Merge remote-tracking branches 'spi/fix/dt', 'spi/fix/fsl-dspi' and 'spi/fix/fsl...
[cascardo/linux.git] / drivers / nvdimm / pmem.c
1 /*
2  * Persistent Memory Driver
3  *
4  * Copyright (c) 2014-2015, Intel Corporation.
5  * Copyright (c) 2015, Christoph Hellwig <hch@lst.de>.
6  * Copyright (c) 2015, Boaz Harrosh <boaz@plexistor.com>.
7  *
8  * This program is free software; you can redistribute it and/or modify it
9  * under the terms and conditions of the GNU General Public License,
10  * version 2, as published by the Free Software Foundation.
11  *
12  * This program is distributed in the hope it will be useful, but WITHOUT
13  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
14  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
15  * more details.
16  */
17
18 #include <asm/cacheflush.h>
19 #include <linux/blkdev.h>
20 #include <linux/hdreg.h>
21 #include <linux/init.h>
22 #include <linux/platform_device.h>
23 #include <linux/module.h>
24 #include <linux/moduleparam.h>
25 #include <linux/badblocks.h>
26 #include <linux/memremap.h>
27 #include <linux/vmalloc.h>
28 #include <linux/pfn_t.h>
29 #include <linux/slab.h>
30 #include <linux/pmem.h>
31 #include <linux/nd.h>
32 #include "pmem.h"
33 #include "pfn.h"
34 #include "nd.h"
35
36 static struct device *to_dev(struct pmem_device *pmem)
37 {
38         /*
39          * nvdimm bus services need a 'dev' parameter, and we record the device
40          * at init in bb.dev.
41          */
42         return pmem->bb.dev;
43 }
44
45 static struct nd_region *to_region(struct pmem_device *pmem)
46 {
47         return to_nd_region(to_dev(pmem)->parent);
48 }
49
50 static void pmem_clear_poison(struct pmem_device *pmem, phys_addr_t offset,
51                 unsigned int len)
52 {
53         struct device *dev = to_dev(pmem);
54         sector_t sector;
55         long cleared;
56
57         sector = (offset - pmem->data_offset) / 512;
58         cleared = nvdimm_clear_poison(dev, pmem->phys_addr + offset, len);
59
60         if (cleared > 0 && cleared / 512) {
61                 dev_dbg(dev, "%s: %#llx clear %ld sector%s\n",
62                                 __func__, (unsigned long long) sector,
63                                 cleared / 512, cleared / 512 > 1 ? "s" : "");
64                 badblocks_clear(&pmem->bb, sector, cleared / 512);
65         }
66         invalidate_pmem(pmem->virt_addr + offset, len);
67 }
68
69 static void write_pmem(void *pmem_addr, struct page *page,
70                 unsigned int off, unsigned int len)
71 {
72         void *mem = kmap_atomic(page);
73
74         memcpy_to_pmem(pmem_addr, mem + off, len);
75         kunmap_atomic(mem);
76 }
77
78 static int read_pmem(struct page *page, unsigned int off,
79                 void *pmem_addr, unsigned int len)
80 {
81         int rc;
82         void *mem = kmap_atomic(page);
83
84         rc = memcpy_from_pmem(mem + off, pmem_addr, len);
85         kunmap_atomic(mem);
86         return rc;
87 }
88
89 static int pmem_do_bvec(struct pmem_device *pmem, struct page *page,
90                         unsigned int len, unsigned int off, bool is_write,
91                         sector_t sector)
92 {
93         int rc = 0;
94         bool bad_pmem = false;
95         phys_addr_t pmem_off = sector * 512 + pmem->data_offset;
96         void *pmem_addr = pmem->virt_addr + pmem_off;
97
98         if (unlikely(is_bad_pmem(&pmem->bb, sector, len)))
99                 bad_pmem = true;
100
101         if (!is_write) {
102                 if (unlikely(bad_pmem))
103                         rc = -EIO;
104                 else {
105                         rc = read_pmem(page, off, pmem_addr, len);
106                         flush_dcache_page(page);
107                 }
108         } else {
109                 /*
110                  * Note that we write the data both before and after
111                  * clearing poison.  The write before clear poison
112                  * handles situations where the latest written data is
113                  * preserved and the clear poison operation simply marks
114                  * the address range as valid without changing the data.
115                  * In this case application software can assume that an
116                  * interrupted write will either return the new good
117                  * data or an error.
118                  *
119                  * However, if pmem_clear_poison() leaves the data in an
120                  * indeterminate state we need to perform the write
121                  * after clear poison.
122                  */
123                 flush_dcache_page(page);
124                 write_pmem(pmem_addr, page, off, len);
125                 if (unlikely(bad_pmem)) {
126                         pmem_clear_poison(pmem, pmem_off, len);
127                         write_pmem(pmem_addr, page, off, len);
128                 }
129         }
130
131         return rc;
132 }
133
134 /* account for REQ_FLUSH rename, replace with REQ_PREFLUSH after v4.8-rc1 */
135 #ifndef REQ_FLUSH
136 #define REQ_FLUSH REQ_PREFLUSH
137 #endif
138
139 static blk_qc_t pmem_make_request(struct request_queue *q, struct bio *bio)
140 {
141         int rc = 0;
142         bool do_acct;
143         unsigned long start;
144         struct bio_vec bvec;
145         struct bvec_iter iter;
146         struct pmem_device *pmem = q->queuedata;
147         struct nd_region *nd_region = to_region(pmem);
148
149         if (bio->bi_opf & REQ_FLUSH)
150                 nvdimm_flush(nd_region);
151
152         do_acct = nd_iostat_start(bio, &start);
153         bio_for_each_segment(bvec, bio, iter) {
154                 rc = pmem_do_bvec(pmem, bvec.bv_page, bvec.bv_len,
155                                 bvec.bv_offset, op_is_write(bio_op(bio)),
156                                 iter.bi_sector);
157                 if (rc) {
158                         bio->bi_error = rc;
159                         break;
160                 }
161         }
162         if (do_acct)
163                 nd_iostat_end(bio, start);
164
165         if (bio->bi_opf & REQ_FUA)
166                 nvdimm_flush(nd_region);
167
168         bio_endio(bio);
169         return BLK_QC_T_NONE;
170 }
171
172 static int pmem_rw_page(struct block_device *bdev, sector_t sector,
173                        struct page *page, bool is_write)
174 {
175         struct pmem_device *pmem = bdev->bd_queue->queuedata;
176         int rc;
177
178         rc = pmem_do_bvec(pmem, page, PAGE_SIZE, 0, is_write, sector);
179
180         /*
181          * The ->rw_page interface is subtle and tricky.  The core
182          * retries on any error, so we can only invoke page_endio() in
183          * the successful completion case.  Otherwise, we'll see crashes
184          * caused by double completion.
185          */
186         if (rc == 0)
187                 page_endio(page, is_write, 0);
188
189         return rc;
190 }
191
192 /* see "strong" declaration in tools/testing/nvdimm/pmem-dax.c */
193 __weak long pmem_direct_access(struct block_device *bdev, sector_t sector,
194                       void **kaddr, pfn_t *pfn, long size)
195 {
196         struct pmem_device *pmem = bdev->bd_queue->queuedata;
197         resource_size_t offset = sector * 512 + pmem->data_offset;
198
199         if (unlikely(is_bad_pmem(&pmem->bb, sector, size)))
200                 return -EIO;
201         *kaddr = pmem->virt_addr + offset;
202         *pfn = phys_to_pfn_t(pmem->phys_addr + offset, pmem->pfn_flags);
203
204         /*
205          * If badblocks are present, limit known good range to the
206          * requested range.
207          */
208         if (unlikely(pmem->bb.count))
209                 return size;
210         return pmem->size - pmem->pfn_pad - offset;
211 }
212
213 static const struct block_device_operations pmem_fops = {
214         .owner =                THIS_MODULE,
215         .rw_page =              pmem_rw_page,
216         .direct_access =        pmem_direct_access,
217         .revalidate_disk =      nvdimm_revalidate_disk,
218 };
219
220 static void pmem_release_queue(void *q)
221 {
222         blk_cleanup_queue(q);
223 }
224
225 static void pmem_release_disk(void *disk)
226 {
227         del_gendisk(disk);
228         put_disk(disk);
229 }
230
231 static int pmem_attach_disk(struct device *dev,
232                 struct nd_namespace_common *ndns)
233 {
234         struct nd_namespace_io *nsio = to_nd_namespace_io(&ndns->dev);
235         struct nd_region *nd_region = to_nd_region(dev->parent);
236         struct vmem_altmap __altmap, *altmap = NULL;
237         struct resource *res = &nsio->res;
238         struct nd_pfn *nd_pfn = NULL;
239         int nid = dev_to_node(dev);
240         struct nd_pfn_sb *pfn_sb;
241         struct pmem_device *pmem;
242         struct resource pfn_res;
243         struct request_queue *q;
244         struct gendisk *disk;
245         void *addr;
246
247         /* while nsio_rw_bytes is active, parse a pfn info block if present */
248         if (is_nd_pfn(dev)) {
249                 nd_pfn = to_nd_pfn(dev);
250                 altmap = nvdimm_setup_pfn(nd_pfn, &pfn_res, &__altmap);
251                 if (IS_ERR(altmap))
252                         return PTR_ERR(altmap);
253         }
254
255         /* we're attaching a block device, disable raw namespace access */
256         devm_nsio_disable(dev, nsio);
257
258         pmem = devm_kzalloc(dev, sizeof(*pmem), GFP_KERNEL);
259         if (!pmem)
260                 return -ENOMEM;
261
262         dev_set_drvdata(dev, pmem);
263         pmem->phys_addr = res->start;
264         pmem->size = resource_size(res);
265         if (nvdimm_has_flush(nd_region) < 0)
266                 dev_warn(dev, "unable to guarantee persistence of writes\n");
267
268         if (!devm_request_mem_region(dev, res->start, resource_size(res),
269                                 dev_name(dev))) {
270                 dev_warn(dev, "could not reserve region %pR\n", res);
271                 return -EBUSY;
272         }
273
274         q = blk_alloc_queue_node(GFP_KERNEL, dev_to_node(dev));
275         if (!q)
276                 return -ENOMEM;
277
278         pmem->pfn_flags = PFN_DEV;
279         if (is_nd_pfn(dev)) {
280                 addr = devm_memremap_pages(dev, &pfn_res, &q->q_usage_counter,
281                                 altmap);
282                 pfn_sb = nd_pfn->pfn_sb;
283                 pmem->data_offset = le64_to_cpu(pfn_sb->dataoff);
284                 pmem->pfn_pad = resource_size(res) - resource_size(&pfn_res);
285                 pmem->pfn_flags |= PFN_MAP;
286                 res = &pfn_res; /* for badblocks populate */
287                 res->start += pmem->data_offset;
288         } else if (pmem_should_map_pages(dev)) {
289                 addr = devm_memremap_pages(dev, &nsio->res,
290                                 &q->q_usage_counter, NULL);
291                 pmem->pfn_flags |= PFN_MAP;
292         } else
293                 addr = devm_memremap(dev, pmem->phys_addr,
294                                 pmem->size, ARCH_MEMREMAP_PMEM);
295
296         /*
297          * At release time the queue must be dead before
298          * devm_memremap_pages is unwound
299          */
300         if (devm_add_action_or_reset(dev, pmem_release_queue, q))
301                 return -ENOMEM;
302
303         if (IS_ERR(addr))
304                 return PTR_ERR(addr);
305         pmem->virt_addr = addr;
306
307         blk_queue_write_cache(q, true, true);
308         blk_queue_make_request(q, pmem_make_request);
309         blk_queue_physical_block_size(q, PAGE_SIZE);
310         blk_queue_max_hw_sectors(q, UINT_MAX);
311         blk_queue_bounce_limit(q, BLK_BOUNCE_ANY);
312         queue_flag_set_unlocked(QUEUE_FLAG_NONROT, q);
313         queue_flag_set_unlocked(QUEUE_FLAG_DAX, q);
314         q->queuedata = pmem;
315
316         disk = alloc_disk_node(0, nid);
317         if (!disk)
318                 return -ENOMEM;
319
320         disk->fops              = &pmem_fops;
321         disk->queue             = q;
322         disk->flags             = GENHD_FL_EXT_DEVT;
323         nvdimm_namespace_disk_name(ndns, disk->disk_name);
324         set_capacity(disk, (pmem->size - pmem->pfn_pad - pmem->data_offset)
325                         / 512);
326         if (devm_init_badblocks(dev, &pmem->bb))
327                 return -ENOMEM;
328         nvdimm_badblocks_populate(nd_region, &pmem->bb, res);
329         disk->bb = &pmem->bb;
330         device_add_disk(dev, disk);
331
332         if (devm_add_action_or_reset(dev, pmem_release_disk, disk))
333                 return -ENOMEM;
334
335         revalidate_disk(disk);
336
337         return 0;
338 }
339
340 static int nd_pmem_probe(struct device *dev)
341 {
342         struct nd_namespace_common *ndns;
343
344         ndns = nvdimm_namespace_common_probe(dev);
345         if (IS_ERR(ndns))
346                 return PTR_ERR(ndns);
347
348         if (devm_nsio_enable(dev, to_nd_namespace_io(&ndns->dev)))
349                 return -ENXIO;
350
351         if (is_nd_btt(dev))
352                 return nvdimm_namespace_attach_btt(ndns);
353
354         if (is_nd_pfn(dev))
355                 return pmem_attach_disk(dev, ndns);
356
357         /* if we find a valid info-block we'll come back as that personality */
358         if (nd_btt_probe(dev, ndns) == 0 || nd_pfn_probe(dev, ndns) == 0
359                         || nd_dax_probe(dev, ndns) == 0)
360                 return -ENXIO;
361
362         /* ...otherwise we're just a raw pmem device */
363         return pmem_attach_disk(dev, ndns);
364 }
365
366 static int nd_pmem_remove(struct device *dev)
367 {
368         if (is_nd_btt(dev))
369                 nvdimm_namespace_detach_btt(to_nd_btt(dev));
370         nvdimm_flush(to_nd_region(dev->parent));
371
372         return 0;
373 }
374
375 static void nd_pmem_shutdown(struct device *dev)
376 {
377         nvdimm_flush(to_nd_region(dev->parent));
378 }
379
380 static void nd_pmem_notify(struct device *dev, enum nvdimm_event event)
381 {
382         struct pmem_device *pmem = dev_get_drvdata(dev);
383         struct nd_region *nd_region = to_region(pmem);
384         resource_size_t offset = 0, end_trunc = 0;
385         struct nd_namespace_common *ndns;
386         struct nd_namespace_io *nsio;
387         struct resource res;
388
389         if (event != NVDIMM_REVALIDATE_POISON)
390                 return;
391
392         if (is_nd_btt(dev)) {
393                 struct nd_btt *nd_btt = to_nd_btt(dev);
394
395                 ndns = nd_btt->ndns;
396         } else if (is_nd_pfn(dev)) {
397                 struct nd_pfn *nd_pfn = to_nd_pfn(dev);
398                 struct nd_pfn_sb *pfn_sb = nd_pfn->pfn_sb;
399
400                 ndns = nd_pfn->ndns;
401                 offset = pmem->data_offset + __le32_to_cpu(pfn_sb->start_pad);
402                 end_trunc = __le32_to_cpu(pfn_sb->end_trunc);
403         } else
404                 ndns = to_ndns(dev);
405
406         nsio = to_nd_namespace_io(&ndns->dev);
407         res.start = nsio->res.start + offset;
408         res.end = nsio->res.end - end_trunc;
409         nvdimm_badblocks_populate(nd_region, &pmem->bb, &res);
410 }
411
412 MODULE_ALIAS("pmem");
413 MODULE_ALIAS_ND_DEVICE(ND_DEVICE_NAMESPACE_IO);
414 MODULE_ALIAS_ND_DEVICE(ND_DEVICE_NAMESPACE_PMEM);
415 static struct nd_device_driver nd_pmem_driver = {
416         .probe = nd_pmem_probe,
417         .remove = nd_pmem_remove,
418         .notify = nd_pmem_notify,
419         .shutdown = nd_pmem_shutdown,
420         .drv = {
421                 .name = "nd_pmem",
422         },
423         .type = ND_DRIVER_NAMESPACE_IO | ND_DRIVER_NAMESPACE_PMEM,
424 };
425
426 static int __init pmem_init(void)
427 {
428         return nd_driver_register(&nd_pmem_driver);
429 }
430 module_init(pmem_init);
431
432 static void pmem_exit(void)
433 {
434         driver_unregister(&nd_pmem_driver.drv);
435 }
436 module_exit(pmem_exit);
437
438 MODULE_AUTHOR("Ross Zwisler <ross.zwisler@linux.intel.com>");
439 MODULE_LICENSE("GPL v2");