rsi: add vendor Kconfig entry
[cascardo/linux.git] / drivers / net / wireless / rt2x00 / rt2x00dev.c
1 /*
2         Copyright (C) 2010 Willow Garage <http://www.willowgarage.com>
3         Copyright (C) 2004 - 2010 Ivo van Doorn <IvDoorn@gmail.com>
4         <http://rt2x00.serialmonkey.com>
5
6         This program is free software; you can redistribute it and/or modify
7         it under the terms of the GNU General Public License as published by
8         the Free Software Foundation; either version 2 of the License, or
9         (at your option) any later version.
10
11         This program is distributed in the hope that it will be useful,
12         but WITHOUT ANY WARRANTY; without even the implied warranty of
13         MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14         GNU General Public License for more details.
15
16         You should have received a copy of the GNU General Public License
17         along with this program; if not, see <http://www.gnu.org/licenses/>.
18  */
19
20 /*
21         Module: rt2x00lib
22         Abstract: rt2x00 generic device routines.
23  */
24
25 #include <linux/kernel.h>
26 #include <linux/module.h>
27 #include <linux/slab.h>
28 #include <linux/log2.h>
29
30 #include "rt2x00.h"
31 #include "rt2x00lib.h"
32
33 /*
34  * Utility functions.
35  */
36 u32 rt2x00lib_get_bssidx(struct rt2x00_dev *rt2x00dev,
37                          struct ieee80211_vif *vif)
38 {
39         /*
40          * When in STA mode, bssidx is always 0 otherwise local_address[5]
41          * contains the bss number, see BSS_ID_MASK comments for details.
42          */
43         if (rt2x00dev->intf_sta_count)
44                 return 0;
45         return vif->addr[5] & (rt2x00dev->ops->max_ap_intf - 1);
46 }
47 EXPORT_SYMBOL_GPL(rt2x00lib_get_bssidx);
48
49 /*
50  * Radio control handlers.
51  */
52 int rt2x00lib_enable_radio(struct rt2x00_dev *rt2x00dev)
53 {
54         int status;
55
56         /*
57          * Don't enable the radio twice.
58          * And check if the hardware button has been disabled.
59          */
60         if (test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
61                 return 0;
62
63         /*
64          * Initialize all data queues.
65          */
66         rt2x00queue_init_queues(rt2x00dev);
67
68         /*
69          * Enable radio.
70          */
71         status =
72             rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_RADIO_ON);
73         if (status)
74                 return status;
75
76         rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_RADIO_IRQ_ON);
77
78         rt2x00leds_led_radio(rt2x00dev, true);
79         rt2x00led_led_activity(rt2x00dev, true);
80
81         set_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags);
82
83         /*
84          * Enable queues.
85          */
86         rt2x00queue_start_queues(rt2x00dev);
87         rt2x00link_start_tuner(rt2x00dev);
88         rt2x00link_start_agc(rt2x00dev);
89         if (rt2x00_has_cap_vco_recalibration(rt2x00dev))
90                 rt2x00link_start_vcocal(rt2x00dev);
91
92         /*
93          * Start watchdog monitoring.
94          */
95         rt2x00link_start_watchdog(rt2x00dev);
96
97         return 0;
98 }
99
100 void rt2x00lib_disable_radio(struct rt2x00_dev *rt2x00dev)
101 {
102         if (!test_and_clear_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
103                 return;
104
105         /*
106          * Stop watchdog monitoring.
107          */
108         rt2x00link_stop_watchdog(rt2x00dev);
109
110         /*
111          * Stop all queues
112          */
113         rt2x00link_stop_agc(rt2x00dev);
114         if (rt2x00_has_cap_vco_recalibration(rt2x00dev))
115                 rt2x00link_stop_vcocal(rt2x00dev);
116         rt2x00link_stop_tuner(rt2x00dev);
117         rt2x00queue_stop_queues(rt2x00dev);
118         rt2x00queue_flush_queues(rt2x00dev, true);
119
120         /*
121          * Disable radio.
122          */
123         rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_RADIO_OFF);
124         rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_RADIO_IRQ_OFF);
125         rt2x00led_led_activity(rt2x00dev, false);
126         rt2x00leds_led_radio(rt2x00dev, false);
127 }
128
129 static void rt2x00lib_intf_scheduled_iter(void *data, u8 *mac,
130                                           struct ieee80211_vif *vif)
131 {
132         struct rt2x00_dev *rt2x00dev = data;
133         struct rt2x00_intf *intf = vif_to_intf(vif);
134
135         /*
136          * It is possible the radio was disabled while the work had been
137          * scheduled. If that happens we should return here immediately,
138          * note that in the spinlock protected area above the delayed_flags
139          * have been cleared correctly.
140          */
141         if (!test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
142                 return;
143
144         if (test_and_clear_bit(DELAYED_UPDATE_BEACON, &intf->delayed_flags)) {
145                 mutex_lock(&intf->beacon_skb_mutex);
146                 rt2x00queue_update_beacon(rt2x00dev, vif);
147                 mutex_unlock(&intf->beacon_skb_mutex);
148         }
149 }
150
151 static void rt2x00lib_intf_scheduled(struct work_struct *work)
152 {
153         struct rt2x00_dev *rt2x00dev =
154             container_of(work, struct rt2x00_dev, intf_work);
155
156         /*
157          * Iterate over each interface and perform the
158          * requested configurations.
159          */
160         ieee80211_iterate_active_interfaces(rt2x00dev->hw,
161                                             IEEE80211_IFACE_ITER_RESUME_ALL,
162                                             rt2x00lib_intf_scheduled_iter,
163                                             rt2x00dev);
164 }
165
166 static void rt2x00lib_autowakeup(struct work_struct *work)
167 {
168         struct rt2x00_dev *rt2x00dev =
169             container_of(work, struct rt2x00_dev, autowakeup_work.work);
170
171         if (!test_bit(DEVICE_STATE_PRESENT, &rt2x00dev->flags))
172                 return;
173
174         if (rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_AWAKE))
175                 rt2x00_err(rt2x00dev, "Device failed to wakeup\n");
176         clear_bit(CONFIG_POWERSAVING, &rt2x00dev->flags);
177 }
178
179 /*
180  * Interrupt context handlers.
181  */
182 static void rt2x00lib_bc_buffer_iter(void *data, u8 *mac,
183                                      struct ieee80211_vif *vif)
184 {
185         struct ieee80211_tx_control control = {};
186         struct rt2x00_dev *rt2x00dev = data;
187         struct sk_buff *skb;
188
189         /*
190          * Only AP mode interfaces do broad- and multicast buffering
191          */
192         if (vif->type != NL80211_IFTYPE_AP)
193                 return;
194
195         /*
196          * Send out buffered broad- and multicast frames
197          */
198         skb = ieee80211_get_buffered_bc(rt2x00dev->hw, vif);
199         while (skb) {
200                 rt2x00mac_tx(rt2x00dev->hw, &control, skb);
201                 skb = ieee80211_get_buffered_bc(rt2x00dev->hw, vif);
202         }
203 }
204
205 static void rt2x00lib_beaconupdate_iter(void *data, u8 *mac,
206                                         struct ieee80211_vif *vif)
207 {
208         struct rt2x00_dev *rt2x00dev = data;
209
210         if (vif->type != NL80211_IFTYPE_AP &&
211             vif->type != NL80211_IFTYPE_ADHOC &&
212             vif->type != NL80211_IFTYPE_MESH_POINT &&
213             vif->type != NL80211_IFTYPE_WDS)
214                 return;
215
216         /*
217          * Update the beacon without locking. This is safe on PCI devices
218          * as they only update the beacon periodically here. This should
219          * never be called for USB devices.
220          */
221         WARN_ON(rt2x00_is_usb(rt2x00dev));
222         rt2x00queue_update_beacon(rt2x00dev, vif);
223 }
224
225 void rt2x00lib_beacondone(struct rt2x00_dev *rt2x00dev)
226 {
227         if (!test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
228                 return;
229
230         /* send buffered bc/mc frames out for every bssid */
231         ieee80211_iterate_active_interfaces_atomic(
232                 rt2x00dev->hw, IEEE80211_IFACE_ITER_RESUME_ALL,
233                 rt2x00lib_bc_buffer_iter, rt2x00dev);
234         /*
235          * Devices with pre tbtt interrupt don't need to update the beacon
236          * here as they will fetch the next beacon directly prior to
237          * transmission.
238          */
239         if (rt2x00_has_cap_pre_tbtt_interrupt(rt2x00dev))
240                 return;
241
242         /* fetch next beacon */
243         ieee80211_iterate_active_interfaces_atomic(
244                 rt2x00dev->hw, IEEE80211_IFACE_ITER_RESUME_ALL,
245                 rt2x00lib_beaconupdate_iter, rt2x00dev);
246 }
247 EXPORT_SYMBOL_GPL(rt2x00lib_beacondone);
248
249 void rt2x00lib_pretbtt(struct rt2x00_dev *rt2x00dev)
250 {
251         if (!test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
252                 return;
253
254         /* fetch next beacon */
255         ieee80211_iterate_active_interfaces_atomic(
256                 rt2x00dev->hw, IEEE80211_IFACE_ITER_RESUME_ALL,
257                 rt2x00lib_beaconupdate_iter, rt2x00dev);
258 }
259 EXPORT_SYMBOL_GPL(rt2x00lib_pretbtt);
260
261 void rt2x00lib_dmastart(struct queue_entry *entry)
262 {
263         set_bit(ENTRY_OWNER_DEVICE_DATA, &entry->flags);
264         rt2x00queue_index_inc(entry, Q_INDEX);
265 }
266 EXPORT_SYMBOL_GPL(rt2x00lib_dmastart);
267
268 void rt2x00lib_dmadone(struct queue_entry *entry)
269 {
270         set_bit(ENTRY_DATA_STATUS_PENDING, &entry->flags);
271         clear_bit(ENTRY_OWNER_DEVICE_DATA, &entry->flags);
272         rt2x00queue_index_inc(entry, Q_INDEX_DMA_DONE);
273 }
274 EXPORT_SYMBOL_GPL(rt2x00lib_dmadone);
275
276 static inline int rt2x00lib_txdone_bar_status(struct queue_entry *entry)
277 {
278         struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
279         struct ieee80211_bar *bar = (void *) entry->skb->data;
280         struct rt2x00_bar_list_entry *bar_entry;
281         int ret;
282
283         if (likely(!ieee80211_is_back_req(bar->frame_control)))
284                 return 0;
285
286         /*
287          * Unlike all other frames, the status report for BARs does
288          * not directly come from the hardware as it is incapable of
289          * matching a BA to a previously send BAR. The hardware will
290          * report all BARs as if they weren't acked at all.
291          *
292          * Instead the RX-path will scan for incoming BAs and set the
293          * block_acked flag if it sees one that was likely caused by
294          * a BAR from us.
295          *
296          * Remove remaining BARs here and return their status for
297          * TX done processing.
298          */
299         ret = 0;
300         rcu_read_lock();
301         list_for_each_entry_rcu(bar_entry, &rt2x00dev->bar_list, list) {
302                 if (bar_entry->entry != entry)
303                         continue;
304
305                 spin_lock_bh(&rt2x00dev->bar_list_lock);
306                 /* Return whether this BAR was blockacked or not */
307                 ret = bar_entry->block_acked;
308                 /* Remove the BAR from our checklist */
309                 list_del_rcu(&bar_entry->list);
310                 spin_unlock_bh(&rt2x00dev->bar_list_lock);
311                 kfree_rcu(bar_entry, head);
312
313                 break;
314         }
315         rcu_read_unlock();
316
317         return ret;
318 }
319
320 void rt2x00lib_txdone(struct queue_entry *entry,
321                       struct txdone_entry_desc *txdesc)
322 {
323         struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
324         struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(entry->skb);
325         struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb);
326         unsigned int header_length, i;
327         u8 rate_idx, rate_flags, retry_rates;
328         u8 skbdesc_flags = skbdesc->flags;
329         bool success;
330
331         /*
332          * Unmap the skb.
333          */
334         rt2x00queue_unmap_skb(entry);
335
336         /*
337          * Remove the extra tx headroom from the skb.
338          */
339         skb_pull(entry->skb, rt2x00dev->extra_tx_headroom);
340
341         /*
342          * Signal that the TX descriptor is no longer in the skb.
343          */
344         skbdesc->flags &= ~SKBDESC_DESC_IN_SKB;
345
346         /*
347          * Determine the length of 802.11 header.
348          */
349         header_length = ieee80211_get_hdrlen_from_skb(entry->skb);
350
351         /*
352          * Remove L2 padding which was added during
353          */
354         if (rt2x00_has_cap_flag(rt2x00dev, REQUIRE_L2PAD))
355                 rt2x00queue_remove_l2pad(entry->skb, header_length);
356
357         /*
358          * If the IV/EIV data was stripped from the frame before it was
359          * passed to the hardware, we should now reinsert it again because
360          * mac80211 will expect the same data to be present it the
361          * frame as it was passed to us.
362          */
363         if (rt2x00_has_cap_hw_crypto(rt2x00dev))
364                 rt2x00crypto_tx_insert_iv(entry->skb, header_length);
365
366         /*
367          * Send frame to debugfs immediately, after this call is completed
368          * we are going to overwrite the skb->cb array.
369          */
370         rt2x00debug_dump_frame(rt2x00dev, DUMP_FRAME_TXDONE, entry->skb);
371
372         /*
373          * Determine if the frame has been successfully transmitted and
374          * remove BARs from our check list while checking for their
375          * TX status.
376          */
377         success =
378             rt2x00lib_txdone_bar_status(entry) ||
379             test_bit(TXDONE_SUCCESS, &txdesc->flags) ||
380             test_bit(TXDONE_UNKNOWN, &txdesc->flags);
381
382         /*
383          * Update TX statistics.
384          */
385         rt2x00dev->link.qual.tx_success += success;
386         rt2x00dev->link.qual.tx_failed += !success;
387
388         rate_idx = skbdesc->tx_rate_idx;
389         rate_flags = skbdesc->tx_rate_flags;
390         retry_rates = test_bit(TXDONE_FALLBACK, &txdesc->flags) ?
391             (txdesc->retry + 1) : 1;
392
393         /*
394          * Initialize TX status
395          */
396         memset(&tx_info->status, 0, sizeof(tx_info->status));
397         tx_info->status.ack_signal = 0;
398
399         /*
400          * Frame was send with retries, hardware tried
401          * different rates to send out the frame, at each
402          * retry it lowered the rate 1 step except when the
403          * lowest rate was used.
404          */
405         for (i = 0; i < retry_rates && i < IEEE80211_TX_MAX_RATES; i++) {
406                 tx_info->status.rates[i].idx = rate_idx - i;
407                 tx_info->status.rates[i].flags = rate_flags;
408
409                 if (rate_idx - i == 0) {
410                         /*
411                          * The lowest rate (index 0) was used until the
412                          * number of max retries was reached.
413                          */
414                         tx_info->status.rates[i].count = retry_rates - i;
415                         i++;
416                         break;
417                 }
418                 tx_info->status.rates[i].count = 1;
419         }
420         if (i < (IEEE80211_TX_MAX_RATES - 1))
421                 tx_info->status.rates[i].idx = -1; /* terminate */
422
423         if (!(tx_info->flags & IEEE80211_TX_CTL_NO_ACK)) {
424                 if (success)
425                         tx_info->flags |= IEEE80211_TX_STAT_ACK;
426                 else
427                         rt2x00dev->low_level_stats.dot11ACKFailureCount++;
428         }
429
430         /*
431          * Every single frame has it's own tx status, hence report
432          * every frame as ampdu of size 1.
433          *
434          * TODO: if we can find out how many frames were aggregated
435          * by the hw we could provide the real ampdu_len to mac80211
436          * which would allow the rc algorithm to better decide on
437          * which rates are suitable.
438          */
439         if (test_bit(TXDONE_AMPDU, &txdesc->flags) ||
440             tx_info->flags & IEEE80211_TX_CTL_AMPDU) {
441                 tx_info->flags |= IEEE80211_TX_STAT_AMPDU;
442                 tx_info->status.ampdu_len = 1;
443                 tx_info->status.ampdu_ack_len = success ? 1 : 0;
444
445                 if (!success)
446                         tx_info->flags |= IEEE80211_TX_STAT_AMPDU_NO_BACK;
447         }
448
449         if (rate_flags & IEEE80211_TX_RC_USE_RTS_CTS) {
450                 if (success)
451                         rt2x00dev->low_level_stats.dot11RTSSuccessCount++;
452                 else
453                         rt2x00dev->low_level_stats.dot11RTSFailureCount++;
454         }
455
456         /*
457          * Only send the status report to mac80211 when it's a frame
458          * that originated in mac80211. If this was a extra frame coming
459          * through a mac80211 library call (RTS/CTS) then we should not
460          * send the status report back.
461          */
462         if (!(skbdesc_flags & SKBDESC_NOT_MAC80211)) {
463                 if (rt2x00_has_cap_flag(rt2x00dev, REQUIRE_TASKLET_CONTEXT))
464                         ieee80211_tx_status(rt2x00dev->hw, entry->skb);
465                 else
466                         ieee80211_tx_status_ni(rt2x00dev->hw, entry->skb);
467         } else
468                 dev_kfree_skb_any(entry->skb);
469
470         /*
471          * Make this entry available for reuse.
472          */
473         entry->skb = NULL;
474         entry->flags = 0;
475
476         rt2x00dev->ops->lib->clear_entry(entry);
477
478         rt2x00queue_index_inc(entry, Q_INDEX_DONE);
479
480         /*
481          * If the data queue was below the threshold before the txdone
482          * handler we must make sure the packet queue in the mac80211 stack
483          * is reenabled when the txdone handler has finished. This has to be
484          * serialized with rt2x00mac_tx(), otherwise we can wake up queue
485          * before it was stopped.
486          */
487         spin_lock_bh(&entry->queue->tx_lock);
488         if (!rt2x00queue_threshold(entry->queue))
489                 rt2x00queue_unpause_queue(entry->queue);
490         spin_unlock_bh(&entry->queue->tx_lock);
491 }
492 EXPORT_SYMBOL_GPL(rt2x00lib_txdone);
493
494 void rt2x00lib_txdone_noinfo(struct queue_entry *entry, u32 status)
495 {
496         struct txdone_entry_desc txdesc;
497
498         txdesc.flags = 0;
499         __set_bit(status, &txdesc.flags);
500         txdesc.retry = 0;
501
502         rt2x00lib_txdone(entry, &txdesc);
503 }
504 EXPORT_SYMBOL_GPL(rt2x00lib_txdone_noinfo);
505
506 static u8 *rt2x00lib_find_ie(u8 *data, unsigned int len, u8 ie)
507 {
508         struct ieee80211_mgmt *mgmt = (void *)data;
509         u8 *pos, *end;
510
511         pos = (u8 *)mgmt->u.beacon.variable;
512         end = data + len;
513         while (pos < end) {
514                 if (pos + 2 + pos[1] > end)
515                         return NULL;
516
517                 if (pos[0] == ie)
518                         return pos;
519
520                 pos += 2 + pos[1];
521         }
522
523         return NULL;
524 }
525
526 static void rt2x00lib_sleep(struct work_struct *work)
527 {
528         struct rt2x00_dev *rt2x00dev =
529             container_of(work, struct rt2x00_dev, sleep_work);
530
531         if (!test_bit(DEVICE_STATE_PRESENT, &rt2x00dev->flags))
532                 return;
533
534         /*
535          * Check again is powersaving is enabled, to prevent races from delayed
536          * work execution.
537          */
538         if (!test_bit(CONFIG_POWERSAVING, &rt2x00dev->flags))
539                 rt2x00lib_config(rt2x00dev, &rt2x00dev->hw->conf,
540                                  IEEE80211_CONF_CHANGE_PS);
541 }
542
543 static void rt2x00lib_rxdone_check_ba(struct rt2x00_dev *rt2x00dev,
544                                       struct sk_buff *skb,
545                                       struct rxdone_entry_desc *rxdesc)
546 {
547         struct rt2x00_bar_list_entry *entry;
548         struct ieee80211_bar *ba = (void *)skb->data;
549
550         if (likely(!ieee80211_is_back(ba->frame_control)))
551                 return;
552
553         if (rxdesc->size < sizeof(*ba) + FCS_LEN)
554                 return;
555
556         rcu_read_lock();
557         list_for_each_entry_rcu(entry, &rt2x00dev->bar_list, list) {
558
559                 if (ba->start_seq_num != entry->start_seq_num)
560                         continue;
561
562 #define TID_CHECK(a, b) (                                               \
563         ((a) & cpu_to_le16(IEEE80211_BAR_CTRL_TID_INFO_MASK)) ==        \
564         ((b) & cpu_to_le16(IEEE80211_BAR_CTRL_TID_INFO_MASK)))          \
565
566                 if (!TID_CHECK(ba->control, entry->control))
567                         continue;
568
569 #undef TID_CHECK
570
571                 if (!ether_addr_equal_64bits(ba->ra, entry->ta))
572                         continue;
573
574                 if (!ether_addr_equal_64bits(ba->ta, entry->ra))
575                         continue;
576
577                 /* Mark BAR since we received the according BA */
578                 spin_lock_bh(&rt2x00dev->bar_list_lock);
579                 entry->block_acked = 1;
580                 spin_unlock_bh(&rt2x00dev->bar_list_lock);
581                 break;
582         }
583         rcu_read_unlock();
584
585 }
586
587 static void rt2x00lib_rxdone_check_ps(struct rt2x00_dev *rt2x00dev,
588                                       struct sk_buff *skb,
589                                       struct rxdone_entry_desc *rxdesc)
590 {
591         struct ieee80211_hdr *hdr = (void *) skb->data;
592         struct ieee80211_tim_ie *tim_ie;
593         u8 *tim;
594         u8 tim_len;
595         bool cam;
596
597         /* If this is not a beacon, or if mac80211 has no powersaving
598          * configured, or if the device is already in powersaving mode
599          * we can exit now. */
600         if (likely(!ieee80211_is_beacon(hdr->frame_control) ||
601                    !(rt2x00dev->hw->conf.flags & IEEE80211_CONF_PS)))
602                 return;
603
604         /* min. beacon length + FCS_LEN */
605         if (skb->len <= 40 + FCS_LEN)
606                 return;
607
608         /* and only beacons from the associated BSSID, please */
609         if (!(rxdesc->dev_flags & RXDONE_MY_BSS) ||
610             !rt2x00dev->aid)
611                 return;
612
613         rt2x00dev->last_beacon = jiffies;
614
615         tim = rt2x00lib_find_ie(skb->data, skb->len - FCS_LEN, WLAN_EID_TIM);
616         if (!tim)
617                 return;
618
619         if (tim[1] < sizeof(*tim_ie))
620                 return;
621
622         tim_len = tim[1];
623         tim_ie = (struct ieee80211_tim_ie *) &tim[2];
624
625         /* Check whenever the PHY can be turned off again. */
626
627         /* 1. What about buffered unicast traffic for our AID? */
628         cam = ieee80211_check_tim(tim_ie, tim_len, rt2x00dev->aid);
629
630         /* 2. Maybe the AP wants to send multicast/broadcast data? */
631         cam |= (tim_ie->bitmap_ctrl & 0x01);
632
633         if (!cam && !test_bit(CONFIG_POWERSAVING, &rt2x00dev->flags))
634                 queue_work(rt2x00dev->workqueue, &rt2x00dev->sleep_work);
635 }
636
637 static int rt2x00lib_rxdone_read_signal(struct rt2x00_dev *rt2x00dev,
638                                         struct rxdone_entry_desc *rxdesc)
639 {
640         struct ieee80211_supported_band *sband;
641         const struct rt2x00_rate *rate;
642         unsigned int i;
643         int signal = rxdesc->signal;
644         int type = (rxdesc->dev_flags & RXDONE_SIGNAL_MASK);
645
646         switch (rxdesc->rate_mode) {
647         case RATE_MODE_CCK:
648         case RATE_MODE_OFDM:
649                 /*
650                  * For non-HT rates the MCS value needs to contain the
651                  * actually used rate modulation (CCK or OFDM).
652                  */
653                 if (rxdesc->dev_flags & RXDONE_SIGNAL_MCS)
654                         signal = RATE_MCS(rxdesc->rate_mode, signal);
655
656                 sband = &rt2x00dev->bands[rt2x00dev->curr_band];
657                 for (i = 0; i < sband->n_bitrates; i++) {
658                         rate = rt2x00_get_rate(sband->bitrates[i].hw_value);
659                         if (((type == RXDONE_SIGNAL_PLCP) &&
660                              (rate->plcp == signal)) ||
661                             ((type == RXDONE_SIGNAL_BITRATE) &&
662                               (rate->bitrate == signal)) ||
663                             ((type == RXDONE_SIGNAL_MCS) &&
664                               (rate->mcs == signal))) {
665                                 return i;
666                         }
667                 }
668                 break;
669         case RATE_MODE_HT_MIX:
670         case RATE_MODE_HT_GREENFIELD:
671                 if (signal >= 0 && signal <= 76)
672                         return signal;
673                 break;
674         default:
675                 break;
676         }
677
678         rt2x00_warn(rt2x00dev, "Frame received with unrecognized signal, mode=0x%.4x, signal=0x%.4x, type=%d\n",
679                     rxdesc->rate_mode, signal, type);
680         return 0;
681 }
682
683 void rt2x00lib_rxdone(struct queue_entry *entry, gfp_t gfp)
684 {
685         struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
686         struct rxdone_entry_desc rxdesc;
687         struct sk_buff *skb;
688         struct ieee80211_rx_status *rx_status;
689         unsigned int header_length;
690         int rate_idx;
691
692         if (!test_bit(DEVICE_STATE_PRESENT, &rt2x00dev->flags) ||
693             !test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
694                 goto submit_entry;
695
696         if (test_bit(ENTRY_DATA_IO_FAILED, &entry->flags))
697                 goto submit_entry;
698
699         /*
700          * Allocate a new sk_buffer. If no new buffer available, drop the
701          * received frame and reuse the existing buffer.
702          */
703         skb = rt2x00queue_alloc_rxskb(entry, gfp);
704         if (!skb)
705                 goto submit_entry;
706
707         /*
708          * Unmap the skb.
709          */
710         rt2x00queue_unmap_skb(entry);
711
712         /*
713          * Extract the RXD details.
714          */
715         memset(&rxdesc, 0, sizeof(rxdesc));
716         rt2x00dev->ops->lib->fill_rxdone(entry, &rxdesc);
717
718         /*
719          * Check for valid size in case we get corrupted descriptor from
720          * hardware.
721          */
722         if (unlikely(rxdesc.size == 0 ||
723                      rxdesc.size > entry->queue->data_size)) {
724                 rt2x00_err(rt2x00dev, "Wrong frame size %d max %d\n",
725                            rxdesc.size, entry->queue->data_size);
726                 dev_kfree_skb(entry->skb);
727                 goto renew_skb;
728         }
729
730         /*
731          * The data behind the ieee80211 header must be
732          * aligned on a 4 byte boundary.
733          */
734         header_length = ieee80211_get_hdrlen_from_skb(entry->skb);
735
736         /*
737          * Hardware might have stripped the IV/EIV/ICV data,
738          * in that case it is possible that the data was
739          * provided separately (through hardware descriptor)
740          * in which case we should reinsert the data into the frame.
741          */
742         if ((rxdesc.dev_flags & RXDONE_CRYPTO_IV) &&
743             (rxdesc.flags & RX_FLAG_IV_STRIPPED))
744                 rt2x00crypto_rx_insert_iv(entry->skb, header_length,
745                                           &rxdesc);
746         else if (header_length &&
747                  (rxdesc.size > header_length) &&
748                  (rxdesc.dev_flags & RXDONE_L2PAD))
749                 rt2x00queue_remove_l2pad(entry->skb, header_length);
750
751         /* Trim buffer to correct size */
752         skb_trim(entry->skb, rxdesc.size);
753
754         /*
755          * Translate the signal to the correct bitrate index.
756          */
757         rate_idx = rt2x00lib_rxdone_read_signal(rt2x00dev, &rxdesc);
758         if (rxdesc.rate_mode == RATE_MODE_HT_MIX ||
759             rxdesc.rate_mode == RATE_MODE_HT_GREENFIELD)
760                 rxdesc.flags |= RX_FLAG_HT;
761
762         /*
763          * Check if this is a beacon, and more frames have been
764          * buffered while we were in powersaving mode.
765          */
766         rt2x00lib_rxdone_check_ps(rt2x00dev, entry->skb, &rxdesc);
767
768         /*
769          * Check for incoming BlockAcks to match to the BlockAckReqs
770          * we've send out.
771          */
772         rt2x00lib_rxdone_check_ba(rt2x00dev, entry->skb, &rxdesc);
773
774         /*
775          * Update extra components
776          */
777         rt2x00link_update_stats(rt2x00dev, entry->skb, &rxdesc);
778         rt2x00debug_update_crypto(rt2x00dev, &rxdesc);
779         rt2x00debug_dump_frame(rt2x00dev, DUMP_FRAME_RXDONE, entry->skb);
780
781         /*
782          * Initialize RX status information, and send frame
783          * to mac80211.
784          */
785         rx_status = IEEE80211_SKB_RXCB(entry->skb);
786
787         /* Ensure that all fields of rx_status are initialized
788          * properly. The skb->cb array was used for driver
789          * specific informations, so rx_status might contain
790          * garbage.
791          */
792         memset(rx_status, 0, sizeof(*rx_status));
793
794         rx_status->mactime = rxdesc.timestamp;
795         rx_status->band = rt2x00dev->curr_band;
796         rx_status->freq = rt2x00dev->curr_freq;
797         rx_status->rate_idx = rate_idx;
798         rx_status->signal = rxdesc.rssi;
799         rx_status->flag = rxdesc.flags;
800         rx_status->antenna = rt2x00dev->link.ant.active.rx;
801
802         ieee80211_rx_ni(rt2x00dev->hw, entry->skb);
803
804 renew_skb:
805         /*
806          * Replace the skb with the freshly allocated one.
807          */
808         entry->skb = skb;
809
810 submit_entry:
811         entry->flags = 0;
812         rt2x00queue_index_inc(entry, Q_INDEX_DONE);
813         if (test_bit(DEVICE_STATE_PRESENT, &rt2x00dev->flags) &&
814             test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
815                 rt2x00dev->ops->lib->clear_entry(entry);
816 }
817 EXPORT_SYMBOL_GPL(rt2x00lib_rxdone);
818
819 /*
820  * Driver initialization handlers.
821  */
822 const struct rt2x00_rate rt2x00_supported_rates[12] = {
823         {
824                 .flags = DEV_RATE_CCK,
825                 .bitrate = 10,
826                 .ratemask = BIT(0),
827                 .plcp = 0x00,
828                 .mcs = RATE_MCS(RATE_MODE_CCK, 0),
829         },
830         {
831                 .flags = DEV_RATE_CCK | DEV_RATE_SHORT_PREAMBLE,
832                 .bitrate = 20,
833                 .ratemask = BIT(1),
834                 .plcp = 0x01,
835                 .mcs = RATE_MCS(RATE_MODE_CCK, 1),
836         },
837         {
838                 .flags = DEV_RATE_CCK | DEV_RATE_SHORT_PREAMBLE,
839                 .bitrate = 55,
840                 .ratemask = BIT(2),
841                 .plcp = 0x02,
842                 .mcs = RATE_MCS(RATE_MODE_CCK, 2),
843         },
844         {
845                 .flags = DEV_RATE_CCK | DEV_RATE_SHORT_PREAMBLE,
846                 .bitrate = 110,
847                 .ratemask = BIT(3),
848                 .plcp = 0x03,
849                 .mcs = RATE_MCS(RATE_MODE_CCK, 3),
850         },
851         {
852                 .flags = DEV_RATE_OFDM,
853                 .bitrate = 60,
854                 .ratemask = BIT(4),
855                 .plcp = 0x0b,
856                 .mcs = RATE_MCS(RATE_MODE_OFDM, 0),
857         },
858         {
859                 .flags = DEV_RATE_OFDM,
860                 .bitrate = 90,
861                 .ratemask = BIT(5),
862                 .plcp = 0x0f,
863                 .mcs = RATE_MCS(RATE_MODE_OFDM, 1),
864         },
865         {
866                 .flags = DEV_RATE_OFDM,
867                 .bitrate = 120,
868                 .ratemask = BIT(6),
869                 .plcp = 0x0a,
870                 .mcs = RATE_MCS(RATE_MODE_OFDM, 2),
871         },
872         {
873                 .flags = DEV_RATE_OFDM,
874                 .bitrate = 180,
875                 .ratemask = BIT(7),
876                 .plcp = 0x0e,
877                 .mcs = RATE_MCS(RATE_MODE_OFDM, 3),
878         },
879         {
880                 .flags = DEV_RATE_OFDM,
881                 .bitrate = 240,
882                 .ratemask = BIT(8),
883                 .plcp = 0x09,
884                 .mcs = RATE_MCS(RATE_MODE_OFDM, 4),
885         },
886         {
887                 .flags = DEV_RATE_OFDM,
888                 .bitrate = 360,
889                 .ratemask = BIT(9),
890                 .plcp = 0x0d,
891                 .mcs = RATE_MCS(RATE_MODE_OFDM, 5),
892         },
893         {
894                 .flags = DEV_RATE_OFDM,
895                 .bitrate = 480,
896                 .ratemask = BIT(10),
897                 .plcp = 0x08,
898                 .mcs = RATE_MCS(RATE_MODE_OFDM, 6),
899         },
900         {
901                 .flags = DEV_RATE_OFDM,
902                 .bitrate = 540,
903                 .ratemask = BIT(11),
904                 .plcp = 0x0c,
905                 .mcs = RATE_MCS(RATE_MODE_OFDM, 7),
906         },
907 };
908
909 static void rt2x00lib_channel(struct ieee80211_channel *entry,
910                               const int channel, const int tx_power,
911                               const int value)
912 {
913         /* XXX: this assumption about the band is wrong for 802.11j */
914         entry->band = channel <= 14 ? IEEE80211_BAND_2GHZ : IEEE80211_BAND_5GHZ;
915         entry->center_freq = ieee80211_channel_to_frequency(channel,
916                                                             entry->band);
917         entry->hw_value = value;
918         entry->max_power = tx_power;
919         entry->max_antenna_gain = 0xff;
920 }
921
922 static void rt2x00lib_rate(struct ieee80211_rate *entry,
923                            const u16 index, const struct rt2x00_rate *rate)
924 {
925         entry->flags = 0;
926         entry->bitrate = rate->bitrate;
927         entry->hw_value = index;
928         entry->hw_value_short = index;
929
930         if (rate->flags & DEV_RATE_SHORT_PREAMBLE)
931                 entry->flags |= IEEE80211_RATE_SHORT_PREAMBLE;
932 }
933
934 static int rt2x00lib_probe_hw_modes(struct rt2x00_dev *rt2x00dev,
935                                     struct hw_mode_spec *spec)
936 {
937         struct ieee80211_hw *hw = rt2x00dev->hw;
938         struct ieee80211_channel *channels;
939         struct ieee80211_rate *rates;
940         unsigned int num_rates;
941         unsigned int i;
942
943         num_rates = 0;
944         if (spec->supported_rates & SUPPORT_RATE_CCK)
945                 num_rates += 4;
946         if (spec->supported_rates & SUPPORT_RATE_OFDM)
947                 num_rates += 8;
948
949         channels = kcalloc(spec->num_channels, sizeof(*channels), GFP_KERNEL);
950         if (!channels)
951                 return -ENOMEM;
952
953         rates = kcalloc(num_rates, sizeof(*rates), GFP_KERNEL);
954         if (!rates)
955                 goto exit_free_channels;
956
957         /*
958          * Initialize Rate list.
959          */
960         for (i = 0; i < num_rates; i++)
961                 rt2x00lib_rate(&rates[i], i, rt2x00_get_rate(i));
962
963         /*
964          * Initialize Channel list.
965          */
966         for (i = 0; i < spec->num_channels; i++) {
967                 rt2x00lib_channel(&channels[i],
968                                   spec->channels[i].channel,
969                                   spec->channels_info[i].max_power, i);
970         }
971
972         /*
973          * Intitialize 802.11b, 802.11g
974          * Rates: CCK, OFDM.
975          * Channels: 2.4 GHz
976          */
977         if (spec->supported_bands & SUPPORT_BAND_2GHZ) {
978                 rt2x00dev->bands[IEEE80211_BAND_2GHZ].n_channels = 14;
979                 rt2x00dev->bands[IEEE80211_BAND_2GHZ].n_bitrates = num_rates;
980                 rt2x00dev->bands[IEEE80211_BAND_2GHZ].channels = channels;
981                 rt2x00dev->bands[IEEE80211_BAND_2GHZ].bitrates = rates;
982                 hw->wiphy->bands[IEEE80211_BAND_2GHZ] =
983                     &rt2x00dev->bands[IEEE80211_BAND_2GHZ];
984                 memcpy(&rt2x00dev->bands[IEEE80211_BAND_2GHZ].ht_cap,
985                        &spec->ht, sizeof(spec->ht));
986         }
987
988         /*
989          * Intitialize 802.11a
990          * Rates: OFDM.
991          * Channels: OFDM, UNII, HiperLAN2.
992          */
993         if (spec->supported_bands & SUPPORT_BAND_5GHZ) {
994                 rt2x00dev->bands[IEEE80211_BAND_5GHZ].n_channels =
995                     spec->num_channels - 14;
996                 rt2x00dev->bands[IEEE80211_BAND_5GHZ].n_bitrates =
997                     num_rates - 4;
998                 rt2x00dev->bands[IEEE80211_BAND_5GHZ].channels = &channels[14];
999                 rt2x00dev->bands[IEEE80211_BAND_5GHZ].bitrates = &rates[4];
1000                 hw->wiphy->bands[IEEE80211_BAND_5GHZ] =
1001                     &rt2x00dev->bands[IEEE80211_BAND_5GHZ];
1002                 memcpy(&rt2x00dev->bands[IEEE80211_BAND_5GHZ].ht_cap,
1003                        &spec->ht, sizeof(spec->ht));
1004         }
1005
1006         return 0;
1007
1008  exit_free_channels:
1009         kfree(channels);
1010         rt2x00_err(rt2x00dev, "Allocation ieee80211 modes failed\n");
1011         return -ENOMEM;
1012 }
1013
1014 static void rt2x00lib_remove_hw(struct rt2x00_dev *rt2x00dev)
1015 {
1016         if (test_bit(DEVICE_STATE_REGISTERED_HW, &rt2x00dev->flags))
1017                 ieee80211_unregister_hw(rt2x00dev->hw);
1018
1019         if (likely(rt2x00dev->hw->wiphy->bands[IEEE80211_BAND_2GHZ])) {
1020                 kfree(rt2x00dev->hw->wiphy->bands[IEEE80211_BAND_2GHZ]->channels);
1021                 kfree(rt2x00dev->hw->wiphy->bands[IEEE80211_BAND_2GHZ]->bitrates);
1022                 rt2x00dev->hw->wiphy->bands[IEEE80211_BAND_2GHZ] = NULL;
1023                 rt2x00dev->hw->wiphy->bands[IEEE80211_BAND_5GHZ] = NULL;
1024         }
1025
1026         kfree(rt2x00dev->spec.channels_info);
1027 }
1028
1029 static int rt2x00lib_probe_hw(struct rt2x00_dev *rt2x00dev)
1030 {
1031         struct hw_mode_spec *spec = &rt2x00dev->spec;
1032         int status;
1033
1034         if (test_bit(DEVICE_STATE_REGISTERED_HW, &rt2x00dev->flags))
1035                 return 0;
1036
1037         /*
1038          * Initialize HW modes.
1039          */
1040         status = rt2x00lib_probe_hw_modes(rt2x00dev, spec);
1041         if (status)
1042                 return status;
1043
1044         /*
1045          * Initialize HW fields.
1046          */
1047         rt2x00dev->hw->queues = rt2x00dev->ops->tx_queues;
1048
1049         /*
1050          * Initialize extra TX headroom required.
1051          */
1052         rt2x00dev->hw->extra_tx_headroom =
1053                 max_t(unsigned int, IEEE80211_TX_STATUS_HEADROOM,
1054                       rt2x00dev->extra_tx_headroom);
1055
1056         /*
1057          * Take TX headroom required for alignment into account.
1058          */
1059         if (rt2x00_has_cap_flag(rt2x00dev, REQUIRE_L2PAD))
1060                 rt2x00dev->hw->extra_tx_headroom += RT2X00_L2PAD_SIZE;
1061         else if (rt2x00_has_cap_flag(rt2x00dev, REQUIRE_DMA))
1062                 rt2x00dev->hw->extra_tx_headroom += RT2X00_ALIGN_SIZE;
1063
1064         /*
1065          * Tell mac80211 about the size of our private STA structure.
1066          */
1067         rt2x00dev->hw->sta_data_size = sizeof(struct rt2x00_sta);
1068
1069         /*
1070          * Allocate tx status FIFO for driver use.
1071          */
1072         if (rt2x00_has_cap_flag(rt2x00dev, REQUIRE_TXSTATUS_FIFO)) {
1073                 /*
1074                  * Allocate the txstatus fifo. In the worst case the tx
1075                  * status fifo has to hold the tx status of all entries
1076                  * in all tx queues. Hence, calculate the kfifo size as
1077                  * tx_queues * entry_num and round up to the nearest
1078                  * power of 2.
1079                  */
1080                 int kfifo_size =
1081                         roundup_pow_of_two(rt2x00dev->ops->tx_queues *
1082                                            rt2x00dev->tx->limit *
1083                                            sizeof(u32));
1084
1085                 status = kfifo_alloc(&rt2x00dev->txstatus_fifo, kfifo_size,
1086                                      GFP_KERNEL);
1087                 if (status)
1088                         return status;
1089         }
1090
1091         /*
1092          * Initialize tasklets if used by the driver. Tasklets are
1093          * disabled until the interrupts are turned on. The driver
1094          * has to handle that.
1095          */
1096 #define RT2X00_TASKLET_INIT(taskletname) \
1097         if (rt2x00dev->ops->lib->taskletname) { \
1098                 tasklet_init(&rt2x00dev->taskletname, \
1099                              rt2x00dev->ops->lib->taskletname, \
1100                              (unsigned long)rt2x00dev); \
1101         }
1102
1103         RT2X00_TASKLET_INIT(txstatus_tasklet);
1104         RT2X00_TASKLET_INIT(pretbtt_tasklet);
1105         RT2X00_TASKLET_INIT(tbtt_tasklet);
1106         RT2X00_TASKLET_INIT(rxdone_tasklet);
1107         RT2X00_TASKLET_INIT(autowake_tasklet);
1108
1109 #undef RT2X00_TASKLET_INIT
1110
1111         /*
1112          * Register HW.
1113          */
1114         status = ieee80211_register_hw(rt2x00dev->hw);
1115         if (status)
1116                 return status;
1117
1118         set_bit(DEVICE_STATE_REGISTERED_HW, &rt2x00dev->flags);
1119
1120         return 0;
1121 }
1122
1123 /*
1124  * Initialization/uninitialization handlers.
1125  */
1126 static void rt2x00lib_uninitialize(struct rt2x00_dev *rt2x00dev)
1127 {
1128         if (!test_and_clear_bit(DEVICE_STATE_INITIALIZED, &rt2x00dev->flags))
1129                 return;
1130
1131         /*
1132          * Stop rfkill polling.
1133          */
1134         if (rt2x00_has_cap_flag(rt2x00dev, REQUIRE_DELAYED_RFKILL))
1135                 rt2x00rfkill_unregister(rt2x00dev);
1136
1137         /*
1138          * Allow the HW to uninitialize.
1139          */
1140         rt2x00dev->ops->lib->uninitialize(rt2x00dev);
1141
1142         /*
1143          * Free allocated queue entries.
1144          */
1145         rt2x00queue_uninitialize(rt2x00dev);
1146 }
1147
1148 static int rt2x00lib_initialize(struct rt2x00_dev *rt2x00dev)
1149 {
1150         int status;
1151
1152         if (test_bit(DEVICE_STATE_INITIALIZED, &rt2x00dev->flags))
1153                 return 0;
1154
1155         /*
1156          * Allocate all queue entries.
1157          */
1158         status = rt2x00queue_initialize(rt2x00dev);
1159         if (status)
1160                 return status;
1161
1162         /*
1163          * Initialize the device.
1164          */
1165         status = rt2x00dev->ops->lib->initialize(rt2x00dev);
1166         if (status) {
1167                 rt2x00queue_uninitialize(rt2x00dev);
1168                 return status;
1169         }
1170
1171         set_bit(DEVICE_STATE_INITIALIZED, &rt2x00dev->flags);
1172
1173         /*
1174          * Start rfkill polling.
1175          */
1176         if (rt2x00_has_cap_flag(rt2x00dev, REQUIRE_DELAYED_RFKILL))
1177                 rt2x00rfkill_register(rt2x00dev);
1178
1179         return 0;
1180 }
1181
1182 int rt2x00lib_start(struct rt2x00_dev *rt2x00dev)
1183 {
1184         int retval;
1185
1186         if (test_bit(DEVICE_STATE_STARTED, &rt2x00dev->flags))
1187                 return 0;
1188
1189         /*
1190          * If this is the first interface which is added,
1191          * we should load the firmware now.
1192          */
1193         retval = rt2x00lib_load_firmware(rt2x00dev);
1194         if (retval)
1195                 return retval;
1196
1197         /*
1198          * Initialize the device.
1199          */
1200         retval = rt2x00lib_initialize(rt2x00dev);
1201         if (retval)
1202                 return retval;
1203
1204         rt2x00dev->intf_ap_count = 0;
1205         rt2x00dev->intf_sta_count = 0;
1206         rt2x00dev->intf_associated = 0;
1207
1208         /* Enable the radio */
1209         retval = rt2x00lib_enable_radio(rt2x00dev);
1210         if (retval)
1211                 return retval;
1212
1213         set_bit(DEVICE_STATE_STARTED, &rt2x00dev->flags);
1214
1215         return 0;
1216 }
1217
1218 void rt2x00lib_stop(struct rt2x00_dev *rt2x00dev)
1219 {
1220         if (!test_and_clear_bit(DEVICE_STATE_STARTED, &rt2x00dev->flags))
1221                 return;
1222
1223         /*
1224          * Perhaps we can add something smarter here,
1225          * but for now just disabling the radio should do.
1226          */
1227         rt2x00lib_disable_radio(rt2x00dev);
1228
1229         rt2x00dev->intf_ap_count = 0;
1230         rt2x00dev->intf_sta_count = 0;
1231         rt2x00dev->intf_associated = 0;
1232 }
1233
1234 static inline void rt2x00lib_set_if_combinations(struct rt2x00_dev *rt2x00dev)
1235 {
1236         struct ieee80211_iface_limit *if_limit;
1237         struct ieee80211_iface_combination *if_combination;
1238
1239         if (rt2x00dev->ops->max_ap_intf < 2)
1240                 return;
1241
1242         /*
1243          * Build up AP interface limits structure.
1244          */
1245         if_limit = &rt2x00dev->if_limits_ap;
1246         if_limit->max = rt2x00dev->ops->max_ap_intf;
1247         if_limit->types = BIT(NL80211_IFTYPE_AP);
1248 #ifdef CONFIG_MAC80211_MESH
1249         if_limit->types |= BIT(NL80211_IFTYPE_MESH_POINT);
1250 #endif
1251
1252         /*
1253          * Build up AP interface combinations structure.
1254          */
1255         if_combination = &rt2x00dev->if_combinations[IF_COMB_AP];
1256         if_combination->limits = if_limit;
1257         if_combination->n_limits = 1;
1258         if_combination->max_interfaces = if_limit->max;
1259         if_combination->num_different_channels = 1;
1260
1261         /*
1262          * Finally, specify the possible combinations to mac80211.
1263          */
1264         rt2x00dev->hw->wiphy->iface_combinations = rt2x00dev->if_combinations;
1265         rt2x00dev->hw->wiphy->n_iface_combinations = 1;
1266 }
1267
1268 static unsigned int rt2x00dev_extra_tx_headroom(struct rt2x00_dev *rt2x00dev)
1269 {
1270         if (WARN_ON(!rt2x00dev->tx))
1271                 return 0;
1272
1273         if (rt2x00_is_usb(rt2x00dev))
1274                 return rt2x00dev->tx[0].winfo_size + rt2x00dev->tx[0].desc_size;
1275
1276         return rt2x00dev->tx[0].winfo_size;
1277 }
1278
1279 /*
1280  * driver allocation handlers.
1281  */
1282 int rt2x00lib_probe_dev(struct rt2x00_dev *rt2x00dev)
1283 {
1284         int retval = -ENOMEM;
1285
1286         /*
1287          * Set possible interface combinations.
1288          */
1289         rt2x00lib_set_if_combinations(rt2x00dev);
1290
1291         /*
1292          * Allocate the driver data memory, if necessary.
1293          */
1294         if (rt2x00dev->ops->drv_data_size > 0) {
1295                 rt2x00dev->drv_data = kzalloc(rt2x00dev->ops->drv_data_size,
1296                                               GFP_KERNEL);
1297                 if (!rt2x00dev->drv_data) {
1298                         retval = -ENOMEM;
1299                         goto exit;
1300                 }
1301         }
1302
1303         spin_lock_init(&rt2x00dev->irqmask_lock);
1304         mutex_init(&rt2x00dev->csr_mutex);
1305         INIT_LIST_HEAD(&rt2x00dev->bar_list);
1306         spin_lock_init(&rt2x00dev->bar_list_lock);
1307
1308         set_bit(DEVICE_STATE_PRESENT, &rt2x00dev->flags);
1309
1310         /*
1311          * Make room for rt2x00_intf inside the per-interface
1312          * structure ieee80211_vif.
1313          */
1314         rt2x00dev->hw->vif_data_size = sizeof(struct rt2x00_intf);
1315
1316         /*
1317          * rt2x00 devices can only use the last n bits of the MAC address
1318          * for virtual interfaces.
1319          */
1320         rt2x00dev->hw->wiphy->addr_mask[ETH_ALEN - 1] =
1321                 (rt2x00dev->ops->max_ap_intf - 1);
1322
1323         /*
1324          * Initialize work.
1325          */
1326         rt2x00dev->workqueue =
1327             alloc_ordered_workqueue("%s", 0, wiphy_name(rt2x00dev->hw->wiphy));
1328         if (!rt2x00dev->workqueue) {
1329                 retval = -ENOMEM;
1330                 goto exit;
1331         }
1332
1333         INIT_WORK(&rt2x00dev->intf_work, rt2x00lib_intf_scheduled);
1334         INIT_DELAYED_WORK(&rt2x00dev->autowakeup_work, rt2x00lib_autowakeup);
1335         INIT_WORK(&rt2x00dev->sleep_work, rt2x00lib_sleep);
1336
1337         /*
1338          * Let the driver probe the device to detect the capabilities.
1339          */
1340         retval = rt2x00dev->ops->lib->probe_hw(rt2x00dev);
1341         if (retval) {
1342                 rt2x00_err(rt2x00dev, "Failed to allocate device\n");
1343                 goto exit;
1344         }
1345
1346         /*
1347          * Allocate queue array.
1348          */
1349         retval = rt2x00queue_allocate(rt2x00dev);
1350         if (retval)
1351                 goto exit;
1352
1353         /* Cache TX headroom value */
1354         rt2x00dev->extra_tx_headroom = rt2x00dev_extra_tx_headroom(rt2x00dev);
1355
1356         /*
1357          * Determine which operating modes are supported, all modes
1358          * which require beaconing, depend on the availability of
1359          * beacon entries.
1360          */
1361         rt2x00dev->hw->wiphy->interface_modes = BIT(NL80211_IFTYPE_STATION);
1362         if (rt2x00dev->bcn->limit > 0)
1363                 rt2x00dev->hw->wiphy->interface_modes |=
1364                     BIT(NL80211_IFTYPE_ADHOC) |
1365                     BIT(NL80211_IFTYPE_AP) |
1366 #ifdef CONFIG_MAC80211_MESH
1367                     BIT(NL80211_IFTYPE_MESH_POINT) |
1368 #endif
1369                     BIT(NL80211_IFTYPE_WDS);
1370
1371         rt2x00dev->hw->wiphy->flags |= WIPHY_FLAG_IBSS_RSN;
1372
1373         /*
1374          * Initialize ieee80211 structure.
1375          */
1376         retval = rt2x00lib_probe_hw(rt2x00dev);
1377         if (retval) {
1378                 rt2x00_err(rt2x00dev, "Failed to initialize hw\n");
1379                 goto exit;
1380         }
1381
1382         /*
1383          * Register extra components.
1384          */
1385         rt2x00link_register(rt2x00dev);
1386         rt2x00leds_register(rt2x00dev);
1387         rt2x00debug_register(rt2x00dev);
1388
1389         /*
1390          * Start rfkill polling.
1391          */
1392         if (!rt2x00_has_cap_flag(rt2x00dev, REQUIRE_DELAYED_RFKILL))
1393                 rt2x00rfkill_register(rt2x00dev);
1394
1395         return 0;
1396
1397 exit:
1398         rt2x00lib_remove_dev(rt2x00dev);
1399
1400         return retval;
1401 }
1402 EXPORT_SYMBOL_GPL(rt2x00lib_probe_dev);
1403
1404 void rt2x00lib_remove_dev(struct rt2x00_dev *rt2x00dev)
1405 {
1406         clear_bit(DEVICE_STATE_PRESENT, &rt2x00dev->flags);
1407
1408         /*
1409          * Stop rfkill polling.
1410          */
1411         if (!rt2x00_has_cap_flag(rt2x00dev, REQUIRE_DELAYED_RFKILL))
1412                 rt2x00rfkill_unregister(rt2x00dev);
1413
1414         /*
1415          * Disable radio.
1416          */
1417         rt2x00lib_disable_radio(rt2x00dev);
1418
1419         /*
1420          * Stop all work.
1421          */
1422         cancel_work_sync(&rt2x00dev->intf_work);
1423         cancel_delayed_work_sync(&rt2x00dev->autowakeup_work);
1424         cancel_work_sync(&rt2x00dev->sleep_work);
1425         if (rt2x00_is_usb(rt2x00dev)) {
1426                 hrtimer_cancel(&rt2x00dev->txstatus_timer);
1427                 cancel_work_sync(&rt2x00dev->rxdone_work);
1428                 cancel_work_sync(&rt2x00dev->txdone_work);
1429         }
1430         if (rt2x00dev->workqueue)
1431                 destroy_workqueue(rt2x00dev->workqueue);
1432
1433         /*
1434          * Free the tx status fifo.
1435          */
1436         kfifo_free(&rt2x00dev->txstatus_fifo);
1437
1438         /*
1439          * Kill the tx status tasklet.
1440          */
1441         tasklet_kill(&rt2x00dev->txstatus_tasklet);
1442         tasklet_kill(&rt2x00dev->pretbtt_tasklet);
1443         tasklet_kill(&rt2x00dev->tbtt_tasklet);
1444         tasklet_kill(&rt2x00dev->rxdone_tasklet);
1445         tasklet_kill(&rt2x00dev->autowake_tasklet);
1446
1447         /*
1448          * Uninitialize device.
1449          */
1450         rt2x00lib_uninitialize(rt2x00dev);
1451
1452         /*
1453          * Free extra components
1454          */
1455         rt2x00debug_deregister(rt2x00dev);
1456         rt2x00leds_unregister(rt2x00dev);
1457
1458         /*
1459          * Free ieee80211_hw memory.
1460          */
1461         rt2x00lib_remove_hw(rt2x00dev);
1462
1463         /*
1464          * Free firmware image.
1465          */
1466         rt2x00lib_free_firmware(rt2x00dev);
1467
1468         /*
1469          * Free queue structures.
1470          */
1471         rt2x00queue_free(rt2x00dev);
1472
1473         /*
1474          * Free the driver data.
1475          */
1476         kfree(rt2x00dev->drv_data);
1477 }
1478 EXPORT_SYMBOL_GPL(rt2x00lib_remove_dev);
1479
1480 /*
1481  * Device state handlers
1482  */
1483 #ifdef CONFIG_PM
1484 int rt2x00lib_suspend(struct rt2x00_dev *rt2x00dev, pm_message_t state)
1485 {
1486         rt2x00_dbg(rt2x00dev, "Going to sleep\n");
1487
1488         /*
1489          * Prevent mac80211 from accessing driver while suspended.
1490          */
1491         if (!test_and_clear_bit(DEVICE_STATE_PRESENT, &rt2x00dev->flags))
1492                 return 0;
1493
1494         /*
1495          * Cleanup as much as possible.
1496          */
1497         rt2x00lib_uninitialize(rt2x00dev);
1498
1499         /*
1500          * Suspend/disable extra components.
1501          */
1502         rt2x00leds_suspend(rt2x00dev);
1503         rt2x00debug_deregister(rt2x00dev);
1504
1505         /*
1506          * Set device mode to sleep for power management,
1507          * on some hardware this call seems to consistently fail.
1508          * From the specifications it is hard to tell why it fails,
1509          * and if this is a "bad thing".
1510          * Overall it is safe to just ignore the failure and
1511          * continue suspending. The only downside is that the
1512          * device will not be in optimal power save mode, but with
1513          * the radio and the other components already disabled the
1514          * device is as good as disabled.
1515          */
1516         if (rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_SLEEP))
1517                 rt2x00_warn(rt2x00dev, "Device failed to enter sleep state, continue suspending\n");
1518
1519         return 0;
1520 }
1521 EXPORT_SYMBOL_GPL(rt2x00lib_suspend);
1522
1523 int rt2x00lib_resume(struct rt2x00_dev *rt2x00dev)
1524 {
1525         rt2x00_dbg(rt2x00dev, "Waking up\n");
1526
1527         /*
1528          * Restore/enable extra components.
1529          */
1530         rt2x00debug_register(rt2x00dev);
1531         rt2x00leds_resume(rt2x00dev);
1532
1533         /*
1534          * We are ready again to receive requests from mac80211.
1535          */
1536         set_bit(DEVICE_STATE_PRESENT, &rt2x00dev->flags);
1537
1538         return 0;
1539 }
1540 EXPORT_SYMBOL_GPL(rt2x00lib_resume);
1541 #endif /* CONFIG_PM */
1542
1543 /*
1544  * rt2x00lib module information.
1545  */
1546 MODULE_AUTHOR(DRV_PROJECT);
1547 MODULE_VERSION(DRV_VERSION);
1548 MODULE_DESCRIPTION("rt2x00 library");
1549 MODULE_LICENSE("GPL");