_register_write(rt2x00dev, TX_CNTL_CSR, reg);
1196                 break;
1197         case QID_AC_VI:
1198                 rt2x00mmio_register_read(rt2x00dev, TX_CNTL_CSR, &reg);
1199                 rt2x00_set_field32(&reg, TX_CNTL_CSR_ABORT_TX_AC1, 1);
1200                 rt2x00mmio_register_write(rt2x00dev, TX_CNTL_CSR, reg);
1201                 break;
1202         case QID_AC_BE:
1203                 rt2x00mmio_register_read(rt2x00dev, TX_CNTL_CSR, &reg);
1204                 rt2x00_set_field32(&reg, TX_CNTL_CSR_ABORT_TX_AC2, 1);
1205                 rt2x00mmio_register_write(rt2x00dev, TX_CNTL_CSR, reg);
1206                 break;
1207         case QID_AC_BK:
1208                 rt2x00mmio_register_read(rt2x00dev, TX_CNTL_CSR, &reg);
1209                 rt2x00_set_field32(&reg, TX_CNTL_CSR_ABORT_TX_AC3, 1);
1210                 rt2x00mmio_register_write(rt2x00dev, TX_CNTL_CSR, reg);
1211                 break;
1212         case QID_RX:
1213                 rt2x00mmio_register_read(rt2x00dev, TXRX_CSR0, &reg);
1214                 rt2x00_set_field32(&reg, TXRX_CSR0_DISABLE_RX, 1);
1215                 rt2x00mmio_register_write(rt2x00dev, TXRX_CSR0, reg);
1216                 break;
1217         case QID_BEACON:
1218                 rt2x00mmio_register_read(rt2x00dev, TXRX_CSR9, &reg);
1219                 rt2x00_set_field32(&reg, TXRX_CSR9_TSF_TICKING, 0);
1220                 rt2x00_set_field32(&reg, TXRX_CSR9_TBTT_ENABLE, 0);
1221                 rt2x00_set_field32(&reg, TXRX_CSR9_BEACON_GEN, 0);
1222                 rt2x00mmio_register_write(rt2x00dev, TXRX_CSR9, reg);
1223
1224                 /*
1225                  * Wait for possibly running tbtt tasklets.
1226                  */
1227                 tasklet_kill(&rt2x00dev->tbtt_tasklet);
1228                 break;
1229         default:
1230                 break;
1231         }
1232 }
1233
1234 /*
1235  * Firmware functions
1236  */
1237 static char *rt61pci_get_firmware_name(struct rt2x00_dev *rt2x00dev)
1238 {
1239         u16 chip;
1240         char *fw_name;
1241
1242         pci_read_config_word(to_pci_dev(rt2x00dev->dev), PCI_DEVICE_ID, &chip);
1243         switch (chip) {
1244         case RT2561_PCI_ID:
1245                 fw_name = FIRMWARE_RT2561;
1246                 break;
1247         case RT2561s_PCI_ID:
1248                 fw_name = FIRMWARE_RT2561s;
1249                 break;
1250         case RT2661_PCI_ID:
1251                 fw_name = FIRMWARE_RT2661;
1252                 break;
1253         default:
1254                 fw_name = NULL;
1255                 break;
1256         }
1257
1258         return fw_name;
1259 }
1260
1261 static int rt61pci_check_firmware(struct rt2x00_dev *rt2x00dev,
1262                                   const u8 *data, const size_t len)
1263 {
1264         u16 fw_crc;
1265         u16 crc;
1266
1267         /*
1268          * Only support 8kb firmware files.
1269          */
1270         if (len != 8192)
1271                 return FW_BAD_LENGTH;
1272
1273         /*
1274          * The last 2 bytes in the firmware array are the crc checksum itself.
1275          * This means that we should never pass those 2 bytes to the crc
1276          * algorithm.
1277          */
1278         fw_crc = (data[len - 2] << 8 | data[len - 1]);
1279
1280         /*
1281          * Use the crc itu-t algorithm.
1282          */
1283         crc = crc_itu_t(0, data, len - 2);
1284         crc = crc_itu_t_byte(crc, 0);
1285         crc = crc_itu_t_byte(crc, 0);
1286
1287         return (fw_crc == crc) ? FW_OK : FW_BAD_CRC;
1288 }
1289
1290 static int rt61pci_load_firmware(struct rt2x00_dev *rt2x00dev,
1291                                  const u8 *data, const size_t len)
1292 {
1293         int i;
1294         u32 reg;
1295
1296         /*
1297          * Wait for stable hardware.
1298          */
1299         for (i = 0; i < 100; i++) {
1300                 rt2x00mmio_register_read(rt2x00dev, MAC_CSR0, &reg);
1301                 if (reg)
1302                         break;
1303                 msleep(1);
1304         }
1305
1306         if (!reg) {
1307                 rt2x00_err(rt2x00dev, "Unstable hardware\n");
1308                 return -EBUSY;
1309         }
1310
1311         /*
1312          * Prepare MCU and mailbox for firmware loading.
1313          */
1314         reg = 0;
1315         rt2x00_set_field32(&reg, MCU_CNTL_CSR_RESET, 1);
1316         rt2x00mmio_register_write(rt2x00dev, MCU_CNTL_CSR, reg);
1317         rt2x00mmio_register_write(rt2x00dev, M2H_CMD_DONE_CSR, 0xffffffff);
1318         rt2x00mmio_register_write(rt2x00dev, H2M_MAILBOX_CSR, 0);
1319         rt2x00mmio_register_write(rt2x00dev, HOST_CMD_CSR, 0);
1320
1321         /*
1322          * Write firmware to device.
1323          */
1324         reg = 0;
1325         rt2x00_set_field32(&reg, MCU_CNTL_CSR_RESET, 1);
1326         rt2x00_set_field32(&reg, MCU_CNTL_CSR_SELECT_BANK, 1);
1327         rt2x00mmio_register_write(rt2x00dev, MCU_CNTL_CSR, reg);
1328
1329         rt2x00mmio_register_multiwrite(rt2x00dev, FIRMWARE_IMAGE_BASE,
1330                                        data, len);
1331
1332         rt2x00_set_field32(&reg, MCU_CNTL_CSR_SELECT_BANK, 0);
1333         rt2x00mmio_register_write(rt2x00dev, MCU_CNTL_CSR, reg);
1334
1335         rt2x00_set_field32(&reg, MCU_CNTL_CSR_RESET, 0);
1336         rt2x00mmio_register_write(rt2x00dev, MCU_CNTL_CSR, reg);
1337
1338         for (i = 0; i < 100; i++) {
1339                 rt2x00mmio_register_read(rt2x00dev, MCU_CNTL_CSR, &reg);
1340                 if (rt2x00_get_field32(reg, MCU_CNTL_CSR_READY))
1341                         break;
1342                 msleep(1);
1343         }
1344
1345         if (i == 100) {
1346                 rt2x00_err(rt2x00dev, "MCU Control register not ready\n");
1347                 return -EBUSY;
1348         }
1349
1350         /*
1351          * Hardware needs another millisecond before it is ready.
1352          */
1353         msleep(1);
1354
1355         /*
1356          * Reset MAC and BBP registers.
1357          */
1358         reg = 0;
1359         rt2x00_set_field32(&reg, MAC_CSR1_SOFT_RESET, 1);
1360         rt2x00_set_field32(&reg, MAC_CSR1_BBP_RESET, 1);
1361         rt2x00mmio_register_write(rt2x00dev, MAC_CSR1, reg);
1362
1363         rt2x00mmio_register_read(rt2x00dev, MAC_CSR1, &reg);
1364         rt2x00_set_field32(&reg, MAC_CSR1_SOFT_RESET, 0);
1365         rt2x00_set_field32(&reg, MAC_CSR1_BBP_RESET, 0);
1366         rt2x00mmio_register_write(rt2x00dev, MAC_CSR1, reg);
1367
1368         rt2x00mmio_register_read(rt2x00dev, MAC_CSR1, &reg);
1369         rt2x00_set_field32(&reg, MAC_CSR1_HOST_READY, 1);
1370         rt2x00mmio_register_write(rt2x00dev, MAC_CSR1, reg);
1371
1372         return 0;
1373 }
1374
1375 /*
1376  * Initialization functions.
1377  */
1378 static bool rt61pci_get_entry_state(struct queue_entry *entry)
1379 {
1380         struct queue_entry_priv_mmio *entry_priv = entry->priv_data;
1381         u32 word;
1382
1383         if (entry->queue->qid == QID_RX) {
1384                 rt2x00_desc_read(entry_priv->desc, 0, &word);
1385
1386                 return rt2x00_get_field32(word, RXD_W0_OWNER_NIC);
1387         } else {
1388                 rt2x00_desc_read(entry_priv->desc, 0, &word);
1389
1390                 return (rt2x00_get_field32(word, TXD_W0_OWNER_NIC) ||
1391                         rt2x00_get_field32(word, TXD_W0_VALID));
1392         }
1393 }
1394
1395 static void rt61pci_clear_entry(struct queue_entry *entry)
1396 {
1397         struct queue_entry_priv_mmio *entry_priv = entry->priv_data;
1398         struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb);
1399         u32 word;
1400
1401         if (entry->queue->qid == QID_RX) {
1402                 rt2x00_desc_read(entry_priv->desc, 5, &word);
1403                 rt2x00_set_field32(&word, RXD_W5_BUFFER_PHYSICAL_ADDRESS,
1404                                    skbdesc->skb_dma);
1405                 rt2x00_desc_write(entry_priv->desc, 5, word);
1406
1407                 rt2x00_desc_read(entry_priv->desc, 0, &word);
1408                 rt2x00_set_field32(&word, RXD_W0_OWNER_NIC, 1);
1409                 rt2x00_desc_write(entry_priv->desc, 0, word);
1410         } else {
1411                 rt2x00_desc_read(entry_priv->desc, 0, &word);
1412                 rt2x00_set_field32(&word, TXD_W0_VALID, 0);
1413                 rt2x00_set_field32(&word, TXD_W0_OWNER_NIC, 0);
1414                 rt2x00_desc_write(entry_priv->desc, 0, word);
1415         }
1416 }
1417
1418 static int rt61pci_init_queues(struct rt2x00_dev *rt2x00dev)
1419 {
1420         struct queue_entry_priv_mmio *entry_priv;
1421         u32 reg;
1422
1423         /*
1424          * Initialize registers.
1425          */
1426         rt2x00mmio_register_read(rt2x00dev, TX_RING_CSR0, &reg);
1427         rt2x00_set_field32(&reg, TX_RING_CSR0_AC0_RING_SIZE,
1428                            rt2x00dev->tx[0].limit);
1429         rt2x00_set_field32(&reg, TX_RING_CSR0_AC1_RING_SIZE,
1430                            rt2x00dev->tx[1].limit);
1431         rt2x00_set_field32(&reg, TX_RING_CSR0_AC2_RING_SIZE,
1432                            rt2x00dev->tx[2].limit);
1433         rt2x00_set_field32(&reg, TX_RING_CSR0_AC3_RING_SIZE,
1434                            rt2x00dev->tx[3].limit);
1435         rt2x00mmio_register_write(rt2x00dev, TX_RING_CSR0, reg);
1436
1437         rt2x00mmio_register_read(rt2x00dev, TX_RING_CSR1, &reg);
1438         rt2x00_set_field32(&reg, TX_RING_CSR1_TXD_SIZE,
1439                            rt2x00dev->tx[0].desc_size / 4);
1440         rt2x00mmio_register_write(rt2x00dev, TX_RING_CSR1, reg);
1441
1442         entry_priv = rt2x00dev->tx[0].entries[0].priv_data;
1443         rt2x00mmio_register_read(rt2x00dev, AC0_BASE_CSR, &reg);
1444         rt2x00_set_field32(&reg, AC0_BASE_CSR_RING_REGISTER,
1445                            entry_priv->desc_dma);
1446         rt2x00mmio_register_write(rt2x00dev, AC0_BASE_CSR, reg);
1447
1448         entry_priv = rt2x00dev->tx[1].entries[0].priv_data;
1449         rt2x00mmio_register_read(rt2x00dev, AC1_BASE_CSR, &reg);
1450         rt2x00_set_field32(&reg, AC1_BASE_CSR_RING_REGISTER,
1451                            entry_priv->desc_dma);
1452         rt2x00mmio_register_write(rt2x00dev, AC1_BASE_CSR, reg);
1453
1454         entry_priv = rt2x00dev->tx[2].entries[0].priv_data;
1455         rt2x00mmio_register_read(rt2x00dev, AC2_BASE_CSR, &reg);
1456         rt2x00_set_field32(&reg, AC2_BASE_CSR_RING_REGISTER,
1457                            entry_priv->desc_dma);
1458         rt2x00mmio_register_write(rt2x00dev, AC2_BASE_CSR, reg);
1459
1460         entry_priv = rt2x00dev->tx[3].entries[0].priv_data;
1461         rt2x00mmio_register_read(rt2x00dev, AC3_BASE_CSR, &reg);
1462         rt2x00_set_field32(&reg, AC3_BASE_CSR_RING_REGISTER,
1463                            entry_priv->desc_dma);
1464         rt2x00mmio_register_write(rt2x00dev, AC3_BASE_CSR, reg);
1465
1466         rt2x00mmio_register_read(rt2x00dev, RX_RING_CSR, &reg);
1467         rt2x00_set_field32(&reg, RX_RING_CSR_RING_SIZE, rt2x00dev->rx->limit);
1468         rt2x00_set_field32(&reg, RX_RING_CSR_RXD_SIZE,
1469                            rt2x00dev->rx->desc_size / 4);
1470         rt2x00_set_field32(&reg, RX_RING_CSR_RXD_WRITEBACK_SIZE, 4);
1471         rt2x00mmio_register_write(rt2x00dev, RX_RING_CSR, reg);
1472
1473         entry_priv = rt2x00dev->rx->entries[0].priv_data;
1474         rt2x00mmio_register_read(rt2x00dev, RX_BASE_CSR, &reg);
1475         rt2x00_set_field32(&reg, RX_BASE_CSR_RING_REGISTER,
1476                            entry_priv->desc_dma);
1477         rt2x00mmio_register_write(rt2x00dev, RX_BASE_CSR, reg);
1478
1479         rt2x00mmio_register_read(rt2x00dev, TX_DMA_DST_CSR, &reg);
1480         rt2x00_set_field32(&reg, TX_DMA_DST_CSR_DEST_AC0, 2);
1481         rt2x00_set_field32(&reg, TX_DMA_DST_CSR_DEST_AC1, 2);
1482         rt2x00_set_field32(&reg, TX_DMA_DST_CSR_DEST_AC2, 2);
1483         rt2x00_set_field32(&reg, TX_DMA_DST_CSR_DEST_AC3, 2);
1484         rt2x00mmio_register_write(rt2x00dev, TX_DMA_DST_CSR, reg);
1485
1486         rt2x00mmio_register_read(rt2x00dev, LOAD_TX_RING_CSR, &reg);
1487         rt2x00_set_field32(&reg, LOAD_TX_RING_CSR_LOAD_TXD_AC0, 1);
1488         rt2x00_set_field32(&reg, LOAD_TX_RING_CSR_LOAD_TXD_AC1, 1);
1489         rt2x00_set_field32(&reg, LOAD_TX_RING_CSR_LOAD_TXD_AC2, 1);
1490         rt2x00_set_field32(&reg, LOAD_TX_RING_CSR_LOAD_TXD_AC3, 1);
1491         rt2x00mmio_register_write(rt2x00dev, LOAD_TX_RING_CSR, reg);
1492
1493         rt2x00mmio_register_read(rt2x00dev, RX_CNTL_CSR, &reg);
1494         rt2x00_set_field32(&reg, RX_CNTL_CSR_LOAD_RXD, 1);
1495         rt2x00mmio_register_write(rt2x00dev, RX_CNTL_CSR, reg);
1496
1497         return 0;
1498 }
1499
1500 static int rt61pci_init_registers(struct rt2x00_dev *rt2x00dev)
1501 {
1502         u32 reg;
1503
1504         rt2x00mmio_register_read(rt2x00dev, TXRX_CSR0, &reg);
1505         rt2x00_set_field32(&reg, TXRX_CSR0_AUTO_TX_SEQ, 1);
1506         rt2x00_set_field32(&reg, TXRX_CSR0_DISABLE_RX, 0);
1507         rt2x00_set_field32(&reg, TXRX_CSR0_TX_WITHOUT_WAITING, 0);
1508         rt2x00mmio_register_write(rt2x00dev, TXRX_CSR0, reg);
1509
1510         rt2x00mmio_register_read(rt2x00dev, TXRX_CSR1, &reg);
1511         rt2x00_set_field32(&reg, TXRX_CSR1_BBP_ID0, 47); /* CCK Signal */
1512         rt2x00_set_field32(&reg, TXRX_CSR1_BBP_ID0_VALID, 1);
1513         rt2x00_set_field32(&reg, TXRX_CSR1_BBP_ID1, 30); /* Rssi */
1514         rt2x00_set_field32(&reg, TXRX_CSR1_BBP_ID1_VALID, 1);
1515         rt2x00_set_field32(&reg, TXRX_CSR1_BBP_ID2, 42); /* OFDM Rate */
1516         rt2x00_set_field32(&reg, TXRX_CSR1_BBP_ID2_VALID, 1);
1517         rt2x00_set_field32(&reg, TXRX_CSR1_BBP_ID3, 30); /* Rssi */
1518         rt2x00_set_field32(&reg, TXRX_CSR1_BBP_ID3_VALID, 1);
1519         rt2x00mmio_register_write(rt2x00dev, TXRX_CSR1, reg);
1520
1521         /*
1522          * CCK TXD BBP registers
1523          */
1524         rt2x00mmio_register_read(rt2x00dev, TXRX_CSR2, &reg);
1525         rt2x00_set_field32(&reg, TXRX_CSR2_BBP_ID0, 13);
1526         rt2x00_set_field32(&reg, TXRX_CSR2_BBP_ID0_VALID, 1);
1527         rt2x00_set_field32(&reg, TXRX_CSR2_BBP_ID1, 12);
1528         rt2x00_set_field32(&reg, TXRX_CSR2_BBP_ID1_VALID, 1);
1529         rt2x00_set_field32(&reg, TXRX_CSR2_BBP_ID2, 11);
1530         rt2x00_set_field32(&reg, TXRX_CSR2_BBP_ID2_VALID, 1);
1531         rt2x00_set_field32(&reg, TXRX_CSR2_BBP_ID3, 10);
1532         rt2x00_set_field32(&reg, TXRX_CSR2_BBP_ID3_VALID, 1);
1533         rt2x00mmio_register_write(rt2x00dev, TXRX_CSR2, reg);
1534
1535         /*
1536          * OFDM TXD BBP registers
1537          */
1538         rt2x00mmio_register_read(rt2x00dev, TXRX_CSR3, &reg);
1539         rt2x00_set_field32(&reg, TXRX_CSR3_BBP_ID0, 7);
1540         rt2x00_set_field32(&reg, TXRX_CSR3_BBP_ID0_VALID, 1);
1541         rt2x00_set_field32(&reg, TXRX_CSR3_BBP_ID1, 6);
1542         rt2x00_set_field32(&reg, TXRX_CSR3_BBP_ID1_VALID, 1);
1543         rt2x00_set_field32(&reg, TXRX_CSR3_BBP_ID2, 5);
1544         rt2x00_set_field32(&reg, TXRX_CSR3_BBP_ID2_VALID, 1);
1545         rt2x00mmio_register_write(rt2x00dev, TXRX_CSR3, reg);
1546
1547         rt2x00mmio_register_read(rt2x00dev, TXRX_CSR7, &reg);
1548         rt2x00_set_field32(&reg, TXRX_CSR7_ACK_CTS_6MBS, 59);
1549         rt2x00_set_field32(&reg, TXRX_CSR7_ACK_CTS_9MBS, 53);
1550         rt2x00_set_field32(&reg, TXRX_CSR7_ACK_CTS_12MBS, 49);
1551         rt2x00_set_field32(&reg, TXRX_CSR7_ACK_CTS_18MBS, 46);
1552         rt2x00mmio_register_write(rt2x00dev, TXRX_CSR7, reg);
1553
1554         rt2x00mmio_register_read(rt2x00dev, TXRX_CSR8, &reg);
1555         rt2x00_set_field32(&reg, TXRX_CSR8_ACK_CTS_24MBS, 44);
1556         rt2x00_set_field32(&reg, TXRX_CSR8_ACK_CTS_36MBS, 42);
1557         rt2x00_set_field32(&reg, TXRX_CSR8_ACK_CTS_48MBS, 42);
1558         rt2x00_set_field32(&reg, TXRX_CSR8_ACK_CTS_54MBS, 42);
1559         rt2x00mmio_register_write(rt2x00dev, TXRX_CSR8, reg);
1560
1561         rt2x00mmio_register_read(rt2x00dev, TXRX_CSR9, &reg);
1562         rt2x00_set_field32(&reg, TXRX_CSR9_BEACON_INTERVAL, 0);
1563         rt2x00_set_field32(&reg, TXRX_CSR9_TSF_TICKING, 0);
1564         rt2x00_set_field32(&reg, TXRX_CSR9_TSF_SYNC, 0);
1565         rt2x00_set_field32(&reg, TXRX_CSR9_TBTT_ENABLE, 0);
1566         rt2x00_set_field32(&reg, TXRX_CSR9_BEACON_GEN, 0);
1567         rt2x00_set_field32(&reg, TXRX_CSR9_TIMESTAMP_COMPENSATE, 0);
1568         rt2x00mmio_register_write(rt2x00dev, TXRX_CSR9, reg);
1569
1570         rt2x00mmio_register_write(rt2x00dev, TXRX_CSR15, 0x0000000f);
1571
1572         rt2x00mmio_register_write(rt2x00dev, MAC_CSR6, 0x00000fff);
1573
1574         rt2x00mmio_register_read(rt2x00dev, MAC_CSR9, &reg);
1575         rt2x00_set_field32(&reg, MAC_CSR9_CW_SELECT, 0);
1576         rt2x00mmio_register_write(rt2x00dev, MAC_CSR9, reg);
1577
1578         rt2x00mmio_register_write(rt2x00dev, MAC_CSR10, 0x0000071c);
1579
1580         if (rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_AWAKE))
1581                 return -EBUSY;
1582
1583         rt2x00mmio_register_write(rt2x00dev, MAC_CSR13, 0x0000e000);
1584
1585         /*
1586          * Invalidate all Shared Keys (SEC_CSR0),
1587          * and clear the Shared key Cipher algorithms (SEC_CSR1 & SEC_CSR5)
1588          */
1589         rt2x00mmio_register_write(rt2x00dev, SEC_CSR0, 0x00000000);
1590         rt2x00mmio_register_write(rt2x00dev, SEC_CSR1, 0x00000000);
1591         rt2x00mmio_register_write(rt2x00dev, SEC_CSR5, 0x00000000);
1592
1593         rt2x00mmio_register_write(rt2x00dev, PHY_CSR1, 0x000023b0);
1594         rt2x00mmio_register_write(rt2x00dev, PHY_CSR5, 0x060a100c);
1595         rt2x00mmio_register_write(rt2x00dev, PHY_CSR6, 0x00080606);
1596         rt2x00mmio_register_write(rt2x00dev, PHY_CSR7, 0x00000a08);
1597
1598         rt2x00mmio_register_write(rt2x00dev, PCI_CFG_CSR, 0x28ca4404);
1599
1600         rt2x00mmio_register_write(rt2x00dev, TEST_MODE_CSR, 0x00000200);
1601
1602         rt2x00mmio_register_write(rt2x00dev, M2H_CMD_DONE_CSR, 0xffffffff);
1603
1604         /*
1605          * Clear all beacons
1606          * For the Beacon base registers we only need to clear
1607          * the first byte since that byte contains the VALID and OWNER
1608          * bits which (when set to 0) will invalidate the entire beacon.
1609          */
1610         rt2x00mmio_register_write(rt2x00dev, HW_BEACON_BASE0, 0);
1611         rt2x00mmio_register_write(rt2x00dev, HW_BEACON_BASE1, 0);
1612         rt2x00mmio_register_write(rt2x00dev, HW_BEACON_BASE2, 0);
1613         rt2x00mmio_register_write(rt2x00dev, HW_BEACON_BASE3, 0);
1614
1615         /*
1616          * We must clear the error counters.
1617          * These registers are cleared on read,
1618          * so we may pass a useless variable to store the value.
1619          */
1620         rt2x00mmio_register_read(rt2x00dev, STA_CSR0, &reg);
1621         rt2x00mmio_register_read(rt2x00dev, STA_CSR1, &reg);
1622         rt2x00mmio_register_read(rt2x00dev, STA_CSR2, &reg);
1623
1624         /*
1625          * Reset MAC and BBP registers.
1626          */
1627         rt2x00mmio_register_read(rt2x00dev, MAC_CSR1, &reg);
1628         rt2x00_set_field32(&reg, MAC_CSR1_SOFT_RESET, 1);
1629         rt2x00_set_field32(&reg, MAC_CSR1_BBP_RESET, 1);
1630         rt2x00mmio_register_write(rt2x00dev, MAC_CSR1, reg);
1631
1632         rt2x00mmio_register_read(rt2x00dev, MAC_CSR1, &reg);
1633         rt2x00_set_field32(&reg, MAC_CSR1_SOFT_RESET, 0);
1634         rt2x00_set_field32(&reg, MAC_CSR1_BBP_RESET, 0);
1635         rt2x00mmio_register_write(rt2x00dev, MAC_CSR1, reg);
1636
1637         rt2x00mmio_register_read(rt2x00dev, MAC_CSR1, &reg);
1638         rt2x00_set_field32(&reg, MAC_CSR1_HOST_READY, 1);
1639         rt2x00mmio_register_write(rt2x00dev, MAC_CSR1, reg);
1640
1641         return 0;
1642 }
1643
1644 static int rt61pci_wait_bbp_ready(struct rt2x00_dev *rt2x00dev)
1645 {
1646         unsigned int i;
1647         u8 value;
1648
1649         for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
1650                 rt61pci_bbp_read(rt2x00dev, 0, &value);
1651                 if ((value != 0xff) && (value != 0x00))
1652                         return 0;
1653                 udelay(REGISTER_BUSY_DELAY);
1654         }
1655
1656         rt2x00_err(rt2x00dev, "BBP register access failed, aborting\n");
1657         return -EACCES;
1658 }
1659
1660 static int rt61pci_init_bbp(struct rt2x00_dev *rt2x00dev)
1661 {
1662         unsigned int i;
1663         u16 eeprom;
1664         u8 reg_id;
1665         u8 value;
1666
1667         if (unlikely(rt61pci_wait_bbp_ready(rt2x00dev)))
1668                 return -EACCES;
1669
1670         rt61pci_bbp_write(rt2x00dev, 3, 0x00);
1671         rt61pci_bbp_write(rt2x00dev, 15, 0x30);
1672         rt61pci_bbp_write(rt2x00dev, 21, 0xc8);
1673         rt61pci_bbp_write(rt2x00dev, 22, 0x38);
1674         rt61pci_bbp_write(rt2x00dev, 23, 0x06);
1675         rt61pci_bbp_write(rt2x00dev, 24, 0xfe);
1676         rt61pci_bbp_write(rt2x00dev, 25, 0x0a);
1677         rt61pci_bbp_write(rt2x00dev, 26, 0x0d);
1678         rt61pci_bbp_write(rt2x00dev, 34, 0x12);
1679         rt61pci_bbp_write(rt2x00dev, 37, 0x07);
1680         rt61pci_bbp_write(rt2x00dev, 39, 0xf8);
1681         rt61pci_bbp_write(rt2x00dev, 41, 0x60);
1682         rt61pci_bbp_write(rt2x00dev, 53, 0x10);
1683         rt61pci_bbp_write(rt2x00dev, 54, 0x18);
1684         rt61pci_bbp_write(rt2x00dev, 60, 0x10);
1685         rt61pci_bbp_write(rt2x00dev, 61, 0x04);
1686         rt61pci_bbp_write(rt2x00dev, 62, 0x04);
1687         rt61pci_bbp_write(rt2x00dev, 75, 0xfe);
1688         rt61pci_bbp_write(rt2x00dev, 86, 0xfe);
1689         rt61pci_bbp_write(rt2x00dev, 88, 0xfe);
1690         rt61pci_bbp_write(rt2x00dev, 90, 0x0f);
1691         rt61pci_bbp_write(rt2x00dev, 99, 0x00);
1692         rt61pci_bbp_write(rt2x00dev, 102, 0x16);
1693         rt61pci_bbp_write(rt2x00dev, 107, 0x04);
1694
1695         for (i = 0; i < EEPROM_BBP_SIZE; i++) {
1696                 rt2x00_eeprom_read(rt2x00dev, EEPROM_BBP_START + i, &eeprom);
1697
1698                 if (eeprom != 0xffff && eeprom != 0x0000) {
1699                         reg_id = rt2x00_get_field16(eeprom, EEPROM_BBP_REG_ID);
1700                         value = rt2x00_get_field16(eeprom, EEPROM_BBP_VALUE);
1701                         rt61pci_bbp_write(rt2x00dev, reg_id, value);
1702                 }
1703         }
1704
1705         return 0;
1706 }
1707
1708 /*
1709  * Device state switch handlers.
1710  */
1711 static void rt61pci_toggle_irq(struct rt2x00_dev *rt2x00dev,
1712                                enum dev_state state)
1713 {
1714         int mask = (state == STATE_RADIO_IRQ_OFF);
1715         u32 reg;
1716         unsigned long flags;
1717
1718         /*
1719          * When interrupts are being enabled, the interrupt registers
1720          * should clear the register to assure a clean state.
1721          */
1722         if (state == STATE_RADIO_IRQ_ON) {
1723                 rt2x00mmio_register_read(rt2x00dev, INT_SOURCE_CSR, &reg);
1724                 rt2x00mmio_register_write(rt2x00dev, INT_SOURCE_CSR, reg);
1725
1726                 rt2x00mmio_register_read(rt2x00dev, MCU_INT_SOURCE_CSR, &reg);
1727                 rt2x00mmio_register_write(rt2x00dev, MCU_INT_SOURCE_CSR, reg);
1728         }
1729
1730         /*
1731          * Only toggle the interrupts bits we are going to use.
1732          * Non-checked interrupt bits are disabled by default.
1733          */
1734         spin_lock_irqsave(&rt2x00dev->irqmask_lock, flags);
1735
1736         rt2x00mmio_register_read(rt2x00dev, INT_MASK_CSR, &reg);
1737         rt2x00_set_field32(&reg, INT_MASK_CSR_TXDONE, mask);
1738         rt2x00_set_field32(&reg, INT_MASK_CSR_RXDONE, mask);
1739         rt2x00_set_field32(&reg, INT_MASK_CSR_BEACON_DONE, mask);
1740         rt2x00_set_field32(&reg, INT_MASK_CSR_ENABLE_MITIGATION, mask);
1741         rt2x00_set_field32(&reg, INT_MASK_CSR_MITIGATION_PERIOD, 0xff);
1742         rt2x00mmio_register_write(rt2x00dev, INT_MASK_CSR, reg);
1743
1744         rt2x00mmio_register_read(rt2x00dev, MCU_INT_MASK_CSR, &reg);
1745         rt2x00_set_field32(&reg, MCU_INT_MASK_CSR_0, mask);
1746         rt2x00_set_field32(&reg, MCU_INT_MASK_CSR_1, mask);
1747         rt2x00_set_field32(&reg, MCU_INT_MASK_CSR_2, mask);
1748         rt2x00_set_field32(&reg, MCU_INT_MASK_CSR_3, mask);
1749         rt2x00_set_field32(&reg, MCU_INT_MASK_CSR_4, mask);
1750         rt2x00_set_field32(&reg, MCU_INT_MASK_CSR_5, mask);
1751         rt2x00_set_field32(&reg, MCU_INT_MASK_CSR_6, mask);
1752         rt2x00_set_field32(&reg, MCU_INT_MASK_CSR_7, mask);
1753         rt2x00_set_field32(&reg, MCU_INT_MASK_CSR_TWAKEUP, mask);
1754         rt2x00mmio_register_write(rt2x00dev, MCU_INT_MASK_CSR, reg);
1755
1756         spin_unlock_irqrestore(&rt2x00dev->irqmask_lock, flags);
1757
1758         if (state == STATE_RADIO_IRQ_OFF) {
1759                 /*
1760                  * Ensure that all tasklets are finished.
1761                  */
1762                 tasklet_kill(&rt2x00dev->txstatus_tasklet);
1763                 tasklet_kill(&rt2x00dev->rxdone_tasklet);
1764                 tasklet_kill(&rt2x00dev->autowake_tasklet);
1765                 tasklet_kill(&rt2x00dev->tbtt_tasklet);
1766         }
1767 }
1768
1769 static int rt61pci_enable_radio(struct rt2x00_dev *rt2x00dev)
1770 {
1771         u32 reg;
1772
1773         /*
1774          * Initialize all registers.
1775          */
1776         if (unlikely(rt61pci_init_queues(rt2x00dev) ||
1777                      rt61pci_init_registers(rt2x00dev) ||
1778                      rt61pci_init_bbp(rt2x00dev)))
1779                 return -EIO;
1780
1781         /*
1782          * Enable RX.
1783          */
1784         rt2x00mmio_register_read(rt2x00dev, RX_CNTL_CSR, &reg);
1785         rt2x00_set_field32(&reg, RX_CNTL_CSR_ENABLE_RX_DMA, 1);
1786         rt2x00mmio_register_write(rt2x00dev, RX_CNTL_CSR, reg);
1787
1788         return 0;
1789 }
1790
1791 static void rt61pci_disable_radio(struct rt2x00_dev *rt2x00dev)
1792 {
1793         /*
1794          * Disable power
1795          */
1796         rt2x00mmio_register_write(rt2x00dev, MAC_CSR10, 0x00001818);
1797 }
1798
1799 static int rt61pci_set_state(struct rt2x00_dev *rt2x00dev, enum dev_state state)
1800 {
1801         u32 reg, reg2;
1802         unsigned int i;
1803         char put_to_sleep;
1804
1805         put_to_sleep = (state != STATE_AWAKE);
1806
1807         rt2x00mmio_register_read(rt2x00dev, MAC_CSR12, &reg);
1808         rt2x00_set_field32(&reg, MAC_CSR12_FORCE_WAKEUP, !put_to_sleep);
1809         rt2x00_set_field32(&reg, MAC_CSR12_PUT_TO_SLEEP, put_to_sleep);
1810         rt2x00mmio_register_write(rt2x00dev, MAC_CSR12, reg);
1811
1812         /*
1813          * Device is not guaranteed to be in the requested state yet.
1814          * We must wait until the register indicates that the
1815          * device has entered the correct state.
1816          */
1817         for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
1818                 rt2x00mmio_register_read(rt2x00dev, MAC_CSR12, &reg2);
1819                 state = rt2x00_get_field32(reg2, MAC_CSR12_BBP_CURRENT_STATE);
1820                 if (state == !put_to_sleep)
1821                         return 0;
1822                 rt2x00mmio_register_write(rt2x00dev, MAC_CSR12, reg);
1823                 msleep(10);
1824         }
1825
1826         return -EBUSY;
1827 }
1828
1829 static int rt61pci_set_device_state(struct rt2x00_dev *rt2x00dev,
1830                                     enum dev_state state)
1831 {
1832         int retval = 0;
1833
1834         switch (state) {
1835         case STATE_RADIO_ON:
1836                 retval = rt61pci_enable_radio(rt2x00dev);
1837                 break;
1838         case STATE_RADIO_OFF:
1839                 rt61pci_disable_radio(rt2x00dev);
1840                 break;
1841         case STATE_RADIO_IRQ_ON:
1842         case STATE_RADIO_IRQ_OFF:
1843                 rt61pci_toggle_irq(rt2x00dev, state);
1844                 break;
1845         case STATE_DEEP_SLEEP:
1846         case STATE_SLEEP:
1847         case STATE_STANDBY:
1848         case STATE_AWAKE:
1849                 retval = rt61pci_set_state(rt2x00dev, state);
1850                 break;
1851         default:
1852                 retval = -ENOTSUPP;
1853                 break;
1854         }
1855
1856         if (unlikely(retval))
1857                 rt2x00_err(rt2x00dev, "Device failed to enter state %d (%d)\n",
1858                            state, retval);
1859
1860         return retval;
1861 }
1862
1863 /*
1864  * TX descriptor initialization
1865  */
1866 static void rt61pci_write_tx_desc(struct queue_entry *entry,
1867                                   struct txentry_desc *txdesc)
1868 {
1869         struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb);
1870         struct queue_entry_priv_mmio *entry_priv = entry->priv_data;
1871         __le32 *txd = entry_priv->desc;
1872         u32 word;
1873
1874         /*
1875          * Start writing the descriptor words.
1876          */
1877         rt2x00_desc_read(txd, 1, &word);
1878         rt2x00_set_field32(&word, TXD_W1_HOST_Q_ID, entry->queue->qid);
1879         rt2x00_set_field32(&word, TXD_W1_AIFSN, entry->queue->aifs);
1880         rt2x00_set_field32(&word, TXD_W1_CWMIN, entry->queue->cw_min);
1881         rt2x00_set_field32(&word, TXD_W1_CWMAX, entry->queue->cw_max);
1882         rt2x00_set_field32(&word, TXD_W1_IV_OFFSET, txdesc->iv_offset);
1883         rt2x00_set_field32(&word, TXD_W1_HW_SEQUENCE,
1884                            test_bit(ENTRY_TXD_GENERATE_SEQ, &txdesc->flags));
1885         rt2x00_set_field32(&word, TXD_W1_BUFFER_COUNT, 1);
1886         rt2x00_desc_write(txd, 1, word);
1887
1888         rt2x00_desc_read(txd, 2, &word);
1889         rt2x00_set_field32(&word, TXD_W2_PLCP_SIGNAL, txdesc->u.plcp.signal);
1890         rt2x00_set_field32(&word, TXD_W2_PLCP_SERVICE, txdesc->u.plcp.service);
1891         rt2x00_set_field32(&word, TXD_W2_PLCP_LENGTH_LOW,
1892                            txdesc->u.plcp.length_low);
1893         rt2x00_set_field32(&word, TXD_W2_PLCP_LENGTH_HIGH,
1894                            txdesc->u.plcp.length_high);
1895         rt2x00_desc_write(txd, 2, word);
1896
1897         if (test_bit(ENTRY_TXD_ENCRYPT, &txdesc->flags)) {
1898                 _rt2x00_desc_write(txd, 3, skbdesc->iv[0]);
1899                 _rt2x00_desc_write(txd, 4, skbdesc->iv[1]);
1900         }
1901
1902         rt2x00_desc_read(txd, 5, &word);
1903         rt2x00_set_field32(&word, TXD_W5_PID_TYPE, entry->queue->qid);
1904         rt2x00_set_field32(&word, TXD_W5_PID_SUBTYPE,
1905                            skbdesc->entry->entry_idx);
1906         rt2x00_set_field32(&word, TXD_W5_TX_POWER,
1907                            TXPOWER_TO_DEV(entry->queue->rt2x00dev->tx_power));
1908         rt2x00_set_field32(&word, TXD_W5_WAITING_DMA_DONE_INT, 1);
1909         rt2x00_desc_write(txd, 5, word);
1910
1911         if (entry->queue->qid != QID_BEACON) {
1912                 rt2x00_desc_read(txd, 6, &word);
1913                 rt2x00_set_field32(&word, TXD_W6_BUFFER_PHYSICAL_ADDRESS,
1914                                    skbdesc->skb_dma);
1915                 rt2x00_desc_write(txd, 6, word);
1916
1917                 rt2x00_desc_read(txd, 11, &word);
1918                 rt2x00_set_field32(&word, TXD_W11_BUFFER_LENGTH0,
1919                                    txdesc->length);
1920                 rt2x00_desc_write(txd, 11, word);
1921         }
1922
1923         /*
1924          * Writing TXD word 0 must the last to prevent a race condition with
1925          * the device, whereby the device may take hold of the TXD before we
1926          * finished updating it.
1927          */
1928         rt2x00_desc_read(txd, 0, &word);
1929         rt2x00_set_field32(&word, TXD_W0_OWNER_NIC, 1);
1930         rt2x00_set_field32(&word, TXD_W0_VALID, 1);
1931         rt2x00_set_field32(&word, TXD_W0_MORE_FRAG,
1932                            test_bit(ENTRY_TXD_MORE_FRAG, &txdesc->flags));
1933         rt2x00_set_field32(&word, TXD_W0_ACK,
1934                            test_bit(ENTRY_TXD_ACK, &txdesc->flags));
1935         rt2x00_set_field32(&word, TXD_W0_TIMESTAMP,
1936                            test_bit(ENTRY_TXD_REQ_TIMESTAMP, &txdesc->flags));
1937         rt2x00_set_field32(&word, TXD_W0_OFDM,
1938                            (txdesc->rate_mode == RATE_MODE_OFDM));
1939         rt2x00_set_field32(&word, TXD_W0_IFS, txdesc->u.plcp.ifs);
1940         rt2x00_set_field32(&word, TXD_W0_RETRY_MODE,
1941                            test_bit(ENTRY_TXD_RETRY_MODE, &txdesc->flags));
1942         rt2x00_set_field32(&word, TXD_W0_TKIP_MIC,
1943                            test_bit(ENTRY_TXD_ENCRYPT_MMIC, &txdesc->flags));
1944         rt2x00_set_field32(&word, TXD_W0_KEY_TABLE,
1945                            test_bit(ENTRY_TXD_ENCRYPT_PAIRWISE, &txdesc->flags));
1946         rt2x00_set_field32(&word, TXD_W0_KEY_INDEX, txdesc->key_idx);
1947         rt2x00_set_field32(&word, TXD_W0_DATABYTE_COUNT, txdesc->length);
1948         rt2x00_set_field32(&word, TXD_W0_BURST,
1949                            test_bit(ENTRY_TXD_BURST, &txdesc->flags));
1950         rt2x00_set_field32(&word, TXD_W0_CIPHER_ALG, txdesc->cipher);
1951         rt2x00_desc_write(txd, 0, word);
1952
1953         /*
1954          * Register descriptor details in skb frame descriptor.
1955          */
1956         skbdesc->desc = txd;
1957         skbdesc->desc_len = (entry->queue->qid == QID_BEACON) ? TXINFO_SIZE :
1958                             TXD_DESC_SIZE;
1959 }
1960
1961 /*
1962  * TX data initialization
1963  */
1964 static void rt61pci_write_beacon(struct queue_entry *entry,
1965                                  struct txentry_desc *txdesc)
1966 {
1967         struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
1968         struct queue_entry_priv_mmio *entry_priv = entry->priv_data;
1969         unsigned int beacon_base;
1970         unsigned int padding_len;
1971         u32 orig_reg, reg;
1972
1973         /*
1974          * Disable beaconing while we are reloading the beacon data,
1975          * otherwise we might be sending out invalid data.
1976          */
1977         rt2x00mmio_register_read(rt2x00dev, TXRX_CSR9, &reg);
1978         orig_reg = reg;
1979         rt2x00_set_field32(&reg, TXRX_CSR9_BEACON_GEN, 0);
1980         rt2x00mmio_register_write(rt2x00dev, TXRX_CSR9, reg);
1981
1982         /*
1983          * Write the TX descriptor for the beacon.
1984          */
1985         rt61pci_write_tx_desc(entry, txdesc);
1986
1987         /*
1988          * Dump beacon to userspace through debugfs.
1989          */
1990         rt2x00debug_dump_frame(rt2x00dev, DUMP_FRAME_BEACON, entry->skb);
1991
1992         /*
1993          * Write entire beacon with descriptor and padding to register.
1994          */
1995         padding_len = roundup(entry->skb->len, 4) - entry->skb->len;
1996         if (padding_len && skb_pad(entry->skb, padding_len)) {
1997                 rt2x00_err(rt2x00dev, "Failure padding beacon, aborting\n");
1998                 /* skb freed by skb_pad() on failure */
1999                 entry->skb = NULL;
2000                 rt2x00mmio_register_write(rt2x00dev, TXRX_CSR9, orig_reg);
2001                 return;
2002         }
2003
2004         beacon_base = HW_BEACON_OFFSET(entry->entry_idx);
2005         rt2x00mmio_register_multiwrite(rt2x00dev, beacon_base,
2006                                        entry_priv->desc, TXINFO_SIZE);
2007         rt2x00mmio_register_multiwrite(rt2x00dev, beacon_base + TXINFO_SIZE,
2008                                        entry->skb->data,
2009                                        entry->skb->len + padding_len);
2010
2011         /*
2012          * Enable beaconing again.
2013          *
2014          * For Wi-Fi faily generated beacons between participating
2015          * stations. Set TBTT phase adaptive adjustment step to 8us.
2016          */
2017         rt2x00mmio_register_write(rt2x00dev, TXRX_CSR10, 0x00001008);
2018
2019         rt2x00_set_field32(&reg, TXRX_CSR9_BEACON_GEN, 1);
2020         rt2x00mmio_register_write(rt2x00dev, TXRX_CSR9, reg);
2021
2022         /*
2023          * Clean up beacon skb.
2024          */
2025         dev_kfree_skb_any(entry->skb);
2026         entry->skb = NULL;
2027 }
2028
2029 static void rt61pci_clear_beacon(struct queue_entry *entry)
2030 {
2031         struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
2032         u32 orig_reg, reg;
2033
2034         /*
2035          * Disable beaconing while we are reloading the beacon data,
2036          * otherwise we might be sending out invalid data.
2037          */
2038         rt2x00mmio_register_read(rt2x00dev, TXRX_CSR9, &orig_reg);
2039         reg = orig_reg;
2040         rt2x00_set_field32(&reg, TXRX_CSR9_BEACON_GEN, 0);
2041         rt2x00mmio_register_write(rt2x00dev, TXRX_CSR9, reg);
2042
2043         /*
2044          * Clear beacon.
2045          */
2046         rt2x00mmio_register_write(rt2x00dev,
2047                                   HW_BEACON_OFFSET(entry->entry_idx), 0);
2048
2049         /*
2050          * Restore global beaconing state.
2051          */
2052         rt2x00mmio_register_write(rt2x00dev, TXRX_CSR9, orig_reg);
2053 }
2054
2055 /*
2056  * RX control handlers
2057  */
2058 static int rt61pci_agc_to_rssi(struct rt2x00_dev *rt2x00dev, int rxd_w1)
2059 {
2060         u8 offset = rt2x00dev->lna_gain;
2061         u8 lna;
2062
2063         lna = rt2x00_get_field32(rxd_w1, RXD_W1_RSSI_LNA);
2064         switch (lna) {
2065         case 3:
2066                 offset += 90;
2067                 break;
2068         case 2:
2069                 offset += 74;
2070                 break;
2071         case 1:
2072                 offset += 64;
2073                 break;
2074         default:
2075                 return 0;
2076         }
2077
2078         if (rt2x00dev->curr_band == IEEE80211_BAND_5GHZ) {
2079                 if (lna == 3 || lna == 2)
2080                         offset += 10;
2081         }
2082
2083         return rt2x00_get_field32(rxd_w1, RXD_W1_RSSI_AGC) * 2 - offset;
2084 }
2085
2086 static void rt61pci_fill_rxdone(struct queue_entry *entry,
2087                                 struct rxdone_entry_desc *rxdesc)
2088 {
2089         struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
2090         struct queue_entry_priv_mmio *entry_priv = entry->priv_data;
2091         u32 word0;
2092         u32 word1;
2093
2094         rt2x00_desc_read(entry_priv->desc, 0, &word0);
2095         rt2x00_desc_read(entry_priv->desc, 1, &word1);
2096
2097         if (rt2x00_get_field32(word0, RXD_W0_CRC_ERROR))
2098                 rxdesc->flags |= RX_FLAG_FAILED_FCS_CRC;
2099
2100         rxdesc->cipher = rt2x00_get_field32(word0, RXD_W0_CIPHER_ALG);
2101         rxdesc->cipher_status = rt2x00_get_field32(word0, RXD_W0_CIPHER_ERROR);
2102
2103         if (rxdesc->cipher != CIPHER_NONE) {
2104                 _rt2x00_desc_read(entry_priv->desc, 2, &rxdesc->iv[0]);
2105                 _rt2x00_desc_read(entry_priv->desc, 3, &rxdesc->iv[1]);
2106                 rxdesc->dev_flags |= RXDONE_CRYPTO_IV;
2107
2108                 _rt2x00_desc_read(entry_priv->desc, 4, &rxdesc->icv);
2109                 rxdesc->dev_flags |= RXDONE_CRYPTO_ICV;
2110
2111                 /*
2112                  * Hardware has stripped IV/EIV data from 802.11 frame during
2113                  * decryption. It has provided the data separately but rt2x00lib
2114                  * should decide if it should be reinserted.
2115                  */
2116                 rxdesc->flags |= RX_FLAG_IV_STRIPPED;
2117
2118                 /*
2119                  * The hardware has already checked the Michael Mic and has
2120                  * stripped it from the frame. Signal this to mac80211.
2121                  */
2122                 rxdesc->flags |= RX_FLAG_MMIC_STRIPPED;
2123
2124                 if (rxdesc->cipher_status == RX_CRYPTO_SUCCESS)
2125                         rxdesc->flags |= RX_FLAG_DECRYPTED;
2126                 else if (rxdesc->cipher_status == RX_CRYPTO_FAIL_MIC)
2127                         rxdesc->flags |= RX_FLAG_MMIC_ERROR;
2128         }
2129
2130         /*
2131          * Obtain the status about this packet.
2132          * When frame was received with an OFDM bitrate,
2133          * the signal is the PLCP value. If it was received with
2134          * a CCK bitrate the signal is the rate in 100kbit/s.
2135          */
2136         rxdesc->signal = rt2x00_get_field32(word1, RXD_W1_SIGNAL);
2137         rxdesc->rssi = rt61pci_agc_to_rssi(rt2x00dev, word1);
2138         rxdesc->size = rt2x00_get_field32(word0, RXD_W0_DATABYTE_COUNT);
2139
2140         if (rt2x00_get_field32(word0, RXD_W0_OFDM))
2141                 rxdesc->dev_flags |= RXDONE_SIGNAL_PLCP;
2142         else
2143                 rxdesc->dev_flags |= RXDONE_SIGNAL_BITRATE;
2144         if (rt2x00_get_field32(word0, RXD_W0_MY_BSS))
2145                 rxdesc->dev_flags |= RXDONE_MY_BSS;
2146 }
2147
2148 /*
2149  * Interrupt functions.
2150  */
2151 static void rt61pci_txdone(struct rt2x00_dev *rt2x00dev)
2152 {
2153         struct data_queue *queue;
2154         struct queue_entry *entry;
2155         struct queue_entry *entry_done;
2156         struct queue_entry_priv_mmio *entry_priv;
2157         struct txdone_entry_desc txdesc;
2158         u32 word;
2159         u32 reg;
2160         int type;
2161         int index;
2162         int i;
2163
2164         /*
2165          * TX_STA_FIFO is a stack of X entries, hence read TX_STA_FIFO
2166          * at most X times and also stop processing once the TX_STA_FIFO_VALID
2167          * flag is not set anymore.
2168          *
2169          * The legacy drivers use X=TX_RING_SIZE but state in a comment
2170          * that the TX_STA_FIFO stack has a size of 16. We stick to our
2171          * tx ring size for now.
2172          */
2173         for (i = 0; i < rt2x00dev->tx->limit; i++) {
2174                 rt2x00mmio_register_read(rt2x00dev, STA_CSR4, &reg);
2175                 if (!rt2x00_get_field32(reg, STA_CSR4_VALID))
2176                         break;
2177
2178                 /*
2179                  * Skip this entry when it contains an invalid
2180                  * queue identication number.
2181                  */
2182                 type = rt2x00_get_field32(reg, STA_CSR4_PID_TYPE);
2183                 queue = rt2x00queue_get_tx_queue(rt2x00dev, type);
2184                 if (unlikely(!queue))
2185                         continue;
2186
2187                 /*
2188                  * Skip this entry when it contains an invalid
2189                  * index number.
2190                  */
2191                 index = rt2x00_get_field32(reg, STA_CSR4_PID_SUBTYPE);
2192                 if (unlikely(index >= queue->limit))
2193                         continue;
2194
2195                 entry = &queue->entries[index];
2196                 entry_priv = entry->priv_data;
2197                 rt2x00_desc_read(entry_priv->desc, 0, &word);
2198
2199                 if (rt2x00_get_field32(word, TXD_W0_OWNER_NIC) ||
2200                     !rt2x00_get_field32(word, TXD_W0_VALID))
2201                         return;
2202
2203                 entry_done = rt2x00queue_get_entry(queue, Q_INDEX_DONE);
2204                 while (entry != entry_done) {
2205                         /* Catch up.
2206                          * Just report any entries we missed as failed.
2207                          */
2208                         rt2x00_warn(rt2x00dev, "TX status report missed for entry %d\n",
2209                                     entry_done->entry_idx);
2210
2211                         rt2x00lib_txdone_noinfo(entry_done, TXDONE_UNKNOWN);
2212                         entry_done = rt2x00queue_get_entry(queue, Q_INDEX_DONE);
2213                 }
2214
2215                 /*
2216                  * Obtain the status about this packet.
2217                  */
2218                 txdesc.flags = 0;
2219                 switch (rt2x00_get_field32(reg, STA_CSR4_TX_RESULT)) {
2220                 case 0: /* Success, maybe with retry */
2221                         __set_bit(TXDONE_SUCCESS, &txdesc.flags);
2222                         break;
2223                 case 6: /* Failure, excessive retries */
2224                         __set_bit(TXDONE_EXCESSIVE_RETRY, &txdesc.flags);
2225                         /* Don't break, this is a failed frame! */
2226                 default: /* Failure */
2227                         __set_bit(TXDONE_FAILURE, &txdesc.flags);
2228                 }
2229                 txdesc.retry = rt2x00_get_field32(reg, STA_CSR4_RETRY_COUNT);
2230
2231                 /*
2232                  * the frame was retried at least once
2233                  * -> hw used fallback rates
2234                  */
2235                 if (txdesc.retry)
2236                         __set_bit(TXDONE_FALLBACK, &txdesc.flags);
2237
2238                 rt2x00lib_txdone(entry, &txdesc);
2239         }
2240 }
2241
2242 static void rt61pci_wakeup(struct rt2x00_dev *rt2x00dev)
2243 {
2244         struct rt2x00lib_conf libconf = { .conf = &rt2x00dev->hw->conf };
2245
2246         rt61pci_config(rt2x00dev, &libconf, IEEE80211_CONF_CHANGE_PS);
2247 }
2248
2249 static inline void rt61pci_enable_interrupt(struct rt2x00_dev *rt2x00dev,
2250                                             struct rt2x00_field32 irq_field)
2251 {
2252         u32 reg;
2253
2254         /*
2255          * Enable a single interrupt. The interrupt mask register
2256          * access needs locking.
2257          */
2258         spin_lock_irq(&rt2x00dev->irqmask_lock);
2259
2260         rt2x00mmio_register_read(rt2x00dev, INT_MASK_CSR, &reg);
2261         rt2x00_set_field32(&reg, irq_field, 0);
2262         rt2x00mmio_register_write(rt2x00dev, INT_MASK_CSR, reg);
2263
2264         spin_unlock_irq(&rt2x00dev->irqmask_lock);
2265 }
2266
2267 static void rt61pci_enable_mcu_interrupt(struct rt2x00_dev *rt2x00dev,
2268                                          struct rt2x00_field32 irq_field)
2269 {
2270         u32 reg;
2271
2272         /*
2273          * Enable a single MCU interrupt. The interrupt mask register
2274          * access needs locking.
2275          */
2276         spin_lock_irq(&rt2x00dev->irqmask_lock);
2277
2278         rt2x00mmio_register_read(rt2x00dev, MCU_INT_MASK_CSR, &reg);
2279         rt2x00_set_field32(&reg, irq_field, 0);
2280         rt2x00mmio_register_write(rt2x00dev, MCU_INT_MASK_CSR, reg);
2281
2282         spin_unlock_irq(&rt2x00dev->irqmask_lock);
2283 }
2284
2285 static void rt61pci_txstatus_tasklet(unsigned long data)
2286 {
2287         struct rt2x00_dev *rt2x00dev = (struct rt2x00_dev *)data;
2288         rt61pci_txdone(rt2x00dev);
2289         if (test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
2290                 rt61pci_enable_interrupt(rt2x00dev, INT_MASK_CSR_TXDONE);
2291 }
2292
2293 static void rt61pci_tbtt_tasklet(unsigned long data)
2294 {
2295         struct rt2x00_dev *rt2x00dev = (struct rt2x00_dev *)data;
2296         rt2x00lib_beacondone(rt2x00dev);
2297         if (test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
2298                 rt61pci_enable_interrupt(rt2x00dev, INT_MASK_CSR_BEACON_DONE);
2299 }
2300
2301 static void rt61pci_rxdone_tasklet(unsigned long data)
2302 {
2303         struct rt2x00_dev *rt2x00dev = (struct rt2x00_dev *)data;
2304         if (rt2x00mmio_rxdone(rt2x00dev))
2305                 tasklet_schedule(&rt2x00dev->rxdone_tasklet);
2306         else if (test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
2307                 rt61pci_enable_interrupt(rt2x00dev, INT_MASK_CSR_RXDONE);
2308 }
2309
2310 static void rt61pci_autowake_tasklet(unsigned long data)
2311 {
2312         struct rt2x00_dev *rt2x00dev = (struct rt2x00_dev *)data;
2313         rt61pci_wakeup(rt2x00dev);
2314         rt2x00mmio_register_write(rt2x00dev,
2315                                   M2H_CMD_DONE_CSR, 0xffffffff);
2316         if (test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
2317                 rt61pci_enable_mcu_interrupt(rt2x00dev, MCU_INT_MASK_CSR_TWAKEUP);
2318 }
2319
2320 static irqreturn_t rt61pci_interrupt(int irq, void *dev_instance)
2321 {
2322         struct rt2x00_dev *rt2x00dev = dev_instance;
2323         u32 reg_mcu, mask_mcu;
2324         u32 reg, mask;
2325
2326         /*
2327          * Get the interrupt sources & saved to local variable.
2328          * Write register value back to clear pending interrupts.
2329          */
2330         rt2x00mmio_register_read(rt2x00dev, MCU_INT_SOURCE_CSR, &reg_mcu);
2331         rt2x00mmio_register_write(rt2x00dev, MCU_INT_SOURCE_CSR, reg_mcu);
2332
2333         rt2x00mmio_register_read(rt2x00dev, INT_SOURCE_CSR, &reg);
2334         rt2x00mmio_register_write(rt2x00dev, INT_SOURCE_CSR, reg);
2335
2336         if (!reg && !reg_mcu)
2337                 return IRQ_NONE;
2338
2339         if (!test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
2340                 return IRQ_HANDLED;
2341
2342         /*
2343          * Schedule tasklets for interrupt handling.
2344          */
2345         if (rt2x00_get_field32(reg, INT_SOURCE_CSR_RXDONE))
2346                 tasklet_schedule(&rt2x00dev->rxdone_tasklet);
2347
2348         if (rt2x00_get_field32(reg, INT_SOURCE_CSR_TXDONE))
2349                 tasklet_schedule(&rt2x00dev->txstatus_tasklet);
2350
2351         if (rt2x00_get_field32(reg, INT_SOURCE_CSR_BEACON_DONE))
2352                 tasklet_hi_schedule(&rt2x00dev->tbtt_tasklet);
2353
2354         if (rt2x00_get_field32(reg_mcu, MCU_INT_SOURCE_CSR_TWAKEUP))
2355                 tasklet_schedule(&rt2x00dev->autowake_tasklet);
2356
2357         /*
2358          * Since INT_MASK_CSR and INT_SOURCE_CSR use the same bits
2359          * for interrupts and interrupt masks we can just use the value of
2360          * INT_SOURCE_CSR to create the interrupt mask.
2361          */
2362         mask = reg;
2363         mask_mcu = reg_mcu;
2364
2365         /*
2366          * Disable all interrupts for which a tasklet was scheduled right now,
2367          * the tasklet will reenable the appropriate interrupts.
2368          */
2369         spin_lock(&rt2x00dev->irqmask_lock);
2370
2371         rt2x00mmio_register_read(rt2x00dev, INT_MASK_CSR, &reg);
2372         reg |= mask;
2373         rt2x00mmio_register_write(rt2x00dev, INT_MASK_CSR, reg);
2374
2375         rt2x00mmio_register_read(rt2x00dev, MCU_INT_MASK_CSR, &reg);
2376         reg |= mask_mcu;
2377         rt2x00mmio_register_write(rt2x00dev, MCU_INT_MASK_CSR, reg);
2378
2379         spin_unlock(&rt2x00dev->irqmask_lock);
2380
2381         return IRQ_HANDLED;
2382 }
2383
2384 /*
2385  * Device probe functions.
2386  */
2387 static int rt61pci_validate_eeprom(struct rt2x00_dev *rt2x00dev)
2388 {
2389         struct eeprom_93cx6 eeprom;
2390         u32 reg;
2391         u16 word;
2392         u8 *mac;
2393         s8 value;
2394
2395         rt2x00mmio_register_read(rt2x00dev, E2PROM_CSR, &reg);
2396
2397         eeprom.data = rt2x00dev;
2398         eeprom.register_read = rt61pci_eepromregister_read;
2399         eeprom.register_write = rt61pci_eepromregister_write;
2400         eeprom.width = rt2x00_get_field32(reg, E2PROM_CSR_TYPE_93C46) ?
2401             PCI_EEPROM_WIDTH_93C46 : PCI_EEPROM_WIDTH_93C66;
2402         eeprom.reg_data_in = 0;
2403         eeprom.reg_data_out = 0;
2404         eeprom.reg_data_clock = 0;
2405         eeprom.reg_chip_select = 0;
2406
2407         eeprom_93cx6_multiread(&eeprom, EEPROM_BASE, rt2x00dev->eeprom,
2408                                EEPROM_SIZE / sizeof(u16));
2409
2410         /*
2411          * Start validation of the data that has been read.
2412          */
2413         mac = rt2x00_eeprom_addr(rt2x00dev, EEPROM_MAC_ADDR_0);
2414         if (!is_valid_ether_addr(mac)) {
2415                 eth_random_addr(mac);
2416                 rt2x00_eeprom_dbg(rt2x00dev, "MAC: %pM\n", mac);
2417         }
2418
2419         rt2x00_eeprom_read(rt2x00dev, EEPROM_ANTENNA, &word);
2420         if (word == 0xffff) {
2421                 rt2x00_set_field16(&word, EEPROM_ANTENNA_NUM, 2);
2422                 rt2x00_set_field16(&word, EEPROM_ANTENNA_TX_DEFAULT,
2423                                    ANTENNA_B);
2424                 rt2x00_set_field16(&word, EEPROM_ANTENNA_RX_DEFAULT,
2425                                    ANTENNA_B);
2426                 rt2x00_set_field16(&word, EEPROM_ANTENNA_FRAME_TYPE, 0);
2427                 rt2x00_set_field16(&word, EEPROM_ANTENNA_DYN_TXAGC, 0);
2428                 rt2x00_set_field16(&word, EEPROM_ANTENNA_HARDWARE_RADIO, 0);
2429                 rt2x00_set_field16(&word, EEPROM_ANTENNA_RF_TYPE, RF5225);
2430                 rt2x00_eeprom_write(rt2x00dev, EEPROM_ANTENNA, word);
2431                 rt2x00_eeprom_dbg(rt2x00dev, "Antenna: 0x%04x\n", word);
2432         }
2433
2434         rt2x00_eeprom_read(rt2x00dev, EEPROM_NIC, &word);
2435         if (word == 0xffff) {
2436                 rt2x00_set_field16(&word, EEPROM_NIC_ENABLE_DIVERSITY, 0);
2437                 rt2x00_set_field16(&word, EEPROM_NIC_TX_DIVERSITY, 0);
2438                 rt2x00_set_field16(&word, EEPROM_NIC_RX_FIXED, 0);
2439                 rt2x00_set_field16(&word, EEPROM_NIC_TX_FIXED, 0);
2440                 rt2x00_set_field16(&word, EEPROM_NIC_EXTERNAL_LNA_BG, 0);
2441                 rt2x00_set_field16(&word, EEPROM_NIC_CARDBUS_ACCEL, 0);
2442                 rt2x00_set_field16(&word, EEPROM_NIC_EXTERNAL_LNA_A, 0);
2443                 rt2x00_eeprom_write(rt2x00dev, EEPROM_NIC, word);
2444                 rt2x00_eeprom_dbg(rt2x00dev, "NIC: 0x%04x\n", word);
2445         }
2446
2447         rt2x00_eeprom_read(rt2x00dev, EEPROM_LED, &word);
2448         if (word == 0xffff) {
2449                 rt2x00_set_field16(&word, EEPROM_LED_LED_MODE,
2450                                    LED_MODE_DEFAULT);
2451                 rt2x00_eeprom_write(rt2x00dev, EEPROM_LED, word);
2452                 rt2x00_eeprom_dbg(rt2x00dev, "Led: 0x%04x\n", word);
2453         }
2454
2455         rt2x00_eeprom_read(rt2x00dev, EEPROM_FREQ, &word);
2456         if (word == 0xffff) {
2457                 rt2x00_set_field16(&word, EEPROM_FREQ_OFFSET, 0);
2458                 rt2x00_set_field16(&word, EEPROM_FREQ_SEQ, 0);
2459                 rt2x00_eeprom_write(rt2x00dev, EEPROM_FREQ, word);
2460                 rt2x00_eeprom_dbg(rt2x00dev, "Freq: 0x%04x\n", word);
2461         }
2462
2463         rt2x00_eeprom_read(rt2x00dev, EEPROM_RSSI_OFFSET_BG, &word);
2464         if (word == 0xffff) {
2465                 rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_BG_1, 0);
2466                 rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_BG_2, 0);
2467                 rt2x00_eeprom_write(rt2x00dev, EEPROM_RSSI_OFFSET_BG, word);
2468                 rt2x00_eeprom_dbg(rt2x00dev, "RSSI OFFSET BG: 0x%04x\n", word);
2469         } else {
2470                 value = rt2x00_get_field16(word, EEPROM_RSSI_OFFSET_BG_1);
2471                 if (value < -10 || value > 10)
2472                         rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_BG_1, 0);
2473                 value = rt2x00_get_field16(word, EEPROM_RSSI_OFFSET_BG_2);
2474                 if (value < -10 || value > 10)
2475                         rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_BG_2, 0);
2476                 rt2x00_eeprom_write(rt2x00dev, EEPROM_RSSI_OFFSET_BG, word);
2477         }
2478
2479         rt2x00_eeprom_read(rt2x00dev, EEPROM_RSSI_OFFSET_A, &word);
2480         if (word == 0xffff) {
2481                 rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_A_1, 0);
2482                 rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_A_2, 0);
2483                 rt2x00_eeprom_write(rt2x00dev, EEPROM_RSSI_OFFSET_A, word);
2484                 rt2x00_eeprom_dbg(rt2x00dev, "RSSI OFFSET A: 0x%04x\n", word);
2485         } else {
2486                 value = rt2x00_get_field16(word, EEPROM_RSSI_OFFSET_A_1);
2487                 if (value < -10 || value > 10)
2488                         rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_A_1, 0);
2489                 value = rt2x00_get_field16(word, EEPROM_RSSI_OFFSET_A_2);
2490                 if (value < -10 || value > 10)
2491                         rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_A_2, 0);
2492                 rt2x00_eeprom_write(rt2x00dev, EEPROM_RSSI_OFFSET_A, word);
2493         }
2494
2495         return 0;
2496 }
2497
2498 static int rt61pci_init_eeprom(struct rt2x00_dev *rt2x00dev)
2499 {
2500         u32 reg;
2501         u16 value;
2502         u16 eeprom;
2503
2504         /*
2505          * Read EEPROM word for configuration.
2506          */
2507         rt2x00_eeprom_read(rt2x00dev, EEPROM_ANTENNA, &eeprom);
2508
2509         /*
2510          * Identify RF chipset.
2511          */
2512         value = rt2x00_get_field16(eeprom, EEPROM_ANTENNA_RF_TYPE);
2513         rt2x00mmio_register_read(rt2x00dev, MAC_CSR0, &reg);
2514         rt2x00_set_chip(rt2x00dev, rt2x00_get_field32(reg, MAC_CSR0_CHIPSET),
2515                         value, rt2x00_get_field32(reg, MAC_CSR0_REVISION));
2516
2517         if (!rt2x00_rf(rt2x00dev, RF5225) &&
2518             !rt2x00_rf(rt2x00dev, RF5325) &&
2519             !rt2x00_rf(rt2x00dev, RF2527) &&
2520             !rt2x00_rf(rt2x00dev, RF2529)) {
2521                 rt2x00_err(rt2x00dev, "Invalid RF chipset detected\n");
2522                 return -ENODEV;
2523         }
2524
2525         /*
2526          * Determine number of antennas.
2527          */
2528         if (rt2x00_get_field16(eeprom, EEPROM_ANTENNA_NUM) == 2)
2529                 __set_bit(CAPABILITY_DOUBLE_ANTENNA, &rt2x00dev->cap_flags);
2530
2531         /*
2532          * Identify default antenna configuration.
2533          */
2534         rt2x00dev->default_ant.tx =
2535             rt2x00_get_field16(eeprom, EEPROM_ANTENNA_TX_DEFAULT);
2536         rt2x00dev->default_ant.rx =
2537             rt2x00_get_field16(eeprom, EEPROM_ANTENNA_RX_DEFAULT);
2538
2539         /*
2540          * Read the Frame type.
2541          */
2542         if (rt2x00_get_field16(eeprom, EEPROM_ANTENNA_FRAME_TYPE))
2543                 __set_bit(CAPABILITY_FRAME_TYPE, &rt2x00dev->cap_flags);
2544
2545         /*
2546          * Detect if this device has a hardware controlled radio.
2547          */
2548         if (rt2x00_get_field16(eeprom, EEPROM_ANTENNA_HARDWARE_RADIO))
2549                 __set_bit(CAPABILITY_HW_BUTTON, &rt2x00dev->cap_flags);
2550
2551         /*
2552          * Read frequency offset and RF programming sequence.
2553          */
2554         rt2x00_eeprom_read(rt2x00dev, EEPROM_FREQ, &eeprom);
2555         if (rt2x00_get_field16(eeprom, EEPROM_FREQ_SEQ))
2556                 __set_bit(CAPABILITY_RF_SEQUENCE, &rt2x00dev->cap_flags);
2557
2558         rt2x00dev->freq_offset = rt2x00_get_field16(eeprom, EEPROM_FREQ_OFFSET);
2559
2560         /*
2561          * Read external LNA informations.
2562          */
2563         rt2x00_eeprom_read(rt2x00dev, EEPROM_NIC, &eeprom);
2564
2565         if (rt2x00_get_field16(eeprom, EEPROM_NIC_EXTERNAL_LNA_A))
2566                 __set_bit(CAPABILITY_EXTERNAL_LNA_A, &rt2x00dev->cap_flags);
2567         if (rt2x00_get_field16(eeprom, EEPROM_NIC_EXTERNAL_LNA_BG))
2568                 __set_bit(CAPABILITY_EXTERNAL_LNA_BG, &rt2x00dev->cap_flags);
2569
2570         /*
2571          * When working with a RF2529 chip without double antenna,
2572          * the antenna settings should be gathered from the NIC
2573          * eeprom word.
2574          */
2575         if (rt2x00_rf(rt2x00dev, RF2529) &&
2576             !rt2x00_has_cap_double_antenna(rt2x00dev)) {
2577                 rt2x00dev->default_ant.rx =
2578                     ANTENNA_A + rt2x00_get_field16(eeprom, EEPROM_NIC_RX_FIXED);
2579                 rt2x00dev->default_ant.tx =
2580                     ANTENNA_B - rt2x00_get_field16(eeprom, EEPROM_NIC_TX_FIXED);
2581
2582                 if (rt2x00_get_field16(eeprom, EEPROM_NIC_TX_DIVERSITY))
2583                         rt2x00dev->default_ant.tx = ANTENNA_SW_DIVERSITY;
2584                 if (rt2x00_get_field16(eeprom, EEPROM_NIC_ENABLE_DIVERSITY))
2585                         rt2x00dev->default_ant.rx = ANTENNA_SW_DIVERSITY;
2586         }
2587
2588         /*
2589          * Store led settings, for correct led behaviour.
2590          * If the eeprom value is invalid,
2591          * switch to default led mode.
2592          */
2593 #ifdef CONFIG_RT2X00_LIB_LEDS
2594         rt2x00_eeprom_read(rt2x00dev, EEPROM_LED, &eeprom);
2595         value = rt2x00_get_field16(eeprom, EEPROM_LED_LED_MODE);
2596
2597         rt61pci_init_led(rt2x00dev, &rt2x00dev->led_radio, LED_TYPE_RADIO);
2598         rt61pci_init_led(rt2x00dev, &rt2x00dev->led_assoc, LED_TYPE_ASSOC);
2599         if (value == LED_MODE_SIGNAL_STRENGTH)
2600                 rt61pci_init_led(rt2x00dev, &rt2x00dev->led_qual,
2601                                  LED_TYPE_QUALITY);
2602
2603         rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_LED_MODE, value);
2604         rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_GPIO_0,
2605                            rt2x00_get_field16(eeprom,
2606                                               EEPROM_LED_POLARITY_GPIO_0));
2607         rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_GPIO_1,
2608                            rt2x00_get_field16(eeprom,
2609                                               EEPROM_LED_POLARITY_GPIO_1));
2610         rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_GPIO_2,
2611                            rt2x00_get_field16(eeprom,
2612                                               EEPROM_LED_POLARITY_GPIO_2));
2613         rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_GPIO_3,
2614                            rt2x00_get_field16(eeprom,
2615                                               EEPROM_LED_POLARITY_GPIO_3));
2616         rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_GPIO_4,
2617                            rt2x00_get_field16(eeprom,
2618                                               EEPROM_LED_POLARITY_GPIO_4));
2619         rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_ACT,
2620                            rt2x00_get_field16(eeprom, EEPROM_LED_POLARITY_ACT));
2621         rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_READY_BG,
2622                            rt2x00_get_field16(eeprom,
2623                                               EEPROM_LED_POLARITY_RDY_G));
2624         rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_READY_A,
2625                            rt2x00_get_field16(eeprom,
2626                                               EEPROM_LED_POLARITY_RDY_A));
2627 #endif /* CONFIG_RT2X00_LIB_LEDS */
2628
2629         return 0;
2630 }
2631
2632 /*
2633  * RF value list for RF5225 & RF5325
2634  * Supports: 2.4 GHz & 5.2 GHz, rf_sequence disabled
2635  */
2636 static const struct rf_channel rf_vals_noseq[] = {
2637         { 1,  0x00002ccc, 0x00004786, 0x00068455, 0x000ffa0b },
2638         { 2,  0x00002ccc, 0x00004786, 0x00068455, 0x000ffa1f },
2639         { 3,  0x00002ccc, 0x0000478a, 0x00068455, 0x000ffa0b },
2640         { 4,  0x00002ccc, 0x0000478a, 0x00068455, 0x000ffa1f },
2641         { 5,  0x00002ccc, 0x0000478e, 0x00068455, 0x000ffa0b },
2642         { 6,  0x00002ccc, 0x0000478e, 0x00068455, 0x000ffa1f },
2643         { 7,  0x00002ccc, 0x00004792, 0x00068455, 0x000ffa0b },
2644         { 8,  0x00002ccc, 0x00004792, 0x00068455, 0x000ffa1f },
2645         { 9,  0x00002ccc, 0x00004796, 0x00068455, 0x000ffa0b },
2646         { 10, 0x00002ccc, 0x00004796, 0x00068455, 0x000ffa1f },
2647         { 11, 0x00002ccc, 0x0000479a, 0x00068455, 0x000ffa0b },
2648         { 12, 0x00002ccc, 0x0000479a, 0x00068455, 0x000ffa1f },
2649         { 13, 0x00002ccc, 0x0000479e, 0x00068455, 0x000ffa0b },
2650         { 14, 0x00002ccc, 0x000047a2, 0x00068455, 0x000ffa13 },
2651
2652         /* 802.11 UNI / HyperLan 2 */
2653         { 36, 0x00002ccc, 0x0000499a, 0x0009be55, 0x000ffa23 },
2654         { 40, 0x00002ccc, 0x000049a2, 0x0009be55, 0x000ffa03 },
2655         { 44, 0x00002ccc, 0x000049a6, 0x0009be55, 0x000ffa0b },
2656         { 48, 0x00002ccc, 0x000049aa, 0x0009be55, 0x000ffa13 },
2657         { 52, 0x00002ccc, 0x000049ae, 0x0009ae55, 0x000ffa1b },
2658         { 56, 0x00002ccc, 0x000049b2, 0x0009ae55, 0x000ffa23 },
2659         { 60, 0x00002ccc, 0x000049ba, 0x0009ae55, 0x000ffa03 },
2660         { 64, 0x00002ccc, 0x000049be, 0x0009ae55, 0x000ffa0b },
2661
2662         /* 802.11 HyperLan 2 */
2663         { 100, 0x00002ccc, 0x00004a2a, 0x000bae55, 0x000ffa03 },
2664         { 104, 0x00002ccc, 0x00004a2e, 0x000bae55, 0x000ffa0b },
2665         { 108, 0x00002ccc, 0x00004a32, 0x000bae55, 0x000ffa13 },
2666         { 112, 0x00002ccc, 0x00004a36, 0x000bae55, 0x000ffa1b },
2667         { 116, 0x00002ccc, 0x00004a3a, 0x000bbe55, 0x000ffa23 },
2668         { 120, 0x00002ccc, 0x00004a82, 0x000bbe55, 0x000ffa03 },
2669         { 124, 0x00002ccc, 0x00004a86, 0x000bbe55, 0x000ffa0b },
2670         { 128, 0x00002ccc, 0x00004a8a, 0x000bbe55, 0x000ffa13 },
2671         { 132, 0x00002ccc, 0x00004a8e, 0x000bbe55, 0x000ffa1b },
2672         { 136, 0x00002ccc, 0x00004a92, 0x000bbe55, 0x000ffa23 },
2673
2674         /* 802.11 UNII */
2675         { 140, 0x00002ccc, 0x00004a9a, 0x000bbe55, 0x000ffa03 },
2676         { 149, 0x00002ccc, 0x00004aa2, 0x000bbe55, 0x000ffa1f },
2677         { 153, 0x00002ccc, 0x00004aa6, 0x000bbe55, 0x000ffa27 },
2678         { 157, 0x00002ccc, 0x00004aae, 0x000bbe55, 0x000ffa07 },
2679         { 161, 0x00002ccc, 0x00004ab2, 0x000bbe55, 0x000ffa0f },
2680         { 165, 0x00002ccc, 0x00004ab6, 0x000bbe55, 0x000ffa17 },
2681
2682         /* MMAC(Japan)J52 ch 34,38,42,46 */
2683         { 34, 0x00002ccc, 0x0000499a, 0x0009be55, 0x000ffa0b },
2684         { 38, 0x00002ccc, 0x0000499e, 0x0009be55, 0x000ffa13 },
2685         { 42, 0x00002ccc, 0x000049a2, 0x0009be55, 0x000ffa1b },
2686         { 46, 0x00002ccc, 0x000049a6, 0x0009be55, 0x000ffa23 },
2687 };
2688
2689 /*
2690  * RF value list for RF5225 & RF5325
2691  * Supports: 2.4 GHz & 5.2 GHz, rf_sequence enabled
2692  */
2693 static const struct rf_channel rf_vals_seq[] = {
2694         { 1,  0x00002ccc, 0x00004786, 0x00068455, 0x000ffa0b },
2695         { 2,  0x00002ccc, 0x00004786, 0x00068455, 0x000ffa1f },
2696         { 3,  0x00002ccc, 0x0000478a, 0x00068455, 0x000ffa0b },
2697         { 4,  0x00002ccc, 0x0000478a, 0x00068455, 0x000ffa1f },
2698         { 5,  0x00002ccc, 0x0000478e, 0x00068455, 0x000ffa0b },
2699         { 6,  0x00002ccc, 0x0000478e, 0x00068455, 0x000ffa1f },
2700         { 7,  0x00002ccc, 0x00004792, 0x00068455, 0x000ffa0b },
2701         { 8,  0x00002ccc, 0x00004792, 0x00068455, 0x000ffa1f },
2702         { 9,  0x00002ccc, 0x00004796, 0x00068455, 0x000ffa0b },
2703         { 10, 0x00002ccc, 0x00004796, 0x00068455, 0x000ffa1f },
2704         { 11, 0x00002ccc, 0x0000479a, 0x00068455, 0x000ffa0b },
2705         { 12, 0x00002ccc, 0x0000479a, 0x00068455, 0x000ffa1f },
2706         { 13, 0x00002ccc, 0x0000479e, 0x00068455, 0x000ffa0b },
2707         { 14, 0x00002ccc, 0x000047a2, 0x00068455, 0x000ffa13 },
2708
2709         /* 802.11 UNI / HyperLan 2 */
2710         { 36, 0x00002cd4, 0x0004481a, 0x00098455, 0x000c0a03 },
2711         { 40, 0x00002cd0, 0x00044682, 0x00098455, 0x000c0a03 },
2712         { 44, 0x00002cd0, 0x00044686, 0x00098455, 0x000c0a1b },
2713         { 48, 0x00002cd0, 0x0004468e, 0x00098655, 0x000c0a0b },
2714         { 52, 0x00002cd0, 0x00044692, 0x00098855, 0x000c0a23 },
2715         { 56, 0x00002cd0, 0x0004469a, 0x00098c55, 0x000c0a13 },
2716         { 60, 0x00002cd0, 0x000446a2, 0x00098e55, 0x000c0a03 },
2717         { 64, 0x00002cd0, 0x000446a6, 0x00099255, 0x000c0a1b },
2718
2719         /* 802.11 HyperLan 2 */
2720         { 100, 0x00002cd4, 0x0004489a, 0x000b9855, 0x000c0a03 },
2721         { 104, 0x00002cd4, 0x000448a2, 0x000b9855, 0x000c0a03 },
2722         { 108, 0x00002cd4, 0x000448aa, 0x000b9855, 0x000c0a03 },
2723         { 112, 0x00002cd4, 0x000448b2, 0x000b9a55, 0x000c0a03 },
2724         { 116, 0x00002cd4, 0x000448ba, 0x000b9a55, 0x000c0a03 },
2725         { 120, 0x00002cd0, 0x00044702, 0x000b9a55, 0x000c0a03 },
2726         { 124, 0x00002cd0, 0x00044706, 0x000b9a55, 0x000c0a1b },
2727         { 128, 0x00002cd0, 0x0004470e, 0x000b9c55, 0x000c0a0b },
2728         { 132, 0x00002cd0, 0x00044712, 0x000b9c55, 0x000c0a23 },
2729         { 136, 0x00002cd0, 0x0004471a, 0x000b9e55, 0x000c0a13 },
2730
2731         /* 802.11 UNII */
2732         { 140, 0x00002cd0, 0x00044722, 0x000b9e55, 0x000c0a03 },
2733         { 149, 0x00002cd0, 0x0004472e, 0x000ba255, 0x000c0a1b },
2734         { 153, 0x00002cd0, 0x00044736, 0x000ba255, 0x000c0a0b },
2735         { 157, 0x00002cd4, 0x0004490a, 0x000ba255, 0x000c0a17 },
2736         { 161, 0x00002cd4, 0x00044912, 0x000ba255, 0x000c0a17 },
2737         { 165, 0x00002cd4, 0x0004491a, 0x000ba255, 0x000c0a17 },
2738
2739         /* MMAC(Japan)J52 ch 34,38,42,46 */
2740         { 34, 0x00002ccc, 0x0000499a, 0x0009be55, 0x000c0a0b },
2741         { 38, 0x00002ccc, 0x0000499e, 0x0009be55, 0x000c0a13 },
2742         { 42, 0x00002ccc, 0x000049a2, 0x0009be55, 0x000c0a1b },
2743         { 46, 0x00002ccc, 0x000049a6, 0x0009be55, 0x000c0a23 },
2744 };
2745
2746 static int rt61pci_probe_hw_mode(struct rt2x00_dev *rt2x00dev)
2747 {
2748         struct hw_mode_spec *spec = &rt2x00dev->spec;
2749         struct channel_info *info;
2750         char *tx_power;
2751         unsigned int i;
2752
2753         /*
2754          * Disable powersaving as default.
2755          */
2756         rt2x00dev->hw->wiphy->flags &= ~WIPHY_FLAG_PS_ON_BY_DEFAULT;
2757
2758         /*
2759          * Initialize all hw fields.
2760          */
2761         ieee80211_hw_set(rt2x00dev->hw, PS_NULLFUNC_STACK);
2762         ieee80211_hw_set(rt2x00dev->hw, SUPPORTS_PS);
2763         ieee80211_hw_set(rt2x00dev->hw, HOST_BROADCAST_PS_BUFFERING);
2764         ieee80211_hw_set(rt2x00dev->hw, SIGNAL_DBM);
2765
2766         SET_IEEE80211_DEV(rt2x00dev->hw, rt2x00dev->dev);
2767         SET_IEEE80211_PERM_ADDR(rt2x00dev->hw,
2768                                 rt2x00_eeprom_addr(rt2x00dev,
2769                                                    EEPROM_MAC_ADDR_0));
2770
2771         /*
2772          * As rt61 has a global fallback table we cannot specify
2773          * more then one tx rate per frame but since the hw will
2774          * try several rates (based on the fallback table) we should
2775          * initialize max_report_rates to the maximum number of rates
2776          * we are going to try. Otherwise mac80211 will truncate our
2777          * reported tx rates and the rc algortihm will end up with
2778          * incorrect data.
2779          */
2780         rt2x00dev->hw->max_rates = 1;
2781         rt2x00dev->hw->max_report_rates = 7;
2782         rt2x00dev->hw->max_rate_tries = 1;
2783
2784         /*
2785          * Initialize hw_mode information.
2786          */
2787         spec->supported_bands = SUPPORT_BAND_2GHZ;
2788         spec->supported_rates = SUPPORT_RATE_CCK | SUPPORT_RATE_OFDM;
2789
2790         if (!rt2x00_has_cap_rf_sequence(rt2x00dev)) {
2791                 spec->num_channels = 14;
2792                 spec->channels = rf_vals_noseq;
2793         } else {
2794                 spec->num_channels = 14;
2795                 spec->channels = rf_vals_seq;
2796         }
2797
2798         if (rt2x00_rf(rt2x00dev, RF5225) || rt2x00_rf(rt2x00dev, RF5325)) {
2799                 spec->supported_bands |= SUPPORT_BAND_5GHZ;
2800                 spec->num_channels = ARRAY_SIZE(rf_vals_seq);
2801         }
2802
2803         /*
2804          * Create channel information array
2805          */
2806         info = kcalloc(spec->num_channels, sizeof(*info), GFP_KERNEL);
2807         if (!info)
2808                 return -ENOMEM;
2809
2810         spec->channels_info = info;
2811
2812         tx_power = rt2x00_eeprom_addr(rt2x00dev, EEPROM_TXPOWER_G_START);
2813         for (i = 0; i < 14; i++) {
2814                 info[i].max_power = MAX_TXPOWER;
2815                 info[i].default_power1 = TXPOWER_FROM_DEV(tx_power[i]);
2816         }
2817
2818         if (spec->num_channels > 14) {
2819                 tx_power = rt2x00_eeprom_addr(rt2x00dev, EEPROM_TXPOWER_A_START);
2820                 for (i = 14; i < spec->num_channels; i++) {
2821                         info[i].max_power = MAX_TXPOWER;
2822                         info[i].default_power1 =
2823                                         TXPOWER_FROM_DEV(tx_power[i - 14]);
2824                 }
2825         }
2826
2827         return 0;
2828 }
2829
2830 static int rt61pci_probe_hw(struct rt2x00_dev *rt2x00dev)
2831 {
2832         int retval;
2833         u32 reg;
2834
2835         /*
2836          * Disable power saving.
2837          */
2838         rt2x00mmio_register_write(rt2x00dev, SOFT_RESET_CSR, 0x00000007);
2839
2840         /*
2841          * Allocate eeprom data.
2842          */
2843         retval = rt61pci_validate_eeprom(rt2x00dev);
2844         if (retval)
2845                 return retval;
2846
2847         retval = rt61pci_init_eeprom(rt2x00dev);
2848         if (retval)
2849                 return retval;
2850
2851         /*
2852          * Enable rfkill polling by setting GPIO direction of the
2853          * rfkill switch GPIO pin correctly.
2854          */
2855         rt2x00mmio_register_read(rt2x00dev, MAC_CSR13, &reg);
2856         rt2x00_set_field32(&reg, MAC_CSR13_DIR5, 1);
2857         rt2x00mmio_register_write(rt2x00dev, MAC_CSR13, reg);
2858
2859         /*
2860          * Initialize hw specifications.
2861          */
2862         retval = rt61pci_probe_hw_mode(rt2x00dev);
2863         if (retval)
2864                 return retval;
2865
2866         /*
2867          * This device has multiple filters for control frames,
2868          * but has no a separate filter for PS Poll frames.
2869          */
2870         __set_bit(CAPABILITY_CONTROL_FILTERS, &rt2x00dev->cap_flags);
2871
2872         /*
2873          * This device requires firmware and DMA mapped skbs.
2874          */
2875         __set_bit(REQUIRE_FIRMWARE, &rt2x00dev->cap_flags);
2876         __set_bit(REQUIRE_DMA, &rt2x00dev->cap_flags);
2877         if (!modparam_nohwcrypt)
2878                 __set_bit(CAPABILITY_HW_CRYPTO, &rt2x00dev->cap_flags);
2879         __set_bit(CAPABILITY_LINK_TUNING, &rt2x00dev->cap_flags);
2880
2881         /*
2882          * Set the rssi offset.
2883          */
2884         rt2x00dev->rssi_offset = DEFAULT_RSSI_OFFSET;
2885
2886         return 0;
2887 }
2888
2889 /*
2890  * IEEE80211 stack callback functions.
2891  */
2892 static int rt61pci_conf_tx(struct ieee80211_hw *hw,
2893                            struct ieee80211_vif *vif, u16 queue_idx,
2894                            const struct ieee80211_tx_queue_params *params)
2895 {
2896         struct rt2x00_dev *rt2x00dev = hw->priv;
2897         struct data_queue *queue;
2898         struct rt2x00_field32 field;
2899         int retval;
2900         u32 reg;
2901         u32 offset;
2902
2903         /*
2904          * First pass the configuration through rt2x00lib, that will
2905          * update the queue settings and validate the input. After that
2906          * we are free to update the registers based on the value
2907          * in the queue parameter.
2908          */
2909         retval = rt2x00mac_conf_tx(hw, vif, queue_idx, params);
2910         if (retval)
2911                 return retval;
2912
2913         /*
2914          * We only need to perform additional register initialization
2915          * for WMM queues.
2916          */
2917         if (queue_idx >= 4)
2918                 return 0;
2919
2920         queue = rt2x00queue_get_tx_queue(rt2x00dev, queue_idx);
2921
2922         /* Update WMM TXOP register */
2923         offset = AC_TXOP_CSR0 + (sizeof(u32) * (!!(queue_idx & 2)));
2924         field.bit_offset = (queue_idx & 1) * 16;
2925         field.bit_mask = 0xffff << field.bit_offset;
2926
2927         rt2x00mmio_register_read(rt2x00dev, offset, &reg);
2928         rt2x00_set_field32(&reg, field, queue->txop);
2929         rt2x00mmio_register_write(rt2x00dev, offset, reg);
2930
2931         /* Update WMM registers */
2932         field.bit_offset = queue_idx * 4;
2933         field.bit_mask = 0xf << field.bit_offset;
2934
2935         rt2x00mmio_register_read(rt2x00dev, AIFSN_CSR, &reg);
2936         rt2x00_set_field32(&reg, field, queue->aifs);
2937         rt2x00mmio_register_write(rt2x00dev, AIFSN_CSR, reg);
2938
2939         rt2x00mmio_register_read(rt2x00dev, CWMIN_CSR, &reg);
2940         rt2x00_set_field32(&reg, field, queue->cw_min);
2941         rt2x00mmio_register_write(rt2x00dev, CWMIN_CSR, reg);
2942
2943         rt2x00mmio_register_read(rt2x00dev, CWMAX_CSR, &reg);
2944         rt2x00_set_field32(&reg, field, queue->cw_max);
2945         rt2x00mmio_register_write(rt2x00dev, CWMAX_CSR, reg);
2946
2947         return 0;
2948 }
2949
2950 static u64 rt61pci_get_tsf(struct ieee80211_hw *hw, struct ieee80211_vif *vif)
2951 {
2952         struct rt2x00_dev *rt2x00dev = hw->priv;
2953         u64 tsf;
2954         u32 reg;
2955
2956         rt2x00mmio_register_read(rt2x00dev, TXRX_CSR13, &reg);
2957         tsf = (u64) rt2x00_get_field32(reg, TXRX_CSR13_HIGH_TSFTIMER) << 32;
2958         rt2x00mmio_register_read(rt2x00dev, TXRX_CSR12, &reg);
2959         tsf |= rt2x00_get_field32(reg, TXRX_CSR12_LOW_TSFTIMER);
2960
2961         return tsf;
2962 }
2963
2964 static const struct ieee80211_ops rt61pci_mac80211_ops = {
2965         .tx                     = rt2x00mac_tx,
2966         .start                  = rt2x00mac_start,
2967         .stop                   = rt2x00mac_stop,
2968         .add_interface          = rt2x00mac_add_interface,
2969         .remove_interface       = rt2x00mac_remove_interface,
2970         .config                 = rt2x00mac_config,
2971         .configure_filter       = rt2x00mac_configure_filter,
2972         .set_key                = rt2x00mac_set_key,
2973         .sw_scan_start          = rt2x00mac_sw_scan_start,
2974         .sw_scan_complete       = rt2x00mac_sw_scan_complete,
2975         .get_stats              = rt2x00mac_get_stats,
2976         .bss_info_changed       = rt2x00mac_bss_info_changed,
2977         .conf_tx                = rt61pci_conf_tx,
2978         .get_tsf                = rt61pci_get_tsf,
2979         .rfkill_poll            = rt2x00mac_rfkill_poll,
2980         .flush                  = rt2x00mac_flush,
2981         .set_antenna            = rt2x00mac_set_antenna,
2982         .get_antenna            = rt2x00mac_get_antenna,
2983         .get_ringparam          = rt2x00mac_get_ringparam,
2984         .tx_frames_pending      = rt2x00mac_tx_frames_pending,
2985 };
2986
2987 static const struct rt2x00lib_ops rt61pci_rt2x00_ops = {
2988         .irq_handler            = rt61pci_interrupt,
2989         .txstatus_tasklet       = rt61pci_txstatus_tasklet,
2990         .tbtt_tasklet           = rt61pci_tbtt_tasklet,
2991         .rxdone_tasklet         = rt61pci_rxdone_tasklet,
2992         .autowake_tasklet       = rt61pci_autowake_tasklet,
2993         .probe_hw               = rt61pci_probe_hw,
2994         .get_firmware_name      = rt61pci_get_firmware_name,
2995         .check_firmware         = rt61pci_check_firmware,
2996         .load_firmware          = rt61pci_load_firmware,
2997         .initialize             = rt2x00mmio_initialize,
2998         .uninitialize           = rt2x00mmio_uninitialize,
2999         .get_entry_state        = rt61pci_get_entry_state,
3000         .clear_entry            = rt61pci_clear_entry,
3001         .set_device_state       = rt61pci_set_device_state,
3002         .rfkill_poll            = rt61pci_rfkill_poll,
3003         .link_stats             = rt61pci_link_stats,
3004         .reset_tuner            = rt61pci_reset_tuner,
3005         .link_tuner             = rt61pci_link_tuner,
3006         .start_queue            = rt61pci_start_queue,
3007         .kick_queue             = rt61pci_kick_queue,
3008         .stop_queue             = rt61pci_stop_queue,
3009         .flush_queue            = rt2x00mmio_flush_queue,
3010         .write_tx_desc          = rt61pci_write_tx_desc,
3011         .write_beacon           = rt61pci_write_beacon,
3012         .clear_beacon           = rt61pci_clear_beacon,
3013         .fill_rxdone            = rt61pci_fill_rxdone,
3014         .config_shared_key      = rt61pci_config_shared_key,
3015         .config_pairwise_key    = rt61pci_config_pairwise_key,
3016         .config_filter          = rt61pci_config_filter,
3017         .config_intf            = rt61pci_config_intf,
3018         .config_erp             = rt61pci_config_erp,
3019         .config_ant             = rt61pci_config_ant,
3020         .config                 = rt61pci_config,
3021 };
3022
3023 static void rt61pci_queue_init(struct data_queue *queue)
3024 {
3025         switch (queue->qid) {
3026         case QID_RX:
3027                 queue->limit = 32;
3028                 queue->data_size = DATA_FRAME_SIZE;
3029                 queue->desc_size = RXD_DESC_SIZE;
3030                 queue->priv_size = sizeof(struct queue_entry_priv_mmio);
3031                 break;
3032
3033         case QID_AC_VO:
3034         case QID_AC_VI:
3035         case QID_AC_BE:
3036         case QID_AC_BK:
3037                 queue->limit = 32;
3038                 queue->data_size = DATA_FRAME_SIZE;
3039                 queue->desc_size = TXD_DESC_SIZE;
3040                 queue->priv_size = sizeof(struct queue_entry_priv_mmio);
3041                 break;
3042
3043         case QID_BEACON:
3044                 queue->limit = 4;
3045                 queue->data_size = 0; /* No DMA required for beacons */
3046                 queue->desc_size = TXINFO_SIZE;
3047                 queue->priv_size = sizeof(struct queue_entry_priv_mmio);
3048                 break;
3049
3050         case QID_ATIM:
3051                 /* fallthrough */
3052         default:
3053                 BUG();
3054                 break;
3055         }
3056 }
3057
3058 static const struct rt2x00_ops rt61pci_ops = {
3059         .name                   = KBUILD_MODNAME,
3060         .max_ap_intf            = 4,
3061         .eeprom_size            = EEPROM_SIZE,
3062         .rf_size                = RF_SIZE,
3063         .tx_queues              = NUM_TX_QUEUES,
3064         .queue_init             = rt61pci_queue_init,
3065         .lib                    = &rt61pci_rt2x00_ops,
3066         .hw                     = &rt61pci_mac80211_ops,
3067 #ifdef CONFIG_RT2X00_LIB_DEBUGFS
3068         .debugfs                = &rt61pci_rt2x00debug,
3069 #endif /* CONFIG_RT2X00_LIB_DEBUGFS */
3070 };
3071
3072 /*
3073  * RT61pci module information.
3074  */
3075 static const struct pci_device_id rt61pci_device_table[] = {
3076         /* RT2561s */
3077         { PCI_DEVICE(0x1814, 0x0301) },
3078         /* RT2561 v2 */
3079         { PCI_DEVICE(0x1814, 0x0302) },
3080         /* RT2661 */
3081         { PCI_DEVICE(0x1814, 0x0401) },
3082         { 0, }
3083 };
3084
3085 MODULE_AUTHOR(DRV_PROJECT);
3086 MODULE_VERSION(DRV_VERSION);
3087 MODULE_DESCRIPTION("Ralink RT61 PCI & PCMCIA Wireless LAN driver.");
3088 MODULE_SUPPORTED_DEVICE("Ralink RT2561, RT2561s & RT2661 "
3089                         "PCI & PCMCIA chipset based cards");
3090 MODULE_DEVICE_TABLE(pci, rt61pci_device_table);
3091 MODULE_FIRMWARE(FIRMWARE_RT2561);
3092 MODULE_FIRMWARE(FIRMWARE_RT2561s);
3093 MODULE_FIRMWARE(FIRMWARE_RT2661);
3094 MODULE_LICENSE("GPL");
3095
3096 static int rt61pci_probe(struct pci_dev *pci_dev,
3097                          const struct pci_device_id *id)
3098 {
3099         return rt2x00pci_probe(pci_dev, &rt61pci_ops);
3100 }
3101
3102 static struct pci_driver rt61pci_driver = {
3103         .name           = KBUILD_MODNAME,
3104         .id_table       = rt61pci_device_table,
3105         .probe          = rt61pci_probe,
3106         .remove         = rt2x00pci_remove,
3107         .suspend        = rt2x00pci_suspend,
3108         .resume         = rt2x00pci_resume,
3109 };
3110
3111 module_pci_driver(rt61pci_driver);