Merge remote-tracking branches 'asoc/topic/pxa' and 'asoc/topic/qcom' into asoc-next
[cascardo/linux.git] / drivers / nvme / host / core.c
1 /*
2  * NVM Express device driver
3  * Copyright (c) 2011-2014, Intel Corporation.
4  *
5  * This program is free software; you can redistribute it and/or modify it
6  * under the terms and conditions of the GNU General Public License,
7  * version 2, as published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope it will be useful, but WITHOUT
10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
12  * more details.
13  */
14
15 #include <linux/blkdev.h>
16 #include <linux/blk-mq.h>
17 #include <linux/delay.h>
18 #include <linux/errno.h>
19 #include <linux/hdreg.h>
20 #include <linux/kernel.h>
21 #include <linux/module.h>
22 #include <linux/list_sort.h>
23 #include <linux/slab.h>
24 #include <linux/types.h>
25 #include <linux/pr.h>
26 #include <linux/ptrace.h>
27 #include <linux/nvme_ioctl.h>
28 #include <linux/t10-pi.h>
29 #include <scsi/sg.h>
30 #include <asm/unaligned.h>
31
32 #include "nvme.h"
33
34 #define NVME_MINORS             (1U << MINORBITS)
35
36 static int nvme_major;
37 module_param(nvme_major, int, 0);
38
39 static int nvme_char_major;
40 module_param(nvme_char_major, int, 0);
41
42 static LIST_HEAD(nvme_ctrl_list);
43 DEFINE_SPINLOCK(dev_list_lock);
44
45 static struct class *nvme_class;
46
47 static void nvme_free_ns(struct kref *kref)
48 {
49         struct nvme_ns *ns = container_of(kref, struct nvme_ns, kref);
50
51         if (ns->type == NVME_NS_LIGHTNVM)
52                 nvme_nvm_unregister(ns->queue, ns->disk->disk_name);
53
54         spin_lock(&dev_list_lock);
55         ns->disk->private_data = NULL;
56         spin_unlock(&dev_list_lock);
57
58         put_disk(ns->disk);
59         ida_simple_remove(&ns->ctrl->ns_ida, ns->instance);
60         nvme_put_ctrl(ns->ctrl);
61         kfree(ns);
62 }
63
64 static void nvme_put_ns(struct nvme_ns *ns)
65 {
66         kref_put(&ns->kref, nvme_free_ns);
67 }
68
69 static struct nvme_ns *nvme_get_ns_from_disk(struct gendisk *disk)
70 {
71         struct nvme_ns *ns;
72
73         spin_lock(&dev_list_lock);
74         ns = disk->private_data;
75         if (ns && !kref_get_unless_zero(&ns->kref))
76                 ns = NULL;
77         spin_unlock(&dev_list_lock);
78
79         return ns;
80 }
81
82 void nvme_requeue_req(struct request *req)
83 {
84         unsigned long flags;
85
86         blk_mq_requeue_request(req);
87         spin_lock_irqsave(req->q->queue_lock, flags);
88         if (!blk_queue_stopped(req->q))
89                 blk_mq_kick_requeue_list(req->q);
90         spin_unlock_irqrestore(req->q->queue_lock, flags);
91 }
92
93 struct request *nvme_alloc_request(struct request_queue *q,
94                 struct nvme_command *cmd, unsigned int flags)
95 {
96         bool write = cmd->common.opcode & 1;
97         struct request *req;
98
99         req = blk_mq_alloc_request(q, write, flags);
100         if (IS_ERR(req))
101                 return req;
102
103         req->cmd_type = REQ_TYPE_DRV_PRIV;
104         req->cmd_flags |= REQ_FAILFAST_DRIVER;
105         req->__data_len = 0;
106         req->__sector = (sector_t) -1;
107         req->bio = req->biotail = NULL;
108
109         req->cmd = (unsigned char *)cmd;
110         req->cmd_len = sizeof(struct nvme_command);
111         req->special = (void *)0;
112
113         return req;
114 }
115
116 /*
117  * Returns 0 on success.  If the result is negative, it's a Linux error code;
118  * if the result is positive, it's an NVM Express status code
119  */
120 int __nvme_submit_sync_cmd(struct request_queue *q, struct nvme_command *cmd,
121                 void *buffer, unsigned bufflen, u32 *result, unsigned timeout)
122 {
123         struct request *req;
124         int ret;
125
126         req = nvme_alloc_request(q, cmd, 0);
127         if (IS_ERR(req))
128                 return PTR_ERR(req);
129
130         req->timeout = timeout ? timeout : ADMIN_TIMEOUT;
131
132         if (buffer && bufflen) {
133                 ret = blk_rq_map_kern(q, req, buffer, bufflen, GFP_KERNEL);
134                 if (ret)
135                         goto out;
136         }
137
138         blk_execute_rq(req->q, NULL, req, 0);
139         if (result)
140                 *result = (u32)(uintptr_t)req->special;
141         ret = req->errors;
142  out:
143         blk_mq_free_request(req);
144         return ret;
145 }
146
147 int nvme_submit_sync_cmd(struct request_queue *q, struct nvme_command *cmd,
148                 void *buffer, unsigned bufflen)
149 {
150         return __nvme_submit_sync_cmd(q, cmd, buffer, bufflen, NULL, 0);
151 }
152
153 int __nvme_submit_user_cmd(struct request_queue *q, struct nvme_command *cmd,
154                 void __user *ubuffer, unsigned bufflen,
155                 void __user *meta_buffer, unsigned meta_len, u32 meta_seed,
156                 u32 *result, unsigned timeout)
157 {
158         bool write = cmd->common.opcode & 1;
159         struct nvme_ns *ns = q->queuedata;
160         struct gendisk *disk = ns ? ns->disk : NULL;
161         struct request *req;
162         struct bio *bio = NULL;
163         void *meta = NULL;
164         int ret;
165
166         req = nvme_alloc_request(q, cmd, 0);
167         if (IS_ERR(req))
168                 return PTR_ERR(req);
169
170         req->timeout = timeout ? timeout : ADMIN_TIMEOUT;
171
172         if (ubuffer && bufflen) {
173                 ret = blk_rq_map_user(q, req, NULL, ubuffer, bufflen,
174                                 GFP_KERNEL);
175                 if (ret)
176                         goto out;
177                 bio = req->bio;
178
179                 if (!disk)
180                         goto submit;
181                 bio->bi_bdev = bdget_disk(disk, 0);
182                 if (!bio->bi_bdev) {
183                         ret = -ENODEV;
184                         goto out_unmap;
185                 }
186
187                 if (meta_buffer && meta_len) {
188                         struct bio_integrity_payload *bip;
189
190                         meta = kmalloc(meta_len, GFP_KERNEL);
191                         if (!meta) {
192                                 ret = -ENOMEM;
193                                 goto out_unmap;
194                         }
195
196                         if (write) {
197                                 if (copy_from_user(meta, meta_buffer,
198                                                 meta_len)) {
199                                         ret = -EFAULT;
200                                         goto out_free_meta;
201                                 }
202                         }
203
204                         bip = bio_integrity_alloc(bio, GFP_KERNEL, 1);
205                         if (IS_ERR(bip)) {
206                                 ret = PTR_ERR(bip);
207                                 goto out_free_meta;
208                         }
209
210                         bip->bip_iter.bi_size = meta_len;
211                         bip->bip_iter.bi_sector = meta_seed;
212
213                         ret = bio_integrity_add_page(bio, virt_to_page(meta),
214                                         meta_len, offset_in_page(meta));
215                         if (ret != meta_len) {
216                                 ret = -ENOMEM;
217                                 goto out_free_meta;
218                         }
219                 }
220         }
221  submit:
222         blk_execute_rq(req->q, disk, req, 0);
223         ret = req->errors;
224         if (result)
225                 *result = (u32)(uintptr_t)req->special;
226         if (meta && !ret && !write) {
227                 if (copy_to_user(meta_buffer, meta, meta_len))
228                         ret = -EFAULT;
229         }
230  out_free_meta:
231         kfree(meta);
232  out_unmap:
233         if (bio) {
234                 if (disk && bio->bi_bdev)
235                         bdput(bio->bi_bdev);
236                 blk_rq_unmap_user(bio);
237         }
238  out:
239         blk_mq_free_request(req);
240         return ret;
241 }
242
243 int nvme_submit_user_cmd(struct request_queue *q, struct nvme_command *cmd,
244                 void __user *ubuffer, unsigned bufflen, u32 *result,
245                 unsigned timeout)
246 {
247         return __nvme_submit_user_cmd(q, cmd, ubuffer, bufflen, NULL, 0, 0,
248                         result, timeout);
249 }
250
251 int nvme_identify_ctrl(struct nvme_ctrl *dev, struct nvme_id_ctrl **id)
252 {
253         struct nvme_command c = { };
254         int error;
255
256         /* gcc-4.4.4 (at least) has issues with initializers and anon unions */
257         c.identify.opcode = nvme_admin_identify;
258         c.identify.cns = cpu_to_le32(1);
259
260         *id = kmalloc(sizeof(struct nvme_id_ctrl), GFP_KERNEL);
261         if (!*id)
262                 return -ENOMEM;
263
264         error = nvme_submit_sync_cmd(dev->admin_q, &c, *id,
265                         sizeof(struct nvme_id_ctrl));
266         if (error)
267                 kfree(*id);
268         return error;
269 }
270
271 static int nvme_identify_ns_list(struct nvme_ctrl *dev, unsigned nsid, __le32 *ns_list)
272 {
273         struct nvme_command c = { };
274
275         c.identify.opcode = nvme_admin_identify;
276         c.identify.cns = cpu_to_le32(2);
277         c.identify.nsid = cpu_to_le32(nsid);
278         return nvme_submit_sync_cmd(dev->admin_q, &c, ns_list, 0x1000);
279 }
280
281 int nvme_identify_ns(struct nvme_ctrl *dev, unsigned nsid,
282                 struct nvme_id_ns **id)
283 {
284         struct nvme_command c = { };
285         int error;
286
287         /* gcc-4.4.4 (at least) has issues with initializers and anon unions */
288         c.identify.opcode = nvme_admin_identify,
289         c.identify.nsid = cpu_to_le32(nsid),
290
291         *id = kmalloc(sizeof(struct nvme_id_ns), GFP_KERNEL);
292         if (!*id)
293                 return -ENOMEM;
294
295         error = nvme_submit_sync_cmd(dev->admin_q, &c, *id,
296                         sizeof(struct nvme_id_ns));
297         if (error)
298                 kfree(*id);
299         return error;
300 }
301
302 int nvme_get_features(struct nvme_ctrl *dev, unsigned fid, unsigned nsid,
303                                         dma_addr_t dma_addr, u32 *result)
304 {
305         struct nvme_command c;
306
307         memset(&c, 0, sizeof(c));
308         c.features.opcode = nvme_admin_get_features;
309         c.features.nsid = cpu_to_le32(nsid);
310         c.features.prp1 = cpu_to_le64(dma_addr);
311         c.features.fid = cpu_to_le32(fid);
312
313         return __nvme_submit_sync_cmd(dev->admin_q, &c, NULL, 0, result, 0);
314 }
315
316 int nvme_set_features(struct nvme_ctrl *dev, unsigned fid, unsigned dword11,
317                                         dma_addr_t dma_addr, u32 *result)
318 {
319         struct nvme_command c;
320
321         memset(&c, 0, sizeof(c));
322         c.features.opcode = nvme_admin_set_features;
323         c.features.prp1 = cpu_to_le64(dma_addr);
324         c.features.fid = cpu_to_le32(fid);
325         c.features.dword11 = cpu_to_le32(dword11);
326
327         return __nvme_submit_sync_cmd(dev->admin_q, &c, NULL, 0, result, 0);
328 }
329
330 int nvme_get_log_page(struct nvme_ctrl *dev, struct nvme_smart_log **log)
331 {
332         struct nvme_command c = { };
333         int error;
334
335         c.common.opcode = nvme_admin_get_log_page,
336         c.common.nsid = cpu_to_le32(0xFFFFFFFF),
337         c.common.cdw10[0] = cpu_to_le32(
338                         (((sizeof(struct nvme_smart_log) / 4) - 1) << 16) |
339                          NVME_LOG_SMART),
340
341         *log = kmalloc(sizeof(struct nvme_smart_log), GFP_KERNEL);
342         if (!*log)
343                 return -ENOMEM;
344
345         error = nvme_submit_sync_cmd(dev->admin_q, &c, *log,
346                         sizeof(struct nvme_smart_log));
347         if (error)
348                 kfree(*log);
349         return error;
350 }
351
352 int nvme_set_queue_count(struct nvme_ctrl *ctrl, int *count)
353 {
354         u32 q_count = (*count - 1) | ((*count - 1) << 16);
355         u32 result;
356         int status, nr_io_queues;
357
358         status = nvme_set_features(ctrl, NVME_FEAT_NUM_QUEUES, q_count, 0,
359                         &result);
360         if (status)
361                 return status;
362
363         nr_io_queues = min(result & 0xffff, result >> 16) + 1;
364         *count = min(*count, nr_io_queues);
365         return 0;
366 }
367
368 static int nvme_submit_io(struct nvme_ns *ns, struct nvme_user_io __user *uio)
369 {
370         struct nvme_user_io io;
371         struct nvme_command c;
372         unsigned length, meta_len;
373         void __user *metadata;
374
375         if (copy_from_user(&io, uio, sizeof(io)))
376                 return -EFAULT;
377         if (io.flags)
378                 return -EINVAL;
379
380         switch (io.opcode) {
381         case nvme_cmd_write:
382         case nvme_cmd_read:
383         case nvme_cmd_compare:
384                 break;
385         default:
386                 return -EINVAL;
387         }
388
389         length = (io.nblocks + 1) << ns->lba_shift;
390         meta_len = (io.nblocks + 1) * ns->ms;
391         metadata = (void __user *)(uintptr_t)io.metadata;
392
393         if (ns->ext) {
394                 length += meta_len;
395                 meta_len = 0;
396         } else if (meta_len) {
397                 if ((io.metadata & 3) || !io.metadata)
398                         return -EINVAL;
399         }
400
401         memset(&c, 0, sizeof(c));
402         c.rw.opcode = io.opcode;
403         c.rw.flags = io.flags;
404         c.rw.nsid = cpu_to_le32(ns->ns_id);
405         c.rw.slba = cpu_to_le64(io.slba);
406         c.rw.length = cpu_to_le16(io.nblocks);
407         c.rw.control = cpu_to_le16(io.control);
408         c.rw.dsmgmt = cpu_to_le32(io.dsmgmt);
409         c.rw.reftag = cpu_to_le32(io.reftag);
410         c.rw.apptag = cpu_to_le16(io.apptag);
411         c.rw.appmask = cpu_to_le16(io.appmask);
412
413         return __nvme_submit_user_cmd(ns->queue, &c,
414                         (void __user *)(uintptr_t)io.addr, length,
415                         metadata, meta_len, io.slba, NULL, 0);
416 }
417
418 static int nvme_user_cmd(struct nvme_ctrl *ctrl, struct nvme_ns *ns,
419                         struct nvme_passthru_cmd __user *ucmd)
420 {
421         struct nvme_passthru_cmd cmd;
422         struct nvme_command c;
423         unsigned timeout = 0;
424         int status;
425
426         if (!capable(CAP_SYS_ADMIN))
427                 return -EACCES;
428         if (copy_from_user(&cmd, ucmd, sizeof(cmd)))
429                 return -EFAULT;
430         if (cmd.flags)
431                 return -EINVAL;
432
433         memset(&c, 0, sizeof(c));
434         c.common.opcode = cmd.opcode;
435         c.common.flags = cmd.flags;
436         c.common.nsid = cpu_to_le32(cmd.nsid);
437         c.common.cdw2[0] = cpu_to_le32(cmd.cdw2);
438         c.common.cdw2[1] = cpu_to_le32(cmd.cdw3);
439         c.common.cdw10[0] = cpu_to_le32(cmd.cdw10);
440         c.common.cdw10[1] = cpu_to_le32(cmd.cdw11);
441         c.common.cdw10[2] = cpu_to_le32(cmd.cdw12);
442         c.common.cdw10[3] = cpu_to_le32(cmd.cdw13);
443         c.common.cdw10[4] = cpu_to_le32(cmd.cdw14);
444         c.common.cdw10[5] = cpu_to_le32(cmd.cdw15);
445
446         if (cmd.timeout_ms)
447                 timeout = msecs_to_jiffies(cmd.timeout_ms);
448
449         status = nvme_submit_user_cmd(ns ? ns->queue : ctrl->admin_q, &c,
450                         (void __user *)(uintptr_t)cmd.addr, cmd.data_len,
451                         &cmd.result, timeout);
452         if (status >= 0) {
453                 if (put_user(cmd.result, &ucmd->result))
454                         return -EFAULT;
455         }
456
457         return status;
458 }
459
460 static int nvme_ioctl(struct block_device *bdev, fmode_t mode,
461                 unsigned int cmd, unsigned long arg)
462 {
463         struct nvme_ns *ns = bdev->bd_disk->private_data;
464
465         switch (cmd) {
466         case NVME_IOCTL_ID:
467                 force_successful_syscall_return();
468                 return ns->ns_id;
469         case NVME_IOCTL_ADMIN_CMD:
470                 return nvme_user_cmd(ns->ctrl, NULL, (void __user *)arg);
471         case NVME_IOCTL_IO_CMD:
472                 return nvme_user_cmd(ns->ctrl, ns, (void __user *)arg);
473         case NVME_IOCTL_SUBMIT_IO:
474                 return nvme_submit_io(ns, (void __user *)arg);
475 #ifdef CONFIG_BLK_DEV_NVME_SCSI
476         case SG_GET_VERSION_NUM:
477                 return nvme_sg_get_version_num((void __user *)arg);
478         case SG_IO:
479                 return nvme_sg_io(ns, (void __user *)arg);
480 #endif
481         default:
482                 return -ENOTTY;
483         }
484 }
485
486 #ifdef CONFIG_COMPAT
487 static int nvme_compat_ioctl(struct block_device *bdev, fmode_t mode,
488                         unsigned int cmd, unsigned long arg)
489 {
490         switch (cmd) {
491         case SG_IO:
492                 return -ENOIOCTLCMD;
493         }
494         return nvme_ioctl(bdev, mode, cmd, arg);
495 }
496 #else
497 #define nvme_compat_ioctl       NULL
498 #endif
499
500 static int nvme_open(struct block_device *bdev, fmode_t mode)
501 {
502         return nvme_get_ns_from_disk(bdev->bd_disk) ? 0 : -ENXIO;
503 }
504
505 static void nvme_release(struct gendisk *disk, fmode_t mode)
506 {
507         nvme_put_ns(disk->private_data);
508 }
509
510 static int nvme_getgeo(struct block_device *bdev, struct hd_geometry *geo)
511 {
512         /* some standard values */
513         geo->heads = 1 << 6;
514         geo->sectors = 1 << 5;
515         geo->cylinders = get_capacity(bdev->bd_disk) >> 11;
516         return 0;
517 }
518
519 #ifdef CONFIG_BLK_DEV_INTEGRITY
520 static void nvme_init_integrity(struct nvme_ns *ns)
521 {
522         struct blk_integrity integrity;
523
524         switch (ns->pi_type) {
525         case NVME_NS_DPS_PI_TYPE3:
526                 integrity.profile = &t10_pi_type3_crc;
527                 break;
528         case NVME_NS_DPS_PI_TYPE1:
529         case NVME_NS_DPS_PI_TYPE2:
530                 integrity.profile = &t10_pi_type1_crc;
531                 break;
532         default:
533                 integrity.profile = NULL;
534                 break;
535         }
536         integrity.tuple_size = ns->ms;
537         blk_integrity_register(ns->disk, &integrity);
538         blk_queue_max_integrity_segments(ns->queue, 1);
539 }
540 #else
541 static void nvme_init_integrity(struct nvme_ns *ns)
542 {
543 }
544 #endif /* CONFIG_BLK_DEV_INTEGRITY */
545
546 static void nvme_config_discard(struct nvme_ns *ns)
547 {
548         u32 logical_block_size = queue_logical_block_size(ns->queue);
549         ns->queue->limits.discard_zeroes_data = 0;
550         ns->queue->limits.discard_alignment = logical_block_size;
551         ns->queue->limits.discard_granularity = logical_block_size;
552         blk_queue_max_discard_sectors(ns->queue, 0xffffffff);
553         queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, ns->queue);
554 }
555
556 static int nvme_revalidate_disk(struct gendisk *disk)
557 {
558         struct nvme_ns *ns = disk->private_data;
559         struct nvme_id_ns *id;
560         u8 lbaf, pi_type;
561         u16 old_ms;
562         unsigned short bs;
563
564         if (test_bit(NVME_NS_DEAD, &ns->flags)) {
565                 set_capacity(disk, 0);
566                 return -ENODEV;
567         }
568         if (nvme_identify_ns(ns->ctrl, ns->ns_id, &id)) {
569                 dev_warn(ns->ctrl->dev, "%s: Identify failure nvme%dn%d\n",
570                                 __func__, ns->ctrl->instance, ns->ns_id);
571                 return -ENODEV;
572         }
573         if (id->ncap == 0) {
574                 kfree(id);
575                 return -ENODEV;
576         }
577
578         if (nvme_nvm_ns_supported(ns, id) && ns->type != NVME_NS_LIGHTNVM) {
579                 if (nvme_nvm_register(ns->queue, disk->disk_name)) {
580                         dev_warn(ns->ctrl->dev,
581                                 "%s: LightNVM init failure\n", __func__);
582                         kfree(id);
583                         return -ENODEV;
584                 }
585                 ns->type = NVME_NS_LIGHTNVM;
586         }
587
588         if (ns->ctrl->vs >= NVME_VS(1, 1))
589                 memcpy(ns->eui, id->eui64, sizeof(ns->eui));
590         if (ns->ctrl->vs >= NVME_VS(1, 2))
591                 memcpy(ns->uuid, id->nguid, sizeof(ns->uuid));
592
593         old_ms = ns->ms;
594         lbaf = id->flbas & NVME_NS_FLBAS_LBA_MASK;
595         ns->lba_shift = id->lbaf[lbaf].ds;
596         ns->ms = le16_to_cpu(id->lbaf[lbaf].ms);
597         ns->ext = ns->ms && (id->flbas & NVME_NS_FLBAS_META_EXT);
598
599         /*
600          * If identify namespace failed, use default 512 byte block size so
601          * block layer can use before failing read/write for 0 capacity.
602          */
603         if (ns->lba_shift == 0)
604                 ns->lba_shift = 9;
605         bs = 1 << ns->lba_shift;
606         /* XXX: PI implementation requires metadata equal t10 pi tuple size */
607         pi_type = ns->ms == sizeof(struct t10_pi_tuple) ?
608                                         id->dps & NVME_NS_DPS_PI_MASK : 0;
609
610         blk_mq_freeze_queue(disk->queue);
611         if (blk_get_integrity(disk) && (ns->pi_type != pi_type ||
612                                 ns->ms != old_ms ||
613                                 bs != queue_logical_block_size(disk->queue) ||
614                                 (ns->ms && ns->ext)))
615                 blk_integrity_unregister(disk);
616
617         ns->pi_type = pi_type;
618         blk_queue_logical_block_size(ns->queue, bs);
619
620         if (ns->ms && !blk_get_integrity(disk) && !ns->ext)
621                 nvme_init_integrity(ns);
622         if (ns->ms && !(ns->ms == 8 && ns->pi_type) && !blk_get_integrity(disk))
623                 set_capacity(disk, 0);
624         else
625                 set_capacity(disk, le64_to_cpup(&id->nsze) << (ns->lba_shift - 9));
626
627         if (ns->ctrl->oncs & NVME_CTRL_ONCS_DSM)
628                 nvme_config_discard(ns);
629         blk_mq_unfreeze_queue(disk->queue);
630
631         kfree(id);
632         return 0;
633 }
634
635 static char nvme_pr_type(enum pr_type type)
636 {
637         switch (type) {
638         case PR_WRITE_EXCLUSIVE:
639                 return 1;
640         case PR_EXCLUSIVE_ACCESS:
641                 return 2;
642         case PR_WRITE_EXCLUSIVE_REG_ONLY:
643                 return 3;
644         case PR_EXCLUSIVE_ACCESS_REG_ONLY:
645                 return 4;
646         case PR_WRITE_EXCLUSIVE_ALL_REGS:
647                 return 5;
648         case PR_EXCLUSIVE_ACCESS_ALL_REGS:
649                 return 6;
650         default:
651                 return 0;
652         }
653 };
654
655 static int nvme_pr_command(struct block_device *bdev, u32 cdw10,
656                                 u64 key, u64 sa_key, u8 op)
657 {
658         struct nvme_ns *ns = bdev->bd_disk->private_data;
659         struct nvme_command c;
660         u8 data[16] = { 0, };
661
662         put_unaligned_le64(key, &data[0]);
663         put_unaligned_le64(sa_key, &data[8]);
664
665         memset(&c, 0, sizeof(c));
666         c.common.opcode = op;
667         c.common.nsid = cpu_to_le32(ns->ns_id);
668         c.common.cdw10[0] = cpu_to_le32(cdw10);
669
670         return nvme_submit_sync_cmd(ns->queue, &c, data, 16);
671 }
672
673 static int nvme_pr_register(struct block_device *bdev, u64 old,
674                 u64 new, unsigned flags)
675 {
676         u32 cdw10;
677
678         if (flags & ~PR_FL_IGNORE_KEY)
679                 return -EOPNOTSUPP;
680
681         cdw10 = old ? 2 : 0;
682         cdw10 |= (flags & PR_FL_IGNORE_KEY) ? 1 << 3 : 0;
683         cdw10 |= (1 << 30) | (1 << 31); /* PTPL=1 */
684         return nvme_pr_command(bdev, cdw10, old, new, nvme_cmd_resv_register);
685 }
686
687 static int nvme_pr_reserve(struct block_device *bdev, u64 key,
688                 enum pr_type type, unsigned flags)
689 {
690         u32 cdw10;
691
692         if (flags & ~PR_FL_IGNORE_KEY)
693                 return -EOPNOTSUPP;
694
695         cdw10 = nvme_pr_type(type) << 8;
696         cdw10 |= ((flags & PR_FL_IGNORE_KEY) ? 1 << 3 : 0);
697         return nvme_pr_command(bdev, cdw10, key, 0, nvme_cmd_resv_acquire);
698 }
699
700 static int nvme_pr_preempt(struct block_device *bdev, u64 old, u64 new,
701                 enum pr_type type, bool abort)
702 {
703         u32 cdw10 = nvme_pr_type(type) << 8 | abort ? 2 : 1;
704         return nvme_pr_command(bdev, cdw10, old, new, nvme_cmd_resv_acquire);
705 }
706
707 static int nvme_pr_clear(struct block_device *bdev, u64 key)
708 {
709         u32 cdw10 = 1 | (key ? 1 << 3 : 0);
710         return nvme_pr_command(bdev, cdw10, key, 0, nvme_cmd_resv_register);
711 }
712
713 static int nvme_pr_release(struct block_device *bdev, u64 key, enum pr_type type)
714 {
715         u32 cdw10 = nvme_pr_type(type) << 8 | key ? 1 << 3 : 0;
716         return nvme_pr_command(bdev, cdw10, key, 0, nvme_cmd_resv_release);
717 }
718
719 static const struct pr_ops nvme_pr_ops = {
720         .pr_register    = nvme_pr_register,
721         .pr_reserve     = nvme_pr_reserve,
722         .pr_release     = nvme_pr_release,
723         .pr_preempt     = nvme_pr_preempt,
724         .pr_clear       = nvme_pr_clear,
725 };
726
727 static const struct block_device_operations nvme_fops = {
728         .owner          = THIS_MODULE,
729         .ioctl          = nvme_ioctl,
730         .compat_ioctl   = nvme_compat_ioctl,
731         .open           = nvme_open,
732         .release        = nvme_release,
733         .getgeo         = nvme_getgeo,
734         .revalidate_disk= nvme_revalidate_disk,
735         .pr_ops         = &nvme_pr_ops,
736 };
737
738 static int nvme_wait_ready(struct nvme_ctrl *ctrl, u64 cap, bool enabled)
739 {
740         unsigned long timeout =
741                 ((NVME_CAP_TIMEOUT(cap) + 1) * HZ / 2) + jiffies;
742         u32 csts, bit = enabled ? NVME_CSTS_RDY : 0;
743         int ret;
744
745         while ((ret = ctrl->ops->reg_read32(ctrl, NVME_REG_CSTS, &csts)) == 0) {
746                 if ((csts & NVME_CSTS_RDY) == bit)
747                         break;
748
749                 msleep(100);
750                 if (fatal_signal_pending(current))
751                         return -EINTR;
752                 if (time_after(jiffies, timeout)) {
753                         dev_err(ctrl->dev,
754                                 "Device not ready; aborting %s\n", enabled ?
755                                                 "initialisation" : "reset");
756                         return -ENODEV;
757                 }
758         }
759
760         return ret;
761 }
762
763 /*
764  * If the device has been passed off to us in an enabled state, just clear
765  * the enabled bit.  The spec says we should set the 'shutdown notification
766  * bits', but doing so may cause the device to complete commands to the
767  * admin queue ... and we don't know what memory that might be pointing at!
768  */
769 int nvme_disable_ctrl(struct nvme_ctrl *ctrl, u64 cap)
770 {
771         int ret;
772
773         ctrl->ctrl_config &= ~NVME_CC_SHN_MASK;
774         ctrl->ctrl_config &= ~NVME_CC_ENABLE;
775
776         ret = ctrl->ops->reg_write32(ctrl, NVME_REG_CC, ctrl->ctrl_config);
777         if (ret)
778                 return ret;
779         return nvme_wait_ready(ctrl, cap, false);
780 }
781
782 int nvme_enable_ctrl(struct nvme_ctrl *ctrl, u64 cap)
783 {
784         /*
785          * Default to a 4K page size, with the intention to update this
786          * path in the future to accomodate architectures with differing
787          * kernel and IO page sizes.
788          */
789         unsigned dev_page_min = NVME_CAP_MPSMIN(cap) + 12, page_shift = 12;
790         int ret;
791
792         if (page_shift < dev_page_min) {
793                 dev_err(ctrl->dev,
794                         "Minimum device page size %u too large for host (%u)\n",
795                         1 << dev_page_min, 1 << page_shift);
796                 return -ENODEV;
797         }
798
799         ctrl->page_size = 1 << page_shift;
800
801         ctrl->ctrl_config = NVME_CC_CSS_NVM;
802         ctrl->ctrl_config |= (page_shift - 12) << NVME_CC_MPS_SHIFT;
803         ctrl->ctrl_config |= NVME_CC_ARB_RR | NVME_CC_SHN_NONE;
804         ctrl->ctrl_config |= NVME_CC_IOSQES | NVME_CC_IOCQES;
805         ctrl->ctrl_config |= NVME_CC_ENABLE;
806
807         ret = ctrl->ops->reg_write32(ctrl, NVME_REG_CC, ctrl->ctrl_config);
808         if (ret)
809                 return ret;
810         return nvme_wait_ready(ctrl, cap, true);
811 }
812
813 int nvme_shutdown_ctrl(struct nvme_ctrl *ctrl)
814 {
815         unsigned long timeout = SHUTDOWN_TIMEOUT + jiffies;
816         u32 csts;
817         int ret;
818
819         ctrl->ctrl_config &= ~NVME_CC_SHN_MASK;
820         ctrl->ctrl_config |= NVME_CC_SHN_NORMAL;
821
822         ret = ctrl->ops->reg_write32(ctrl, NVME_REG_CC, ctrl->ctrl_config);
823         if (ret)
824                 return ret;
825
826         while ((ret = ctrl->ops->reg_read32(ctrl, NVME_REG_CSTS, &csts)) == 0) {
827                 if ((csts & NVME_CSTS_SHST_MASK) == NVME_CSTS_SHST_CMPLT)
828                         break;
829
830                 msleep(100);
831                 if (fatal_signal_pending(current))
832                         return -EINTR;
833                 if (time_after(jiffies, timeout)) {
834                         dev_err(ctrl->dev,
835                                 "Device shutdown incomplete; abort shutdown\n");
836                         return -ENODEV;
837                 }
838         }
839
840         return ret;
841 }
842
843 static void nvme_set_queue_limits(struct nvme_ctrl *ctrl,
844                 struct request_queue *q)
845 {
846         if (ctrl->max_hw_sectors) {
847                 u32 max_segments =
848                         (ctrl->max_hw_sectors / (ctrl->page_size >> 9)) + 1;
849
850                 blk_queue_max_hw_sectors(q, ctrl->max_hw_sectors);
851                 blk_queue_max_segments(q, min_t(u32, max_segments, USHRT_MAX));
852         }
853         if (ctrl->stripe_size)
854                 blk_queue_chunk_sectors(q, ctrl->stripe_size >> 9);
855         if (ctrl->vwc & NVME_CTRL_VWC_PRESENT)
856                 blk_queue_flush(q, REQ_FLUSH | REQ_FUA);
857         blk_queue_virt_boundary(q, ctrl->page_size - 1);
858 }
859
860 /*
861  * Initialize the cached copies of the Identify data and various controller
862  * register in our nvme_ctrl structure.  This should be called as soon as
863  * the admin queue is fully up and running.
864  */
865 int nvme_init_identify(struct nvme_ctrl *ctrl)
866 {
867         struct nvme_id_ctrl *id;
868         u64 cap;
869         int ret, page_shift;
870
871         ret = ctrl->ops->reg_read32(ctrl, NVME_REG_VS, &ctrl->vs);
872         if (ret) {
873                 dev_err(ctrl->dev, "Reading VS failed (%d)\n", ret);
874                 return ret;
875         }
876
877         ret = ctrl->ops->reg_read64(ctrl, NVME_REG_CAP, &cap);
878         if (ret) {
879                 dev_err(ctrl->dev, "Reading CAP failed (%d)\n", ret);
880                 return ret;
881         }
882         page_shift = NVME_CAP_MPSMIN(cap) + 12;
883
884         if (ctrl->vs >= NVME_VS(1, 1))
885                 ctrl->subsystem = NVME_CAP_NSSRC(cap);
886
887         ret = nvme_identify_ctrl(ctrl, &id);
888         if (ret) {
889                 dev_err(ctrl->dev, "Identify Controller failed (%d)\n", ret);
890                 return -EIO;
891         }
892
893         ctrl->oncs = le16_to_cpup(&id->oncs);
894         atomic_set(&ctrl->abort_limit, id->acl + 1);
895         ctrl->vwc = id->vwc;
896         memcpy(ctrl->serial, id->sn, sizeof(id->sn));
897         memcpy(ctrl->model, id->mn, sizeof(id->mn));
898         memcpy(ctrl->firmware_rev, id->fr, sizeof(id->fr));
899         if (id->mdts)
900                 ctrl->max_hw_sectors = 1 << (id->mdts + page_shift - 9);
901         else
902                 ctrl->max_hw_sectors = UINT_MAX;
903
904         if ((ctrl->quirks & NVME_QUIRK_STRIPE_SIZE) && id->vs[3]) {
905                 unsigned int max_hw_sectors;
906
907                 ctrl->stripe_size = 1 << (id->vs[3] + page_shift);
908                 max_hw_sectors = ctrl->stripe_size >> (page_shift - 9);
909                 if (ctrl->max_hw_sectors) {
910                         ctrl->max_hw_sectors = min(max_hw_sectors,
911                                                         ctrl->max_hw_sectors);
912                 } else {
913                         ctrl->max_hw_sectors = max_hw_sectors;
914                 }
915         }
916
917         nvme_set_queue_limits(ctrl, ctrl->admin_q);
918
919         kfree(id);
920         return 0;
921 }
922
923 static int nvme_dev_open(struct inode *inode, struct file *file)
924 {
925         struct nvme_ctrl *ctrl;
926         int instance = iminor(inode);
927         int ret = -ENODEV;
928
929         spin_lock(&dev_list_lock);
930         list_for_each_entry(ctrl, &nvme_ctrl_list, node) {
931                 if (ctrl->instance != instance)
932                         continue;
933
934                 if (!ctrl->admin_q) {
935                         ret = -EWOULDBLOCK;
936                         break;
937                 }
938                 if (!kref_get_unless_zero(&ctrl->kref))
939                         break;
940                 file->private_data = ctrl;
941                 ret = 0;
942                 break;
943         }
944         spin_unlock(&dev_list_lock);
945
946         return ret;
947 }
948
949 static int nvme_dev_release(struct inode *inode, struct file *file)
950 {
951         nvme_put_ctrl(file->private_data);
952         return 0;
953 }
954
955 static int nvme_dev_user_cmd(struct nvme_ctrl *ctrl, void __user *argp)
956 {
957         struct nvme_ns *ns;
958         int ret;
959
960         mutex_lock(&ctrl->namespaces_mutex);
961         if (list_empty(&ctrl->namespaces)) {
962                 ret = -ENOTTY;
963                 goto out_unlock;
964         }
965
966         ns = list_first_entry(&ctrl->namespaces, struct nvme_ns, list);
967         if (ns != list_last_entry(&ctrl->namespaces, struct nvme_ns, list)) {
968                 dev_warn(ctrl->dev,
969                         "NVME_IOCTL_IO_CMD not supported when multiple namespaces present!\n");
970                 ret = -EINVAL;
971                 goto out_unlock;
972         }
973
974         dev_warn(ctrl->dev,
975                 "using deprecated NVME_IOCTL_IO_CMD ioctl on the char device!\n");
976         kref_get(&ns->kref);
977         mutex_unlock(&ctrl->namespaces_mutex);
978
979         ret = nvme_user_cmd(ctrl, ns, argp);
980         nvme_put_ns(ns);
981         return ret;
982
983 out_unlock:
984         mutex_unlock(&ctrl->namespaces_mutex);
985         return ret;
986 }
987
988 static long nvme_dev_ioctl(struct file *file, unsigned int cmd,
989                 unsigned long arg)
990 {
991         struct nvme_ctrl *ctrl = file->private_data;
992         void __user *argp = (void __user *)arg;
993
994         switch (cmd) {
995         case NVME_IOCTL_ADMIN_CMD:
996                 return nvme_user_cmd(ctrl, NULL, argp);
997         case NVME_IOCTL_IO_CMD:
998                 return nvme_dev_user_cmd(ctrl, argp);
999         case NVME_IOCTL_RESET:
1000                 dev_warn(ctrl->dev, "resetting controller\n");
1001                 return ctrl->ops->reset_ctrl(ctrl);
1002         case NVME_IOCTL_SUBSYS_RESET:
1003                 return nvme_reset_subsystem(ctrl);
1004         default:
1005                 return -ENOTTY;
1006         }
1007 }
1008
1009 static const struct file_operations nvme_dev_fops = {
1010         .owner          = THIS_MODULE,
1011         .open           = nvme_dev_open,
1012         .release        = nvme_dev_release,
1013         .unlocked_ioctl = nvme_dev_ioctl,
1014         .compat_ioctl   = nvme_dev_ioctl,
1015 };
1016
1017 static ssize_t nvme_sysfs_reset(struct device *dev,
1018                                 struct device_attribute *attr, const char *buf,
1019                                 size_t count)
1020 {
1021         struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
1022         int ret;
1023
1024         ret = ctrl->ops->reset_ctrl(ctrl);
1025         if (ret < 0)
1026                 return ret;
1027         return count;
1028 }
1029 static DEVICE_ATTR(reset_controller, S_IWUSR, NULL, nvme_sysfs_reset);
1030
1031 static ssize_t uuid_show(struct device *dev, struct device_attribute *attr,
1032                                                                 char *buf)
1033 {
1034         struct nvme_ns *ns = dev_to_disk(dev)->private_data;
1035         return sprintf(buf, "%pU\n", ns->uuid);
1036 }
1037 static DEVICE_ATTR(uuid, S_IRUGO, uuid_show, NULL);
1038
1039 static ssize_t eui_show(struct device *dev, struct device_attribute *attr,
1040                                                                 char *buf)
1041 {
1042         struct nvme_ns *ns = dev_to_disk(dev)->private_data;
1043         return sprintf(buf, "%8phd\n", ns->eui);
1044 }
1045 static DEVICE_ATTR(eui, S_IRUGO, eui_show, NULL);
1046
1047 static ssize_t nsid_show(struct device *dev, struct device_attribute *attr,
1048                                                                 char *buf)
1049 {
1050         struct nvme_ns *ns = dev_to_disk(dev)->private_data;
1051         return sprintf(buf, "%d\n", ns->ns_id);
1052 }
1053 static DEVICE_ATTR(nsid, S_IRUGO, nsid_show, NULL);
1054
1055 static struct attribute *nvme_ns_attrs[] = {
1056         &dev_attr_uuid.attr,
1057         &dev_attr_eui.attr,
1058         &dev_attr_nsid.attr,
1059         NULL,
1060 };
1061
1062 static umode_t nvme_attrs_are_visible(struct kobject *kobj,
1063                 struct attribute *a, int n)
1064 {
1065         struct device *dev = container_of(kobj, struct device, kobj);
1066         struct nvme_ns *ns = dev_to_disk(dev)->private_data;
1067
1068         if (a == &dev_attr_uuid.attr) {
1069                 if (!memchr_inv(ns->uuid, 0, sizeof(ns->uuid)))
1070                         return 0;
1071         }
1072         if (a == &dev_attr_eui.attr) {
1073                 if (!memchr_inv(ns->eui, 0, sizeof(ns->eui)))
1074                         return 0;
1075         }
1076         return a->mode;
1077 }
1078
1079 static const struct attribute_group nvme_ns_attr_group = {
1080         .attrs          = nvme_ns_attrs,
1081         .is_visible     = nvme_attrs_are_visible,
1082 };
1083
1084 #define nvme_show_function(field)                                               \
1085 static ssize_t  field##_show(struct device *dev,                                \
1086                             struct device_attribute *attr, char *buf)           \
1087 {                                                                               \
1088         struct nvme_ctrl *ctrl = dev_get_drvdata(dev);                          \
1089         return sprintf(buf, "%.*s\n", (int)sizeof(ctrl->field), ctrl->field);   \
1090 }                                                                               \
1091 static DEVICE_ATTR(field, S_IRUGO, field##_show, NULL);
1092
1093 nvme_show_function(model);
1094 nvme_show_function(serial);
1095 nvme_show_function(firmware_rev);
1096
1097 static struct attribute *nvme_dev_attrs[] = {
1098         &dev_attr_reset_controller.attr,
1099         &dev_attr_model.attr,
1100         &dev_attr_serial.attr,
1101         &dev_attr_firmware_rev.attr,
1102         NULL
1103 };
1104
1105 static struct attribute_group nvme_dev_attrs_group = {
1106         .attrs = nvme_dev_attrs,
1107 };
1108
1109 static const struct attribute_group *nvme_dev_attr_groups[] = {
1110         &nvme_dev_attrs_group,
1111         NULL,
1112 };
1113
1114 static int ns_cmp(void *priv, struct list_head *a, struct list_head *b)
1115 {
1116         struct nvme_ns *nsa = container_of(a, struct nvme_ns, list);
1117         struct nvme_ns *nsb = container_of(b, struct nvme_ns, list);
1118
1119         return nsa->ns_id - nsb->ns_id;
1120 }
1121
1122 static struct nvme_ns *nvme_find_ns(struct nvme_ctrl *ctrl, unsigned nsid)
1123 {
1124         struct nvme_ns *ns;
1125
1126         lockdep_assert_held(&ctrl->namespaces_mutex);
1127
1128         list_for_each_entry(ns, &ctrl->namespaces, list) {
1129                 if (ns->ns_id == nsid)
1130                         return ns;
1131                 if (ns->ns_id > nsid)
1132                         break;
1133         }
1134         return NULL;
1135 }
1136
1137 static void nvme_alloc_ns(struct nvme_ctrl *ctrl, unsigned nsid)
1138 {
1139         struct nvme_ns *ns;
1140         struct gendisk *disk;
1141         int node = dev_to_node(ctrl->dev);
1142
1143         lockdep_assert_held(&ctrl->namespaces_mutex);
1144
1145         ns = kzalloc_node(sizeof(*ns), GFP_KERNEL, node);
1146         if (!ns)
1147                 return;
1148
1149         ns->instance = ida_simple_get(&ctrl->ns_ida, 1, 0, GFP_KERNEL);
1150         if (ns->instance < 0)
1151                 goto out_free_ns;
1152
1153         ns->queue = blk_mq_init_queue(ctrl->tagset);
1154         if (IS_ERR(ns->queue))
1155                 goto out_release_instance;
1156         queue_flag_set_unlocked(QUEUE_FLAG_NONROT, ns->queue);
1157         ns->queue->queuedata = ns;
1158         ns->ctrl = ctrl;
1159
1160         disk = alloc_disk_node(0, node);
1161         if (!disk)
1162                 goto out_free_queue;
1163
1164         kref_init(&ns->kref);
1165         ns->ns_id = nsid;
1166         ns->disk = disk;
1167         ns->lba_shift = 9; /* set to a default value for 512 until disk is validated */
1168
1169
1170         blk_queue_logical_block_size(ns->queue, 1 << ns->lba_shift);
1171         nvme_set_queue_limits(ctrl, ns->queue);
1172
1173         disk->major = nvme_major;
1174         disk->first_minor = 0;
1175         disk->fops = &nvme_fops;
1176         disk->private_data = ns;
1177         disk->queue = ns->queue;
1178         disk->driverfs_dev = ctrl->device;
1179         disk->flags = GENHD_FL_EXT_DEVT;
1180         sprintf(disk->disk_name, "nvme%dn%d", ctrl->instance, ns->instance);
1181
1182         if (nvme_revalidate_disk(ns->disk))
1183                 goto out_free_disk;
1184
1185         list_add_tail(&ns->list, &ctrl->namespaces);
1186         kref_get(&ctrl->kref);
1187         if (ns->type == NVME_NS_LIGHTNVM)
1188                 return;
1189
1190         add_disk(ns->disk);
1191         if (sysfs_create_group(&disk_to_dev(ns->disk)->kobj,
1192                                         &nvme_ns_attr_group))
1193                 pr_warn("%s: failed to create sysfs group for identification\n",
1194                         ns->disk->disk_name);
1195         return;
1196  out_free_disk:
1197         kfree(disk);
1198  out_free_queue:
1199         blk_cleanup_queue(ns->queue);
1200  out_release_instance:
1201         ida_simple_remove(&ctrl->ns_ida, ns->instance);
1202  out_free_ns:
1203         kfree(ns);
1204 }
1205
1206 static void nvme_ns_remove(struct nvme_ns *ns)
1207 {
1208         if (test_and_set_bit(NVME_NS_REMOVING, &ns->flags))
1209                 return;
1210
1211         if (ns->disk->flags & GENHD_FL_UP) {
1212                 if (blk_get_integrity(ns->disk))
1213                         blk_integrity_unregister(ns->disk);
1214                 sysfs_remove_group(&disk_to_dev(ns->disk)->kobj,
1215                                         &nvme_ns_attr_group);
1216                 del_gendisk(ns->disk);
1217                 blk_mq_abort_requeue_list(ns->queue);
1218                 blk_cleanup_queue(ns->queue);
1219         }
1220         mutex_lock(&ns->ctrl->namespaces_mutex);
1221         list_del_init(&ns->list);
1222         mutex_unlock(&ns->ctrl->namespaces_mutex);
1223         nvme_put_ns(ns);
1224 }
1225
1226 static void nvme_validate_ns(struct nvme_ctrl *ctrl, unsigned nsid)
1227 {
1228         struct nvme_ns *ns;
1229
1230         ns = nvme_find_ns(ctrl, nsid);
1231         if (ns) {
1232                 if (revalidate_disk(ns->disk))
1233                         nvme_ns_remove(ns);
1234         } else
1235                 nvme_alloc_ns(ctrl, nsid);
1236 }
1237
1238 static int nvme_scan_ns_list(struct nvme_ctrl *ctrl, unsigned nn)
1239 {
1240         struct nvme_ns *ns;
1241         __le32 *ns_list;
1242         unsigned i, j, nsid, prev = 0, num_lists = DIV_ROUND_UP(nn, 1024);
1243         int ret = 0;
1244
1245         ns_list = kzalloc(0x1000, GFP_KERNEL);
1246         if (!ns_list)
1247                 return -ENOMEM;
1248
1249         for (i = 0; i < num_lists; i++) {
1250                 ret = nvme_identify_ns_list(ctrl, prev, ns_list);
1251                 if (ret)
1252                         goto out;
1253
1254                 for (j = 0; j < min(nn, 1024U); j++) {
1255                         nsid = le32_to_cpu(ns_list[j]);
1256                         if (!nsid)
1257                                 goto out;
1258
1259                         nvme_validate_ns(ctrl, nsid);
1260
1261                         while (++prev < nsid) {
1262                                 ns = nvme_find_ns(ctrl, prev);
1263                                 if (ns)
1264                                         nvme_ns_remove(ns);
1265                         }
1266                 }
1267                 nn -= j;
1268         }
1269  out:
1270         kfree(ns_list);
1271         return ret;
1272 }
1273
1274 static void __nvme_scan_namespaces(struct nvme_ctrl *ctrl, unsigned nn)
1275 {
1276         struct nvme_ns *ns, *next;
1277         unsigned i;
1278
1279         lockdep_assert_held(&ctrl->namespaces_mutex);
1280
1281         for (i = 1; i <= nn; i++)
1282                 nvme_validate_ns(ctrl, i);
1283
1284         list_for_each_entry_safe(ns, next, &ctrl->namespaces, list) {
1285                 if (ns->ns_id > nn)
1286                         nvme_ns_remove(ns);
1287         }
1288 }
1289
1290 void nvme_scan_namespaces(struct nvme_ctrl *ctrl)
1291 {
1292         struct nvme_id_ctrl *id;
1293         unsigned nn;
1294
1295         if (nvme_identify_ctrl(ctrl, &id))
1296                 return;
1297
1298         mutex_lock(&ctrl->namespaces_mutex);
1299         nn = le32_to_cpu(id->nn);
1300         if (ctrl->vs >= NVME_VS(1, 1) &&
1301             !(ctrl->quirks & NVME_QUIRK_IDENTIFY_CNS)) {
1302                 if (!nvme_scan_ns_list(ctrl, nn))
1303                         goto done;
1304         }
1305         __nvme_scan_namespaces(ctrl, le32_to_cpup(&id->nn));
1306  done:
1307         list_sort(NULL, &ctrl->namespaces, ns_cmp);
1308         mutex_unlock(&ctrl->namespaces_mutex);
1309         kfree(id);
1310 }
1311
1312 void nvme_remove_namespaces(struct nvme_ctrl *ctrl)
1313 {
1314         struct nvme_ns *ns, *next;
1315
1316         list_for_each_entry_safe(ns, next, &ctrl->namespaces, list)
1317                 nvme_ns_remove(ns);
1318 }
1319
1320 static DEFINE_IDA(nvme_instance_ida);
1321
1322 static int nvme_set_instance(struct nvme_ctrl *ctrl)
1323 {
1324         int instance, error;
1325
1326         do {
1327                 if (!ida_pre_get(&nvme_instance_ida, GFP_KERNEL))
1328                         return -ENODEV;
1329
1330                 spin_lock(&dev_list_lock);
1331                 error = ida_get_new(&nvme_instance_ida, &instance);
1332                 spin_unlock(&dev_list_lock);
1333         } while (error == -EAGAIN);
1334
1335         if (error)
1336                 return -ENODEV;
1337
1338         ctrl->instance = instance;
1339         return 0;
1340 }
1341
1342 static void nvme_release_instance(struct nvme_ctrl *ctrl)
1343 {
1344         spin_lock(&dev_list_lock);
1345         ida_remove(&nvme_instance_ida, ctrl->instance);
1346         spin_unlock(&dev_list_lock);
1347 }
1348
1349 void nvme_uninit_ctrl(struct nvme_ctrl *ctrl)
1350  {
1351         device_destroy(nvme_class, MKDEV(nvme_char_major, ctrl->instance));
1352
1353         spin_lock(&dev_list_lock);
1354         list_del(&ctrl->node);
1355         spin_unlock(&dev_list_lock);
1356 }
1357
1358 static void nvme_free_ctrl(struct kref *kref)
1359 {
1360         struct nvme_ctrl *ctrl = container_of(kref, struct nvme_ctrl, kref);
1361
1362         put_device(ctrl->device);
1363         nvme_release_instance(ctrl);
1364         ida_destroy(&ctrl->ns_ida);
1365
1366         ctrl->ops->free_ctrl(ctrl);
1367 }
1368
1369 void nvme_put_ctrl(struct nvme_ctrl *ctrl)
1370 {
1371         kref_put(&ctrl->kref, nvme_free_ctrl);
1372 }
1373
1374 /*
1375  * Initialize a NVMe controller structures.  This needs to be called during
1376  * earliest initialization so that we have the initialized structured around
1377  * during probing.
1378  */
1379 int nvme_init_ctrl(struct nvme_ctrl *ctrl, struct device *dev,
1380                 const struct nvme_ctrl_ops *ops, unsigned long quirks)
1381 {
1382         int ret;
1383
1384         INIT_LIST_HEAD(&ctrl->namespaces);
1385         mutex_init(&ctrl->namespaces_mutex);
1386         kref_init(&ctrl->kref);
1387         ctrl->dev = dev;
1388         ctrl->ops = ops;
1389         ctrl->quirks = quirks;
1390
1391         ret = nvme_set_instance(ctrl);
1392         if (ret)
1393                 goto out;
1394
1395         ctrl->device = device_create_with_groups(nvme_class, ctrl->dev,
1396                                 MKDEV(nvme_char_major, ctrl->instance),
1397                                 dev, nvme_dev_attr_groups,
1398                                 "nvme%d", ctrl->instance);
1399         if (IS_ERR(ctrl->device)) {
1400                 ret = PTR_ERR(ctrl->device);
1401                 goto out_release_instance;
1402         }
1403         get_device(ctrl->device);
1404         dev_set_drvdata(ctrl->device, ctrl);
1405         ida_init(&ctrl->ns_ida);
1406
1407         spin_lock(&dev_list_lock);
1408         list_add_tail(&ctrl->node, &nvme_ctrl_list);
1409         spin_unlock(&dev_list_lock);
1410
1411         return 0;
1412 out_release_instance:
1413         nvme_release_instance(ctrl);
1414 out:
1415         return ret;
1416 }
1417
1418 /**
1419  * nvme_kill_queues(): Ends all namespace queues
1420  * @ctrl: the dead controller that needs to end
1421  *
1422  * Call this function when the driver determines it is unable to get the
1423  * controller in a state capable of servicing IO.
1424  */
1425 void nvme_kill_queues(struct nvme_ctrl *ctrl)
1426 {
1427         struct nvme_ns *ns;
1428
1429         mutex_lock(&ctrl->namespaces_mutex);
1430         list_for_each_entry(ns, &ctrl->namespaces, list) {
1431                 if (!kref_get_unless_zero(&ns->kref))
1432                         continue;
1433
1434                 /*
1435                  * Revalidating a dead namespace sets capacity to 0. This will
1436                  * end buffered writers dirtying pages that can't be synced.
1437                  */
1438                 if (!test_and_set_bit(NVME_NS_DEAD, &ns->flags))
1439                         revalidate_disk(ns->disk);
1440
1441                 blk_set_queue_dying(ns->queue);
1442                 blk_mq_abort_requeue_list(ns->queue);
1443                 blk_mq_start_stopped_hw_queues(ns->queue, true);
1444
1445                 nvme_put_ns(ns);
1446         }
1447         mutex_unlock(&ctrl->namespaces_mutex);
1448 }
1449
1450 void nvme_stop_queues(struct nvme_ctrl *ctrl)
1451 {
1452         struct nvme_ns *ns;
1453
1454         mutex_lock(&ctrl->namespaces_mutex);
1455         list_for_each_entry(ns, &ctrl->namespaces, list) {
1456                 spin_lock_irq(ns->queue->queue_lock);
1457                 queue_flag_set(QUEUE_FLAG_STOPPED, ns->queue);
1458                 spin_unlock_irq(ns->queue->queue_lock);
1459
1460                 blk_mq_cancel_requeue_work(ns->queue);
1461                 blk_mq_stop_hw_queues(ns->queue);
1462         }
1463         mutex_unlock(&ctrl->namespaces_mutex);
1464 }
1465
1466 void nvme_start_queues(struct nvme_ctrl *ctrl)
1467 {
1468         struct nvme_ns *ns;
1469
1470         mutex_lock(&ctrl->namespaces_mutex);
1471         list_for_each_entry(ns, &ctrl->namespaces, list) {
1472                 queue_flag_clear_unlocked(QUEUE_FLAG_STOPPED, ns->queue);
1473                 blk_mq_start_stopped_hw_queues(ns->queue, true);
1474                 blk_mq_kick_requeue_list(ns->queue);
1475         }
1476         mutex_unlock(&ctrl->namespaces_mutex);
1477 }
1478
1479 int __init nvme_core_init(void)
1480 {
1481         int result;
1482
1483         result = register_blkdev(nvme_major, "nvme");
1484         if (result < 0)
1485                 return result;
1486         else if (result > 0)
1487                 nvme_major = result;
1488
1489         result = __register_chrdev(nvme_char_major, 0, NVME_MINORS, "nvme",
1490                                                         &nvme_dev_fops);
1491         if (result < 0)
1492                 goto unregister_blkdev;
1493         else if (result > 0)
1494                 nvme_char_major = result;
1495
1496         nvme_class = class_create(THIS_MODULE, "nvme");
1497         if (IS_ERR(nvme_class)) {
1498                 result = PTR_ERR(nvme_class);
1499                 goto unregister_chrdev;
1500         }
1501
1502         return 0;
1503
1504  unregister_chrdev:
1505         __unregister_chrdev(nvme_char_major, 0, NVME_MINORS, "nvme");
1506  unregister_blkdev:
1507         unregister_blkdev(nvme_major, "nvme");
1508         return result;
1509 }
1510
1511 void nvme_core_exit(void)
1512 {
1513         unregister_blkdev(nvme_major, "nvme");
1514         class_destroy(nvme_class);
1515         __unregister_chrdev(nvme_char_major, 0, NVME_MINORS, "nvme");
1516 }