Merge git://git.kernel.org/pub/scm/linux/kernel/git/davem/net-next
[cascardo/linux.git] / drivers / net / wireless / rt2x00 / rt2x00dev.c
1 /*
2         Copyright (C) 2010 Willow Garage <http://www.willowgarage.com>
3         Copyright (C) 2004 - 2010 Ivo van Doorn <IvDoorn@gmail.com>
4         <http://rt2x00.serialmonkey.com>
5
6         This program is free software; you can redistribute it and/or modify
7         it under the terms of the GNU General Public License as published by
8         the Free Software Foundation; either version 2 of the License, or
9         (at your option) any later version.
10
11         This program is distributed in the hope that it will be useful,
12         but WITHOUT ANY WARRANTY; without even the implied warranty of
13         MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14         GNU General Public License for more details.
15
16         You should have received a copy of the GNU General Public License
17         along with this program; if not, write to the
18         Free Software Foundation, Inc.,
19         59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
20  */
21
22 /*
23         Module: rt2x00lib
24         Abstract: rt2x00 generic device routines.
25  */
26
27 #include <linux/kernel.h>
28 #include <linux/module.h>
29 #include <linux/slab.h>
30 #include <linux/log2.h>
31
32 #include "rt2x00.h"
33 #include "rt2x00lib.h"
34
35 /*
36  * Utility functions.
37  */
38 u32 rt2x00lib_get_bssidx(struct rt2x00_dev *rt2x00dev,
39                          struct ieee80211_vif *vif)
40 {
41         /*
42          * When in STA mode, bssidx is always 0 otherwise local_address[5]
43          * contains the bss number, see BSS_ID_MASK comments for details.
44          */
45         if (rt2x00dev->intf_sta_count)
46                 return 0;
47         return vif->addr[5] & (rt2x00dev->ops->max_ap_intf - 1);
48 }
49 EXPORT_SYMBOL_GPL(rt2x00lib_get_bssidx);
50
51 /*
52  * Radio control handlers.
53  */
54 int rt2x00lib_enable_radio(struct rt2x00_dev *rt2x00dev)
55 {
56         int status;
57
58         /*
59          * Don't enable the radio twice.
60          * And check if the hardware button has been disabled.
61          */
62         if (test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
63                 return 0;
64
65         /*
66          * Initialize all data queues.
67          */
68         rt2x00queue_init_queues(rt2x00dev);
69
70         /*
71          * Enable radio.
72          */
73         status =
74             rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_RADIO_ON);
75         if (status)
76                 return status;
77
78         rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_RADIO_IRQ_ON);
79
80         rt2x00leds_led_radio(rt2x00dev, true);
81         rt2x00led_led_activity(rt2x00dev, true);
82
83         set_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags);
84
85         /*
86          * Enable queues.
87          */
88         rt2x00queue_start_queues(rt2x00dev);
89         rt2x00link_start_tuner(rt2x00dev);
90         rt2x00link_start_agc(rt2x00dev);
91         if (test_bit(CAPABILITY_VCO_RECALIBRATION, &rt2x00dev->cap_flags))
92                 rt2x00link_start_vcocal(rt2x00dev);
93
94         /*
95          * Start watchdog monitoring.
96          */
97         rt2x00link_start_watchdog(rt2x00dev);
98
99         return 0;
100 }
101
102 void rt2x00lib_disable_radio(struct rt2x00_dev *rt2x00dev)
103 {
104         if (!test_and_clear_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
105                 return;
106
107         /*
108          * Stop watchdog monitoring.
109          */
110         rt2x00link_stop_watchdog(rt2x00dev);
111
112         /*
113          * Stop all queues
114          */
115         rt2x00link_stop_agc(rt2x00dev);
116         if (test_bit(CAPABILITY_VCO_RECALIBRATION, &rt2x00dev->cap_flags))
117                 rt2x00link_stop_vcocal(rt2x00dev);
118         rt2x00link_stop_tuner(rt2x00dev);
119         rt2x00queue_stop_queues(rt2x00dev);
120         rt2x00queue_flush_queues(rt2x00dev, true);
121
122         /*
123          * Disable radio.
124          */
125         rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_RADIO_OFF);
126         rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_RADIO_IRQ_OFF);
127         rt2x00led_led_activity(rt2x00dev, false);
128         rt2x00leds_led_radio(rt2x00dev, false);
129 }
130
131 static void rt2x00lib_intf_scheduled_iter(void *data, u8 *mac,
132                                           struct ieee80211_vif *vif)
133 {
134         struct rt2x00_dev *rt2x00dev = data;
135         struct rt2x00_intf *intf = vif_to_intf(vif);
136
137         /*
138          * It is possible the radio was disabled while the work had been
139          * scheduled. If that happens we should return here immediately,
140          * note that in the spinlock protected area above the delayed_flags
141          * have been cleared correctly.
142          */
143         if (!test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
144                 return;
145
146         if (test_and_clear_bit(DELAYED_UPDATE_BEACON, &intf->delayed_flags))
147                 rt2x00queue_update_beacon(rt2x00dev, vif);
148 }
149
150 static void rt2x00lib_intf_scheduled(struct work_struct *work)
151 {
152         struct rt2x00_dev *rt2x00dev =
153             container_of(work, struct rt2x00_dev, intf_work);
154
155         /*
156          * Iterate over each interface and perform the
157          * requested configurations.
158          */
159         ieee80211_iterate_active_interfaces(rt2x00dev->hw,
160                                             IEEE80211_IFACE_ITER_RESUME_ALL,
161                                             rt2x00lib_intf_scheduled_iter,
162                                             rt2x00dev);
163 }
164
165 static void rt2x00lib_autowakeup(struct work_struct *work)
166 {
167         struct rt2x00_dev *rt2x00dev =
168             container_of(work, struct rt2x00_dev, autowakeup_work.work);
169
170         if (!test_bit(DEVICE_STATE_PRESENT, &rt2x00dev->flags))
171                 return;
172
173         if (rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_AWAKE))
174                 rt2x00_err(rt2x00dev, "Device failed to wakeup\n");
175         clear_bit(CONFIG_POWERSAVING, &rt2x00dev->flags);
176 }
177
178 /*
179  * Interrupt context handlers.
180  */
181 static void rt2x00lib_bc_buffer_iter(void *data, u8 *mac,
182                                      struct ieee80211_vif *vif)
183 {
184         struct rt2x00_dev *rt2x00dev = data;
185         struct sk_buff *skb;
186
187         /*
188          * Only AP mode interfaces do broad- and multicast buffering
189          */
190         if (vif->type != NL80211_IFTYPE_AP)
191                 return;
192
193         /*
194          * Send out buffered broad- and multicast frames
195          */
196         skb = ieee80211_get_buffered_bc(rt2x00dev->hw, vif);
197         while (skb) {
198                 rt2x00mac_tx(rt2x00dev->hw, NULL, skb);
199                 skb = ieee80211_get_buffered_bc(rt2x00dev->hw, vif);
200         }
201 }
202
203 static void rt2x00lib_beaconupdate_iter(void *data, u8 *mac,
204                                         struct ieee80211_vif *vif)
205 {
206         struct rt2x00_dev *rt2x00dev = data;
207
208         if (vif->type != NL80211_IFTYPE_AP &&
209             vif->type != NL80211_IFTYPE_ADHOC &&
210             vif->type != NL80211_IFTYPE_MESH_POINT &&
211             vif->type != NL80211_IFTYPE_WDS)
212                 return;
213
214         /*
215          * Update the beacon without locking. This is safe on PCI devices
216          * as they only update the beacon periodically here. This should
217          * never be called for USB devices.
218          */
219         WARN_ON(rt2x00_is_usb(rt2x00dev));
220         rt2x00queue_update_beacon_locked(rt2x00dev, vif);
221 }
222
223 void rt2x00lib_beacondone(struct rt2x00_dev *rt2x00dev)
224 {
225         if (!test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
226                 return;
227
228         /* send buffered bc/mc frames out for every bssid */
229         ieee80211_iterate_active_interfaces_atomic(
230                 rt2x00dev->hw, IEEE80211_IFACE_ITER_RESUME_ALL,
231                 rt2x00lib_bc_buffer_iter, rt2x00dev);
232         /*
233          * Devices with pre tbtt interrupt don't need to update the beacon
234          * here as they will fetch the next beacon directly prior to
235          * transmission.
236          */
237         if (test_bit(CAPABILITY_PRE_TBTT_INTERRUPT, &rt2x00dev->cap_flags))
238                 return;
239
240         /* fetch next beacon */
241         ieee80211_iterate_active_interfaces_atomic(
242                 rt2x00dev->hw, IEEE80211_IFACE_ITER_RESUME_ALL,
243                 rt2x00lib_beaconupdate_iter, rt2x00dev);
244 }
245 EXPORT_SYMBOL_GPL(rt2x00lib_beacondone);
246
247 void rt2x00lib_pretbtt(struct rt2x00_dev *rt2x00dev)
248 {
249         if (!test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
250                 return;
251
252         /* fetch next beacon */
253         ieee80211_iterate_active_interfaces_atomic(
254                 rt2x00dev->hw, IEEE80211_IFACE_ITER_RESUME_ALL,
255                 rt2x00lib_beaconupdate_iter, rt2x00dev);
256 }
257 EXPORT_SYMBOL_GPL(rt2x00lib_pretbtt);
258
259 void rt2x00lib_dmastart(struct queue_entry *entry)
260 {
261         set_bit(ENTRY_OWNER_DEVICE_DATA, &entry->flags);
262         rt2x00queue_index_inc(entry, Q_INDEX);
263 }
264 EXPORT_SYMBOL_GPL(rt2x00lib_dmastart);
265
266 void rt2x00lib_dmadone(struct queue_entry *entry)
267 {
268         set_bit(ENTRY_DATA_STATUS_PENDING, &entry->flags);
269         clear_bit(ENTRY_OWNER_DEVICE_DATA, &entry->flags);
270         rt2x00queue_index_inc(entry, Q_INDEX_DMA_DONE);
271 }
272 EXPORT_SYMBOL_GPL(rt2x00lib_dmadone);
273
274 static inline int rt2x00lib_txdone_bar_status(struct queue_entry *entry)
275 {
276         struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
277         struct ieee80211_bar *bar = (void *) entry->skb->data;
278         struct rt2x00_bar_list_entry *bar_entry;
279         int ret;
280
281         if (likely(!ieee80211_is_back_req(bar->frame_control)))
282                 return 0;
283
284         /*
285          * Unlike all other frames, the status report for BARs does
286          * not directly come from the hardware as it is incapable of
287          * matching a BA to a previously send BAR. The hardware will
288          * report all BARs as if they weren't acked at all.
289          *
290          * Instead the RX-path will scan for incoming BAs and set the
291          * block_acked flag if it sees one that was likely caused by
292          * a BAR from us.
293          *
294          * Remove remaining BARs here and return their status for
295          * TX done processing.
296          */
297         ret = 0;
298         rcu_read_lock();
299         list_for_each_entry_rcu(bar_entry, &rt2x00dev->bar_list, list) {
300                 if (bar_entry->entry != entry)
301                         continue;
302
303                 spin_lock_bh(&rt2x00dev->bar_list_lock);
304                 /* Return whether this BAR was blockacked or not */
305                 ret = bar_entry->block_acked;
306                 /* Remove the BAR from our checklist */
307                 list_del_rcu(&bar_entry->list);
308                 spin_unlock_bh(&rt2x00dev->bar_list_lock);
309                 kfree_rcu(bar_entry, head);
310
311                 break;
312         }
313         rcu_read_unlock();
314
315         return ret;
316 }
317
318 void rt2x00lib_txdone(struct queue_entry *entry,
319                       struct txdone_entry_desc *txdesc)
320 {
321         struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
322         struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(entry->skb);
323         struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb);
324         unsigned int header_length, i;
325         u8 rate_idx, rate_flags, retry_rates;
326         u8 skbdesc_flags = skbdesc->flags;
327         bool success;
328
329         /*
330          * Unmap the skb.
331          */
332         rt2x00queue_unmap_skb(entry);
333
334         /*
335          * Remove the extra tx headroom from the skb.
336          */
337         skb_pull(entry->skb, rt2x00dev->extra_tx_headroom);
338
339         /*
340          * Signal that the TX descriptor is no longer in the skb.
341          */
342         skbdesc->flags &= ~SKBDESC_DESC_IN_SKB;
343
344         /*
345          * Determine the length of 802.11 header.
346          */
347         header_length = ieee80211_get_hdrlen_from_skb(entry->skb);
348
349         /*
350          * Remove L2 padding which was added during
351          */
352         if (test_bit(REQUIRE_L2PAD, &rt2x00dev->cap_flags))
353                 rt2x00queue_remove_l2pad(entry->skb, header_length);
354
355         /*
356          * If the IV/EIV data was stripped from the frame before it was
357          * passed to the hardware, we should now reinsert it again because
358          * mac80211 will expect the same data to be present it the
359          * frame as it was passed to us.
360          */
361         if (test_bit(CAPABILITY_HW_CRYPTO, &rt2x00dev->cap_flags))
362                 rt2x00crypto_tx_insert_iv(entry->skb, header_length);
363
364         /*
365          * Send frame to debugfs immediately, after this call is completed
366          * we are going to overwrite the skb->cb array.
367          */
368         rt2x00debug_dump_frame(rt2x00dev, DUMP_FRAME_TXDONE, entry->skb);
369
370         /*
371          * Determine if the frame has been successfully transmitted and
372          * remove BARs from our check list while checking for their
373          * TX status.
374          */
375         success =
376             rt2x00lib_txdone_bar_status(entry) ||
377             test_bit(TXDONE_SUCCESS, &txdesc->flags) ||
378             test_bit(TXDONE_UNKNOWN, &txdesc->flags);
379
380         /*
381          * Update TX statistics.
382          */
383         rt2x00dev->link.qual.tx_success += success;
384         rt2x00dev->link.qual.tx_failed += !success;
385
386         rate_idx = skbdesc->tx_rate_idx;
387         rate_flags = skbdesc->tx_rate_flags;
388         retry_rates = test_bit(TXDONE_FALLBACK, &txdesc->flags) ?
389             (txdesc->retry + 1) : 1;
390
391         /*
392          * Initialize TX status
393          */
394         memset(&tx_info->status, 0, sizeof(tx_info->status));
395         tx_info->status.ack_signal = 0;
396
397         /*
398          * Frame was send with retries, hardware tried
399          * different rates to send out the frame, at each
400          * retry it lowered the rate 1 step except when the
401          * lowest rate was used.
402          */
403         for (i = 0; i < retry_rates && i < IEEE80211_TX_MAX_RATES; i++) {
404                 tx_info->status.rates[i].idx = rate_idx - i;
405                 tx_info->status.rates[i].flags = rate_flags;
406
407                 if (rate_idx - i == 0) {
408                         /*
409                          * The lowest rate (index 0) was used until the
410                          * number of max retries was reached.
411                          */
412                         tx_info->status.rates[i].count = retry_rates - i;
413                         i++;
414                         break;
415                 }
416                 tx_info->status.rates[i].count = 1;
417         }
418         if (i < (IEEE80211_TX_MAX_RATES - 1))
419                 tx_info->status.rates[i].idx = -1; /* terminate */
420
421         if (!(tx_info->flags & IEEE80211_TX_CTL_NO_ACK)) {
422                 if (success)
423                         tx_info->flags |= IEEE80211_TX_STAT_ACK;
424                 else
425                         rt2x00dev->low_level_stats.dot11ACKFailureCount++;
426         }
427
428         /*
429          * Every single frame has it's own tx status, hence report
430          * every frame as ampdu of size 1.
431          *
432          * TODO: if we can find out how many frames were aggregated
433          * by the hw we could provide the real ampdu_len to mac80211
434          * which would allow the rc algorithm to better decide on
435          * which rates are suitable.
436          */
437         if (test_bit(TXDONE_AMPDU, &txdesc->flags) ||
438             tx_info->flags & IEEE80211_TX_CTL_AMPDU) {
439                 tx_info->flags |= IEEE80211_TX_STAT_AMPDU;
440                 tx_info->status.ampdu_len = 1;
441                 tx_info->status.ampdu_ack_len = success ? 1 : 0;
442
443                 if (!success)
444                         tx_info->flags |= IEEE80211_TX_STAT_AMPDU_NO_BACK;
445         }
446
447         if (rate_flags & IEEE80211_TX_RC_USE_RTS_CTS) {
448                 if (success)
449                         rt2x00dev->low_level_stats.dot11RTSSuccessCount++;
450                 else
451                         rt2x00dev->low_level_stats.dot11RTSFailureCount++;
452         }
453
454         /*
455          * Only send the status report to mac80211 when it's a frame
456          * that originated in mac80211. If this was a extra frame coming
457          * through a mac80211 library call (RTS/CTS) then we should not
458          * send the status report back.
459          */
460         if (!(skbdesc_flags & SKBDESC_NOT_MAC80211)) {
461                 if (test_bit(REQUIRE_TASKLET_CONTEXT, &rt2x00dev->cap_flags))
462                         ieee80211_tx_status(rt2x00dev->hw, entry->skb);
463                 else
464                         ieee80211_tx_status_ni(rt2x00dev->hw, entry->skb);
465         } else
466                 dev_kfree_skb_any(entry->skb);
467
468         /*
469          * Make this entry available for reuse.
470          */
471         entry->skb = NULL;
472         entry->flags = 0;
473
474         rt2x00dev->ops->lib->clear_entry(entry);
475
476         rt2x00queue_index_inc(entry, Q_INDEX_DONE);
477
478         /*
479          * If the data queue was below the threshold before the txdone
480          * handler we must make sure the packet queue in the mac80211 stack
481          * is reenabled when the txdone handler has finished. This has to be
482          * serialized with rt2x00mac_tx(), otherwise we can wake up queue
483          * before it was stopped.
484          */
485         spin_lock_bh(&entry->queue->tx_lock);
486         if (!rt2x00queue_threshold(entry->queue))
487                 rt2x00queue_unpause_queue(entry->queue);
488         spin_unlock_bh(&entry->queue->tx_lock);
489 }
490 EXPORT_SYMBOL_GPL(rt2x00lib_txdone);
491
492 void rt2x00lib_txdone_noinfo(struct queue_entry *entry, u32 status)
493 {
494         struct txdone_entry_desc txdesc;
495
496         txdesc.flags = 0;
497         __set_bit(status, &txdesc.flags);
498         txdesc.retry = 0;
499
500         rt2x00lib_txdone(entry, &txdesc);
501 }
502 EXPORT_SYMBOL_GPL(rt2x00lib_txdone_noinfo);
503
504 static u8 *rt2x00lib_find_ie(u8 *data, unsigned int len, u8 ie)
505 {
506         struct ieee80211_mgmt *mgmt = (void *)data;
507         u8 *pos, *end;
508
509         pos = (u8 *)mgmt->u.beacon.variable;
510         end = data + len;
511         while (pos < end) {
512                 if (pos + 2 + pos[1] > end)
513                         return NULL;
514
515                 if (pos[0] == ie)
516                         return pos;
517
518                 pos += 2 + pos[1];
519         }
520
521         return NULL;
522 }
523
524 static void rt2x00lib_sleep(struct work_struct *work)
525 {
526         struct rt2x00_dev *rt2x00dev =
527             container_of(work, struct rt2x00_dev, sleep_work);
528
529         if (!test_bit(DEVICE_STATE_PRESENT, &rt2x00dev->flags))
530                 return;
531
532         /*
533          * Check again is powersaving is enabled, to prevent races from delayed
534          * work execution.
535          */
536         if (!test_bit(CONFIG_POWERSAVING, &rt2x00dev->flags))
537                 rt2x00lib_config(rt2x00dev, &rt2x00dev->hw->conf,
538                                  IEEE80211_CONF_CHANGE_PS);
539 }
540
541 static void rt2x00lib_rxdone_check_ba(struct rt2x00_dev *rt2x00dev,
542                                       struct sk_buff *skb,
543                                       struct rxdone_entry_desc *rxdesc)
544 {
545         struct rt2x00_bar_list_entry *entry;
546         struct ieee80211_bar *ba = (void *)skb->data;
547
548         if (likely(!ieee80211_is_back(ba->frame_control)))
549                 return;
550
551         if (rxdesc->size < sizeof(*ba) + FCS_LEN)
552                 return;
553
554         rcu_read_lock();
555         list_for_each_entry_rcu(entry, &rt2x00dev->bar_list, list) {
556
557                 if (ba->start_seq_num != entry->start_seq_num)
558                         continue;
559
560 #define TID_CHECK(a, b) (                                               \
561         ((a) & cpu_to_le16(IEEE80211_BAR_CTRL_TID_INFO_MASK)) ==        \
562         ((b) & cpu_to_le16(IEEE80211_BAR_CTRL_TID_INFO_MASK)))          \
563
564                 if (!TID_CHECK(ba->control, entry->control))
565                         continue;
566
567 #undef TID_CHECK
568
569                 if (compare_ether_addr(ba->ra, entry->ta))
570                         continue;
571
572                 if (compare_ether_addr(ba->ta, entry->ra))
573                         continue;
574
575                 /* Mark BAR since we received the according BA */
576                 spin_lock_bh(&rt2x00dev->bar_list_lock);
577                 entry->block_acked = 1;
578                 spin_unlock_bh(&rt2x00dev->bar_list_lock);
579                 break;
580         }
581         rcu_read_unlock();
582
583 }
584
585 static void rt2x00lib_rxdone_check_ps(struct rt2x00_dev *rt2x00dev,
586                                       struct sk_buff *skb,
587                                       struct rxdone_entry_desc *rxdesc)
588 {
589         struct ieee80211_hdr *hdr = (void *) skb->data;
590         struct ieee80211_tim_ie *tim_ie;
591         u8 *tim;
592         u8 tim_len;
593         bool cam;
594
595         /* If this is not a beacon, or if mac80211 has no powersaving
596          * configured, or if the device is already in powersaving mode
597          * we can exit now. */
598         if (likely(!ieee80211_is_beacon(hdr->frame_control) ||
599                    !(rt2x00dev->hw->conf.flags & IEEE80211_CONF_PS)))
600                 return;
601
602         /* min. beacon length + FCS_LEN */
603         if (skb->len <= 40 + FCS_LEN)
604                 return;
605
606         /* and only beacons from the associated BSSID, please */
607         if (!(rxdesc->dev_flags & RXDONE_MY_BSS) ||
608             !rt2x00dev->aid)
609                 return;
610
611         rt2x00dev->last_beacon = jiffies;
612
613         tim = rt2x00lib_find_ie(skb->data, skb->len - FCS_LEN, WLAN_EID_TIM);
614         if (!tim)
615                 return;
616
617         if (tim[1] < sizeof(*tim_ie))
618                 return;
619
620         tim_len = tim[1];
621         tim_ie = (struct ieee80211_tim_ie *) &tim[2];
622
623         /* Check whenever the PHY can be turned off again. */
624
625         /* 1. What about buffered unicast traffic for our AID? */
626         cam = ieee80211_check_tim(tim_ie, tim_len, rt2x00dev->aid);
627
628         /* 2. Maybe the AP wants to send multicast/broadcast data? */
629         cam |= (tim_ie->bitmap_ctrl & 0x01);
630
631         if (!cam && !test_bit(CONFIG_POWERSAVING, &rt2x00dev->flags))
632                 queue_work(rt2x00dev->workqueue, &rt2x00dev->sleep_work);
633 }
634
635 static int rt2x00lib_rxdone_read_signal(struct rt2x00_dev *rt2x00dev,
636                                         struct rxdone_entry_desc *rxdesc)
637 {
638         struct ieee80211_supported_band *sband;
639         const struct rt2x00_rate *rate;
640         unsigned int i;
641         int signal = rxdesc->signal;
642         int type = (rxdesc->dev_flags & RXDONE_SIGNAL_MASK);
643
644         switch (rxdesc->rate_mode) {
645         case RATE_MODE_CCK:
646         case RATE_MODE_OFDM:
647                 /*
648                  * For non-HT rates the MCS value needs to contain the
649                  * actually used rate modulation (CCK or OFDM).
650                  */
651                 if (rxdesc->dev_flags & RXDONE_SIGNAL_MCS)
652                         signal = RATE_MCS(rxdesc->rate_mode, signal);
653
654                 sband = &rt2x00dev->bands[rt2x00dev->curr_band];
655                 for (i = 0; i < sband->n_bitrates; i++) {
656                         rate = rt2x00_get_rate(sband->bitrates[i].hw_value);
657                         if (((type == RXDONE_SIGNAL_PLCP) &&
658                              (rate->plcp == signal)) ||
659                             ((type == RXDONE_SIGNAL_BITRATE) &&
660                               (rate->bitrate == signal)) ||
661                             ((type == RXDONE_SIGNAL_MCS) &&
662                               (rate->mcs == signal))) {
663                                 return i;
664                         }
665                 }
666                 break;
667         case RATE_MODE_HT_MIX:
668         case RATE_MODE_HT_GREENFIELD:
669                 if (signal >= 0 && signal <= 76)
670                         return signal;
671                 break;
672         default:
673                 break;
674         }
675
676         rt2x00_warn(rt2x00dev, "Frame received with unrecognized signal, mode=0x%.4x, signal=0x%.4x, type=%d\n",
677                     rxdesc->rate_mode, signal, type);
678         return 0;
679 }
680
681 void rt2x00lib_rxdone(struct queue_entry *entry, gfp_t gfp)
682 {
683         struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
684         struct rxdone_entry_desc rxdesc;
685         struct sk_buff *skb;
686         struct ieee80211_rx_status *rx_status;
687         unsigned int header_length;
688         int rate_idx;
689
690         if (!test_bit(DEVICE_STATE_PRESENT, &rt2x00dev->flags) ||
691             !test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
692                 goto submit_entry;
693
694         if (test_bit(ENTRY_DATA_IO_FAILED, &entry->flags))
695                 goto submit_entry;
696
697         /*
698          * Allocate a new sk_buffer. If no new buffer available, drop the
699          * received frame and reuse the existing buffer.
700          */
701         skb = rt2x00queue_alloc_rxskb(entry, gfp);
702         if (!skb)
703                 goto submit_entry;
704
705         /*
706          * Unmap the skb.
707          */
708         rt2x00queue_unmap_skb(entry);
709
710         /*
711          * Extract the RXD details.
712          */
713         memset(&rxdesc, 0, sizeof(rxdesc));
714         rt2x00dev->ops->lib->fill_rxdone(entry, &rxdesc);
715
716         /*
717          * Check for valid size in case we get corrupted descriptor from
718          * hardware.
719          */
720         if (unlikely(rxdesc.size == 0 ||
721                      rxdesc.size > entry->queue->data_size)) {
722                 rt2x00_err(rt2x00dev, "Wrong frame size %d max %d\n",
723                            rxdesc.size, entry->queue->data_size);
724                 dev_kfree_skb(entry->skb);
725                 goto renew_skb;
726         }
727
728         /*
729          * The data behind the ieee80211 header must be
730          * aligned on a 4 byte boundary.
731          */
732         header_length = ieee80211_get_hdrlen_from_skb(entry->skb);
733
734         /*
735          * Hardware might have stripped the IV/EIV/ICV data,
736          * in that case it is possible that the data was
737          * provided separately (through hardware descriptor)
738          * in which case we should reinsert the data into the frame.
739          */
740         if ((rxdesc.dev_flags & RXDONE_CRYPTO_IV) &&
741             (rxdesc.flags & RX_FLAG_IV_STRIPPED))
742                 rt2x00crypto_rx_insert_iv(entry->skb, header_length,
743                                           &rxdesc);
744         else if (header_length &&
745                  (rxdesc.size > header_length) &&
746                  (rxdesc.dev_flags & RXDONE_L2PAD))
747                 rt2x00queue_remove_l2pad(entry->skb, header_length);
748
749         /* Trim buffer to correct size */
750         skb_trim(entry->skb, rxdesc.size);
751
752         /*
753          * Translate the signal to the correct bitrate index.
754          */
755         rate_idx = rt2x00lib_rxdone_read_signal(rt2x00dev, &rxdesc);
756         if (rxdesc.rate_mode == RATE_MODE_HT_MIX ||
757             rxdesc.rate_mode == RATE_MODE_HT_GREENFIELD)
758                 rxdesc.flags |= RX_FLAG_HT;
759
760         /*
761          * Check if this is a beacon, and more frames have been
762          * buffered while we were in powersaving mode.
763          */
764         rt2x00lib_rxdone_check_ps(rt2x00dev, entry->skb, &rxdesc);
765
766         /*
767          * Check for incoming BlockAcks to match to the BlockAckReqs
768          * we've send out.
769          */
770         rt2x00lib_rxdone_check_ba(rt2x00dev, entry->skb, &rxdesc);
771
772         /*
773          * Update extra components
774          */
775         rt2x00link_update_stats(rt2x00dev, entry->skb, &rxdesc);
776         rt2x00debug_update_crypto(rt2x00dev, &rxdesc);
777         rt2x00debug_dump_frame(rt2x00dev, DUMP_FRAME_RXDONE, entry->skb);
778
779         /*
780          * Initialize RX status information, and send frame
781          * to mac80211.
782          */
783         rx_status = IEEE80211_SKB_RXCB(entry->skb);
784
785         /* Ensure that all fields of rx_status are initialized
786          * properly. The skb->cb array was used for driver
787          * specific informations, so rx_status might contain
788          * garbage.
789          */
790         memset(rx_status, 0, sizeof(*rx_status));
791
792         rx_status->mactime = rxdesc.timestamp;
793         rx_status->band = rt2x00dev->curr_band;
794         rx_status->freq = rt2x00dev->curr_freq;
795         rx_status->rate_idx = rate_idx;
796         rx_status->signal = rxdesc.rssi;
797         rx_status->flag = rxdesc.flags;
798         rx_status->antenna = rt2x00dev->link.ant.active.rx;
799
800         ieee80211_rx_ni(rt2x00dev->hw, entry->skb);
801
802 renew_skb:
803         /*
804          * Replace the skb with the freshly allocated one.
805          */
806         entry->skb = skb;
807
808 submit_entry:
809         entry->flags = 0;
810         rt2x00queue_index_inc(entry, Q_INDEX_DONE);
811         if (test_bit(DEVICE_STATE_PRESENT, &rt2x00dev->flags) &&
812             test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
813                 rt2x00dev->ops->lib->clear_entry(entry);
814 }
815 EXPORT_SYMBOL_GPL(rt2x00lib_rxdone);
816
817 /*
818  * Driver initialization handlers.
819  */
820 const struct rt2x00_rate rt2x00_supported_rates[12] = {
821         {
822                 .flags = DEV_RATE_CCK,
823                 .bitrate = 10,
824                 .ratemask = BIT(0),
825                 .plcp = 0x00,
826                 .mcs = RATE_MCS(RATE_MODE_CCK, 0),
827         },
828         {
829                 .flags = DEV_RATE_CCK | DEV_RATE_SHORT_PREAMBLE,
830                 .bitrate = 20,
831                 .ratemask = BIT(1),
832                 .plcp = 0x01,
833                 .mcs = RATE_MCS(RATE_MODE_CCK, 1),
834         },
835         {
836                 .flags = DEV_RATE_CCK | DEV_RATE_SHORT_PREAMBLE,
837                 .bitrate = 55,
838                 .ratemask = BIT(2),
839                 .plcp = 0x02,
840                 .mcs = RATE_MCS(RATE_MODE_CCK, 2),
841         },
842         {
843                 .flags = DEV_RATE_CCK | DEV_RATE_SHORT_PREAMBLE,
844                 .bitrate = 110,
845                 .ratemask = BIT(3),
846                 .plcp = 0x03,
847                 .mcs = RATE_MCS(RATE_MODE_CCK, 3),
848         },
849         {
850                 .flags = DEV_RATE_OFDM,
851                 .bitrate = 60,
852                 .ratemask = BIT(4),
853                 .plcp = 0x0b,
854                 .mcs = RATE_MCS(RATE_MODE_OFDM, 0),
855         },
856         {
857                 .flags = DEV_RATE_OFDM,
858                 .bitrate = 90,
859                 .ratemask = BIT(5),
860                 .plcp = 0x0f,
861                 .mcs = RATE_MCS(RATE_MODE_OFDM, 1),
862         },
863         {
864                 .flags = DEV_RATE_OFDM,
865                 .bitrate = 120,
866                 .ratemask = BIT(6),
867                 .plcp = 0x0a,
868                 .mcs = RATE_MCS(RATE_MODE_OFDM, 2),
869         },
870         {
871                 .flags = DEV_RATE_OFDM,
872                 .bitrate = 180,
873                 .ratemask = BIT(7),
874                 .plcp = 0x0e,
875                 .mcs = RATE_MCS(RATE_MODE_OFDM, 3),
876         },
877         {
878                 .flags = DEV_RATE_OFDM,
879                 .bitrate = 240,
880                 .ratemask = BIT(8),
881                 .plcp = 0x09,
882                 .mcs = RATE_MCS(RATE_MODE_OFDM, 4),
883         },
884         {
885                 .flags = DEV_RATE_OFDM,
886                 .bitrate = 360,
887                 .ratemask = BIT(9),
888                 .plcp = 0x0d,
889                 .mcs = RATE_MCS(RATE_MODE_OFDM, 5),
890         },
891         {
892                 .flags = DEV_RATE_OFDM,
893                 .bitrate = 480,
894                 .ratemask = BIT(10),
895                 .plcp = 0x08,
896                 .mcs = RATE_MCS(RATE_MODE_OFDM, 6),
897         },
898         {
899                 .flags = DEV_RATE_OFDM,
900                 .bitrate = 540,
901                 .ratemask = BIT(11),
902                 .plcp = 0x0c,
903                 .mcs = RATE_MCS(RATE_MODE_OFDM, 7),
904         },
905 };
906
907 static void rt2x00lib_channel(struct ieee80211_channel *entry,
908                               const int channel, const int tx_power,
909                               const int value)
910 {
911         /* XXX: this assumption about the band is wrong for 802.11j */
912         entry->band = channel <= 14 ? IEEE80211_BAND_2GHZ : IEEE80211_BAND_5GHZ;
913         entry->center_freq = ieee80211_channel_to_frequency(channel,
914                                                             entry->band);
915         entry->hw_value = value;
916         entry->max_power = tx_power;
917         entry->max_antenna_gain = 0xff;
918 }
919
920 static void rt2x00lib_rate(struct ieee80211_rate *entry,
921                            const u16 index, const struct rt2x00_rate *rate)
922 {
923         entry->flags = 0;
924         entry->bitrate = rate->bitrate;
925         entry->hw_value = index;
926         entry->hw_value_short = index;
927
928         if (rate->flags & DEV_RATE_SHORT_PREAMBLE)
929                 entry->flags |= IEEE80211_RATE_SHORT_PREAMBLE;
930 }
931
932 static int rt2x00lib_probe_hw_modes(struct rt2x00_dev *rt2x00dev,
933                                     struct hw_mode_spec *spec)
934 {
935         struct ieee80211_hw *hw = rt2x00dev->hw;
936         struct ieee80211_channel *channels;
937         struct ieee80211_rate *rates;
938         unsigned int num_rates;
939         unsigned int i;
940
941         num_rates = 0;
942         if (spec->supported_rates & SUPPORT_RATE_CCK)
943                 num_rates += 4;
944         if (spec->supported_rates & SUPPORT_RATE_OFDM)
945                 num_rates += 8;
946
947         channels = kcalloc(spec->num_channels, sizeof(*channels), GFP_KERNEL);
948         if (!channels)
949                 return -ENOMEM;
950
951         rates = kcalloc(num_rates, sizeof(*rates), GFP_KERNEL);
952         if (!rates)
953                 goto exit_free_channels;
954
955         /*
956          * Initialize Rate list.
957          */
958         for (i = 0; i < num_rates; i++)
959                 rt2x00lib_rate(&rates[i], i, rt2x00_get_rate(i));
960
961         /*
962          * Initialize Channel list.
963          */
964         for (i = 0; i < spec->num_channels; i++) {
965                 rt2x00lib_channel(&channels[i],
966                                   spec->channels[i].channel,
967                                   spec->channels_info[i].max_power, i);
968         }
969
970         /*
971          * Intitialize 802.11b, 802.11g
972          * Rates: CCK, OFDM.
973          * Channels: 2.4 GHz
974          */
975         if (spec->supported_bands & SUPPORT_BAND_2GHZ) {
976                 rt2x00dev->bands[IEEE80211_BAND_2GHZ].n_channels = 14;
977                 rt2x00dev->bands[IEEE80211_BAND_2GHZ].n_bitrates = num_rates;
978                 rt2x00dev->bands[IEEE80211_BAND_2GHZ].channels = channels;
979                 rt2x00dev->bands[IEEE80211_BAND_2GHZ].bitrates = rates;
980                 hw->wiphy->bands[IEEE80211_BAND_2GHZ] =
981                     &rt2x00dev->bands[IEEE80211_BAND_2GHZ];
982                 memcpy(&rt2x00dev->bands[IEEE80211_BAND_2GHZ].ht_cap,
983                        &spec->ht, sizeof(spec->ht));
984         }
985
986         /*
987          * Intitialize 802.11a
988          * Rates: OFDM.
989          * Channels: OFDM, UNII, HiperLAN2.
990          */
991         if (spec->supported_bands & SUPPORT_BAND_5GHZ) {
992                 rt2x00dev->bands[IEEE80211_BAND_5GHZ].n_channels =
993                     spec->num_channels - 14;
994                 rt2x00dev->bands[IEEE80211_BAND_5GHZ].n_bitrates =
995                     num_rates - 4;
996                 rt2x00dev->bands[IEEE80211_BAND_5GHZ].channels = &channels[14];
997                 rt2x00dev->bands[IEEE80211_BAND_5GHZ].bitrates = &rates[4];
998                 hw->wiphy->bands[IEEE80211_BAND_5GHZ] =
999                     &rt2x00dev->bands[IEEE80211_BAND_5GHZ];
1000                 memcpy(&rt2x00dev->bands[IEEE80211_BAND_5GHZ].ht_cap,
1001                        &spec->ht, sizeof(spec->ht));
1002         }
1003
1004         return 0;
1005
1006  exit_free_channels:
1007         kfree(channels);
1008         rt2x00_err(rt2x00dev, "Allocation ieee80211 modes failed\n");
1009         return -ENOMEM;
1010 }
1011
1012 static void rt2x00lib_remove_hw(struct rt2x00_dev *rt2x00dev)
1013 {
1014         if (test_bit(DEVICE_STATE_REGISTERED_HW, &rt2x00dev->flags))
1015                 ieee80211_unregister_hw(rt2x00dev->hw);
1016
1017         if (likely(rt2x00dev->hw->wiphy->bands[IEEE80211_BAND_2GHZ])) {
1018                 kfree(rt2x00dev->hw->wiphy->bands[IEEE80211_BAND_2GHZ]->channels);
1019                 kfree(rt2x00dev->hw->wiphy->bands[IEEE80211_BAND_2GHZ]->bitrates);
1020                 rt2x00dev->hw->wiphy->bands[IEEE80211_BAND_2GHZ] = NULL;
1021                 rt2x00dev->hw->wiphy->bands[IEEE80211_BAND_5GHZ] = NULL;
1022         }
1023
1024         kfree(rt2x00dev->spec.channels_info);
1025 }
1026
1027 static int rt2x00lib_probe_hw(struct rt2x00_dev *rt2x00dev)
1028 {
1029         struct hw_mode_spec *spec = &rt2x00dev->spec;
1030         int status;
1031
1032         if (test_bit(DEVICE_STATE_REGISTERED_HW, &rt2x00dev->flags))
1033                 return 0;
1034
1035         /*
1036          * Initialize HW modes.
1037          */
1038         status = rt2x00lib_probe_hw_modes(rt2x00dev, spec);
1039         if (status)
1040                 return status;
1041
1042         /*
1043          * Initialize HW fields.
1044          */
1045         rt2x00dev->hw->queues = rt2x00dev->ops->tx_queues;
1046
1047         /*
1048          * Initialize extra TX headroom required.
1049          */
1050         rt2x00dev->hw->extra_tx_headroom =
1051                 max_t(unsigned int, IEEE80211_TX_STATUS_HEADROOM,
1052                       rt2x00dev->extra_tx_headroom);
1053
1054         /*
1055          * Take TX headroom required for alignment into account.
1056          */
1057         if (test_bit(REQUIRE_L2PAD, &rt2x00dev->cap_flags))
1058                 rt2x00dev->hw->extra_tx_headroom += RT2X00_L2PAD_SIZE;
1059         else if (test_bit(REQUIRE_DMA, &rt2x00dev->cap_flags))
1060                 rt2x00dev->hw->extra_tx_headroom += RT2X00_ALIGN_SIZE;
1061
1062         /*
1063          * Tell mac80211 about the size of our private STA structure.
1064          */
1065         rt2x00dev->hw->sta_data_size = sizeof(struct rt2x00_sta);
1066
1067         /*
1068          * Allocate tx status FIFO for driver use.
1069          */
1070         if (test_bit(REQUIRE_TXSTATUS_FIFO, &rt2x00dev->cap_flags)) {
1071                 /*
1072                  * Allocate the txstatus fifo. In the worst case the tx
1073                  * status fifo has to hold the tx status of all entries
1074                  * in all tx queues. Hence, calculate the kfifo size as
1075                  * tx_queues * entry_num and round up to the nearest
1076                  * power of 2.
1077                  */
1078                 int kfifo_size =
1079                         roundup_pow_of_two(rt2x00dev->ops->tx_queues *
1080                                            rt2x00dev->tx->limit *
1081                                            sizeof(u32));
1082
1083                 status = kfifo_alloc(&rt2x00dev->txstatus_fifo, kfifo_size,
1084                                      GFP_KERNEL);
1085                 if (status)
1086                         return status;
1087         }
1088
1089         /*
1090          * Initialize tasklets if used by the driver. Tasklets are
1091          * disabled until the interrupts are turned on. The driver
1092          * has to handle that.
1093          */
1094 #define RT2X00_TASKLET_INIT(taskletname) \
1095         if (rt2x00dev->ops->lib->taskletname) { \
1096                 tasklet_init(&rt2x00dev->taskletname, \
1097                              rt2x00dev->ops->lib->taskletname, \
1098                              (unsigned long)rt2x00dev); \
1099         }
1100
1101         RT2X00_TASKLET_INIT(txstatus_tasklet);
1102         RT2X00_TASKLET_INIT(pretbtt_tasklet);
1103         RT2X00_TASKLET_INIT(tbtt_tasklet);
1104         RT2X00_TASKLET_INIT(rxdone_tasklet);
1105         RT2X00_TASKLET_INIT(autowake_tasklet);
1106
1107 #undef RT2X00_TASKLET_INIT
1108
1109         /*
1110          * Register HW.
1111          */
1112         status = ieee80211_register_hw(rt2x00dev->hw);
1113         if (status)
1114                 return status;
1115
1116         set_bit(DEVICE_STATE_REGISTERED_HW, &rt2x00dev->flags);
1117
1118         return 0;
1119 }
1120
1121 /*
1122  * Initialization/uninitialization handlers.
1123  */
1124 static void rt2x00lib_uninitialize(struct rt2x00_dev *rt2x00dev)
1125 {
1126         if (!test_and_clear_bit(DEVICE_STATE_INITIALIZED, &rt2x00dev->flags))
1127                 return;
1128
1129         /*
1130          * Unregister extra components.
1131          */
1132         rt2x00rfkill_unregister(rt2x00dev);
1133
1134         /*
1135          * Allow the HW to uninitialize.
1136          */
1137         rt2x00dev->ops->lib->uninitialize(rt2x00dev);
1138
1139         /*
1140          * Free allocated queue entries.
1141          */
1142         rt2x00queue_uninitialize(rt2x00dev);
1143 }
1144
1145 static int rt2x00lib_initialize(struct rt2x00_dev *rt2x00dev)
1146 {
1147         int status;
1148
1149         if (test_bit(DEVICE_STATE_INITIALIZED, &rt2x00dev->flags))
1150                 return 0;
1151
1152         /*
1153          * Allocate all queue entries.
1154          */
1155         status = rt2x00queue_initialize(rt2x00dev);
1156         if (status)
1157                 return status;
1158
1159         /*
1160          * Initialize the device.
1161          */
1162         status = rt2x00dev->ops->lib->initialize(rt2x00dev);
1163         if (status) {
1164                 rt2x00queue_uninitialize(rt2x00dev);
1165                 return status;
1166         }
1167
1168         set_bit(DEVICE_STATE_INITIALIZED, &rt2x00dev->flags);
1169
1170         return 0;
1171 }
1172
1173 int rt2x00lib_start(struct rt2x00_dev *rt2x00dev)
1174 {
1175         int retval;
1176
1177         if (test_bit(DEVICE_STATE_STARTED, &rt2x00dev->flags))
1178                 return 0;
1179
1180         /*
1181          * If this is the first interface which is added,
1182          * we should load the firmware now.
1183          */
1184         retval = rt2x00lib_load_firmware(rt2x00dev);
1185         if (retval)
1186                 return retval;
1187
1188         /*
1189          * Initialize the device.
1190          */
1191         retval = rt2x00lib_initialize(rt2x00dev);
1192         if (retval)
1193                 return retval;
1194
1195         rt2x00dev->intf_ap_count = 0;
1196         rt2x00dev->intf_sta_count = 0;
1197         rt2x00dev->intf_associated = 0;
1198
1199         /* Enable the radio */
1200         retval = rt2x00lib_enable_radio(rt2x00dev);
1201         if (retval)
1202                 return retval;
1203
1204         set_bit(DEVICE_STATE_STARTED, &rt2x00dev->flags);
1205
1206         return 0;
1207 }
1208
1209 void rt2x00lib_stop(struct rt2x00_dev *rt2x00dev)
1210 {
1211         if (!test_and_clear_bit(DEVICE_STATE_STARTED, &rt2x00dev->flags))
1212                 return;
1213
1214         /*
1215          * Perhaps we can add something smarter here,
1216          * but for now just disabling the radio should do.
1217          */
1218         rt2x00lib_disable_radio(rt2x00dev);
1219
1220         rt2x00dev->intf_ap_count = 0;
1221         rt2x00dev->intf_sta_count = 0;
1222         rt2x00dev->intf_associated = 0;
1223 }
1224
1225 static inline void rt2x00lib_set_if_combinations(struct rt2x00_dev *rt2x00dev)
1226 {
1227         struct ieee80211_iface_limit *if_limit;
1228         struct ieee80211_iface_combination *if_combination;
1229
1230         if (rt2x00dev->ops->max_ap_intf < 2)
1231                 return;
1232
1233         /*
1234          * Build up AP interface limits structure.
1235          */
1236         if_limit = &rt2x00dev->if_limits_ap;
1237         if_limit->max = rt2x00dev->ops->max_ap_intf;
1238         if_limit->types = BIT(NL80211_IFTYPE_AP);
1239 #ifdef CONFIG_MAC80211_MESH
1240         if_limit->types |= BIT(NL80211_IFTYPE_MESH_POINT);
1241 #endif
1242
1243         /*
1244          * Build up AP interface combinations structure.
1245          */
1246         if_combination = &rt2x00dev->if_combinations[IF_COMB_AP];
1247         if_combination->limits = if_limit;
1248         if_combination->n_limits = 1;
1249         if_combination->max_interfaces = if_limit->max;
1250         if_combination->num_different_channels = 1;
1251
1252         /*
1253          * Finally, specify the possible combinations to mac80211.
1254          */
1255         rt2x00dev->hw->wiphy->iface_combinations = rt2x00dev->if_combinations;
1256         rt2x00dev->hw->wiphy->n_iface_combinations = 1;
1257 }
1258
1259 static unsigned int rt2x00dev_extra_tx_headroom(struct rt2x00_dev *rt2x00dev)
1260 {
1261         if (WARN_ON(!rt2x00dev->tx))
1262                 return 0;
1263
1264         if (rt2x00_is_usb(rt2x00dev))
1265                 return rt2x00dev->tx[0].winfo_size + rt2x00dev->tx[0].desc_size;
1266
1267         return rt2x00dev->tx[0].winfo_size;
1268 }
1269
1270 /*
1271  * driver allocation handlers.
1272  */
1273 int rt2x00lib_probe_dev(struct rt2x00_dev *rt2x00dev)
1274 {
1275         int retval = -ENOMEM;
1276
1277         /*
1278          * Set possible interface combinations.
1279          */
1280         rt2x00lib_set_if_combinations(rt2x00dev);
1281
1282         /*
1283          * Allocate the driver data memory, if necessary.
1284          */
1285         if (rt2x00dev->ops->drv_data_size > 0) {
1286                 rt2x00dev->drv_data = kzalloc(rt2x00dev->ops->drv_data_size,
1287                                               GFP_KERNEL);
1288                 if (!rt2x00dev->drv_data) {
1289                         retval = -ENOMEM;
1290                         goto exit;
1291                 }
1292         }
1293
1294         spin_lock_init(&rt2x00dev->irqmask_lock);
1295         mutex_init(&rt2x00dev->csr_mutex);
1296         INIT_LIST_HEAD(&rt2x00dev->bar_list);
1297         spin_lock_init(&rt2x00dev->bar_list_lock);
1298
1299         set_bit(DEVICE_STATE_PRESENT, &rt2x00dev->flags);
1300
1301         /*
1302          * Make room for rt2x00_intf inside the per-interface
1303          * structure ieee80211_vif.
1304          */
1305         rt2x00dev->hw->vif_data_size = sizeof(struct rt2x00_intf);
1306
1307         /*
1308          * rt2x00 devices can only use the last n bits of the MAC address
1309          * for virtual interfaces.
1310          */
1311         rt2x00dev->hw->wiphy->addr_mask[ETH_ALEN - 1] =
1312                 (rt2x00dev->ops->max_ap_intf - 1);
1313
1314         /*
1315          * Initialize work.
1316          */
1317         rt2x00dev->workqueue =
1318             alloc_ordered_workqueue("%s", 0, wiphy_name(rt2x00dev->hw->wiphy));
1319         if (!rt2x00dev->workqueue) {
1320                 retval = -ENOMEM;
1321                 goto exit;
1322         }
1323
1324         INIT_WORK(&rt2x00dev->intf_work, rt2x00lib_intf_scheduled);
1325         INIT_DELAYED_WORK(&rt2x00dev->autowakeup_work, rt2x00lib_autowakeup);
1326         INIT_WORK(&rt2x00dev->sleep_work, rt2x00lib_sleep);
1327
1328         /*
1329          * Let the driver probe the device to detect the capabilities.
1330          */
1331         retval = rt2x00dev->ops->lib->probe_hw(rt2x00dev);
1332         if (retval) {
1333                 rt2x00_err(rt2x00dev, "Failed to allocate device\n");
1334                 goto exit;
1335         }
1336
1337         /*
1338          * Allocate queue array.
1339          */
1340         retval = rt2x00queue_allocate(rt2x00dev);
1341         if (retval)
1342                 goto exit;
1343
1344         /* Cache TX headroom value */
1345         rt2x00dev->extra_tx_headroom = rt2x00dev_extra_tx_headroom(rt2x00dev);
1346
1347         /*
1348          * Determine which operating modes are supported, all modes
1349          * which require beaconing, depend on the availability of
1350          * beacon entries.
1351          */
1352         rt2x00dev->hw->wiphy->interface_modes = BIT(NL80211_IFTYPE_STATION);
1353         if (rt2x00dev->bcn->limit > 0)
1354                 rt2x00dev->hw->wiphy->interface_modes |=
1355                     BIT(NL80211_IFTYPE_ADHOC) |
1356                     BIT(NL80211_IFTYPE_AP) |
1357 #ifdef CONFIG_MAC80211_MESH
1358                     BIT(NL80211_IFTYPE_MESH_POINT) |
1359 #endif
1360                     BIT(NL80211_IFTYPE_WDS);
1361
1362         rt2x00dev->hw->wiphy->flags |= WIPHY_FLAG_IBSS_RSN;
1363
1364         /*
1365          * Initialize ieee80211 structure.
1366          */
1367         retval = rt2x00lib_probe_hw(rt2x00dev);
1368         if (retval) {
1369                 rt2x00_err(rt2x00dev, "Failed to initialize hw\n");
1370                 goto exit;
1371         }
1372
1373         /*
1374          * Register extra components.
1375          */
1376         rt2x00link_register(rt2x00dev);
1377         rt2x00leds_register(rt2x00dev);
1378         rt2x00debug_register(rt2x00dev);
1379         rt2x00rfkill_register(rt2x00dev);
1380
1381         return 0;
1382
1383 exit:
1384         rt2x00lib_remove_dev(rt2x00dev);
1385
1386         return retval;
1387 }
1388 EXPORT_SYMBOL_GPL(rt2x00lib_probe_dev);
1389
1390 void rt2x00lib_remove_dev(struct rt2x00_dev *rt2x00dev)
1391 {
1392         clear_bit(DEVICE_STATE_PRESENT, &rt2x00dev->flags);
1393
1394         /*
1395          * Disable radio.
1396          */
1397         rt2x00lib_disable_radio(rt2x00dev);
1398
1399         /*
1400          * Stop all work.
1401          */
1402         cancel_work_sync(&rt2x00dev->intf_work);
1403         cancel_delayed_work_sync(&rt2x00dev->autowakeup_work);
1404         cancel_work_sync(&rt2x00dev->sleep_work);
1405         if (rt2x00_is_usb(rt2x00dev)) {
1406                 hrtimer_cancel(&rt2x00dev->txstatus_timer);
1407                 cancel_work_sync(&rt2x00dev->rxdone_work);
1408                 cancel_work_sync(&rt2x00dev->txdone_work);
1409         }
1410         if (rt2x00dev->workqueue)
1411                 destroy_workqueue(rt2x00dev->workqueue);
1412
1413         /*
1414          * Free the tx status fifo.
1415          */
1416         kfifo_free(&rt2x00dev->txstatus_fifo);
1417
1418         /*
1419          * Kill the tx status tasklet.
1420          */
1421         tasklet_kill(&rt2x00dev->txstatus_tasklet);
1422         tasklet_kill(&rt2x00dev->pretbtt_tasklet);
1423         tasklet_kill(&rt2x00dev->tbtt_tasklet);
1424         tasklet_kill(&rt2x00dev->rxdone_tasklet);
1425         tasklet_kill(&rt2x00dev->autowake_tasklet);
1426
1427         /*
1428          * Uninitialize device.
1429          */
1430         rt2x00lib_uninitialize(rt2x00dev);
1431
1432         /*
1433          * Free extra components
1434          */
1435         rt2x00debug_deregister(rt2x00dev);
1436         rt2x00leds_unregister(rt2x00dev);
1437
1438         /*
1439          * Free ieee80211_hw memory.
1440          */
1441         rt2x00lib_remove_hw(rt2x00dev);
1442
1443         /*
1444          * Free firmware image.
1445          */
1446         rt2x00lib_free_firmware(rt2x00dev);
1447
1448         /*
1449          * Free queue structures.
1450          */
1451         rt2x00queue_free(rt2x00dev);
1452
1453         /*
1454          * Free the driver data.
1455          */
1456         if (rt2x00dev->drv_data)
1457                 kfree(rt2x00dev->drv_data);
1458 }
1459 EXPORT_SYMBOL_GPL(rt2x00lib_remove_dev);
1460
1461 /*
1462  * Device state handlers
1463  */
1464 #ifdef CONFIG_PM
1465 int rt2x00lib_suspend(struct rt2x00_dev *rt2x00dev, pm_message_t state)
1466 {
1467         rt2x00_dbg(rt2x00dev, "Going to sleep\n");
1468
1469         /*
1470          * Prevent mac80211 from accessing driver while suspended.
1471          */
1472         if (!test_and_clear_bit(DEVICE_STATE_PRESENT, &rt2x00dev->flags))
1473                 return 0;
1474
1475         /*
1476          * Cleanup as much as possible.
1477          */
1478         rt2x00lib_uninitialize(rt2x00dev);
1479
1480         /*
1481          * Suspend/disable extra components.
1482          */
1483         rt2x00leds_suspend(rt2x00dev);
1484         rt2x00debug_deregister(rt2x00dev);
1485
1486         /*
1487          * Set device mode to sleep for power management,
1488          * on some hardware this call seems to consistently fail.
1489          * From the specifications it is hard to tell why it fails,
1490          * and if this is a "bad thing".
1491          * Overall it is safe to just ignore the failure and
1492          * continue suspending. The only downside is that the
1493          * device will not be in optimal power save mode, but with
1494          * the radio and the other components already disabled the
1495          * device is as good as disabled.
1496          */
1497         if (rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_SLEEP))
1498                 rt2x00_warn(rt2x00dev, "Device failed to enter sleep state, continue suspending\n");
1499
1500         return 0;
1501 }
1502 EXPORT_SYMBOL_GPL(rt2x00lib_suspend);
1503
1504 int rt2x00lib_resume(struct rt2x00_dev *rt2x00dev)
1505 {
1506         rt2x00_dbg(rt2x00dev, "Waking up\n");
1507
1508         /*
1509          * Restore/enable extra components.
1510          */
1511         rt2x00debug_register(rt2x00dev);
1512         rt2x00leds_resume(rt2x00dev);
1513
1514         /*
1515          * We are ready again to receive requests from mac80211.
1516          */
1517         set_bit(DEVICE_STATE_PRESENT, &rt2x00dev->flags);
1518
1519         return 0;
1520 }
1521 EXPORT_SYMBOL_GPL(rt2x00lib_resume);
1522 #endif /* CONFIG_PM */
1523
1524 /*
1525  * rt2x00lib module information.
1526  */
1527 MODULE_AUTHOR(DRV_PROJECT);
1528 MODULE_VERSION(DRV_VERSION);
1529 MODULE_DESCRIPTION("rt2x00 library");
1530 MODULE_LICENSE("GPL");