zd1211rw: move under zydas vendor directory
[cascardo/linux.git] / drivers / net / wireless / zydas / zd1211rw / zd_usb.c
1 /* ZD1211 USB-WLAN driver for Linux
2  *
3  * Copyright (C) 2005-2007 Ulrich Kunitz <kune@deine-taler.de>
4  * Copyright (C) 2006-2007 Daniel Drake <dsd@gentoo.org>
5  * Copyright (C) 2006-2007 Michael Wu <flamingice@sourmilk.net>
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License as published by
9  * the Free Software Foundation; either version 2 of the License, or
10  * (at your option) any later version.
11  *
12  * This program is distributed in the hope that it will be useful,
13  * but WITHOUT ANY WARRANTY; without even the implied warranty of
14  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15  * GNU General Public License for more details.
16  *
17  * You should have received a copy of the GNU General Public License
18  * along with this program; if not, see <http://www.gnu.org/licenses/>.
19  */
20
21 #include <linux/kernel.h>
22 #include <linux/init.h>
23 #include <linux/firmware.h>
24 #include <linux/device.h>
25 #include <linux/errno.h>
26 #include <linux/slab.h>
27 #include <linux/skbuff.h>
28 #include <linux/usb.h>
29 #include <linux/workqueue.h>
30 #include <linux/module.h>
31 #include <net/mac80211.h>
32 #include <asm/unaligned.h>
33
34 #include "zd_def.h"
35 #include "zd_mac.h"
36 #include "zd_usb.h"
37
38 static struct usb_device_id usb_ids[] = {
39         /* ZD1211 */
40         { USB_DEVICE(0x0105, 0x145f), .driver_info = DEVICE_ZD1211 },
41         { USB_DEVICE(0x0586, 0x3401), .driver_info = DEVICE_ZD1211 },
42         { USB_DEVICE(0x0586, 0x3402), .driver_info = DEVICE_ZD1211 },
43         { USB_DEVICE(0x0586, 0x3407), .driver_info = DEVICE_ZD1211 },
44         { USB_DEVICE(0x0586, 0x3409), .driver_info = DEVICE_ZD1211 },
45         { USB_DEVICE(0x079b, 0x004a), .driver_info = DEVICE_ZD1211 },
46         { USB_DEVICE(0x07b8, 0x6001), .driver_info = DEVICE_ZD1211 },
47         { USB_DEVICE(0x0ace, 0x1211), .driver_info = DEVICE_ZD1211 },
48         { USB_DEVICE(0x0ace, 0xa211), .driver_info = DEVICE_ZD1211 },
49         { USB_DEVICE(0x0b05, 0x170c), .driver_info = DEVICE_ZD1211 },
50         { USB_DEVICE(0x0b3b, 0x1630), .driver_info = DEVICE_ZD1211 },
51         { USB_DEVICE(0x0b3b, 0x5630), .driver_info = DEVICE_ZD1211 },
52         { USB_DEVICE(0x0df6, 0x9071), .driver_info = DEVICE_ZD1211 },
53         { USB_DEVICE(0x0df6, 0x9075), .driver_info = DEVICE_ZD1211 },
54         { USB_DEVICE(0x126f, 0xa006), .driver_info = DEVICE_ZD1211 },
55         { USB_DEVICE(0x129b, 0x1666), .driver_info = DEVICE_ZD1211 },
56         { USB_DEVICE(0x13b1, 0x001e), .driver_info = DEVICE_ZD1211 },
57         { USB_DEVICE(0x1435, 0x0711), .driver_info = DEVICE_ZD1211 },
58         { USB_DEVICE(0x14ea, 0xab10), .driver_info = DEVICE_ZD1211 },
59         { USB_DEVICE(0x14ea, 0xab13), .driver_info = DEVICE_ZD1211 },
60         { USB_DEVICE(0x157e, 0x300a), .driver_info = DEVICE_ZD1211 },
61         { USB_DEVICE(0x157e, 0x300b), .driver_info = DEVICE_ZD1211 },
62         { USB_DEVICE(0x157e, 0x3204), .driver_info = DEVICE_ZD1211 },
63         { USB_DEVICE(0x157e, 0x3207), .driver_info = DEVICE_ZD1211 },
64         { USB_DEVICE(0x1740, 0x2000), .driver_info = DEVICE_ZD1211 },
65         { USB_DEVICE(0x6891, 0xa727), .driver_info = DEVICE_ZD1211 },
66         /* ZD1211B */
67         { USB_DEVICE(0x0053, 0x5301), .driver_info = DEVICE_ZD1211B },
68         { USB_DEVICE(0x0409, 0x0248), .driver_info = DEVICE_ZD1211B },
69         { USB_DEVICE(0x0411, 0x00da), .driver_info = DEVICE_ZD1211B },
70         { USB_DEVICE(0x0471, 0x1236), .driver_info = DEVICE_ZD1211B },
71         { USB_DEVICE(0x0471, 0x1237), .driver_info = DEVICE_ZD1211B },
72         { USB_DEVICE(0x050d, 0x705c), .driver_info = DEVICE_ZD1211B },
73         { USB_DEVICE(0x054c, 0x0257), .driver_info = DEVICE_ZD1211B },
74         { USB_DEVICE(0x0586, 0x340a), .driver_info = DEVICE_ZD1211B },
75         { USB_DEVICE(0x0586, 0x340f), .driver_info = DEVICE_ZD1211B },
76         { USB_DEVICE(0x0586, 0x3410), .driver_info = DEVICE_ZD1211B },
77         { USB_DEVICE(0x0586, 0x3412), .driver_info = DEVICE_ZD1211B },
78         { USB_DEVICE(0x0586, 0x3413), .driver_info = DEVICE_ZD1211B },
79         { USB_DEVICE(0x079b, 0x0062), .driver_info = DEVICE_ZD1211B },
80         { USB_DEVICE(0x07b8, 0x6001), .driver_info = DEVICE_ZD1211B },
81         { USB_DEVICE(0x07fa, 0x1196), .driver_info = DEVICE_ZD1211B },
82         { USB_DEVICE(0x083a, 0x4505), .driver_info = DEVICE_ZD1211B },
83         { USB_DEVICE(0x083a, 0xe501), .driver_info = DEVICE_ZD1211B },
84         { USB_DEVICE(0x083a, 0xe503), .driver_info = DEVICE_ZD1211B },
85         { USB_DEVICE(0x083a, 0xe506), .driver_info = DEVICE_ZD1211B },
86         { USB_DEVICE(0x0ace, 0x1215), .driver_info = DEVICE_ZD1211B },
87         { USB_DEVICE(0x0ace, 0xb215), .driver_info = DEVICE_ZD1211B },
88         { USB_DEVICE(0x0b05, 0x171b), .driver_info = DEVICE_ZD1211B },
89         { USB_DEVICE(0x0baf, 0x0121), .driver_info = DEVICE_ZD1211B },
90         { USB_DEVICE(0x0cde, 0x001a), .driver_info = DEVICE_ZD1211B },
91         { USB_DEVICE(0x0df6, 0x0036), .driver_info = DEVICE_ZD1211B },
92         { USB_DEVICE(0x129b, 0x1667), .driver_info = DEVICE_ZD1211B },
93         { USB_DEVICE(0x13b1, 0x0024), .driver_info = DEVICE_ZD1211B },
94         { USB_DEVICE(0x157e, 0x300d), .driver_info = DEVICE_ZD1211B },
95         { USB_DEVICE(0x1582, 0x6003), .driver_info = DEVICE_ZD1211B },
96         { USB_DEVICE(0x2019, 0x5303), .driver_info = DEVICE_ZD1211B },
97         { USB_DEVICE(0x2019, 0xed01), .driver_info = DEVICE_ZD1211B },
98         /* "Driverless" devices that need ejecting */
99         { USB_DEVICE(0x0ace, 0x2011), .driver_info = DEVICE_INSTALLER },
100         { USB_DEVICE(0x0ace, 0x20ff), .driver_info = DEVICE_INSTALLER },
101         {}
102 };
103
104 MODULE_LICENSE("GPL");
105 MODULE_DESCRIPTION("USB driver for devices with the ZD1211 chip.");
106 MODULE_AUTHOR("Ulrich Kunitz");
107 MODULE_AUTHOR("Daniel Drake");
108 MODULE_VERSION("1.0");
109 MODULE_DEVICE_TABLE(usb, usb_ids);
110
111 #define FW_ZD1211_PREFIX        "zd1211/zd1211_"
112 #define FW_ZD1211B_PREFIX       "zd1211/zd1211b_"
113
114 static bool check_read_regs(struct zd_usb *usb, struct usb_req_read_regs *req,
115                             unsigned int count);
116
117 /* USB device initialization */
118 static void int_urb_complete(struct urb *urb);
119
120 static int request_fw_file(
121         const struct firmware **fw, const char *name, struct device *device)
122 {
123         int r;
124
125         dev_dbg_f(device, "fw name %s\n", name);
126
127         r = request_firmware(fw, name, device);
128         if (r)
129                 dev_err(device,
130                        "Could not load firmware file %s. Error number %d\n",
131                        name, r);
132         return r;
133 }
134
135 static inline u16 get_bcdDevice(const struct usb_device *udev)
136 {
137         return le16_to_cpu(udev->descriptor.bcdDevice);
138 }
139
140 enum upload_code_flags {
141         REBOOT = 1,
142 };
143
144 /* Ensures that MAX_TRANSFER_SIZE is even. */
145 #define MAX_TRANSFER_SIZE (USB_MAX_TRANSFER_SIZE & ~1)
146
147 static int upload_code(struct usb_device *udev,
148         const u8 *data, size_t size, u16 code_offset, int flags)
149 {
150         u8 *p;
151         int r;
152
153         /* USB request blocks need "kmalloced" buffers.
154          */
155         p = kmalloc(MAX_TRANSFER_SIZE, GFP_KERNEL);
156         if (!p) {
157                 r = -ENOMEM;
158                 goto error;
159         }
160
161         size &= ~1;
162         while (size > 0) {
163                 size_t transfer_size = size <= MAX_TRANSFER_SIZE ?
164                         size : MAX_TRANSFER_SIZE;
165
166                 dev_dbg_f(&udev->dev, "transfer size %zu\n", transfer_size);
167
168                 memcpy(p, data, transfer_size);
169                 r = usb_control_msg(udev, usb_sndctrlpipe(udev, 0),
170                         USB_REQ_FIRMWARE_DOWNLOAD,
171                         USB_DIR_OUT | USB_TYPE_VENDOR,
172                         code_offset, 0, p, transfer_size, 1000 /* ms */);
173                 if (r < 0) {
174                         dev_err(&udev->dev,
175                                "USB control request for firmware upload"
176                                " failed. Error number %d\n", r);
177                         goto error;
178                 }
179                 transfer_size = r & ~1;
180
181                 size -= transfer_size;
182                 data += transfer_size;
183                 code_offset += transfer_size/sizeof(u16);
184         }
185
186         if (flags & REBOOT) {
187                 u8 ret;
188
189                 /* Use "DMA-aware" buffer. */
190                 r = usb_control_msg(udev, usb_rcvctrlpipe(udev, 0),
191                         USB_REQ_FIRMWARE_CONFIRM,
192                         USB_DIR_IN | USB_TYPE_VENDOR,
193                         0, 0, p, sizeof(ret), 5000 /* ms */);
194                 if (r != sizeof(ret)) {
195                         dev_err(&udev->dev,
196                                 "control request firmeware confirmation failed."
197                                 " Return value %d\n", r);
198                         if (r >= 0)
199                                 r = -ENODEV;
200                         goto error;
201                 }
202                 ret = p[0];
203                 if (ret & 0x80) {
204                         dev_err(&udev->dev,
205                                 "Internal error while downloading."
206                                 " Firmware confirm return value %#04x\n",
207                                 (unsigned int)ret);
208                         r = -ENODEV;
209                         goto error;
210                 }
211                 dev_dbg_f(&udev->dev, "firmware confirm return value %#04x\n",
212                         (unsigned int)ret);
213         }
214
215         r = 0;
216 error:
217         kfree(p);
218         return r;
219 }
220
221 static u16 get_word(const void *data, u16 offset)
222 {
223         const __le16 *p = data;
224         return le16_to_cpu(p[offset]);
225 }
226
227 static char *get_fw_name(struct zd_usb *usb, char *buffer, size_t size,
228                        const char* postfix)
229 {
230         scnprintf(buffer, size, "%s%s",
231                 usb->is_zd1211b ?
232                         FW_ZD1211B_PREFIX : FW_ZD1211_PREFIX,
233                 postfix);
234         return buffer;
235 }
236
237 static int handle_version_mismatch(struct zd_usb *usb,
238         const struct firmware *ub_fw)
239 {
240         struct usb_device *udev = zd_usb_to_usbdev(usb);
241         const struct firmware *ur_fw = NULL;
242         int offset;
243         int r = 0;
244         char fw_name[128];
245
246         r = request_fw_file(&ur_fw,
247                 get_fw_name(usb, fw_name, sizeof(fw_name), "ur"),
248                 &udev->dev);
249         if (r)
250                 goto error;
251
252         r = upload_code(udev, ur_fw->data, ur_fw->size, FW_START, REBOOT);
253         if (r)
254                 goto error;
255
256         offset = (E2P_BOOT_CODE_OFFSET * sizeof(u16));
257         r = upload_code(udev, ub_fw->data + offset, ub_fw->size - offset,
258                 E2P_START + E2P_BOOT_CODE_OFFSET, REBOOT);
259
260         /* At this point, the vendor driver downloads the whole firmware
261          * image, hacks around with version IDs, and uploads it again,
262          * completely overwriting the boot code. We do not do this here as
263          * it is not required on any tested devices, and it is suspected to
264          * cause problems. */
265 error:
266         release_firmware(ur_fw);
267         return r;
268 }
269
270 static int upload_firmware(struct zd_usb *usb)
271 {
272         int r;
273         u16 fw_bcdDevice;
274         u16 bcdDevice;
275         struct usb_device *udev = zd_usb_to_usbdev(usb);
276         const struct firmware *ub_fw = NULL;
277         const struct firmware *uph_fw = NULL;
278         char fw_name[128];
279
280         bcdDevice = get_bcdDevice(udev);
281
282         r = request_fw_file(&ub_fw,
283                 get_fw_name(usb, fw_name, sizeof(fw_name), "ub"),
284                 &udev->dev);
285         if (r)
286                 goto error;
287
288         fw_bcdDevice = get_word(ub_fw->data, E2P_DATA_OFFSET);
289
290         if (fw_bcdDevice != bcdDevice) {
291                 dev_info(&udev->dev,
292                         "firmware version %#06x and device bootcode version "
293                         "%#06x differ\n", fw_bcdDevice, bcdDevice);
294                 if (bcdDevice <= 0x4313)
295                         dev_warn(&udev->dev, "device has old bootcode, please "
296                                 "report success or failure\n");
297
298                 r = handle_version_mismatch(usb, ub_fw);
299                 if (r)
300                         goto error;
301         } else {
302                 dev_dbg_f(&udev->dev,
303                         "firmware device id %#06x is equal to the "
304                         "actual device id\n", fw_bcdDevice);
305         }
306
307
308         r = request_fw_file(&uph_fw,
309                 get_fw_name(usb, fw_name, sizeof(fw_name), "uphr"),
310                 &udev->dev);
311         if (r)
312                 goto error;
313
314         r = upload_code(udev, uph_fw->data, uph_fw->size, FW_START, REBOOT);
315         if (r) {
316                 dev_err(&udev->dev,
317                         "Could not upload firmware code uph. Error number %d\n",
318                         r);
319         }
320
321         /* FALL-THROUGH */
322 error:
323         release_firmware(ub_fw);
324         release_firmware(uph_fw);
325         return r;
326 }
327
328 MODULE_FIRMWARE(FW_ZD1211B_PREFIX "ur");
329 MODULE_FIRMWARE(FW_ZD1211_PREFIX "ur");
330 MODULE_FIRMWARE(FW_ZD1211B_PREFIX "ub");
331 MODULE_FIRMWARE(FW_ZD1211_PREFIX "ub");
332 MODULE_FIRMWARE(FW_ZD1211B_PREFIX "uphr");
333 MODULE_FIRMWARE(FW_ZD1211_PREFIX "uphr");
334
335 /* Read data from device address space using "firmware interface" which does
336  * not require firmware to be loaded. */
337 int zd_usb_read_fw(struct zd_usb *usb, zd_addr_t addr, u8 *data, u16 len)
338 {
339         int r;
340         struct usb_device *udev = zd_usb_to_usbdev(usb);
341         u8 *buf;
342
343         /* Use "DMA-aware" buffer. */
344         buf = kmalloc(len, GFP_KERNEL);
345         if (!buf)
346                 return -ENOMEM;
347         r = usb_control_msg(udev, usb_rcvctrlpipe(udev, 0),
348                 USB_REQ_FIRMWARE_READ_DATA, USB_DIR_IN | 0x40, addr, 0,
349                 buf, len, 5000);
350         if (r < 0) {
351                 dev_err(&udev->dev,
352                         "read over firmware interface failed: %d\n", r);
353                 goto exit;
354         } else if (r != len) {
355                 dev_err(&udev->dev,
356                         "incomplete read over firmware interface: %d/%d\n",
357                         r, len);
358                 r = -EIO;
359                 goto exit;
360         }
361         r = 0;
362         memcpy(data, buf, len);
363 exit:
364         kfree(buf);
365         return r;
366 }
367
368 #define urb_dev(urb) (&(urb)->dev->dev)
369
370 static inline void handle_regs_int_override(struct urb *urb)
371 {
372         struct zd_usb *usb = urb->context;
373         struct zd_usb_interrupt *intr = &usb->intr;
374
375         spin_lock(&intr->lock);
376         if (atomic_read(&intr->read_regs_enabled)) {
377                 atomic_set(&intr->read_regs_enabled, 0);
378                 intr->read_regs_int_overridden = 1;
379                 complete(&intr->read_regs.completion);
380         }
381         spin_unlock(&intr->lock);
382 }
383
384 static inline void handle_regs_int(struct urb *urb)
385 {
386         struct zd_usb *usb = urb->context;
387         struct zd_usb_interrupt *intr = &usb->intr;
388         int len;
389         u16 int_num;
390
391         ZD_ASSERT(in_interrupt());
392         spin_lock(&intr->lock);
393
394         int_num = le16_to_cpu(*(__le16 *)(urb->transfer_buffer+2));
395         if (int_num == CR_INTERRUPT) {
396                 struct zd_mac *mac = zd_hw_mac(zd_usb_to_hw(urb->context));
397                 spin_lock(&mac->lock);
398                 memcpy(&mac->intr_buffer, urb->transfer_buffer,
399                                 USB_MAX_EP_INT_BUFFER);
400                 spin_unlock(&mac->lock);
401                 schedule_work(&mac->process_intr);
402         } else if (atomic_read(&intr->read_regs_enabled)) {
403                 len = urb->actual_length;
404                 intr->read_regs.length = urb->actual_length;
405                 if (len > sizeof(intr->read_regs.buffer))
406                         len = sizeof(intr->read_regs.buffer);
407
408                 memcpy(intr->read_regs.buffer, urb->transfer_buffer, len);
409
410                 /* Sometimes USB_INT_ID_REGS is not overridden, but comes after
411                  * USB_INT_ID_RETRY_FAILED. Read-reg retry then gets this
412                  * delayed USB_INT_ID_REGS, but leaves USB_INT_ID_REGS of
413                  * retry unhandled. Next read-reg command then might catch
414                  * this wrong USB_INT_ID_REGS. Fix by ignoring wrong reads.
415                  */
416                 if (!check_read_regs(usb, intr->read_regs.req,
417                                                 intr->read_regs.req_count))
418                         goto out;
419
420                 atomic_set(&intr->read_regs_enabled, 0);
421                 intr->read_regs_int_overridden = 0;
422                 complete(&intr->read_regs.completion);
423
424                 goto out;
425         }
426
427 out:
428         spin_unlock(&intr->lock);
429
430         /* CR_INTERRUPT might override read_reg too. */
431         if (int_num == CR_INTERRUPT && atomic_read(&intr->read_regs_enabled))
432                 handle_regs_int_override(urb);
433 }
434
435 static void int_urb_complete(struct urb *urb)
436 {
437         int r;
438         struct usb_int_header *hdr;
439         struct zd_usb *usb;
440         struct zd_usb_interrupt *intr;
441
442         switch (urb->status) {
443         case 0:
444                 break;
445         case -ESHUTDOWN:
446         case -EINVAL:
447         case -ENODEV:
448         case -ENOENT:
449         case -ECONNRESET:
450         case -EPIPE:
451                 dev_dbg_f(urb_dev(urb), "urb %p error %d\n", urb, urb->status);
452                 return;
453         default:
454                 dev_dbg_f(urb_dev(urb), "urb %p error %d\n", urb, urb->status);
455                 goto resubmit;
456         }
457
458         if (urb->actual_length < sizeof(hdr)) {
459                 dev_dbg_f(urb_dev(urb), "error: urb %p to small\n", urb);
460                 goto resubmit;
461         }
462
463         hdr = urb->transfer_buffer;
464         if (hdr->type != USB_INT_TYPE) {
465                 dev_dbg_f(urb_dev(urb), "error: urb %p wrong type\n", urb);
466                 goto resubmit;
467         }
468
469         /* USB_INT_ID_RETRY_FAILED triggered by tx-urb submit can override
470          * pending USB_INT_ID_REGS causing read command timeout.
471          */
472         usb = urb->context;
473         intr = &usb->intr;
474         if (hdr->id != USB_INT_ID_REGS && atomic_read(&intr->read_regs_enabled))
475                 handle_regs_int_override(urb);
476
477         switch (hdr->id) {
478         case USB_INT_ID_REGS:
479                 handle_regs_int(urb);
480                 break;
481         case USB_INT_ID_RETRY_FAILED:
482                 zd_mac_tx_failed(urb);
483                 break;
484         default:
485                 dev_dbg_f(urb_dev(urb), "error: urb %p unknown id %x\n", urb,
486                         (unsigned int)hdr->id);
487                 goto resubmit;
488         }
489
490 resubmit:
491         r = usb_submit_urb(urb, GFP_ATOMIC);
492         if (r) {
493                 dev_dbg_f(urb_dev(urb), "error: resubmit urb %p err code %d\n",
494                           urb, r);
495                 /* TODO: add worker to reset intr->urb */
496         }
497         return;
498 }
499
500 static inline int int_urb_interval(struct usb_device *udev)
501 {
502         switch (udev->speed) {
503         case USB_SPEED_HIGH:
504                 return 4;
505         case USB_SPEED_LOW:
506                 return 10;
507         case USB_SPEED_FULL:
508         default:
509                 return 1;
510         }
511 }
512
513 static inline int usb_int_enabled(struct zd_usb *usb)
514 {
515         unsigned long flags;
516         struct zd_usb_interrupt *intr = &usb->intr;
517         struct urb *urb;
518
519         spin_lock_irqsave(&intr->lock, flags);
520         urb = intr->urb;
521         spin_unlock_irqrestore(&intr->lock, flags);
522         return urb != NULL;
523 }
524
525 int zd_usb_enable_int(struct zd_usb *usb)
526 {
527         int r;
528         struct usb_device *udev = zd_usb_to_usbdev(usb);
529         struct zd_usb_interrupt *intr = &usb->intr;
530         struct urb *urb;
531
532         dev_dbg_f(zd_usb_dev(usb), "\n");
533
534         urb = usb_alloc_urb(0, GFP_KERNEL);
535         if (!urb) {
536                 r = -ENOMEM;
537                 goto out;
538         }
539
540         ZD_ASSERT(!irqs_disabled());
541         spin_lock_irq(&intr->lock);
542         if (intr->urb) {
543                 spin_unlock_irq(&intr->lock);
544                 r = 0;
545                 goto error_free_urb;
546         }
547         intr->urb = urb;
548         spin_unlock_irq(&intr->lock);
549
550         r = -ENOMEM;
551         intr->buffer = usb_alloc_coherent(udev, USB_MAX_EP_INT_BUFFER,
552                                           GFP_KERNEL, &intr->buffer_dma);
553         if (!intr->buffer) {
554                 dev_dbg_f(zd_usb_dev(usb),
555                         "couldn't allocate transfer_buffer\n");
556                 goto error_set_urb_null;
557         }
558
559         usb_fill_int_urb(urb, udev, usb_rcvintpipe(udev, EP_INT_IN),
560                          intr->buffer, USB_MAX_EP_INT_BUFFER,
561                          int_urb_complete, usb,
562                          intr->interval);
563         urb->transfer_dma = intr->buffer_dma;
564         urb->transfer_flags |= URB_NO_TRANSFER_DMA_MAP;
565
566         dev_dbg_f(zd_usb_dev(usb), "submit urb %p\n", intr->urb);
567         r = usb_submit_urb(urb, GFP_KERNEL);
568         if (r) {
569                 dev_dbg_f(zd_usb_dev(usb),
570                          "Couldn't submit urb. Error number %d\n", r);
571                 goto error;
572         }
573
574         return 0;
575 error:
576         usb_free_coherent(udev, USB_MAX_EP_INT_BUFFER,
577                           intr->buffer, intr->buffer_dma);
578 error_set_urb_null:
579         spin_lock_irq(&intr->lock);
580         intr->urb = NULL;
581         spin_unlock_irq(&intr->lock);
582 error_free_urb:
583         usb_free_urb(urb);
584 out:
585         return r;
586 }
587
588 void zd_usb_disable_int(struct zd_usb *usb)
589 {
590         unsigned long flags;
591         struct usb_device *udev = zd_usb_to_usbdev(usb);
592         struct zd_usb_interrupt *intr = &usb->intr;
593         struct urb *urb;
594         void *buffer;
595         dma_addr_t buffer_dma;
596
597         spin_lock_irqsave(&intr->lock, flags);
598         urb = intr->urb;
599         if (!urb) {
600                 spin_unlock_irqrestore(&intr->lock, flags);
601                 return;
602         }
603         intr->urb = NULL;
604         buffer = intr->buffer;
605         buffer_dma = intr->buffer_dma;
606         intr->buffer = NULL;
607         spin_unlock_irqrestore(&intr->lock, flags);
608
609         usb_kill_urb(urb);
610         dev_dbg_f(zd_usb_dev(usb), "urb %p killed\n", urb);
611         usb_free_urb(urb);
612
613         if (buffer)
614                 usb_free_coherent(udev, USB_MAX_EP_INT_BUFFER,
615                                   buffer, buffer_dma);
616 }
617
618 static void handle_rx_packet(struct zd_usb *usb, const u8 *buffer,
619                              unsigned int length)
620 {
621         int i;
622         const struct rx_length_info *length_info;
623
624         if (length < sizeof(struct rx_length_info)) {
625                 /* It's not a complete packet anyhow. */
626                 dev_dbg_f(zd_usb_dev(usb), "invalid, small RX packet : %d\n",
627                                            length);
628                 return;
629         }
630         length_info = (struct rx_length_info *)
631                 (buffer + length - sizeof(struct rx_length_info));
632
633         /* It might be that three frames are merged into a single URB
634          * transaction. We have to check for the length info tag.
635          *
636          * While testing we discovered that length_info might be unaligned,
637          * because if USB transactions are merged, the last packet will not
638          * be padded. Unaligned access might also happen if the length_info
639          * structure is not present.
640          */
641         if (get_unaligned_le16(&length_info->tag) == RX_LENGTH_INFO_TAG)
642         {
643                 unsigned int l, k, n;
644                 for (i = 0, l = 0;; i++) {
645                         k = get_unaligned_le16(&length_info->length[i]);
646                         if (k == 0)
647                                 return;
648                         n = l+k;
649                         if (n > length)
650                                 return;
651                         zd_mac_rx(zd_usb_to_hw(usb), buffer+l, k);
652                         if (i >= 2)
653                                 return;
654                         l = (n+3) & ~3;
655                 }
656         } else {
657                 zd_mac_rx(zd_usb_to_hw(usb), buffer, length);
658         }
659 }
660
661 static void rx_urb_complete(struct urb *urb)
662 {
663         int r;
664         struct zd_usb *usb;
665         struct zd_usb_rx *rx;
666         const u8 *buffer;
667         unsigned int length;
668
669         switch (urb->status) {
670         case 0:
671                 break;
672         case -ESHUTDOWN:
673         case -EINVAL:
674         case -ENODEV:
675         case -ENOENT:
676         case -ECONNRESET:
677         case -EPIPE:
678                 dev_dbg_f(urb_dev(urb), "urb %p error %d\n", urb, urb->status);
679                 return;
680         default:
681                 dev_dbg_f(urb_dev(urb), "urb %p error %d\n", urb, urb->status);
682                 goto resubmit;
683         }
684
685         buffer = urb->transfer_buffer;
686         length = urb->actual_length;
687         usb = urb->context;
688         rx = &usb->rx;
689
690         tasklet_schedule(&rx->reset_timer_tasklet);
691
692         if (length%rx->usb_packet_size > rx->usb_packet_size-4) {
693                 /* If there is an old first fragment, we don't care. */
694                 dev_dbg_f(urb_dev(urb), "*** first fragment ***\n");
695                 ZD_ASSERT(length <= ARRAY_SIZE(rx->fragment));
696                 spin_lock(&rx->lock);
697                 memcpy(rx->fragment, buffer, length);
698                 rx->fragment_length = length;
699                 spin_unlock(&rx->lock);
700                 goto resubmit;
701         }
702
703         spin_lock(&rx->lock);
704         if (rx->fragment_length > 0) {
705                 /* We are on a second fragment, we believe */
706                 ZD_ASSERT(length + rx->fragment_length <=
707                           ARRAY_SIZE(rx->fragment));
708                 dev_dbg_f(urb_dev(urb), "*** second fragment ***\n");
709                 memcpy(rx->fragment+rx->fragment_length, buffer, length);
710                 handle_rx_packet(usb, rx->fragment,
711                                  rx->fragment_length + length);
712                 rx->fragment_length = 0;
713                 spin_unlock(&rx->lock);
714         } else {
715                 spin_unlock(&rx->lock);
716                 handle_rx_packet(usb, buffer, length);
717         }
718
719 resubmit:
720         r = usb_submit_urb(urb, GFP_ATOMIC);
721         if (r)
722                 dev_dbg_f(urb_dev(urb), "urb %p resubmit error %d\n", urb, r);
723 }
724
725 static struct urb *alloc_rx_urb(struct zd_usb *usb)
726 {
727         struct usb_device *udev = zd_usb_to_usbdev(usb);
728         struct urb *urb;
729         void *buffer;
730
731         urb = usb_alloc_urb(0, GFP_KERNEL);
732         if (!urb)
733                 return NULL;
734         buffer = usb_alloc_coherent(udev, USB_MAX_RX_SIZE, GFP_KERNEL,
735                                     &urb->transfer_dma);
736         if (!buffer) {
737                 usb_free_urb(urb);
738                 return NULL;
739         }
740
741         usb_fill_bulk_urb(urb, udev, usb_rcvbulkpipe(udev, EP_DATA_IN),
742                           buffer, USB_MAX_RX_SIZE,
743                           rx_urb_complete, usb);
744         urb->transfer_flags |= URB_NO_TRANSFER_DMA_MAP;
745
746         return urb;
747 }
748
749 static void free_rx_urb(struct urb *urb)
750 {
751         if (!urb)
752                 return;
753         usb_free_coherent(urb->dev, urb->transfer_buffer_length,
754                           urb->transfer_buffer, urb->transfer_dma);
755         usb_free_urb(urb);
756 }
757
758 static int __zd_usb_enable_rx(struct zd_usb *usb)
759 {
760         int i, r;
761         struct zd_usb_rx *rx = &usb->rx;
762         struct urb **urbs;
763
764         dev_dbg_f(zd_usb_dev(usb), "\n");
765
766         r = -ENOMEM;
767         urbs = kcalloc(RX_URBS_COUNT, sizeof(struct urb *), GFP_KERNEL);
768         if (!urbs)
769                 goto error;
770         for (i = 0; i < RX_URBS_COUNT; i++) {
771                 urbs[i] = alloc_rx_urb(usb);
772                 if (!urbs[i])
773                         goto error;
774         }
775
776         ZD_ASSERT(!irqs_disabled());
777         spin_lock_irq(&rx->lock);
778         if (rx->urbs) {
779                 spin_unlock_irq(&rx->lock);
780                 r = 0;
781                 goto error;
782         }
783         rx->urbs = urbs;
784         rx->urbs_count = RX_URBS_COUNT;
785         spin_unlock_irq(&rx->lock);
786
787         for (i = 0; i < RX_URBS_COUNT; i++) {
788                 r = usb_submit_urb(urbs[i], GFP_KERNEL);
789                 if (r)
790                         goto error_submit;
791         }
792
793         return 0;
794 error_submit:
795         for (i = 0; i < RX_URBS_COUNT; i++) {
796                 usb_kill_urb(urbs[i]);
797         }
798         spin_lock_irq(&rx->lock);
799         rx->urbs = NULL;
800         rx->urbs_count = 0;
801         spin_unlock_irq(&rx->lock);
802 error:
803         if (urbs) {
804                 for (i = 0; i < RX_URBS_COUNT; i++)
805                         free_rx_urb(urbs[i]);
806         }
807         return r;
808 }
809
810 int zd_usb_enable_rx(struct zd_usb *usb)
811 {
812         int r;
813         struct zd_usb_rx *rx = &usb->rx;
814
815         mutex_lock(&rx->setup_mutex);
816         r = __zd_usb_enable_rx(usb);
817         mutex_unlock(&rx->setup_mutex);
818
819         zd_usb_reset_rx_idle_timer(usb);
820
821         return r;
822 }
823
824 static void __zd_usb_disable_rx(struct zd_usb *usb)
825 {
826         int i;
827         unsigned long flags;
828         struct urb **urbs;
829         unsigned int count;
830         struct zd_usb_rx *rx = &usb->rx;
831
832         spin_lock_irqsave(&rx->lock, flags);
833         urbs = rx->urbs;
834         count = rx->urbs_count;
835         spin_unlock_irqrestore(&rx->lock, flags);
836         if (!urbs)
837                 return;
838
839         for (i = 0; i < count; i++) {
840                 usb_kill_urb(urbs[i]);
841                 free_rx_urb(urbs[i]);
842         }
843         kfree(urbs);
844
845         spin_lock_irqsave(&rx->lock, flags);
846         rx->urbs = NULL;
847         rx->urbs_count = 0;
848         spin_unlock_irqrestore(&rx->lock, flags);
849 }
850
851 void zd_usb_disable_rx(struct zd_usb *usb)
852 {
853         struct zd_usb_rx *rx = &usb->rx;
854
855         mutex_lock(&rx->setup_mutex);
856         __zd_usb_disable_rx(usb);
857         mutex_unlock(&rx->setup_mutex);
858
859         tasklet_kill(&rx->reset_timer_tasklet);
860         cancel_delayed_work_sync(&rx->idle_work);
861 }
862
863 static void zd_usb_reset_rx(struct zd_usb *usb)
864 {
865         bool do_reset;
866         struct zd_usb_rx *rx = &usb->rx;
867         unsigned long flags;
868
869         mutex_lock(&rx->setup_mutex);
870
871         spin_lock_irqsave(&rx->lock, flags);
872         do_reset = rx->urbs != NULL;
873         spin_unlock_irqrestore(&rx->lock, flags);
874
875         if (do_reset) {
876                 __zd_usb_disable_rx(usb);
877                 __zd_usb_enable_rx(usb);
878         }
879
880         mutex_unlock(&rx->setup_mutex);
881
882         if (do_reset)
883                 zd_usb_reset_rx_idle_timer(usb);
884 }
885
886 /**
887  * zd_usb_disable_tx - disable transmission
888  * @usb: the zd1211rw-private USB structure
889  *
890  * Frees all URBs in the free list and marks the transmission as disabled.
891  */
892 void zd_usb_disable_tx(struct zd_usb *usb)
893 {
894         struct zd_usb_tx *tx = &usb->tx;
895         unsigned long flags;
896
897         atomic_set(&tx->enabled, 0);
898
899         /* kill all submitted tx-urbs */
900         usb_kill_anchored_urbs(&tx->submitted);
901
902         spin_lock_irqsave(&tx->lock, flags);
903         WARN_ON(!skb_queue_empty(&tx->submitted_skbs));
904         WARN_ON(tx->submitted_urbs != 0);
905         tx->submitted_urbs = 0;
906         spin_unlock_irqrestore(&tx->lock, flags);
907
908         /* The stopped state is ignored, relying on ieee80211_wake_queues()
909          * in a potentionally following zd_usb_enable_tx().
910          */
911 }
912
913 /**
914  * zd_usb_enable_tx - enables transmission
915  * @usb: a &struct zd_usb pointer
916  *
917  * This function enables transmission and prepares the &zd_usb_tx data
918  * structure.
919  */
920 void zd_usb_enable_tx(struct zd_usb *usb)
921 {
922         unsigned long flags;
923         struct zd_usb_tx *tx = &usb->tx;
924
925         spin_lock_irqsave(&tx->lock, flags);
926         atomic_set(&tx->enabled, 1);
927         tx->submitted_urbs = 0;
928         ieee80211_wake_queues(zd_usb_to_hw(usb));
929         tx->stopped = 0;
930         spin_unlock_irqrestore(&tx->lock, flags);
931 }
932
933 static void tx_dec_submitted_urbs(struct zd_usb *usb)
934 {
935         struct zd_usb_tx *tx = &usb->tx;
936         unsigned long flags;
937
938         spin_lock_irqsave(&tx->lock, flags);
939         --tx->submitted_urbs;
940         if (tx->stopped && tx->submitted_urbs <= ZD_USB_TX_LOW) {
941                 ieee80211_wake_queues(zd_usb_to_hw(usb));
942                 tx->stopped = 0;
943         }
944         spin_unlock_irqrestore(&tx->lock, flags);
945 }
946
947 static void tx_inc_submitted_urbs(struct zd_usb *usb)
948 {
949         struct zd_usb_tx *tx = &usb->tx;
950         unsigned long flags;
951
952         spin_lock_irqsave(&tx->lock, flags);
953         ++tx->submitted_urbs;
954         if (!tx->stopped && tx->submitted_urbs > ZD_USB_TX_HIGH) {
955                 ieee80211_stop_queues(zd_usb_to_hw(usb));
956                 tx->stopped = 1;
957         }
958         spin_unlock_irqrestore(&tx->lock, flags);
959 }
960
961 /**
962  * tx_urb_complete - completes the execution of an URB
963  * @urb: a URB
964  *
965  * This function is called if the URB has been transferred to a device or an
966  * error has happened.
967  */
968 static void tx_urb_complete(struct urb *urb)
969 {
970         int r;
971         struct sk_buff *skb;
972         struct ieee80211_tx_info *info;
973         struct zd_usb *usb;
974         struct zd_usb_tx *tx;
975
976         skb = (struct sk_buff *)urb->context;
977         info = IEEE80211_SKB_CB(skb);
978         /*
979          * grab 'usb' pointer before handing off the skb (since
980          * it might be freed by zd_mac_tx_to_dev or mac80211)
981          */
982         usb = &zd_hw_mac(info->rate_driver_data[0])->chip.usb;
983         tx = &usb->tx;
984
985         switch (urb->status) {
986         case 0:
987                 break;
988         case -ESHUTDOWN:
989         case -EINVAL:
990         case -ENODEV:
991         case -ENOENT:
992         case -ECONNRESET:
993         case -EPIPE:
994                 dev_dbg_f(urb_dev(urb), "urb %p error %d\n", urb, urb->status);
995                 break;
996         default:
997                 dev_dbg_f(urb_dev(urb), "urb %p error %d\n", urb, urb->status);
998                 goto resubmit;
999         }
1000 free_urb:
1001         skb_unlink(skb, &usb->tx.submitted_skbs);
1002         zd_mac_tx_to_dev(skb, urb->status);
1003         usb_free_urb(urb);
1004         tx_dec_submitted_urbs(usb);
1005         return;
1006 resubmit:
1007         usb_anchor_urb(urb, &tx->submitted);
1008         r = usb_submit_urb(urb, GFP_ATOMIC);
1009         if (r) {
1010                 usb_unanchor_urb(urb);
1011                 dev_dbg_f(urb_dev(urb), "error resubmit urb %p %d\n", urb, r);
1012                 goto free_urb;
1013         }
1014 }
1015
1016 /**
1017  * zd_usb_tx: initiates transfer of a frame of the device
1018  *
1019  * @usb: the zd1211rw-private USB structure
1020  * @skb: a &struct sk_buff pointer
1021  *
1022  * This function tranmits a frame to the device. It doesn't wait for
1023  * completion. The frame must contain the control set and have all the
1024  * control set information available.
1025  *
1026  * The function returns 0 if the transfer has been successfully initiated.
1027  */
1028 int zd_usb_tx(struct zd_usb *usb, struct sk_buff *skb)
1029 {
1030         int r;
1031         struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
1032         struct usb_device *udev = zd_usb_to_usbdev(usb);
1033         struct urb *urb;
1034         struct zd_usb_tx *tx = &usb->tx;
1035
1036         if (!atomic_read(&tx->enabled)) {
1037                 r = -ENOENT;
1038                 goto out;
1039         }
1040
1041         urb = usb_alloc_urb(0, GFP_ATOMIC);
1042         if (!urb) {
1043                 r = -ENOMEM;
1044                 goto out;
1045         }
1046
1047         usb_fill_bulk_urb(urb, udev, usb_sndbulkpipe(udev, EP_DATA_OUT),
1048                           skb->data, skb->len, tx_urb_complete, skb);
1049
1050         info->rate_driver_data[1] = (void *)jiffies;
1051         skb_queue_tail(&tx->submitted_skbs, skb);
1052         usb_anchor_urb(urb, &tx->submitted);
1053
1054         r = usb_submit_urb(urb, GFP_ATOMIC);
1055         if (r) {
1056                 dev_dbg_f(zd_usb_dev(usb), "error submit urb %p %d\n", urb, r);
1057                 usb_unanchor_urb(urb);
1058                 skb_unlink(skb, &tx->submitted_skbs);
1059                 goto error;
1060         }
1061         tx_inc_submitted_urbs(usb);
1062         return 0;
1063 error:
1064         usb_free_urb(urb);
1065 out:
1066         return r;
1067 }
1068
1069 static bool zd_tx_timeout(struct zd_usb *usb)
1070 {
1071         struct zd_usb_tx *tx = &usb->tx;
1072         struct sk_buff_head *q = &tx->submitted_skbs;
1073         struct sk_buff *skb, *skbnext;
1074         struct ieee80211_tx_info *info;
1075         unsigned long flags, trans_start;
1076         bool have_timedout = false;
1077
1078         spin_lock_irqsave(&q->lock, flags);
1079         skb_queue_walk_safe(q, skb, skbnext) {
1080                 info = IEEE80211_SKB_CB(skb);
1081                 trans_start = (unsigned long)info->rate_driver_data[1];
1082
1083                 if (time_is_before_jiffies(trans_start + ZD_TX_TIMEOUT)) {
1084                         have_timedout = true;
1085                         break;
1086                 }
1087         }
1088         spin_unlock_irqrestore(&q->lock, flags);
1089
1090         return have_timedout;
1091 }
1092
1093 static void zd_tx_watchdog_handler(struct work_struct *work)
1094 {
1095         struct zd_usb *usb =
1096                 container_of(work, struct zd_usb, tx.watchdog_work.work);
1097         struct zd_usb_tx *tx = &usb->tx;
1098
1099         if (!atomic_read(&tx->enabled) || !tx->watchdog_enabled)
1100                 goto out;
1101         if (!zd_tx_timeout(usb))
1102                 goto out;
1103
1104         /* TX halted, try reset */
1105         dev_warn(zd_usb_dev(usb), "TX-stall detected, resetting device...");
1106
1107         usb_queue_reset_device(usb->intf);
1108
1109         /* reset will stop this worker, don't rearm */
1110         return;
1111 out:
1112         queue_delayed_work(zd_workqueue, &tx->watchdog_work,
1113                            ZD_TX_WATCHDOG_INTERVAL);
1114 }
1115
1116 void zd_tx_watchdog_enable(struct zd_usb *usb)
1117 {
1118         struct zd_usb_tx *tx = &usb->tx;
1119
1120         if (!tx->watchdog_enabled) {
1121                 dev_dbg_f(zd_usb_dev(usb), "\n");
1122                 queue_delayed_work(zd_workqueue, &tx->watchdog_work,
1123                                    ZD_TX_WATCHDOG_INTERVAL);
1124                 tx->watchdog_enabled = 1;
1125         }
1126 }
1127
1128 void zd_tx_watchdog_disable(struct zd_usb *usb)
1129 {
1130         struct zd_usb_tx *tx = &usb->tx;
1131
1132         if (tx->watchdog_enabled) {
1133                 dev_dbg_f(zd_usb_dev(usb), "\n");
1134                 tx->watchdog_enabled = 0;
1135                 cancel_delayed_work_sync(&tx->watchdog_work);
1136         }
1137 }
1138
1139 static void zd_rx_idle_timer_handler(struct work_struct *work)
1140 {
1141         struct zd_usb *usb =
1142                 container_of(work, struct zd_usb, rx.idle_work.work);
1143         struct zd_mac *mac = zd_usb_to_mac(usb);
1144
1145         if (!test_bit(ZD_DEVICE_RUNNING, &mac->flags))
1146                 return;
1147
1148         dev_dbg_f(zd_usb_dev(usb), "\n");
1149
1150         /* 30 seconds since last rx, reset rx */
1151         zd_usb_reset_rx(usb);
1152 }
1153
1154 static void zd_usb_reset_rx_idle_timer_tasklet(unsigned long param)
1155 {
1156         struct zd_usb *usb = (struct zd_usb *)param;
1157
1158         zd_usb_reset_rx_idle_timer(usb);
1159 }
1160
1161 void zd_usb_reset_rx_idle_timer(struct zd_usb *usb)
1162 {
1163         struct zd_usb_rx *rx = &usb->rx;
1164
1165         mod_delayed_work(zd_workqueue, &rx->idle_work, ZD_RX_IDLE_INTERVAL);
1166 }
1167
1168 static inline void init_usb_interrupt(struct zd_usb *usb)
1169 {
1170         struct zd_usb_interrupt *intr = &usb->intr;
1171
1172         spin_lock_init(&intr->lock);
1173         intr->interval = int_urb_interval(zd_usb_to_usbdev(usb));
1174         init_completion(&intr->read_regs.completion);
1175         atomic_set(&intr->read_regs_enabled, 0);
1176         intr->read_regs.cr_int_addr = cpu_to_le16((u16)CR_INTERRUPT);
1177 }
1178
1179 static inline void init_usb_rx(struct zd_usb *usb)
1180 {
1181         struct zd_usb_rx *rx = &usb->rx;
1182
1183         spin_lock_init(&rx->lock);
1184         mutex_init(&rx->setup_mutex);
1185         if (interface_to_usbdev(usb->intf)->speed == USB_SPEED_HIGH) {
1186                 rx->usb_packet_size = 512;
1187         } else {
1188                 rx->usb_packet_size = 64;
1189         }
1190         ZD_ASSERT(rx->fragment_length == 0);
1191         INIT_DELAYED_WORK(&rx->idle_work, zd_rx_idle_timer_handler);
1192         rx->reset_timer_tasklet.func = zd_usb_reset_rx_idle_timer_tasklet;
1193         rx->reset_timer_tasklet.data = (unsigned long)usb;
1194 }
1195
1196 static inline void init_usb_tx(struct zd_usb *usb)
1197 {
1198         struct zd_usb_tx *tx = &usb->tx;
1199
1200         spin_lock_init(&tx->lock);
1201         atomic_set(&tx->enabled, 0);
1202         tx->stopped = 0;
1203         skb_queue_head_init(&tx->submitted_skbs);
1204         init_usb_anchor(&tx->submitted);
1205         tx->submitted_urbs = 0;
1206         tx->watchdog_enabled = 0;
1207         INIT_DELAYED_WORK(&tx->watchdog_work, zd_tx_watchdog_handler);
1208 }
1209
1210 void zd_usb_init(struct zd_usb *usb, struct ieee80211_hw *hw,
1211                  struct usb_interface *intf)
1212 {
1213         memset(usb, 0, sizeof(*usb));
1214         usb->intf = usb_get_intf(intf);
1215         usb_set_intfdata(usb->intf, hw);
1216         init_usb_anchor(&usb->submitted_cmds);
1217         init_usb_interrupt(usb);
1218         init_usb_tx(usb);
1219         init_usb_rx(usb);
1220 }
1221
1222 void zd_usb_clear(struct zd_usb *usb)
1223 {
1224         usb_set_intfdata(usb->intf, NULL);
1225         usb_put_intf(usb->intf);
1226         ZD_MEMCLEAR(usb, sizeof(*usb));
1227         /* FIXME: usb_interrupt, usb_tx, usb_rx? */
1228 }
1229
1230 static const char *speed(enum usb_device_speed speed)
1231 {
1232         switch (speed) {
1233         case USB_SPEED_LOW:
1234                 return "low";
1235         case USB_SPEED_FULL:
1236                 return "full";
1237         case USB_SPEED_HIGH:
1238                 return "high";
1239         default:
1240                 return "unknown speed";
1241         }
1242 }
1243
1244 static int scnprint_id(struct usb_device *udev, char *buffer, size_t size)
1245 {
1246         return scnprintf(buffer, size, "%04hx:%04hx v%04hx %s",
1247                 le16_to_cpu(udev->descriptor.idVendor),
1248                 le16_to_cpu(udev->descriptor.idProduct),
1249                 get_bcdDevice(udev),
1250                 speed(udev->speed));
1251 }
1252
1253 int zd_usb_scnprint_id(struct zd_usb *usb, char *buffer, size_t size)
1254 {
1255         struct usb_device *udev = interface_to_usbdev(usb->intf);
1256         return scnprint_id(udev, buffer, size);
1257 }
1258
1259 #ifdef DEBUG
1260 static void print_id(struct usb_device *udev)
1261 {
1262         char buffer[40];
1263
1264         scnprint_id(udev, buffer, sizeof(buffer));
1265         buffer[sizeof(buffer)-1] = 0;
1266         dev_dbg_f(&udev->dev, "%s\n", buffer);
1267 }
1268 #else
1269 #define print_id(udev) do { } while (0)
1270 #endif
1271
1272 static int eject_installer(struct usb_interface *intf)
1273 {
1274         struct usb_device *udev = interface_to_usbdev(intf);
1275         struct usb_host_interface *iface_desc = &intf->altsetting[0];
1276         struct usb_endpoint_descriptor *endpoint;
1277         unsigned char *cmd;
1278         u8 bulk_out_ep;
1279         int r;
1280
1281         /* Find bulk out endpoint */
1282         for (r = 1; r >= 0; r--) {
1283                 endpoint = &iface_desc->endpoint[r].desc;
1284                 if (usb_endpoint_dir_out(endpoint) &&
1285                     usb_endpoint_xfer_bulk(endpoint)) {
1286                         bulk_out_ep = endpoint->bEndpointAddress;
1287                         break;
1288                 }
1289         }
1290         if (r == -1) {
1291                 dev_err(&udev->dev,
1292                         "zd1211rw: Could not find bulk out endpoint\n");
1293                 return -ENODEV;
1294         }
1295
1296         cmd = kzalloc(31, GFP_KERNEL);
1297         if (cmd == NULL)
1298                 return -ENODEV;
1299
1300         /* USB bulk command block */
1301         cmd[0] = 0x55;  /* bulk command signature */
1302         cmd[1] = 0x53;  /* bulk command signature */
1303         cmd[2] = 0x42;  /* bulk command signature */
1304         cmd[3] = 0x43;  /* bulk command signature */
1305         cmd[14] = 6;    /* command length */
1306
1307         cmd[15] = 0x1b; /* SCSI command: START STOP UNIT */
1308         cmd[19] = 0x2;  /* eject disc */
1309
1310         dev_info(&udev->dev, "Ejecting virtual installer media...\n");
1311         r = usb_bulk_msg(udev, usb_sndbulkpipe(udev, bulk_out_ep),
1312                 cmd, 31, NULL, 2000);
1313         kfree(cmd);
1314         if (r)
1315                 return r;
1316
1317         /* At this point, the device disconnects and reconnects with the real
1318          * ID numbers. */
1319
1320         usb_set_intfdata(intf, NULL);
1321         return 0;
1322 }
1323
1324 int zd_usb_init_hw(struct zd_usb *usb)
1325 {
1326         int r;
1327         struct zd_mac *mac = zd_usb_to_mac(usb);
1328
1329         dev_dbg_f(zd_usb_dev(usb), "\n");
1330
1331         r = upload_firmware(usb);
1332         if (r) {
1333                 dev_err(zd_usb_dev(usb),
1334                        "couldn't load firmware. Error number %d\n", r);
1335                 return r;
1336         }
1337
1338         r = usb_reset_configuration(zd_usb_to_usbdev(usb));
1339         if (r) {
1340                 dev_dbg_f(zd_usb_dev(usb),
1341                         "couldn't reset configuration. Error number %d\n", r);
1342                 return r;
1343         }
1344
1345         r = zd_mac_init_hw(mac->hw);
1346         if (r) {
1347                 dev_dbg_f(zd_usb_dev(usb),
1348                          "couldn't initialize mac. Error number %d\n", r);
1349                 return r;
1350         }
1351
1352         usb->initialized = 1;
1353         return 0;
1354 }
1355
1356 static int probe(struct usb_interface *intf, const struct usb_device_id *id)
1357 {
1358         int r;
1359         struct usb_device *udev = interface_to_usbdev(intf);
1360         struct zd_usb *usb;
1361         struct ieee80211_hw *hw = NULL;
1362
1363         print_id(udev);
1364
1365         if (id->driver_info & DEVICE_INSTALLER)
1366                 return eject_installer(intf);
1367
1368         switch (udev->speed) {
1369         case USB_SPEED_LOW:
1370         case USB_SPEED_FULL:
1371         case USB_SPEED_HIGH:
1372                 break;
1373         default:
1374                 dev_dbg_f(&intf->dev, "Unknown USB speed\n");
1375                 r = -ENODEV;
1376                 goto error;
1377         }
1378
1379         r = usb_reset_device(udev);
1380         if (r) {
1381                 dev_err(&intf->dev,
1382                         "couldn't reset usb device. Error number %d\n", r);
1383                 goto error;
1384         }
1385
1386         hw = zd_mac_alloc_hw(intf);
1387         if (hw == NULL) {
1388                 r = -ENOMEM;
1389                 goto error;
1390         }
1391
1392         usb = &zd_hw_mac(hw)->chip.usb;
1393         usb->is_zd1211b = (id->driver_info == DEVICE_ZD1211B) != 0;
1394
1395         r = zd_mac_preinit_hw(hw);
1396         if (r) {
1397                 dev_dbg_f(&intf->dev,
1398                          "couldn't initialize mac. Error number %d\n", r);
1399                 goto error;
1400         }
1401
1402         r = ieee80211_register_hw(hw);
1403         if (r) {
1404                 dev_dbg_f(&intf->dev,
1405                          "couldn't register device. Error number %d\n", r);
1406                 goto error;
1407         }
1408
1409         dev_dbg_f(&intf->dev, "successful\n");
1410         dev_info(&intf->dev, "%s\n", wiphy_name(hw->wiphy));
1411         return 0;
1412 error:
1413         usb_reset_device(interface_to_usbdev(intf));
1414         if (hw) {
1415                 zd_mac_clear(zd_hw_mac(hw));
1416                 ieee80211_free_hw(hw);
1417         }
1418         return r;
1419 }
1420
1421 static void disconnect(struct usb_interface *intf)
1422 {
1423         struct ieee80211_hw *hw = zd_intf_to_hw(intf);
1424         struct zd_mac *mac;
1425         struct zd_usb *usb;
1426
1427         /* Either something really bad happened, or we're just dealing with
1428          * a DEVICE_INSTALLER. */
1429         if (hw == NULL)
1430                 return;
1431
1432         mac = zd_hw_mac(hw);
1433         usb = &mac->chip.usb;
1434
1435         dev_dbg_f(zd_usb_dev(usb), "\n");
1436
1437         ieee80211_unregister_hw(hw);
1438
1439         /* Just in case something has gone wrong! */
1440         zd_usb_disable_tx(usb);
1441         zd_usb_disable_rx(usb);
1442         zd_usb_disable_int(usb);
1443
1444         /* If the disconnect has been caused by a removal of the
1445          * driver module, the reset allows reloading of the driver. If the
1446          * reset will not be executed here, the upload of the firmware in the
1447          * probe function caused by the reloading of the driver will fail.
1448          */
1449         usb_reset_device(interface_to_usbdev(intf));
1450
1451         zd_mac_clear(mac);
1452         ieee80211_free_hw(hw);
1453         dev_dbg(&intf->dev, "disconnected\n");
1454 }
1455
1456 static void zd_usb_resume(struct zd_usb *usb)
1457 {
1458         struct zd_mac *mac = zd_usb_to_mac(usb);
1459         int r;
1460
1461         dev_dbg_f(zd_usb_dev(usb), "\n");
1462
1463         r = zd_op_start(zd_usb_to_hw(usb));
1464         if (r < 0) {
1465                 dev_warn(zd_usb_dev(usb), "Device resume failed "
1466                          "with error code %d. Retrying...\n", r);
1467                 if (usb->was_running)
1468                         set_bit(ZD_DEVICE_RUNNING, &mac->flags);
1469                 usb_queue_reset_device(usb->intf);
1470                 return;
1471         }
1472
1473         if (mac->type != NL80211_IFTYPE_UNSPECIFIED) {
1474                 r = zd_restore_settings(mac);
1475                 if (r < 0) {
1476                         dev_dbg(zd_usb_dev(usb),
1477                                 "failed to restore settings, %d\n", r);
1478                         return;
1479                 }
1480         }
1481 }
1482
1483 static void zd_usb_stop(struct zd_usb *usb)
1484 {
1485         dev_dbg_f(zd_usb_dev(usb), "\n");
1486
1487         zd_op_stop(zd_usb_to_hw(usb));
1488
1489         zd_usb_disable_tx(usb);
1490         zd_usb_disable_rx(usb);
1491         zd_usb_disable_int(usb);
1492
1493         usb->initialized = 0;
1494 }
1495
1496 static int pre_reset(struct usb_interface *intf)
1497 {
1498         struct ieee80211_hw *hw = usb_get_intfdata(intf);
1499         struct zd_mac *mac;
1500         struct zd_usb *usb;
1501
1502         if (!hw || intf->condition != USB_INTERFACE_BOUND)
1503                 return 0;
1504
1505         mac = zd_hw_mac(hw);
1506         usb = &mac->chip.usb;
1507
1508         usb->was_running = test_bit(ZD_DEVICE_RUNNING, &mac->flags);
1509
1510         zd_usb_stop(usb);
1511
1512         mutex_lock(&mac->chip.mutex);
1513         return 0;
1514 }
1515
1516 static int post_reset(struct usb_interface *intf)
1517 {
1518         struct ieee80211_hw *hw = usb_get_intfdata(intf);
1519         struct zd_mac *mac;
1520         struct zd_usb *usb;
1521
1522         if (!hw || intf->condition != USB_INTERFACE_BOUND)
1523                 return 0;
1524
1525         mac = zd_hw_mac(hw);
1526         usb = &mac->chip.usb;
1527
1528         mutex_unlock(&mac->chip.mutex);
1529
1530         if (usb->was_running)
1531                 zd_usb_resume(usb);
1532         return 0;
1533 }
1534
1535 static struct usb_driver driver = {
1536         .name           = KBUILD_MODNAME,
1537         .id_table       = usb_ids,
1538         .probe          = probe,
1539         .disconnect     = disconnect,
1540         .pre_reset      = pre_reset,
1541         .post_reset     = post_reset,
1542         .disable_hub_initiated_lpm = 1,
1543 };
1544
1545 struct workqueue_struct *zd_workqueue;
1546
1547 static int __init usb_init(void)
1548 {
1549         int r;
1550
1551         pr_debug("%s usb_init()\n", driver.name);
1552
1553         zd_workqueue = create_singlethread_workqueue(driver.name);
1554         if (zd_workqueue == NULL) {
1555                 printk(KERN_ERR "%s couldn't create workqueue\n", driver.name);
1556                 return -ENOMEM;
1557         }
1558
1559         r = usb_register(&driver);
1560         if (r) {
1561                 destroy_workqueue(zd_workqueue);
1562                 printk(KERN_ERR "%s usb_register() failed. Error number %d\n",
1563                        driver.name, r);
1564                 return r;
1565         }
1566
1567         pr_debug("%s initialized\n", driver.name);
1568         return 0;
1569 }
1570
1571 static void __exit usb_exit(void)
1572 {
1573         pr_debug("%s usb_exit()\n", driver.name);
1574         usb_deregister(&driver);
1575         destroy_workqueue(zd_workqueue);
1576 }
1577
1578 module_init(usb_init);
1579 module_exit(usb_exit);
1580
1581 static int zd_ep_regs_out_msg(struct usb_device *udev, void *data, int len,
1582                               int *actual_length, int timeout)
1583 {
1584         /* In USB 2.0 mode EP_REGS_OUT endpoint is interrupt type. However in
1585          * USB 1.1 mode endpoint is bulk. Select correct type URB by endpoint
1586          * descriptor.
1587          */
1588         struct usb_host_endpoint *ep;
1589         unsigned int pipe;
1590
1591         pipe = usb_sndintpipe(udev, EP_REGS_OUT);
1592         ep = usb_pipe_endpoint(udev, pipe);
1593         if (!ep)
1594                 return -EINVAL;
1595
1596         if (usb_endpoint_xfer_int(&ep->desc)) {
1597                 return usb_interrupt_msg(udev, pipe, data, len,
1598                                          actual_length, timeout);
1599         } else {
1600                 pipe = usb_sndbulkpipe(udev, EP_REGS_OUT);
1601                 return usb_bulk_msg(udev, pipe, data, len, actual_length,
1602                                     timeout);
1603         }
1604 }
1605
1606 static int usb_int_regs_length(unsigned int count)
1607 {
1608         return sizeof(struct usb_int_regs) + count * sizeof(struct reg_data);
1609 }
1610
1611 static void prepare_read_regs_int(struct zd_usb *usb,
1612                                   struct usb_req_read_regs *req,
1613                                   unsigned int count)
1614 {
1615         struct zd_usb_interrupt *intr = &usb->intr;
1616
1617         spin_lock_irq(&intr->lock);
1618         atomic_set(&intr->read_regs_enabled, 1);
1619         intr->read_regs.req = req;
1620         intr->read_regs.req_count = count;
1621         reinit_completion(&intr->read_regs.completion);
1622         spin_unlock_irq(&intr->lock);
1623 }
1624
1625 static void disable_read_regs_int(struct zd_usb *usb)
1626 {
1627         struct zd_usb_interrupt *intr = &usb->intr;
1628
1629         spin_lock_irq(&intr->lock);
1630         atomic_set(&intr->read_regs_enabled, 0);
1631         spin_unlock_irq(&intr->lock);
1632 }
1633
1634 static bool check_read_regs(struct zd_usb *usb, struct usb_req_read_regs *req,
1635                             unsigned int count)
1636 {
1637         int i;
1638         struct zd_usb_interrupt *intr = &usb->intr;
1639         struct read_regs_int *rr = &intr->read_regs;
1640         struct usb_int_regs *regs = (struct usb_int_regs *)rr->buffer;
1641
1642         /* The created block size seems to be larger than expected.
1643          * However results appear to be correct.
1644          */
1645         if (rr->length < usb_int_regs_length(count)) {
1646                 dev_dbg_f(zd_usb_dev(usb),
1647                          "error: actual length %d less than expected %d\n",
1648                          rr->length, usb_int_regs_length(count));
1649                 return false;
1650         }
1651
1652         if (rr->length > sizeof(rr->buffer)) {
1653                 dev_dbg_f(zd_usb_dev(usb),
1654                          "error: actual length %d exceeds buffer size %zu\n",
1655                          rr->length, sizeof(rr->buffer));
1656                 return false;
1657         }
1658
1659         for (i = 0; i < count; i++) {
1660                 struct reg_data *rd = &regs->regs[i];
1661                 if (rd->addr != req->addr[i]) {
1662                         dev_dbg_f(zd_usb_dev(usb),
1663                                  "rd[%d] addr %#06hx expected %#06hx\n", i,
1664                                  le16_to_cpu(rd->addr),
1665                                  le16_to_cpu(req->addr[i]));
1666                         return false;
1667                 }
1668         }
1669
1670         return true;
1671 }
1672
1673 static int get_results(struct zd_usb *usb, u16 *values,
1674                        struct usb_req_read_regs *req, unsigned int count,
1675                        bool *retry)
1676 {
1677         int r;
1678         int i;
1679         struct zd_usb_interrupt *intr = &usb->intr;
1680         struct read_regs_int *rr = &intr->read_regs;
1681         struct usb_int_regs *regs = (struct usb_int_regs *)rr->buffer;
1682
1683         spin_lock_irq(&intr->lock);
1684
1685         r = -EIO;
1686
1687         /* Read failed because firmware bug? */
1688         *retry = !!intr->read_regs_int_overridden;
1689         if (*retry)
1690                 goto error_unlock;
1691
1692         if (!check_read_regs(usb, req, count)) {
1693                 dev_dbg_f(zd_usb_dev(usb), "error: invalid read regs\n");
1694                 goto error_unlock;
1695         }
1696
1697         for (i = 0; i < count; i++) {
1698                 struct reg_data *rd = &regs->regs[i];
1699                 values[i] = le16_to_cpu(rd->value);
1700         }
1701
1702         r = 0;
1703 error_unlock:
1704         spin_unlock_irq(&intr->lock);
1705         return r;
1706 }
1707
1708 int zd_usb_ioread16v(struct zd_usb *usb, u16 *values,
1709                      const zd_addr_t *addresses, unsigned int count)
1710 {
1711         int r, i, req_len, actual_req_len, try_count = 0;
1712         struct usb_device *udev;
1713         struct usb_req_read_regs *req = NULL;
1714         unsigned long timeout;
1715         bool retry = false;
1716
1717         if (count < 1) {
1718                 dev_dbg_f(zd_usb_dev(usb), "error: count is zero\n");
1719                 return -EINVAL;
1720         }
1721         if (count > USB_MAX_IOREAD16_COUNT) {
1722                 dev_dbg_f(zd_usb_dev(usb),
1723                          "error: count %u exceeds possible max %u\n",
1724                          count, USB_MAX_IOREAD16_COUNT);
1725                 return -EINVAL;
1726         }
1727         if (in_atomic()) {
1728                 dev_dbg_f(zd_usb_dev(usb),
1729                          "error: io in atomic context not supported\n");
1730                 return -EWOULDBLOCK;
1731         }
1732         if (!usb_int_enabled(usb)) {
1733                 dev_dbg_f(zd_usb_dev(usb),
1734                           "error: usb interrupt not enabled\n");
1735                 return -EWOULDBLOCK;
1736         }
1737
1738         ZD_ASSERT(mutex_is_locked(&zd_usb_to_chip(usb)->mutex));
1739         BUILD_BUG_ON(sizeof(struct usb_req_read_regs) + USB_MAX_IOREAD16_COUNT *
1740                      sizeof(__le16) > sizeof(usb->req_buf));
1741         BUG_ON(sizeof(struct usb_req_read_regs) + count * sizeof(__le16) >
1742                sizeof(usb->req_buf));
1743
1744         req_len = sizeof(struct usb_req_read_regs) + count * sizeof(__le16);
1745         req = (void *)usb->req_buf;
1746
1747         req->id = cpu_to_le16(USB_REQ_READ_REGS);
1748         for (i = 0; i < count; i++)
1749                 req->addr[i] = cpu_to_le16((u16)addresses[i]);
1750
1751 retry_read:
1752         try_count++;
1753         udev = zd_usb_to_usbdev(usb);
1754         prepare_read_regs_int(usb, req, count);
1755         r = zd_ep_regs_out_msg(udev, req, req_len, &actual_req_len, 50 /*ms*/);
1756         if (r) {
1757                 dev_dbg_f(zd_usb_dev(usb),
1758                         "error in zd_ep_regs_out_msg(). Error number %d\n", r);
1759                 goto error;
1760         }
1761         if (req_len != actual_req_len) {
1762                 dev_dbg_f(zd_usb_dev(usb), "error in zd_ep_regs_out_msg()\n"
1763                         " req_len %d != actual_req_len %d\n",
1764                         req_len, actual_req_len);
1765                 r = -EIO;
1766                 goto error;
1767         }
1768
1769         timeout = wait_for_completion_timeout(&usb->intr.read_regs.completion,
1770                                               msecs_to_jiffies(50));
1771         if (!timeout) {
1772                 disable_read_regs_int(usb);
1773                 dev_dbg_f(zd_usb_dev(usb), "read timed out\n");
1774                 r = -ETIMEDOUT;
1775                 goto error;
1776         }
1777
1778         r = get_results(usb, values, req, count, &retry);
1779         if (retry && try_count < 20) {
1780                 dev_dbg_f(zd_usb_dev(usb), "read retry, tries so far: %d\n",
1781                                 try_count);
1782                 goto retry_read;
1783         }
1784 error:
1785         return r;
1786 }
1787
1788 static void iowrite16v_urb_complete(struct urb *urb)
1789 {
1790         struct zd_usb *usb = urb->context;
1791
1792         if (urb->status && !usb->cmd_error)
1793                 usb->cmd_error = urb->status;
1794
1795         if (!usb->cmd_error &&
1796                         urb->actual_length != urb->transfer_buffer_length)
1797                 usb->cmd_error = -EIO;
1798 }
1799
1800 static int zd_submit_waiting_urb(struct zd_usb *usb, bool last)
1801 {
1802         int r = 0;
1803         struct urb *urb = usb->urb_async_waiting;
1804
1805         if (!urb)
1806                 return 0;
1807
1808         usb->urb_async_waiting = NULL;
1809
1810         if (!last)
1811                 urb->transfer_flags |= URB_NO_INTERRUPT;
1812
1813         usb_anchor_urb(urb, &usb->submitted_cmds);
1814         r = usb_submit_urb(urb, GFP_KERNEL);
1815         if (r) {
1816                 usb_unanchor_urb(urb);
1817                 dev_dbg_f(zd_usb_dev(usb),
1818                         "error in usb_submit_urb(). Error number %d\n", r);
1819                 goto error;
1820         }
1821
1822         /* fall-through with r == 0 */
1823 error:
1824         usb_free_urb(urb);
1825         return r;
1826 }
1827
1828 void zd_usb_iowrite16v_async_start(struct zd_usb *usb)
1829 {
1830         ZD_ASSERT(usb_anchor_empty(&usb->submitted_cmds));
1831         ZD_ASSERT(usb->urb_async_waiting == NULL);
1832         ZD_ASSERT(!usb->in_async);
1833
1834         ZD_ASSERT(mutex_is_locked(&zd_usb_to_chip(usb)->mutex));
1835
1836         usb->in_async = 1;
1837         usb->cmd_error = 0;
1838         usb->urb_async_waiting = NULL;
1839 }
1840
1841 int zd_usb_iowrite16v_async_end(struct zd_usb *usb, unsigned int timeout)
1842 {
1843         int r;
1844
1845         ZD_ASSERT(mutex_is_locked(&zd_usb_to_chip(usb)->mutex));
1846         ZD_ASSERT(usb->in_async);
1847
1848         /* Submit last iowrite16v URB */
1849         r = zd_submit_waiting_urb(usb, true);
1850         if (r) {
1851                 dev_dbg_f(zd_usb_dev(usb),
1852                         "error in zd_submit_waiting_usb(). "
1853                         "Error number %d\n", r);
1854
1855                 usb_kill_anchored_urbs(&usb->submitted_cmds);
1856                 goto error;
1857         }
1858
1859         if (timeout)
1860                 timeout = usb_wait_anchor_empty_timeout(&usb->submitted_cmds,
1861                                                         timeout);
1862         if (!timeout) {
1863                 usb_kill_anchored_urbs(&usb->submitted_cmds);
1864                 if (usb->cmd_error == -ENOENT) {
1865                         dev_dbg_f(zd_usb_dev(usb), "timed out");
1866                         r = -ETIMEDOUT;
1867                         goto error;
1868                 }
1869         }
1870
1871         r = usb->cmd_error;
1872 error:
1873         usb->in_async = 0;
1874         return r;
1875 }
1876
1877 int zd_usb_iowrite16v_async(struct zd_usb *usb, const struct zd_ioreq16 *ioreqs,
1878                             unsigned int count)
1879 {
1880         int r;
1881         struct usb_device *udev;
1882         struct usb_req_write_regs *req = NULL;
1883         int i, req_len;
1884         struct urb *urb;
1885         struct usb_host_endpoint *ep;
1886
1887         ZD_ASSERT(mutex_is_locked(&zd_usb_to_chip(usb)->mutex));
1888         ZD_ASSERT(usb->in_async);
1889
1890         if (count == 0)
1891                 return 0;
1892         if (count > USB_MAX_IOWRITE16_COUNT) {
1893                 dev_dbg_f(zd_usb_dev(usb),
1894                         "error: count %u exceeds possible max %u\n",
1895                         count, USB_MAX_IOWRITE16_COUNT);
1896                 return -EINVAL;
1897         }
1898         if (in_atomic()) {
1899                 dev_dbg_f(zd_usb_dev(usb),
1900                         "error: io in atomic context not supported\n");
1901                 return -EWOULDBLOCK;
1902         }
1903
1904         udev = zd_usb_to_usbdev(usb);
1905
1906         ep = usb_pipe_endpoint(udev, usb_sndintpipe(udev, EP_REGS_OUT));
1907         if (!ep)
1908                 return -ENOENT;
1909
1910         urb = usb_alloc_urb(0, GFP_KERNEL);
1911         if (!urb)
1912                 return -ENOMEM;
1913
1914         req_len = sizeof(struct usb_req_write_regs) +
1915                   count * sizeof(struct reg_data);
1916         req = kmalloc(req_len, GFP_KERNEL);
1917         if (!req) {
1918                 r = -ENOMEM;
1919                 goto error;
1920         }
1921
1922         req->id = cpu_to_le16(USB_REQ_WRITE_REGS);
1923         for (i = 0; i < count; i++) {
1924                 struct reg_data *rw  = &req->reg_writes[i];
1925                 rw->addr = cpu_to_le16((u16)ioreqs[i].addr);
1926                 rw->value = cpu_to_le16(ioreqs[i].value);
1927         }
1928
1929         /* In USB 2.0 mode endpoint is interrupt type. However in USB 1.1 mode
1930          * endpoint is bulk. Select correct type URB by endpoint descriptor.
1931          */
1932         if (usb_endpoint_xfer_int(&ep->desc))
1933                 usb_fill_int_urb(urb, udev, usb_sndintpipe(udev, EP_REGS_OUT),
1934                                  req, req_len, iowrite16v_urb_complete, usb,
1935                                  ep->desc.bInterval);
1936         else
1937                 usb_fill_bulk_urb(urb, udev, usb_sndbulkpipe(udev, EP_REGS_OUT),
1938                                   req, req_len, iowrite16v_urb_complete, usb);
1939
1940         urb->transfer_flags |= URB_FREE_BUFFER;
1941
1942         /* Submit previous URB */
1943         r = zd_submit_waiting_urb(usb, false);
1944         if (r) {
1945                 dev_dbg_f(zd_usb_dev(usb),
1946                         "error in zd_submit_waiting_usb(). "
1947                         "Error number %d\n", r);
1948                 goto error;
1949         }
1950
1951         /* Delay submit so that URB_NO_INTERRUPT flag can be set for all URBs
1952          * of currect batch except for very last.
1953          */
1954         usb->urb_async_waiting = urb;
1955         return 0;
1956 error:
1957         usb_free_urb(urb);
1958         return r;
1959 }
1960
1961 int zd_usb_iowrite16v(struct zd_usb *usb, const struct zd_ioreq16 *ioreqs,
1962                         unsigned int count)
1963 {
1964         int r;
1965
1966         zd_usb_iowrite16v_async_start(usb);
1967         r = zd_usb_iowrite16v_async(usb, ioreqs, count);
1968         if (r) {
1969                 zd_usb_iowrite16v_async_end(usb, 0);
1970                 return r;
1971         }
1972         return zd_usb_iowrite16v_async_end(usb, 50 /* ms */);
1973 }
1974
1975 int zd_usb_rfwrite(struct zd_usb *usb, u32 value, u8 bits)
1976 {
1977         int r;
1978         struct usb_device *udev;
1979         struct usb_req_rfwrite *req = NULL;
1980         int i, req_len, actual_req_len;
1981         u16 bit_value_template;
1982
1983         if (in_atomic()) {
1984                 dev_dbg_f(zd_usb_dev(usb),
1985                         "error: io in atomic context not supported\n");
1986                 return -EWOULDBLOCK;
1987         }
1988         if (bits < USB_MIN_RFWRITE_BIT_COUNT) {
1989                 dev_dbg_f(zd_usb_dev(usb),
1990                         "error: bits %d are smaller than"
1991                         " USB_MIN_RFWRITE_BIT_COUNT %d\n",
1992                         bits, USB_MIN_RFWRITE_BIT_COUNT);
1993                 return -EINVAL;
1994         }
1995         if (bits > USB_MAX_RFWRITE_BIT_COUNT) {
1996                 dev_dbg_f(zd_usb_dev(usb),
1997                         "error: bits %d exceed USB_MAX_RFWRITE_BIT_COUNT %d\n",
1998                         bits, USB_MAX_RFWRITE_BIT_COUNT);
1999                 return -EINVAL;
2000         }
2001 #ifdef DEBUG
2002         if (value & (~0UL << bits)) {
2003                 dev_dbg_f(zd_usb_dev(usb),
2004                         "error: value %#09x has bits >= %d set\n",
2005                         value, bits);
2006                 return -EINVAL;
2007         }
2008 #endif /* DEBUG */
2009
2010         dev_dbg_f(zd_usb_dev(usb), "value %#09x bits %d\n", value, bits);
2011
2012         r = zd_usb_ioread16(usb, &bit_value_template, ZD_CR203);
2013         if (r) {
2014                 dev_dbg_f(zd_usb_dev(usb),
2015                         "error %d: Couldn't read ZD_CR203\n", r);
2016                 return r;
2017         }
2018         bit_value_template &= ~(RF_IF_LE|RF_CLK|RF_DATA);
2019
2020         ZD_ASSERT(mutex_is_locked(&zd_usb_to_chip(usb)->mutex));
2021         BUILD_BUG_ON(sizeof(struct usb_req_rfwrite) +
2022                      USB_MAX_RFWRITE_BIT_COUNT * sizeof(__le16) >
2023                      sizeof(usb->req_buf));
2024         BUG_ON(sizeof(struct usb_req_rfwrite) + bits * sizeof(__le16) >
2025                sizeof(usb->req_buf));
2026
2027         req_len = sizeof(struct usb_req_rfwrite) + bits * sizeof(__le16);
2028         req = (void *)usb->req_buf;
2029
2030         req->id = cpu_to_le16(USB_REQ_WRITE_RF);
2031         /* 1: 3683a, but not used in ZYDAS driver */
2032         req->value = cpu_to_le16(2);
2033         req->bits = cpu_to_le16(bits);
2034
2035         for (i = 0; i < bits; i++) {
2036                 u16 bv = bit_value_template;
2037                 if (value & (1 << (bits-1-i)))
2038                         bv |= RF_DATA;
2039                 req->bit_values[i] = cpu_to_le16(bv);
2040         }
2041
2042         udev = zd_usb_to_usbdev(usb);
2043         r = zd_ep_regs_out_msg(udev, req, req_len, &actual_req_len, 50 /*ms*/);
2044         if (r) {
2045                 dev_dbg_f(zd_usb_dev(usb),
2046                         "error in zd_ep_regs_out_msg(). Error number %d\n", r);
2047                 goto out;
2048         }
2049         if (req_len != actual_req_len) {
2050                 dev_dbg_f(zd_usb_dev(usb), "error in zd_ep_regs_out_msg()"
2051                         " req_len %d != actual_req_len %d\n",
2052                         req_len, actual_req_len);
2053                 r = -EIO;
2054                 goto out;
2055         }
2056
2057         /* FALL-THROUGH with r == 0 */
2058 out:
2059         return r;
2060 }