drivers/net: Convert unbounded kzalloc calls to kcalloc
[cascardo/linux.git] / drivers / net / wireless / rt2x00 / rt2500usb.c
1 /*
2         Copyright (C) 2004 - 2009 Ivo van Doorn <IvDoorn@gmail.com>
3         <http://rt2x00.serialmonkey.com>
4
5         This program is free software; you can redistribute it and/or modify
6         it under the terms of the GNU General Public License as published by
7         the Free Software Foundation; either version 2 of the License, or
8         (at your option) any later version.
9
10         This program is distributed in the hope that it will be useful,
11         but WITHOUT ANY WARRANTY; without even the implied warranty of
12         MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13         GNU General Public License for more details.
14
15         You should have received a copy of the GNU General Public License
16         along with this program; if not, write to the
17         Free Software Foundation, Inc.,
18         59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
19  */
20
21 /*
22         Module: rt2500usb
23         Abstract: rt2500usb device specific routines.
24         Supported chipsets: RT2570.
25  */
26
27 #include <linux/delay.h>
28 #include <linux/etherdevice.h>
29 #include <linux/init.h>
30 #include <linux/kernel.h>
31 #include <linux/module.h>
32 #include <linux/slab.h>
33 #include <linux/usb.h>
34
35 #include "rt2x00.h"
36 #include "rt2x00usb.h"
37 #include "rt2500usb.h"
38
39 /*
40  * Allow hardware encryption to be disabled.
41  */
42 static int modparam_nohwcrypt = 0;
43 module_param_named(nohwcrypt, modparam_nohwcrypt, bool, S_IRUGO);
44 MODULE_PARM_DESC(nohwcrypt, "Disable hardware encryption.");
45
46 /*
47  * Register access.
48  * All access to the CSR registers will go through the methods
49  * rt2500usb_register_read and rt2500usb_register_write.
50  * BBP and RF register require indirect register access,
51  * and use the CSR registers BBPCSR and RFCSR to achieve this.
52  * These indirect registers work with busy bits,
53  * and we will try maximal REGISTER_BUSY_COUNT times to access
54  * the register while taking a REGISTER_BUSY_DELAY us delay
55  * between each attampt. When the busy bit is still set at that time,
56  * the access attempt is considered to have failed,
57  * and we will print an error.
58  * If the csr_mutex is already held then the _lock variants must
59  * be used instead.
60  */
61 static inline void rt2500usb_register_read(struct rt2x00_dev *rt2x00dev,
62                                            const unsigned int offset,
63                                            u16 *value)
64 {
65         __le16 reg;
66         rt2x00usb_vendor_request_buff(rt2x00dev, USB_MULTI_READ,
67                                       USB_VENDOR_REQUEST_IN, offset,
68                                       &reg, sizeof(reg), REGISTER_TIMEOUT);
69         *value = le16_to_cpu(reg);
70 }
71
72 static inline void rt2500usb_register_read_lock(struct rt2x00_dev *rt2x00dev,
73                                                 const unsigned int offset,
74                                                 u16 *value)
75 {
76         __le16 reg;
77         rt2x00usb_vendor_req_buff_lock(rt2x00dev, USB_MULTI_READ,
78                                        USB_VENDOR_REQUEST_IN, offset,
79                                        &reg, sizeof(reg), REGISTER_TIMEOUT);
80         *value = le16_to_cpu(reg);
81 }
82
83 static inline void rt2500usb_register_multiread(struct rt2x00_dev *rt2x00dev,
84                                                 const unsigned int offset,
85                                                 void *value, const u16 length)
86 {
87         rt2x00usb_vendor_request_buff(rt2x00dev, USB_MULTI_READ,
88                                       USB_VENDOR_REQUEST_IN, offset,
89                                       value, length,
90                                       REGISTER_TIMEOUT16(length));
91 }
92
93 static inline void rt2500usb_register_write(struct rt2x00_dev *rt2x00dev,
94                                             const unsigned int offset,
95                                             u16 value)
96 {
97         __le16 reg = cpu_to_le16(value);
98         rt2x00usb_vendor_request_buff(rt2x00dev, USB_MULTI_WRITE,
99                                       USB_VENDOR_REQUEST_OUT, offset,
100                                       &reg, sizeof(reg), REGISTER_TIMEOUT);
101 }
102
103 static inline void rt2500usb_register_write_lock(struct rt2x00_dev *rt2x00dev,
104                                                  const unsigned int offset,
105                                                  u16 value)
106 {
107         __le16 reg = cpu_to_le16(value);
108         rt2x00usb_vendor_req_buff_lock(rt2x00dev, USB_MULTI_WRITE,
109                                        USB_VENDOR_REQUEST_OUT, offset,
110                                        &reg, sizeof(reg), REGISTER_TIMEOUT);
111 }
112
113 static inline void rt2500usb_register_multiwrite(struct rt2x00_dev *rt2x00dev,
114                                                  const unsigned int offset,
115                                                  void *value, const u16 length)
116 {
117         rt2x00usb_vendor_request_buff(rt2x00dev, USB_MULTI_WRITE,
118                                       USB_VENDOR_REQUEST_OUT, offset,
119                                       value, length,
120                                       REGISTER_TIMEOUT16(length));
121 }
122
123 static int rt2500usb_regbusy_read(struct rt2x00_dev *rt2x00dev,
124                                   const unsigned int offset,
125                                   struct rt2x00_field16 field,
126                                   u16 *reg)
127 {
128         unsigned int i;
129
130         for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
131                 rt2500usb_register_read_lock(rt2x00dev, offset, reg);
132                 if (!rt2x00_get_field16(*reg, field))
133                         return 1;
134                 udelay(REGISTER_BUSY_DELAY);
135         }
136
137         ERROR(rt2x00dev, "Indirect register access failed: "
138               "offset=0x%.08x, value=0x%.08x\n", offset, *reg);
139         *reg = ~0;
140
141         return 0;
142 }
143
144 #define WAIT_FOR_BBP(__dev, __reg) \
145         rt2500usb_regbusy_read((__dev), PHY_CSR8, PHY_CSR8_BUSY, (__reg))
146 #define WAIT_FOR_RF(__dev, __reg) \
147         rt2500usb_regbusy_read((__dev), PHY_CSR10, PHY_CSR10_RF_BUSY, (__reg))
148
149 static void rt2500usb_bbp_write(struct rt2x00_dev *rt2x00dev,
150                                 const unsigned int word, const u8 value)
151 {
152         u16 reg;
153
154         mutex_lock(&rt2x00dev->csr_mutex);
155
156         /*
157          * Wait until the BBP becomes available, afterwards we
158          * can safely write the new data into the register.
159          */
160         if (WAIT_FOR_BBP(rt2x00dev, &reg)) {
161                 reg = 0;
162                 rt2x00_set_field16(&reg, PHY_CSR7_DATA, value);
163                 rt2x00_set_field16(&reg, PHY_CSR7_REG_ID, word);
164                 rt2x00_set_field16(&reg, PHY_CSR7_READ_CONTROL, 0);
165
166                 rt2500usb_register_write_lock(rt2x00dev, PHY_CSR7, reg);
167         }
168
169         mutex_unlock(&rt2x00dev->csr_mutex);
170 }
171
172 static void rt2500usb_bbp_read(struct rt2x00_dev *rt2x00dev,
173                                const unsigned int word, u8 *value)
174 {
175         u16 reg;
176
177         mutex_lock(&rt2x00dev->csr_mutex);
178
179         /*
180          * Wait until the BBP becomes available, afterwards we
181          * can safely write the read request into the register.
182          * After the data has been written, we wait until hardware
183          * returns the correct value, if at any time the register
184          * doesn't become available in time, reg will be 0xffffffff
185          * which means we return 0xff to the caller.
186          */
187         if (WAIT_FOR_BBP(rt2x00dev, &reg)) {
188                 reg = 0;
189                 rt2x00_set_field16(&reg, PHY_CSR7_REG_ID, word);
190                 rt2x00_set_field16(&reg, PHY_CSR7_READ_CONTROL, 1);
191
192                 rt2500usb_register_write_lock(rt2x00dev, PHY_CSR7, reg);
193
194                 if (WAIT_FOR_BBP(rt2x00dev, &reg))
195                         rt2500usb_register_read_lock(rt2x00dev, PHY_CSR7, &reg);
196         }
197
198         *value = rt2x00_get_field16(reg, PHY_CSR7_DATA);
199
200         mutex_unlock(&rt2x00dev->csr_mutex);
201 }
202
203 static void rt2500usb_rf_write(struct rt2x00_dev *rt2x00dev,
204                                const unsigned int word, const u32 value)
205 {
206         u16 reg;
207
208         mutex_lock(&rt2x00dev->csr_mutex);
209
210         /*
211          * Wait until the RF becomes available, afterwards we
212          * can safely write the new data into the register.
213          */
214         if (WAIT_FOR_RF(rt2x00dev, &reg)) {
215                 reg = 0;
216                 rt2x00_set_field16(&reg, PHY_CSR9_RF_VALUE, value);
217                 rt2500usb_register_write_lock(rt2x00dev, PHY_CSR9, reg);
218
219                 reg = 0;
220                 rt2x00_set_field16(&reg, PHY_CSR10_RF_VALUE, value >> 16);
221                 rt2x00_set_field16(&reg, PHY_CSR10_RF_NUMBER_OF_BITS, 20);
222                 rt2x00_set_field16(&reg, PHY_CSR10_RF_IF_SELECT, 0);
223                 rt2x00_set_field16(&reg, PHY_CSR10_RF_BUSY, 1);
224
225                 rt2500usb_register_write_lock(rt2x00dev, PHY_CSR10, reg);
226                 rt2x00_rf_write(rt2x00dev, word, value);
227         }
228
229         mutex_unlock(&rt2x00dev->csr_mutex);
230 }
231
232 #ifdef CONFIG_RT2X00_LIB_DEBUGFS
233 static void _rt2500usb_register_read(struct rt2x00_dev *rt2x00dev,
234                                      const unsigned int offset,
235                                      u32 *value)
236 {
237         rt2500usb_register_read(rt2x00dev, offset, (u16 *)value);
238 }
239
240 static void _rt2500usb_register_write(struct rt2x00_dev *rt2x00dev,
241                                       const unsigned int offset,
242                                       u32 value)
243 {
244         rt2500usb_register_write(rt2x00dev, offset, value);
245 }
246
247 static const struct rt2x00debug rt2500usb_rt2x00debug = {
248         .owner  = THIS_MODULE,
249         .csr    = {
250                 .read           = _rt2500usb_register_read,
251                 .write          = _rt2500usb_register_write,
252                 .flags          = RT2X00DEBUGFS_OFFSET,
253                 .word_base      = CSR_REG_BASE,
254                 .word_size      = sizeof(u16),
255                 .word_count     = CSR_REG_SIZE / sizeof(u16),
256         },
257         .eeprom = {
258                 .read           = rt2x00_eeprom_read,
259                 .write          = rt2x00_eeprom_write,
260                 .word_base      = EEPROM_BASE,
261                 .word_size      = sizeof(u16),
262                 .word_count     = EEPROM_SIZE / sizeof(u16),
263         },
264         .bbp    = {
265                 .read           = rt2500usb_bbp_read,
266                 .write          = rt2500usb_bbp_write,
267                 .word_base      = BBP_BASE,
268                 .word_size      = sizeof(u8),
269                 .word_count     = BBP_SIZE / sizeof(u8),
270         },
271         .rf     = {
272                 .read           = rt2x00_rf_read,
273                 .write          = rt2500usb_rf_write,
274                 .word_base      = RF_BASE,
275                 .word_size      = sizeof(u32),
276                 .word_count     = RF_SIZE / sizeof(u32),
277         },
278 };
279 #endif /* CONFIG_RT2X00_LIB_DEBUGFS */
280
281 static int rt2500usb_rfkill_poll(struct rt2x00_dev *rt2x00dev)
282 {
283         u16 reg;
284
285         rt2500usb_register_read(rt2x00dev, MAC_CSR19, &reg);
286         return rt2x00_get_field32(reg, MAC_CSR19_BIT7);
287 }
288
289 #ifdef CONFIG_RT2X00_LIB_LEDS
290 static void rt2500usb_brightness_set(struct led_classdev *led_cdev,
291                                      enum led_brightness brightness)
292 {
293         struct rt2x00_led *led =
294             container_of(led_cdev, struct rt2x00_led, led_dev);
295         unsigned int enabled = brightness != LED_OFF;
296         u16 reg;
297
298         rt2500usb_register_read(led->rt2x00dev, MAC_CSR20, &reg);
299
300         if (led->type == LED_TYPE_RADIO || led->type == LED_TYPE_ASSOC)
301                 rt2x00_set_field16(&reg, MAC_CSR20_LINK, enabled);
302         else if (led->type == LED_TYPE_ACTIVITY)
303                 rt2x00_set_field16(&reg, MAC_CSR20_ACTIVITY, enabled);
304
305         rt2500usb_register_write(led->rt2x00dev, MAC_CSR20, reg);
306 }
307
308 static int rt2500usb_blink_set(struct led_classdev *led_cdev,
309                                unsigned long *delay_on,
310                                unsigned long *delay_off)
311 {
312         struct rt2x00_led *led =
313             container_of(led_cdev, struct rt2x00_led, led_dev);
314         u16 reg;
315
316         rt2500usb_register_read(led->rt2x00dev, MAC_CSR21, &reg);
317         rt2x00_set_field16(&reg, MAC_CSR21_ON_PERIOD, *delay_on);
318         rt2x00_set_field16(&reg, MAC_CSR21_OFF_PERIOD, *delay_off);
319         rt2500usb_register_write(led->rt2x00dev, MAC_CSR21, reg);
320
321         return 0;
322 }
323
324 static void rt2500usb_init_led(struct rt2x00_dev *rt2x00dev,
325                                struct rt2x00_led *led,
326                                enum led_type type)
327 {
328         led->rt2x00dev = rt2x00dev;
329         led->type = type;
330         led->led_dev.brightness_set = rt2500usb_brightness_set;
331         led->led_dev.blink_set = rt2500usb_blink_set;
332         led->flags = LED_INITIALIZED;
333 }
334 #endif /* CONFIG_RT2X00_LIB_LEDS */
335
336 /*
337  * Configuration handlers.
338  */
339
340 /*
341  * rt2500usb does not differentiate between shared and pairwise
342  * keys, so we should use the same function for both key types.
343  */
344 static int rt2500usb_config_key(struct rt2x00_dev *rt2x00dev,
345                                 struct rt2x00lib_crypto *crypto,
346                                 struct ieee80211_key_conf *key)
347 {
348         u32 mask;
349         u16 reg;
350         enum cipher curr_cipher;
351
352         if (crypto->cmd == SET_KEY) {
353                 /*
354                  * Disallow to set WEP key other than with index 0,
355                  * it is known that not work at least on some hardware.
356                  * SW crypto will be used in that case.
357                  */
358                 if (key->alg == ALG_WEP && key->keyidx != 0)
359                         return -EOPNOTSUPP;
360
361                 /*
362                  * Pairwise key will always be entry 0, but this
363                  * could collide with a shared key on the same
364                  * position...
365                  */
366                 mask = TXRX_CSR0_KEY_ID.bit_mask;
367
368                 rt2500usb_register_read(rt2x00dev, TXRX_CSR0, &reg);
369                 curr_cipher = rt2x00_get_field16(reg, TXRX_CSR0_ALGORITHM);
370                 reg &= mask;
371
372                 if (reg && reg == mask)
373                         return -ENOSPC;
374
375                 reg = rt2x00_get_field16(reg, TXRX_CSR0_KEY_ID);
376
377                 key->hw_key_idx += reg ? ffz(reg) : 0;
378                 /*
379                  * Hardware requires that all keys use the same cipher
380                  * (e.g. TKIP-only, AES-only, but not TKIP+AES).
381                  * If this is not the first key, compare the cipher with the
382                  * first one and fall back to SW crypto if not the same.
383                  */
384                 if (key->hw_key_idx > 0 && crypto->cipher != curr_cipher)
385                         return -EOPNOTSUPP;
386
387                 rt2500usb_register_multiwrite(rt2x00dev, KEY_ENTRY(key->hw_key_idx),
388                                               crypto->key, sizeof(crypto->key));
389
390                 /*
391                  * The driver does not support the IV/EIV generation
392                  * in hardware. However it demands the data to be provided
393                  * both separately as well as inside the frame.
394                  * We already provided the CONFIG_CRYPTO_COPY_IV to rt2x00lib
395                  * to ensure rt2x00lib will not strip the data from the
396                  * frame after the copy, now we must tell mac80211
397                  * to generate the IV/EIV data.
398                  */
399                 key->flags |= IEEE80211_KEY_FLAG_GENERATE_IV;
400                 key->flags |= IEEE80211_KEY_FLAG_GENERATE_MMIC;
401         }
402
403         /*
404          * TXRX_CSR0_KEY_ID contains only single-bit fields to indicate
405          * a particular key is valid.
406          */
407         rt2500usb_register_read(rt2x00dev, TXRX_CSR0, &reg);
408         rt2x00_set_field16(&reg, TXRX_CSR0_ALGORITHM, crypto->cipher);
409         rt2x00_set_field16(&reg, TXRX_CSR0_IV_OFFSET, IEEE80211_HEADER);
410
411         mask = rt2x00_get_field16(reg, TXRX_CSR0_KEY_ID);
412         if (crypto->cmd == SET_KEY)
413                 mask |= 1 << key->hw_key_idx;
414         else if (crypto->cmd == DISABLE_KEY)
415                 mask &= ~(1 << key->hw_key_idx);
416         rt2x00_set_field16(&reg, TXRX_CSR0_KEY_ID, mask);
417         rt2500usb_register_write(rt2x00dev, TXRX_CSR0, reg);
418
419         return 0;
420 }
421
422 static void rt2500usb_config_filter(struct rt2x00_dev *rt2x00dev,
423                                     const unsigned int filter_flags)
424 {
425         u16 reg;
426
427         /*
428          * Start configuration steps.
429          * Note that the version error will always be dropped
430          * and broadcast frames will always be accepted since
431          * there is no filter for it at this time.
432          */
433         rt2500usb_register_read(rt2x00dev, TXRX_CSR2, &reg);
434         rt2x00_set_field16(&reg, TXRX_CSR2_DROP_CRC,
435                            !(filter_flags & FIF_FCSFAIL));
436         rt2x00_set_field16(&reg, TXRX_CSR2_DROP_PHYSICAL,
437                            !(filter_flags & FIF_PLCPFAIL));
438         rt2x00_set_field16(&reg, TXRX_CSR2_DROP_CONTROL,
439                            !(filter_flags & FIF_CONTROL));
440         rt2x00_set_field16(&reg, TXRX_CSR2_DROP_NOT_TO_ME,
441                            !(filter_flags & FIF_PROMISC_IN_BSS));
442         rt2x00_set_field16(&reg, TXRX_CSR2_DROP_TODS,
443                            !(filter_flags & FIF_PROMISC_IN_BSS) &&
444                            !rt2x00dev->intf_ap_count);
445         rt2x00_set_field16(&reg, TXRX_CSR2_DROP_VERSION_ERROR, 1);
446         rt2x00_set_field16(&reg, TXRX_CSR2_DROP_MULTICAST,
447                            !(filter_flags & FIF_ALLMULTI));
448         rt2x00_set_field16(&reg, TXRX_CSR2_DROP_BROADCAST, 0);
449         rt2500usb_register_write(rt2x00dev, TXRX_CSR2, reg);
450 }
451
452 static void rt2500usb_config_intf(struct rt2x00_dev *rt2x00dev,
453                                   struct rt2x00_intf *intf,
454                                   struct rt2x00intf_conf *conf,
455                                   const unsigned int flags)
456 {
457         unsigned int bcn_preload;
458         u16 reg;
459
460         if (flags & CONFIG_UPDATE_TYPE) {
461                 /*
462                  * Enable beacon config
463                  */
464                 bcn_preload = PREAMBLE + GET_DURATION(IEEE80211_HEADER, 20);
465                 rt2500usb_register_read(rt2x00dev, TXRX_CSR20, &reg);
466                 rt2x00_set_field16(&reg, TXRX_CSR20_OFFSET, bcn_preload >> 6);
467                 rt2x00_set_field16(&reg, TXRX_CSR20_BCN_EXPECT_WINDOW,
468                                    2 * (conf->type != NL80211_IFTYPE_STATION));
469                 rt2500usb_register_write(rt2x00dev, TXRX_CSR20, reg);
470
471                 /*
472                  * Enable synchronisation.
473                  */
474                 rt2500usb_register_read(rt2x00dev, TXRX_CSR18, &reg);
475                 rt2x00_set_field16(&reg, TXRX_CSR18_OFFSET, 0);
476                 rt2500usb_register_write(rt2x00dev, TXRX_CSR18, reg);
477
478                 rt2500usb_register_read(rt2x00dev, TXRX_CSR19, &reg);
479                 rt2x00_set_field16(&reg, TXRX_CSR19_TSF_COUNT, 1);
480                 rt2x00_set_field16(&reg, TXRX_CSR19_TSF_SYNC, conf->sync);
481                 rt2x00_set_field16(&reg, TXRX_CSR19_TBCN, 1);
482                 rt2500usb_register_write(rt2x00dev, TXRX_CSR19, reg);
483         }
484
485         if (flags & CONFIG_UPDATE_MAC)
486                 rt2500usb_register_multiwrite(rt2x00dev, MAC_CSR2, conf->mac,
487                                               (3 * sizeof(__le16)));
488
489         if (flags & CONFIG_UPDATE_BSSID)
490                 rt2500usb_register_multiwrite(rt2x00dev, MAC_CSR5, conf->bssid,
491                                               (3 * sizeof(__le16)));
492 }
493
494 static void rt2500usb_config_erp(struct rt2x00_dev *rt2x00dev,
495                                  struct rt2x00lib_erp *erp)
496 {
497         u16 reg;
498
499         rt2500usb_register_read(rt2x00dev, TXRX_CSR10, &reg);
500         rt2x00_set_field16(&reg, TXRX_CSR10_AUTORESPOND_PREAMBLE,
501                            !!erp->short_preamble);
502         rt2500usb_register_write(rt2x00dev, TXRX_CSR10, reg);
503
504         rt2500usb_register_write(rt2x00dev, TXRX_CSR11, erp->basic_rates);
505
506         rt2500usb_register_read(rt2x00dev, TXRX_CSR18, &reg);
507         rt2x00_set_field16(&reg, TXRX_CSR18_INTERVAL, erp->beacon_int * 4);
508         rt2500usb_register_write(rt2x00dev, TXRX_CSR18, reg);
509
510         rt2500usb_register_write(rt2x00dev, MAC_CSR10, erp->slot_time);
511         rt2500usb_register_write(rt2x00dev, MAC_CSR11, erp->sifs);
512         rt2500usb_register_write(rt2x00dev, MAC_CSR12, erp->eifs);
513 }
514
515 static void rt2500usb_config_ant(struct rt2x00_dev *rt2x00dev,
516                                  struct antenna_setup *ant)
517 {
518         u8 r2;
519         u8 r14;
520         u16 csr5;
521         u16 csr6;
522
523         /*
524          * We should never come here because rt2x00lib is supposed
525          * to catch this and send us the correct antenna explicitely.
526          */
527         BUG_ON(ant->rx == ANTENNA_SW_DIVERSITY ||
528                ant->tx == ANTENNA_SW_DIVERSITY);
529
530         rt2500usb_bbp_read(rt2x00dev, 2, &r2);
531         rt2500usb_bbp_read(rt2x00dev, 14, &r14);
532         rt2500usb_register_read(rt2x00dev, PHY_CSR5, &csr5);
533         rt2500usb_register_read(rt2x00dev, PHY_CSR6, &csr6);
534
535         /*
536          * Configure the TX antenna.
537          */
538         switch (ant->tx) {
539         case ANTENNA_HW_DIVERSITY:
540                 rt2x00_set_field8(&r2, BBP_R2_TX_ANTENNA, 1);
541                 rt2x00_set_field16(&csr5, PHY_CSR5_CCK, 1);
542                 rt2x00_set_field16(&csr6, PHY_CSR6_OFDM, 1);
543                 break;
544         case ANTENNA_A:
545                 rt2x00_set_field8(&r2, BBP_R2_TX_ANTENNA, 0);
546                 rt2x00_set_field16(&csr5, PHY_CSR5_CCK, 0);
547                 rt2x00_set_field16(&csr6, PHY_CSR6_OFDM, 0);
548                 break;
549         case ANTENNA_B:
550         default:
551                 rt2x00_set_field8(&r2, BBP_R2_TX_ANTENNA, 2);
552                 rt2x00_set_field16(&csr5, PHY_CSR5_CCK, 2);
553                 rt2x00_set_field16(&csr6, PHY_CSR6_OFDM, 2);
554                 break;
555         }
556
557         /*
558          * Configure the RX antenna.
559          */
560         switch (ant->rx) {
561         case ANTENNA_HW_DIVERSITY:
562                 rt2x00_set_field8(&r14, BBP_R14_RX_ANTENNA, 1);
563                 break;
564         case ANTENNA_A:
565                 rt2x00_set_field8(&r14, BBP_R14_RX_ANTENNA, 0);
566                 break;
567         case ANTENNA_B:
568         default:
569                 rt2x00_set_field8(&r14, BBP_R14_RX_ANTENNA, 2);
570                 break;
571         }
572
573         /*
574          * RT2525E and RT5222 need to flip TX I/Q
575          */
576         if (rt2x00_rf(rt2x00dev, RF2525E) || rt2x00_rf(rt2x00dev, RF5222)) {
577                 rt2x00_set_field8(&r2, BBP_R2_TX_IQ_FLIP, 1);
578                 rt2x00_set_field16(&csr5, PHY_CSR5_CCK_FLIP, 1);
579                 rt2x00_set_field16(&csr6, PHY_CSR6_OFDM_FLIP, 1);
580
581                 /*
582                  * RT2525E does not need RX I/Q Flip.
583                  */
584                 if (rt2x00_rf(rt2x00dev, RF2525E))
585                         rt2x00_set_field8(&r14, BBP_R14_RX_IQ_FLIP, 0);
586         } else {
587                 rt2x00_set_field16(&csr5, PHY_CSR5_CCK_FLIP, 0);
588                 rt2x00_set_field16(&csr6, PHY_CSR6_OFDM_FLIP, 0);
589         }
590
591         rt2500usb_bbp_write(rt2x00dev, 2, r2);
592         rt2500usb_bbp_write(rt2x00dev, 14, r14);
593         rt2500usb_register_write(rt2x00dev, PHY_CSR5, csr5);
594         rt2500usb_register_write(rt2x00dev, PHY_CSR6, csr6);
595 }
596
597 static void rt2500usb_config_channel(struct rt2x00_dev *rt2x00dev,
598                                      struct rf_channel *rf, const int txpower)
599 {
600         /*
601          * Set TXpower.
602          */
603         rt2x00_set_field32(&rf->rf3, RF3_TXPOWER, TXPOWER_TO_DEV(txpower));
604
605         /*
606          * For RT2525E we should first set the channel to half band higher.
607          */
608         if (rt2x00_rf(rt2x00dev, RF2525E)) {
609                 static const u32 vals[] = {
610                         0x000008aa, 0x000008ae, 0x000008ae, 0x000008b2,
611                         0x000008b2, 0x000008b6, 0x000008b6, 0x000008ba,
612                         0x000008ba, 0x000008be, 0x000008b7, 0x00000902,
613                         0x00000902, 0x00000906
614                 };
615
616                 rt2500usb_rf_write(rt2x00dev, 2, vals[rf->channel - 1]);
617                 if (rf->rf4)
618                         rt2500usb_rf_write(rt2x00dev, 4, rf->rf4);
619         }
620
621         rt2500usb_rf_write(rt2x00dev, 1, rf->rf1);
622         rt2500usb_rf_write(rt2x00dev, 2, rf->rf2);
623         rt2500usb_rf_write(rt2x00dev, 3, rf->rf3);
624         if (rf->rf4)
625                 rt2500usb_rf_write(rt2x00dev, 4, rf->rf4);
626 }
627
628 static void rt2500usb_config_txpower(struct rt2x00_dev *rt2x00dev,
629                                      const int txpower)
630 {
631         u32 rf3;
632
633         rt2x00_rf_read(rt2x00dev, 3, &rf3);
634         rt2x00_set_field32(&rf3, RF3_TXPOWER, TXPOWER_TO_DEV(txpower));
635         rt2500usb_rf_write(rt2x00dev, 3, rf3);
636 }
637
638 static void rt2500usb_config_ps(struct rt2x00_dev *rt2x00dev,
639                                 struct rt2x00lib_conf *libconf)
640 {
641         enum dev_state state =
642             (libconf->conf->flags & IEEE80211_CONF_PS) ?
643                 STATE_SLEEP : STATE_AWAKE;
644         u16 reg;
645
646         if (state == STATE_SLEEP) {
647                 rt2500usb_register_read(rt2x00dev, MAC_CSR18, &reg);
648                 rt2x00_set_field16(&reg, MAC_CSR18_DELAY_AFTER_BEACON,
649                                    rt2x00dev->beacon_int - 20);
650                 rt2x00_set_field16(&reg, MAC_CSR18_BEACONS_BEFORE_WAKEUP,
651                                    libconf->conf->listen_interval - 1);
652
653                 /* We must first disable autowake before it can be enabled */
654                 rt2x00_set_field16(&reg, MAC_CSR18_AUTO_WAKE, 0);
655                 rt2500usb_register_write(rt2x00dev, MAC_CSR18, reg);
656
657                 rt2x00_set_field16(&reg, MAC_CSR18_AUTO_WAKE, 1);
658                 rt2500usb_register_write(rt2x00dev, MAC_CSR18, reg);
659         } else {
660                 rt2500usb_register_read(rt2x00dev, MAC_CSR18, &reg);
661                 rt2x00_set_field16(&reg, MAC_CSR18_AUTO_WAKE, 0);
662                 rt2500usb_register_write(rt2x00dev, MAC_CSR18, reg);
663         }
664
665         rt2x00dev->ops->lib->set_device_state(rt2x00dev, state);
666 }
667
668 static void rt2500usb_config(struct rt2x00_dev *rt2x00dev,
669                              struct rt2x00lib_conf *libconf,
670                              const unsigned int flags)
671 {
672         if (flags & IEEE80211_CONF_CHANGE_CHANNEL)
673                 rt2500usb_config_channel(rt2x00dev, &libconf->rf,
674                                          libconf->conf->power_level);
675         if ((flags & IEEE80211_CONF_CHANGE_POWER) &&
676             !(flags & IEEE80211_CONF_CHANGE_CHANNEL))
677                 rt2500usb_config_txpower(rt2x00dev,
678                                          libconf->conf->power_level);
679         if (flags & IEEE80211_CONF_CHANGE_PS)
680                 rt2500usb_config_ps(rt2x00dev, libconf);
681 }
682
683 /*
684  * Link tuning
685  */
686 static void rt2500usb_link_stats(struct rt2x00_dev *rt2x00dev,
687                                  struct link_qual *qual)
688 {
689         u16 reg;
690
691         /*
692          * Update FCS error count from register.
693          */
694         rt2500usb_register_read(rt2x00dev, STA_CSR0, &reg);
695         qual->rx_failed = rt2x00_get_field16(reg, STA_CSR0_FCS_ERROR);
696
697         /*
698          * Update False CCA count from register.
699          */
700         rt2500usb_register_read(rt2x00dev, STA_CSR3, &reg);
701         qual->false_cca = rt2x00_get_field16(reg, STA_CSR3_FALSE_CCA_ERROR);
702 }
703
704 static void rt2500usb_reset_tuner(struct rt2x00_dev *rt2x00dev,
705                                   struct link_qual *qual)
706 {
707         u16 eeprom;
708         u16 value;
709
710         rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE_R24, &eeprom);
711         value = rt2x00_get_field16(eeprom, EEPROM_BBPTUNE_R24_LOW);
712         rt2500usb_bbp_write(rt2x00dev, 24, value);
713
714         rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE_R25, &eeprom);
715         value = rt2x00_get_field16(eeprom, EEPROM_BBPTUNE_R25_LOW);
716         rt2500usb_bbp_write(rt2x00dev, 25, value);
717
718         rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE_R61, &eeprom);
719         value = rt2x00_get_field16(eeprom, EEPROM_BBPTUNE_R61_LOW);
720         rt2500usb_bbp_write(rt2x00dev, 61, value);
721
722         rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE_VGC, &eeprom);
723         value = rt2x00_get_field16(eeprom, EEPROM_BBPTUNE_VGCUPPER);
724         rt2500usb_bbp_write(rt2x00dev, 17, value);
725
726         qual->vgc_level = value;
727 }
728
729 /*
730  * Initialization functions.
731  */
732 static int rt2500usb_init_registers(struct rt2x00_dev *rt2x00dev)
733 {
734         u16 reg;
735
736         rt2x00usb_vendor_request_sw(rt2x00dev, USB_DEVICE_MODE, 0x0001,
737                                     USB_MODE_TEST, REGISTER_TIMEOUT);
738         rt2x00usb_vendor_request_sw(rt2x00dev, USB_SINGLE_WRITE, 0x0308,
739                                     0x00f0, REGISTER_TIMEOUT);
740
741         rt2500usb_register_read(rt2x00dev, TXRX_CSR2, &reg);
742         rt2x00_set_field16(&reg, TXRX_CSR2_DISABLE_RX, 1);
743         rt2500usb_register_write(rt2x00dev, TXRX_CSR2, reg);
744
745         rt2500usb_register_write(rt2x00dev, MAC_CSR13, 0x1111);
746         rt2500usb_register_write(rt2x00dev, MAC_CSR14, 0x1e11);
747
748         rt2500usb_register_read(rt2x00dev, MAC_CSR1, &reg);
749         rt2x00_set_field16(&reg, MAC_CSR1_SOFT_RESET, 1);
750         rt2x00_set_field16(&reg, MAC_CSR1_BBP_RESET, 1);
751         rt2x00_set_field16(&reg, MAC_CSR1_HOST_READY, 0);
752         rt2500usb_register_write(rt2x00dev, MAC_CSR1, reg);
753
754         rt2500usb_register_read(rt2x00dev, MAC_CSR1, &reg);
755         rt2x00_set_field16(&reg, MAC_CSR1_SOFT_RESET, 0);
756         rt2x00_set_field16(&reg, MAC_CSR1_BBP_RESET, 0);
757         rt2x00_set_field16(&reg, MAC_CSR1_HOST_READY, 0);
758         rt2500usb_register_write(rt2x00dev, MAC_CSR1, reg);
759
760         rt2500usb_register_read(rt2x00dev, TXRX_CSR5, &reg);
761         rt2x00_set_field16(&reg, TXRX_CSR5_BBP_ID0, 13);
762         rt2x00_set_field16(&reg, TXRX_CSR5_BBP_ID0_VALID, 1);
763         rt2x00_set_field16(&reg, TXRX_CSR5_BBP_ID1, 12);
764         rt2x00_set_field16(&reg, TXRX_CSR5_BBP_ID1_VALID, 1);
765         rt2500usb_register_write(rt2x00dev, TXRX_CSR5, reg);
766
767         rt2500usb_register_read(rt2x00dev, TXRX_CSR6, &reg);
768         rt2x00_set_field16(&reg, TXRX_CSR6_BBP_ID0, 10);
769         rt2x00_set_field16(&reg, TXRX_CSR6_BBP_ID0_VALID, 1);
770         rt2x00_set_field16(&reg, TXRX_CSR6_BBP_ID1, 11);
771         rt2x00_set_field16(&reg, TXRX_CSR6_BBP_ID1_VALID, 1);
772         rt2500usb_register_write(rt2x00dev, TXRX_CSR6, reg);
773
774         rt2500usb_register_read(rt2x00dev, TXRX_CSR7, &reg);
775         rt2x00_set_field16(&reg, TXRX_CSR7_BBP_ID0, 7);
776         rt2x00_set_field16(&reg, TXRX_CSR7_BBP_ID0_VALID, 1);
777         rt2x00_set_field16(&reg, TXRX_CSR7_BBP_ID1, 6);
778         rt2x00_set_field16(&reg, TXRX_CSR7_BBP_ID1_VALID, 1);
779         rt2500usb_register_write(rt2x00dev, TXRX_CSR7, reg);
780
781         rt2500usb_register_read(rt2x00dev, TXRX_CSR8, &reg);
782         rt2x00_set_field16(&reg, TXRX_CSR8_BBP_ID0, 5);
783         rt2x00_set_field16(&reg, TXRX_CSR8_BBP_ID0_VALID, 1);
784         rt2x00_set_field16(&reg, TXRX_CSR8_BBP_ID1, 0);
785         rt2x00_set_field16(&reg, TXRX_CSR8_BBP_ID1_VALID, 0);
786         rt2500usb_register_write(rt2x00dev, TXRX_CSR8, reg);
787
788         rt2500usb_register_read(rt2x00dev, TXRX_CSR19, &reg);
789         rt2x00_set_field16(&reg, TXRX_CSR19_TSF_COUNT, 0);
790         rt2x00_set_field16(&reg, TXRX_CSR19_TSF_SYNC, 0);
791         rt2x00_set_field16(&reg, TXRX_CSR19_TBCN, 0);
792         rt2x00_set_field16(&reg, TXRX_CSR19_BEACON_GEN, 0);
793         rt2500usb_register_write(rt2x00dev, TXRX_CSR19, reg);
794
795         rt2500usb_register_write(rt2x00dev, TXRX_CSR21, 0xe78f);
796         rt2500usb_register_write(rt2x00dev, MAC_CSR9, 0xff1d);
797
798         if (rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_AWAKE))
799                 return -EBUSY;
800
801         rt2500usb_register_read(rt2x00dev, MAC_CSR1, &reg);
802         rt2x00_set_field16(&reg, MAC_CSR1_SOFT_RESET, 0);
803         rt2x00_set_field16(&reg, MAC_CSR1_BBP_RESET, 0);
804         rt2x00_set_field16(&reg, MAC_CSR1_HOST_READY, 1);
805         rt2500usb_register_write(rt2x00dev, MAC_CSR1, reg);
806
807         if (rt2x00_rev(rt2x00dev) >= RT2570_VERSION_C) {
808                 rt2500usb_register_read(rt2x00dev, PHY_CSR2, &reg);
809                 rt2x00_set_field16(&reg, PHY_CSR2_LNA, 0);
810         } else {
811                 reg = 0;
812                 rt2x00_set_field16(&reg, PHY_CSR2_LNA, 1);
813                 rt2x00_set_field16(&reg, PHY_CSR2_LNA_MODE, 3);
814         }
815         rt2500usb_register_write(rt2x00dev, PHY_CSR2, reg);
816
817         rt2500usb_register_write(rt2x00dev, MAC_CSR11, 0x0002);
818         rt2500usb_register_write(rt2x00dev, MAC_CSR22, 0x0053);
819         rt2500usb_register_write(rt2x00dev, MAC_CSR15, 0x01ee);
820         rt2500usb_register_write(rt2x00dev, MAC_CSR16, 0x0000);
821
822         rt2500usb_register_read(rt2x00dev, MAC_CSR8, &reg);
823         rt2x00_set_field16(&reg, MAC_CSR8_MAX_FRAME_UNIT,
824                            rt2x00dev->rx->data_size);
825         rt2500usb_register_write(rt2x00dev, MAC_CSR8, reg);
826
827         rt2500usb_register_read(rt2x00dev, TXRX_CSR0, &reg);
828         rt2x00_set_field16(&reg, TXRX_CSR0_ALGORITHM, CIPHER_NONE);
829         rt2x00_set_field16(&reg, TXRX_CSR0_IV_OFFSET, IEEE80211_HEADER);
830         rt2x00_set_field16(&reg, TXRX_CSR0_KEY_ID, 0);
831         rt2500usb_register_write(rt2x00dev, TXRX_CSR0, reg);
832
833         rt2500usb_register_read(rt2x00dev, MAC_CSR18, &reg);
834         rt2x00_set_field16(&reg, MAC_CSR18_DELAY_AFTER_BEACON, 90);
835         rt2500usb_register_write(rt2x00dev, MAC_CSR18, reg);
836
837         rt2500usb_register_read(rt2x00dev, PHY_CSR4, &reg);
838         rt2x00_set_field16(&reg, PHY_CSR4_LOW_RF_LE, 1);
839         rt2500usb_register_write(rt2x00dev, PHY_CSR4, reg);
840
841         rt2500usb_register_read(rt2x00dev, TXRX_CSR1, &reg);
842         rt2x00_set_field16(&reg, TXRX_CSR1_AUTO_SEQUENCE, 1);
843         rt2500usb_register_write(rt2x00dev, TXRX_CSR1, reg);
844
845         return 0;
846 }
847
848 static int rt2500usb_wait_bbp_ready(struct rt2x00_dev *rt2x00dev)
849 {
850         unsigned int i;
851         u8 value;
852
853         for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
854                 rt2500usb_bbp_read(rt2x00dev, 0, &value);
855                 if ((value != 0xff) && (value != 0x00))
856                         return 0;
857                 udelay(REGISTER_BUSY_DELAY);
858         }
859
860         ERROR(rt2x00dev, "BBP register access failed, aborting.\n");
861         return -EACCES;
862 }
863
864 static int rt2500usb_init_bbp(struct rt2x00_dev *rt2x00dev)
865 {
866         unsigned int i;
867         u16 eeprom;
868         u8 value;
869         u8 reg_id;
870
871         if (unlikely(rt2500usb_wait_bbp_ready(rt2x00dev)))
872                 return -EACCES;
873
874         rt2500usb_bbp_write(rt2x00dev, 3, 0x02);
875         rt2500usb_bbp_write(rt2x00dev, 4, 0x19);
876         rt2500usb_bbp_write(rt2x00dev, 14, 0x1c);
877         rt2500usb_bbp_write(rt2x00dev, 15, 0x30);
878         rt2500usb_bbp_write(rt2x00dev, 16, 0xac);
879         rt2500usb_bbp_write(rt2x00dev, 18, 0x18);
880         rt2500usb_bbp_write(rt2x00dev, 19, 0xff);
881         rt2500usb_bbp_write(rt2x00dev, 20, 0x1e);
882         rt2500usb_bbp_write(rt2x00dev, 21, 0x08);
883         rt2500usb_bbp_write(rt2x00dev, 22, 0x08);
884         rt2500usb_bbp_write(rt2x00dev, 23, 0x08);
885         rt2500usb_bbp_write(rt2x00dev, 24, 0x80);
886         rt2500usb_bbp_write(rt2x00dev, 25, 0x50);
887         rt2500usb_bbp_write(rt2x00dev, 26, 0x08);
888         rt2500usb_bbp_write(rt2x00dev, 27, 0x23);
889         rt2500usb_bbp_write(rt2x00dev, 30, 0x10);
890         rt2500usb_bbp_write(rt2x00dev, 31, 0x2b);
891         rt2500usb_bbp_write(rt2x00dev, 32, 0xb9);
892         rt2500usb_bbp_write(rt2x00dev, 34, 0x12);
893         rt2500usb_bbp_write(rt2x00dev, 35, 0x50);
894         rt2500usb_bbp_write(rt2x00dev, 39, 0xc4);
895         rt2500usb_bbp_write(rt2x00dev, 40, 0x02);
896         rt2500usb_bbp_write(rt2x00dev, 41, 0x60);
897         rt2500usb_bbp_write(rt2x00dev, 53, 0x10);
898         rt2500usb_bbp_write(rt2x00dev, 54, 0x18);
899         rt2500usb_bbp_write(rt2x00dev, 56, 0x08);
900         rt2500usb_bbp_write(rt2x00dev, 57, 0x10);
901         rt2500usb_bbp_write(rt2x00dev, 58, 0x08);
902         rt2500usb_bbp_write(rt2x00dev, 61, 0x60);
903         rt2500usb_bbp_write(rt2x00dev, 62, 0x10);
904         rt2500usb_bbp_write(rt2x00dev, 75, 0xff);
905
906         for (i = 0; i < EEPROM_BBP_SIZE; i++) {
907                 rt2x00_eeprom_read(rt2x00dev, EEPROM_BBP_START + i, &eeprom);
908
909                 if (eeprom != 0xffff && eeprom != 0x0000) {
910                         reg_id = rt2x00_get_field16(eeprom, EEPROM_BBP_REG_ID);
911                         value = rt2x00_get_field16(eeprom, EEPROM_BBP_VALUE);
912                         rt2500usb_bbp_write(rt2x00dev, reg_id, value);
913                 }
914         }
915
916         return 0;
917 }
918
919 /*
920  * Device state switch handlers.
921  */
922 static void rt2500usb_toggle_rx(struct rt2x00_dev *rt2x00dev,
923                                 enum dev_state state)
924 {
925         u16 reg;
926
927         rt2500usb_register_read(rt2x00dev, TXRX_CSR2, &reg);
928         rt2x00_set_field16(&reg, TXRX_CSR2_DISABLE_RX,
929                            (state == STATE_RADIO_RX_OFF) ||
930                            (state == STATE_RADIO_RX_OFF_LINK));
931         rt2500usb_register_write(rt2x00dev, TXRX_CSR2, reg);
932 }
933
934 static int rt2500usb_enable_radio(struct rt2x00_dev *rt2x00dev)
935 {
936         /*
937          * Initialize all registers.
938          */
939         if (unlikely(rt2500usb_init_registers(rt2x00dev) ||
940                      rt2500usb_init_bbp(rt2x00dev)))
941                 return -EIO;
942
943         return 0;
944 }
945
946 static void rt2500usb_disable_radio(struct rt2x00_dev *rt2x00dev)
947 {
948         rt2500usb_register_write(rt2x00dev, MAC_CSR13, 0x2121);
949         rt2500usb_register_write(rt2x00dev, MAC_CSR14, 0x2121);
950
951         /*
952          * Disable synchronisation.
953          */
954         rt2500usb_register_write(rt2x00dev, TXRX_CSR19, 0);
955
956         rt2x00usb_disable_radio(rt2x00dev);
957 }
958
959 static int rt2500usb_set_state(struct rt2x00_dev *rt2x00dev,
960                                enum dev_state state)
961 {
962         u16 reg;
963         u16 reg2;
964         unsigned int i;
965         char put_to_sleep;
966         char bbp_state;
967         char rf_state;
968
969         put_to_sleep = (state != STATE_AWAKE);
970
971         reg = 0;
972         rt2x00_set_field16(&reg, MAC_CSR17_BBP_DESIRE_STATE, state);
973         rt2x00_set_field16(&reg, MAC_CSR17_RF_DESIRE_STATE, state);
974         rt2x00_set_field16(&reg, MAC_CSR17_PUT_TO_SLEEP, put_to_sleep);
975         rt2500usb_register_write(rt2x00dev, MAC_CSR17, reg);
976         rt2x00_set_field16(&reg, MAC_CSR17_SET_STATE, 1);
977         rt2500usb_register_write(rt2x00dev, MAC_CSR17, reg);
978
979         /*
980          * Device is not guaranteed to be in the requested state yet.
981          * We must wait until the register indicates that the
982          * device has entered the correct state.
983          */
984         for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
985                 rt2500usb_register_read(rt2x00dev, MAC_CSR17, &reg2);
986                 bbp_state = rt2x00_get_field16(reg2, MAC_CSR17_BBP_CURR_STATE);
987                 rf_state = rt2x00_get_field16(reg2, MAC_CSR17_RF_CURR_STATE);
988                 if (bbp_state == state && rf_state == state)
989                         return 0;
990                 rt2500usb_register_write(rt2x00dev, MAC_CSR17, reg);
991                 msleep(30);
992         }
993
994         return -EBUSY;
995 }
996
997 static int rt2500usb_set_device_state(struct rt2x00_dev *rt2x00dev,
998                                       enum dev_state state)
999 {
1000         int retval = 0;
1001
1002         switch (state) {
1003         case STATE_RADIO_ON:
1004                 retval = rt2500usb_enable_radio(rt2x00dev);
1005                 break;
1006         case STATE_RADIO_OFF:
1007                 rt2500usb_disable_radio(rt2x00dev);
1008                 break;
1009         case STATE_RADIO_RX_ON:
1010         case STATE_RADIO_RX_ON_LINK:
1011         case STATE_RADIO_RX_OFF:
1012         case STATE_RADIO_RX_OFF_LINK:
1013                 rt2500usb_toggle_rx(rt2x00dev, state);
1014                 break;
1015         case STATE_RADIO_IRQ_ON:
1016         case STATE_RADIO_IRQ_ON_ISR:
1017         case STATE_RADIO_IRQ_OFF:
1018         case STATE_RADIO_IRQ_OFF_ISR:
1019                 /* No support, but no error either */
1020                 break;
1021         case STATE_DEEP_SLEEP:
1022         case STATE_SLEEP:
1023         case STATE_STANDBY:
1024         case STATE_AWAKE:
1025                 retval = rt2500usb_set_state(rt2x00dev, state);
1026                 break;
1027         default:
1028                 retval = -ENOTSUPP;
1029                 break;
1030         }
1031
1032         if (unlikely(retval))
1033                 ERROR(rt2x00dev, "Device failed to enter state %d (%d).\n",
1034                       state, retval);
1035
1036         return retval;
1037 }
1038
1039 /*
1040  * TX descriptor initialization
1041  */
1042 static void rt2500usb_write_tx_desc(struct rt2x00_dev *rt2x00dev,
1043                                     struct sk_buff *skb,
1044                                     struct txentry_desc *txdesc)
1045 {
1046         struct skb_frame_desc *skbdesc = get_skb_frame_desc(skb);
1047         __le32 *txd = (__le32 *) skb->data;
1048         u32 word;
1049
1050         /*
1051          * Start writing the descriptor words.
1052          */
1053         rt2x00_desc_read(txd, 0, &word);
1054         rt2x00_set_field32(&word, TXD_W0_RETRY_LIMIT, txdesc->retry_limit);
1055         rt2x00_set_field32(&word, TXD_W0_MORE_FRAG,
1056                            test_bit(ENTRY_TXD_MORE_FRAG, &txdesc->flags));
1057         rt2x00_set_field32(&word, TXD_W0_ACK,
1058                            test_bit(ENTRY_TXD_ACK, &txdesc->flags));
1059         rt2x00_set_field32(&word, TXD_W0_TIMESTAMP,
1060                            test_bit(ENTRY_TXD_REQ_TIMESTAMP, &txdesc->flags));
1061         rt2x00_set_field32(&word, TXD_W0_OFDM,
1062                            (txdesc->rate_mode == RATE_MODE_OFDM));
1063         rt2x00_set_field32(&word, TXD_W0_NEW_SEQ,
1064                            test_bit(ENTRY_TXD_FIRST_FRAGMENT, &txdesc->flags));
1065         rt2x00_set_field32(&word, TXD_W0_IFS, txdesc->ifs);
1066         rt2x00_set_field32(&word, TXD_W0_DATABYTE_COUNT, txdesc->length);
1067         rt2x00_set_field32(&word, TXD_W0_CIPHER, !!txdesc->cipher);
1068         rt2x00_set_field32(&word, TXD_W0_KEY_ID, txdesc->key_idx);
1069         rt2x00_desc_write(txd, 0, word);
1070
1071         rt2x00_desc_read(txd, 1, &word);
1072         rt2x00_set_field32(&word, TXD_W1_IV_OFFSET, txdesc->iv_offset);
1073         rt2x00_set_field32(&word, TXD_W1_AIFS, txdesc->aifs);
1074         rt2x00_set_field32(&word, TXD_W1_CWMIN, txdesc->cw_min);
1075         rt2x00_set_field32(&word, TXD_W1_CWMAX, txdesc->cw_max);
1076         rt2x00_desc_write(txd, 1, word);
1077
1078         rt2x00_desc_read(txd, 2, &word);
1079         rt2x00_set_field32(&word, TXD_W2_PLCP_SIGNAL, txdesc->signal);
1080         rt2x00_set_field32(&word, TXD_W2_PLCP_SERVICE, txdesc->service);
1081         rt2x00_set_field32(&word, TXD_W2_PLCP_LENGTH_LOW, txdesc->length_low);
1082         rt2x00_set_field32(&word, TXD_W2_PLCP_LENGTH_HIGH, txdesc->length_high);
1083         rt2x00_desc_write(txd, 2, word);
1084
1085         if (test_bit(ENTRY_TXD_ENCRYPT, &txdesc->flags)) {
1086                 _rt2x00_desc_write(txd, 3, skbdesc->iv[0]);
1087                 _rt2x00_desc_write(txd, 4, skbdesc->iv[1]);
1088         }
1089
1090         /*
1091          * Register descriptor details in skb frame descriptor.
1092          */
1093         skbdesc->flags |= SKBDESC_DESC_IN_SKB;
1094         skbdesc->desc = txd;
1095         skbdesc->desc_len = TXD_DESC_SIZE;
1096 }
1097
1098 /*
1099  * TX data initialization
1100  */
1101 static void rt2500usb_beacondone(struct urb *urb);
1102
1103 static void rt2500usb_write_beacon(struct queue_entry *entry,
1104                                    struct txentry_desc *txdesc)
1105 {
1106         struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
1107         struct usb_device *usb_dev = to_usb_device_intf(rt2x00dev->dev);
1108         struct queue_entry_priv_usb_bcn *bcn_priv = entry->priv_data;
1109         int pipe = usb_sndbulkpipe(usb_dev, entry->queue->usb_endpoint);
1110         int length;
1111         u16 reg, reg0;
1112
1113         /*
1114          * Disable beaconing while we are reloading the beacon data,
1115          * otherwise we might be sending out invalid data.
1116          */
1117         rt2500usb_register_read(rt2x00dev, TXRX_CSR19, &reg);
1118         rt2x00_set_field16(&reg, TXRX_CSR19_BEACON_GEN, 0);
1119         rt2500usb_register_write(rt2x00dev, TXRX_CSR19, reg);
1120
1121         /*
1122          * Add space for the descriptor in front of the skb.
1123          */
1124         skb_push(entry->skb, TXD_DESC_SIZE);
1125         memset(entry->skb->data, 0, TXD_DESC_SIZE);
1126
1127         /*
1128          * Write the TX descriptor for the beacon.
1129          */
1130         rt2500usb_write_tx_desc(rt2x00dev, entry->skb, txdesc);
1131
1132         /*
1133          * Dump beacon to userspace through debugfs.
1134          */
1135         rt2x00debug_dump_frame(rt2x00dev, DUMP_FRAME_BEACON, entry->skb);
1136
1137         /*
1138          * USB devices cannot blindly pass the skb->len as the
1139          * length of the data to usb_fill_bulk_urb. Pass the skb
1140          * to the driver to determine what the length should be.
1141          */
1142         length = rt2x00dev->ops->lib->get_tx_data_len(entry);
1143
1144         usb_fill_bulk_urb(bcn_priv->urb, usb_dev, pipe,
1145                           entry->skb->data, length, rt2500usb_beacondone,
1146                           entry);
1147
1148         /*
1149          * Second we need to create the guardian byte.
1150          * We only need a single byte, so lets recycle
1151          * the 'flags' field we are not using for beacons.
1152          */
1153         bcn_priv->guardian_data = 0;
1154         usb_fill_bulk_urb(bcn_priv->guardian_urb, usb_dev, pipe,
1155                           &bcn_priv->guardian_data, 1, rt2500usb_beacondone,
1156                           entry);
1157
1158         /*
1159          * Send out the guardian byte.
1160          */
1161         usb_submit_urb(bcn_priv->guardian_urb, GFP_ATOMIC);
1162
1163         /*
1164          * Enable beaconing again.
1165          */
1166         rt2x00_set_field16(&reg, TXRX_CSR19_TSF_COUNT, 1);
1167         rt2x00_set_field16(&reg, TXRX_CSR19_TBCN, 1);
1168         reg0 = reg;
1169         rt2x00_set_field16(&reg, TXRX_CSR19_BEACON_GEN, 1);
1170         /*
1171          * Beacon generation will fail initially.
1172          * To prevent this we need to change the TXRX_CSR19
1173          * register several times (reg0 is the same as reg
1174          * except for TXRX_CSR19_BEACON_GEN, which is 0 in reg0
1175          * and 1 in reg).
1176          */
1177         rt2500usb_register_write(rt2x00dev, TXRX_CSR19, reg);
1178         rt2500usb_register_write(rt2x00dev, TXRX_CSR19, reg0);
1179         rt2500usb_register_write(rt2x00dev, TXRX_CSR19, reg);
1180         rt2500usb_register_write(rt2x00dev, TXRX_CSR19, reg0);
1181         rt2500usb_register_write(rt2x00dev, TXRX_CSR19, reg);
1182 }
1183
1184 static int rt2500usb_get_tx_data_len(struct queue_entry *entry)
1185 {
1186         int length;
1187
1188         /*
1189          * The length _must_ be a multiple of 2,
1190          * but it must _not_ be a multiple of the USB packet size.
1191          */
1192         length = roundup(entry->skb->len, 2);
1193         length += (2 * !(length % entry->queue->usb_maxpacket));
1194
1195         return length;
1196 }
1197
1198 /*
1199  * RX control handlers
1200  */
1201 static void rt2500usb_fill_rxdone(struct queue_entry *entry,
1202                                   struct rxdone_entry_desc *rxdesc)
1203 {
1204         struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
1205         struct queue_entry_priv_usb *entry_priv = entry->priv_data;
1206         struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb);
1207         __le32 *rxd =
1208             (__le32 *)(entry->skb->data +
1209                        (entry_priv->urb->actual_length -
1210                         entry->queue->desc_size));
1211         u32 word0;
1212         u32 word1;
1213
1214         /*
1215          * Copy descriptor to the skbdesc->desc buffer, making it safe from moving of
1216          * frame data in rt2x00usb.
1217          */
1218         memcpy(skbdesc->desc, rxd, skbdesc->desc_len);
1219         rxd = (__le32 *)skbdesc->desc;
1220
1221         /*
1222          * It is now safe to read the descriptor on all architectures.
1223          */
1224         rt2x00_desc_read(rxd, 0, &word0);
1225         rt2x00_desc_read(rxd, 1, &word1);
1226
1227         if (rt2x00_get_field32(word0, RXD_W0_CRC_ERROR))
1228                 rxdesc->flags |= RX_FLAG_FAILED_FCS_CRC;
1229         if (rt2x00_get_field32(word0, RXD_W0_PHYSICAL_ERROR))
1230                 rxdesc->flags |= RX_FLAG_FAILED_PLCP_CRC;
1231
1232         rxdesc->cipher = rt2x00_get_field32(word0, RXD_W0_CIPHER);
1233         if (rt2x00_get_field32(word0, RXD_W0_CIPHER_ERROR))
1234                 rxdesc->cipher_status = RX_CRYPTO_FAIL_KEY;
1235
1236         if (rxdesc->cipher != CIPHER_NONE) {
1237                 _rt2x00_desc_read(rxd, 2, &rxdesc->iv[0]);
1238                 _rt2x00_desc_read(rxd, 3, &rxdesc->iv[1]);
1239                 rxdesc->dev_flags |= RXDONE_CRYPTO_IV;
1240
1241                 /* ICV is located at the end of frame */
1242
1243                 rxdesc->flags |= RX_FLAG_MMIC_STRIPPED;
1244                 if (rxdesc->cipher_status == RX_CRYPTO_SUCCESS)
1245                         rxdesc->flags |= RX_FLAG_DECRYPTED;
1246                 else if (rxdesc->cipher_status == RX_CRYPTO_FAIL_MIC)
1247                         rxdesc->flags |= RX_FLAG_MMIC_ERROR;
1248         }
1249
1250         /*
1251          * Obtain the status about this packet.
1252          * When frame was received with an OFDM bitrate,
1253          * the signal is the PLCP value. If it was received with
1254          * a CCK bitrate the signal is the rate in 100kbit/s.
1255          */
1256         rxdesc->signal = rt2x00_get_field32(word1, RXD_W1_SIGNAL);
1257         rxdesc->rssi =
1258             rt2x00_get_field32(word1, RXD_W1_RSSI) - rt2x00dev->rssi_offset;
1259         rxdesc->size = rt2x00_get_field32(word0, RXD_W0_DATABYTE_COUNT);
1260
1261         if (rt2x00_get_field32(word0, RXD_W0_OFDM))
1262                 rxdesc->dev_flags |= RXDONE_SIGNAL_PLCP;
1263         else
1264                 rxdesc->dev_flags |= RXDONE_SIGNAL_BITRATE;
1265         if (rt2x00_get_field32(word0, RXD_W0_MY_BSS))
1266                 rxdesc->dev_flags |= RXDONE_MY_BSS;
1267
1268         /*
1269          * Adjust the skb memory window to the frame boundaries.
1270          */
1271         skb_trim(entry->skb, rxdesc->size);
1272 }
1273
1274 /*
1275  * Interrupt functions.
1276  */
1277 static void rt2500usb_beacondone(struct urb *urb)
1278 {
1279         struct queue_entry *entry = (struct queue_entry *)urb->context;
1280         struct queue_entry_priv_usb_bcn *bcn_priv = entry->priv_data;
1281
1282         if (!test_bit(DEVICE_STATE_ENABLED_RADIO, &entry->queue->rt2x00dev->flags))
1283                 return;
1284
1285         /*
1286          * Check if this was the guardian beacon,
1287          * if that was the case we need to send the real beacon now.
1288          * Otherwise we should free the sk_buffer, the device
1289          * should be doing the rest of the work now.
1290          */
1291         if (bcn_priv->guardian_urb == urb) {
1292                 usb_submit_urb(bcn_priv->urb, GFP_ATOMIC);
1293         } else if (bcn_priv->urb == urb) {
1294                 dev_kfree_skb(entry->skb);
1295                 entry->skb = NULL;
1296         }
1297 }
1298
1299 /*
1300  * Device probe functions.
1301  */
1302 static int rt2500usb_validate_eeprom(struct rt2x00_dev *rt2x00dev)
1303 {
1304         u16 word;
1305         u8 *mac;
1306         u8 bbp;
1307
1308         rt2x00usb_eeprom_read(rt2x00dev, rt2x00dev->eeprom, EEPROM_SIZE);
1309
1310         /*
1311          * Start validation of the data that has been read.
1312          */
1313         mac = rt2x00_eeprom_addr(rt2x00dev, EEPROM_MAC_ADDR_0);
1314         if (!is_valid_ether_addr(mac)) {
1315                 random_ether_addr(mac);
1316                 EEPROM(rt2x00dev, "MAC: %pM\n", mac);
1317         }
1318
1319         rt2x00_eeprom_read(rt2x00dev, EEPROM_ANTENNA, &word);
1320         if (word == 0xffff) {
1321                 rt2x00_set_field16(&word, EEPROM_ANTENNA_NUM, 2);
1322                 rt2x00_set_field16(&word, EEPROM_ANTENNA_TX_DEFAULT,
1323                                    ANTENNA_SW_DIVERSITY);
1324                 rt2x00_set_field16(&word, EEPROM_ANTENNA_RX_DEFAULT,
1325                                    ANTENNA_SW_DIVERSITY);
1326                 rt2x00_set_field16(&word, EEPROM_ANTENNA_LED_MODE,
1327                                    LED_MODE_DEFAULT);
1328                 rt2x00_set_field16(&word, EEPROM_ANTENNA_DYN_TXAGC, 0);
1329                 rt2x00_set_field16(&word, EEPROM_ANTENNA_HARDWARE_RADIO, 0);
1330                 rt2x00_set_field16(&word, EEPROM_ANTENNA_RF_TYPE, RF2522);
1331                 rt2x00_eeprom_write(rt2x00dev, EEPROM_ANTENNA, word);
1332                 EEPROM(rt2x00dev, "Antenna: 0x%04x\n", word);
1333         }
1334
1335         rt2x00_eeprom_read(rt2x00dev, EEPROM_NIC, &word);
1336         if (word == 0xffff) {
1337                 rt2x00_set_field16(&word, EEPROM_NIC_CARDBUS_ACCEL, 0);
1338                 rt2x00_set_field16(&word, EEPROM_NIC_DYN_BBP_TUNE, 0);
1339                 rt2x00_set_field16(&word, EEPROM_NIC_CCK_TX_POWER, 0);
1340                 rt2x00_eeprom_write(rt2x00dev, EEPROM_NIC, word);
1341                 EEPROM(rt2x00dev, "NIC: 0x%04x\n", word);
1342         }
1343
1344         rt2x00_eeprom_read(rt2x00dev, EEPROM_CALIBRATE_OFFSET, &word);
1345         if (word == 0xffff) {
1346                 rt2x00_set_field16(&word, EEPROM_CALIBRATE_OFFSET_RSSI,
1347                                    DEFAULT_RSSI_OFFSET);
1348                 rt2x00_eeprom_write(rt2x00dev, EEPROM_CALIBRATE_OFFSET, word);
1349                 EEPROM(rt2x00dev, "Calibrate offset: 0x%04x\n", word);
1350         }
1351
1352         rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE, &word);
1353         if (word == 0xffff) {
1354                 rt2x00_set_field16(&word, EEPROM_BBPTUNE_THRESHOLD, 45);
1355                 rt2x00_eeprom_write(rt2x00dev, EEPROM_BBPTUNE, word);
1356                 EEPROM(rt2x00dev, "BBPtune: 0x%04x\n", word);
1357         }
1358
1359         /*
1360          * Switch lower vgc bound to current BBP R17 value,
1361          * lower the value a bit for better quality.
1362          */
1363         rt2500usb_bbp_read(rt2x00dev, 17, &bbp);
1364         bbp -= 6;
1365
1366         rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE_VGC, &word);
1367         if (word == 0xffff) {
1368                 rt2x00_set_field16(&word, EEPROM_BBPTUNE_VGCUPPER, 0x40);
1369                 rt2x00_set_field16(&word, EEPROM_BBPTUNE_VGCLOWER, bbp);
1370                 rt2x00_eeprom_write(rt2x00dev, EEPROM_BBPTUNE_VGC, word);
1371                 EEPROM(rt2x00dev, "BBPtune vgc: 0x%04x\n", word);
1372         } else {
1373                 rt2x00_set_field16(&word, EEPROM_BBPTUNE_VGCLOWER, bbp);
1374                 rt2x00_eeprom_write(rt2x00dev, EEPROM_BBPTUNE_VGC, word);
1375         }
1376
1377         rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE_R17, &word);
1378         if (word == 0xffff) {
1379                 rt2x00_set_field16(&word, EEPROM_BBPTUNE_R17_LOW, 0x48);
1380                 rt2x00_set_field16(&word, EEPROM_BBPTUNE_R17_HIGH, 0x41);
1381                 rt2x00_eeprom_write(rt2x00dev, EEPROM_BBPTUNE_R17, word);
1382                 EEPROM(rt2x00dev, "BBPtune r17: 0x%04x\n", word);
1383         }
1384
1385         rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE_R24, &word);
1386         if (word == 0xffff) {
1387                 rt2x00_set_field16(&word, EEPROM_BBPTUNE_R24_LOW, 0x40);
1388                 rt2x00_set_field16(&word, EEPROM_BBPTUNE_R24_HIGH, 0x80);
1389                 rt2x00_eeprom_write(rt2x00dev, EEPROM_BBPTUNE_R24, word);
1390                 EEPROM(rt2x00dev, "BBPtune r24: 0x%04x\n", word);
1391         }
1392
1393         rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE_R25, &word);
1394         if (word == 0xffff) {
1395                 rt2x00_set_field16(&word, EEPROM_BBPTUNE_R25_LOW, 0x40);
1396                 rt2x00_set_field16(&word, EEPROM_BBPTUNE_R25_HIGH, 0x50);
1397                 rt2x00_eeprom_write(rt2x00dev, EEPROM_BBPTUNE_R25, word);
1398                 EEPROM(rt2x00dev, "BBPtune r25: 0x%04x\n", word);
1399         }
1400
1401         rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE_R61, &word);
1402         if (word == 0xffff) {
1403                 rt2x00_set_field16(&word, EEPROM_BBPTUNE_R61_LOW, 0x60);
1404                 rt2x00_set_field16(&word, EEPROM_BBPTUNE_R61_HIGH, 0x6d);
1405                 rt2x00_eeprom_write(rt2x00dev, EEPROM_BBPTUNE_R61, word);
1406                 EEPROM(rt2x00dev, "BBPtune r61: 0x%04x\n", word);
1407         }
1408
1409         return 0;
1410 }
1411
1412 static int rt2500usb_init_eeprom(struct rt2x00_dev *rt2x00dev)
1413 {
1414         u16 reg;
1415         u16 value;
1416         u16 eeprom;
1417
1418         /*
1419          * Read EEPROM word for configuration.
1420          */
1421         rt2x00_eeprom_read(rt2x00dev, EEPROM_ANTENNA, &eeprom);
1422
1423         /*
1424          * Identify RF chipset.
1425          */
1426         value = rt2x00_get_field16(eeprom, EEPROM_ANTENNA_RF_TYPE);
1427         rt2500usb_register_read(rt2x00dev, MAC_CSR0, &reg);
1428         rt2x00_set_chip(rt2x00dev, RT2570, value, reg);
1429
1430         if (((reg & 0xfff0) != 0) || ((reg & 0x0000000f) == 0)) {
1431                 ERROR(rt2x00dev, "Invalid RT chipset detected.\n");
1432                 return -ENODEV;
1433         }
1434
1435         if (!rt2x00_rf(rt2x00dev, RF2522) &&
1436             !rt2x00_rf(rt2x00dev, RF2523) &&
1437             !rt2x00_rf(rt2x00dev, RF2524) &&
1438             !rt2x00_rf(rt2x00dev, RF2525) &&
1439             !rt2x00_rf(rt2x00dev, RF2525E) &&
1440             !rt2x00_rf(rt2x00dev, RF5222)) {
1441                 ERROR(rt2x00dev, "Invalid RF chipset detected.\n");
1442                 return -ENODEV;
1443         }
1444
1445         /*
1446          * Identify default antenna configuration.
1447          */
1448         rt2x00dev->default_ant.tx =
1449             rt2x00_get_field16(eeprom, EEPROM_ANTENNA_TX_DEFAULT);
1450         rt2x00dev->default_ant.rx =
1451             rt2x00_get_field16(eeprom, EEPROM_ANTENNA_RX_DEFAULT);
1452
1453         /*
1454          * When the eeprom indicates SW_DIVERSITY use HW_DIVERSITY instead.
1455          * I am not 100% sure about this, but the legacy drivers do not
1456          * indicate antenna swapping in software is required when
1457          * diversity is enabled.
1458          */
1459         if (rt2x00dev->default_ant.tx == ANTENNA_SW_DIVERSITY)
1460                 rt2x00dev->default_ant.tx = ANTENNA_HW_DIVERSITY;
1461         if (rt2x00dev->default_ant.rx == ANTENNA_SW_DIVERSITY)
1462                 rt2x00dev->default_ant.rx = ANTENNA_HW_DIVERSITY;
1463
1464         /*
1465          * Store led mode, for correct led behaviour.
1466          */
1467 #ifdef CONFIG_RT2X00_LIB_LEDS
1468         value = rt2x00_get_field16(eeprom, EEPROM_ANTENNA_LED_MODE);
1469
1470         rt2500usb_init_led(rt2x00dev, &rt2x00dev->led_radio, LED_TYPE_RADIO);
1471         if (value == LED_MODE_TXRX_ACTIVITY ||
1472             value == LED_MODE_DEFAULT ||
1473             value == LED_MODE_ASUS)
1474                 rt2500usb_init_led(rt2x00dev, &rt2x00dev->led_qual,
1475                                    LED_TYPE_ACTIVITY);
1476 #endif /* CONFIG_RT2X00_LIB_LEDS */
1477
1478         /*
1479          * Detect if this device has an hardware controlled radio.
1480          */
1481         if (rt2x00_get_field16(eeprom, EEPROM_ANTENNA_HARDWARE_RADIO))
1482                 __set_bit(CONFIG_SUPPORT_HW_BUTTON, &rt2x00dev->flags);
1483
1484         /*
1485          * Read the RSSI <-> dBm offset information.
1486          */
1487         rt2x00_eeprom_read(rt2x00dev, EEPROM_CALIBRATE_OFFSET, &eeprom);
1488         rt2x00dev->rssi_offset =
1489             rt2x00_get_field16(eeprom, EEPROM_CALIBRATE_OFFSET_RSSI);
1490
1491         return 0;
1492 }
1493
1494 /*
1495  * RF value list for RF2522
1496  * Supports: 2.4 GHz
1497  */
1498 static const struct rf_channel rf_vals_bg_2522[] = {
1499         { 1,  0x00002050, 0x000c1fda, 0x00000101, 0 },
1500         { 2,  0x00002050, 0x000c1fee, 0x00000101, 0 },
1501         { 3,  0x00002050, 0x000c2002, 0x00000101, 0 },
1502         { 4,  0x00002050, 0x000c2016, 0x00000101, 0 },
1503         { 5,  0x00002050, 0x000c202a, 0x00000101, 0 },
1504         { 6,  0x00002050, 0x000c203e, 0x00000101, 0 },
1505         { 7,  0x00002050, 0x000c2052, 0x00000101, 0 },
1506         { 8,  0x00002050, 0x000c2066, 0x00000101, 0 },
1507         { 9,  0x00002050, 0x000c207a, 0x00000101, 0 },
1508         { 10, 0x00002050, 0x000c208e, 0x00000101, 0 },
1509         { 11, 0x00002050, 0x000c20a2, 0x00000101, 0 },
1510         { 12, 0x00002050, 0x000c20b6, 0x00000101, 0 },
1511         { 13, 0x00002050, 0x000c20ca, 0x00000101, 0 },
1512         { 14, 0x00002050, 0x000c20fa, 0x00000101, 0 },
1513 };
1514
1515 /*
1516  * RF value list for RF2523
1517  * Supports: 2.4 GHz
1518  */
1519 static const struct rf_channel rf_vals_bg_2523[] = {
1520         { 1,  0x00022010, 0x00000c9e, 0x000e0111, 0x00000a1b },
1521         { 2,  0x00022010, 0x00000ca2, 0x000e0111, 0x00000a1b },
1522         { 3,  0x00022010, 0x00000ca6, 0x000e0111, 0x00000a1b },
1523         { 4,  0x00022010, 0x00000caa, 0x000e0111, 0x00000a1b },
1524         { 5,  0x00022010, 0x00000cae, 0x000e0111, 0x00000a1b },
1525         { 6,  0x00022010, 0x00000cb2, 0x000e0111, 0x00000a1b },
1526         { 7,  0x00022010, 0x00000cb6, 0x000e0111, 0x00000a1b },
1527         { 8,  0x00022010, 0x00000cba, 0x000e0111, 0x00000a1b },
1528         { 9,  0x00022010, 0x00000cbe, 0x000e0111, 0x00000a1b },
1529         { 10, 0x00022010, 0x00000d02, 0x000e0111, 0x00000a1b },
1530         { 11, 0x00022010, 0x00000d06, 0x000e0111, 0x00000a1b },
1531         { 12, 0x00022010, 0x00000d0a, 0x000e0111, 0x00000a1b },
1532         { 13, 0x00022010, 0x00000d0e, 0x000e0111, 0x00000a1b },
1533         { 14, 0x00022010, 0x00000d1a, 0x000e0111, 0x00000a03 },
1534 };
1535
1536 /*
1537  * RF value list for RF2524
1538  * Supports: 2.4 GHz
1539  */
1540 static const struct rf_channel rf_vals_bg_2524[] = {
1541         { 1,  0x00032020, 0x00000c9e, 0x00000101, 0x00000a1b },
1542         { 2,  0x00032020, 0x00000ca2, 0x00000101, 0x00000a1b },
1543         { 3,  0x00032020, 0x00000ca6, 0x00000101, 0x00000a1b },
1544         { 4,  0x00032020, 0x00000caa, 0x00000101, 0x00000a1b },
1545         { 5,  0x00032020, 0x00000cae, 0x00000101, 0x00000a1b },
1546         { 6,  0x00032020, 0x00000cb2, 0x00000101, 0x00000a1b },
1547         { 7,  0x00032020, 0x00000cb6, 0x00000101, 0x00000a1b },
1548         { 8,  0x00032020, 0x00000cba, 0x00000101, 0x00000a1b },
1549         { 9,  0x00032020, 0x00000cbe, 0x00000101, 0x00000a1b },
1550         { 10, 0x00032020, 0x00000d02, 0x00000101, 0x00000a1b },
1551         { 11, 0x00032020, 0x00000d06, 0x00000101, 0x00000a1b },
1552         { 12, 0x00032020, 0x00000d0a, 0x00000101, 0x00000a1b },
1553         { 13, 0x00032020, 0x00000d0e, 0x00000101, 0x00000a1b },
1554         { 14, 0x00032020, 0x00000d1a, 0x00000101, 0x00000a03 },
1555 };
1556
1557 /*
1558  * RF value list for RF2525
1559  * Supports: 2.4 GHz
1560  */
1561 static const struct rf_channel rf_vals_bg_2525[] = {
1562         { 1,  0x00022020, 0x00080c9e, 0x00060111, 0x00000a1b },
1563         { 2,  0x00022020, 0x00080ca2, 0x00060111, 0x00000a1b },
1564         { 3,  0x00022020, 0x00080ca6, 0x00060111, 0x00000a1b },
1565         { 4,  0x00022020, 0x00080caa, 0x00060111, 0x00000a1b },
1566         { 5,  0x00022020, 0x00080cae, 0x00060111, 0x00000a1b },
1567         { 6,  0x00022020, 0x00080cb2, 0x00060111, 0x00000a1b },
1568         { 7,  0x00022020, 0x00080cb6, 0x00060111, 0x00000a1b },
1569         { 8,  0x00022020, 0x00080cba, 0x00060111, 0x00000a1b },
1570         { 9,  0x00022020, 0x00080cbe, 0x00060111, 0x00000a1b },
1571         { 10, 0x00022020, 0x00080d02, 0x00060111, 0x00000a1b },
1572         { 11, 0x00022020, 0x00080d06, 0x00060111, 0x00000a1b },
1573         { 12, 0x00022020, 0x00080d0a, 0x00060111, 0x00000a1b },
1574         { 13, 0x00022020, 0x00080d0e, 0x00060111, 0x00000a1b },
1575         { 14, 0x00022020, 0x00080d1a, 0x00060111, 0x00000a03 },
1576 };
1577
1578 /*
1579  * RF value list for RF2525e
1580  * Supports: 2.4 GHz
1581  */
1582 static const struct rf_channel rf_vals_bg_2525e[] = {
1583         { 1,  0x00022010, 0x0000089a, 0x00060111, 0x00000e1b },
1584         { 2,  0x00022010, 0x0000089e, 0x00060111, 0x00000e07 },
1585         { 3,  0x00022010, 0x0000089e, 0x00060111, 0x00000e1b },
1586         { 4,  0x00022010, 0x000008a2, 0x00060111, 0x00000e07 },
1587         { 5,  0x00022010, 0x000008a2, 0x00060111, 0x00000e1b },
1588         { 6,  0x00022010, 0x000008a6, 0x00060111, 0x00000e07 },
1589         { 7,  0x00022010, 0x000008a6, 0x00060111, 0x00000e1b },
1590         { 8,  0x00022010, 0x000008aa, 0x00060111, 0x00000e07 },
1591         { 9,  0x00022010, 0x000008aa, 0x00060111, 0x00000e1b },
1592         { 10, 0x00022010, 0x000008ae, 0x00060111, 0x00000e07 },
1593         { 11, 0x00022010, 0x000008ae, 0x00060111, 0x00000e1b },
1594         { 12, 0x00022010, 0x000008b2, 0x00060111, 0x00000e07 },
1595         { 13, 0x00022010, 0x000008b2, 0x00060111, 0x00000e1b },
1596         { 14, 0x00022010, 0x000008b6, 0x00060111, 0x00000e23 },
1597 };
1598
1599 /*
1600  * RF value list for RF5222
1601  * Supports: 2.4 GHz & 5.2 GHz
1602  */
1603 static const struct rf_channel rf_vals_5222[] = {
1604         { 1,  0x00022020, 0x00001136, 0x00000101, 0x00000a0b },
1605         { 2,  0x00022020, 0x0000113a, 0x00000101, 0x00000a0b },
1606         { 3,  0x00022020, 0x0000113e, 0x00000101, 0x00000a0b },
1607         { 4,  0x00022020, 0x00001182, 0x00000101, 0x00000a0b },
1608         { 5,  0x00022020, 0x00001186, 0x00000101, 0x00000a0b },
1609         { 6,  0x00022020, 0x0000118a, 0x00000101, 0x00000a0b },
1610         { 7,  0x00022020, 0x0000118e, 0x00000101, 0x00000a0b },
1611         { 8,  0x00022020, 0x00001192, 0x00000101, 0x00000a0b },
1612         { 9,  0x00022020, 0x00001196, 0x00000101, 0x00000a0b },
1613         { 10, 0x00022020, 0x0000119a, 0x00000101, 0x00000a0b },
1614         { 11, 0x00022020, 0x0000119e, 0x00000101, 0x00000a0b },
1615         { 12, 0x00022020, 0x000011a2, 0x00000101, 0x00000a0b },
1616         { 13, 0x00022020, 0x000011a6, 0x00000101, 0x00000a0b },
1617         { 14, 0x00022020, 0x000011ae, 0x00000101, 0x00000a1b },
1618
1619         /* 802.11 UNI / HyperLan 2 */
1620         { 36, 0x00022010, 0x00018896, 0x00000101, 0x00000a1f },
1621         { 40, 0x00022010, 0x0001889a, 0x00000101, 0x00000a1f },
1622         { 44, 0x00022010, 0x0001889e, 0x00000101, 0x00000a1f },
1623         { 48, 0x00022010, 0x000188a2, 0x00000101, 0x00000a1f },
1624         { 52, 0x00022010, 0x000188a6, 0x00000101, 0x00000a1f },
1625         { 66, 0x00022010, 0x000188aa, 0x00000101, 0x00000a1f },
1626         { 60, 0x00022010, 0x000188ae, 0x00000101, 0x00000a1f },
1627         { 64, 0x00022010, 0x000188b2, 0x00000101, 0x00000a1f },
1628
1629         /* 802.11 HyperLan 2 */
1630         { 100, 0x00022010, 0x00008802, 0x00000101, 0x00000a0f },
1631         { 104, 0x00022010, 0x00008806, 0x00000101, 0x00000a0f },
1632         { 108, 0x00022010, 0x0000880a, 0x00000101, 0x00000a0f },
1633         { 112, 0x00022010, 0x0000880e, 0x00000101, 0x00000a0f },
1634         { 116, 0x00022010, 0x00008812, 0x00000101, 0x00000a0f },
1635         { 120, 0x00022010, 0x00008816, 0x00000101, 0x00000a0f },
1636         { 124, 0x00022010, 0x0000881a, 0x00000101, 0x00000a0f },
1637         { 128, 0x00022010, 0x0000881e, 0x00000101, 0x00000a0f },
1638         { 132, 0x00022010, 0x00008822, 0x00000101, 0x00000a0f },
1639         { 136, 0x00022010, 0x00008826, 0x00000101, 0x00000a0f },
1640
1641         /* 802.11 UNII */
1642         { 140, 0x00022010, 0x0000882a, 0x00000101, 0x00000a0f },
1643         { 149, 0x00022020, 0x000090a6, 0x00000101, 0x00000a07 },
1644         { 153, 0x00022020, 0x000090ae, 0x00000101, 0x00000a07 },
1645         { 157, 0x00022020, 0x000090b6, 0x00000101, 0x00000a07 },
1646         { 161, 0x00022020, 0x000090be, 0x00000101, 0x00000a07 },
1647 };
1648
1649 static int rt2500usb_probe_hw_mode(struct rt2x00_dev *rt2x00dev)
1650 {
1651         struct hw_mode_spec *spec = &rt2x00dev->spec;
1652         struct channel_info *info;
1653         char *tx_power;
1654         unsigned int i;
1655
1656         /*
1657          * Initialize all hw fields.
1658          */
1659         rt2x00dev->hw->flags =
1660             IEEE80211_HW_RX_INCLUDES_FCS |
1661             IEEE80211_HW_HOST_BROADCAST_PS_BUFFERING |
1662             IEEE80211_HW_SIGNAL_DBM |
1663             IEEE80211_HW_SUPPORTS_PS |
1664             IEEE80211_HW_PS_NULLFUNC_STACK;
1665
1666         SET_IEEE80211_DEV(rt2x00dev->hw, rt2x00dev->dev);
1667         SET_IEEE80211_PERM_ADDR(rt2x00dev->hw,
1668                                 rt2x00_eeprom_addr(rt2x00dev,
1669                                                    EEPROM_MAC_ADDR_0));
1670
1671         /*
1672          * Initialize hw_mode information.
1673          */
1674         spec->supported_bands = SUPPORT_BAND_2GHZ;
1675         spec->supported_rates = SUPPORT_RATE_CCK | SUPPORT_RATE_OFDM;
1676
1677         if (rt2x00_rf(rt2x00dev, RF2522)) {
1678                 spec->num_channels = ARRAY_SIZE(rf_vals_bg_2522);
1679                 spec->channels = rf_vals_bg_2522;
1680         } else if (rt2x00_rf(rt2x00dev, RF2523)) {
1681                 spec->num_channels = ARRAY_SIZE(rf_vals_bg_2523);
1682                 spec->channels = rf_vals_bg_2523;
1683         } else if (rt2x00_rf(rt2x00dev, RF2524)) {
1684                 spec->num_channels = ARRAY_SIZE(rf_vals_bg_2524);
1685                 spec->channels = rf_vals_bg_2524;
1686         } else if (rt2x00_rf(rt2x00dev, RF2525)) {
1687                 spec->num_channels = ARRAY_SIZE(rf_vals_bg_2525);
1688                 spec->channels = rf_vals_bg_2525;
1689         } else if (rt2x00_rf(rt2x00dev, RF2525E)) {
1690                 spec->num_channels = ARRAY_SIZE(rf_vals_bg_2525e);
1691                 spec->channels = rf_vals_bg_2525e;
1692         } else if (rt2x00_rf(rt2x00dev, RF5222)) {
1693                 spec->supported_bands |= SUPPORT_BAND_5GHZ;
1694                 spec->num_channels = ARRAY_SIZE(rf_vals_5222);
1695                 spec->channels = rf_vals_5222;
1696         }
1697
1698         /*
1699          * Create channel information array
1700          */
1701         info = kcalloc(spec->num_channels, sizeof(*info), GFP_KERNEL);
1702         if (!info)
1703                 return -ENOMEM;
1704
1705         spec->channels_info = info;
1706
1707         tx_power = rt2x00_eeprom_addr(rt2x00dev, EEPROM_TXPOWER_START);
1708         for (i = 0; i < 14; i++)
1709                 info[i].tx_power1 = TXPOWER_FROM_DEV(tx_power[i]);
1710
1711         if (spec->num_channels > 14) {
1712                 for (i = 14; i < spec->num_channels; i++)
1713                         info[i].tx_power1 = DEFAULT_TXPOWER;
1714         }
1715
1716         return 0;
1717 }
1718
1719 static int rt2500usb_probe_hw(struct rt2x00_dev *rt2x00dev)
1720 {
1721         int retval;
1722
1723         /*
1724          * Allocate eeprom data.
1725          */
1726         retval = rt2500usb_validate_eeprom(rt2x00dev);
1727         if (retval)
1728                 return retval;
1729
1730         retval = rt2500usb_init_eeprom(rt2x00dev);
1731         if (retval)
1732                 return retval;
1733
1734         /*
1735          * Initialize hw specifications.
1736          */
1737         retval = rt2500usb_probe_hw_mode(rt2x00dev);
1738         if (retval)
1739                 return retval;
1740
1741         /*
1742          * This device requires the atim queue
1743          */
1744         __set_bit(DRIVER_REQUIRE_ATIM_QUEUE, &rt2x00dev->flags);
1745         __set_bit(DRIVER_REQUIRE_BEACON_GUARD, &rt2x00dev->flags);
1746         if (!modparam_nohwcrypt) {
1747                 __set_bit(CONFIG_SUPPORT_HW_CRYPTO, &rt2x00dev->flags);
1748                 __set_bit(DRIVER_REQUIRE_COPY_IV, &rt2x00dev->flags);
1749         }
1750         __set_bit(DRIVER_SUPPORT_WATCHDOG, &rt2x00dev->flags);
1751
1752         /*
1753          * Set the rssi offset.
1754          */
1755         rt2x00dev->rssi_offset = DEFAULT_RSSI_OFFSET;
1756
1757         return 0;
1758 }
1759
1760 static const struct ieee80211_ops rt2500usb_mac80211_ops = {
1761         .tx                     = rt2x00mac_tx,
1762         .start                  = rt2x00mac_start,
1763         .stop                   = rt2x00mac_stop,
1764         .add_interface          = rt2x00mac_add_interface,
1765         .remove_interface       = rt2x00mac_remove_interface,
1766         .config                 = rt2x00mac_config,
1767         .configure_filter       = rt2x00mac_configure_filter,
1768         .set_tim                = rt2x00mac_set_tim,
1769         .set_key                = rt2x00mac_set_key,
1770         .sw_scan_start          = rt2x00mac_sw_scan_start,
1771         .sw_scan_complete       = rt2x00mac_sw_scan_complete,
1772         .get_stats              = rt2x00mac_get_stats,
1773         .bss_info_changed       = rt2x00mac_bss_info_changed,
1774         .conf_tx                = rt2x00mac_conf_tx,
1775         .rfkill_poll            = rt2x00mac_rfkill_poll,
1776 };
1777
1778 static const struct rt2x00lib_ops rt2500usb_rt2x00_ops = {
1779         .probe_hw               = rt2500usb_probe_hw,
1780         .initialize             = rt2x00usb_initialize,
1781         .uninitialize           = rt2x00usb_uninitialize,
1782         .clear_entry            = rt2x00usb_clear_entry,
1783         .set_device_state       = rt2500usb_set_device_state,
1784         .rfkill_poll            = rt2500usb_rfkill_poll,
1785         .link_stats             = rt2500usb_link_stats,
1786         .reset_tuner            = rt2500usb_reset_tuner,
1787         .watchdog               = rt2x00usb_watchdog,
1788         .write_tx_desc          = rt2500usb_write_tx_desc,
1789         .write_beacon           = rt2500usb_write_beacon,
1790         .get_tx_data_len        = rt2500usb_get_tx_data_len,
1791         .kick_tx_queue          = rt2x00usb_kick_tx_queue,
1792         .kill_tx_queue          = rt2x00usb_kill_tx_queue,
1793         .fill_rxdone            = rt2500usb_fill_rxdone,
1794         .config_shared_key      = rt2500usb_config_key,
1795         .config_pairwise_key    = rt2500usb_config_key,
1796         .config_filter          = rt2500usb_config_filter,
1797         .config_intf            = rt2500usb_config_intf,
1798         .config_erp             = rt2500usb_config_erp,
1799         .config_ant             = rt2500usb_config_ant,
1800         .config                 = rt2500usb_config,
1801 };
1802
1803 static const struct data_queue_desc rt2500usb_queue_rx = {
1804         .entry_num              = RX_ENTRIES,
1805         .data_size              = DATA_FRAME_SIZE,
1806         .desc_size              = RXD_DESC_SIZE,
1807         .priv_size              = sizeof(struct queue_entry_priv_usb),
1808 };
1809
1810 static const struct data_queue_desc rt2500usb_queue_tx = {
1811         .entry_num              = TX_ENTRIES,
1812         .data_size              = DATA_FRAME_SIZE,
1813         .desc_size              = TXD_DESC_SIZE,
1814         .priv_size              = sizeof(struct queue_entry_priv_usb),
1815 };
1816
1817 static const struct data_queue_desc rt2500usb_queue_bcn = {
1818         .entry_num              = BEACON_ENTRIES,
1819         .data_size              = MGMT_FRAME_SIZE,
1820         .desc_size              = TXD_DESC_SIZE,
1821         .priv_size              = sizeof(struct queue_entry_priv_usb_bcn),
1822 };
1823
1824 static const struct data_queue_desc rt2500usb_queue_atim = {
1825         .entry_num              = ATIM_ENTRIES,
1826         .data_size              = DATA_FRAME_SIZE,
1827         .desc_size              = TXD_DESC_SIZE,
1828         .priv_size              = sizeof(struct queue_entry_priv_usb),
1829 };
1830
1831 static const struct rt2x00_ops rt2500usb_ops = {
1832         .name                   = KBUILD_MODNAME,
1833         .max_sta_intf           = 1,
1834         .max_ap_intf            = 1,
1835         .eeprom_size            = EEPROM_SIZE,
1836         .rf_size                = RF_SIZE,
1837         .tx_queues              = NUM_TX_QUEUES,
1838         .extra_tx_headroom      = TXD_DESC_SIZE,
1839         .rx                     = &rt2500usb_queue_rx,
1840         .tx                     = &rt2500usb_queue_tx,
1841         .bcn                    = &rt2500usb_queue_bcn,
1842         .atim                   = &rt2500usb_queue_atim,
1843         .lib                    = &rt2500usb_rt2x00_ops,
1844         .hw                     = &rt2500usb_mac80211_ops,
1845 #ifdef CONFIG_RT2X00_LIB_DEBUGFS
1846         .debugfs                = &rt2500usb_rt2x00debug,
1847 #endif /* CONFIG_RT2X00_LIB_DEBUGFS */
1848 };
1849
1850 /*
1851  * rt2500usb module information.
1852  */
1853 static struct usb_device_id rt2500usb_device_table[] = {
1854         /* ASUS */
1855         { USB_DEVICE(0x0b05, 0x1706), USB_DEVICE_DATA(&rt2500usb_ops) },
1856         { USB_DEVICE(0x0b05, 0x1707), USB_DEVICE_DATA(&rt2500usb_ops) },
1857         /* Belkin */
1858         { USB_DEVICE(0x050d, 0x7050), USB_DEVICE_DATA(&rt2500usb_ops) },
1859         { USB_DEVICE(0x050d, 0x7051), USB_DEVICE_DATA(&rt2500usb_ops) },
1860         { USB_DEVICE(0x050d, 0x705a), USB_DEVICE_DATA(&rt2500usb_ops) },
1861         /* Cisco Systems */
1862         { USB_DEVICE(0x13b1, 0x000d), USB_DEVICE_DATA(&rt2500usb_ops) },
1863         { USB_DEVICE(0x13b1, 0x0011), USB_DEVICE_DATA(&rt2500usb_ops) },
1864         { USB_DEVICE(0x13b1, 0x001a), USB_DEVICE_DATA(&rt2500usb_ops) },
1865         /* CNet */
1866         { USB_DEVICE(0x1371, 0x9022), USB_DEVICE_DATA(&rt2500usb_ops) },
1867         /* Conceptronic */
1868         { USB_DEVICE(0x14b2, 0x3c02), USB_DEVICE_DATA(&rt2500usb_ops) },
1869         /* D-LINK */
1870         { USB_DEVICE(0x2001, 0x3c00), USB_DEVICE_DATA(&rt2500usb_ops) },
1871         /* Gigabyte */
1872         { USB_DEVICE(0x1044, 0x8001), USB_DEVICE_DATA(&rt2500usb_ops) },
1873         { USB_DEVICE(0x1044, 0x8007), USB_DEVICE_DATA(&rt2500usb_ops) },
1874         /* Hercules */
1875         { USB_DEVICE(0x06f8, 0xe000), USB_DEVICE_DATA(&rt2500usb_ops) },
1876         /* Melco */
1877         { USB_DEVICE(0x0411, 0x005e), USB_DEVICE_DATA(&rt2500usb_ops) },
1878         { USB_DEVICE(0x0411, 0x0066), USB_DEVICE_DATA(&rt2500usb_ops) },
1879         { USB_DEVICE(0x0411, 0x0067), USB_DEVICE_DATA(&rt2500usb_ops) },
1880         { USB_DEVICE(0x0411, 0x008b), USB_DEVICE_DATA(&rt2500usb_ops) },
1881         { USB_DEVICE(0x0411, 0x0097), USB_DEVICE_DATA(&rt2500usb_ops) },
1882         /* MSI */
1883         { USB_DEVICE(0x0db0, 0x6861), USB_DEVICE_DATA(&rt2500usb_ops) },
1884         { USB_DEVICE(0x0db0, 0x6865), USB_DEVICE_DATA(&rt2500usb_ops) },
1885         { USB_DEVICE(0x0db0, 0x6869), USB_DEVICE_DATA(&rt2500usb_ops) },
1886         /* Ralink */
1887         { USB_DEVICE(0x148f, 0x1706), USB_DEVICE_DATA(&rt2500usb_ops) },
1888         { USB_DEVICE(0x148f, 0x2570), USB_DEVICE_DATA(&rt2500usb_ops) },
1889         { USB_DEVICE(0x148f, 0x2573), USB_DEVICE_DATA(&rt2500usb_ops) },
1890         { USB_DEVICE(0x148f, 0x9020), USB_DEVICE_DATA(&rt2500usb_ops) },
1891         /* Sagem */
1892         { USB_DEVICE(0x079b, 0x004b), USB_DEVICE_DATA(&rt2500usb_ops) },
1893         /* Siemens */
1894         { USB_DEVICE(0x0681, 0x3c06), USB_DEVICE_DATA(&rt2500usb_ops) },
1895         /* SMC */
1896         { USB_DEVICE(0x0707, 0xee13), USB_DEVICE_DATA(&rt2500usb_ops) },
1897         /* Spairon */
1898         { USB_DEVICE(0x114b, 0x0110), USB_DEVICE_DATA(&rt2500usb_ops) },
1899         /* SURECOM */
1900         { USB_DEVICE(0x0769, 0x11f3), USB_DEVICE_DATA(&rt2500usb_ops) },
1901         /* Trust */
1902         { USB_DEVICE(0x0eb0, 0x9020), USB_DEVICE_DATA(&rt2500usb_ops) },
1903         /* VTech */
1904         { USB_DEVICE(0x0f88, 0x3012), USB_DEVICE_DATA(&rt2500usb_ops) },
1905         /* Zinwell */
1906         { USB_DEVICE(0x5a57, 0x0260), USB_DEVICE_DATA(&rt2500usb_ops) },
1907         { 0, }
1908 };
1909
1910 MODULE_AUTHOR(DRV_PROJECT);
1911 MODULE_VERSION(DRV_VERSION);
1912 MODULE_DESCRIPTION("Ralink RT2500 USB Wireless LAN driver.");
1913 MODULE_SUPPORTED_DEVICE("Ralink RT2570 USB chipset based cards");
1914 MODULE_DEVICE_TABLE(usb, rt2500usb_device_table);
1915 MODULE_LICENSE("GPL");
1916
1917 static struct usb_driver rt2500usb_driver = {
1918         .name           = KBUILD_MODNAME,
1919         .id_table       = rt2500usb_device_table,
1920         .probe          = rt2x00usb_probe,
1921         .disconnect     = rt2x00usb_disconnect,
1922         .suspend        = rt2x00usb_suspend,
1923         .resume         = rt2x00usb_resume,
1924 };
1925
1926 static int __init rt2500usb_init(void)
1927 {
1928         return usb_register(&rt2500usb_driver);
1929 }
1930
1931 static void __exit rt2500usb_exit(void)
1932 {
1933         usb_deregister(&rt2500usb_driver);
1934 }
1935
1936 module_init(rt2500usb_init);
1937 module_exit(rt2500usb_exit);