7081e13b4fd67ebbaa7fa8af3f15a1d81fbc219e
[cascardo/linux.git] / drivers / net / wireless / rt2x00 / rt73usb.c
1 /*
2         Copyright (C) 2004 - 2009 Ivo van Doorn <IvDoorn@gmail.com>
3         <http://rt2x00.serialmonkey.com>
4
5         This program is free software; you can redistribute it and/or modify
6         it under the terms of the GNU General Public License as published by
7         the Free Software Foundation; either version 2 of the License, or
8         (at your option) any later version.
9
10         This program is distributed in the hope that it will be useful,
11         but WITHOUT ANY WARRANTY; without even the implied warranty of
12         MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13         GNU General Public License for more details.
14
15         You should have received a copy of the GNU General Public License
16         along with this program; if not, see <http://www.gnu.org/licenses/>.
17  */
18
19 /*
20         Module: rt73usb
21         Abstract: rt73usb device specific routines.
22         Supported chipsets: rt2571W & rt2671.
23  */
24
25 #include <linux/crc-itu-t.h>
26 #include <linux/delay.h>
27 #include <linux/etherdevice.h>
28 #include <linux/kernel.h>
29 #include <linux/module.h>
30 #include <linux/slab.h>
31 #include <linux/usb.h>
32
33 #include "rt2x00.h"
34 #include "rt2x00usb.h"
35 #include "rt73usb.h"
36
37 /*
38  * Allow hardware encryption to be disabled.
39  */
40 static bool modparam_nohwcrypt;
41 module_param_named(nohwcrypt, modparam_nohwcrypt, bool, S_IRUGO);
42 MODULE_PARM_DESC(nohwcrypt, "Disable hardware encryption.");
43
44 /*
45  * Register access.
46  * All access to the CSR registers will go through the methods
47  * rt2x00usb_register_read and rt2x00usb_register_write.
48  * BBP and RF register require indirect register access,
49  * and use the CSR registers BBPCSR and RFCSR to achieve this.
50  * These indirect registers work with busy bits,
51  * and we will try maximal REGISTER_BUSY_COUNT times to access
52  * the register while taking a REGISTER_BUSY_DELAY us delay
53  * between each attampt. When the busy bit is still set at that time,
54  * the access attempt is considered to have failed,
55  * and we will print an error.
56  * The _lock versions must be used if you already hold the csr_mutex
57  */
58 #define WAIT_FOR_BBP(__dev, __reg) \
59         rt2x00usb_regbusy_read((__dev), PHY_CSR3, PHY_CSR3_BUSY, (__reg))
60 #define WAIT_FOR_RF(__dev, __reg) \
61         rt2x00usb_regbusy_read((__dev), PHY_CSR4, PHY_CSR4_BUSY, (__reg))
62
63 static void rt73usb_bbp_write(struct rt2x00_dev *rt2x00dev,
64                               const unsigned int word, const u8 value)
65 {
66         u32 reg;
67
68         mutex_lock(&rt2x00dev->csr_mutex);
69
70         /*
71          * Wait until the BBP becomes available, afterwards we
72          * can safely write the new data into the register.
73          */
74         if (WAIT_FOR_BBP(rt2x00dev, &reg)) {
75                 reg = 0;
76                 rt2x00_set_field32(&reg, PHY_CSR3_VALUE, value);
77                 rt2x00_set_field32(&reg, PHY_CSR3_REGNUM, word);
78                 rt2x00_set_field32(&reg, PHY_CSR3_BUSY, 1);
79                 rt2x00_set_field32(&reg, PHY_CSR3_READ_CONTROL, 0);
80
81                 rt2x00usb_register_write_lock(rt2x00dev, PHY_CSR3, reg);
82         }
83
84         mutex_unlock(&rt2x00dev->csr_mutex);
85 }
86
87 static void rt73usb_bbp_read(struct rt2x00_dev *rt2x00dev,
88                              const unsigned int word, u8 *value)
89 {
90         u32 reg;
91
92         mutex_lock(&rt2x00dev->csr_mutex);
93
94         /*
95          * Wait until the BBP becomes available, afterwards we
96          * can safely write the read request into the register.
97          * After the data has been written, we wait until hardware
98          * returns the correct value, if at any time the register
99          * doesn't become available in time, reg will be 0xffffffff
100          * which means we return 0xff to the caller.
101          */
102         if (WAIT_FOR_BBP(rt2x00dev, &reg)) {
103                 reg = 0;
104                 rt2x00_set_field32(&reg, PHY_CSR3_REGNUM, word);
105                 rt2x00_set_field32(&reg, PHY_CSR3_BUSY, 1);
106                 rt2x00_set_field32(&reg, PHY_CSR3_READ_CONTROL, 1);
107
108                 rt2x00usb_register_write_lock(rt2x00dev, PHY_CSR3, reg);
109
110                 WAIT_FOR_BBP(rt2x00dev, &reg);
111         }
112
113         *value = rt2x00_get_field32(reg, PHY_CSR3_VALUE);
114
115         mutex_unlock(&rt2x00dev->csr_mutex);
116 }
117
118 static void rt73usb_rf_write(struct rt2x00_dev *rt2x00dev,
119                              const unsigned int word, const u32 value)
120 {
121         u32 reg;
122
123         mutex_lock(&rt2x00dev->csr_mutex);
124
125         /*
126          * Wait until the RF becomes available, afterwards we
127          * can safely write the new data into the register.
128          */
129         if (WAIT_FOR_RF(rt2x00dev, &reg)) {
130                 reg = 0;
131                 rt2x00_set_field32(&reg, PHY_CSR4_VALUE, value);
132                 /*
133                  * RF5225 and RF2527 contain 21 bits per RF register value,
134                  * all others contain 20 bits.
135                  */
136                 rt2x00_set_field32(&reg, PHY_CSR4_NUMBER_OF_BITS,
137                                    20 + (rt2x00_rf(rt2x00dev, RF5225) ||
138                                          rt2x00_rf(rt2x00dev, RF2527)));
139                 rt2x00_set_field32(&reg, PHY_CSR4_IF_SELECT, 0);
140                 rt2x00_set_field32(&reg, PHY_CSR4_BUSY, 1);
141
142                 rt2x00usb_register_write_lock(rt2x00dev, PHY_CSR4, reg);
143                 rt2x00_rf_write(rt2x00dev, word, value);
144         }
145
146         mutex_unlock(&rt2x00dev->csr_mutex);
147 }
148
149 #ifdef CONFIG_RT2X00_LIB_DEBUGFS
150 static const struct rt2x00debug rt73usb_rt2x00debug = {
151         .owner  = THIS_MODULE,
152         .csr    = {
153                 .read           = rt2x00usb_register_read,
154                 .write          = rt2x00usb_register_write,
155                 .flags          = RT2X00DEBUGFS_OFFSET,
156                 .word_base      = CSR_REG_BASE,
157                 .word_size      = sizeof(u32),
158                 .word_count     = CSR_REG_SIZE / sizeof(u32),
159         },
160         .eeprom = {
161                 .read           = rt2x00_eeprom_read,
162                 .write          = rt2x00_eeprom_write,
163                 .word_base      = EEPROM_BASE,
164                 .word_size      = sizeof(u16),
165                 .word_count     = EEPROM_SIZE / sizeof(u16),
166         },
167         .bbp    = {
168                 .read           = rt73usb_bbp_read,
169                 .write          = rt73usb_bbp_write,
170                 .word_base      = BBP_BASE,
171                 .word_size      = sizeof(u8),
172                 .word_count     = BBP_SIZE / sizeof(u8),
173         },
174         .rf     = {
175                 .read           = rt2x00_rf_read,
176                 .write          = rt73usb_rf_write,
177                 .word_base      = RF_BASE,
178                 .word_size      = sizeof(u32),
179                 .word_count     = RF_SIZE / sizeof(u32),
180         },
181 };
182 #endif /* CONFIG_RT2X00_LIB_DEBUGFS */
183
184 static int rt73usb_rfkill_poll(struct rt2x00_dev *rt2x00dev)
185 {
186         u32 reg;
187
188         rt2x00usb_register_read(rt2x00dev, MAC_CSR13, &reg);
189         return rt2x00_get_field32(reg, MAC_CSR13_VAL7);
190 }
191
192 #ifdef CONFIG_RT2X00_LIB_LEDS
193 static void rt73usb_brightness_set(struct led_classdev *led_cdev,
194                                    enum led_brightness brightness)
195 {
196         struct rt2x00_led *led =
197            container_of(led_cdev, struct rt2x00_led, led_dev);
198         unsigned int enabled = brightness != LED_OFF;
199         unsigned int a_mode =
200             (enabled && led->rt2x00dev->curr_band == IEEE80211_BAND_5GHZ);
201         unsigned int bg_mode =
202             (enabled && led->rt2x00dev->curr_band == IEEE80211_BAND_2GHZ);
203
204         if (led->type == LED_TYPE_RADIO) {
205                 rt2x00_set_field16(&led->rt2x00dev->led_mcu_reg,
206                                    MCU_LEDCS_RADIO_STATUS, enabled);
207
208                 rt2x00usb_vendor_request_sw(led->rt2x00dev, USB_LED_CONTROL,
209                                             0, led->rt2x00dev->led_mcu_reg,
210                                             REGISTER_TIMEOUT);
211         } else if (led->type == LED_TYPE_ASSOC) {
212                 rt2x00_set_field16(&led->rt2x00dev->led_mcu_reg,
213                                    MCU_LEDCS_LINK_BG_STATUS, bg_mode);
214                 rt2x00_set_field16(&led->rt2x00dev->led_mcu_reg,
215                                    MCU_LEDCS_LINK_A_STATUS, a_mode);
216
217                 rt2x00usb_vendor_request_sw(led->rt2x00dev, USB_LED_CONTROL,
218                                             0, led->rt2x00dev->led_mcu_reg,
219                                             REGISTER_TIMEOUT);
220         } else if (led->type == LED_TYPE_QUALITY) {
221                 /*
222                  * The brightness is divided into 6 levels (0 - 5),
223                  * this means we need to convert the brightness
224                  * argument into the matching level within that range.
225                  */
226                 rt2x00usb_vendor_request_sw(led->rt2x00dev, USB_LED_CONTROL,
227                                             brightness / (LED_FULL / 6),
228                                             led->rt2x00dev->led_mcu_reg,
229                                             REGISTER_TIMEOUT);
230         }
231 }
232
233 static int rt73usb_blink_set(struct led_classdev *led_cdev,
234                              unsigned long *delay_on,
235                              unsigned long *delay_off)
236 {
237         struct rt2x00_led *led =
238             container_of(led_cdev, struct rt2x00_led, led_dev);
239         u32 reg;
240
241         rt2x00usb_register_read(led->rt2x00dev, MAC_CSR14, &reg);
242         rt2x00_set_field32(&reg, MAC_CSR14_ON_PERIOD, *delay_on);
243         rt2x00_set_field32(&reg, MAC_CSR14_OFF_PERIOD, *delay_off);
244         rt2x00usb_register_write(led->rt2x00dev, MAC_CSR14, reg);
245
246         return 0;
247 }
248
249 static void rt73usb_init_led(struct rt2x00_dev *rt2x00dev,
250                              struct rt2x00_led *led,
251                              enum led_type type)
252 {
253         led->rt2x00dev = rt2x00dev;
254         led->type = type;
255         led->led_dev.brightness_set = rt73usb_brightness_set;
256         led->led_dev.blink_set = rt73usb_blink_set;
257         led->flags = LED_INITIALIZED;
258 }
259 #endif /* CONFIG_RT2X00_LIB_LEDS */
260
261 /*
262  * Configuration handlers.
263  */
264 static int rt73usb_config_shared_key(struct rt2x00_dev *rt2x00dev,
265                                      struct rt2x00lib_crypto *crypto,
266                                      struct ieee80211_key_conf *key)
267 {
268         struct hw_key_entry key_entry;
269         struct rt2x00_field32 field;
270         u32 mask;
271         u32 reg;
272
273         if (crypto->cmd == SET_KEY) {
274                 /*
275                  * rt2x00lib can't determine the correct free
276                  * key_idx for shared keys. We have 1 register
277                  * with key valid bits. The goal is simple, read
278                  * the register, if that is full we have no slots
279                  * left.
280                  * Note that each BSS is allowed to have up to 4
281                  * shared keys, so put a mask over the allowed
282                  * entries.
283                  */
284                 mask = (0xf << crypto->bssidx);
285
286                 rt2x00usb_register_read(rt2x00dev, SEC_CSR0, &reg);
287                 reg &= mask;
288
289                 if (reg && reg == mask)
290                         return -ENOSPC;
291
292                 key->hw_key_idx += reg ? ffz(reg) : 0;
293
294                 /*
295                  * Upload key to hardware
296                  */
297                 memcpy(key_entry.key, crypto->key,
298                        sizeof(key_entry.key));
299                 memcpy(key_entry.tx_mic, crypto->tx_mic,
300                        sizeof(key_entry.tx_mic));
301                 memcpy(key_entry.rx_mic, crypto->rx_mic,
302                        sizeof(key_entry.rx_mic));
303
304                 reg = SHARED_KEY_ENTRY(key->hw_key_idx);
305                 rt2x00usb_register_multiwrite(rt2x00dev, reg,
306                                               &key_entry, sizeof(key_entry));
307
308                 /*
309                  * The cipher types are stored over 2 registers.
310                  * bssidx 0 and 1 keys are stored in SEC_CSR1 and
311                  * bssidx 1 and 2 keys are stored in SEC_CSR5.
312                  * Using the correct defines correctly will cause overhead,
313                  * so just calculate the correct offset.
314                  */
315                 if (key->hw_key_idx < 8) {
316                         field.bit_offset = (3 * key->hw_key_idx);
317                         field.bit_mask = 0x7 << field.bit_offset;
318
319                         rt2x00usb_register_read(rt2x00dev, SEC_CSR1, &reg);
320                         rt2x00_set_field32(&reg, field, crypto->cipher);
321                         rt2x00usb_register_write(rt2x00dev, SEC_CSR1, reg);
322                 } else {
323                         field.bit_offset = (3 * (key->hw_key_idx - 8));
324                         field.bit_mask = 0x7 << field.bit_offset;
325
326                         rt2x00usb_register_read(rt2x00dev, SEC_CSR5, &reg);
327                         rt2x00_set_field32(&reg, field, crypto->cipher);
328                         rt2x00usb_register_write(rt2x00dev, SEC_CSR5, reg);
329                 }
330
331                 /*
332                  * The driver does not support the IV/EIV generation
333                  * in hardware. However it doesn't support the IV/EIV
334                  * inside the ieee80211 frame either, but requires it
335                  * to be provided separately for the descriptor.
336                  * rt2x00lib will cut the IV/EIV data out of all frames
337                  * given to us by mac80211, but we must tell mac80211
338                  * to generate the IV/EIV data.
339                  */
340                 key->flags |= IEEE80211_KEY_FLAG_GENERATE_IV;
341         }
342
343         /*
344          * SEC_CSR0 contains only single-bit fields to indicate
345          * a particular key is valid. Because using the FIELD32()
346          * defines directly will cause a lot of overhead we use
347          * a calculation to determine the correct bit directly.
348          */
349         mask = 1 << key->hw_key_idx;
350
351         rt2x00usb_register_read(rt2x00dev, SEC_CSR0, &reg);
352         if (crypto->cmd == SET_KEY)
353                 reg |= mask;
354         else if (crypto->cmd == DISABLE_KEY)
355                 reg &= ~mask;
356         rt2x00usb_register_write(rt2x00dev, SEC_CSR0, reg);
357
358         return 0;
359 }
360
361 static int rt73usb_config_pairwise_key(struct rt2x00_dev *rt2x00dev,
362                                        struct rt2x00lib_crypto *crypto,
363                                        struct ieee80211_key_conf *key)
364 {
365         struct hw_pairwise_ta_entry addr_entry;
366         struct hw_key_entry key_entry;
367         u32 mask;
368         u32 reg;
369
370         if (crypto->cmd == SET_KEY) {
371                 /*
372                  * rt2x00lib can't determine the correct free
373                  * key_idx for pairwise keys. We have 2 registers
374                  * with key valid bits. The goal is simple, read
375                  * the first register, if that is full move to
376                  * the next register.
377                  * When both registers are full, we drop the key,
378                  * otherwise we use the first invalid entry.
379                  */
380                 rt2x00usb_register_read(rt2x00dev, SEC_CSR2, &reg);
381                 if (reg && reg == ~0) {
382                         key->hw_key_idx = 32;
383                         rt2x00usb_register_read(rt2x00dev, SEC_CSR3, &reg);
384                         if (reg && reg == ~0)
385                                 return -ENOSPC;
386                 }
387
388                 key->hw_key_idx += reg ? ffz(reg) : 0;
389
390                 /*
391                  * Upload key to hardware
392                  */
393                 memcpy(key_entry.key, crypto->key,
394                        sizeof(key_entry.key));
395                 memcpy(key_entry.tx_mic, crypto->tx_mic,
396                        sizeof(key_entry.tx_mic));
397                 memcpy(key_entry.rx_mic, crypto->rx_mic,
398                        sizeof(key_entry.rx_mic));
399
400                 reg = PAIRWISE_KEY_ENTRY(key->hw_key_idx);
401                 rt2x00usb_register_multiwrite(rt2x00dev, reg,
402                                               &key_entry, sizeof(key_entry));
403
404                 /*
405                  * Send the address and cipher type to the hardware register.
406                  */
407                 memset(&addr_entry, 0, sizeof(addr_entry));
408                 memcpy(&addr_entry, crypto->address, ETH_ALEN);
409                 addr_entry.cipher = crypto->cipher;
410
411                 reg = PAIRWISE_TA_ENTRY(key->hw_key_idx);
412                 rt2x00usb_register_multiwrite(rt2x00dev, reg,
413                                             &addr_entry, sizeof(addr_entry));
414
415                 /*
416                  * Enable pairwise lookup table for given BSS idx,
417                  * without this received frames will not be decrypted
418                  * by the hardware.
419                  */
420                 rt2x00usb_register_read(rt2x00dev, SEC_CSR4, &reg);
421                 reg |= (1 << crypto->bssidx);
422                 rt2x00usb_register_write(rt2x00dev, SEC_CSR4, reg);
423
424                 /*
425                  * The driver does not support the IV/EIV generation
426                  * in hardware. However it doesn't support the IV/EIV
427                  * inside the ieee80211 frame either, but requires it
428                  * to be provided separately for the descriptor.
429                  * rt2x00lib will cut the IV/EIV data out of all frames
430                  * given to us by mac80211, but we must tell mac80211
431                  * to generate the IV/EIV data.
432                  */
433                 key->flags |= IEEE80211_KEY_FLAG_GENERATE_IV;
434         }
435
436         /*
437          * SEC_CSR2 and SEC_CSR3 contain only single-bit fields to indicate
438          * a particular key is valid. Because using the FIELD32()
439          * defines directly will cause a lot of overhead we use
440          * a calculation to determine the correct bit directly.
441          */
442         if (key->hw_key_idx < 32) {
443                 mask = 1 << key->hw_key_idx;
444
445                 rt2x00usb_register_read(rt2x00dev, SEC_CSR2, &reg);
446                 if (crypto->cmd == SET_KEY)
447                         reg |= mask;
448                 else if (crypto->cmd == DISABLE_KEY)
449                         reg &= ~mask;
450                 rt2x00usb_register_write(rt2x00dev, SEC_CSR2, reg);
451         } else {
452                 mask = 1 << (key->hw_key_idx - 32);
453
454                 rt2x00usb_register_read(rt2x00dev, SEC_CSR3, &reg);
455                 if (crypto->cmd == SET_KEY)
456                         reg |= mask;
457                 else if (crypto->cmd == DISABLE_KEY)
458                         reg &= ~mask;
459                 rt2x00usb_register_write(rt2x00dev, SEC_CSR3, reg);
460         }
461
462         return 0;
463 }
464
465 static void rt73usb_config_filter(struct rt2x00_dev *rt2x00dev,
466                                   const unsigned int filter_flags)
467 {
468         u32 reg;
469
470         /*
471          * Start configuration steps.
472          * Note that the version error will always be dropped
473          * and broadcast frames will always be accepted since
474          * there is no filter for it at this time.
475          */
476         rt2x00usb_register_read(rt2x00dev, TXRX_CSR0, &reg);
477         rt2x00_set_field32(&reg, TXRX_CSR0_DROP_CRC,
478                            !(filter_flags & FIF_FCSFAIL));
479         rt2x00_set_field32(&reg, TXRX_CSR0_DROP_PHYSICAL,
480                            !(filter_flags & FIF_PLCPFAIL));
481         rt2x00_set_field32(&reg, TXRX_CSR0_DROP_CONTROL,
482                            !(filter_flags & (FIF_CONTROL | FIF_PSPOLL)));
483         rt2x00_set_field32(&reg, TXRX_CSR0_DROP_NOT_TO_ME, 1);
484         rt2x00_set_field32(&reg, TXRX_CSR0_DROP_TO_DS,
485                            !rt2x00dev->intf_ap_count);
486         rt2x00_set_field32(&reg, TXRX_CSR0_DROP_VERSION_ERROR, 1);
487         rt2x00_set_field32(&reg, TXRX_CSR0_DROP_MULTICAST,
488                            !(filter_flags & FIF_ALLMULTI));
489         rt2x00_set_field32(&reg, TXRX_CSR0_DROP_BROADCAST, 0);
490         rt2x00_set_field32(&reg, TXRX_CSR0_DROP_ACK_CTS,
491                            !(filter_flags & FIF_CONTROL));
492         rt2x00usb_register_write(rt2x00dev, TXRX_CSR0, reg);
493 }
494
495 static void rt73usb_config_intf(struct rt2x00_dev *rt2x00dev,
496                                 struct rt2x00_intf *intf,
497                                 struct rt2x00intf_conf *conf,
498                                 const unsigned int flags)
499 {
500         u32 reg;
501
502         if (flags & CONFIG_UPDATE_TYPE) {
503                 /*
504                  * Enable synchronisation.
505                  */
506                 rt2x00usb_register_read(rt2x00dev, TXRX_CSR9, &reg);
507                 rt2x00_set_field32(&reg, TXRX_CSR9_TSF_SYNC, conf->sync);
508                 rt2x00usb_register_write(rt2x00dev, TXRX_CSR9, reg);
509         }
510
511         if (flags & CONFIG_UPDATE_MAC) {
512                 reg = le32_to_cpu(conf->mac[1]);
513                 rt2x00_set_field32(&reg, MAC_CSR3_UNICAST_TO_ME_MASK, 0xff);
514                 conf->mac[1] = cpu_to_le32(reg);
515
516                 rt2x00usb_register_multiwrite(rt2x00dev, MAC_CSR2,
517                                             conf->mac, sizeof(conf->mac));
518         }
519
520         if (flags & CONFIG_UPDATE_BSSID) {
521                 reg = le32_to_cpu(conf->bssid[1]);
522                 rt2x00_set_field32(&reg, MAC_CSR5_BSS_ID_MASK, 3);
523                 conf->bssid[1] = cpu_to_le32(reg);
524
525                 rt2x00usb_register_multiwrite(rt2x00dev, MAC_CSR4,
526                                             conf->bssid, sizeof(conf->bssid));
527         }
528 }
529
530 static void rt73usb_config_erp(struct rt2x00_dev *rt2x00dev,
531                                struct rt2x00lib_erp *erp,
532                                u32 changed)
533 {
534         u32 reg;
535
536         rt2x00usb_register_read(rt2x00dev, TXRX_CSR0, &reg);
537         rt2x00_set_field32(&reg, TXRX_CSR0_RX_ACK_TIMEOUT, 0x32);
538         rt2x00_set_field32(&reg, TXRX_CSR0_TSF_OFFSET, IEEE80211_HEADER);
539         rt2x00usb_register_write(rt2x00dev, TXRX_CSR0, reg);
540
541         if (changed & BSS_CHANGED_ERP_PREAMBLE) {
542                 rt2x00usb_register_read(rt2x00dev, TXRX_CSR4, &reg);
543                 rt2x00_set_field32(&reg, TXRX_CSR4_AUTORESPOND_ENABLE, 1);
544                 rt2x00_set_field32(&reg, TXRX_CSR4_AUTORESPOND_PREAMBLE,
545                                    !!erp->short_preamble);
546                 rt2x00usb_register_write(rt2x00dev, TXRX_CSR4, reg);
547         }
548
549         if (changed & BSS_CHANGED_BASIC_RATES)
550                 rt2x00usb_register_write(rt2x00dev, TXRX_CSR5,
551                                          erp->basic_rates);
552
553         if (changed & BSS_CHANGED_BEACON_INT) {
554                 rt2x00usb_register_read(rt2x00dev, TXRX_CSR9, &reg);
555                 rt2x00_set_field32(&reg, TXRX_CSR9_BEACON_INTERVAL,
556                                    erp->beacon_int * 16);
557                 rt2x00usb_register_write(rt2x00dev, TXRX_CSR9, reg);
558         }
559
560         if (changed & BSS_CHANGED_ERP_SLOT) {
561                 rt2x00usb_register_read(rt2x00dev, MAC_CSR9, &reg);
562                 rt2x00_set_field32(&reg, MAC_CSR9_SLOT_TIME, erp->slot_time);
563                 rt2x00usb_register_write(rt2x00dev, MAC_CSR9, reg);
564
565                 rt2x00usb_register_read(rt2x00dev, MAC_CSR8, &reg);
566                 rt2x00_set_field32(&reg, MAC_CSR8_SIFS, erp->sifs);
567                 rt2x00_set_field32(&reg, MAC_CSR8_SIFS_AFTER_RX_OFDM, 3);
568                 rt2x00_set_field32(&reg, MAC_CSR8_EIFS, erp->eifs);
569                 rt2x00usb_register_write(rt2x00dev, MAC_CSR8, reg);
570         }
571 }
572
573 static void rt73usb_config_antenna_5x(struct rt2x00_dev *rt2x00dev,
574                                       struct antenna_setup *ant)
575 {
576         u8 r3;
577         u8 r4;
578         u8 r77;
579         u8 temp;
580
581         rt73usb_bbp_read(rt2x00dev, 3, &r3);
582         rt73usb_bbp_read(rt2x00dev, 4, &r4);
583         rt73usb_bbp_read(rt2x00dev, 77, &r77);
584
585         rt2x00_set_field8(&r3, BBP_R3_SMART_MODE, 0);
586
587         /*
588          * Configure the RX antenna.
589          */
590         switch (ant->rx) {
591         case ANTENNA_HW_DIVERSITY:
592                 rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA_CONTROL, 2);
593                 temp = !rt2x00_has_cap_frame_type(rt2x00dev) &&
594                        (rt2x00dev->curr_band != IEEE80211_BAND_5GHZ);
595                 rt2x00_set_field8(&r4, BBP_R4_RX_FRAME_END, temp);
596                 break;
597         case ANTENNA_A:
598                 rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA_CONTROL, 1);
599                 rt2x00_set_field8(&r4, BBP_R4_RX_FRAME_END, 0);
600                 if (rt2x00dev->curr_band == IEEE80211_BAND_5GHZ)
601                         rt2x00_set_field8(&r77, BBP_R77_RX_ANTENNA, 0);
602                 else
603                         rt2x00_set_field8(&r77, BBP_R77_RX_ANTENNA, 3);
604                 break;
605         case ANTENNA_B:
606         default:
607                 rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA_CONTROL, 1);
608                 rt2x00_set_field8(&r4, BBP_R4_RX_FRAME_END, 0);
609                 if (rt2x00dev->curr_band == IEEE80211_BAND_5GHZ)
610                         rt2x00_set_field8(&r77, BBP_R77_RX_ANTENNA, 3);
611                 else
612                         rt2x00_set_field8(&r77, BBP_R77_RX_ANTENNA, 0);
613                 break;
614         }
615
616         rt73usb_bbp_write(rt2x00dev, 77, r77);
617         rt73usb_bbp_write(rt2x00dev, 3, r3);
618         rt73usb_bbp_write(rt2x00dev, 4, r4);
619 }
620
621 static void rt73usb_config_antenna_2x(struct rt2x00_dev *rt2x00dev,
622                                       struct antenna_setup *ant)
623 {
624         u8 r3;
625         u8 r4;
626         u8 r77;
627
628         rt73usb_bbp_read(rt2x00dev, 3, &r3);
629         rt73usb_bbp_read(rt2x00dev, 4, &r4);
630         rt73usb_bbp_read(rt2x00dev, 77, &r77);
631
632         rt2x00_set_field8(&r3, BBP_R3_SMART_MODE, 0);
633         rt2x00_set_field8(&r4, BBP_R4_RX_FRAME_END,
634                           !rt2x00_has_cap_frame_type(rt2x00dev));
635
636         /*
637          * Configure the RX antenna.
638          */
639         switch (ant->rx) {
640         case ANTENNA_HW_DIVERSITY:
641                 rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA_CONTROL, 2);
642                 break;
643         case ANTENNA_A:
644                 rt2x00_set_field8(&r77, BBP_R77_RX_ANTENNA, 3);
645                 rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA_CONTROL, 1);
646                 break;
647         case ANTENNA_B:
648         default:
649                 rt2x00_set_field8(&r77, BBP_R77_RX_ANTENNA, 0);
650                 rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA_CONTROL, 1);
651                 break;
652         }
653
654         rt73usb_bbp_write(rt2x00dev, 77, r77);
655         rt73usb_bbp_write(rt2x00dev, 3, r3);
656         rt73usb_bbp_write(rt2x00dev, 4, r4);
657 }
658
659 struct antenna_sel {
660         u8 word;
661         /*
662          * value[0] -> non-LNA
663          * value[1] -> LNA
664          */
665         u8 value[2];
666 };
667
668 static const struct antenna_sel antenna_sel_a[] = {
669         { 96,  { 0x58, 0x78 } },
670         { 104, { 0x38, 0x48 } },
671         { 75,  { 0xfe, 0x80 } },
672         { 86,  { 0xfe, 0x80 } },
673         { 88,  { 0xfe, 0x80 } },
674         { 35,  { 0x60, 0x60 } },
675         { 97,  { 0x58, 0x58 } },
676         { 98,  { 0x58, 0x58 } },
677 };
678
679 static const struct antenna_sel antenna_sel_bg[] = {
680         { 96,  { 0x48, 0x68 } },
681         { 104, { 0x2c, 0x3c } },
682         { 75,  { 0xfe, 0x80 } },
683         { 86,  { 0xfe, 0x80 } },
684         { 88,  { 0xfe, 0x80 } },
685         { 35,  { 0x50, 0x50 } },
686         { 97,  { 0x48, 0x48 } },
687         { 98,  { 0x48, 0x48 } },
688 };
689
690 static void rt73usb_config_ant(struct rt2x00_dev *rt2x00dev,
691                                struct antenna_setup *ant)
692 {
693         const struct antenna_sel *sel;
694         unsigned int lna;
695         unsigned int i;
696         u32 reg;
697
698         /*
699          * We should never come here because rt2x00lib is supposed
700          * to catch this and send us the correct antenna explicitely.
701          */
702         BUG_ON(ant->rx == ANTENNA_SW_DIVERSITY ||
703                ant->tx == ANTENNA_SW_DIVERSITY);
704
705         if (rt2x00dev->curr_band == IEEE80211_BAND_5GHZ) {
706                 sel = antenna_sel_a;
707                 lna = rt2x00_has_cap_external_lna_a(rt2x00dev);
708         } else {
709                 sel = antenna_sel_bg;
710                 lna = rt2x00_has_cap_external_lna_bg(rt2x00dev);
711         }
712
713         for (i = 0; i < ARRAY_SIZE(antenna_sel_a); i++)
714                 rt73usb_bbp_write(rt2x00dev, sel[i].word, sel[i].value[lna]);
715
716         rt2x00usb_register_read(rt2x00dev, PHY_CSR0, &reg);
717
718         rt2x00_set_field32(&reg, PHY_CSR0_PA_PE_BG,
719                            (rt2x00dev->curr_band == IEEE80211_BAND_2GHZ));
720         rt2x00_set_field32(&reg, PHY_CSR0_PA_PE_A,
721                            (rt2x00dev->curr_band == IEEE80211_BAND_5GHZ));
722
723         rt2x00usb_register_write(rt2x00dev, PHY_CSR0, reg);
724
725         if (rt2x00_rf(rt2x00dev, RF5226) || rt2x00_rf(rt2x00dev, RF5225))
726                 rt73usb_config_antenna_5x(rt2x00dev, ant);
727         else if (rt2x00_rf(rt2x00dev, RF2528) || rt2x00_rf(rt2x00dev, RF2527))
728                 rt73usb_config_antenna_2x(rt2x00dev, ant);
729 }
730
731 static void rt73usb_config_lna_gain(struct rt2x00_dev *rt2x00dev,
732                                     struct rt2x00lib_conf *libconf)
733 {
734         u16 eeprom;
735         short lna_gain = 0;
736
737         if (libconf->conf->chandef.chan->band == IEEE80211_BAND_2GHZ) {
738                 if (rt2x00_has_cap_external_lna_bg(rt2x00dev))
739                         lna_gain += 14;
740
741                 rt2x00_eeprom_read(rt2x00dev, EEPROM_RSSI_OFFSET_BG, &eeprom);
742                 lna_gain -= rt2x00_get_field16(eeprom, EEPROM_RSSI_OFFSET_BG_1);
743         } else {
744                 rt2x00_eeprom_read(rt2x00dev, EEPROM_RSSI_OFFSET_A, &eeprom);
745                 lna_gain -= rt2x00_get_field16(eeprom, EEPROM_RSSI_OFFSET_A_1);
746         }
747
748         rt2x00dev->lna_gain = lna_gain;
749 }
750
751 static void rt73usb_config_channel(struct rt2x00_dev *rt2x00dev,
752                                    struct rf_channel *rf, const int txpower)
753 {
754         u8 r3;
755         u8 r94;
756         u8 smart;
757
758         rt2x00_set_field32(&rf->rf3, RF3_TXPOWER, TXPOWER_TO_DEV(txpower));
759         rt2x00_set_field32(&rf->rf4, RF4_FREQ_OFFSET, rt2x00dev->freq_offset);
760
761         smart = !(rt2x00_rf(rt2x00dev, RF5225) || rt2x00_rf(rt2x00dev, RF2527));
762
763         rt73usb_bbp_read(rt2x00dev, 3, &r3);
764         rt2x00_set_field8(&r3, BBP_R3_SMART_MODE, smart);
765         rt73usb_bbp_write(rt2x00dev, 3, r3);
766
767         r94 = 6;
768         if (txpower > MAX_TXPOWER && txpower <= (MAX_TXPOWER + r94))
769                 r94 += txpower - MAX_TXPOWER;
770         else if (txpower < MIN_TXPOWER && txpower >= (MIN_TXPOWER - r94))
771                 r94 += txpower;
772         rt73usb_bbp_write(rt2x00dev, 94, r94);
773
774         rt73usb_rf_write(rt2x00dev, 1, rf->rf1);
775         rt73usb_rf_write(rt2x00dev, 2, rf->rf2);
776         rt73usb_rf_write(rt2x00dev, 3, rf->rf3 & ~0x00000004);
777         rt73usb_rf_write(rt2x00dev, 4, rf->rf4);
778
779         rt73usb_rf_write(rt2x00dev, 1, rf->rf1);
780         rt73usb_rf_write(rt2x00dev, 2, rf->rf2);
781         rt73usb_rf_write(rt2x00dev, 3, rf->rf3 | 0x00000004);
782         rt73usb_rf_write(rt2x00dev, 4, rf->rf4);
783
784         rt73usb_rf_write(rt2x00dev, 1, rf->rf1);
785         rt73usb_rf_write(rt2x00dev, 2, rf->rf2);
786         rt73usb_rf_write(rt2x00dev, 3, rf->rf3 & ~0x00000004);
787         rt73usb_rf_write(rt2x00dev, 4, rf->rf4);
788
789         udelay(10);
790 }
791
792 static void rt73usb_config_txpower(struct rt2x00_dev *rt2x00dev,
793                                    const int txpower)
794 {
795         struct rf_channel rf;
796
797         rt2x00_rf_read(rt2x00dev, 1, &rf.rf1);
798         rt2x00_rf_read(rt2x00dev, 2, &rf.rf2);
799         rt2x00_rf_read(rt2x00dev, 3, &rf.rf3);
800         rt2x00_rf_read(rt2x00dev, 4, &rf.rf4);
801
802         rt73usb_config_channel(rt2x00dev, &rf, txpower);
803 }
804
805 static void rt73usb_config_retry_limit(struct rt2x00_dev *rt2x00dev,
806                                        struct rt2x00lib_conf *libconf)
807 {
808         u32 reg;
809
810         rt2x00usb_register_read(rt2x00dev, TXRX_CSR4, &reg);
811         rt2x00_set_field32(&reg, TXRX_CSR4_OFDM_TX_RATE_DOWN, 1);
812         rt2x00_set_field32(&reg, TXRX_CSR4_OFDM_TX_RATE_STEP, 0);
813         rt2x00_set_field32(&reg, TXRX_CSR4_OFDM_TX_FALLBACK_CCK, 0);
814         rt2x00_set_field32(&reg, TXRX_CSR4_LONG_RETRY_LIMIT,
815                            libconf->conf->long_frame_max_tx_count);
816         rt2x00_set_field32(&reg, TXRX_CSR4_SHORT_RETRY_LIMIT,
817                            libconf->conf->short_frame_max_tx_count);
818         rt2x00usb_register_write(rt2x00dev, TXRX_CSR4, reg);
819 }
820
821 static void rt73usb_config_ps(struct rt2x00_dev *rt2x00dev,
822                                 struct rt2x00lib_conf *libconf)
823 {
824         enum dev_state state =
825             (libconf->conf->flags & IEEE80211_CONF_PS) ?
826                 STATE_SLEEP : STATE_AWAKE;
827         u32 reg;
828
829         if (state == STATE_SLEEP) {
830                 rt2x00usb_register_read(rt2x00dev, MAC_CSR11, &reg);
831                 rt2x00_set_field32(&reg, MAC_CSR11_DELAY_AFTER_TBCN,
832                                    rt2x00dev->beacon_int - 10);
833                 rt2x00_set_field32(&reg, MAC_CSR11_TBCN_BEFORE_WAKEUP,
834                                    libconf->conf->listen_interval - 1);
835                 rt2x00_set_field32(&reg, MAC_CSR11_WAKEUP_LATENCY, 5);
836
837                 /* We must first disable autowake before it can be enabled */
838                 rt2x00_set_field32(&reg, MAC_CSR11_AUTOWAKE, 0);
839                 rt2x00usb_register_write(rt2x00dev, MAC_CSR11, reg);
840
841                 rt2x00_set_field32(&reg, MAC_CSR11_AUTOWAKE, 1);
842                 rt2x00usb_register_write(rt2x00dev, MAC_CSR11, reg);
843
844                 rt2x00usb_vendor_request_sw(rt2x00dev, USB_DEVICE_MODE, 0,
845                                             USB_MODE_SLEEP, REGISTER_TIMEOUT);
846         } else {
847                 rt2x00usb_register_read(rt2x00dev, MAC_CSR11, &reg);
848                 rt2x00_set_field32(&reg, MAC_CSR11_DELAY_AFTER_TBCN, 0);
849                 rt2x00_set_field32(&reg, MAC_CSR11_TBCN_BEFORE_WAKEUP, 0);
850                 rt2x00_set_field32(&reg, MAC_CSR11_AUTOWAKE, 0);
851                 rt2x00_set_field32(&reg, MAC_CSR11_WAKEUP_LATENCY, 0);
852                 rt2x00usb_register_write(rt2x00dev, MAC_CSR11, reg);
853
854                 rt2x00usb_vendor_request_sw(rt2x00dev, USB_DEVICE_MODE, 0,
855                                             USB_MODE_WAKEUP, REGISTER_TIMEOUT);
856         }
857 }
858
859 static void rt73usb_config(struct rt2x00_dev *rt2x00dev,
860                            struct rt2x00lib_conf *libconf,
861                            const unsigned int flags)
862 {
863         /* Always recalculate LNA gain before changing configuration */
864         rt73usb_config_lna_gain(rt2x00dev, libconf);
865
866         if (flags & IEEE80211_CONF_CHANGE_CHANNEL)
867                 rt73usb_config_channel(rt2x00dev, &libconf->rf,
868                                        libconf->conf->power_level);
869         if ((flags & IEEE80211_CONF_CHANGE_POWER) &&
870             !(flags & IEEE80211_CONF_CHANGE_CHANNEL))
871                 rt73usb_config_txpower(rt2x00dev, libconf->conf->power_level);
872         if (flags & IEEE80211_CONF_CHANGE_RETRY_LIMITS)
873                 rt73usb_config_retry_limit(rt2x00dev, libconf);
874         if (flags & IEEE80211_CONF_CHANGE_PS)
875                 rt73usb_config_ps(rt2x00dev, libconf);
876 }
877
878 /*
879  * Link tuning
880  */
881 static void rt73usb_link_stats(struct rt2x00_dev *rt2x00dev,
882                                struct link_qual *qual)
883 {
884         u32 reg;
885
886         /*
887          * Update FCS error count from register.
888          */
889         rt2x00usb_register_read(rt2x00dev, STA_CSR0, &reg);
890         qual->rx_failed = rt2x00_get_field32(reg, STA_CSR0_FCS_ERROR);
891
892         /*
893          * Update False CCA count from register.
894          */
895         rt2x00usb_register_read(rt2x00dev, STA_CSR1, &reg);
896         qual->false_cca = rt2x00_get_field32(reg, STA_CSR1_FALSE_CCA_ERROR);
897 }
898
899 static inline void rt73usb_set_vgc(struct rt2x00_dev *rt2x00dev,
900                                    struct link_qual *qual, u8 vgc_level)
901 {
902         if (qual->vgc_level != vgc_level) {
903                 rt73usb_bbp_write(rt2x00dev, 17, vgc_level);
904                 qual->vgc_level = vgc_level;
905                 qual->vgc_level_reg = vgc_level;
906         }
907 }
908
909 static void rt73usb_reset_tuner(struct rt2x00_dev *rt2x00dev,
910                                 struct link_qual *qual)
911 {
912         rt73usb_set_vgc(rt2x00dev, qual, 0x20);
913 }
914
915 static void rt73usb_link_tuner(struct rt2x00_dev *rt2x00dev,
916                                struct link_qual *qual, const u32 count)
917 {
918         u8 up_bound;
919         u8 low_bound;
920
921         /*
922          * Determine r17 bounds.
923          */
924         if (rt2x00dev->curr_band == IEEE80211_BAND_5GHZ) {
925                 low_bound = 0x28;
926                 up_bound = 0x48;
927
928                 if (rt2x00_has_cap_external_lna_a(rt2x00dev)) {
929                         low_bound += 0x10;
930                         up_bound += 0x10;
931                 }
932         } else {
933                 if (qual->rssi > -82) {
934                         low_bound = 0x1c;
935                         up_bound = 0x40;
936                 } else if (qual->rssi > -84) {
937                         low_bound = 0x1c;
938                         up_bound = 0x20;
939                 } else {
940                         low_bound = 0x1c;
941                         up_bound = 0x1c;
942                 }
943
944                 if (rt2x00_has_cap_external_lna_bg(rt2x00dev)) {
945                         low_bound += 0x14;
946                         up_bound += 0x10;
947                 }
948         }
949
950         /*
951          * If we are not associated, we should go straight to the
952          * dynamic CCA tuning.
953          */
954         if (!rt2x00dev->intf_associated)
955                 goto dynamic_cca_tune;
956
957         /*
958          * Special big-R17 for very short distance
959          */
960         if (qual->rssi > -35) {
961                 rt73usb_set_vgc(rt2x00dev, qual, 0x60);
962                 return;
963         }
964
965         /*
966          * Special big-R17 for short distance
967          */
968         if (qual->rssi >= -58) {
969                 rt73usb_set_vgc(rt2x00dev, qual, up_bound);
970                 return;
971         }
972
973         /*
974          * Special big-R17 for middle-short distance
975          */
976         if (qual->rssi >= -66) {
977                 rt73usb_set_vgc(rt2x00dev, qual, low_bound + 0x10);
978                 return;
979         }
980
981         /*
982          * Special mid-R17 for middle distance
983          */
984         if (qual->rssi >= -74) {
985                 rt73usb_set_vgc(rt2x00dev, qual, low_bound + 0x08);
986                 return;
987         }
988
989         /*
990          * Special case: Change up_bound based on the rssi.
991          * Lower up_bound when rssi is weaker then -74 dBm.
992          */
993         up_bound -= 2 * (-74 - qual->rssi);
994         if (low_bound > up_bound)
995                 up_bound = low_bound;
996
997         if (qual->vgc_level > up_bound) {
998                 rt73usb_set_vgc(rt2x00dev, qual, up_bound);
999                 return;
1000         }
1001
1002 dynamic_cca_tune:
1003
1004         /*
1005          * r17 does not yet exceed upper limit, continue and base
1006          * the r17 tuning on the false CCA count.
1007          */
1008         if ((qual->false_cca > 512) && (qual->vgc_level < up_bound))
1009                 rt73usb_set_vgc(rt2x00dev, qual,
1010                                 min_t(u8, qual->vgc_level + 4, up_bound));
1011         else if ((qual->false_cca < 100) && (qual->vgc_level > low_bound))
1012                 rt73usb_set_vgc(rt2x00dev, qual,
1013                                 max_t(u8, qual->vgc_level - 4, low_bound));
1014 }
1015
1016 /*
1017  * Queue handlers.
1018  */
1019 static void rt73usb_start_queue(struct data_queue *queue)
1020 {
1021         struct rt2x00_dev *rt2x00dev = queue->rt2x00dev;
1022         u32 reg;
1023
1024         switch (queue->qid) {
1025         case QID_RX:
1026                 rt2x00usb_register_read(rt2x00dev, TXRX_CSR0, &reg);
1027                 rt2x00_set_field32(&reg, TXRX_CSR0_DISABLE_RX, 0);
1028                 rt2x00usb_register_write(rt2x00dev, TXRX_CSR0, reg);
1029                 break;
1030         case QID_BEACON:
1031                 rt2x00usb_register_read(rt2x00dev, TXRX_CSR9, &reg);
1032                 rt2x00_set_field32(&reg, TXRX_CSR9_TSF_TICKING, 1);
1033                 rt2x00_set_field32(&reg, TXRX_CSR9_TBTT_ENABLE, 1);
1034                 rt2x00_set_field32(&reg, TXRX_CSR9_BEACON_GEN, 1);
1035                 rt2x00usb_register_write(rt2x00dev, TXRX_CSR9, reg);
1036                 break;
1037         default:
1038                 break;
1039         }
1040 }
1041
1042 static void rt73usb_stop_queue(struct data_queue *queue)
1043 {
1044         struct rt2x00_dev *rt2x00dev = queue->rt2x00dev;
1045         u32 reg;
1046
1047         switch (queue->qid) {
1048         case QID_RX:
1049                 rt2x00usb_register_read(rt2x00dev, TXRX_CSR0, &reg);
1050                 rt2x00_set_field32(&reg, TXRX_CSR0_DISABLE_RX, 1);
1051                 rt2x00usb_register_write(rt2x00dev, TXRX_CSR0, reg);
1052                 break;
1053         case QID_BEACON:
1054                 rt2x00usb_register_read(rt2x00dev, TXRX_CSR9, &reg);
1055                 rt2x00_set_field32(&reg, TXRX_CSR9_TSF_TICKING, 0);
1056                 rt2x00_set_field32(&reg, TXRX_CSR9_TBTT_ENABLE, 0);
1057                 rt2x00_set_field32(&reg, TXRX_CSR9_BEACON_GEN, 0);
1058                 rt2x00usb_register_write(rt2x00dev, TXRX_CSR9, reg);
1059                 break;
1060         default:
1061                 break;
1062         }
1063 }
1064
1065 /*
1066  * Firmware functions
1067  */
1068 static char *rt73usb_get_firmware_name(struct rt2x00_dev *rt2x00dev)
1069 {
1070         return FIRMWARE_RT2571;
1071 }
1072
1073 static int rt73usb_check_firmware(struct rt2x00_dev *rt2x00dev,
1074                                   const u8 *data, const size_t len)
1075 {
1076         u16 fw_crc;
1077         u16 crc;
1078
1079         /*
1080          * Only support 2kb firmware files.
1081          */
1082         if (len != 2048)
1083                 return FW_BAD_LENGTH;
1084
1085         /*
1086          * The last 2 bytes in the firmware array are the crc checksum itself,
1087          * this means that we should never pass those 2 bytes to the crc
1088          * algorithm.
1089          */
1090         fw_crc = (data[len - 2] << 8 | data[len - 1]);
1091
1092         /*
1093          * Use the crc itu-t algorithm.
1094          */
1095         crc = crc_itu_t(0, data, len - 2);
1096         crc = crc_itu_t_byte(crc, 0);
1097         crc = crc_itu_t_byte(crc, 0);
1098
1099         return (fw_crc == crc) ? FW_OK : FW_BAD_CRC;
1100 }
1101
1102 static int rt73usb_load_firmware(struct rt2x00_dev *rt2x00dev,
1103                                  const u8 *data, const size_t len)
1104 {
1105         unsigned int i;
1106         int status;
1107         u32 reg;
1108
1109         /*
1110          * Wait for stable hardware.
1111          */
1112         for (i = 0; i < 100; i++) {
1113                 rt2x00usb_register_read(rt2x00dev, MAC_CSR0, &reg);
1114                 if (reg)
1115                         break;
1116                 msleep(1);
1117         }
1118
1119         if (!reg) {
1120                 rt2x00_err(rt2x00dev, "Unstable hardware\n");
1121                 return -EBUSY;
1122         }
1123
1124         /*
1125          * Write firmware to device.
1126          */
1127         rt2x00usb_register_multiwrite(rt2x00dev, FIRMWARE_IMAGE_BASE, data, len);
1128
1129         /*
1130          * Send firmware request to device to load firmware,
1131          * we need to specify a long timeout time.
1132          */
1133         status = rt2x00usb_vendor_request_sw(rt2x00dev, USB_DEVICE_MODE,
1134                                              0, USB_MODE_FIRMWARE,
1135                                              REGISTER_TIMEOUT_FIRMWARE);
1136         if (status < 0) {
1137                 rt2x00_err(rt2x00dev, "Failed to write Firmware to device\n");
1138                 return status;
1139         }
1140
1141         return 0;
1142 }
1143
1144 /*
1145  * Initialization functions.
1146  */
1147 static int rt73usb_init_registers(struct rt2x00_dev *rt2x00dev)
1148 {
1149         u32 reg;
1150
1151         rt2x00usb_register_read(rt2x00dev, TXRX_CSR0, &reg);
1152         rt2x00_set_field32(&reg, TXRX_CSR0_AUTO_TX_SEQ, 1);
1153         rt2x00_set_field32(&reg, TXRX_CSR0_DISABLE_RX, 0);
1154         rt2x00_set_field32(&reg, TXRX_CSR0_TX_WITHOUT_WAITING, 0);
1155         rt2x00usb_register_write(rt2x00dev, TXRX_CSR0, reg);
1156
1157         rt2x00usb_register_read(rt2x00dev, TXRX_CSR1, &reg);
1158         rt2x00_set_field32(&reg, TXRX_CSR1_BBP_ID0, 47); /* CCK Signal */
1159         rt2x00_set_field32(&reg, TXRX_CSR1_BBP_ID0_VALID, 1);
1160         rt2x00_set_field32(&reg, TXRX_CSR1_BBP_ID1, 30); /* Rssi */
1161         rt2x00_set_field32(&reg, TXRX_CSR1_BBP_ID1_VALID, 1);
1162         rt2x00_set_field32(&reg, TXRX_CSR1_BBP_ID2, 42); /* OFDM Rate */
1163         rt2x00_set_field32(&reg, TXRX_CSR1_BBP_ID2_VALID, 1);
1164         rt2x00_set_field32(&reg, TXRX_CSR1_BBP_ID3, 30); /* Rssi */
1165         rt2x00_set_field32(&reg, TXRX_CSR1_BBP_ID3_VALID, 1);
1166         rt2x00usb_register_write(rt2x00dev, TXRX_CSR1, reg);
1167
1168         /*
1169          * CCK TXD BBP registers
1170          */
1171         rt2x00usb_register_read(rt2x00dev, TXRX_CSR2, &reg);
1172         rt2x00_set_field32(&reg, TXRX_CSR2_BBP_ID0, 13);
1173         rt2x00_set_field32(&reg, TXRX_CSR2_BBP_ID0_VALID, 1);
1174         rt2x00_set_field32(&reg, TXRX_CSR2_BBP_ID1, 12);
1175         rt2x00_set_field32(&reg, TXRX_CSR2_BBP_ID1_VALID, 1);
1176         rt2x00_set_field32(&reg, TXRX_CSR2_BBP_ID2, 11);
1177         rt2x00_set_field32(&reg, TXRX_CSR2_BBP_ID2_VALID, 1);
1178         rt2x00_set_field32(&reg, TXRX_CSR2_BBP_ID3, 10);
1179         rt2x00_set_field32(&reg, TXRX_CSR2_BBP_ID3_VALID, 1);
1180         rt2x00usb_register_write(rt2x00dev, TXRX_CSR2, reg);
1181
1182         /*
1183          * OFDM TXD BBP registers
1184          */
1185         rt2x00usb_register_read(rt2x00dev, TXRX_CSR3, &reg);
1186         rt2x00_set_field32(&reg, TXRX_CSR3_BBP_ID0, 7);
1187         rt2x00_set_field32(&reg, TXRX_CSR3_BBP_ID0_VALID, 1);
1188         rt2x00_set_field32(&reg, TXRX_CSR3_BBP_ID1, 6);
1189         rt2x00_set_field32(&reg, TXRX_CSR3_BBP_ID1_VALID, 1);
1190         rt2x00_set_field32(&reg, TXRX_CSR3_BBP_ID2, 5);
1191         rt2x00_set_field32(&reg, TXRX_CSR3_BBP_ID2_VALID, 1);
1192         rt2x00usb_register_write(rt2x00dev, TXRX_CSR3, reg);
1193
1194         rt2x00usb_register_read(rt2x00dev, TXRX_CSR7, &reg);
1195         rt2x00_set_field32(&reg, TXRX_CSR7_ACK_CTS_6MBS, 59);
1196         rt2x00_set_field32(&reg, TXRX_CSR7_ACK_CTS_9MBS, 53);
1197         rt2x00_set_field32(&reg, TXRX_CSR7_ACK_CTS_12MBS, 49);
1198         rt2x00_set_field32(&reg, TXRX_CSR7_ACK_CTS_18MBS, 46);
1199         rt2x00usb_register_write(rt2x00dev, TXRX_CSR7, reg);
1200
1201         rt2x00usb_register_read(rt2x00dev, TXRX_CSR8, &reg);
1202         rt2x00_set_field32(&reg, TXRX_CSR8_ACK_CTS_24MBS, 44);
1203         rt2x00_set_field32(&reg, TXRX_CSR8_ACK_CTS_36MBS, 42);
1204         rt2x00_set_field32(&reg, TXRX_CSR8_ACK_CTS_48MBS, 42);
1205         rt2x00_set_field32(&reg, TXRX_CSR8_ACK_CTS_54MBS, 42);
1206         rt2x00usb_register_write(rt2x00dev, TXRX_CSR8, reg);
1207
1208         rt2x00usb_register_read(rt2x00dev, TXRX_CSR9, &reg);
1209         rt2x00_set_field32(&reg, TXRX_CSR9_BEACON_INTERVAL, 0);
1210         rt2x00_set_field32(&reg, TXRX_CSR9_TSF_TICKING, 0);
1211         rt2x00_set_field32(&reg, TXRX_CSR9_TSF_SYNC, 0);
1212         rt2x00_set_field32(&reg, TXRX_CSR9_TBTT_ENABLE, 0);
1213         rt2x00_set_field32(&reg, TXRX_CSR9_BEACON_GEN, 0);
1214         rt2x00_set_field32(&reg, TXRX_CSR9_TIMESTAMP_COMPENSATE, 0);
1215         rt2x00usb_register_write(rt2x00dev, TXRX_CSR9, reg);
1216
1217         rt2x00usb_register_write(rt2x00dev, TXRX_CSR15, 0x0000000f);
1218
1219         rt2x00usb_register_read(rt2x00dev, MAC_CSR6, &reg);
1220         rt2x00_set_field32(&reg, MAC_CSR6_MAX_FRAME_UNIT, 0xfff);
1221         rt2x00usb_register_write(rt2x00dev, MAC_CSR6, reg);
1222
1223         rt2x00usb_register_write(rt2x00dev, MAC_CSR10, 0x00000718);
1224
1225         if (rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_AWAKE))
1226                 return -EBUSY;
1227
1228         rt2x00usb_register_write(rt2x00dev, MAC_CSR13, 0x00007f00);
1229
1230         /*
1231          * Invalidate all Shared Keys (SEC_CSR0),
1232          * and clear the Shared key Cipher algorithms (SEC_CSR1 & SEC_CSR5)
1233          */
1234         rt2x00usb_register_write(rt2x00dev, SEC_CSR0, 0x00000000);
1235         rt2x00usb_register_write(rt2x00dev, SEC_CSR1, 0x00000000);
1236         rt2x00usb_register_write(rt2x00dev, SEC_CSR5, 0x00000000);
1237
1238         reg = 0x000023b0;
1239         if (rt2x00_rf(rt2x00dev, RF5225) || rt2x00_rf(rt2x00dev, RF2527))
1240                 rt2x00_set_field32(&reg, PHY_CSR1_RF_RPI, 1);
1241         rt2x00usb_register_write(rt2x00dev, PHY_CSR1, reg);
1242
1243         rt2x00usb_register_write(rt2x00dev, PHY_CSR5, 0x00040a06);
1244         rt2x00usb_register_write(rt2x00dev, PHY_CSR6, 0x00080606);
1245         rt2x00usb_register_write(rt2x00dev, PHY_CSR7, 0x00000408);
1246
1247         rt2x00usb_register_read(rt2x00dev, MAC_CSR9, &reg);
1248         rt2x00_set_field32(&reg, MAC_CSR9_CW_SELECT, 0);
1249         rt2x00usb_register_write(rt2x00dev, MAC_CSR9, reg);
1250
1251         /*
1252          * Clear all beacons
1253          * For the Beacon base registers we only need to clear
1254          * the first byte since that byte contains the VALID and OWNER
1255          * bits which (when set to 0) will invalidate the entire beacon.
1256          */
1257         rt2x00usb_register_write(rt2x00dev, HW_BEACON_BASE0, 0);
1258         rt2x00usb_register_write(rt2x00dev, HW_BEACON_BASE1, 0);
1259         rt2x00usb_register_write(rt2x00dev, HW_BEACON_BASE2, 0);
1260         rt2x00usb_register_write(rt2x00dev, HW_BEACON_BASE3, 0);
1261
1262         /*
1263          * We must clear the error counters.
1264          * These registers are cleared on read,
1265          * so we may pass a useless variable to store the value.
1266          */
1267         rt2x00usb_register_read(rt2x00dev, STA_CSR0, &reg);
1268         rt2x00usb_register_read(rt2x00dev, STA_CSR1, &reg);
1269         rt2x00usb_register_read(rt2x00dev, STA_CSR2, &reg);
1270
1271         /*
1272          * Reset MAC and BBP registers.
1273          */
1274         rt2x00usb_register_read(rt2x00dev, MAC_CSR1, &reg);
1275         rt2x00_set_field32(&reg, MAC_CSR1_SOFT_RESET, 1);
1276         rt2x00_set_field32(&reg, MAC_CSR1_BBP_RESET, 1);
1277         rt2x00usb_register_write(rt2x00dev, MAC_CSR1, reg);
1278
1279         rt2x00usb_register_read(rt2x00dev, MAC_CSR1, &reg);
1280         rt2x00_set_field32(&reg, MAC_CSR1_SOFT_RESET, 0);
1281         rt2x00_set_field32(&reg, MAC_CSR1_BBP_RESET, 0);
1282         rt2x00usb_register_write(rt2x00dev, MAC_CSR1, reg);
1283
1284         rt2x00usb_register_read(rt2x00dev, MAC_CSR1, &reg);
1285         rt2x00_set_field32(&reg, MAC_CSR1_HOST_READY, 1);
1286         rt2x00usb_register_write(rt2x00dev, MAC_CSR1, reg);
1287
1288         return 0;
1289 }
1290
1291 static int rt73usb_wait_bbp_ready(struct rt2x00_dev *rt2x00dev)
1292 {
1293         unsigned int i;
1294         u8 value;
1295
1296         for (i = 0; i < REGISTER_USB_BUSY_COUNT; i++) {
1297                 rt73usb_bbp_read(rt2x00dev, 0, &value);
1298                 if ((value != 0xff) && (value != 0x00))
1299                         return 0;
1300                 udelay(REGISTER_BUSY_DELAY);
1301         }
1302
1303         rt2x00_err(rt2x00dev, "BBP register access failed, aborting\n");
1304         return -EACCES;
1305 }
1306
1307 static int rt73usb_init_bbp(struct rt2x00_dev *rt2x00dev)
1308 {
1309         unsigned int i;
1310         u16 eeprom;
1311         u8 reg_id;
1312         u8 value;
1313
1314         if (unlikely(rt73usb_wait_bbp_ready(rt2x00dev)))
1315                 return -EACCES;
1316
1317         rt73usb_bbp_write(rt2x00dev, 3, 0x80);
1318         rt73usb_bbp_write(rt2x00dev, 15, 0x30);
1319         rt73usb_bbp_write(rt2x00dev, 21, 0xc8);
1320         rt73usb_bbp_write(rt2x00dev, 22, 0x38);
1321         rt73usb_bbp_write(rt2x00dev, 23, 0x06);
1322         rt73usb_bbp_write(rt2x00dev, 24, 0xfe);
1323         rt73usb_bbp_write(rt2x00dev, 25, 0x0a);
1324         rt73usb_bbp_write(rt2x00dev, 26, 0x0d);
1325         rt73usb_bbp_write(rt2x00dev, 32, 0x0b);
1326         rt73usb_bbp_write(rt2x00dev, 34, 0x12);
1327         rt73usb_bbp_write(rt2x00dev, 37, 0x07);
1328         rt73usb_bbp_write(rt2x00dev, 39, 0xf8);
1329         rt73usb_bbp_write(rt2x00dev, 41, 0x60);
1330         rt73usb_bbp_write(rt2x00dev, 53, 0x10);
1331         rt73usb_bbp_write(rt2x00dev, 54, 0x18);
1332         rt73usb_bbp_write(rt2x00dev, 60, 0x10);
1333         rt73usb_bbp_write(rt2x00dev, 61, 0x04);
1334         rt73usb_bbp_write(rt2x00dev, 62, 0x04);
1335         rt73usb_bbp_write(rt2x00dev, 75, 0xfe);
1336         rt73usb_bbp_write(rt2x00dev, 86, 0xfe);
1337         rt73usb_bbp_write(rt2x00dev, 88, 0xfe);
1338         rt73usb_bbp_write(rt2x00dev, 90, 0x0f);
1339         rt73usb_bbp_write(rt2x00dev, 99, 0x00);
1340         rt73usb_bbp_write(rt2x00dev, 102, 0x16);
1341         rt73usb_bbp_write(rt2x00dev, 107, 0x04);
1342
1343         for (i = 0; i < EEPROM_BBP_SIZE; i++) {
1344                 rt2x00_eeprom_read(rt2x00dev, EEPROM_BBP_START + i, &eeprom);
1345
1346                 if (eeprom != 0xffff && eeprom != 0x0000) {
1347                         reg_id = rt2x00_get_field16(eeprom, EEPROM_BBP_REG_ID);
1348                         value = rt2x00_get_field16(eeprom, EEPROM_BBP_VALUE);
1349                         rt73usb_bbp_write(rt2x00dev, reg_id, value);
1350                 }
1351         }
1352
1353         return 0;
1354 }
1355
1356 /*
1357  * Device state switch handlers.
1358  */
1359 static int rt73usb_enable_radio(struct rt2x00_dev *rt2x00dev)
1360 {
1361         /*
1362          * Initialize all registers.
1363          */
1364         if (unlikely(rt73usb_init_registers(rt2x00dev) ||
1365                      rt73usb_init_bbp(rt2x00dev)))
1366                 return -EIO;
1367
1368         return 0;
1369 }
1370
1371 static void rt73usb_disable_radio(struct rt2x00_dev *rt2x00dev)
1372 {
1373         rt2x00usb_register_write(rt2x00dev, MAC_CSR10, 0x00001818);
1374
1375         /*
1376          * Disable synchronisation.
1377          */
1378         rt2x00usb_register_write(rt2x00dev, TXRX_CSR9, 0);
1379
1380         rt2x00usb_disable_radio(rt2x00dev);
1381 }
1382
1383 static int rt73usb_set_state(struct rt2x00_dev *rt2x00dev, enum dev_state state)
1384 {
1385         u32 reg, reg2;
1386         unsigned int i;
1387         char put_to_sleep;
1388
1389         put_to_sleep = (state != STATE_AWAKE);
1390
1391         rt2x00usb_register_read(rt2x00dev, MAC_CSR12, &reg);
1392         rt2x00_set_field32(&reg, MAC_CSR12_FORCE_WAKEUP, !put_to_sleep);
1393         rt2x00_set_field32(&reg, MAC_CSR12_PUT_TO_SLEEP, put_to_sleep);
1394         rt2x00usb_register_write(rt2x00dev, MAC_CSR12, reg);
1395
1396         /*
1397          * Device is not guaranteed to be in the requested state yet.
1398          * We must wait until the register indicates that the
1399          * device has entered the correct state.
1400          */
1401         for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
1402                 rt2x00usb_register_read(rt2x00dev, MAC_CSR12, &reg2);
1403                 state = rt2x00_get_field32(reg2, MAC_CSR12_BBP_CURRENT_STATE);
1404                 if (state == !put_to_sleep)
1405                         return 0;
1406                 rt2x00usb_register_write(rt2x00dev, MAC_CSR12, reg);
1407                 msleep(10);
1408         }
1409
1410         return -EBUSY;
1411 }
1412
1413 static int rt73usb_set_device_state(struct rt2x00_dev *rt2x00dev,
1414                                     enum dev_state state)
1415 {
1416         int retval = 0;
1417
1418         switch (state) {
1419         case STATE_RADIO_ON:
1420                 retval = rt73usb_enable_radio(rt2x00dev);
1421                 break;
1422         case STATE_RADIO_OFF:
1423                 rt73usb_disable_radio(rt2x00dev);
1424                 break;
1425         case STATE_RADIO_IRQ_ON:
1426         case STATE_RADIO_IRQ_OFF:
1427                 /* No support, but no error either */
1428                 break;
1429         case STATE_DEEP_SLEEP:
1430         case STATE_SLEEP:
1431         case STATE_STANDBY:
1432         case STATE_AWAKE:
1433                 retval = rt73usb_set_state(rt2x00dev, state);
1434                 break;
1435         default:
1436                 retval = -ENOTSUPP;
1437                 break;
1438         }
1439
1440         if (unlikely(retval))
1441                 rt2x00_err(rt2x00dev, "Device failed to enter state %d (%d)\n",
1442                            state, retval);
1443
1444         return retval;
1445 }
1446
1447 /*
1448  * TX descriptor initialization
1449  */
1450 static void rt73usb_write_tx_desc(struct queue_entry *entry,
1451                                   struct txentry_desc *txdesc)
1452 {
1453         struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb);
1454         __le32 *txd = (__le32 *) entry->skb->data;
1455         u32 word;
1456
1457         /*
1458          * Start writing the descriptor words.
1459          */
1460         rt2x00_desc_read(txd, 0, &word);
1461         rt2x00_set_field32(&word, TXD_W0_BURST,
1462                            test_bit(ENTRY_TXD_BURST, &txdesc->flags));
1463         rt2x00_set_field32(&word, TXD_W0_VALID, 1);
1464         rt2x00_set_field32(&word, TXD_W0_MORE_FRAG,
1465                            test_bit(ENTRY_TXD_MORE_FRAG, &txdesc->flags));
1466         rt2x00_set_field32(&word, TXD_W0_ACK,
1467                            test_bit(ENTRY_TXD_ACK, &txdesc->flags));
1468         rt2x00_set_field32(&word, TXD_W0_TIMESTAMP,
1469                            test_bit(ENTRY_TXD_REQ_TIMESTAMP, &txdesc->flags));
1470         rt2x00_set_field32(&word, TXD_W0_OFDM,
1471                            (txdesc->rate_mode == RATE_MODE_OFDM));
1472         rt2x00_set_field32(&word, TXD_W0_IFS, txdesc->u.plcp.ifs);
1473         rt2x00_set_field32(&word, TXD_W0_RETRY_MODE,
1474                            test_bit(ENTRY_TXD_RETRY_MODE, &txdesc->flags));
1475         rt2x00_set_field32(&word, TXD_W0_TKIP_MIC,
1476                            test_bit(ENTRY_TXD_ENCRYPT_MMIC, &txdesc->flags));
1477         rt2x00_set_field32(&word, TXD_W0_KEY_TABLE,
1478                            test_bit(ENTRY_TXD_ENCRYPT_PAIRWISE, &txdesc->flags));
1479         rt2x00_set_field32(&word, TXD_W0_KEY_INDEX, txdesc->key_idx);
1480         rt2x00_set_field32(&word, TXD_W0_DATABYTE_COUNT, txdesc->length);
1481         rt2x00_set_field32(&word, TXD_W0_BURST2,
1482                            test_bit(ENTRY_TXD_BURST, &txdesc->flags));
1483         rt2x00_set_field32(&word, TXD_W0_CIPHER_ALG, txdesc->cipher);
1484         rt2x00_desc_write(txd, 0, word);
1485
1486         rt2x00_desc_read(txd, 1, &word);
1487         rt2x00_set_field32(&word, TXD_W1_HOST_Q_ID, entry->queue->qid);
1488         rt2x00_set_field32(&word, TXD_W1_AIFSN, entry->queue->aifs);
1489         rt2x00_set_field32(&word, TXD_W1_CWMIN, entry->queue->cw_min);
1490         rt2x00_set_field32(&word, TXD_W1_CWMAX, entry->queue->cw_max);
1491         rt2x00_set_field32(&word, TXD_W1_IV_OFFSET, txdesc->iv_offset);
1492         rt2x00_set_field32(&word, TXD_W1_HW_SEQUENCE,
1493                            test_bit(ENTRY_TXD_GENERATE_SEQ, &txdesc->flags));
1494         rt2x00_desc_write(txd, 1, word);
1495
1496         rt2x00_desc_read(txd, 2, &word);
1497         rt2x00_set_field32(&word, TXD_W2_PLCP_SIGNAL, txdesc->u.plcp.signal);
1498         rt2x00_set_field32(&word, TXD_W2_PLCP_SERVICE, txdesc->u.plcp.service);
1499         rt2x00_set_field32(&word, TXD_W2_PLCP_LENGTH_LOW,
1500                            txdesc->u.plcp.length_low);
1501         rt2x00_set_field32(&word, TXD_W2_PLCP_LENGTH_HIGH,
1502                            txdesc->u.plcp.length_high);
1503         rt2x00_desc_write(txd, 2, word);
1504
1505         if (test_bit(ENTRY_TXD_ENCRYPT, &txdesc->flags)) {
1506                 _rt2x00_desc_write(txd, 3, skbdesc->iv[0]);
1507                 _rt2x00_desc_write(txd, 4, skbdesc->iv[1]);
1508         }
1509
1510         rt2x00_desc_read(txd, 5, &word);
1511         rt2x00_set_field32(&word, TXD_W5_TX_POWER,
1512                            TXPOWER_TO_DEV(entry->queue->rt2x00dev->tx_power));
1513         rt2x00_set_field32(&word, TXD_W5_WAITING_DMA_DONE_INT, 1);
1514         rt2x00_desc_write(txd, 5, word);
1515
1516         /*
1517          * Register descriptor details in skb frame descriptor.
1518          */
1519         skbdesc->flags |= SKBDESC_DESC_IN_SKB;
1520         skbdesc->desc = txd;
1521         skbdesc->desc_len = TXD_DESC_SIZE;
1522 }
1523
1524 /*
1525  * TX data initialization
1526  */
1527 static void rt73usb_write_beacon(struct queue_entry *entry,
1528                                  struct txentry_desc *txdesc)
1529 {
1530         struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
1531         unsigned int beacon_base;
1532         unsigned int padding_len;
1533         u32 orig_reg, reg;
1534
1535         /*
1536          * Disable beaconing while we are reloading the beacon data,
1537          * otherwise we might be sending out invalid data.
1538          */
1539         rt2x00usb_register_read(rt2x00dev, TXRX_CSR9, &reg);
1540         orig_reg = reg;
1541         rt2x00_set_field32(&reg, TXRX_CSR9_BEACON_GEN, 0);
1542         rt2x00usb_register_write(rt2x00dev, TXRX_CSR9, reg);
1543
1544         /*
1545          * Add space for the descriptor in front of the skb.
1546          */
1547         skb_push(entry->skb, TXD_DESC_SIZE);
1548         memset(entry->skb->data, 0, TXD_DESC_SIZE);
1549
1550         /*
1551          * Write the TX descriptor for the beacon.
1552          */
1553         rt73usb_write_tx_desc(entry, txdesc);
1554
1555         /*
1556          * Dump beacon to userspace through debugfs.
1557          */
1558         rt2x00debug_dump_frame(rt2x00dev, DUMP_FRAME_BEACON, entry->skb);
1559
1560         /*
1561          * Write entire beacon with descriptor and padding to register.
1562          */
1563         padding_len = roundup(entry->skb->len, 4) - entry->skb->len;
1564         if (padding_len && skb_pad(entry->skb, padding_len)) {
1565                 rt2x00_err(rt2x00dev, "Failure padding beacon, aborting\n");
1566                 /* skb freed by skb_pad() on failure */
1567                 entry->skb = NULL;
1568                 rt2x00usb_register_write(rt2x00dev, TXRX_CSR9, orig_reg);
1569                 return;
1570         }
1571
1572         beacon_base = HW_BEACON_OFFSET(entry->entry_idx);
1573         rt2x00usb_register_multiwrite(rt2x00dev, beacon_base, entry->skb->data,
1574                                       entry->skb->len + padding_len);
1575
1576         /*
1577          * Enable beaconing again.
1578          *
1579          * For Wi-Fi faily generated beacons between participating stations.
1580          * Set TBTT phase adaptive adjustment step to 8us (default 16us)
1581          */
1582         rt2x00usb_register_write(rt2x00dev, TXRX_CSR10, 0x00001008);
1583
1584         rt2x00_set_field32(&reg, TXRX_CSR9_BEACON_GEN, 1);
1585         rt2x00usb_register_write(rt2x00dev, TXRX_CSR9, reg);
1586
1587         /*
1588          * Clean up the beacon skb.
1589          */
1590         dev_kfree_skb(entry->skb);
1591         entry->skb = NULL;
1592 }
1593
1594 static void rt73usb_clear_beacon(struct queue_entry *entry)
1595 {
1596         struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
1597         unsigned int beacon_base;
1598         u32 orig_reg, reg;
1599
1600         /*
1601          * Disable beaconing while we are reloading the beacon data,
1602          * otherwise we might be sending out invalid data.
1603          */
1604         rt2x00usb_register_read(rt2x00dev, TXRX_CSR9, &orig_reg);
1605         reg = orig_reg;
1606         rt2x00_set_field32(&reg, TXRX_CSR9_BEACON_GEN, 0);
1607         rt2x00usb_register_write(rt2x00dev, TXRX_CSR9, reg);
1608
1609         /*
1610          * Clear beacon.
1611          */
1612         beacon_base = HW_BEACON_OFFSET(entry->entry_idx);
1613         rt2x00usb_register_write(rt2x00dev, beacon_base, 0);
1614
1615         /*
1616          * Restore beaconing state.
1617          */
1618         rt2x00usb_register_write(rt2x00dev, TXRX_CSR9, orig_reg);
1619 }
1620
1621 static int rt73usb_get_tx_data_len(struct queue_entry *entry)
1622 {
1623         int length;
1624
1625         /*
1626          * The length _must_ be a multiple of 4,
1627          * but it must _not_ be a multiple of the USB packet size.
1628          */
1629         length = roundup(entry->skb->len, 4);
1630         length += (4 * !(length % entry->queue->usb_maxpacket));
1631
1632         return length;
1633 }
1634
1635 /*
1636  * RX control handlers
1637  */
1638 static int rt73usb_agc_to_rssi(struct rt2x00_dev *rt2x00dev, int rxd_w1)
1639 {
1640         u8 offset = rt2x00dev->lna_gain;
1641         u8 lna;
1642
1643         lna = rt2x00_get_field32(rxd_w1, RXD_W1_RSSI_LNA);
1644         switch (lna) {
1645         case 3:
1646                 offset += 90;
1647                 break;
1648         case 2:
1649                 offset += 74;
1650                 break;
1651         case 1:
1652                 offset += 64;
1653                 break;
1654         default:
1655                 return 0;
1656         }
1657
1658         if (rt2x00dev->curr_band == IEEE80211_BAND_5GHZ) {
1659                 if (rt2x00_has_cap_external_lna_a(rt2x00dev)) {
1660                         if (lna == 3 || lna == 2)
1661                                 offset += 10;
1662                 } else {
1663                         if (lna == 3)
1664                                 offset += 6;
1665                         else if (lna == 2)
1666                                 offset += 8;
1667                 }
1668         }
1669
1670         return rt2x00_get_field32(rxd_w1, RXD_W1_RSSI_AGC) * 2 - offset;
1671 }
1672
1673 static void rt73usb_fill_rxdone(struct queue_entry *entry,
1674                                 struct rxdone_entry_desc *rxdesc)
1675 {
1676         struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
1677         struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb);
1678         __le32 *rxd = (__le32 *)entry->skb->data;
1679         u32 word0;
1680         u32 word1;
1681
1682         /*
1683          * Copy descriptor to the skbdesc->desc buffer, making it safe from moving of
1684          * frame data in rt2x00usb.
1685          */
1686         memcpy(skbdesc->desc, rxd, skbdesc->desc_len);
1687         rxd = (__le32 *)skbdesc->desc;
1688
1689         /*
1690          * It is now safe to read the descriptor on all architectures.
1691          */
1692         rt2x00_desc_read(rxd, 0, &word0);
1693         rt2x00_desc_read(rxd, 1, &word1);
1694
1695         if (rt2x00_get_field32(word0, RXD_W0_CRC_ERROR))
1696                 rxdesc->flags |= RX_FLAG_FAILED_FCS_CRC;
1697
1698         rxdesc->cipher = rt2x00_get_field32(word0, RXD_W0_CIPHER_ALG);
1699         rxdesc->cipher_status = rt2x00_get_field32(word0, RXD_W0_CIPHER_ERROR);
1700
1701         if (rxdesc->cipher != CIPHER_NONE) {
1702                 _rt2x00_desc_read(rxd, 2, &rxdesc->iv[0]);
1703                 _rt2x00_desc_read(rxd, 3, &rxdesc->iv[1]);
1704                 rxdesc->dev_flags |= RXDONE_CRYPTO_IV;
1705
1706                 _rt2x00_desc_read(rxd, 4, &rxdesc->icv);
1707                 rxdesc->dev_flags |= RXDONE_CRYPTO_ICV;
1708
1709                 /*
1710                  * Hardware has stripped IV/EIV data from 802.11 frame during
1711                  * decryption. It has provided the data separately but rt2x00lib
1712                  * should decide if it should be reinserted.
1713                  */
1714                 rxdesc->flags |= RX_FLAG_IV_STRIPPED;
1715
1716                 /*
1717                  * The hardware has already checked the Michael Mic and has
1718                  * stripped it from the frame. Signal this to mac80211.
1719                  */
1720                 rxdesc->flags |= RX_FLAG_MMIC_STRIPPED;
1721
1722                 if (rxdesc->cipher_status == RX_CRYPTO_SUCCESS)
1723                         rxdesc->flags |= RX_FLAG_DECRYPTED;
1724                 else if (rxdesc->cipher_status == RX_CRYPTO_FAIL_MIC)
1725                         rxdesc->flags |= RX_FLAG_MMIC_ERROR;
1726         }
1727
1728         /*
1729          * Obtain the status about this packet.
1730          * When frame was received with an OFDM bitrate,
1731          * the signal is the PLCP value. If it was received with
1732          * a CCK bitrate the signal is the rate in 100kbit/s.
1733          */
1734         rxdesc->signal = rt2x00_get_field32(word1, RXD_W1_SIGNAL);
1735         rxdesc->rssi = rt73usb_agc_to_rssi(rt2x00dev, word1);
1736         rxdesc->size = rt2x00_get_field32(word0, RXD_W0_DATABYTE_COUNT);
1737
1738         if (rt2x00_get_field32(word0, RXD_W0_OFDM))
1739                 rxdesc->dev_flags |= RXDONE_SIGNAL_PLCP;
1740         else
1741                 rxdesc->dev_flags |= RXDONE_SIGNAL_BITRATE;
1742         if (rt2x00_get_field32(word0, RXD_W0_MY_BSS))
1743                 rxdesc->dev_flags |= RXDONE_MY_BSS;
1744
1745         /*
1746          * Set skb pointers, and update frame information.
1747          */
1748         skb_pull(entry->skb, entry->queue->desc_size);
1749         skb_trim(entry->skb, rxdesc->size);
1750 }
1751
1752 /*
1753  * Device probe functions.
1754  */
1755 static int rt73usb_validate_eeprom(struct rt2x00_dev *rt2x00dev)
1756 {
1757         u16 word;
1758         u8 *mac;
1759         s8 value;
1760
1761         rt2x00usb_eeprom_read(rt2x00dev, rt2x00dev->eeprom, EEPROM_SIZE);
1762
1763         /*
1764          * Start validation of the data that has been read.
1765          */
1766         mac = rt2x00_eeprom_addr(rt2x00dev, EEPROM_MAC_ADDR_0);
1767         if (!is_valid_ether_addr(mac)) {
1768                 eth_random_addr(mac);
1769                 rt2x00_eeprom_dbg(rt2x00dev, "MAC: %pM\n", mac);
1770         }
1771
1772         rt2x00_eeprom_read(rt2x00dev, EEPROM_ANTENNA, &word);
1773         if (word == 0xffff) {
1774                 rt2x00_set_field16(&word, EEPROM_ANTENNA_NUM, 2);
1775                 rt2x00_set_field16(&word, EEPROM_ANTENNA_TX_DEFAULT,
1776                                    ANTENNA_B);
1777                 rt2x00_set_field16(&word, EEPROM_ANTENNA_RX_DEFAULT,
1778                                    ANTENNA_B);
1779                 rt2x00_set_field16(&word, EEPROM_ANTENNA_FRAME_TYPE, 0);
1780                 rt2x00_set_field16(&word, EEPROM_ANTENNA_DYN_TXAGC, 0);
1781                 rt2x00_set_field16(&word, EEPROM_ANTENNA_HARDWARE_RADIO, 0);
1782                 rt2x00_set_field16(&word, EEPROM_ANTENNA_RF_TYPE, RF5226);
1783                 rt2x00_eeprom_write(rt2x00dev, EEPROM_ANTENNA, word);
1784                 rt2x00_eeprom_dbg(rt2x00dev, "Antenna: 0x%04x\n", word);
1785         }
1786
1787         rt2x00_eeprom_read(rt2x00dev, EEPROM_NIC, &word);
1788         if (word == 0xffff) {
1789                 rt2x00_set_field16(&word, EEPROM_NIC_EXTERNAL_LNA, 0);
1790                 rt2x00_eeprom_write(rt2x00dev, EEPROM_NIC, word);
1791                 rt2x00_eeprom_dbg(rt2x00dev, "NIC: 0x%04x\n", word);
1792         }
1793
1794         rt2x00_eeprom_read(rt2x00dev, EEPROM_LED, &word);
1795         if (word == 0xffff) {
1796                 rt2x00_set_field16(&word, EEPROM_LED_POLARITY_RDY_G, 0);
1797                 rt2x00_set_field16(&word, EEPROM_LED_POLARITY_RDY_A, 0);
1798                 rt2x00_set_field16(&word, EEPROM_LED_POLARITY_ACT, 0);
1799                 rt2x00_set_field16(&word, EEPROM_LED_POLARITY_GPIO_0, 0);
1800                 rt2x00_set_field16(&word, EEPROM_LED_POLARITY_GPIO_1, 0);
1801                 rt2x00_set_field16(&word, EEPROM_LED_POLARITY_GPIO_2, 0);
1802                 rt2x00_set_field16(&word, EEPROM_LED_POLARITY_GPIO_3, 0);
1803                 rt2x00_set_field16(&word, EEPROM_LED_POLARITY_GPIO_4, 0);
1804                 rt2x00_set_field16(&word, EEPROM_LED_LED_MODE,
1805                                    LED_MODE_DEFAULT);
1806                 rt2x00_eeprom_write(rt2x00dev, EEPROM_LED, word);
1807                 rt2x00_eeprom_dbg(rt2x00dev, "Led: 0x%04x\n", word);
1808         }
1809
1810         rt2x00_eeprom_read(rt2x00dev, EEPROM_FREQ, &word);
1811         if (word == 0xffff) {
1812                 rt2x00_set_field16(&word, EEPROM_FREQ_OFFSET, 0);
1813                 rt2x00_set_field16(&word, EEPROM_FREQ_SEQ, 0);
1814                 rt2x00_eeprom_write(rt2x00dev, EEPROM_FREQ, word);
1815                 rt2x00_eeprom_dbg(rt2x00dev, "Freq: 0x%04x\n", word);
1816         }
1817
1818         rt2x00_eeprom_read(rt2x00dev, EEPROM_RSSI_OFFSET_BG, &word);
1819         if (word == 0xffff) {
1820                 rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_BG_1, 0);
1821                 rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_BG_2, 0);
1822                 rt2x00_eeprom_write(rt2x00dev, EEPROM_RSSI_OFFSET_BG, word);
1823                 rt2x00_eeprom_dbg(rt2x00dev, "RSSI OFFSET BG: 0x%04x\n", word);
1824         } else {
1825                 value = rt2x00_get_field16(word, EEPROM_RSSI_OFFSET_BG_1);
1826                 if (value < -10 || value > 10)
1827                         rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_BG_1, 0);
1828                 value = rt2x00_get_field16(word, EEPROM_RSSI_OFFSET_BG_2);
1829                 if (value < -10 || value > 10)
1830                         rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_BG_2, 0);
1831                 rt2x00_eeprom_write(rt2x00dev, EEPROM_RSSI_OFFSET_BG, word);
1832         }
1833
1834         rt2x00_eeprom_read(rt2x00dev, EEPROM_RSSI_OFFSET_A, &word);
1835         if (word == 0xffff) {
1836                 rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_A_1, 0);
1837                 rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_A_2, 0);
1838                 rt2x00_eeprom_write(rt2x00dev, EEPROM_RSSI_OFFSET_A, word);
1839                 rt2x00_eeprom_dbg(rt2x00dev, "RSSI OFFSET A: 0x%04x\n", word);
1840         } else {
1841                 value = rt2x00_get_field16(word, EEPROM_RSSI_OFFSET_A_1);
1842                 if (value < -10 || value > 10)
1843                         rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_A_1, 0);
1844                 value = rt2x00_get_field16(word, EEPROM_RSSI_OFFSET_A_2);
1845                 if (value < -10 || value > 10)
1846                         rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_A_2, 0);
1847                 rt2x00_eeprom_write(rt2x00dev, EEPROM_RSSI_OFFSET_A, word);
1848         }
1849
1850         return 0;
1851 }
1852
1853 static int rt73usb_init_eeprom(struct rt2x00_dev *rt2x00dev)
1854 {
1855         u32 reg;
1856         u16 value;
1857         u16 eeprom;
1858
1859         /*
1860          * Read EEPROM word for configuration.
1861          */
1862         rt2x00_eeprom_read(rt2x00dev, EEPROM_ANTENNA, &eeprom);
1863
1864         /*
1865          * Identify RF chipset.
1866          */
1867         value = rt2x00_get_field16(eeprom, EEPROM_ANTENNA_RF_TYPE);
1868         rt2x00usb_register_read(rt2x00dev, MAC_CSR0, &reg);
1869         rt2x00_set_chip(rt2x00dev, rt2x00_get_field32(reg, MAC_CSR0_CHIPSET),
1870                         value, rt2x00_get_field32(reg, MAC_CSR0_REVISION));
1871
1872         if (!rt2x00_rt(rt2x00dev, RT2573) || (rt2x00_rev(rt2x00dev) == 0)) {
1873                 rt2x00_err(rt2x00dev, "Invalid RT chipset detected\n");
1874                 return -ENODEV;
1875         }
1876
1877         if (!rt2x00_rf(rt2x00dev, RF5226) &&
1878             !rt2x00_rf(rt2x00dev, RF2528) &&
1879             !rt2x00_rf(rt2x00dev, RF5225) &&
1880             !rt2x00_rf(rt2x00dev, RF2527)) {
1881                 rt2x00_err(rt2x00dev, "Invalid RF chipset detected\n");
1882                 return -ENODEV;
1883         }
1884
1885         /*
1886          * Identify default antenna configuration.
1887          */
1888         rt2x00dev->default_ant.tx =
1889             rt2x00_get_field16(eeprom, EEPROM_ANTENNA_TX_DEFAULT);
1890         rt2x00dev->default_ant.rx =
1891             rt2x00_get_field16(eeprom, EEPROM_ANTENNA_RX_DEFAULT);
1892
1893         /*
1894          * Read the Frame type.
1895          */
1896         if (rt2x00_get_field16(eeprom, EEPROM_ANTENNA_FRAME_TYPE))
1897                 __set_bit(CAPABILITY_FRAME_TYPE, &rt2x00dev->cap_flags);
1898
1899         /*
1900          * Detect if this device has an hardware controlled radio.
1901          */
1902         if (rt2x00_get_field16(eeprom, EEPROM_ANTENNA_HARDWARE_RADIO))
1903                 __set_bit(CAPABILITY_HW_BUTTON, &rt2x00dev->cap_flags);
1904
1905         /*
1906          * Read frequency offset.
1907          */
1908         rt2x00_eeprom_read(rt2x00dev, EEPROM_FREQ, &eeprom);
1909         rt2x00dev->freq_offset = rt2x00_get_field16(eeprom, EEPROM_FREQ_OFFSET);
1910
1911         /*
1912          * Read external LNA informations.
1913          */
1914         rt2x00_eeprom_read(rt2x00dev, EEPROM_NIC, &eeprom);
1915
1916         if (rt2x00_get_field16(eeprom, EEPROM_NIC_EXTERNAL_LNA)) {
1917                 __set_bit(CAPABILITY_EXTERNAL_LNA_A, &rt2x00dev->cap_flags);
1918                 __set_bit(CAPABILITY_EXTERNAL_LNA_BG, &rt2x00dev->cap_flags);
1919         }
1920
1921         /*
1922          * Store led settings, for correct led behaviour.
1923          */
1924 #ifdef CONFIG_RT2X00_LIB_LEDS
1925         rt2x00_eeprom_read(rt2x00dev, EEPROM_LED, &eeprom);
1926
1927         rt73usb_init_led(rt2x00dev, &rt2x00dev->led_radio, LED_TYPE_RADIO);
1928         rt73usb_init_led(rt2x00dev, &rt2x00dev->led_assoc, LED_TYPE_ASSOC);
1929         if (value == LED_MODE_SIGNAL_STRENGTH)
1930                 rt73usb_init_led(rt2x00dev, &rt2x00dev->led_qual,
1931                                  LED_TYPE_QUALITY);
1932
1933         rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_LED_MODE, value);
1934         rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_GPIO_0,
1935                            rt2x00_get_field16(eeprom,
1936                                               EEPROM_LED_POLARITY_GPIO_0));
1937         rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_GPIO_1,
1938                            rt2x00_get_field16(eeprom,
1939                                               EEPROM_LED_POLARITY_GPIO_1));
1940         rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_GPIO_2,
1941                            rt2x00_get_field16(eeprom,
1942                                               EEPROM_LED_POLARITY_GPIO_2));
1943         rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_GPIO_3,
1944                            rt2x00_get_field16(eeprom,
1945                                               EEPROM_LED_POLARITY_GPIO_3));
1946         rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_GPIO_4,
1947                            rt2x00_get_field16(eeprom,
1948                                               EEPROM_LED_POLARITY_GPIO_4));
1949         rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_ACT,
1950                            rt2x00_get_field16(eeprom, EEPROM_LED_POLARITY_ACT));
1951         rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_READY_BG,
1952                            rt2x00_get_field16(eeprom,
1953                                               EEPROM_LED_POLARITY_RDY_G));
1954         rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_READY_A,
1955                            rt2x00_get_field16(eeprom,
1956                                               EEPROM_LED_POLARITY_RDY_A));
1957 #endif /* CONFIG_RT2X00_LIB_LEDS */
1958
1959         return 0;
1960 }
1961
1962 /*
1963  * RF value list for RF2528
1964  * Supports: 2.4 GHz
1965  */
1966 static const struct rf_channel rf_vals_bg_2528[] = {
1967         { 1,  0x00002c0c, 0x00000786, 0x00068255, 0x000fea0b },
1968         { 2,  0x00002c0c, 0x00000786, 0x00068255, 0x000fea1f },
1969         { 3,  0x00002c0c, 0x0000078a, 0x00068255, 0x000fea0b },
1970         { 4,  0x00002c0c, 0x0000078a, 0x00068255, 0x000fea1f },
1971         { 5,  0x00002c0c, 0x0000078e, 0x00068255, 0x000fea0b },
1972         { 6,  0x00002c0c, 0x0000078e, 0x00068255, 0x000fea1f },
1973         { 7,  0x00002c0c, 0x00000792, 0x00068255, 0x000fea0b },
1974         { 8,  0x00002c0c, 0x00000792, 0x00068255, 0x000fea1f },
1975         { 9,  0x00002c0c, 0x00000796, 0x00068255, 0x000fea0b },
1976         { 10, 0x00002c0c, 0x00000796, 0x00068255, 0x000fea1f },
1977         { 11, 0x00002c0c, 0x0000079a, 0x00068255, 0x000fea0b },
1978         { 12, 0x00002c0c, 0x0000079a, 0x00068255, 0x000fea1f },
1979         { 13, 0x00002c0c, 0x0000079e, 0x00068255, 0x000fea0b },
1980         { 14, 0x00002c0c, 0x000007a2, 0x00068255, 0x000fea13 },
1981 };
1982
1983 /*
1984  * RF value list for RF5226
1985  * Supports: 2.4 GHz & 5.2 GHz
1986  */
1987 static const struct rf_channel rf_vals_5226[] = {
1988         { 1,  0x00002c0c, 0x00000786, 0x00068255, 0x000fea0b },
1989         { 2,  0x00002c0c, 0x00000786, 0x00068255, 0x000fea1f },
1990         { 3,  0x00002c0c, 0x0000078a, 0x00068255, 0x000fea0b },
1991         { 4,  0x00002c0c, 0x0000078a, 0x00068255, 0x000fea1f },
1992         { 5,  0x00002c0c, 0x0000078e, 0x00068255, 0x000fea0b },
1993         { 6,  0x00002c0c, 0x0000078e, 0x00068255, 0x000fea1f },
1994         { 7,  0x00002c0c, 0x00000792, 0x00068255, 0x000fea0b },
1995         { 8,  0x00002c0c, 0x00000792, 0x00068255, 0x000fea1f },
1996         { 9,  0x00002c0c, 0x00000796, 0x00068255, 0x000fea0b },
1997         { 10, 0x00002c0c, 0x00000796, 0x00068255, 0x000fea1f },
1998         { 11, 0x00002c0c, 0x0000079a, 0x00068255, 0x000fea0b },
1999         { 12, 0x00002c0c, 0x0000079a, 0x00068255, 0x000fea1f },
2000         { 13, 0x00002c0c, 0x0000079e, 0x00068255, 0x000fea0b },
2001         { 14, 0x00002c0c, 0x000007a2, 0x00068255, 0x000fea13 },
2002
2003         /* 802.11 UNI / HyperLan 2 */
2004         { 36, 0x00002c0c, 0x0000099a, 0x00098255, 0x000fea23 },
2005         { 40, 0x00002c0c, 0x000009a2, 0x00098255, 0x000fea03 },
2006         { 44, 0x00002c0c, 0x000009a6, 0x00098255, 0x000fea0b },
2007         { 48, 0x00002c0c, 0x000009aa, 0x00098255, 0x000fea13 },
2008         { 52, 0x00002c0c, 0x000009ae, 0x00098255, 0x000fea1b },
2009         { 56, 0x00002c0c, 0x000009b2, 0x00098255, 0x000fea23 },
2010         { 60, 0x00002c0c, 0x000009ba, 0x00098255, 0x000fea03 },
2011         { 64, 0x00002c0c, 0x000009be, 0x00098255, 0x000fea0b },
2012
2013         /* 802.11 HyperLan 2 */
2014         { 100, 0x00002c0c, 0x00000a2a, 0x000b8255, 0x000fea03 },
2015         { 104, 0x00002c0c, 0x00000a2e, 0x000b8255, 0x000fea0b },
2016         { 108, 0x00002c0c, 0x00000a32, 0x000b8255, 0x000fea13 },
2017         { 112, 0x00002c0c, 0x00000a36, 0x000b8255, 0x000fea1b },
2018         { 116, 0x00002c0c, 0x00000a3a, 0x000b8255, 0x000fea23 },
2019         { 120, 0x00002c0c, 0x00000a82, 0x000b8255, 0x000fea03 },
2020         { 124, 0x00002c0c, 0x00000a86, 0x000b8255, 0x000fea0b },
2021         { 128, 0x00002c0c, 0x00000a8a, 0x000b8255, 0x000fea13 },
2022         { 132, 0x00002c0c, 0x00000a8e, 0x000b8255, 0x000fea1b },
2023         { 136, 0x00002c0c, 0x00000a92, 0x000b8255, 0x000fea23 },
2024
2025         /* 802.11 UNII */
2026         { 140, 0x00002c0c, 0x00000a9a, 0x000b8255, 0x000fea03 },
2027         { 149, 0x00002c0c, 0x00000aa2, 0x000b8255, 0x000fea1f },
2028         { 153, 0x00002c0c, 0x00000aa6, 0x000b8255, 0x000fea27 },
2029         { 157, 0x00002c0c, 0x00000aae, 0x000b8255, 0x000fea07 },
2030         { 161, 0x00002c0c, 0x00000ab2, 0x000b8255, 0x000fea0f },
2031         { 165, 0x00002c0c, 0x00000ab6, 0x000b8255, 0x000fea17 },
2032
2033         /* MMAC(Japan)J52 ch 34,38,42,46 */
2034         { 34, 0x00002c0c, 0x0008099a, 0x000da255, 0x000d3a0b },
2035         { 38, 0x00002c0c, 0x0008099e, 0x000da255, 0x000d3a13 },
2036         { 42, 0x00002c0c, 0x000809a2, 0x000da255, 0x000d3a1b },
2037         { 46, 0x00002c0c, 0x000809a6, 0x000da255, 0x000d3a23 },
2038 };
2039
2040 /*
2041  * RF value list for RF5225 & RF2527
2042  * Supports: 2.4 GHz & 5.2 GHz
2043  */
2044 static const struct rf_channel rf_vals_5225_2527[] = {
2045         { 1,  0x00002ccc, 0x00004786, 0x00068455, 0x000ffa0b },
2046         { 2,  0x00002ccc, 0x00004786, 0x00068455, 0x000ffa1f },
2047         { 3,  0x00002ccc, 0x0000478a, 0x00068455, 0x000ffa0b },
2048         { 4,  0x00002ccc, 0x0000478a, 0x00068455, 0x000ffa1f },
2049         { 5,  0x00002ccc, 0x0000478e, 0x00068455, 0x000ffa0b },
2050         { 6,  0x00002ccc, 0x0000478e, 0x00068455, 0x000ffa1f },
2051         { 7,  0x00002ccc, 0x00004792, 0x00068455, 0x000ffa0b },
2052         { 8,  0x00002ccc, 0x00004792, 0x00068455, 0x000ffa1f },
2053         { 9,  0x00002ccc, 0x00004796, 0x00068455, 0x000ffa0b },
2054         { 10, 0x00002ccc, 0x00004796, 0x00068455, 0x000ffa1f },
2055         { 11, 0x00002ccc, 0x0000479a, 0x00068455, 0x000ffa0b },
2056         { 12, 0x00002ccc, 0x0000479a, 0x00068455, 0x000ffa1f },
2057         { 13, 0x00002ccc, 0x0000479e, 0x00068455, 0x000ffa0b },
2058         { 14, 0x00002ccc, 0x000047a2, 0x00068455, 0x000ffa13 },
2059
2060         /* 802.11 UNI / HyperLan 2 */
2061         { 36, 0x00002ccc, 0x0000499a, 0x0009be55, 0x000ffa23 },
2062         { 40, 0x00002ccc, 0x000049a2, 0x0009be55, 0x000ffa03 },
2063         { 44, 0x00002ccc, 0x000049a6, 0x0009be55, 0x000ffa0b },
2064         { 48, 0x00002ccc, 0x000049aa, 0x0009be55, 0x000ffa13 },
2065         { 52, 0x00002ccc, 0x000049ae, 0x0009ae55, 0x000ffa1b },
2066         { 56, 0x00002ccc, 0x000049b2, 0x0009ae55, 0x000ffa23 },
2067         { 60, 0x00002ccc, 0x000049ba, 0x0009ae55, 0x000ffa03 },
2068         { 64, 0x00002ccc, 0x000049be, 0x0009ae55, 0x000ffa0b },
2069
2070         /* 802.11 HyperLan 2 */
2071         { 100, 0x00002ccc, 0x00004a2a, 0x000bae55, 0x000ffa03 },
2072         { 104, 0x00002ccc, 0x00004a2e, 0x000bae55, 0x000ffa0b },
2073         { 108, 0x00002ccc, 0x00004a32, 0x000bae55, 0x000ffa13 },
2074         { 112, 0x00002ccc, 0x00004a36, 0x000bae55, 0x000ffa1b },
2075         { 116, 0x00002ccc, 0x00004a3a, 0x000bbe55, 0x000ffa23 },
2076         { 120, 0x00002ccc, 0x00004a82, 0x000bbe55, 0x000ffa03 },
2077         { 124, 0x00002ccc, 0x00004a86, 0x000bbe55, 0x000ffa0b },
2078         { 128, 0x00002ccc, 0x00004a8a, 0x000bbe55, 0x000ffa13 },
2079         { 132, 0x00002ccc, 0x00004a8e, 0x000bbe55, 0x000ffa1b },
2080         { 136, 0x00002ccc, 0x00004a92, 0x000bbe55, 0x000ffa23 },
2081
2082         /* 802.11 UNII */
2083         { 140, 0x00002ccc, 0x00004a9a, 0x000bbe55, 0x000ffa03 },
2084         { 149, 0x00002ccc, 0x00004aa2, 0x000bbe55, 0x000ffa1f },
2085         { 153, 0x00002ccc, 0x00004aa6, 0x000bbe55, 0x000ffa27 },
2086         { 157, 0x00002ccc, 0x00004aae, 0x000bbe55, 0x000ffa07 },
2087         { 161, 0x00002ccc, 0x00004ab2, 0x000bbe55, 0x000ffa0f },
2088         { 165, 0x00002ccc, 0x00004ab6, 0x000bbe55, 0x000ffa17 },
2089
2090         /* MMAC(Japan)J52 ch 34,38,42,46 */
2091         { 34, 0x00002ccc, 0x0000499a, 0x0009be55, 0x000ffa0b },
2092         { 38, 0x00002ccc, 0x0000499e, 0x0009be55, 0x000ffa13 },
2093         { 42, 0x00002ccc, 0x000049a2, 0x0009be55, 0x000ffa1b },
2094         { 46, 0x00002ccc, 0x000049a6, 0x0009be55, 0x000ffa23 },
2095 };
2096
2097
2098 static int rt73usb_probe_hw_mode(struct rt2x00_dev *rt2x00dev)
2099 {
2100         struct hw_mode_spec *spec = &rt2x00dev->spec;
2101         struct channel_info *info;
2102         char *tx_power;
2103         unsigned int i;
2104
2105         /*
2106          * Initialize all hw fields.
2107          *
2108          * Don't set IEEE80211_HOST_BROADCAST_PS_BUFFERING unless we are
2109          * capable of sending the buffered frames out after the DTIM
2110          * transmission using rt2x00lib_beacondone. This will send out
2111          * multicast and broadcast traffic immediately instead of buffering it
2112          * infinitly and thus dropping it after some time.
2113          */
2114         ieee80211_hw_set(rt2x00dev->hw, PS_NULLFUNC_STACK);
2115         ieee80211_hw_set(rt2x00dev->hw, SIGNAL_DBM);
2116         ieee80211_hw_set(rt2x00dev->hw, SUPPORTS_PS);
2117
2118         SET_IEEE80211_DEV(rt2x00dev->hw, rt2x00dev->dev);
2119         SET_IEEE80211_PERM_ADDR(rt2x00dev->hw,
2120                                 rt2x00_eeprom_addr(rt2x00dev,
2121                                                    EEPROM_MAC_ADDR_0));
2122
2123         /*
2124          * Initialize hw_mode information.
2125          */
2126         spec->supported_bands = SUPPORT_BAND_2GHZ;
2127         spec->supported_rates = SUPPORT_RATE_CCK | SUPPORT_RATE_OFDM;
2128
2129         if (rt2x00_rf(rt2x00dev, RF2528)) {
2130                 spec->num_channels = ARRAY_SIZE(rf_vals_bg_2528);
2131                 spec->channels = rf_vals_bg_2528;
2132         } else if (rt2x00_rf(rt2x00dev, RF5226)) {
2133                 spec->supported_bands |= SUPPORT_BAND_5GHZ;
2134                 spec->num_channels = ARRAY_SIZE(rf_vals_5226);
2135                 spec->channels = rf_vals_5226;
2136         } else if (rt2x00_rf(rt2x00dev, RF2527)) {
2137                 spec->num_channels = 14;
2138                 spec->channels = rf_vals_5225_2527;
2139         } else if (rt2x00_rf(rt2x00dev, RF5225)) {
2140                 spec->supported_bands |= SUPPORT_BAND_5GHZ;
2141                 spec->num_channels = ARRAY_SIZE(rf_vals_5225_2527);
2142                 spec->channels = rf_vals_5225_2527;
2143         }
2144
2145         /*
2146          * Create channel information array
2147          */
2148         info = kcalloc(spec->num_channels, sizeof(*info), GFP_KERNEL);
2149         if (!info)
2150                 return -ENOMEM;
2151
2152         spec->channels_info = info;
2153
2154         tx_power = rt2x00_eeprom_addr(rt2x00dev, EEPROM_TXPOWER_G_START);
2155         for (i = 0; i < 14; i++) {
2156                 info[i].max_power = MAX_TXPOWER;
2157                 info[i].default_power1 = TXPOWER_FROM_DEV(tx_power[i]);
2158         }
2159
2160         if (spec->num_channels > 14) {
2161                 tx_power = rt2x00_eeprom_addr(rt2x00dev, EEPROM_TXPOWER_A_START);
2162                 for (i = 14; i < spec->num_channels; i++) {
2163                         info[i].max_power = MAX_TXPOWER;
2164                         info[i].default_power1 =
2165                                         TXPOWER_FROM_DEV(tx_power[i - 14]);
2166                 }
2167         }
2168
2169         return 0;
2170 }
2171
2172 static int rt73usb_probe_hw(struct rt2x00_dev *rt2x00dev)
2173 {
2174         int retval;
2175         u32 reg;
2176
2177         /*
2178          * Allocate eeprom data.
2179          */
2180         retval = rt73usb_validate_eeprom(rt2x00dev);
2181         if (retval)
2182                 return retval;
2183
2184         retval = rt73usb_init_eeprom(rt2x00dev);
2185         if (retval)
2186                 return retval;
2187
2188         /*
2189          * Enable rfkill polling by setting GPIO direction of the
2190          * rfkill switch GPIO pin correctly.
2191          */
2192         rt2x00usb_register_read(rt2x00dev, MAC_CSR13, &reg);
2193         rt2x00_set_field32(&reg, MAC_CSR13_DIR7, 0);
2194         rt2x00usb_register_write(rt2x00dev, MAC_CSR13, reg);
2195
2196         /*
2197          * Initialize hw specifications.
2198          */
2199         retval = rt73usb_probe_hw_mode(rt2x00dev);
2200         if (retval)
2201                 return retval;
2202
2203         /*
2204          * This device has multiple filters for control frames,
2205          * but has no a separate filter for PS Poll frames.
2206          */
2207         __set_bit(CAPABILITY_CONTROL_FILTERS, &rt2x00dev->cap_flags);
2208
2209         /*
2210          * This device requires firmware.
2211          */
2212         __set_bit(REQUIRE_FIRMWARE, &rt2x00dev->cap_flags);
2213         if (!modparam_nohwcrypt)
2214                 __set_bit(CAPABILITY_HW_CRYPTO, &rt2x00dev->cap_flags);
2215         __set_bit(CAPABILITY_LINK_TUNING, &rt2x00dev->cap_flags);
2216         __set_bit(REQUIRE_PS_AUTOWAKE, &rt2x00dev->cap_flags);
2217
2218         /*
2219          * Set the rssi offset.
2220          */
2221         rt2x00dev->rssi_offset = DEFAULT_RSSI_OFFSET;
2222
2223         return 0;
2224 }
2225
2226 /*
2227  * IEEE80211 stack callback functions.
2228  */
2229 static int rt73usb_conf_tx(struct ieee80211_hw *hw,
2230                            struct ieee80211_vif *vif, u16 queue_idx,
2231                            const struct ieee80211_tx_queue_params *params)
2232 {
2233         struct rt2x00_dev *rt2x00dev = hw->priv;
2234         struct data_queue *queue;
2235         struct rt2x00_field32 field;
2236         int retval;
2237         u32 reg;
2238         u32 offset;
2239
2240         /*
2241          * First pass the configuration through rt2x00lib, that will
2242          * update the queue settings and validate the input. After that
2243          * we are free to update the registers based on the value
2244          * in the queue parameter.
2245          */
2246         retval = rt2x00mac_conf_tx(hw, vif, queue_idx, params);
2247         if (retval)
2248                 return retval;
2249
2250         /*
2251          * We only need to perform additional register initialization
2252          * for WMM queues/
2253          */
2254         if (queue_idx >= 4)
2255                 return 0;
2256
2257         queue = rt2x00queue_get_tx_queue(rt2x00dev, queue_idx);
2258
2259         /* Update WMM TXOP register */
2260         offset = AC_TXOP_CSR0 + (sizeof(u32) * (!!(queue_idx & 2)));
2261         field.bit_offset = (queue_idx & 1) * 16;
2262         field.bit_mask = 0xffff << field.bit_offset;
2263
2264         rt2x00usb_register_read(rt2x00dev, offset, &reg);
2265         rt2x00_set_field32(&reg, field, queue->txop);
2266         rt2x00usb_register_write(rt2x00dev, offset, reg);
2267
2268         /* Update WMM registers */
2269         field.bit_offset = queue_idx * 4;
2270         field.bit_mask = 0xf << field.bit_offset;
2271
2272         rt2x00usb_register_read(rt2x00dev, AIFSN_CSR, &reg);
2273         rt2x00_set_field32(&reg, field, queue->aifs);
2274         rt2x00usb_register_write(rt2x00dev, AIFSN_CSR, reg);
2275
2276         rt2x00usb_register_read(rt2x00dev, CWMIN_CSR, &reg);
2277         rt2x00_set_field32(&reg, field, queue->cw_min);
2278         rt2x00usb_register_write(rt2x00dev, CWMIN_CSR, reg);
2279
2280         rt2x00usb_register_read(rt2x00dev, CWMAX_CSR, &reg);
2281         rt2x00_set_field32(&reg, field, queue->cw_max);
2282         rt2x00usb_register_write(rt2x00dev, CWMAX_CSR, reg);
2283
2284         return 0;
2285 }
2286
2287 static u64 rt73usb_get_tsf(struct ieee80211_hw *hw, struct ieee80211_vif *vif)
2288 {
2289         struct rt2x00_dev *rt2x00dev = hw->priv;
2290         u64 tsf;
2291         u32 reg;
2292
2293         rt2x00usb_register_read(rt2x00dev, TXRX_CSR13, &reg);
2294         tsf = (u64) rt2x00_get_field32(reg, TXRX_CSR13_HIGH_TSFTIMER) << 32;
2295         rt2x00usb_register_read(rt2x00dev, TXRX_CSR12, &reg);
2296         tsf |= rt2x00_get_field32(reg, TXRX_CSR12_LOW_TSFTIMER);
2297
2298         return tsf;
2299 }
2300
2301 static const struct ieee80211_ops rt73usb_mac80211_ops = {
2302         .tx                     = rt2x00mac_tx,
2303         .start                  = rt2x00mac_start,
2304         .stop                   = rt2x00mac_stop,
2305         .add_interface          = rt2x00mac_add_interface,
2306         .remove_interface       = rt2x00mac_remove_interface,
2307         .config                 = rt2x00mac_config,
2308         .configure_filter       = rt2x00mac_configure_filter,
2309         .set_tim                = rt2x00mac_set_tim,
2310         .set_key                = rt2x00mac_set_key,
2311         .sw_scan_start          = rt2x00mac_sw_scan_start,
2312         .sw_scan_complete       = rt2x00mac_sw_scan_complete,
2313         .get_stats              = rt2x00mac_get_stats,
2314         .bss_info_changed       = rt2x00mac_bss_info_changed,
2315         .conf_tx                = rt73usb_conf_tx,
2316         .get_tsf                = rt73usb_get_tsf,
2317         .rfkill_poll            = rt2x00mac_rfkill_poll,
2318         .flush                  = rt2x00mac_flush,
2319         .set_antenna            = rt2x00mac_set_antenna,
2320         .get_antenna            = rt2x00mac_get_antenna,
2321         .get_ringparam          = rt2x00mac_get_ringparam,
2322         .tx_frames_pending      = rt2x00mac_tx_frames_pending,
2323 };
2324
2325 static const struct rt2x00lib_ops rt73usb_rt2x00_ops = {
2326         .probe_hw               = rt73usb_probe_hw,
2327         .get_firmware_name      = rt73usb_get_firmware_name,
2328         .check_firmware         = rt73usb_check_firmware,
2329         .load_firmware          = rt73usb_load_firmware,
2330         .initialize             = rt2x00usb_initialize,
2331         .uninitialize           = rt2x00usb_uninitialize,
2332         .clear_entry            = rt2x00usb_clear_entry,
2333         .set_device_state       = rt73usb_set_device_state,
2334         .rfkill_poll            = rt73usb_rfkill_poll,
2335         .link_stats             = rt73usb_link_stats,
2336         .reset_tuner            = rt73usb_reset_tuner,
2337         .link_tuner             = rt73usb_link_tuner,
2338         .watchdog               = rt2x00usb_watchdog,
2339         .start_queue            = rt73usb_start_queue,
2340         .kick_queue             = rt2x00usb_kick_queue,
2341         .stop_queue             = rt73usb_stop_queue,
2342         .flush_queue            = rt2x00usb_flush_queue,
2343         .write_tx_desc          = rt73usb_write_tx_desc,
2344         .write_beacon           = rt73usb_write_beacon,
2345         .clear_beacon           = rt73usb_clear_beacon,
2346         .get_tx_data_len        = rt73usb_get_tx_data_len,
2347         .fill_rxdone            = rt73usb_fill_rxdone,
2348         .config_shared_key      = rt73usb_config_shared_key,
2349         .config_pairwise_key    = rt73usb_config_pairwise_key,
2350         .config_filter          = rt73usb_config_filter,
2351         .config_intf            = rt73usb_config_intf,
2352         .config_erp             = rt73usb_config_erp,
2353         .config_ant             = rt73usb_config_ant,
2354         .config                 = rt73usb_config,
2355 };
2356
2357 static void rt73usb_queue_init(struct data_queue *queue)
2358 {
2359         switch (queue->qid) {
2360         case QID_RX:
2361                 queue->limit = 32;
2362                 queue->data_size = DATA_FRAME_SIZE;
2363                 queue->desc_size = RXD_DESC_SIZE;
2364                 queue->priv_size = sizeof(struct queue_entry_priv_usb);
2365                 break;
2366
2367         case QID_AC_VO:
2368         case QID_AC_VI:
2369         case QID_AC_BE:
2370         case QID_AC_BK:
2371                 queue->limit = 32;
2372                 queue->data_size = DATA_FRAME_SIZE;
2373                 queue->desc_size = TXD_DESC_SIZE;
2374                 queue->priv_size = sizeof(struct queue_entry_priv_usb);
2375                 break;
2376
2377         case QID_BEACON:
2378                 queue->limit = 4;
2379                 queue->data_size = MGMT_FRAME_SIZE;
2380                 queue->desc_size = TXINFO_SIZE;
2381                 queue->priv_size = sizeof(struct queue_entry_priv_usb);
2382                 break;
2383
2384         case QID_ATIM:
2385                 /* fallthrough */
2386         default:
2387                 BUG();
2388                 break;
2389         }
2390 }
2391
2392 static const struct rt2x00_ops rt73usb_ops = {
2393         .name                   = KBUILD_MODNAME,
2394         .max_ap_intf            = 4,
2395         .eeprom_size            = EEPROM_SIZE,
2396         .rf_size                = RF_SIZE,
2397         .tx_queues              = NUM_TX_QUEUES,
2398         .queue_init             = rt73usb_queue_init,
2399         .lib                    = &rt73usb_rt2x00_ops,
2400         .hw                     = &rt73usb_mac80211_ops,
2401 #ifdef CONFIG_RT2X00_LIB_DEBUGFS
2402         .debugfs                = &rt73usb_rt2x00debug,
2403 #endif /* CONFIG_RT2X00_LIB_DEBUGFS */
2404 };
2405
2406 /*
2407  * rt73usb module information.
2408  */
2409 static struct usb_device_id rt73usb_device_table[] = {
2410         /* AboCom */
2411         { USB_DEVICE(0x07b8, 0xb21b) },
2412         { USB_DEVICE(0x07b8, 0xb21c) },
2413         { USB_DEVICE(0x07b8, 0xb21d) },
2414         { USB_DEVICE(0x07b8, 0xb21e) },
2415         { USB_DEVICE(0x07b8, 0xb21f) },
2416         /* AL */
2417         { USB_DEVICE(0x14b2, 0x3c10) },
2418         /* Amigo */
2419         { USB_DEVICE(0x148f, 0x9021) },
2420         { USB_DEVICE(0x0eb0, 0x9021) },
2421         /* AMIT  */
2422         { USB_DEVICE(0x18c5, 0x0002) },
2423         /* Askey */
2424         { USB_DEVICE(0x1690, 0x0722) },
2425         /* ASUS */
2426         { USB_DEVICE(0x0b05, 0x1723) },
2427         { USB_DEVICE(0x0b05, 0x1724) },
2428         /* Belkin */
2429         { USB_DEVICE(0x050d, 0x7050) }, /* FCC ID: K7SF5D7050B ver. 3.x */
2430         { USB_DEVICE(0x050d, 0x705a) },
2431         { USB_DEVICE(0x050d, 0x905b) },
2432         { USB_DEVICE(0x050d, 0x905c) },
2433         /* Billionton */
2434         { USB_DEVICE(0x1631, 0xc019) },
2435         { USB_DEVICE(0x08dd, 0x0120) },
2436         /* Buffalo */
2437         { USB_DEVICE(0x0411, 0x00d8) },
2438         { USB_DEVICE(0x0411, 0x00d9) },
2439         { USB_DEVICE(0x0411, 0x00e6) },
2440         { USB_DEVICE(0x0411, 0x00f4) },
2441         { USB_DEVICE(0x0411, 0x0116) },
2442         { USB_DEVICE(0x0411, 0x0119) },
2443         { USB_DEVICE(0x0411, 0x0137) },
2444         /* CEIVA */
2445         { USB_DEVICE(0x178d, 0x02be) },
2446         /* CNet */
2447         { USB_DEVICE(0x1371, 0x9022) },
2448         { USB_DEVICE(0x1371, 0x9032) },
2449         /* Conceptronic */
2450         { USB_DEVICE(0x14b2, 0x3c22) },
2451         /* Corega */
2452         { USB_DEVICE(0x07aa, 0x002e) },
2453         /* D-Link */
2454         { USB_DEVICE(0x07d1, 0x3c03) },
2455         { USB_DEVICE(0x07d1, 0x3c04) },
2456         { USB_DEVICE(0x07d1, 0x3c06) },
2457         { USB_DEVICE(0x07d1, 0x3c07) },
2458         /* Edimax */
2459         { USB_DEVICE(0x7392, 0x7318) },
2460         { USB_DEVICE(0x7392, 0x7618) },
2461         /* EnGenius */
2462         { USB_DEVICE(0x1740, 0x3701) },
2463         /* Gemtek */
2464         { USB_DEVICE(0x15a9, 0x0004) },
2465         /* Gigabyte */
2466         { USB_DEVICE(0x1044, 0x8008) },
2467         { USB_DEVICE(0x1044, 0x800a) },
2468         /* Huawei-3Com */
2469         { USB_DEVICE(0x1472, 0x0009) },
2470         /* Hercules */
2471         { USB_DEVICE(0x06f8, 0xe002) },
2472         { USB_DEVICE(0x06f8, 0xe010) },
2473         { USB_DEVICE(0x06f8, 0xe020) },
2474         /* Linksys */
2475         { USB_DEVICE(0x13b1, 0x0020) },
2476         { USB_DEVICE(0x13b1, 0x0023) },
2477         { USB_DEVICE(0x13b1, 0x0028) },
2478         /* MSI */
2479         { USB_DEVICE(0x0db0, 0x4600) },
2480         { USB_DEVICE(0x0db0, 0x6877) },
2481         { USB_DEVICE(0x0db0, 0x6874) },
2482         { USB_DEVICE(0x0db0, 0xa861) },
2483         { USB_DEVICE(0x0db0, 0xa874) },
2484         /* Ovislink */
2485         { USB_DEVICE(0x1b75, 0x7318) },
2486         /* Ralink */
2487         { USB_DEVICE(0x04bb, 0x093d) },
2488         { USB_DEVICE(0x148f, 0x2573) },
2489         { USB_DEVICE(0x148f, 0x2671) },
2490         { USB_DEVICE(0x0812, 0x3101) },
2491         /* Qcom */
2492         { USB_DEVICE(0x18e8, 0x6196) },
2493         { USB_DEVICE(0x18e8, 0x6229) },
2494         { USB_DEVICE(0x18e8, 0x6238) },
2495         /* Samsung */
2496         { USB_DEVICE(0x04e8, 0x4471) },
2497         /* Senao */
2498         { USB_DEVICE(0x1740, 0x7100) },
2499         /* Sitecom */
2500         { USB_DEVICE(0x0df6, 0x0024) },
2501         { USB_DEVICE(0x0df6, 0x0027) },
2502         { USB_DEVICE(0x0df6, 0x002f) },
2503         { USB_DEVICE(0x0df6, 0x90ac) },
2504         { USB_DEVICE(0x0df6, 0x9712) },
2505         /* Surecom */
2506         { USB_DEVICE(0x0769, 0x31f3) },
2507         /* Tilgin */
2508         { USB_DEVICE(0x6933, 0x5001) },
2509         /* Philips */
2510         { USB_DEVICE(0x0471, 0x200a) },
2511         /* Planex */
2512         { USB_DEVICE(0x2019, 0xab01) },
2513         { USB_DEVICE(0x2019, 0xab50) },
2514         /* WideTell */
2515         { USB_DEVICE(0x7167, 0x3840) },
2516         /* Zcom */
2517         { USB_DEVICE(0x0cde, 0x001c) },
2518         /* ZyXEL */
2519         { USB_DEVICE(0x0586, 0x3415) },
2520         { 0, }
2521 };
2522
2523 MODULE_AUTHOR(DRV_PROJECT);
2524 MODULE_VERSION(DRV_VERSION);
2525 MODULE_DESCRIPTION("Ralink RT73 USB Wireless LAN driver.");
2526 MODULE_SUPPORTED_DEVICE("Ralink RT2571W & RT2671 USB chipset based cards");
2527 MODULE_DEVICE_TABLE(usb, rt73usb_device_table);
2528 MODULE_FIRMWARE(FIRMWARE_RT2571);
2529 MODULE_LICENSE("GPL");
2530
2531 static int rt73usb_probe(struct usb_interface *usb_intf,
2532                          const struct usb_device_id *id)
2533 {
2534         return rt2x00usb_probe(usb_intf, &rt73usb_ops);
2535 }
2536
2537 static struct usb_driver rt73usb_driver = {
2538         .name           = KBUILD_MODNAME,
2539         .id_table       = rt73usb_device_table,
2540         .probe          = rt73usb_probe,
2541         .disconnect     = rt2x00usb_disconnect,
2542         .suspend        = rt2x00usb_suspend,
2543         .resume         = rt2x00usb_resume,
2544         .reset_resume   = rt2x00usb_resume,
2545         .disable_hub_initiated_lpm = 1,
2546 };
2547
2548 module_usb_driver(rt73usb_driver);