e8d5ba7b29af98f647b119640e79e581996cfdc0
[cascardo/linux.git] / drivers / nvdimm / region_devs.c
1 /*
2  * Copyright(c) 2013-2015 Intel Corporation. All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or modify
5  * it under the terms of version 2 of the GNU General Public License as
6  * published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful, but
9  * WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  */
13 #include <linux/scatterlist.h>
14 #include <linux/highmem.h>
15 #include <linux/sched.h>
16 #include <linux/slab.h>
17 #include <linux/hash.h>
18 #include <linux/pmem.h>
19 #include <linux/sort.h>
20 #include <linux/io.h>
21 #include <linux/nd.h>
22 #include "nd-core.h"
23 #include "nd.h"
24
25 /*
26  * For readq() and writeq() on 32-bit builds, the hi-lo, lo-hi order is
27  * irrelevant.
28  */
29 #include <linux/io-64-nonatomic-hi-lo.h>
30
31 static DEFINE_IDA(region_ida);
32 static DEFINE_PER_CPU(int, flush_idx);
33
34 static int nvdimm_map_flush(struct device *dev, struct nvdimm *nvdimm, int dimm,
35                 struct nd_region_data *ndrd)
36 {
37         int i, j;
38
39         dev_dbg(dev, "%s: map %d flush address%s\n", nvdimm_name(nvdimm),
40                         nvdimm->num_flush, nvdimm->num_flush == 1 ? "" : "es");
41         for (i = 0; i < nvdimm->num_flush; i++) {
42                 struct resource *res = &nvdimm->flush_wpq[i];
43                 unsigned long pfn = PHYS_PFN(res->start);
44                 void __iomem *flush_page;
45
46                 /* check if flush hints share a page */
47                 for (j = 0; j < i; j++) {
48                         struct resource *res_j = &nvdimm->flush_wpq[j];
49                         unsigned long pfn_j = PHYS_PFN(res_j->start);
50
51                         if (pfn == pfn_j)
52                                 break;
53                 }
54
55                 if (j < i)
56                         flush_page = (void __iomem *) ((unsigned long)
57                                         ndrd->flush_wpq[dimm][j] & PAGE_MASK);
58                 else
59                         flush_page = devm_nvdimm_ioremap(dev,
60                                         PHYS_PFN(pfn), PAGE_SIZE);
61                 if (!flush_page)
62                         return -ENXIO;
63                 ndrd->flush_wpq[dimm][i] = flush_page
64                         + (res->start & ~PAGE_MASK);
65         }
66
67         return 0;
68 }
69
70 int nd_region_activate(struct nd_region *nd_region)
71 {
72         int i, num_flush = 0;
73         struct nd_region_data *ndrd;
74         struct device *dev = &nd_region->dev;
75         size_t flush_data_size = sizeof(void *);
76
77         nvdimm_bus_lock(&nd_region->dev);
78         for (i = 0; i < nd_region->ndr_mappings; i++) {
79                 struct nd_mapping *nd_mapping = &nd_region->mapping[i];
80                 struct nvdimm *nvdimm = nd_mapping->nvdimm;
81
82                 /* at least one null hint slot per-dimm for the "no-hint" case */
83                 flush_data_size += sizeof(void *);
84                 num_flush = min_not_zero(num_flush, nvdimm->num_flush);
85                 if (!nvdimm->num_flush)
86                         continue;
87                 flush_data_size += nvdimm->num_flush * sizeof(void *);
88         }
89         nvdimm_bus_unlock(&nd_region->dev);
90
91         ndrd = devm_kzalloc(dev, sizeof(*ndrd) + flush_data_size, GFP_KERNEL);
92         if (!ndrd)
93                 return -ENOMEM;
94         dev_set_drvdata(dev, ndrd);
95
96         ndrd->flush_mask = (1 << ilog2(num_flush)) - 1;
97         for (i = 0; i < nd_region->ndr_mappings; i++) {
98                 struct nd_mapping *nd_mapping = &nd_region->mapping[i];
99                 struct nvdimm *nvdimm = nd_mapping->nvdimm;
100                 int rc = nvdimm_map_flush(&nd_region->dev, nvdimm, i, ndrd);
101
102                 if (rc)
103                         return rc;
104         }
105
106         return 0;
107 }
108
109 static void nd_region_release(struct device *dev)
110 {
111         struct nd_region *nd_region = to_nd_region(dev);
112         u16 i;
113
114         for (i = 0; i < nd_region->ndr_mappings; i++) {
115                 struct nd_mapping *nd_mapping = &nd_region->mapping[i];
116                 struct nvdimm *nvdimm = nd_mapping->nvdimm;
117
118                 put_device(&nvdimm->dev);
119         }
120         free_percpu(nd_region->lane);
121         ida_simple_remove(&region_ida, nd_region->id);
122         if (is_nd_blk(dev))
123                 kfree(to_nd_blk_region(dev));
124         else
125                 kfree(nd_region);
126 }
127
128 static struct device_type nd_blk_device_type = {
129         .name = "nd_blk",
130         .release = nd_region_release,
131 };
132
133 static struct device_type nd_pmem_device_type = {
134         .name = "nd_pmem",
135         .release = nd_region_release,
136 };
137
138 static struct device_type nd_volatile_device_type = {
139         .name = "nd_volatile",
140         .release = nd_region_release,
141 };
142
143 bool is_nd_pmem(struct device *dev)
144 {
145         return dev ? dev->type == &nd_pmem_device_type : false;
146 }
147
148 bool is_nd_blk(struct device *dev)
149 {
150         return dev ? dev->type == &nd_blk_device_type : false;
151 }
152
153 struct nd_region *to_nd_region(struct device *dev)
154 {
155         struct nd_region *nd_region = container_of(dev, struct nd_region, dev);
156
157         WARN_ON(dev->type->release != nd_region_release);
158         return nd_region;
159 }
160 EXPORT_SYMBOL_GPL(to_nd_region);
161
162 struct nd_blk_region *to_nd_blk_region(struct device *dev)
163 {
164         struct nd_region *nd_region = to_nd_region(dev);
165
166         WARN_ON(!is_nd_blk(dev));
167         return container_of(nd_region, struct nd_blk_region, nd_region);
168 }
169 EXPORT_SYMBOL_GPL(to_nd_blk_region);
170
171 void *nd_region_provider_data(struct nd_region *nd_region)
172 {
173         return nd_region->provider_data;
174 }
175 EXPORT_SYMBOL_GPL(nd_region_provider_data);
176
177 void *nd_blk_region_provider_data(struct nd_blk_region *ndbr)
178 {
179         return ndbr->blk_provider_data;
180 }
181 EXPORT_SYMBOL_GPL(nd_blk_region_provider_data);
182
183 void nd_blk_region_set_provider_data(struct nd_blk_region *ndbr, void *data)
184 {
185         ndbr->blk_provider_data = data;
186 }
187 EXPORT_SYMBOL_GPL(nd_blk_region_set_provider_data);
188
189 /**
190  * nd_region_to_nstype() - region to an integer namespace type
191  * @nd_region: region-device to interrogate
192  *
193  * This is the 'nstype' attribute of a region as well, an input to the
194  * MODALIAS for namespace devices, and bit number for a nvdimm_bus to match
195  * namespace devices with namespace drivers.
196  */
197 int nd_region_to_nstype(struct nd_region *nd_region)
198 {
199         if (is_nd_pmem(&nd_region->dev)) {
200                 u16 i, alias;
201
202                 for (i = 0, alias = 0; i < nd_region->ndr_mappings; i++) {
203                         struct nd_mapping *nd_mapping = &nd_region->mapping[i];
204                         struct nvdimm *nvdimm = nd_mapping->nvdimm;
205
206                         if (nvdimm->flags & NDD_ALIASING)
207                                 alias++;
208                 }
209                 if (alias)
210                         return ND_DEVICE_NAMESPACE_PMEM;
211                 else
212                         return ND_DEVICE_NAMESPACE_IO;
213         } else if (is_nd_blk(&nd_region->dev)) {
214                 return ND_DEVICE_NAMESPACE_BLK;
215         }
216
217         return 0;
218 }
219 EXPORT_SYMBOL(nd_region_to_nstype);
220
221 static ssize_t size_show(struct device *dev,
222                 struct device_attribute *attr, char *buf)
223 {
224         struct nd_region *nd_region = to_nd_region(dev);
225         unsigned long long size = 0;
226
227         if (is_nd_pmem(dev)) {
228                 size = nd_region->ndr_size;
229         } else if (nd_region->ndr_mappings == 1) {
230                 struct nd_mapping *nd_mapping = &nd_region->mapping[0];
231
232                 size = nd_mapping->size;
233         }
234
235         return sprintf(buf, "%llu\n", size);
236 }
237 static DEVICE_ATTR_RO(size);
238
239 static ssize_t mappings_show(struct device *dev,
240                 struct device_attribute *attr, char *buf)
241 {
242         struct nd_region *nd_region = to_nd_region(dev);
243
244         return sprintf(buf, "%d\n", nd_region->ndr_mappings);
245 }
246 static DEVICE_ATTR_RO(mappings);
247
248 static ssize_t nstype_show(struct device *dev,
249                 struct device_attribute *attr, char *buf)
250 {
251         struct nd_region *nd_region = to_nd_region(dev);
252
253         return sprintf(buf, "%d\n", nd_region_to_nstype(nd_region));
254 }
255 static DEVICE_ATTR_RO(nstype);
256
257 static ssize_t set_cookie_show(struct device *dev,
258                 struct device_attribute *attr, char *buf)
259 {
260         struct nd_region *nd_region = to_nd_region(dev);
261         struct nd_interleave_set *nd_set = nd_region->nd_set;
262
263         if (is_nd_pmem(dev) && nd_set)
264                 /* pass, should be precluded by region_visible */;
265         else
266                 return -ENXIO;
267
268         return sprintf(buf, "%#llx\n", nd_set->cookie);
269 }
270 static DEVICE_ATTR_RO(set_cookie);
271
272 resource_size_t nd_region_available_dpa(struct nd_region *nd_region)
273 {
274         resource_size_t blk_max_overlap = 0, available, overlap;
275         int i;
276
277         WARN_ON(!is_nvdimm_bus_locked(&nd_region->dev));
278
279  retry:
280         available = 0;
281         overlap = blk_max_overlap;
282         for (i = 0; i < nd_region->ndr_mappings; i++) {
283                 struct nd_mapping *nd_mapping = &nd_region->mapping[i];
284                 struct nvdimm_drvdata *ndd = to_ndd(nd_mapping);
285
286                 /* if a dimm is disabled the available capacity is zero */
287                 if (!ndd)
288                         return 0;
289
290                 if (is_nd_pmem(&nd_region->dev)) {
291                         available += nd_pmem_available_dpa(nd_region,
292                                         nd_mapping, &overlap);
293                         if (overlap > blk_max_overlap) {
294                                 blk_max_overlap = overlap;
295                                 goto retry;
296                         }
297                 } else if (is_nd_blk(&nd_region->dev)) {
298                         available += nd_blk_available_dpa(nd_mapping);
299                 }
300         }
301
302         return available;
303 }
304
305 static ssize_t available_size_show(struct device *dev,
306                 struct device_attribute *attr, char *buf)
307 {
308         struct nd_region *nd_region = to_nd_region(dev);
309         unsigned long long available = 0;
310
311         /*
312          * Flush in-flight updates and grab a snapshot of the available
313          * size.  Of course, this value is potentially invalidated the
314          * memory nvdimm_bus_lock() is dropped, but that's userspace's
315          * problem to not race itself.
316          */
317         nvdimm_bus_lock(dev);
318         wait_nvdimm_bus_probe_idle(dev);
319         available = nd_region_available_dpa(nd_region);
320         nvdimm_bus_unlock(dev);
321
322         return sprintf(buf, "%llu\n", available);
323 }
324 static DEVICE_ATTR_RO(available_size);
325
326 static ssize_t init_namespaces_show(struct device *dev,
327                 struct device_attribute *attr, char *buf)
328 {
329         struct nd_region_data *ndrd = dev_get_drvdata(dev);
330         ssize_t rc;
331
332         nvdimm_bus_lock(dev);
333         if (ndrd)
334                 rc = sprintf(buf, "%d/%d\n", ndrd->ns_active, ndrd->ns_count);
335         else
336                 rc = -ENXIO;
337         nvdimm_bus_unlock(dev);
338
339         return rc;
340 }
341 static DEVICE_ATTR_RO(init_namespaces);
342
343 static ssize_t namespace_seed_show(struct device *dev,
344                 struct device_attribute *attr, char *buf)
345 {
346         struct nd_region *nd_region = to_nd_region(dev);
347         ssize_t rc;
348
349         nvdimm_bus_lock(dev);
350         if (nd_region->ns_seed)
351                 rc = sprintf(buf, "%s\n", dev_name(nd_region->ns_seed));
352         else
353                 rc = sprintf(buf, "\n");
354         nvdimm_bus_unlock(dev);
355         return rc;
356 }
357 static DEVICE_ATTR_RO(namespace_seed);
358
359 static ssize_t btt_seed_show(struct device *dev,
360                 struct device_attribute *attr, char *buf)
361 {
362         struct nd_region *nd_region = to_nd_region(dev);
363         ssize_t rc;
364
365         nvdimm_bus_lock(dev);
366         if (nd_region->btt_seed)
367                 rc = sprintf(buf, "%s\n", dev_name(nd_region->btt_seed));
368         else
369                 rc = sprintf(buf, "\n");
370         nvdimm_bus_unlock(dev);
371
372         return rc;
373 }
374 static DEVICE_ATTR_RO(btt_seed);
375
376 static ssize_t pfn_seed_show(struct device *dev,
377                 struct device_attribute *attr, char *buf)
378 {
379         struct nd_region *nd_region = to_nd_region(dev);
380         ssize_t rc;
381
382         nvdimm_bus_lock(dev);
383         if (nd_region->pfn_seed)
384                 rc = sprintf(buf, "%s\n", dev_name(nd_region->pfn_seed));
385         else
386                 rc = sprintf(buf, "\n");
387         nvdimm_bus_unlock(dev);
388
389         return rc;
390 }
391 static DEVICE_ATTR_RO(pfn_seed);
392
393 static ssize_t dax_seed_show(struct device *dev,
394                 struct device_attribute *attr, char *buf)
395 {
396         struct nd_region *nd_region = to_nd_region(dev);
397         ssize_t rc;
398
399         nvdimm_bus_lock(dev);
400         if (nd_region->dax_seed)
401                 rc = sprintf(buf, "%s\n", dev_name(nd_region->dax_seed));
402         else
403                 rc = sprintf(buf, "\n");
404         nvdimm_bus_unlock(dev);
405
406         return rc;
407 }
408 static DEVICE_ATTR_RO(dax_seed);
409
410 static ssize_t read_only_show(struct device *dev,
411                 struct device_attribute *attr, char *buf)
412 {
413         struct nd_region *nd_region = to_nd_region(dev);
414
415         return sprintf(buf, "%d\n", nd_region->ro);
416 }
417
418 static ssize_t read_only_store(struct device *dev,
419                 struct device_attribute *attr, const char *buf, size_t len)
420 {
421         bool ro;
422         int rc = strtobool(buf, &ro);
423         struct nd_region *nd_region = to_nd_region(dev);
424
425         if (rc)
426                 return rc;
427
428         nd_region->ro = ro;
429         return len;
430 }
431 static DEVICE_ATTR_RW(read_only);
432
433 static struct attribute *nd_region_attributes[] = {
434         &dev_attr_size.attr,
435         &dev_attr_nstype.attr,
436         &dev_attr_mappings.attr,
437         &dev_attr_btt_seed.attr,
438         &dev_attr_pfn_seed.attr,
439         &dev_attr_dax_seed.attr,
440         &dev_attr_read_only.attr,
441         &dev_attr_set_cookie.attr,
442         &dev_attr_available_size.attr,
443         &dev_attr_namespace_seed.attr,
444         &dev_attr_init_namespaces.attr,
445         NULL,
446 };
447
448 static umode_t region_visible(struct kobject *kobj, struct attribute *a, int n)
449 {
450         struct device *dev = container_of(kobj, typeof(*dev), kobj);
451         struct nd_region *nd_region = to_nd_region(dev);
452         struct nd_interleave_set *nd_set = nd_region->nd_set;
453         int type = nd_region_to_nstype(nd_region);
454
455         if (!is_nd_pmem(dev) && a == &dev_attr_pfn_seed.attr)
456                 return 0;
457
458         if (!is_nd_pmem(dev) && a == &dev_attr_dax_seed.attr)
459                 return 0;
460
461         if (a != &dev_attr_set_cookie.attr
462                         && a != &dev_attr_available_size.attr)
463                 return a->mode;
464
465         if ((type == ND_DEVICE_NAMESPACE_PMEM
466                                 || type == ND_DEVICE_NAMESPACE_BLK)
467                         && a == &dev_attr_available_size.attr)
468                 return a->mode;
469         else if (is_nd_pmem(dev) && nd_set)
470                 return a->mode;
471
472         return 0;
473 }
474
475 struct attribute_group nd_region_attribute_group = {
476         .attrs = nd_region_attributes,
477         .is_visible = region_visible,
478 };
479 EXPORT_SYMBOL_GPL(nd_region_attribute_group);
480
481 u64 nd_region_interleave_set_cookie(struct nd_region *nd_region)
482 {
483         struct nd_interleave_set *nd_set = nd_region->nd_set;
484
485         if (nd_set)
486                 return nd_set->cookie;
487         return 0;
488 }
489
490 /*
491  * Upon successful probe/remove, take/release a reference on the
492  * associated interleave set (if present), and plant new btt + namespace
493  * seeds.  Also, on the removal of a BLK region, notify the provider to
494  * disable the region.
495  */
496 static void nd_region_notify_driver_action(struct nvdimm_bus *nvdimm_bus,
497                 struct device *dev, bool probe)
498 {
499         struct nd_region *nd_region;
500
501         if (!probe && (is_nd_pmem(dev) || is_nd_blk(dev))) {
502                 int i;
503
504                 nd_region = to_nd_region(dev);
505                 for (i = 0; i < nd_region->ndr_mappings; i++) {
506                         struct nd_mapping *nd_mapping = &nd_region->mapping[i];
507                         struct nvdimm_drvdata *ndd = nd_mapping->ndd;
508                         struct nvdimm *nvdimm = nd_mapping->nvdimm;
509
510                         kfree(nd_mapping->labels);
511                         nd_mapping->labels = NULL;
512                         put_ndd(ndd);
513                         nd_mapping->ndd = NULL;
514                         if (ndd)
515                                 atomic_dec(&nvdimm->busy);
516                 }
517
518                 if (is_nd_pmem(dev))
519                         return;
520         }
521         if (dev->parent && is_nd_blk(dev->parent) && probe) {
522                 nd_region = to_nd_region(dev->parent);
523                 nvdimm_bus_lock(dev);
524                 if (nd_region->ns_seed == dev)
525                         nd_region_create_blk_seed(nd_region);
526                 nvdimm_bus_unlock(dev);
527         }
528         if (is_nd_btt(dev) && probe) {
529                 struct nd_btt *nd_btt = to_nd_btt(dev);
530
531                 nd_region = to_nd_region(dev->parent);
532                 nvdimm_bus_lock(dev);
533                 if (nd_region->btt_seed == dev)
534                         nd_region_create_btt_seed(nd_region);
535                 if (nd_region->ns_seed == &nd_btt->ndns->dev &&
536                                 is_nd_blk(dev->parent))
537                         nd_region_create_blk_seed(nd_region);
538                 nvdimm_bus_unlock(dev);
539         }
540         if (is_nd_pfn(dev) && probe) {
541                 nd_region = to_nd_region(dev->parent);
542                 nvdimm_bus_lock(dev);
543                 if (nd_region->pfn_seed == dev)
544                         nd_region_create_pfn_seed(nd_region);
545                 nvdimm_bus_unlock(dev);
546         }
547         if (is_nd_dax(dev) && probe) {
548                 nd_region = to_nd_region(dev->parent);
549                 nvdimm_bus_lock(dev);
550                 if (nd_region->dax_seed == dev)
551                         nd_region_create_dax_seed(nd_region);
552                 nvdimm_bus_unlock(dev);
553         }
554 }
555
556 void nd_region_probe_success(struct nvdimm_bus *nvdimm_bus, struct device *dev)
557 {
558         nd_region_notify_driver_action(nvdimm_bus, dev, true);
559 }
560
561 void nd_region_disable(struct nvdimm_bus *nvdimm_bus, struct device *dev)
562 {
563         nd_region_notify_driver_action(nvdimm_bus, dev, false);
564 }
565
566 static ssize_t mappingN(struct device *dev, char *buf, int n)
567 {
568         struct nd_region *nd_region = to_nd_region(dev);
569         struct nd_mapping *nd_mapping;
570         struct nvdimm *nvdimm;
571
572         if (n >= nd_region->ndr_mappings)
573                 return -ENXIO;
574         nd_mapping = &nd_region->mapping[n];
575         nvdimm = nd_mapping->nvdimm;
576
577         return sprintf(buf, "%s,%llu,%llu\n", dev_name(&nvdimm->dev),
578                         nd_mapping->start, nd_mapping->size);
579 }
580
581 #define REGION_MAPPING(idx) \
582 static ssize_t mapping##idx##_show(struct device *dev,          \
583                 struct device_attribute *attr, char *buf)       \
584 {                                                               \
585         return mappingN(dev, buf, idx);                         \
586 }                                                               \
587 static DEVICE_ATTR_RO(mapping##idx)
588
589 /*
590  * 32 should be enough for a while, even in the presence of socket
591  * interleave a 32-way interleave set is a degenerate case.
592  */
593 REGION_MAPPING(0);
594 REGION_MAPPING(1);
595 REGION_MAPPING(2);
596 REGION_MAPPING(3);
597 REGION_MAPPING(4);
598 REGION_MAPPING(5);
599 REGION_MAPPING(6);
600 REGION_MAPPING(7);
601 REGION_MAPPING(8);
602 REGION_MAPPING(9);
603 REGION_MAPPING(10);
604 REGION_MAPPING(11);
605 REGION_MAPPING(12);
606 REGION_MAPPING(13);
607 REGION_MAPPING(14);
608 REGION_MAPPING(15);
609 REGION_MAPPING(16);
610 REGION_MAPPING(17);
611 REGION_MAPPING(18);
612 REGION_MAPPING(19);
613 REGION_MAPPING(20);
614 REGION_MAPPING(21);
615 REGION_MAPPING(22);
616 REGION_MAPPING(23);
617 REGION_MAPPING(24);
618 REGION_MAPPING(25);
619 REGION_MAPPING(26);
620 REGION_MAPPING(27);
621 REGION_MAPPING(28);
622 REGION_MAPPING(29);
623 REGION_MAPPING(30);
624 REGION_MAPPING(31);
625
626 static umode_t mapping_visible(struct kobject *kobj, struct attribute *a, int n)
627 {
628         struct device *dev = container_of(kobj, struct device, kobj);
629         struct nd_region *nd_region = to_nd_region(dev);
630
631         if (n < nd_region->ndr_mappings)
632                 return a->mode;
633         return 0;
634 }
635
636 static struct attribute *mapping_attributes[] = {
637         &dev_attr_mapping0.attr,
638         &dev_attr_mapping1.attr,
639         &dev_attr_mapping2.attr,
640         &dev_attr_mapping3.attr,
641         &dev_attr_mapping4.attr,
642         &dev_attr_mapping5.attr,
643         &dev_attr_mapping6.attr,
644         &dev_attr_mapping7.attr,
645         &dev_attr_mapping8.attr,
646         &dev_attr_mapping9.attr,
647         &dev_attr_mapping10.attr,
648         &dev_attr_mapping11.attr,
649         &dev_attr_mapping12.attr,
650         &dev_attr_mapping13.attr,
651         &dev_attr_mapping14.attr,
652         &dev_attr_mapping15.attr,
653         &dev_attr_mapping16.attr,
654         &dev_attr_mapping17.attr,
655         &dev_attr_mapping18.attr,
656         &dev_attr_mapping19.attr,
657         &dev_attr_mapping20.attr,
658         &dev_attr_mapping21.attr,
659         &dev_attr_mapping22.attr,
660         &dev_attr_mapping23.attr,
661         &dev_attr_mapping24.attr,
662         &dev_attr_mapping25.attr,
663         &dev_attr_mapping26.attr,
664         &dev_attr_mapping27.attr,
665         &dev_attr_mapping28.attr,
666         &dev_attr_mapping29.attr,
667         &dev_attr_mapping30.attr,
668         &dev_attr_mapping31.attr,
669         NULL,
670 };
671
672 struct attribute_group nd_mapping_attribute_group = {
673         .is_visible = mapping_visible,
674         .attrs = mapping_attributes,
675 };
676 EXPORT_SYMBOL_GPL(nd_mapping_attribute_group);
677
678 int nd_blk_region_init(struct nd_region *nd_region)
679 {
680         struct device *dev = &nd_region->dev;
681         struct nvdimm_bus *nvdimm_bus = walk_to_nvdimm_bus(dev);
682
683         if (!is_nd_blk(dev))
684                 return 0;
685
686         if (nd_region->ndr_mappings < 1) {
687                 dev_err(dev, "invalid BLK region\n");
688                 return -ENXIO;
689         }
690
691         return to_nd_blk_region(dev)->enable(nvdimm_bus, dev);
692 }
693
694 /**
695  * nd_region_acquire_lane - allocate and lock a lane
696  * @nd_region: region id and number of lanes possible
697  *
698  * A lane correlates to a BLK-data-window and/or a log slot in the BTT.
699  * We optimize for the common case where there are 256 lanes, one
700  * per-cpu.  For larger systems we need to lock to share lanes.  For now
701  * this implementation assumes the cost of maintaining an allocator for
702  * free lanes is on the order of the lock hold time, so it implements a
703  * static lane = cpu % num_lanes mapping.
704  *
705  * In the case of a BTT instance on top of a BLK namespace a lane may be
706  * acquired recursively.  We lock on the first instance.
707  *
708  * In the case of a BTT instance on top of PMEM, we only acquire a lane
709  * for the BTT metadata updates.
710  */
711 unsigned int nd_region_acquire_lane(struct nd_region *nd_region)
712 {
713         unsigned int cpu, lane;
714
715         cpu = get_cpu();
716         if (nd_region->num_lanes < nr_cpu_ids) {
717                 struct nd_percpu_lane *ndl_lock, *ndl_count;
718
719                 lane = cpu % nd_region->num_lanes;
720                 ndl_count = per_cpu_ptr(nd_region->lane, cpu);
721                 ndl_lock = per_cpu_ptr(nd_region->lane, lane);
722                 if (ndl_count->count++ == 0)
723                         spin_lock(&ndl_lock->lock);
724         } else
725                 lane = cpu;
726
727         return lane;
728 }
729 EXPORT_SYMBOL(nd_region_acquire_lane);
730
731 void nd_region_release_lane(struct nd_region *nd_region, unsigned int lane)
732 {
733         if (nd_region->num_lanes < nr_cpu_ids) {
734                 unsigned int cpu = get_cpu();
735                 struct nd_percpu_lane *ndl_lock, *ndl_count;
736
737                 ndl_count = per_cpu_ptr(nd_region->lane, cpu);
738                 ndl_lock = per_cpu_ptr(nd_region->lane, lane);
739                 if (--ndl_count->count == 0)
740                         spin_unlock(&ndl_lock->lock);
741                 put_cpu();
742         }
743         put_cpu();
744 }
745 EXPORT_SYMBOL(nd_region_release_lane);
746
747 static struct nd_region *nd_region_create(struct nvdimm_bus *nvdimm_bus,
748                 struct nd_region_desc *ndr_desc, struct device_type *dev_type,
749                 const char *caller)
750 {
751         struct nd_region *nd_region;
752         struct device *dev;
753         void *region_buf;
754         unsigned int i;
755         int ro = 0;
756
757         for (i = 0; i < ndr_desc->num_mappings; i++) {
758                 struct nd_mapping *nd_mapping = &ndr_desc->nd_mapping[i];
759                 struct nvdimm *nvdimm = nd_mapping->nvdimm;
760
761                 if ((nd_mapping->start | nd_mapping->size) % SZ_4K) {
762                         dev_err(&nvdimm_bus->dev, "%s: %s mapping%d is not 4K aligned\n",
763                                         caller, dev_name(&nvdimm->dev), i);
764
765                         return NULL;
766                 }
767
768                 if (nvdimm->flags & NDD_UNARMED)
769                         ro = 1;
770         }
771
772         if (dev_type == &nd_blk_device_type) {
773                 struct nd_blk_region_desc *ndbr_desc;
774                 struct nd_blk_region *ndbr;
775
776                 ndbr_desc = to_blk_region_desc(ndr_desc);
777                 ndbr = kzalloc(sizeof(*ndbr) + sizeof(struct nd_mapping)
778                                 * ndr_desc->num_mappings,
779                                 GFP_KERNEL);
780                 if (ndbr) {
781                         nd_region = &ndbr->nd_region;
782                         ndbr->enable = ndbr_desc->enable;
783                         ndbr->do_io = ndbr_desc->do_io;
784                 }
785                 region_buf = ndbr;
786         } else {
787                 nd_region = kzalloc(sizeof(struct nd_region)
788                                 + sizeof(struct nd_mapping)
789                                 * ndr_desc->num_mappings,
790                                 GFP_KERNEL);
791                 region_buf = nd_region;
792         }
793
794         if (!region_buf)
795                 return NULL;
796         nd_region->id = ida_simple_get(&region_ida, 0, 0, GFP_KERNEL);
797         if (nd_region->id < 0)
798                 goto err_id;
799
800         nd_region->lane = alloc_percpu(struct nd_percpu_lane);
801         if (!nd_region->lane)
802                 goto err_percpu;
803
804         for (i = 0; i < nr_cpu_ids; i++) {
805                 struct nd_percpu_lane *ndl;
806
807                 ndl = per_cpu_ptr(nd_region->lane, i);
808                 spin_lock_init(&ndl->lock);
809                 ndl->count = 0;
810         }
811
812         memcpy(nd_region->mapping, ndr_desc->nd_mapping,
813                         sizeof(struct nd_mapping) * ndr_desc->num_mappings);
814         for (i = 0; i < ndr_desc->num_mappings; i++) {
815                 struct nd_mapping *nd_mapping = &ndr_desc->nd_mapping[i];
816                 struct nvdimm *nvdimm = nd_mapping->nvdimm;
817
818                 get_device(&nvdimm->dev);
819         }
820         nd_region->ndr_mappings = ndr_desc->num_mappings;
821         nd_region->provider_data = ndr_desc->provider_data;
822         nd_region->nd_set = ndr_desc->nd_set;
823         nd_region->num_lanes = ndr_desc->num_lanes;
824         nd_region->flags = ndr_desc->flags;
825         nd_region->ro = ro;
826         nd_region->numa_node = ndr_desc->numa_node;
827         ida_init(&nd_region->ns_ida);
828         ida_init(&nd_region->btt_ida);
829         ida_init(&nd_region->pfn_ida);
830         ida_init(&nd_region->dax_ida);
831         dev = &nd_region->dev;
832         dev_set_name(dev, "region%d", nd_region->id);
833         dev->parent = &nvdimm_bus->dev;
834         dev->type = dev_type;
835         dev->groups = ndr_desc->attr_groups;
836         nd_region->ndr_size = resource_size(ndr_desc->res);
837         nd_region->ndr_start = ndr_desc->res->start;
838         nd_device_register(dev);
839
840         return nd_region;
841
842  err_percpu:
843         ida_simple_remove(&region_ida, nd_region->id);
844  err_id:
845         kfree(region_buf);
846         return NULL;
847 }
848
849 struct nd_region *nvdimm_pmem_region_create(struct nvdimm_bus *nvdimm_bus,
850                 struct nd_region_desc *ndr_desc)
851 {
852         ndr_desc->num_lanes = ND_MAX_LANES;
853         return nd_region_create(nvdimm_bus, ndr_desc, &nd_pmem_device_type,
854                         __func__);
855 }
856 EXPORT_SYMBOL_GPL(nvdimm_pmem_region_create);
857
858 struct nd_region *nvdimm_blk_region_create(struct nvdimm_bus *nvdimm_bus,
859                 struct nd_region_desc *ndr_desc)
860 {
861         if (ndr_desc->num_mappings > 1)
862                 return NULL;
863         ndr_desc->num_lanes = min(ndr_desc->num_lanes, ND_MAX_LANES);
864         return nd_region_create(nvdimm_bus, ndr_desc, &nd_blk_device_type,
865                         __func__);
866 }
867 EXPORT_SYMBOL_GPL(nvdimm_blk_region_create);
868
869 struct nd_region *nvdimm_volatile_region_create(struct nvdimm_bus *nvdimm_bus,
870                 struct nd_region_desc *ndr_desc)
871 {
872         ndr_desc->num_lanes = ND_MAX_LANES;
873         return nd_region_create(nvdimm_bus, ndr_desc, &nd_volatile_device_type,
874                         __func__);
875 }
876 EXPORT_SYMBOL_GPL(nvdimm_volatile_region_create);
877
878 /**
879  * nvdimm_flush - flush any posted write queues between the cpu and pmem media
880  * @nd_region: blk or interleaved pmem region
881  */
882 void nvdimm_flush(struct nd_region *nd_region)
883 {
884         struct nd_region_data *ndrd = dev_get_drvdata(&nd_region->dev);
885         int i, idx;
886
887         /*
888          * Try to encourage some diversity in flush hint addresses
889          * across cpus assuming a limited number of flush hints.
890          */
891         idx = this_cpu_read(flush_idx);
892         idx = this_cpu_add_return(flush_idx, hash_32(current->pid + idx, 8));
893
894         /*
895          * The first wmb() is needed to 'sfence' all previous writes
896          * such that they are architecturally visible for the platform
897          * buffer flush.  Note that we've already arranged for pmem
898          * writes to avoid the cache via arch_memcpy_to_pmem().  The
899          * final wmb() ensures ordering for the NVDIMM flush write.
900          */
901         wmb();
902         for (i = 0; i < nd_region->ndr_mappings; i++)
903                 if (ndrd->flush_wpq[i][0])
904                         writeq(1, ndrd->flush_wpq[i][idx & ndrd->flush_mask]);
905         wmb();
906 }
907 EXPORT_SYMBOL_GPL(nvdimm_flush);
908
909 /**
910  * nvdimm_has_flush - determine write flushing requirements
911  * @nd_region: blk or interleaved pmem region
912  *
913  * Returns 1 if writes require flushing
914  * Returns 0 if writes do not require flushing
915  * Returns -ENXIO if flushing capability can not be determined
916  */
917 int nvdimm_has_flush(struct nd_region *nd_region)
918 {
919         struct nd_region_data *ndrd = dev_get_drvdata(&nd_region->dev);
920         int i;
921
922         /* no nvdimm == flushing capability unknown */
923         if (nd_region->ndr_mappings == 0)
924                 return -ENXIO;
925
926         for (i = 0; i < nd_region->ndr_mappings; i++)
927                 /* flush hints present, flushing required */
928                 if (ndrd->flush_wpq[i][0])
929                         return 1;
930
931         /*
932          * The platform defines dimm devices without hints, assume
933          * platform persistence mechanism like ADR
934          */
935         return 0;
936 }
937 EXPORT_SYMBOL_GPL(nvdimm_has_flush);
938
939 void __exit nd_region_devs_exit(void)
940 {
941         ida_destroy(&region_ida);
942 }