Merge tag 'driver-core-4.9-rc3' of git://git.kernel.org/pub/scm/linux/kernel/git...
[cascardo/linux.git] / drivers / nvdimm / pmem.c
1 /*
2  * Persistent Memory Driver
3  *
4  * Copyright (c) 2014-2015, Intel Corporation.
5  * Copyright (c) 2015, Christoph Hellwig <hch@lst.de>.
6  * Copyright (c) 2015, Boaz Harrosh <boaz@plexistor.com>.
7  *
8  * This program is free software; you can redistribute it and/or modify it
9  * under the terms and conditions of the GNU General Public License,
10  * version 2, as published by the Free Software Foundation.
11  *
12  * This program is distributed in the hope it will be useful, but WITHOUT
13  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
14  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
15  * more details.
16  */
17
18 #include <asm/cacheflush.h>
19 #include <linux/blkdev.h>
20 #include <linux/hdreg.h>
21 #include <linux/init.h>
22 #include <linux/platform_device.h>
23 #include <linux/module.h>
24 #include <linux/moduleparam.h>
25 #include <linux/badblocks.h>
26 #include <linux/memremap.h>
27 #include <linux/vmalloc.h>
28 #include <linux/pfn_t.h>
29 #include <linux/slab.h>
30 #include <linux/pmem.h>
31 #include <linux/nd.h>
32 #include "pmem.h"
33 #include "pfn.h"
34 #include "nd.h"
35
36 static struct device *to_dev(struct pmem_device *pmem)
37 {
38         /*
39          * nvdimm bus services need a 'dev' parameter, and we record the device
40          * at init in bb.dev.
41          */
42         return pmem->bb.dev;
43 }
44
45 static struct nd_region *to_region(struct pmem_device *pmem)
46 {
47         return to_nd_region(to_dev(pmem)->parent);
48 }
49
50 static int pmem_clear_poison(struct pmem_device *pmem, phys_addr_t offset,
51                 unsigned int len)
52 {
53         struct device *dev = to_dev(pmem);
54         sector_t sector;
55         long cleared;
56
57         sector = (offset - pmem->data_offset) / 512;
58         cleared = nvdimm_clear_poison(dev, pmem->phys_addr + offset, len);
59
60         if (cleared > 0 && cleared / 512) {
61                 dev_dbg(dev, "%s: %#llx clear %ld sector%s\n",
62                                 __func__, (unsigned long long) sector,
63                                 cleared / 512, cleared / 512 > 1 ? "s" : "");
64                 badblocks_clear(&pmem->bb, sector, cleared / 512);
65         } else {
66                 return -EIO;
67         }
68
69         invalidate_pmem(pmem->virt_addr + offset, len);
70         return 0;
71 }
72
73 static void write_pmem(void *pmem_addr, struct page *page,
74                 unsigned int off, unsigned int len)
75 {
76         void *mem = kmap_atomic(page);
77
78         memcpy_to_pmem(pmem_addr, mem + off, len);
79         kunmap_atomic(mem);
80 }
81
82 static int read_pmem(struct page *page, unsigned int off,
83                 void *pmem_addr, unsigned int len)
84 {
85         int rc;
86         void *mem = kmap_atomic(page);
87
88         rc = memcpy_from_pmem(mem + off, pmem_addr, len);
89         kunmap_atomic(mem);
90         return rc;
91 }
92
93 static int pmem_do_bvec(struct pmem_device *pmem, struct page *page,
94                         unsigned int len, unsigned int off, bool is_write,
95                         sector_t sector)
96 {
97         int rc = 0;
98         bool bad_pmem = false;
99         phys_addr_t pmem_off = sector * 512 + pmem->data_offset;
100         void *pmem_addr = pmem->virt_addr + pmem_off;
101
102         if (unlikely(is_bad_pmem(&pmem->bb, sector, len)))
103                 bad_pmem = true;
104
105         if (!is_write) {
106                 if (unlikely(bad_pmem))
107                         rc = -EIO;
108                 else {
109                         rc = read_pmem(page, off, pmem_addr, len);
110                         flush_dcache_page(page);
111                 }
112         } else {
113                 /*
114                  * Note that we write the data both before and after
115                  * clearing poison.  The write before clear poison
116                  * handles situations where the latest written data is
117                  * preserved and the clear poison operation simply marks
118                  * the address range as valid without changing the data.
119                  * In this case application software can assume that an
120                  * interrupted write will either return the new good
121                  * data or an error.
122                  *
123                  * However, if pmem_clear_poison() leaves the data in an
124                  * indeterminate state we need to perform the write
125                  * after clear poison.
126                  */
127                 flush_dcache_page(page);
128                 write_pmem(pmem_addr, page, off, len);
129                 if (unlikely(bad_pmem)) {
130                         rc = pmem_clear_poison(pmem, pmem_off, len);
131                         write_pmem(pmem_addr, page, off, len);
132                 }
133         }
134
135         return rc;
136 }
137
138 /* account for REQ_FLUSH rename, replace with REQ_PREFLUSH after v4.8-rc1 */
139 #ifndef REQ_FLUSH
140 #define REQ_FLUSH REQ_PREFLUSH
141 #endif
142
143 static blk_qc_t pmem_make_request(struct request_queue *q, struct bio *bio)
144 {
145         int rc = 0;
146         bool do_acct;
147         unsigned long start;
148         struct bio_vec bvec;
149         struct bvec_iter iter;
150         struct pmem_device *pmem = q->queuedata;
151         struct nd_region *nd_region = to_region(pmem);
152
153         if (bio->bi_opf & REQ_FLUSH)
154                 nvdimm_flush(nd_region);
155
156         do_acct = nd_iostat_start(bio, &start);
157         bio_for_each_segment(bvec, bio, iter) {
158                 rc = pmem_do_bvec(pmem, bvec.bv_page, bvec.bv_len,
159                                 bvec.bv_offset, op_is_write(bio_op(bio)),
160                                 iter.bi_sector);
161                 if (rc) {
162                         bio->bi_error = rc;
163                         break;
164                 }
165         }
166         if (do_acct)
167                 nd_iostat_end(bio, start);
168
169         if (bio->bi_opf & REQ_FUA)
170                 nvdimm_flush(nd_region);
171
172         bio_endio(bio);
173         return BLK_QC_T_NONE;
174 }
175
176 static int pmem_rw_page(struct block_device *bdev, sector_t sector,
177                        struct page *page, bool is_write)
178 {
179         struct pmem_device *pmem = bdev->bd_queue->queuedata;
180         int rc;
181
182         rc = pmem_do_bvec(pmem, page, PAGE_SIZE, 0, is_write, sector);
183
184         /*
185          * The ->rw_page interface is subtle and tricky.  The core
186          * retries on any error, so we can only invoke page_endio() in
187          * the successful completion case.  Otherwise, we'll see crashes
188          * caused by double completion.
189          */
190         if (rc == 0)
191                 page_endio(page, is_write, 0);
192
193         return rc;
194 }
195
196 /* see "strong" declaration in tools/testing/nvdimm/pmem-dax.c */
197 __weak long pmem_direct_access(struct block_device *bdev, sector_t sector,
198                       void **kaddr, pfn_t *pfn, long size)
199 {
200         struct pmem_device *pmem = bdev->bd_queue->queuedata;
201         resource_size_t offset = sector * 512 + pmem->data_offset;
202
203         if (unlikely(is_bad_pmem(&pmem->bb, sector, size)))
204                 return -EIO;
205         *kaddr = pmem->virt_addr + offset;
206         *pfn = phys_to_pfn_t(pmem->phys_addr + offset, pmem->pfn_flags);
207
208         /*
209          * If badblocks are present, limit known good range to the
210          * requested range.
211          */
212         if (unlikely(pmem->bb.count))
213                 return size;
214         return pmem->size - pmem->pfn_pad - offset;
215 }
216
217 static const struct block_device_operations pmem_fops = {
218         .owner =                THIS_MODULE,
219         .rw_page =              pmem_rw_page,
220         .direct_access =        pmem_direct_access,
221         .revalidate_disk =      nvdimm_revalidate_disk,
222 };
223
224 static void pmem_release_queue(void *q)
225 {
226         blk_cleanup_queue(q);
227 }
228
229 static void pmem_release_disk(void *disk)
230 {
231         del_gendisk(disk);
232         put_disk(disk);
233 }
234
235 static int pmem_attach_disk(struct device *dev,
236                 struct nd_namespace_common *ndns)
237 {
238         struct nd_namespace_io *nsio = to_nd_namespace_io(&ndns->dev);
239         struct nd_region *nd_region = to_nd_region(dev->parent);
240         struct vmem_altmap __altmap, *altmap = NULL;
241         struct resource *res = &nsio->res;
242         struct nd_pfn *nd_pfn = NULL;
243         int nid = dev_to_node(dev);
244         struct nd_pfn_sb *pfn_sb;
245         struct pmem_device *pmem;
246         struct resource pfn_res;
247         struct request_queue *q;
248         struct gendisk *disk;
249         void *addr;
250
251         /* while nsio_rw_bytes is active, parse a pfn info block if present */
252         if (is_nd_pfn(dev)) {
253                 nd_pfn = to_nd_pfn(dev);
254                 altmap = nvdimm_setup_pfn(nd_pfn, &pfn_res, &__altmap);
255                 if (IS_ERR(altmap))
256                         return PTR_ERR(altmap);
257         }
258
259         /* we're attaching a block device, disable raw namespace access */
260         devm_nsio_disable(dev, nsio);
261
262         pmem = devm_kzalloc(dev, sizeof(*pmem), GFP_KERNEL);
263         if (!pmem)
264                 return -ENOMEM;
265
266         dev_set_drvdata(dev, pmem);
267         pmem->phys_addr = res->start;
268         pmem->size = resource_size(res);
269         if (nvdimm_has_flush(nd_region) < 0)
270                 dev_warn(dev, "unable to guarantee persistence of writes\n");
271
272         if (!devm_request_mem_region(dev, res->start, resource_size(res),
273                                 dev_name(dev))) {
274                 dev_warn(dev, "could not reserve region %pR\n", res);
275                 return -EBUSY;
276         }
277
278         q = blk_alloc_queue_node(GFP_KERNEL, dev_to_node(dev));
279         if (!q)
280                 return -ENOMEM;
281
282         pmem->pfn_flags = PFN_DEV;
283         if (is_nd_pfn(dev)) {
284                 addr = devm_memremap_pages(dev, &pfn_res, &q->q_usage_counter,
285                                 altmap);
286                 pfn_sb = nd_pfn->pfn_sb;
287                 pmem->data_offset = le64_to_cpu(pfn_sb->dataoff);
288                 pmem->pfn_pad = resource_size(res) - resource_size(&pfn_res);
289                 pmem->pfn_flags |= PFN_MAP;
290                 res = &pfn_res; /* for badblocks populate */
291                 res->start += pmem->data_offset;
292         } else if (pmem_should_map_pages(dev)) {
293                 addr = devm_memremap_pages(dev, &nsio->res,
294                                 &q->q_usage_counter, NULL);
295                 pmem->pfn_flags |= PFN_MAP;
296         } else
297                 addr = devm_memremap(dev, pmem->phys_addr,
298                                 pmem->size, ARCH_MEMREMAP_PMEM);
299
300         /*
301          * At release time the queue must be dead before
302          * devm_memremap_pages is unwound
303          */
304         if (devm_add_action_or_reset(dev, pmem_release_queue, q))
305                 return -ENOMEM;
306
307         if (IS_ERR(addr))
308                 return PTR_ERR(addr);
309         pmem->virt_addr = addr;
310
311         blk_queue_write_cache(q, true, true);
312         blk_queue_make_request(q, pmem_make_request);
313         blk_queue_physical_block_size(q, PAGE_SIZE);
314         blk_queue_max_hw_sectors(q, UINT_MAX);
315         blk_queue_bounce_limit(q, BLK_BOUNCE_ANY);
316         queue_flag_set_unlocked(QUEUE_FLAG_NONROT, q);
317         queue_flag_set_unlocked(QUEUE_FLAG_DAX, q);
318         q->queuedata = pmem;
319
320         disk = alloc_disk_node(0, nid);
321         if (!disk)
322                 return -ENOMEM;
323
324         disk->fops              = &pmem_fops;
325         disk->queue             = q;
326         disk->flags             = GENHD_FL_EXT_DEVT;
327         nvdimm_namespace_disk_name(ndns, disk->disk_name);
328         set_capacity(disk, (pmem->size - pmem->pfn_pad - pmem->data_offset)
329                         / 512);
330         if (devm_init_badblocks(dev, &pmem->bb))
331                 return -ENOMEM;
332         nvdimm_badblocks_populate(nd_region, &pmem->bb, res);
333         disk->bb = &pmem->bb;
334         device_add_disk(dev, disk);
335
336         if (devm_add_action_or_reset(dev, pmem_release_disk, disk))
337                 return -ENOMEM;
338
339         revalidate_disk(disk);
340
341         return 0;
342 }
343
344 static int nd_pmem_probe(struct device *dev)
345 {
346         struct nd_namespace_common *ndns;
347
348         ndns = nvdimm_namespace_common_probe(dev);
349         if (IS_ERR(ndns))
350                 return PTR_ERR(ndns);
351
352         if (devm_nsio_enable(dev, to_nd_namespace_io(&ndns->dev)))
353                 return -ENXIO;
354
355         if (is_nd_btt(dev))
356                 return nvdimm_namespace_attach_btt(ndns);
357
358         if (is_nd_pfn(dev))
359                 return pmem_attach_disk(dev, ndns);
360
361         /* if we find a valid info-block we'll come back as that personality */
362         if (nd_btt_probe(dev, ndns) == 0 || nd_pfn_probe(dev, ndns) == 0
363                         || nd_dax_probe(dev, ndns) == 0)
364                 return -ENXIO;
365
366         /* ...otherwise we're just a raw pmem device */
367         return pmem_attach_disk(dev, ndns);
368 }
369
370 static int nd_pmem_remove(struct device *dev)
371 {
372         if (is_nd_btt(dev))
373                 nvdimm_namespace_detach_btt(to_nd_btt(dev));
374         nvdimm_flush(to_nd_region(dev->parent));
375
376         return 0;
377 }
378
379 static void nd_pmem_shutdown(struct device *dev)
380 {
381         nvdimm_flush(to_nd_region(dev->parent));
382 }
383
384 static void nd_pmem_notify(struct device *dev, enum nvdimm_event event)
385 {
386         struct pmem_device *pmem = dev_get_drvdata(dev);
387         struct nd_region *nd_region = to_region(pmem);
388         resource_size_t offset = 0, end_trunc = 0;
389         struct nd_namespace_common *ndns;
390         struct nd_namespace_io *nsio;
391         struct resource res;
392
393         if (event != NVDIMM_REVALIDATE_POISON)
394                 return;
395
396         if (is_nd_btt(dev)) {
397                 struct nd_btt *nd_btt = to_nd_btt(dev);
398
399                 ndns = nd_btt->ndns;
400         } else if (is_nd_pfn(dev)) {
401                 struct nd_pfn *nd_pfn = to_nd_pfn(dev);
402                 struct nd_pfn_sb *pfn_sb = nd_pfn->pfn_sb;
403
404                 ndns = nd_pfn->ndns;
405                 offset = pmem->data_offset + __le32_to_cpu(pfn_sb->start_pad);
406                 end_trunc = __le32_to_cpu(pfn_sb->end_trunc);
407         } else
408                 ndns = to_ndns(dev);
409
410         nsio = to_nd_namespace_io(&ndns->dev);
411         res.start = nsio->res.start + offset;
412         res.end = nsio->res.end - end_trunc;
413         nvdimm_badblocks_populate(nd_region, &pmem->bb, &res);
414 }
415
416 MODULE_ALIAS("pmem");
417 MODULE_ALIAS_ND_DEVICE(ND_DEVICE_NAMESPACE_IO);
418 MODULE_ALIAS_ND_DEVICE(ND_DEVICE_NAMESPACE_PMEM);
419 static struct nd_device_driver nd_pmem_driver = {
420         .probe = nd_pmem_probe,
421         .remove = nd_pmem_remove,
422         .notify = nd_pmem_notify,
423         .shutdown = nd_pmem_shutdown,
424         .drv = {
425                 .name = "nd_pmem",
426         },
427         .type = ND_DRIVER_NAMESPACE_IO | ND_DRIVER_NAMESPACE_PMEM,
428 };
429
430 static int __init pmem_init(void)
431 {
432         return nd_driver_register(&nd_pmem_driver);
433 }
434 module_init(pmem_init);
435
436 static void pmem_exit(void)
437 {
438         driver_unregister(&nd_pmem_driver.drv);
439 }
440 module_exit(pmem_exit);
441
442 MODULE_AUTHOR("Ross Zwisler <ross.zwisler@linux.intel.com>");
443 MODULE_LICENSE("GPL v2");