b50d873145d5bfafa1b4727456830856e30f4d9e
[cascardo/linux.git] / drivers / net / wireless / rt2x00 / rt2500usb.c
1 /*
2         Copyright (C) 2004 - 2009 Ivo van Doorn <IvDoorn@gmail.com>
3         <http://rt2x00.serialmonkey.com>
4
5         This program is free software; you can redistribute it and/or modify
6         it under the terms of the GNU General Public License as published by
7         the Free Software Foundation; either version 2 of the License, or
8         (at your option) any later version.
9
10         This program is distributed in the hope that it will be useful,
11         but WITHOUT ANY WARRANTY; without even the implied warranty of
12         MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13         GNU General Public License for more details.
14
15         You should have received a copy of the GNU General Public License
16         along with this program; if not, see <http://www.gnu.org/licenses/>.
17  */
18
19 /*
20         Module: rt2500usb
21         Abstract: rt2500usb device specific routines.
22         Supported chipsets: RT2570.
23  */
24
25 #include <linux/delay.h>
26 #include <linux/etherdevice.h>
27 #include <linux/kernel.h>
28 #include <linux/module.h>
29 #include <linux/slab.h>
30 #include <linux/usb.h>
31
32 #include "rt2x00.h"
33 #include "rt2x00usb.h"
34 #include "rt2500usb.h"
35
36 /*
37  * Allow hardware encryption to be disabled.
38  */
39 static bool modparam_nohwcrypt;
40 module_param_named(nohwcrypt, modparam_nohwcrypt, bool, S_IRUGO);
41 MODULE_PARM_DESC(nohwcrypt, "Disable hardware encryption.");
42
43 /*
44  * Register access.
45  * All access to the CSR registers will go through the methods
46  * rt2500usb_register_read and rt2500usb_register_write.
47  * BBP and RF register require indirect register access,
48  * and use the CSR registers BBPCSR and RFCSR to achieve this.
49  * These indirect registers work with busy bits,
50  * and we will try maximal REGISTER_USB_BUSY_COUNT times to access
51  * the register while taking a REGISTER_BUSY_DELAY us delay
52  * between each attampt. When the busy bit is still set at that time,
53  * the access attempt is considered to have failed,
54  * and we will print an error.
55  * If the csr_mutex is already held then the _lock variants must
56  * be used instead.
57  */
58 static inline void rt2500usb_register_read(struct rt2x00_dev *rt2x00dev,
59                                            const unsigned int offset,
60                                            u16 *value)
61 {
62         __le16 reg;
63         rt2x00usb_vendor_request_buff(rt2x00dev, USB_MULTI_READ,
64                                       USB_VENDOR_REQUEST_IN, offset,
65                                       &reg, sizeof(reg));
66         *value = le16_to_cpu(reg);
67 }
68
69 static inline void rt2500usb_register_read_lock(struct rt2x00_dev *rt2x00dev,
70                                                 const unsigned int offset,
71                                                 u16 *value)
72 {
73         __le16 reg;
74         rt2x00usb_vendor_req_buff_lock(rt2x00dev, USB_MULTI_READ,
75                                        USB_VENDOR_REQUEST_IN, offset,
76                                        &reg, sizeof(reg), REGISTER_TIMEOUT);
77         *value = le16_to_cpu(reg);
78 }
79
80 static inline void rt2500usb_register_multiread(struct rt2x00_dev *rt2x00dev,
81                                                 const unsigned int offset,
82                                                 void *value, const u16 length)
83 {
84         rt2x00usb_vendor_request_buff(rt2x00dev, USB_MULTI_READ,
85                                       USB_VENDOR_REQUEST_IN, offset,
86                                       value, length);
87 }
88
89 static inline void rt2500usb_register_write(struct rt2x00_dev *rt2x00dev,
90                                             const unsigned int offset,
91                                             u16 value)
92 {
93         __le16 reg = cpu_to_le16(value);
94         rt2x00usb_vendor_request_buff(rt2x00dev, USB_MULTI_WRITE,
95                                       USB_VENDOR_REQUEST_OUT, offset,
96                                       &reg, sizeof(reg));
97 }
98
99 static inline void rt2500usb_register_write_lock(struct rt2x00_dev *rt2x00dev,
100                                                  const unsigned int offset,
101                                                  u16 value)
102 {
103         __le16 reg = cpu_to_le16(value);
104         rt2x00usb_vendor_req_buff_lock(rt2x00dev, USB_MULTI_WRITE,
105                                        USB_VENDOR_REQUEST_OUT, offset,
106                                        &reg, sizeof(reg), REGISTER_TIMEOUT);
107 }
108
109 static inline void rt2500usb_register_multiwrite(struct rt2x00_dev *rt2x00dev,
110                                                  const unsigned int offset,
111                                                  void *value, const u16 length)
112 {
113         rt2x00usb_vendor_request_buff(rt2x00dev, USB_MULTI_WRITE,
114                                       USB_VENDOR_REQUEST_OUT, offset,
115                                       value, length);
116 }
117
118 static int rt2500usb_regbusy_read(struct rt2x00_dev *rt2x00dev,
119                                   const unsigned int offset,
120                                   struct rt2x00_field16 field,
121                                   u16 *reg)
122 {
123         unsigned int i;
124
125         for (i = 0; i < REGISTER_USB_BUSY_COUNT; i++) {
126                 rt2500usb_register_read_lock(rt2x00dev, offset, reg);
127                 if (!rt2x00_get_field16(*reg, field))
128                         return 1;
129                 udelay(REGISTER_BUSY_DELAY);
130         }
131
132         rt2x00_err(rt2x00dev, "Indirect register access failed: offset=0x%.08x, value=0x%.08x\n",
133                    offset, *reg);
134         *reg = ~0;
135
136         return 0;
137 }
138
139 #define WAIT_FOR_BBP(__dev, __reg) \
140         rt2500usb_regbusy_read((__dev), PHY_CSR8, PHY_CSR8_BUSY, (__reg))
141 #define WAIT_FOR_RF(__dev, __reg) \
142         rt2500usb_regbusy_read((__dev), PHY_CSR10, PHY_CSR10_RF_BUSY, (__reg))
143
144 static void rt2500usb_bbp_write(struct rt2x00_dev *rt2x00dev,
145                                 const unsigned int word, const u8 value)
146 {
147         u16 reg;
148
149         mutex_lock(&rt2x00dev->csr_mutex);
150
151         /*
152          * Wait until the BBP becomes available, afterwards we
153          * can safely write the new data into the register.
154          */
155         if (WAIT_FOR_BBP(rt2x00dev, &reg)) {
156                 reg = 0;
157                 rt2x00_set_field16(&reg, PHY_CSR7_DATA, value);
158                 rt2x00_set_field16(&reg, PHY_CSR7_REG_ID, word);
159                 rt2x00_set_field16(&reg, PHY_CSR7_READ_CONTROL, 0);
160
161                 rt2500usb_register_write_lock(rt2x00dev, PHY_CSR7, reg);
162         }
163
164         mutex_unlock(&rt2x00dev->csr_mutex);
165 }
166
167 static void rt2500usb_bbp_read(struct rt2x00_dev *rt2x00dev,
168                                const unsigned int word, u8 *value)
169 {
170         u16 reg;
171
172         mutex_lock(&rt2x00dev->csr_mutex);
173
174         /*
175          * Wait until the BBP becomes available, afterwards we
176          * can safely write the read request into the register.
177          * After the data has been written, we wait until hardware
178          * returns the correct value, if at any time the register
179          * doesn't become available in time, reg will be 0xffffffff
180          * which means we return 0xff to the caller.
181          */
182         if (WAIT_FOR_BBP(rt2x00dev, &reg)) {
183                 reg = 0;
184                 rt2x00_set_field16(&reg, PHY_CSR7_REG_ID, word);
185                 rt2x00_set_field16(&reg, PHY_CSR7_READ_CONTROL, 1);
186
187                 rt2500usb_register_write_lock(rt2x00dev, PHY_CSR7, reg);
188
189                 if (WAIT_FOR_BBP(rt2x00dev, &reg))
190                         rt2500usb_register_read_lock(rt2x00dev, PHY_CSR7, &reg);
191         }
192
193         *value = rt2x00_get_field16(reg, PHY_CSR7_DATA);
194
195         mutex_unlock(&rt2x00dev->csr_mutex);
196 }
197
198 static void rt2500usb_rf_write(struct rt2x00_dev *rt2x00dev,
199                                const unsigned int word, const u32 value)
200 {
201         u16 reg;
202
203         mutex_lock(&rt2x00dev->csr_mutex);
204
205         /*
206          * Wait until the RF becomes available, afterwards we
207          * can safely write the new data into the register.
208          */
209         if (WAIT_FOR_RF(rt2x00dev, &reg)) {
210                 reg = 0;
211                 rt2x00_set_field16(&reg, PHY_CSR9_RF_VALUE, value);
212                 rt2500usb_register_write_lock(rt2x00dev, PHY_CSR9, reg);
213
214                 reg = 0;
215                 rt2x00_set_field16(&reg, PHY_CSR10_RF_VALUE, value >> 16);
216                 rt2x00_set_field16(&reg, PHY_CSR10_RF_NUMBER_OF_BITS, 20);
217                 rt2x00_set_field16(&reg, PHY_CSR10_RF_IF_SELECT, 0);
218                 rt2x00_set_field16(&reg, PHY_CSR10_RF_BUSY, 1);
219
220                 rt2500usb_register_write_lock(rt2x00dev, PHY_CSR10, reg);
221                 rt2x00_rf_write(rt2x00dev, word, value);
222         }
223
224         mutex_unlock(&rt2x00dev->csr_mutex);
225 }
226
227 #ifdef CONFIG_RT2X00_LIB_DEBUGFS
228 static void _rt2500usb_register_read(struct rt2x00_dev *rt2x00dev,
229                                      const unsigned int offset,
230                                      u32 *value)
231 {
232         rt2500usb_register_read(rt2x00dev, offset, (u16 *)value);
233 }
234
235 static void _rt2500usb_register_write(struct rt2x00_dev *rt2x00dev,
236                                       const unsigned int offset,
237                                       u32 value)
238 {
239         rt2500usb_register_write(rt2x00dev, offset, value);
240 }
241
242 static const struct rt2x00debug rt2500usb_rt2x00debug = {
243         .owner  = THIS_MODULE,
244         .csr    = {
245                 .read           = _rt2500usb_register_read,
246                 .write          = _rt2500usb_register_write,
247                 .flags          = RT2X00DEBUGFS_OFFSET,
248                 .word_base      = CSR_REG_BASE,
249                 .word_size      = sizeof(u16),
250                 .word_count     = CSR_REG_SIZE / sizeof(u16),
251         },
252         .eeprom = {
253                 .read           = rt2x00_eeprom_read,
254                 .write          = rt2x00_eeprom_write,
255                 .word_base      = EEPROM_BASE,
256                 .word_size      = sizeof(u16),
257                 .word_count     = EEPROM_SIZE / sizeof(u16),
258         },
259         .bbp    = {
260                 .read           = rt2500usb_bbp_read,
261                 .write          = rt2500usb_bbp_write,
262                 .word_base      = BBP_BASE,
263                 .word_size      = sizeof(u8),
264                 .word_count     = BBP_SIZE / sizeof(u8),
265         },
266         .rf     = {
267                 .read           = rt2x00_rf_read,
268                 .write          = rt2500usb_rf_write,
269                 .word_base      = RF_BASE,
270                 .word_size      = sizeof(u32),
271                 .word_count     = RF_SIZE / sizeof(u32),
272         },
273 };
274 #endif /* CONFIG_RT2X00_LIB_DEBUGFS */
275
276 static int rt2500usb_rfkill_poll(struct rt2x00_dev *rt2x00dev)
277 {
278         u16 reg;
279
280         rt2500usb_register_read(rt2x00dev, MAC_CSR19, &reg);
281         return rt2x00_get_field16(reg, MAC_CSR19_VAL7);
282 }
283
284 #ifdef CONFIG_RT2X00_LIB_LEDS
285 static void rt2500usb_brightness_set(struct led_classdev *led_cdev,
286                                      enum led_brightness brightness)
287 {
288         struct rt2x00_led *led =
289             container_of(led_cdev, struct rt2x00_led, led_dev);
290         unsigned int enabled = brightness != LED_OFF;
291         u16 reg;
292
293         rt2500usb_register_read(led->rt2x00dev, MAC_CSR20, &reg);
294
295         if (led->type == LED_TYPE_RADIO || led->type == LED_TYPE_ASSOC)
296                 rt2x00_set_field16(&reg, MAC_CSR20_LINK, enabled);
297         else if (led->type == LED_TYPE_ACTIVITY)
298                 rt2x00_set_field16(&reg, MAC_CSR20_ACTIVITY, enabled);
299
300         rt2500usb_register_write(led->rt2x00dev, MAC_CSR20, reg);
301 }
302
303 static int rt2500usb_blink_set(struct led_classdev *led_cdev,
304                                unsigned long *delay_on,
305                                unsigned long *delay_off)
306 {
307         struct rt2x00_led *led =
308             container_of(led_cdev, struct rt2x00_led, led_dev);
309         u16 reg;
310
311         rt2500usb_register_read(led->rt2x00dev, MAC_CSR21, &reg);
312         rt2x00_set_field16(&reg, MAC_CSR21_ON_PERIOD, *delay_on);
313         rt2x00_set_field16(&reg, MAC_CSR21_OFF_PERIOD, *delay_off);
314         rt2500usb_register_write(led->rt2x00dev, MAC_CSR21, reg);
315
316         return 0;
317 }
318
319 static void rt2500usb_init_led(struct rt2x00_dev *rt2x00dev,
320                                struct rt2x00_led *led,
321                                enum led_type type)
322 {
323         led->rt2x00dev = rt2x00dev;
324         led->type = type;
325         led->led_dev.brightness_set = rt2500usb_brightness_set;
326         led->led_dev.blink_set = rt2500usb_blink_set;
327         led->flags = LED_INITIALIZED;
328 }
329 #endif /* CONFIG_RT2X00_LIB_LEDS */
330
331 /*
332  * Configuration handlers.
333  */
334
335 /*
336  * rt2500usb does not differentiate between shared and pairwise
337  * keys, so we should use the same function for both key types.
338  */
339 static int rt2500usb_config_key(struct rt2x00_dev *rt2x00dev,
340                                 struct rt2x00lib_crypto *crypto,
341                                 struct ieee80211_key_conf *key)
342 {
343         u32 mask;
344         u16 reg;
345         enum cipher curr_cipher;
346
347         if (crypto->cmd == SET_KEY) {
348                 /*
349                  * Disallow to set WEP key other than with index 0,
350                  * it is known that not work at least on some hardware.
351                  * SW crypto will be used in that case.
352                  */
353                 if ((key->cipher == WLAN_CIPHER_SUITE_WEP40 ||
354                      key->cipher == WLAN_CIPHER_SUITE_WEP104) &&
355                     key->keyidx != 0)
356                         return -EOPNOTSUPP;
357
358                 /*
359                  * Pairwise key will always be entry 0, but this
360                  * could collide with a shared key on the same
361                  * position...
362                  */
363                 mask = TXRX_CSR0_KEY_ID.bit_mask;
364
365                 rt2500usb_register_read(rt2x00dev, TXRX_CSR0, &reg);
366                 curr_cipher = rt2x00_get_field16(reg, TXRX_CSR0_ALGORITHM);
367                 reg &= mask;
368
369                 if (reg && reg == mask)
370                         return -ENOSPC;
371
372                 reg = rt2x00_get_field16(reg, TXRX_CSR0_KEY_ID);
373
374                 key->hw_key_idx += reg ? ffz(reg) : 0;
375                 /*
376                  * Hardware requires that all keys use the same cipher
377                  * (e.g. TKIP-only, AES-only, but not TKIP+AES).
378                  * If this is not the first key, compare the cipher with the
379                  * first one and fall back to SW crypto if not the same.
380                  */
381                 if (key->hw_key_idx > 0 && crypto->cipher != curr_cipher)
382                         return -EOPNOTSUPP;
383
384                 rt2500usb_register_multiwrite(rt2x00dev, KEY_ENTRY(key->hw_key_idx),
385                                               crypto->key, sizeof(crypto->key));
386
387                 /*
388                  * The driver does not support the IV/EIV generation
389                  * in hardware. However it demands the data to be provided
390                  * both separately as well as inside the frame.
391                  * We already provided the CONFIG_CRYPTO_COPY_IV to rt2x00lib
392                  * to ensure rt2x00lib will not strip the data from the
393                  * frame after the copy, now we must tell mac80211
394                  * to generate the IV/EIV data.
395                  */
396                 key->flags |= IEEE80211_KEY_FLAG_GENERATE_IV;
397                 key->flags |= IEEE80211_KEY_FLAG_GENERATE_MMIC;
398         }
399
400         /*
401          * TXRX_CSR0_KEY_ID contains only single-bit fields to indicate
402          * a particular key is valid.
403          */
404         rt2500usb_register_read(rt2x00dev, TXRX_CSR0, &reg);
405         rt2x00_set_field16(&reg, TXRX_CSR0_ALGORITHM, crypto->cipher);
406         rt2x00_set_field16(&reg, TXRX_CSR0_IV_OFFSET, IEEE80211_HEADER);
407
408         mask = rt2x00_get_field16(reg, TXRX_CSR0_KEY_ID);
409         if (crypto->cmd == SET_KEY)
410                 mask |= 1 << key->hw_key_idx;
411         else if (crypto->cmd == DISABLE_KEY)
412                 mask &= ~(1 << key->hw_key_idx);
413         rt2x00_set_field16(&reg, TXRX_CSR0_KEY_ID, mask);
414         rt2500usb_register_write(rt2x00dev, TXRX_CSR0, reg);
415
416         return 0;
417 }
418
419 static void rt2500usb_config_filter(struct rt2x00_dev *rt2x00dev,
420                                     const unsigned int filter_flags)
421 {
422         u16 reg;
423
424         /*
425          * Start configuration steps.
426          * Note that the version error will always be dropped
427          * and broadcast frames will always be accepted since
428          * there is no filter for it at this time.
429          */
430         rt2500usb_register_read(rt2x00dev, TXRX_CSR2, &reg);
431         rt2x00_set_field16(&reg, TXRX_CSR2_DROP_CRC,
432                            !(filter_flags & FIF_FCSFAIL));
433         rt2x00_set_field16(&reg, TXRX_CSR2_DROP_PHYSICAL,
434                            !(filter_flags & FIF_PLCPFAIL));
435         rt2x00_set_field16(&reg, TXRX_CSR2_DROP_CONTROL,
436                            !(filter_flags & FIF_CONTROL));
437         rt2x00_set_field16(&reg, TXRX_CSR2_DROP_NOT_TO_ME, 1);
438         rt2x00_set_field16(&reg, TXRX_CSR2_DROP_TODS,
439                            !rt2x00dev->intf_ap_count);
440         rt2x00_set_field16(&reg, TXRX_CSR2_DROP_VERSION_ERROR, 1);
441         rt2x00_set_field16(&reg, TXRX_CSR2_DROP_MULTICAST,
442                            !(filter_flags & FIF_ALLMULTI));
443         rt2x00_set_field16(&reg, TXRX_CSR2_DROP_BROADCAST, 0);
444         rt2500usb_register_write(rt2x00dev, TXRX_CSR2, reg);
445 }
446
447 static void rt2500usb_config_intf(struct rt2x00_dev *rt2x00dev,
448                                   struct rt2x00_intf *intf,
449                                   struct rt2x00intf_conf *conf,
450                                   const unsigned int flags)
451 {
452         unsigned int bcn_preload;
453         u16 reg;
454
455         if (flags & CONFIG_UPDATE_TYPE) {
456                 /*
457                  * Enable beacon config
458                  */
459                 bcn_preload = PREAMBLE + GET_DURATION(IEEE80211_HEADER, 20);
460                 rt2500usb_register_read(rt2x00dev, TXRX_CSR20, &reg);
461                 rt2x00_set_field16(&reg, TXRX_CSR20_OFFSET, bcn_preload >> 6);
462                 rt2x00_set_field16(&reg, TXRX_CSR20_BCN_EXPECT_WINDOW,
463                                    2 * (conf->type != NL80211_IFTYPE_STATION));
464                 rt2500usb_register_write(rt2x00dev, TXRX_CSR20, reg);
465
466                 /*
467                  * Enable synchronisation.
468                  */
469                 rt2500usb_register_read(rt2x00dev, TXRX_CSR18, &reg);
470                 rt2x00_set_field16(&reg, TXRX_CSR18_OFFSET, 0);
471                 rt2500usb_register_write(rt2x00dev, TXRX_CSR18, reg);
472
473                 rt2500usb_register_read(rt2x00dev, TXRX_CSR19, &reg);
474                 rt2x00_set_field16(&reg, TXRX_CSR19_TSF_SYNC, conf->sync);
475                 rt2500usb_register_write(rt2x00dev, TXRX_CSR19, reg);
476         }
477
478         if (flags & CONFIG_UPDATE_MAC)
479                 rt2500usb_register_multiwrite(rt2x00dev, MAC_CSR2, conf->mac,
480                                               (3 * sizeof(__le16)));
481
482         if (flags & CONFIG_UPDATE_BSSID)
483                 rt2500usb_register_multiwrite(rt2x00dev, MAC_CSR5, conf->bssid,
484                                               (3 * sizeof(__le16)));
485 }
486
487 static void rt2500usb_config_erp(struct rt2x00_dev *rt2x00dev,
488                                  struct rt2x00lib_erp *erp,
489                                  u32 changed)
490 {
491         u16 reg;
492
493         if (changed & BSS_CHANGED_ERP_PREAMBLE) {
494                 rt2500usb_register_read(rt2x00dev, TXRX_CSR10, &reg);
495                 rt2x00_set_field16(&reg, TXRX_CSR10_AUTORESPOND_PREAMBLE,
496                                    !!erp->short_preamble);
497                 rt2500usb_register_write(rt2x00dev, TXRX_CSR10, reg);
498         }
499
500         if (changed & BSS_CHANGED_BASIC_RATES)
501                 rt2500usb_register_write(rt2x00dev, TXRX_CSR11,
502                                          erp->basic_rates);
503
504         if (changed & BSS_CHANGED_BEACON_INT) {
505                 rt2500usb_register_read(rt2x00dev, TXRX_CSR18, &reg);
506                 rt2x00_set_field16(&reg, TXRX_CSR18_INTERVAL,
507                                    erp->beacon_int * 4);
508                 rt2500usb_register_write(rt2x00dev, TXRX_CSR18, reg);
509         }
510
511         if (changed & BSS_CHANGED_ERP_SLOT) {
512                 rt2500usb_register_write(rt2x00dev, MAC_CSR10, erp->slot_time);
513                 rt2500usb_register_write(rt2x00dev, MAC_CSR11, erp->sifs);
514                 rt2500usb_register_write(rt2x00dev, MAC_CSR12, erp->eifs);
515         }
516 }
517
518 static void rt2500usb_config_ant(struct rt2x00_dev *rt2x00dev,
519                                  struct antenna_setup *ant)
520 {
521         u8 r2;
522         u8 r14;
523         u16 csr5;
524         u16 csr6;
525
526         /*
527          * We should never come here because rt2x00lib is supposed
528          * to catch this and send us the correct antenna explicitely.
529          */
530         BUG_ON(ant->rx == ANTENNA_SW_DIVERSITY ||
531                ant->tx == ANTENNA_SW_DIVERSITY);
532
533         rt2500usb_bbp_read(rt2x00dev, 2, &r2);
534         rt2500usb_bbp_read(rt2x00dev, 14, &r14);
535         rt2500usb_register_read(rt2x00dev, PHY_CSR5, &csr5);
536         rt2500usb_register_read(rt2x00dev, PHY_CSR6, &csr6);
537
538         /*
539          * Configure the TX antenna.
540          */
541         switch (ant->tx) {
542         case ANTENNA_HW_DIVERSITY:
543                 rt2x00_set_field8(&r2, BBP_R2_TX_ANTENNA, 1);
544                 rt2x00_set_field16(&csr5, PHY_CSR5_CCK, 1);
545                 rt2x00_set_field16(&csr6, PHY_CSR6_OFDM, 1);
546                 break;
547         case ANTENNA_A:
548                 rt2x00_set_field8(&r2, BBP_R2_TX_ANTENNA, 0);
549                 rt2x00_set_field16(&csr5, PHY_CSR5_CCK, 0);
550                 rt2x00_set_field16(&csr6, PHY_CSR6_OFDM, 0);
551                 break;
552         case ANTENNA_B:
553         default:
554                 rt2x00_set_field8(&r2, BBP_R2_TX_ANTENNA, 2);
555                 rt2x00_set_field16(&csr5, PHY_CSR5_CCK, 2);
556                 rt2x00_set_field16(&csr6, PHY_CSR6_OFDM, 2);
557                 break;
558         }
559
560         /*
561          * Configure the RX antenna.
562          */
563         switch (ant->rx) {
564         case ANTENNA_HW_DIVERSITY:
565                 rt2x00_set_field8(&r14, BBP_R14_RX_ANTENNA, 1);
566                 break;
567         case ANTENNA_A:
568                 rt2x00_set_field8(&r14, BBP_R14_RX_ANTENNA, 0);
569                 break;
570         case ANTENNA_B:
571         default:
572                 rt2x00_set_field8(&r14, BBP_R14_RX_ANTENNA, 2);
573                 break;
574         }
575
576         /*
577          * RT2525E and RT5222 need to flip TX I/Q
578          */
579         if (rt2x00_rf(rt2x00dev, RF2525E) || rt2x00_rf(rt2x00dev, RF5222)) {
580                 rt2x00_set_field8(&r2, BBP_R2_TX_IQ_FLIP, 1);
581                 rt2x00_set_field16(&csr5, PHY_CSR5_CCK_FLIP, 1);
582                 rt2x00_set_field16(&csr6, PHY_CSR6_OFDM_FLIP, 1);
583
584                 /*
585                  * RT2525E does not need RX I/Q Flip.
586                  */
587                 if (rt2x00_rf(rt2x00dev, RF2525E))
588                         rt2x00_set_field8(&r14, BBP_R14_RX_IQ_FLIP, 0);
589         } else {
590                 rt2x00_set_field16(&csr5, PHY_CSR5_CCK_FLIP, 0);
591                 rt2x00_set_field16(&csr6, PHY_CSR6_OFDM_FLIP, 0);
592         }
593
594         rt2500usb_bbp_write(rt2x00dev, 2, r2);
595         rt2500usb_bbp_write(rt2x00dev, 14, r14);
596         rt2500usb_register_write(rt2x00dev, PHY_CSR5, csr5);
597         rt2500usb_register_write(rt2x00dev, PHY_CSR6, csr6);
598 }
599
600 static void rt2500usb_config_channel(struct rt2x00_dev *rt2x00dev,
601                                      struct rf_channel *rf, const int txpower)
602 {
603         /*
604          * Set TXpower.
605          */
606         rt2x00_set_field32(&rf->rf3, RF3_TXPOWER, TXPOWER_TO_DEV(txpower));
607
608         /*
609          * For RT2525E we should first set the channel to half band higher.
610          */
611         if (rt2x00_rf(rt2x00dev, RF2525E)) {
612                 static const u32 vals[] = {
613                         0x000008aa, 0x000008ae, 0x000008ae, 0x000008b2,
614                         0x000008b2, 0x000008b6, 0x000008b6, 0x000008ba,
615                         0x000008ba, 0x000008be, 0x000008b7, 0x00000902,
616                         0x00000902, 0x00000906
617                 };
618
619                 rt2500usb_rf_write(rt2x00dev, 2, vals[rf->channel - 1]);
620                 if (rf->rf4)
621                         rt2500usb_rf_write(rt2x00dev, 4, rf->rf4);
622         }
623
624         rt2500usb_rf_write(rt2x00dev, 1, rf->rf1);
625         rt2500usb_rf_write(rt2x00dev, 2, rf->rf2);
626         rt2500usb_rf_write(rt2x00dev, 3, rf->rf3);
627         if (rf->rf4)
628                 rt2500usb_rf_write(rt2x00dev, 4, rf->rf4);
629 }
630
631 static void rt2500usb_config_txpower(struct rt2x00_dev *rt2x00dev,
632                                      const int txpower)
633 {
634         u32 rf3;
635
636         rt2x00_rf_read(rt2x00dev, 3, &rf3);
637         rt2x00_set_field32(&rf3, RF3_TXPOWER, TXPOWER_TO_DEV(txpower));
638         rt2500usb_rf_write(rt2x00dev, 3, rf3);
639 }
640
641 static void rt2500usb_config_ps(struct rt2x00_dev *rt2x00dev,
642                                 struct rt2x00lib_conf *libconf)
643 {
644         enum dev_state state =
645             (libconf->conf->flags & IEEE80211_CONF_PS) ?
646                 STATE_SLEEP : STATE_AWAKE;
647         u16 reg;
648
649         if (state == STATE_SLEEP) {
650                 rt2500usb_register_read(rt2x00dev, MAC_CSR18, &reg);
651                 rt2x00_set_field16(&reg, MAC_CSR18_DELAY_AFTER_BEACON,
652                                    rt2x00dev->beacon_int - 20);
653                 rt2x00_set_field16(&reg, MAC_CSR18_BEACONS_BEFORE_WAKEUP,
654                                    libconf->conf->listen_interval - 1);
655
656                 /* We must first disable autowake before it can be enabled */
657                 rt2x00_set_field16(&reg, MAC_CSR18_AUTO_WAKE, 0);
658                 rt2500usb_register_write(rt2x00dev, MAC_CSR18, reg);
659
660                 rt2x00_set_field16(&reg, MAC_CSR18_AUTO_WAKE, 1);
661                 rt2500usb_register_write(rt2x00dev, MAC_CSR18, reg);
662         } else {
663                 rt2500usb_register_read(rt2x00dev, MAC_CSR18, &reg);
664                 rt2x00_set_field16(&reg, MAC_CSR18_AUTO_WAKE, 0);
665                 rt2500usb_register_write(rt2x00dev, MAC_CSR18, reg);
666         }
667
668         rt2x00dev->ops->lib->set_device_state(rt2x00dev, state);
669 }
670
671 static void rt2500usb_config(struct rt2x00_dev *rt2x00dev,
672                              struct rt2x00lib_conf *libconf,
673                              const unsigned int flags)
674 {
675         if (flags & IEEE80211_CONF_CHANGE_CHANNEL)
676                 rt2500usb_config_channel(rt2x00dev, &libconf->rf,
677                                          libconf->conf->power_level);
678         if ((flags & IEEE80211_CONF_CHANGE_POWER) &&
679             !(flags & IEEE80211_CONF_CHANGE_CHANNEL))
680                 rt2500usb_config_txpower(rt2x00dev,
681                                          libconf->conf->power_level);
682         if (flags & IEEE80211_CONF_CHANGE_PS)
683                 rt2500usb_config_ps(rt2x00dev, libconf);
684 }
685
686 /*
687  * Link tuning
688  */
689 static void rt2500usb_link_stats(struct rt2x00_dev *rt2x00dev,
690                                  struct link_qual *qual)
691 {
692         u16 reg;
693
694         /*
695          * Update FCS error count from register.
696          */
697         rt2500usb_register_read(rt2x00dev, STA_CSR0, &reg);
698         qual->rx_failed = rt2x00_get_field16(reg, STA_CSR0_FCS_ERROR);
699
700         /*
701          * Update False CCA count from register.
702          */
703         rt2500usb_register_read(rt2x00dev, STA_CSR3, &reg);
704         qual->false_cca = rt2x00_get_field16(reg, STA_CSR3_FALSE_CCA_ERROR);
705 }
706
707 static void rt2500usb_reset_tuner(struct rt2x00_dev *rt2x00dev,
708                                   struct link_qual *qual)
709 {
710         u16 eeprom;
711         u16 value;
712
713         rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE_R24, &eeprom);
714         value = rt2x00_get_field16(eeprom, EEPROM_BBPTUNE_R24_LOW);
715         rt2500usb_bbp_write(rt2x00dev, 24, value);
716
717         rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE_R25, &eeprom);
718         value = rt2x00_get_field16(eeprom, EEPROM_BBPTUNE_R25_LOW);
719         rt2500usb_bbp_write(rt2x00dev, 25, value);
720
721         rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE_R61, &eeprom);
722         value = rt2x00_get_field16(eeprom, EEPROM_BBPTUNE_R61_LOW);
723         rt2500usb_bbp_write(rt2x00dev, 61, value);
724
725         rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE_VGC, &eeprom);
726         value = rt2x00_get_field16(eeprom, EEPROM_BBPTUNE_VGCUPPER);
727         rt2500usb_bbp_write(rt2x00dev, 17, value);
728
729         qual->vgc_level = value;
730 }
731
732 /*
733  * Queue handlers.
734  */
735 static void rt2500usb_start_queue(struct data_queue *queue)
736 {
737         struct rt2x00_dev *rt2x00dev = queue->rt2x00dev;
738         u16 reg;
739
740         switch (queue->qid) {
741         case QID_RX:
742                 rt2500usb_register_read(rt2x00dev, TXRX_CSR2, &reg);
743                 rt2x00_set_field16(&reg, TXRX_CSR2_DISABLE_RX, 0);
744                 rt2500usb_register_write(rt2x00dev, TXRX_CSR2, reg);
745                 break;
746         case QID_BEACON:
747                 rt2500usb_register_read(rt2x00dev, TXRX_CSR19, &reg);
748                 rt2x00_set_field16(&reg, TXRX_CSR19_TSF_COUNT, 1);
749                 rt2x00_set_field16(&reg, TXRX_CSR19_TBCN, 1);
750                 rt2x00_set_field16(&reg, TXRX_CSR19_BEACON_GEN, 1);
751                 rt2500usb_register_write(rt2x00dev, TXRX_CSR19, reg);
752                 break;
753         default:
754                 break;
755         }
756 }
757
758 static void rt2500usb_stop_queue(struct data_queue *queue)
759 {
760         struct rt2x00_dev *rt2x00dev = queue->rt2x00dev;
761         u16 reg;
762
763         switch (queue->qid) {
764         case QID_RX:
765                 rt2500usb_register_read(rt2x00dev, TXRX_CSR2, &reg);
766                 rt2x00_set_field16(&reg, TXRX_CSR2_DISABLE_RX, 1);
767                 rt2500usb_register_write(rt2x00dev, TXRX_CSR2, reg);
768                 break;
769         case QID_BEACON:
770                 rt2500usb_register_read(rt2x00dev, TXRX_CSR19, &reg);
771                 rt2x00_set_field16(&reg, TXRX_CSR19_TSF_COUNT, 0);
772                 rt2x00_set_field16(&reg, TXRX_CSR19_TBCN, 0);
773                 rt2x00_set_field16(&reg, TXRX_CSR19_BEACON_GEN, 0);
774                 rt2500usb_register_write(rt2x00dev, TXRX_CSR19, reg);
775                 break;
776         default:
777                 break;
778         }
779 }
780
781 /*
782  * Initialization functions.
783  */
784 static int rt2500usb_init_registers(struct rt2x00_dev *rt2x00dev)
785 {
786         u16 reg;
787
788         rt2x00usb_vendor_request_sw(rt2x00dev, USB_DEVICE_MODE, 0x0001,
789                                     USB_MODE_TEST, REGISTER_TIMEOUT);
790         rt2x00usb_vendor_request_sw(rt2x00dev, USB_SINGLE_WRITE, 0x0308,
791                                     0x00f0, REGISTER_TIMEOUT);
792
793         rt2500usb_register_read(rt2x00dev, TXRX_CSR2, &reg);
794         rt2x00_set_field16(&reg, TXRX_CSR2_DISABLE_RX, 1);
795         rt2500usb_register_write(rt2x00dev, TXRX_CSR2, reg);
796
797         rt2500usb_register_write(rt2x00dev, MAC_CSR13, 0x1111);
798         rt2500usb_register_write(rt2x00dev, MAC_CSR14, 0x1e11);
799
800         rt2500usb_register_read(rt2x00dev, MAC_CSR1, &reg);
801         rt2x00_set_field16(&reg, MAC_CSR1_SOFT_RESET, 1);
802         rt2x00_set_field16(&reg, MAC_CSR1_BBP_RESET, 1);
803         rt2x00_set_field16(&reg, MAC_CSR1_HOST_READY, 0);
804         rt2500usb_register_write(rt2x00dev, MAC_CSR1, reg);
805
806         rt2500usb_register_read(rt2x00dev, MAC_CSR1, &reg);
807         rt2x00_set_field16(&reg, MAC_CSR1_SOFT_RESET, 0);
808         rt2x00_set_field16(&reg, MAC_CSR1_BBP_RESET, 0);
809         rt2x00_set_field16(&reg, MAC_CSR1_HOST_READY, 0);
810         rt2500usb_register_write(rt2x00dev, MAC_CSR1, reg);
811
812         rt2500usb_register_read(rt2x00dev, TXRX_CSR5, &reg);
813         rt2x00_set_field16(&reg, TXRX_CSR5_BBP_ID0, 13);
814         rt2x00_set_field16(&reg, TXRX_CSR5_BBP_ID0_VALID, 1);
815         rt2x00_set_field16(&reg, TXRX_CSR5_BBP_ID1, 12);
816         rt2x00_set_field16(&reg, TXRX_CSR5_BBP_ID1_VALID, 1);
817         rt2500usb_register_write(rt2x00dev, TXRX_CSR5, reg);
818
819         rt2500usb_register_read(rt2x00dev, TXRX_CSR6, &reg);
820         rt2x00_set_field16(&reg, TXRX_CSR6_BBP_ID0, 10);
821         rt2x00_set_field16(&reg, TXRX_CSR6_BBP_ID0_VALID, 1);
822         rt2x00_set_field16(&reg, TXRX_CSR6_BBP_ID1, 11);
823         rt2x00_set_field16(&reg, TXRX_CSR6_BBP_ID1_VALID, 1);
824         rt2500usb_register_write(rt2x00dev, TXRX_CSR6, reg);
825
826         rt2500usb_register_read(rt2x00dev, TXRX_CSR7, &reg);
827         rt2x00_set_field16(&reg, TXRX_CSR7_BBP_ID0, 7);
828         rt2x00_set_field16(&reg, TXRX_CSR7_BBP_ID0_VALID, 1);
829         rt2x00_set_field16(&reg, TXRX_CSR7_BBP_ID1, 6);
830         rt2x00_set_field16(&reg, TXRX_CSR7_BBP_ID1_VALID, 1);
831         rt2500usb_register_write(rt2x00dev, TXRX_CSR7, reg);
832
833         rt2500usb_register_read(rt2x00dev, TXRX_CSR8, &reg);
834         rt2x00_set_field16(&reg, TXRX_CSR8_BBP_ID0, 5);
835         rt2x00_set_field16(&reg, TXRX_CSR8_BBP_ID0_VALID, 1);
836         rt2x00_set_field16(&reg, TXRX_CSR8_BBP_ID1, 0);
837         rt2x00_set_field16(&reg, TXRX_CSR8_BBP_ID1_VALID, 0);
838         rt2500usb_register_write(rt2x00dev, TXRX_CSR8, reg);
839
840         rt2500usb_register_read(rt2x00dev, TXRX_CSR19, &reg);
841         rt2x00_set_field16(&reg, TXRX_CSR19_TSF_COUNT, 0);
842         rt2x00_set_field16(&reg, TXRX_CSR19_TSF_SYNC, 0);
843         rt2x00_set_field16(&reg, TXRX_CSR19_TBCN, 0);
844         rt2x00_set_field16(&reg, TXRX_CSR19_BEACON_GEN, 0);
845         rt2500usb_register_write(rt2x00dev, TXRX_CSR19, reg);
846
847         rt2500usb_register_write(rt2x00dev, TXRX_CSR21, 0xe78f);
848         rt2500usb_register_write(rt2x00dev, MAC_CSR9, 0xff1d);
849
850         if (rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_AWAKE))
851                 return -EBUSY;
852
853         rt2500usb_register_read(rt2x00dev, MAC_CSR1, &reg);
854         rt2x00_set_field16(&reg, MAC_CSR1_SOFT_RESET, 0);
855         rt2x00_set_field16(&reg, MAC_CSR1_BBP_RESET, 0);
856         rt2x00_set_field16(&reg, MAC_CSR1_HOST_READY, 1);
857         rt2500usb_register_write(rt2x00dev, MAC_CSR1, reg);
858
859         if (rt2x00_rev(rt2x00dev) >= RT2570_VERSION_C) {
860                 rt2500usb_register_read(rt2x00dev, PHY_CSR2, &reg);
861                 rt2x00_set_field16(&reg, PHY_CSR2_LNA, 0);
862         } else {
863                 reg = 0;
864                 rt2x00_set_field16(&reg, PHY_CSR2_LNA, 1);
865                 rt2x00_set_field16(&reg, PHY_CSR2_LNA_MODE, 3);
866         }
867         rt2500usb_register_write(rt2x00dev, PHY_CSR2, reg);
868
869         rt2500usb_register_write(rt2x00dev, MAC_CSR11, 0x0002);
870         rt2500usb_register_write(rt2x00dev, MAC_CSR22, 0x0053);
871         rt2500usb_register_write(rt2x00dev, MAC_CSR15, 0x01ee);
872         rt2500usb_register_write(rt2x00dev, MAC_CSR16, 0x0000);
873
874         rt2500usb_register_read(rt2x00dev, MAC_CSR8, &reg);
875         rt2x00_set_field16(&reg, MAC_CSR8_MAX_FRAME_UNIT,
876                            rt2x00dev->rx->data_size);
877         rt2500usb_register_write(rt2x00dev, MAC_CSR8, reg);
878
879         rt2500usb_register_read(rt2x00dev, TXRX_CSR0, &reg);
880         rt2x00_set_field16(&reg, TXRX_CSR0_ALGORITHM, CIPHER_NONE);
881         rt2x00_set_field16(&reg, TXRX_CSR0_IV_OFFSET, IEEE80211_HEADER);
882         rt2x00_set_field16(&reg, TXRX_CSR0_KEY_ID, 0);
883         rt2500usb_register_write(rt2x00dev, TXRX_CSR0, reg);
884
885         rt2500usb_register_read(rt2x00dev, MAC_CSR18, &reg);
886         rt2x00_set_field16(&reg, MAC_CSR18_DELAY_AFTER_BEACON, 90);
887         rt2500usb_register_write(rt2x00dev, MAC_CSR18, reg);
888
889         rt2500usb_register_read(rt2x00dev, PHY_CSR4, &reg);
890         rt2x00_set_field16(&reg, PHY_CSR4_LOW_RF_LE, 1);
891         rt2500usb_register_write(rt2x00dev, PHY_CSR4, reg);
892
893         rt2500usb_register_read(rt2x00dev, TXRX_CSR1, &reg);
894         rt2x00_set_field16(&reg, TXRX_CSR1_AUTO_SEQUENCE, 1);
895         rt2500usb_register_write(rt2x00dev, TXRX_CSR1, reg);
896
897         return 0;
898 }
899
900 static int rt2500usb_wait_bbp_ready(struct rt2x00_dev *rt2x00dev)
901 {
902         unsigned int i;
903         u8 value;
904
905         for (i = 0; i < REGISTER_USB_BUSY_COUNT; i++) {
906                 rt2500usb_bbp_read(rt2x00dev, 0, &value);
907                 if ((value != 0xff) && (value != 0x00))
908                         return 0;
909                 udelay(REGISTER_BUSY_DELAY);
910         }
911
912         rt2x00_err(rt2x00dev, "BBP register access failed, aborting\n");
913         return -EACCES;
914 }
915
916 static int rt2500usb_init_bbp(struct rt2x00_dev *rt2x00dev)
917 {
918         unsigned int i;
919         u16 eeprom;
920         u8 value;
921         u8 reg_id;
922
923         if (unlikely(rt2500usb_wait_bbp_ready(rt2x00dev)))
924                 return -EACCES;
925
926         rt2500usb_bbp_write(rt2x00dev, 3, 0x02);
927         rt2500usb_bbp_write(rt2x00dev, 4, 0x19);
928         rt2500usb_bbp_write(rt2x00dev, 14, 0x1c);
929         rt2500usb_bbp_write(rt2x00dev, 15, 0x30);
930         rt2500usb_bbp_write(rt2x00dev, 16, 0xac);
931         rt2500usb_bbp_write(rt2x00dev, 18, 0x18);
932         rt2500usb_bbp_write(rt2x00dev, 19, 0xff);
933         rt2500usb_bbp_write(rt2x00dev, 20, 0x1e);
934         rt2500usb_bbp_write(rt2x00dev, 21, 0x08);
935         rt2500usb_bbp_write(rt2x00dev, 22, 0x08);
936         rt2500usb_bbp_write(rt2x00dev, 23, 0x08);
937         rt2500usb_bbp_write(rt2x00dev, 24, 0x80);
938         rt2500usb_bbp_write(rt2x00dev, 25, 0x50);
939         rt2500usb_bbp_write(rt2x00dev, 26, 0x08);
940         rt2500usb_bbp_write(rt2x00dev, 27, 0x23);
941         rt2500usb_bbp_write(rt2x00dev, 30, 0x10);
942         rt2500usb_bbp_write(rt2x00dev, 31, 0x2b);
943         rt2500usb_bbp_write(rt2x00dev, 32, 0xb9);
944         rt2500usb_bbp_write(rt2x00dev, 34, 0x12);
945         rt2500usb_bbp_write(rt2x00dev, 35, 0x50);
946         rt2500usb_bbp_write(rt2x00dev, 39, 0xc4);
947         rt2500usb_bbp_write(rt2x00dev, 40, 0x02);
948         rt2500usb_bbp_write(rt2x00dev, 41, 0x60);
949         rt2500usb_bbp_write(rt2x00dev, 53, 0x10);
950         rt2500usb_bbp_write(rt2x00dev, 54, 0x18);
951         rt2500usb_bbp_write(rt2x00dev, 56, 0x08);
952         rt2500usb_bbp_write(rt2x00dev, 57, 0x10);
953         rt2500usb_bbp_write(rt2x00dev, 58, 0x08);
954         rt2500usb_bbp_write(rt2x00dev, 61, 0x60);
955         rt2500usb_bbp_write(rt2x00dev, 62, 0x10);
956         rt2500usb_bbp_write(rt2x00dev, 75, 0xff);
957
958         for (i = 0; i < EEPROM_BBP_SIZE; i++) {
959                 rt2x00_eeprom_read(rt2x00dev, EEPROM_BBP_START + i, &eeprom);
960
961                 if (eeprom != 0xffff && eeprom != 0x0000) {
962                         reg_id = rt2x00_get_field16(eeprom, EEPROM_BBP_REG_ID);
963                         value = rt2x00_get_field16(eeprom, EEPROM_BBP_VALUE);
964                         rt2500usb_bbp_write(rt2x00dev, reg_id, value);
965                 }
966         }
967
968         return 0;
969 }
970
971 /*
972  * Device state switch handlers.
973  */
974 static int rt2500usb_enable_radio(struct rt2x00_dev *rt2x00dev)
975 {
976         /*
977          * Initialize all registers.
978          */
979         if (unlikely(rt2500usb_init_registers(rt2x00dev) ||
980                      rt2500usb_init_bbp(rt2x00dev)))
981                 return -EIO;
982
983         return 0;
984 }
985
986 static void rt2500usb_disable_radio(struct rt2x00_dev *rt2x00dev)
987 {
988         rt2500usb_register_write(rt2x00dev, MAC_CSR13, 0x2121);
989         rt2500usb_register_write(rt2x00dev, MAC_CSR14, 0x2121);
990
991         /*
992          * Disable synchronisation.
993          */
994         rt2500usb_register_write(rt2x00dev, TXRX_CSR19, 0);
995
996         rt2x00usb_disable_radio(rt2x00dev);
997 }
998
999 static int rt2500usb_set_state(struct rt2x00_dev *rt2x00dev,
1000                                enum dev_state state)
1001 {
1002         u16 reg;
1003         u16 reg2;
1004         unsigned int i;
1005         char put_to_sleep;
1006         char bbp_state;
1007         char rf_state;
1008
1009         put_to_sleep = (state != STATE_AWAKE);
1010
1011         reg = 0;
1012         rt2x00_set_field16(&reg, MAC_CSR17_BBP_DESIRE_STATE, state);
1013         rt2x00_set_field16(&reg, MAC_CSR17_RF_DESIRE_STATE, state);
1014         rt2x00_set_field16(&reg, MAC_CSR17_PUT_TO_SLEEP, put_to_sleep);
1015         rt2500usb_register_write(rt2x00dev, MAC_CSR17, reg);
1016         rt2x00_set_field16(&reg, MAC_CSR17_SET_STATE, 1);
1017         rt2500usb_register_write(rt2x00dev, MAC_CSR17, reg);
1018
1019         /*
1020          * Device is not guaranteed to be in the requested state yet.
1021          * We must wait until the register indicates that the
1022          * device has entered the correct state.
1023          */
1024         for (i = 0; i < REGISTER_USB_BUSY_COUNT; i++) {
1025                 rt2500usb_register_read(rt2x00dev, MAC_CSR17, &reg2);
1026                 bbp_state = rt2x00_get_field16(reg2, MAC_CSR17_BBP_CURR_STATE);
1027                 rf_state = rt2x00_get_field16(reg2, MAC_CSR17_RF_CURR_STATE);
1028                 if (bbp_state == state && rf_state == state)
1029                         return 0;
1030                 rt2500usb_register_write(rt2x00dev, MAC_CSR17, reg);
1031                 msleep(30);
1032         }
1033
1034         return -EBUSY;
1035 }
1036
1037 static int rt2500usb_set_device_state(struct rt2x00_dev *rt2x00dev,
1038                                       enum dev_state state)
1039 {
1040         int retval = 0;
1041
1042         switch (state) {
1043         case STATE_RADIO_ON:
1044                 retval = rt2500usb_enable_radio(rt2x00dev);
1045                 break;
1046         case STATE_RADIO_OFF:
1047                 rt2500usb_disable_radio(rt2x00dev);
1048                 break;
1049         case STATE_RADIO_IRQ_ON:
1050         case STATE_RADIO_IRQ_OFF:
1051                 /* No support, but no error either */
1052                 break;
1053         case STATE_DEEP_SLEEP:
1054         case STATE_SLEEP:
1055         case STATE_STANDBY:
1056         case STATE_AWAKE:
1057                 retval = rt2500usb_set_state(rt2x00dev, state);
1058                 break;
1059         default:
1060                 retval = -ENOTSUPP;
1061                 break;
1062         }
1063
1064         if (unlikely(retval))
1065                 rt2x00_err(rt2x00dev, "Device failed to enter state %d (%d)\n",
1066                            state, retval);
1067
1068         return retval;
1069 }
1070
1071 /*
1072  * TX descriptor initialization
1073  */
1074 static void rt2500usb_write_tx_desc(struct queue_entry *entry,
1075                                     struct txentry_desc *txdesc)
1076 {
1077         struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb);
1078         __le32 *txd = (__le32 *) entry->skb->data;
1079         u32 word;
1080
1081         /*
1082          * Start writing the descriptor words.
1083          */
1084         rt2x00_desc_read(txd, 0, &word);
1085         rt2x00_set_field32(&word, TXD_W0_RETRY_LIMIT, txdesc->retry_limit);
1086         rt2x00_set_field32(&word, TXD_W0_MORE_FRAG,
1087                            test_bit(ENTRY_TXD_MORE_FRAG, &txdesc->flags));
1088         rt2x00_set_field32(&word, TXD_W0_ACK,
1089                            test_bit(ENTRY_TXD_ACK, &txdesc->flags));
1090         rt2x00_set_field32(&word, TXD_W0_TIMESTAMP,
1091                            test_bit(ENTRY_TXD_REQ_TIMESTAMP, &txdesc->flags));
1092         rt2x00_set_field32(&word, TXD_W0_OFDM,
1093                            (txdesc->rate_mode == RATE_MODE_OFDM));
1094         rt2x00_set_field32(&word, TXD_W0_NEW_SEQ,
1095                            test_bit(ENTRY_TXD_FIRST_FRAGMENT, &txdesc->flags));
1096         rt2x00_set_field32(&word, TXD_W0_IFS, txdesc->u.plcp.ifs);
1097         rt2x00_set_field32(&word, TXD_W0_DATABYTE_COUNT, txdesc->length);
1098         rt2x00_set_field32(&word, TXD_W0_CIPHER, !!txdesc->cipher);
1099         rt2x00_set_field32(&word, TXD_W0_KEY_ID, txdesc->key_idx);
1100         rt2x00_desc_write(txd, 0, word);
1101
1102         rt2x00_desc_read(txd, 1, &word);
1103         rt2x00_set_field32(&word, TXD_W1_IV_OFFSET, txdesc->iv_offset);
1104         rt2x00_set_field32(&word, TXD_W1_AIFS, entry->queue->aifs);
1105         rt2x00_set_field32(&word, TXD_W1_CWMIN, entry->queue->cw_min);
1106         rt2x00_set_field32(&word, TXD_W1_CWMAX, entry->queue->cw_max);
1107         rt2x00_desc_write(txd, 1, word);
1108
1109         rt2x00_desc_read(txd, 2, &word);
1110         rt2x00_set_field32(&word, TXD_W2_PLCP_SIGNAL, txdesc->u.plcp.signal);
1111         rt2x00_set_field32(&word, TXD_W2_PLCP_SERVICE, txdesc->u.plcp.service);
1112         rt2x00_set_field32(&word, TXD_W2_PLCP_LENGTH_LOW,
1113                            txdesc->u.plcp.length_low);
1114         rt2x00_set_field32(&word, TXD_W2_PLCP_LENGTH_HIGH,
1115                            txdesc->u.plcp.length_high);
1116         rt2x00_desc_write(txd, 2, word);
1117
1118         if (test_bit(ENTRY_TXD_ENCRYPT, &txdesc->flags)) {
1119                 _rt2x00_desc_write(txd, 3, skbdesc->iv[0]);
1120                 _rt2x00_desc_write(txd, 4, skbdesc->iv[1]);
1121         }
1122
1123         /*
1124          * Register descriptor details in skb frame descriptor.
1125          */
1126         skbdesc->flags |= SKBDESC_DESC_IN_SKB;
1127         skbdesc->desc = txd;
1128         skbdesc->desc_len = TXD_DESC_SIZE;
1129 }
1130
1131 /*
1132  * TX data initialization
1133  */
1134 static void rt2500usb_beacondone(struct urb *urb);
1135
1136 static void rt2500usb_write_beacon(struct queue_entry *entry,
1137                                    struct txentry_desc *txdesc)
1138 {
1139         struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
1140         struct usb_device *usb_dev = to_usb_device_intf(rt2x00dev->dev);
1141         struct queue_entry_priv_usb_bcn *bcn_priv = entry->priv_data;
1142         int pipe = usb_sndbulkpipe(usb_dev, entry->queue->usb_endpoint);
1143         int length;
1144         u16 reg, reg0;
1145
1146         /*
1147          * Disable beaconing while we are reloading the beacon data,
1148          * otherwise we might be sending out invalid data.
1149          */
1150         rt2500usb_register_read(rt2x00dev, TXRX_CSR19, &reg);
1151         rt2x00_set_field16(&reg, TXRX_CSR19_BEACON_GEN, 0);
1152         rt2500usb_register_write(rt2x00dev, TXRX_CSR19, reg);
1153
1154         /*
1155          * Add space for the descriptor in front of the skb.
1156          */
1157         skb_push(entry->skb, TXD_DESC_SIZE);
1158         memset(entry->skb->data, 0, TXD_DESC_SIZE);
1159
1160         /*
1161          * Write the TX descriptor for the beacon.
1162          */
1163         rt2500usb_write_tx_desc(entry, txdesc);
1164
1165         /*
1166          * Dump beacon to userspace through debugfs.
1167          */
1168         rt2x00debug_dump_frame(rt2x00dev, DUMP_FRAME_BEACON, entry->skb);
1169
1170         /*
1171          * USB devices cannot blindly pass the skb->len as the
1172          * length of the data to usb_fill_bulk_urb. Pass the skb
1173          * to the driver to determine what the length should be.
1174          */
1175         length = rt2x00dev->ops->lib->get_tx_data_len(entry);
1176
1177         usb_fill_bulk_urb(bcn_priv->urb, usb_dev, pipe,
1178                           entry->skb->data, length, rt2500usb_beacondone,
1179                           entry);
1180
1181         /*
1182          * Second we need to create the guardian byte.
1183          * We only need a single byte, so lets recycle
1184          * the 'flags' field we are not using for beacons.
1185          */
1186         bcn_priv->guardian_data = 0;
1187         usb_fill_bulk_urb(bcn_priv->guardian_urb, usb_dev, pipe,
1188                           &bcn_priv->guardian_data, 1, rt2500usb_beacondone,
1189                           entry);
1190
1191         /*
1192          * Send out the guardian byte.
1193          */
1194         usb_submit_urb(bcn_priv->guardian_urb, GFP_ATOMIC);
1195
1196         /*
1197          * Enable beaconing again.
1198          */
1199         rt2x00_set_field16(&reg, TXRX_CSR19_TSF_COUNT, 1);
1200         rt2x00_set_field16(&reg, TXRX_CSR19_TBCN, 1);
1201         reg0 = reg;
1202         rt2x00_set_field16(&reg, TXRX_CSR19_BEACON_GEN, 1);
1203         /*
1204          * Beacon generation will fail initially.
1205          * To prevent this we need to change the TXRX_CSR19
1206          * register several times (reg0 is the same as reg
1207          * except for TXRX_CSR19_BEACON_GEN, which is 0 in reg0
1208          * and 1 in reg).
1209          */
1210         rt2500usb_register_write(rt2x00dev, TXRX_CSR19, reg);
1211         rt2500usb_register_write(rt2x00dev, TXRX_CSR19, reg0);
1212         rt2500usb_register_write(rt2x00dev, TXRX_CSR19, reg);
1213         rt2500usb_register_write(rt2x00dev, TXRX_CSR19, reg0);
1214         rt2500usb_register_write(rt2x00dev, TXRX_CSR19, reg);
1215 }
1216
1217 static int rt2500usb_get_tx_data_len(struct queue_entry *entry)
1218 {
1219         int length;
1220
1221         /*
1222          * The length _must_ be a multiple of 2,
1223          * but it must _not_ be a multiple of the USB packet size.
1224          */
1225         length = roundup(entry->skb->len, 2);
1226         length += (2 * !(length % entry->queue->usb_maxpacket));
1227
1228         return length;
1229 }
1230
1231 /*
1232  * RX control handlers
1233  */
1234 static void rt2500usb_fill_rxdone(struct queue_entry *entry,
1235                                   struct rxdone_entry_desc *rxdesc)
1236 {
1237         struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
1238         struct queue_entry_priv_usb *entry_priv = entry->priv_data;
1239         struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb);
1240         __le32 *rxd =
1241             (__le32 *)(entry->skb->data +
1242                        (entry_priv->urb->actual_length -
1243                         entry->queue->desc_size));
1244         u32 word0;
1245         u32 word1;
1246
1247         /*
1248          * Copy descriptor to the skbdesc->desc buffer, making it safe from moving of
1249          * frame data in rt2x00usb.
1250          */
1251         memcpy(skbdesc->desc, rxd, skbdesc->desc_len);
1252         rxd = (__le32 *)skbdesc->desc;
1253
1254         /*
1255          * It is now safe to read the descriptor on all architectures.
1256          */
1257         rt2x00_desc_read(rxd, 0, &word0);
1258         rt2x00_desc_read(rxd, 1, &word1);
1259
1260         if (rt2x00_get_field32(word0, RXD_W0_CRC_ERROR))
1261                 rxdesc->flags |= RX_FLAG_FAILED_FCS_CRC;
1262         if (rt2x00_get_field32(word0, RXD_W0_PHYSICAL_ERROR))
1263                 rxdesc->flags |= RX_FLAG_FAILED_PLCP_CRC;
1264
1265         rxdesc->cipher = rt2x00_get_field32(word0, RXD_W0_CIPHER);
1266         if (rt2x00_get_field32(word0, RXD_W0_CIPHER_ERROR))
1267                 rxdesc->cipher_status = RX_CRYPTO_FAIL_KEY;
1268
1269         if (rxdesc->cipher != CIPHER_NONE) {
1270                 _rt2x00_desc_read(rxd, 2, &rxdesc->iv[0]);
1271                 _rt2x00_desc_read(rxd, 3, &rxdesc->iv[1]);
1272                 rxdesc->dev_flags |= RXDONE_CRYPTO_IV;
1273
1274                 /* ICV is located at the end of frame */
1275
1276                 rxdesc->flags |= RX_FLAG_MMIC_STRIPPED;
1277                 if (rxdesc->cipher_status == RX_CRYPTO_SUCCESS)
1278                         rxdesc->flags |= RX_FLAG_DECRYPTED;
1279                 else if (rxdesc->cipher_status == RX_CRYPTO_FAIL_MIC)
1280                         rxdesc->flags |= RX_FLAG_MMIC_ERROR;
1281         }
1282
1283         /*
1284          * Obtain the status about this packet.
1285          * When frame was received with an OFDM bitrate,
1286          * the signal is the PLCP value. If it was received with
1287          * a CCK bitrate the signal is the rate in 100kbit/s.
1288          */
1289         rxdesc->signal = rt2x00_get_field32(word1, RXD_W1_SIGNAL);
1290         rxdesc->rssi =
1291             rt2x00_get_field32(word1, RXD_W1_RSSI) - rt2x00dev->rssi_offset;
1292         rxdesc->size = rt2x00_get_field32(word0, RXD_W0_DATABYTE_COUNT);
1293
1294         if (rt2x00_get_field32(word0, RXD_W0_OFDM))
1295                 rxdesc->dev_flags |= RXDONE_SIGNAL_PLCP;
1296         else
1297                 rxdesc->dev_flags |= RXDONE_SIGNAL_BITRATE;
1298         if (rt2x00_get_field32(word0, RXD_W0_MY_BSS))
1299                 rxdesc->dev_flags |= RXDONE_MY_BSS;
1300
1301         /*
1302          * Adjust the skb memory window to the frame boundaries.
1303          */
1304         skb_trim(entry->skb, rxdesc->size);
1305 }
1306
1307 /*
1308  * Interrupt functions.
1309  */
1310 static void rt2500usb_beacondone(struct urb *urb)
1311 {
1312         struct queue_entry *entry = (struct queue_entry *)urb->context;
1313         struct queue_entry_priv_usb_bcn *bcn_priv = entry->priv_data;
1314
1315         if (!test_bit(DEVICE_STATE_ENABLED_RADIO, &entry->queue->rt2x00dev->flags))
1316                 return;
1317
1318         /*
1319          * Check if this was the guardian beacon,
1320          * if that was the case we need to send the real beacon now.
1321          * Otherwise we should free the sk_buffer, the device
1322          * should be doing the rest of the work now.
1323          */
1324         if (bcn_priv->guardian_urb == urb) {
1325                 usb_submit_urb(bcn_priv->urb, GFP_ATOMIC);
1326         } else if (bcn_priv->urb == urb) {
1327                 dev_kfree_skb(entry->skb);
1328                 entry->skb = NULL;
1329         }
1330 }
1331
1332 /*
1333  * Device probe functions.
1334  */
1335 static int rt2500usb_validate_eeprom(struct rt2x00_dev *rt2x00dev)
1336 {
1337         u16 word;
1338         u8 *mac;
1339         u8 bbp;
1340
1341         rt2x00usb_eeprom_read(rt2x00dev, rt2x00dev->eeprom, EEPROM_SIZE);
1342
1343         /*
1344          * Start validation of the data that has been read.
1345          */
1346         mac = rt2x00_eeprom_addr(rt2x00dev, EEPROM_MAC_ADDR_0);
1347         if (!is_valid_ether_addr(mac)) {
1348                 eth_random_addr(mac);
1349                 rt2x00_eeprom_dbg(rt2x00dev, "MAC: %pM\n", mac);
1350         }
1351
1352         rt2x00_eeprom_read(rt2x00dev, EEPROM_ANTENNA, &word);
1353         if (word == 0xffff) {
1354                 rt2x00_set_field16(&word, EEPROM_ANTENNA_NUM, 2);
1355                 rt2x00_set_field16(&word, EEPROM_ANTENNA_TX_DEFAULT,
1356                                    ANTENNA_SW_DIVERSITY);
1357                 rt2x00_set_field16(&word, EEPROM_ANTENNA_RX_DEFAULT,
1358                                    ANTENNA_SW_DIVERSITY);
1359                 rt2x00_set_field16(&word, EEPROM_ANTENNA_LED_MODE,
1360                                    LED_MODE_DEFAULT);
1361                 rt2x00_set_field16(&word, EEPROM_ANTENNA_DYN_TXAGC, 0);
1362                 rt2x00_set_field16(&word, EEPROM_ANTENNA_HARDWARE_RADIO, 0);
1363                 rt2x00_set_field16(&word, EEPROM_ANTENNA_RF_TYPE, RF2522);
1364                 rt2x00_eeprom_write(rt2x00dev, EEPROM_ANTENNA, word);
1365                 rt2x00_eeprom_dbg(rt2x00dev, "Antenna: 0x%04x\n", word);
1366         }
1367
1368         rt2x00_eeprom_read(rt2x00dev, EEPROM_NIC, &word);
1369         if (word == 0xffff) {
1370                 rt2x00_set_field16(&word, EEPROM_NIC_CARDBUS_ACCEL, 0);
1371                 rt2x00_set_field16(&word, EEPROM_NIC_DYN_BBP_TUNE, 0);
1372                 rt2x00_set_field16(&word, EEPROM_NIC_CCK_TX_POWER, 0);
1373                 rt2x00_eeprom_write(rt2x00dev, EEPROM_NIC, word);
1374                 rt2x00_eeprom_dbg(rt2x00dev, "NIC: 0x%04x\n", word);
1375         }
1376
1377         rt2x00_eeprom_read(rt2x00dev, EEPROM_CALIBRATE_OFFSET, &word);
1378         if (word == 0xffff) {
1379                 rt2x00_set_field16(&word, EEPROM_CALIBRATE_OFFSET_RSSI,
1380                                    DEFAULT_RSSI_OFFSET);
1381                 rt2x00_eeprom_write(rt2x00dev, EEPROM_CALIBRATE_OFFSET, word);
1382                 rt2x00_eeprom_dbg(rt2x00dev, "Calibrate offset: 0x%04x\n",
1383                                   word);
1384         }
1385
1386         rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE, &word);
1387         if (word == 0xffff) {
1388                 rt2x00_set_field16(&word, EEPROM_BBPTUNE_THRESHOLD, 45);
1389                 rt2x00_eeprom_write(rt2x00dev, EEPROM_BBPTUNE, word);
1390                 rt2x00_eeprom_dbg(rt2x00dev, "BBPtune: 0x%04x\n", word);
1391         }
1392
1393         /*
1394          * Switch lower vgc bound to current BBP R17 value,
1395          * lower the value a bit for better quality.
1396          */
1397         rt2500usb_bbp_read(rt2x00dev, 17, &bbp);
1398         bbp -= 6;
1399
1400         rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE_VGC, &word);
1401         if (word == 0xffff) {
1402                 rt2x00_set_field16(&word, EEPROM_BBPTUNE_VGCUPPER, 0x40);
1403                 rt2x00_set_field16(&word, EEPROM_BBPTUNE_VGCLOWER, bbp);
1404                 rt2x00_eeprom_write(rt2x00dev, EEPROM_BBPTUNE_VGC, word);
1405                 rt2x00_eeprom_dbg(rt2x00dev, "BBPtune vgc: 0x%04x\n", word);
1406         } else {
1407                 rt2x00_set_field16(&word, EEPROM_BBPTUNE_VGCLOWER, bbp);
1408                 rt2x00_eeprom_write(rt2x00dev, EEPROM_BBPTUNE_VGC, word);
1409         }
1410
1411         rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE_R17, &word);
1412         if (word == 0xffff) {
1413                 rt2x00_set_field16(&word, EEPROM_BBPTUNE_R17_LOW, 0x48);
1414                 rt2x00_set_field16(&word, EEPROM_BBPTUNE_R17_HIGH, 0x41);
1415                 rt2x00_eeprom_write(rt2x00dev, EEPROM_BBPTUNE_R17, word);
1416                 rt2x00_eeprom_dbg(rt2x00dev, "BBPtune r17: 0x%04x\n", word);
1417         }
1418
1419         rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE_R24, &word);
1420         if (word == 0xffff) {
1421                 rt2x00_set_field16(&word, EEPROM_BBPTUNE_R24_LOW, 0x40);
1422                 rt2x00_set_field16(&word, EEPROM_BBPTUNE_R24_HIGH, 0x80);
1423                 rt2x00_eeprom_write(rt2x00dev, EEPROM_BBPTUNE_R24, word);
1424                 rt2x00_eeprom_dbg(rt2x00dev, "BBPtune r24: 0x%04x\n", word);
1425         }
1426
1427         rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE_R25, &word);
1428         if (word == 0xffff) {
1429                 rt2x00_set_field16(&word, EEPROM_BBPTUNE_R25_LOW, 0x40);
1430                 rt2x00_set_field16(&word, EEPROM_BBPTUNE_R25_HIGH, 0x50);
1431                 rt2x00_eeprom_write(rt2x00dev, EEPROM_BBPTUNE_R25, word);
1432                 rt2x00_eeprom_dbg(rt2x00dev, "BBPtune r25: 0x%04x\n", word);
1433         }
1434
1435         rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE_R61, &word);
1436         if (word == 0xffff) {
1437                 rt2x00_set_field16(&word, EEPROM_BBPTUNE_R61_LOW, 0x60);
1438                 rt2x00_set_field16(&word, EEPROM_BBPTUNE_R61_HIGH, 0x6d);
1439                 rt2x00_eeprom_write(rt2x00dev, EEPROM_BBPTUNE_R61, word);
1440                 rt2x00_eeprom_dbg(rt2x00dev, "BBPtune r61: 0x%04x\n", word);
1441         }
1442
1443         return 0;
1444 }
1445
1446 static int rt2500usb_init_eeprom(struct rt2x00_dev *rt2x00dev)
1447 {
1448         u16 reg;
1449         u16 value;
1450         u16 eeprom;
1451
1452         /*
1453          * Read EEPROM word for configuration.
1454          */
1455         rt2x00_eeprom_read(rt2x00dev, EEPROM_ANTENNA, &eeprom);
1456
1457         /*
1458          * Identify RF chipset.
1459          */
1460         value = rt2x00_get_field16(eeprom, EEPROM_ANTENNA_RF_TYPE);
1461         rt2500usb_register_read(rt2x00dev, MAC_CSR0, &reg);
1462         rt2x00_set_chip(rt2x00dev, RT2570, value, reg);
1463
1464         if (((reg & 0xfff0) != 0) || ((reg & 0x0000000f) == 0)) {
1465                 rt2x00_err(rt2x00dev, "Invalid RT chipset detected\n");
1466                 return -ENODEV;
1467         }
1468
1469         if (!rt2x00_rf(rt2x00dev, RF2522) &&
1470             !rt2x00_rf(rt2x00dev, RF2523) &&
1471             !rt2x00_rf(rt2x00dev, RF2524) &&
1472             !rt2x00_rf(rt2x00dev, RF2525) &&
1473             !rt2x00_rf(rt2x00dev, RF2525E) &&
1474             !rt2x00_rf(rt2x00dev, RF5222)) {
1475                 rt2x00_err(rt2x00dev, "Invalid RF chipset detected\n");
1476                 return -ENODEV;
1477         }
1478
1479         /*
1480          * Identify default antenna configuration.
1481          */
1482         rt2x00dev->default_ant.tx =
1483             rt2x00_get_field16(eeprom, EEPROM_ANTENNA_TX_DEFAULT);
1484         rt2x00dev->default_ant.rx =
1485             rt2x00_get_field16(eeprom, EEPROM_ANTENNA_RX_DEFAULT);
1486
1487         /*
1488          * When the eeprom indicates SW_DIVERSITY use HW_DIVERSITY instead.
1489          * I am not 100% sure about this, but the legacy drivers do not
1490          * indicate antenna swapping in software is required when
1491          * diversity is enabled.
1492          */
1493         if (rt2x00dev->default_ant.tx == ANTENNA_SW_DIVERSITY)
1494                 rt2x00dev->default_ant.tx = ANTENNA_HW_DIVERSITY;
1495         if (rt2x00dev->default_ant.rx == ANTENNA_SW_DIVERSITY)
1496                 rt2x00dev->default_ant.rx = ANTENNA_HW_DIVERSITY;
1497
1498         /*
1499          * Store led mode, for correct led behaviour.
1500          */
1501 #ifdef CONFIG_RT2X00_LIB_LEDS
1502         value = rt2x00_get_field16(eeprom, EEPROM_ANTENNA_LED_MODE);
1503
1504         rt2500usb_init_led(rt2x00dev, &rt2x00dev->led_radio, LED_TYPE_RADIO);
1505         if (value == LED_MODE_TXRX_ACTIVITY ||
1506             value == LED_MODE_DEFAULT ||
1507             value == LED_MODE_ASUS)
1508                 rt2500usb_init_led(rt2x00dev, &rt2x00dev->led_qual,
1509                                    LED_TYPE_ACTIVITY);
1510 #endif /* CONFIG_RT2X00_LIB_LEDS */
1511
1512         /*
1513          * Detect if this device has an hardware controlled radio.
1514          */
1515         if (rt2x00_get_field16(eeprom, EEPROM_ANTENNA_HARDWARE_RADIO))
1516                 __set_bit(CAPABILITY_HW_BUTTON, &rt2x00dev->cap_flags);
1517
1518         /*
1519          * Read the RSSI <-> dBm offset information.
1520          */
1521         rt2x00_eeprom_read(rt2x00dev, EEPROM_CALIBRATE_OFFSET, &eeprom);
1522         rt2x00dev->rssi_offset =
1523             rt2x00_get_field16(eeprom, EEPROM_CALIBRATE_OFFSET_RSSI);
1524
1525         return 0;
1526 }
1527
1528 /*
1529  * RF value list for RF2522
1530  * Supports: 2.4 GHz
1531  */
1532 static const struct rf_channel rf_vals_bg_2522[] = {
1533         { 1,  0x00002050, 0x000c1fda, 0x00000101, 0 },
1534         { 2,  0x00002050, 0x000c1fee, 0x00000101, 0 },
1535         { 3,  0x00002050, 0x000c2002, 0x00000101, 0 },
1536         { 4,  0x00002050, 0x000c2016, 0x00000101, 0 },
1537         { 5,  0x00002050, 0x000c202a, 0x00000101, 0 },
1538         { 6,  0x00002050, 0x000c203e, 0x00000101, 0 },
1539         { 7,  0x00002050, 0x000c2052, 0x00000101, 0 },
1540         { 8,  0x00002050, 0x000c2066, 0x00000101, 0 },
1541         { 9,  0x00002050, 0x000c207a, 0x00000101, 0 },
1542         { 10, 0x00002050, 0x000c208e, 0x00000101, 0 },
1543         { 11, 0x00002050, 0x000c20a2, 0x00000101, 0 },
1544         { 12, 0x00002050, 0x000c20b6, 0x00000101, 0 },
1545         { 13, 0x00002050, 0x000c20ca, 0x00000101, 0 },
1546         { 14, 0x00002050, 0x000c20fa, 0x00000101, 0 },
1547 };
1548
1549 /*
1550  * RF value list for RF2523
1551  * Supports: 2.4 GHz
1552  */
1553 static const struct rf_channel rf_vals_bg_2523[] = {
1554         { 1,  0x00022010, 0x00000c9e, 0x000e0111, 0x00000a1b },
1555         { 2,  0x00022010, 0x00000ca2, 0x000e0111, 0x00000a1b },
1556         { 3,  0x00022010, 0x00000ca6, 0x000e0111, 0x00000a1b },
1557         { 4,  0x00022010, 0x00000caa, 0x000e0111, 0x00000a1b },
1558         { 5,  0x00022010, 0x00000cae, 0x000e0111, 0x00000a1b },
1559         { 6,  0x00022010, 0x00000cb2, 0x000e0111, 0x00000a1b },
1560         { 7,  0x00022010, 0x00000cb6, 0x000e0111, 0x00000a1b },
1561         { 8,  0x00022010, 0x00000cba, 0x000e0111, 0x00000a1b },
1562         { 9,  0x00022010, 0x00000cbe, 0x000e0111, 0x00000a1b },
1563         { 10, 0x00022010, 0x00000d02, 0x000e0111, 0x00000a1b },
1564         { 11, 0x00022010, 0x00000d06, 0x000e0111, 0x00000a1b },
1565         { 12, 0x00022010, 0x00000d0a, 0x000e0111, 0x00000a1b },
1566         { 13, 0x00022010, 0x00000d0e, 0x000e0111, 0x00000a1b },
1567         { 14, 0x00022010, 0x00000d1a, 0x000e0111, 0x00000a03 },
1568 };
1569
1570 /*
1571  * RF value list for RF2524
1572  * Supports: 2.4 GHz
1573  */
1574 static const struct rf_channel rf_vals_bg_2524[] = {
1575         { 1,  0x00032020, 0x00000c9e, 0x00000101, 0x00000a1b },
1576         { 2,  0x00032020, 0x00000ca2, 0x00000101, 0x00000a1b },
1577         { 3,  0x00032020, 0x00000ca6, 0x00000101, 0x00000a1b },
1578         { 4,  0x00032020, 0x00000caa, 0x00000101, 0x00000a1b },
1579         { 5,  0x00032020, 0x00000cae, 0x00000101, 0x00000a1b },
1580         { 6,  0x00032020, 0x00000cb2, 0x00000101, 0x00000a1b },
1581         { 7,  0x00032020, 0x00000cb6, 0x00000101, 0x00000a1b },
1582         { 8,  0x00032020, 0x00000cba, 0x00000101, 0x00000a1b },
1583         { 9,  0x00032020, 0x00000cbe, 0x00000101, 0x00000a1b },
1584         { 10, 0x00032020, 0x00000d02, 0x00000101, 0x00000a1b },
1585         { 11, 0x00032020, 0x00000d06, 0x00000101, 0x00000a1b },
1586         { 12, 0x00032020, 0x00000d0a, 0x00000101, 0x00000a1b },
1587         { 13, 0x00032020, 0x00000d0e, 0x00000101, 0x00000a1b },
1588         { 14, 0x00032020, 0x00000d1a, 0x00000101, 0x00000a03 },
1589 };
1590
1591 /*
1592  * RF value list for RF2525
1593  * Supports: 2.4 GHz
1594  */
1595 static const struct rf_channel rf_vals_bg_2525[] = {
1596         { 1,  0x00022020, 0x00080c9e, 0x00060111, 0x00000a1b },
1597         { 2,  0x00022020, 0x00080ca2, 0x00060111, 0x00000a1b },
1598         { 3,  0x00022020, 0x00080ca6, 0x00060111, 0x00000a1b },
1599         { 4,  0x00022020, 0x00080caa, 0x00060111, 0x00000a1b },
1600         { 5,  0x00022020, 0x00080cae, 0x00060111, 0x00000a1b },
1601         { 6,  0x00022020, 0x00080cb2, 0x00060111, 0x00000a1b },
1602         { 7,  0x00022020, 0x00080cb6, 0x00060111, 0x00000a1b },
1603         { 8,  0x00022020, 0x00080cba, 0x00060111, 0x00000a1b },
1604         { 9,  0x00022020, 0x00080cbe, 0x00060111, 0x00000a1b },
1605         { 10, 0x00022020, 0x00080d02, 0x00060111, 0x00000a1b },
1606         { 11, 0x00022020, 0x00080d06, 0x00060111, 0x00000a1b },
1607         { 12, 0x00022020, 0x00080d0a, 0x00060111, 0x00000a1b },
1608         { 13, 0x00022020, 0x00080d0e, 0x00060111, 0x00000a1b },
1609         { 14, 0x00022020, 0x00080d1a, 0x00060111, 0x00000a03 },
1610 };
1611
1612 /*
1613  * RF value list for RF2525e
1614  * Supports: 2.4 GHz
1615  */
1616 static const struct rf_channel rf_vals_bg_2525e[] = {
1617         { 1,  0x00022010, 0x0000089a, 0x00060111, 0x00000e1b },
1618         { 2,  0x00022010, 0x0000089e, 0x00060111, 0x00000e07 },
1619         { 3,  0x00022010, 0x0000089e, 0x00060111, 0x00000e1b },
1620         { 4,  0x00022010, 0x000008a2, 0x00060111, 0x00000e07 },
1621         { 5,  0x00022010, 0x000008a2, 0x00060111, 0x00000e1b },
1622         { 6,  0x00022010, 0x000008a6, 0x00060111, 0x00000e07 },
1623         { 7,  0x00022010, 0x000008a6, 0x00060111, 0x00000e1b },
1624         { 8,  0x00022010, 0x000008aa, 0x00060111, 0x00000e07 },
1625         { 9,  0x00022010, 0x000008aa, 0x00060111, 0x00000e1b },
1626         { 10, 0x00022010, 0x000008ae, 0x00060111, 0x00000e07 },
1627         { 11, 0x00022010, 0x000008ae, 0x00060111, 0x00000e1b },
1628         { 12, 0x00022010, 0x000008b2, 0x00060111, 0x00000e07 },
1629         { 13, 0x00022010, 0x000008b2, 0x00060111, 0x00000e1b },
1630         { 14, 0x00022010, 0x000008b6, 0x00060111, 0x00000e23 },
1631 };
1632
1633 /*
1634  * RF value list for RF5222
1635  * Supports: 2.4 GHz & 5.2 GHz
1636  */
1637 static const struct rf_channel rf_vals_5222[] = {
1638         { 1,  0x00022020, 0x00001136, 0x00000101, 0x00000a0b },
1639         { 2,  0x00022020, 0x0000113a, 0x00000101, 0x00000a0b },
1640         { 3,  0x00022020, 0x0000113e, 0x00000101, 0x00000a0b },
1641         { 4,  0x00022020, 0x00001182, 0x00000101, 0x00000a0b },
1642         { 5,  0x00022020, 0x00001186, 0x00000101, 0x00000a0b },
1643         { 6,  0x00022020, 0x0000118a, 0x00000101, 0x00000a0b },
1644         { 7,  0x00022020, 0x0000118e, 0x00000101, 0x00000a0b },
1645         { 8,  0x00022020, 0x00001192, 0x00000101, 0x00000a0b },
1646         { 9,  0x00022020, 0x00001196, 0x00000101, 0x00000a0b },
1647         { 10, 0x00022020, 0x0000119a, 0x00000101, 0x00000a0b },
1648         { 11, 0x00022020, 0x0000119e, 0x00000101, 0x00000a0b },
1649         { 12, 0x00022020, 0x000011a2, 0x00000101, 0x00000a0b },
1650         { 13, 0x00022020, 0x000011a6, 0x00000101, 0x00000a0b },
1651         { 14, 0x00022020, 0x000011ae, 0x00000101, 0x00000a1b },
1652
1653         /* 802.11 UNI / HyperLan 2 */
1654         { 36, 0x00022010, 0x00018896, 0x00000101, 0x00000a1f },
1655         { 40, 0x00022010, 0x0001889a, 0x00000101, 0x00000a1f },
1656         { 44, 0x00022010, 0x0001889e, 0x00000101, 0x00000a1f },
1657         { 48, 0x00022010, 0x000188a2, 0x00000101, 0x00000a1f },
1658         { 52, 0x00022010, 0x000188a6, 0x00000101, 0x00000a1f },
1659         { 66, 0x00022010, 0x000188aa, 0x00000101, 0x00000a1f },
1660         { 60, 0x00022010, 0x000188ae, 0x00000101, 0x00000a1f },
1661         { 64, 0x00022010, 0x000188b2, 0x00000101, 0x00000a1f },
1662
1663         /* 802.11 HyperLan 2 */
1664         { 100, 0x00022010, 0x00008802, 0x00000101, 0x00000a0f },
1665         { 104, 0x00022010, 0x00008806, 0x00000101, 0x00000a0f },
1666         { 108, 0x00022010, 0x0000880a, 0x00000101, 0x00000a0f },
1667         { 112, 0x00022010, 0x0000880e, 0x00000101, 0x00000a0f },
1668         { 116, 0x00022010, 0x00008812, 0x00000101, 0x00000a0f },
1669         { 120, 0x00022010, 0x00008816, 0x00000101, 0x00000a0f },
1670         { 124, 0x00022010, 0x0000881a, 0x00000101, 0x00000a0f },
1671         { 128, 0x00022010, 0x0000881e, 0x00000101, 0x00000a0f },
1672         { 132, 0x00022010, 0x00008822, 0x00000101, 0x00000a0f },
1673         { 136, 0x00022010, 0x00008826, 0x00000101, 0x00000a0f },
1674
1675         /* 802.11 UNII */
1676         { 140, 0x00022010, 0x0000882a, 0x00000101, 0x00000a0f },
1677         { 149, 0x00022020, 0x000090a6, 0x00000101, 0x00000a07 },
1678         { 153, 0x00022020, 0x000090ae, 0x00000101, 0x00000a07 },
1679         { 157, 0x00022020, 0x000090b6, 0x00000101, 0x00000a07 },
1680         { 161, 0x00022020, 0x000090be, 0x00000101, 0x00000a07 },
1681 };
1682
1683 static int rt2500usb_probe_hw_mode(struct rt2x00_dev *rt2x00dev)
1684 {
1685         struct hw_mode_spec *spec = &rt2x00dev->spec;
1686         struct channel_info *info;
1687         char *tx_power;
1688         unsigned int i;
1689
1690         /*
1691          * Initialize all hw fields.
1692          *
1693          * Don't set IEEE80211_HW_HOST_BROADCAST_PS_BUFFERING unless we are
1694          * capable of sending the buffered frames out after the DTIM
1695          * transmission using rt2x00lib_beacondone. This will send out
1696          * multicast and broadcast traffic immediately instead of buffering it
1697          * infinitly and thus dropping it after some time.
1698          */
1699         ieee80211_hw_set(rt2x00dev->hw, PS_NULLFUNC_STACK);
1700         ieee80211_hw_set(rt2x00dev->hw, SUPPORTS_PS);
1701         ieee80211_hw_set(rt2x00dev->hw, RX_INCLUDES_FCS);
1702         ieee80211_hw_set(rt2x00dev->hw, SIGNAL_DBM);
1703
1704         /*
1705          * Disable powersaving as default.
1706          */
1707         rt2x00dev->hw->wiphy->flags &= ~WIPHY_FLAG_PS_ON_BY_DEFAULT;
1708
1709         SET_IEEE80211_DEV(rt2x00dev->hw, rt2x00dev->dev);
1710         SET_IEEE80211_PERM_ADDR(rt2x00dev->hw,
1711                                 rt2x00_eeprom_addr(rt2x00dev,
1712                                                    EEPROM_MAC_ADDR_0));
1713
1714         /*
1715          * Initialize hw_mode information.
1716          */
1717         spec->supported_bands = SUPPORT_BAND_2GHZ;
1718         spec->supported_rates = SUPPORT_RATE_CCK | SUPPORT_RATE_OFDM;
1719
1720         if (rt2x00_rf(rt2x00dev, RF2522)) {
1721                 spec->num_channels = ARRAY_SIZE(rf_vals_bg_2522);
1722                 spec->channels = rf_vals_bg_2522;
1723         } else if (rt2x00_rf(rt2x00dev, RF2523)) {
1724                 spec->num_channels = ARRAY_SIZE(rf_vals_bg_2523);
1725                 spec->channels = rf_vals_bg_2523;
1726         } else if (rt2x00_rf(rt2x00dev, RF2524)) {
1727                 spec->num_channels = ARRAY_SIZE(rf_vals_bg_2524);
1728                 spec->channels = rf_vals_bg_2524;
1729         } else if (rt2x00_rf(rt2x00dev, RF2525)) {
1730                 spec->num_channels = ARRAY_SIZE(rf_vals_bg_2525);
1731                 spec->channels = rf_vals_bg_2525;
1732         } else if (rt2x00_rf(rt2x00dev, RF2525E)) {
1733                 spec->num_channels = ARRAY_SIZE(rf_vals_bg_2525e);
1734                 spec->channels = rf_vals_bg_2525e;
1735         } else if (rt2x00_rf(rt2x00dev, RF5222)) {
1736                 spec->supported_bands |= SUPPORT_BAND_5GHZ;
1737                 spec->num_channels = ARRAY_SIZE(rf_vals_5222);
1738                 spec->channels = rf_vals_5222;
1739         }
1740
1741         /*
1742          * Create channel information array
1743          */
1744         info = kcalloc(spec->num_channels, sizeof(*info), GFP_KERNEL);
1745         if (!info)
1746                 return -ENOMEM;
1747
1748         spec->channels_info = info;
1749
1750         tx_power = rt2x00_eeprom_addr(rt2x00dev, EEPROM_TXPOWER_START);
1751         for (i = 0; i < 14; i++) {
1752                 info[i].max_power = MAX_TXPOWER;
1753                 info[i].default_power1 = TXPOWER_FROM_DEV(tx_power[i]);
1754         }
1755
1756         if (spec->num_channels > 14) {
1757                 for (i = 14; i < spec->num_channels; i++) {
1758                         info[i].max_power = MAX_TXPOWER;
1759                         info[i].default_power1 = DEFAULT_TXPOWER;
1760                 }
1761         }
1762
1763         return 0;
1764 }
1765
1766 static int rt2500usb_probe_hw(struct rt2x00_dev *rt2x00dev)
1767 {
1768         int retval;
1769         u16 reg;
1770
1771         /*
1772          * Allocate eeprom data.
1773          */
1774         retval = rt2500usb_validate_eeprom(rt2x00dev);
1775         if (retval)
1776                 return retval;
1777
1778         retval = rt2500usb_init_eeprom(rt2x00dev);
1779         if (retval)
1780                 return retval;
1781
1782         /*
1783          * Enable rfkill polling by setting GPIO direction of the
1784          * rfkill switch GPIO pin correctly.
1785          */
1786         rt2500usb_register_read(rt2x00dev, MAC_CSR19, &reg);
1787         rt2x00_set_field16(&reg, MAC_CSR19_DIR0, 0);
1788         rt2500usb_register_write(rt2x00dev, MAC_CSR19, reg);
1789
1790         /*
1791          * Initialize hw specifications.
1792          */
1793         retval = rt2500usb_probe_hw_mode(rt2x00dev);
1794         if (retval)
1795                 return retval;
1796
1797         /*
1798          * This device requires the atim queue
1799          */
1800         __set_bit(REQUIRE_ATIM_QUEUE, &rt2x00dev->cap_flags);
1801         __set_bit(REQUIRE_BEACON_GUARD, &rt2x00dev->cap_flags);
1802         if (!modparam_nohwcrypt) {
1803                 __set_bit(CAPABILITY_HW_CRYPTO, &rt2x00dev->cap_flags);
1804                 __set_bit(REQUIRE_COPY_IV, &rt2x00dev->cap_flags);
1805         }
1806         __set_bit(REQUIRE_SW_SEQNO, &rt2x00dev->cap_flags);
1807         __set_bit(REQUIRE_PS_AUTOWAKE, &rt2x00dev->cap_flags);
1808
1809         /*
1810          * Set the rssi offset.
1811          */
1812         rt2x00dev->rssi_offset = DEFAULT_RSSI_OFFSET;
1813
1814         return 0;
1815 }
1816
1817 static const struct ieee80211_ops rt2500usb_mac80211_ops = {
1818         .tx                     = rt2x00mac_tx,
1819         .start                  = rt2x00mac_start,
1820         .stop                   = rt2x00mac_stop,
1821         .add_interface          = rt2x00mac_add_interface,
1822         .remove_interface       = rt2x00mac_remove_interface,
1823         .config                 = rt2x00mac_config,
1824         .configure_filter       = rt2x00mac_configure_filter,
1825         .set_tim                = rt2x00mac_set_tim,
1826         .set_key                = rt2x00mac_set_key,
1827         .sw_scan_start          = rt2x00mac_sw_scan_start,
1828         .sw_scan_complete       = rt2x00mac_sw_scan_complete,
1829         .get_stats              = rt2x00mac_get_stats,
1830         .bss_info_changed       = rt2x00mac_bss_info_changed,
1831         .conf_tx                = rt2x00mac_conf_tx,
1832         .rfkill_poll            = rt2x00mac_rfkill_poll,
1833         .flush                  = rt2x00mac_flush,
1834         .set_antenna            = rt2x00mac_set_antenna,
1835         .get_antenna            = rt2x00mac_get_antenna,
1836         .get_ringparam          = rt2x00mac_get_ringparam,
1837         .tx_frames_pending      = rt2x00mac_tx_frames_pending,
1838 };
1839
1840 static const struct rt2x00lib_ops rt2500usb_rt2x00_ops = {
1841         .probe_hw               = rt2500usb_probe_hw,
1842         .initialize             = rt2x00usb_initialize,
1843         .uninitialize           = rt2x00usb_uninitialize,
1844         .clear_entry            = rt2x00usb_clear_entry,
1845         .set_device_state       = rt2500usb_set_device_state,
1846         .rfkill_poll            = rt2500usb_rfkill_poll,
1847         .link_stats             = rt2500usb_link_stats,
1848         .reset_tuner            = rt2500usb_reset_tuner,
1849         .watchdog               = rt2x00usb_watchdog,
1850         .start_queue            = rt2500usb_start_queue,
1851         .kick_queue             = rt2x00usb_kick_queue,
1852         .stop_queue             = rt2500usb_stop_queue,
1853         .flush_queue            = rt2x00usb_flush_queue,
1854         .write_tx_desc          = rt2500usb_write_tx_desc,
1855         .write_beacon           = rt2500usb_write_beacon,
1856         .get_tx_data_len        = rt2500usb_get_tx_data_len,
1857         .fill_rxdone            = rt2500usb_fill_rxdone,
1858         .config_shared_key      = rt2500usb_config_key,
1859         .config_pairwise_key    = rt2500usb_config_key,
1860         .config_filter          = rt2500usb_config_filter,
1861         .config_intf            = rt2500usb_config_intf,
1862         .config_erp             = rt2500usb_config_erp,
1863         .config_ant             = rt2500usb_config_ant,
1864         .config                 = rt2500usb_config,
1865 };
1866
1867 static void rt2500usb_queue_init(struct data_queue *queue)
1868 {
1869         switch (queue->qid) {
1870         case QID_RX:
1871                 queue->limit = 32;
1872                 queue->data_size = DATA_FRAME_SIZE;
1873                 queue->desc_size = RXD_DESC_SIZE;
1874                 queue->priv_size = sizeof(struct queue_entry_priv_usb);
1875                 break;
1876
1877         case QID_AC_VO:
1878         case QID_AC_VI:
1879         case QID_AC_BE:
1880         case QID_AC_BK:
1881                 queue->limit = 32;
1882                 queue->data_size = DATA_FRAME_SIZE;
1883                 queue->desc_size = TXD_DESC_SIZE;
1884                 queue->priv_size = sizeof(struct queue_entry_priv_usb);
1885                 break;
1886
1887         case QID_BEACON:
1888                 queue->limit = 1;
1889                 queue->data_size = MGMT_FRAME_SIZE;
1890                 queue->desc_size = TXD_DESC_SIZE;
1891                 queue->priv_size = sizeof(struct queue_entry_priv_usb_bcn);
1892                 break;
1893
1894         case QID_ATIM:
1895                 queue->limit = 8;
1896                 queue->data_size = DATA_FRAME_SIZE;
1897                 queue->desc_size = TXD_DESC_SIZE;
1898                 queue->priv_size = sizeof(struct queue_entry_priv_usb);
1899                 break;
1900
1901         default:
1902                 BUG();
1903                 break;
1904         }
1905 }
1906
1907 static const struct rt2x00_ops rt2500usb_ops = {
1908         .name                   = KBUILD_MODNAME,
1909         .max_ap_intf            = 1,
1910         .eeprom_size            = EEPROM_SIZE,
1911         .rf_size                = RF_SIZE,
1912         .tx_queues              = NUM_TX_QUEUES,
1913         .queue_init             = rt2500usb_queue_init,
1914         .lib                    = &rt2500usb_rt2x00_ops,
1915         .hw                     = &rt2500usb_mac80211_ops,
1916 #ifdef CONFIG_RT2X00_LIB_DEBUGFS
1917         .debugfs                = &rt2500usb_rt2x00debug,
1918 #endif /* CONFIG_RT2X00_LIB_DEBUGFS */
1919 };
1920
1921 /*
1922  * rt2500usb module information.
1923  */
1924 static struct usb_device_id rt2500usb_device_table[] = {
1925         /* ASUS */
1926         { USB_DEVICE(0x0b05, 0x1706) },
1927         { USB_DEVICE(0x0b05, 0x1707) },
1928         /* Belkin */
1929         { USB_DEVICE(0x050d, 0x7050) }, /* FCC ID: K7SF5D7050A ver. 2.x */
1930         { USB_DEVICE(0x050d, 0x7051) },
1931         /* Cisco Systems */
1932         { USB_DEVICE(0x13b1, 0x000d) },
1933         { USB_DEVICE(0x13b1, 0x0011) },
1934         { USB_DEVICE(0x13b1, 0x001a) },
1935         /* Conceptronic */
1936         { USB_DEVICE(0x14b2, 0x3c02) },
1937         /* D-LINK */
1938         { USB_DEVICE(0x2001, 0x3c00) },
1939         /* Gigabyte */
1940         { USB_DEVICE(0x1044, 0x8001) },
1941         { USB_DEVICE(0x1044, 0x8007) },
1942         /* Hercules */
1943         { USB_DEVICE(0x06f8, 0xe000) },
1944         /* Melco */
1945         { USB_DEVICE(0x0411, 0x005e) },
1946         { USB_DEVICE(0x0411, 0x0066) },
1947         { USB_DEVICE(0x0411, 0x0067) },
1948         { USB_DEVICE(0x0411, 0x008b) },
1949         { USB_DEVICE(0x0411, 0x0097) },
1950         /* MSI */
1951         { USB_DEVICE(0x0db0, 0x6861) },
1952         { USB_DEVICE(0x0db0, 0x6865) },
1953         { USB_DEVICE(0x0db0, 0x6869) },
1954         /* Ralink */
1955         { USB_DEVICE(0x148f, 0x1706) },
1956         { USB_DEVICE(0x148f, 0x2570) },
1957         { USB_DEVICE(0x148f, 0x9020) },
1958         /* Sagem */
1959         { USB_DEVICE(0x079b, 0x004b) },
1960         /* Siemens */
1961         { USB_DEVICE(0x0681, 0x3c06) },
1962         /* SMC */
1963         { USB_DEVICE(0x0707, 0xee13) },
1964         /* Spairon */
1965         { USB_DEVICE(0x114b, 0x0110) },
1966         /* SURECOM */
1967         { USB_DEVICE(0x0769, 0x11f3) },
1968         /* Trust */
1969         { USB_DEVICE(0x0eb0, 0x9020) },
1970         /* VTech */
1971         { USB_DEVICE(0x0f88, 0x3012) },
1972         /* Zinwell */
1973         { USB_DEVICE(0x5a57, 0x0260) },
1974         { 0, }
1975 };
1976
1977 MODULE_AUTHOR(DRV_PROJECT);
1978 MODULE_VERSION(DRV_VERSION);
1979 MODULE_DESCRIPTION("Ralink RT2500 USB Wireless LAN driver.");
1980 MODULE_SUPPORTED_DEVICE("Ralink RT2570 USB chipset based cards");
1981 MODULE_DEVICE_TABLE(usb, rt2500usb_device_table);
1982 MODULE_LICENSE("GPL");
1983
1984 static int rt2500usb_probe(struct usb_interface *usb_intf,
1985                            const struct usb_device_id *id)
1986 {
1987         return rt2x00usb_probe(usb_intf, &rt2500usb_ops);
1988 }
1989
1990 static struct usb_driver rt2500usb_driver = {
1991         .name           = KBUILD_MODNAME,
1992         .id_table       = rt2500usb_device_table,
1993         .probe          = rt2500usb_probe,
1994         .disconnect     = rt2x00usb_disconnect,
1995         .suspend        = rt2x00usb_suspend,
1996         .resume         = rt2x00usb_resume,
1997         .reset_resume   = rt2x00usb_resume,
1998         .disable_hub_initiated_lpm = 1,
1999 };
2000
2001 module_usb_driver(rt2500usb_driver);