Merge tag 'for-linus-20160527' of git://git.infradead.org/linux-mtd
[cascardo/linux.git] / drivers / nvme / host / core.c
1 /*
2  * NVM Express device driver
3  * Copyright (c) 2011-2014, Intel Corporation.
4  *
5  * This program is free software; you can redistribute it and/or modify it
6  * under the terms and conditions of the GNU General Public License,
7  * version 2, as published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope it will be useful, but WITHOUT
10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
12  * more details.
13  */
14
15 #include <linux/blkdev.h>
16 #include <linux/blk-mq.h>
17 #include <linux/delay.h>
18 #include <linux/errno.h>
19 #include <linux/hdreg.h>
20 #include <linux/kernel.h>
21 #include <linux/module.h>
22 #include <linux/list_sort.h>
23 #include <linux/slab.h>
24 #include <linux/types.h>
25 #include <linux/pr.h>
26 #include <linux/ptrace.h>
27 #include <linux/nvme_ioctl.h>
28 #include <linux/t10-pi.h>
29 #include <scsi/sg.h>
30 #include <asm/unaligned.h>
31
32 #include "nvme.h"
33
34 #define NVME_MINORS             (1U << MINORBITS)
35
36 unsigned char admin_timeout = 60;
37 module_param(admin_timeout, byte, 0644);
38 MODULE_PARM_DESC(admin_timeout, "timeout in seconds for admin commands");
39 EXPORT_SYMBOL_GPL(admin_timeout);
40
41 unsigned char nvme_io_timeout = 30;
42 module_param_named(io_timeout, nvme_io_timeout, byte, 0644);
43 MODULE_PARM_DESC(io_timeout, "timeout in seconds for I/O");
44 EXPORT_SYMBOL_GPL(nvme_io_timeout);
45
46 unsigned char shutdown_timeout = 5;
47 module_param(shutdown_timeout, byte, 0644);
48 MODULE_PARM_DESC(shutdown_timeout, "timeout in seconds for controller shutdown");
49
50 static int nvme_major;
51 module_param(nvme_major, int, 0);
52
53 static int nvme_char_major;
54 module_param(nvme_char_major, int, 0);
55
56 static LIST_HEAD(nvme_ctrl_list);
57 static DEFINE_SPINLOCK(dev_list_lock);
58
59 static struct class *nvme_class;
60
61 bool nvme_change_ctrl_state(struct nvme_ctrl *ctrl,
62                 enum nvme_ctrl_state new_state)
63 {
64         enum nvme_ctrl_state old_state = ctrl->state;
65         bool changed = false;
66
67         spin_lock_irq(&ctrl->lock);
68         switch (new_state) {
69         case NVME_CTRL_LIVE:
70                 switch (old_state) {
71                 case NVME_CTRL_RESETTING:
72                         changed = true;
73                         /* FALLTHRU */
74                 default:
75                         break;
76                 }
77                 break;
78         case NVME_CTRL_RESETTING:
79                 switch (old_state) {
80                 case NVME_CTRL_NEW:
81                 case NVME_CTRL_LIVE:
82                         changed = true;
83                         /* FALLTHRU */
84                 default:
85                         break;
86                 }
87                 break;
88         case NVME_CTRL_DELETING:
89                 switch (old_state) {
90                 case NVME_CTRL_LIVE:
91                 case NVME_CTRL_RESETTING:
92                         changed = true;
93                         /* FALLTHRU */
94                 default:
95                         break;
96                 }
97                 break;
98         default:
99                 break;
100         }
101         spin_unlock_irq(&ctrl->lock);
102
103         if (changed)
104                 ctrl->state = new_state;
105
106         return changed;
107 }
108 EXPORT_SYMBOL_GPL(nvme_change_ctrl_state);
109
110 static void nvme_free_ns(struct kref *kref)
111 {
112         struct nvme_ns *ns = container_of(kref, struct nvme_ns, kref);
113
114         if (ns->type == NVME_NS_LIGHTNVM)
115                 nvme_nvm_unregister(ns->queue, ns->disk->disk_name);
116
117         spin_lock(&dev_list_lock);
118         ns->disk->private_data = NULL;
119         spin_unlock(&dev_list_lock);
120
121         put_disk(ns->disk);
122         ida_simple_remove(&ns->ctrl->ns_ida, ns->instance);
123         nvme_put_ctrl(ns->ctrl);
124         kfree(ns);
125 }
126
127 static void nvme_put_ns(struct nvme_ns *ns)
128 {
129         kref_put(&ns->kref, nvme_free_ns);
130 }
131
132 static struct nvme_ns *nvme_get_ns_from_disk(struct gendisk *disk)
133 {
134         struct nvme_ns *ns;
135
136         spin_lock(&dev_list_lock);
137         ns = disk->private_data;
138         if (ns) {
139                 if (!kref_get_unless_zero(&ns->kref))
140                         goto fail;
141                 if (!try_module_get(ns->ctrl->ops->module))
142                         goto fail_put_ns;
143         }
144         spin_unlock(&dev_list_lock);
145
146         return ns;
147
148 fail_put_ns:
149         kref_put(&ns->kref, nvme_free_ns);
150 fail:
151         spin_unlock(&dev_list_lock);
152         return NULL;
153 }
154
155 void nvme_requeue_req(struct request *req)
156 {
157         unsigned long flags;
158
159         blk_mq_requeue_request(req);
160         spin_lock_irqsave(req->q->queue_lock, flags);
161         if (!blk_queue_stopped(req->q))
162                 blk_mq_kick_requeue_list(req->q);
163         spin_unlock_irqrestore(req->q->queue_lock, flags);
164 }
165 EXPORT_SYMBOL_GPL(nvme_requeue_req);
166
167 struct request *nvme_alloc_request(struct request_queue *q,
168                 struct nvme_command *cmd, unsigned int flags)
169 {
170         bool write = cmd->common.opcode & 1;
171         struct request *req;
172
173         req = blk_mq_alloc_request(q, write, flags);
174         if (IS_ERR(req))
175                 return req;
176
177         req->cmd_type = REQ_TYPE_DRV_PRIV;
178         req->cmd_flags |= REQ_FAILFAST_DRIVER;
179         req->__data_len = 0;
180         req->__sector = (sector_t) -1;
181         req->bio = req->biotail = NULL;
182
183         req->cmd = (unsigned char *)cmd;
184         req->cmd_len = sizeof(struct nvme_command);
185
186         return req;
187 }
188 EXPORT_SYMBOL_GPL(nvme_alloc_request);
189
190 static inline void nvme_setup_flush(struct nvme_ns *ns,
191                 struct nvme_command *cmnd)
192 {
193         memset(cmnd, 0, sizeof(*cmnd));
194         cmnd->common.opcode = nvme_cmd_flush;
195         cmnd->common.nsid = cpu_to_le32(ns->ns_id);
196 }
197
198 static inline int nvme_setup_discard(struct nvme_ns *ns, struct request *req,
199                 struct nvme_command *cmnd)
200 {
201         struct nvme_dsm_range *range;
202         struct page *page;
203         int offset;
204         unsigned int nr_bytes = blk_rq_bytes(req);
205
206         range = kmalloc(sizeof(*range), GFP_ATOMIC);
207         if (!range)
208                 return BLK_MQ_RQ_QUEUE_BUSY;
209
210         range->cattr = cpu_to_le32(0);
211         range->nlb = cpu_to_le32(nr_bytes >> ns->lba_shift);
212         range->slba = cpu_to_le64(nvme_block_nr(ns, blk_rq_pos(req)));
213
214         memset(cmnd, 0, sizeof(*cmnd));
215         cmnd->dsm.opcode = nvme_cmd_dsm;
216         cmnd->dsm.nsid = cpu_to_le32(ns->ns_id);
217         cmnd->dsm.nr = 0;
218         cmnd->dsm.attributes = cpu_to_le32(NVME_DSMGMT_AD);
219
220         req->completion_data = range;
221         page = virt_to_page(range);
222         offset = offset_in_page(range);
223         blk_add_request_payload(req, page, offset, sizeof(*range));
224
225         /*
226          * we set __data_len back to the size of the area to be discarded
227          * on disk. This allows us to report completion on the full amount
228          * of blocks described by the request.
229          */
230         req->__data_len = nr_bytes;
231
232         return 0;
233 }
234
235 static inline void nvme_setup_rw(struct nvme_ns *ns, struct request *req,
236                 struct nvme_command *cmnd)
237 {
238         u16 control = 0;
239         u32 dsmgmt = 0;
240
241         if (req->cmd_flags & REQ_FUA)
242                 control |= NVME_RW_FUA;
243         if (req->cmd_flags & (REQ_FAILFAST_DEV | REQ_RAHEAD))
244                 control |= NVME_RW_LR;
245
246         if (req->cmd_flags & REQ_RAHEAD)
247                 dsmgmt |= NVME_RW_DSM_FREQ_PREFETCH;
248
249         memset(cmnd, 0, sizeof(*cmnd));
250         cmnd->rw.opcode = (rq_data_dir(req) ? nvme_cmd_write : nvme_cmd_read);
251         cmnd->rw.command_id = req->tag;
252         cmnd->rw.nsid = cpu_to_le32(ns->ns_id);
253         cmnd->rw.slba = cpu_to_le64(nvme_block_nr(ns, blk_rq_pos(req)));
254         cmnd->rw.length = cpu_to_le16((blk_rq_bytes(req) >> ns->lba_shift) - 1);
255
256         if (ns->ms) {
257                 switch (ns->pi_type) {
258                 case NVME_NS_DPS_PI_TYPE3:
259                         control |= NVME_RW_PRINFO_PRCHK_GUARD;
260                         break;
261                 case NVME_NS_DPS_PI_TYPE1:
262                 case NVME_NS_DPS_PI_TYPE2:
263                         control |= NVME_RW_PRINFO_PRCHK_GUARD |
264                                         NVME_RW_PRINFO_PRCHK_REF;
265                         cmnd->rw.reftag = cpu_to_le32(
266                                         nvme_block_nr(ns, blk_rq_pos(req)));
267                         break;
268                 }
269                 if (!blk_integrity_rq(req))
270                         control |= NVME_RW_PRINFO_PRACT;
271         }
272
273         cmnd->rw.control = cpu_to_le16(control);
274         cmnd->rw.dsmgmt = cpu_to_le32(dsmgmt);
275 }
276
277 int nvme_setup_cmd(struct nvme_ns *ns, struct request *req,
278                 struct nvme_command *cmd)
279 {
280         int ret = 0;
281
282         if (req->cmd_type == REQ_TYPE_DRV_PRIV)
283                 memcpy(cmd, req->cmd, sizeof(*cmd));
284         else if (req->cmd_flags & REQ_FLUSH)
285                 nvme_setup_flush(ns, cmd);
286         else if (req->cmd_flags & REQ_DISCARD)
287                 ret = nvme_setup_discard(ns, req, cmd);
288         else
289                 nvme_setup_rw(ns, req, cmd);
290
291         return ret;
292 }
293 EXPORT_SYMBOL_GPL(nvme_setup_cmd);
294
295 /*
296  * Returns 0 on success.  If the result is negative, it's a Linux error code;
297  * if the result is positive, it's an NVM Express status code
298  */
299 int __nvme_submit_sync_cmd(struct request_queue *q, struct nvme_command *cmd,
300                 struct nvme_completion *cqe, void *buffer, unsigned bufflen,
301                 unsigned timeout)
302 {
303         struct request *req;
304         int ret;
305
306         req = nvme_alloc_request(q, cmd, 0);
307         if (IS_ERR(req))
308                 return PTR_ERR(req);
309
310         req->timeout = timeout ? timeout : ADMIN_TIMEOUT;
311         req->special = cqe;
312
313         if (buffer && bufflen) {
314                 ret = blk_rq_map_kern(q, req, buffer, bufflen, GFP_KERNEL);
315                 if (ret)
316                         goto out;
317         }
318
319         blk_execute_rq(req->q, NULL, req, 0);
320         ret = req->errors;
321  out:
322         blk_mq_free_request(req);
323         return ret;
324 }
325
326 int nvme_submit_sync_cmd(struct request_queue *q, struct nvme_command *cmd,
327                 void *buffer, unsigned bufflen)
328 {
329         return __nvme_submit_sync_cmd(q, cmd, NULL, buffer, bufflen, 0);
330 }
331 EXPORT_SYMBOL_GPL(nvme_submit_sync_cmd);
332
333 int __nvme_submit_user_cmd(struct request_queue *q, struct nvme_command *cmd,
334                 void __user *ubuffer, unsigned bufflen,
335                 void __user *meta_buffer, unsigned meta_len, u32 meta_seed,
336                 u32 *result, unsigned timeout)
337 {
338         bool write = cmd->common.opcode & 1;
339         struct nvme_completion cqe;
340         struct nvme_ns *ns = q->queuedata;
341         struct gendisk *disk = ns ? ns->disk : NULL;
342         struct request *req;
343         struct bio *bio = NULL;
344         void *meta = NULL;
345         int ret;
346
347         req = nvme_alloc_request(q, cmd, 0);
348         if (IS_ERR(req))
349                 return PTR_ERR(req);
350
351         req->timeout = timeout ? timeout : ADMIN_TIMEOUT;
352         req->special = &cqe;
353
354         if (ubuffer && bufflen) {
355                 ret = blk_rq_map_user(q, req, NULL, ubuffer, bufflen,
356                                 GFP_KERNEL);
357                 if (ret)
358                         goto out;
359                 bio = req->bio;
360
361                 if (!disk)
362                         goto submit;
363                 bio->bi_bdev = bdget_disk(disk, 0);
364                 if (!bio->bi_bdev) {
365                         ret = -ENODEV;
366                         goto out_unmap;
367                 }
368
369                 if (meta_buffer && meta_len) {
370                         struct bio_integrity_payload *bip;
371
372                         meta = kmalloc(meta_len, GFP_KERNEL);
373                         if (!meta) {
374                                 ret = -ENOMEM;
375                                 goto out_unmap;
376                         }
377
378                         if (write) {
379                                 if (copy_from_user(meta, meta_buffer,
380                                                 meta_len)) {
381                                         ret = -EFAULT;
382                                         goto out_free_meta;
383                                 }
384                         }
385
386                         bip = bio_integrity_alloc(bio, GFP_KERNEL, 1);
387                         if (IS_ERR(bip)) {
388                                 ret = PTR_ERR(bip);
389                                 goto out_free_meta;
390                         }
391
392                         bip->bip_iter.bi_size = meta_len;
393                         bip->bip_iter.bi_sector = meta_seed;
394
395                         ret = bio_integrity_add_page(bio, virt_to_page(meta),
396                                         meta_len, offset_in_page(meta));
397                         if (ret != meta_len) {
398                                 ret = -ENOMEM;
399                                 goto out_free_meta;
400                         }
401                 }
402         }
403  submit:
404         blk_execute_rq(req->q, disk, req, 0);
405         ret = req->errors;
406         if (result)
407                 *result = le32_to_cpu(cqe.result);
408         if (meta && !ret && !write) {
409                 if (copy_to_user(meta_buffer, meta, meta_len))
410                         ret = -EFAULT;
411         }
412  out_free_meta:
413         kfree(meta);
414  out_unmap:
415         if (bio) {
416                 if (disk && bio->bi_bdev)
417                         bdput(bio->bi_bdev);
418                 blk_rq_unmap_user(bio);
419         }
420  out:
421         blk_mq_free_request(req);
422         return ret;
423 }
424
425 int nvme_submit_user_cmd(struct request_queue *q, struct nvme_command *cmd,
426                 void __user *ubuffer, unsigned bufflen, u32 *result,
427                 unsigned timeout)
428 {
429         return __nvme_submit_user_cmd(q, cmd, ubuffer, bufflen, NULL, 0, 0,
430                         result, timeout);
431 }
432
433 int nvme_identify_ctrl(struct nvme_ctrl *dev, struct nvme_id_ctrl **id)
434 {
435         struct nvme_command c = { };
436         int error;
437
438         /* gcc-4.4.4 (at least) has issues with initializers and anon unions */
439         c.identify.opcode = nvme_admin_identify;
440         c.identify.cns = cpu_to_le32(1);
441
442         *id = kmalloc(sizeof(struct nvme_id_ctrl), GFP_KERNEL);
443         if (!*id)
444                 return -ENOMEM;
445
446         error = nvme_submit_sync_cmd(dev->admin_q, &c, *id,
447                         sizeof(struct nvme_id_ctrl));
448         if (error)
449                 kfree(*id);
450         return error;
451 }
452
453 static int nvme_identify_ns_list(struct nvme_ctrl *dev, unsigned nsid, __le32 *ns_list)
454 {
455         struct nvme_command c = { };
456
457         c.identify.opcode = nvme_admin_identify;
458         c.identify.cns = cpu_to_le32(2);
459         c.identify.nsid = cpu_to_le32(nsid);
460         return nvme_submit_sync_cmd(dev->admin_q, &c, ns_list, 0x1000);
461 }
462
463 int nvme_identify_ns(struct nvme_ctrl *dev, unsigned nsid,
464                 struct nvme_id_ns **id)
465 {
466         struct nvme_command c = { };
467         int error;
468
469         /* gcc-4.4.4 (at least) has issues with initializers and anon unions */
470         c.identify.opcode = nvme_admin_identify,
471         c.identify.nsid = cpu_to_le32(nsid),
472
473         *id = kmalloc(sizeof(struct nvme_id_ns), GFP_KERNEL);
474         if (!*id)
475                 return -ENOMEM;
476
477         error = nvme_submit_sync_cmd(dev->admin_q, &c, *id,
478                         sizeof(struct nvme_id_ns));
479         if (error)
480                 kfree(*id);
481         return error;
482 }
483
484 int nvme_get_features(struct nvme_ctrl *dev, unsigned fid, unsigned nsid,
485                                         dma_addr_t dma_addr, u32 *result)
486 {
487         struct nvme_command c;
488         struct nvme_completion cqe;
489         int ret;
490
491         memset(&c, 0, sizeof(c));
492         c.features.opcode = nvme_admin_get_features;
493         c.features.nsid = cpu_to_le32(nsid);
494         c.features.prp1 = cpu_to_le64(dma_addr);
495         c.features.fid = cpu_to_le32(fid);
496
497         ret = __nvme_submit_sync_cmd(dev->admin_q, &c, &cqe, NULL, 0, 0);
498         if (ret >= 0)
499                 *result = le32_to_cpu(cqe.result);
500         return ret;
501 }
502
503 int nvme_set_features(struct nvme_ctrl *dev, unsigned fid, unsigned dword11,
504                                         dma_addr_t dma_addr, u32 *result)
505 {
506         struct nvme_command c;
507         struct nvme_completion cqe;
508         int ret;
509
510         memset(&c, 0, sizeof(c));
511         c.features.opcode = nvme_admin_set_features;
512         c.features.prp1 = cpu_to_le64(dma_addr);
513         c.features.fid = cpu_to_le32(fid);
514         c.features.dword11 = cpu_to_le32(dword11);
515
516         ret = __nvme_submit_sync_cmd(dev->admin_q, &c, &cqe, NULL, 0, 0);
517         if (ret >= 0)
518                 *result = le32_to_cpu(cqe.result);
519         return ret;
520 }
521
522 int nvme_get_log_page(struct nvme_ctrl *dev, struct nvme_smart_log **log)
523 {
524         struct nvme_command c = { };
525         int error;
526
527         c.common.opcode = nvme_admin_get_log_page,
528         c.common.nsid = cpu_to_le32(0xFFFFFFFF),
529         c.common.cdw10[0] = cpu_to_le32(
530                         (((sizeof(struct nvme_smart_log) / 4) - 1) << 16) |
531                          NVME_LOG_SMART),
532
533         *log = kmalloc(sizeof(struct nvme_smart_log), GFP_KERNEL);
534         if (!*log)
535                 return -ENOMEM;
536
537         error = nvme_submit_sync_cmd(dev->admin_q, &c, *log,
538                         sizeof(struct nvme_smart_log));
539         if (error)
540                 kfree(*log);
541         return error;
542 }
543
544 int nvme_set_queue_count(struct nvme_ctrl *ctrl, int *count)
545 {
546         u32 q_count = (*count - 1) | ((*count - 1) << 16);
547         u32 result;
548         int status, nr_io_queues;
549
550         status = nvme_set_features(ctrl, NVME_FEAT_NUM_QUEUES, q_count, 0,
551                         &result);
552         if (status)
553                 return status;
554
555         nr_io_queues = min(result & 0xffff, result >> 16) + 1;
556         *count = min(*count, nr_io_queues);
557         return 0;
558 }
559 EXPORT_SYMBOL_GPL(nvme_set_queue_count);
560
561 static int nvme_submit_io(struct nvme_ns *ns, struct nvme_user_io __user *uio)
562 {
563         struct nvme_user_io io;
564         struct nvme_command c;
565         unsigned length, meta_len;
566         void __user *metadata;
567
568         if (copy_from_user(&io, uio, sizeof(io)))
569                 return -EFAULT;
570         if (io.flags)
571                 return -EINVAL;
572
573         switch (io.opcode) {
574         case nvme_cmd_write:
575         case nvme_cmd_read:
576         case nvme_cmd_compare:
577                 break;
578         default:
579                 return -EINVAL;
580         }
581
582         length = (io.nblocks + 1) << ns->lba_shift;
583         meta_len = (io.nblocks + 1) * ns->ms;
584         metadata = (void __user *)(uintptr_t)io.metadata;
585
586         if (ns->ext) {
587                 length += meta_len;
588                 meta_len = 0;
589         } else if (meta_len) {
590                 if ((io.metadata & 3) || !io.metadata)
591                         return -EINVAL;
592         }
593
594         memset(&c, 0, sizeof(c));
595         c.rw.opcode = io.opcode;
596         c.rw.flags = io.flags;
597         c.rw.nsid = cpu_to_le32(ns->ns_id);
598         c.rw.slba = cpu_to_le64(io.slba);
599         c.rw.length = cpu_to_le16(io.nblocks);
600         c.rw.control = cpu_to_le16(io.control);
601         c.rw.dsmgmt = cpu_to_le32(io.dsmgmt);
602         c.rw.reftag = cpu_to_le32(io.reftag);
603         c.rw.apptag = cpu_to_le16(io.apptag);
604         c.rw.appmask = cpu_to_le16(io.appmask);
605
606         return __nvme_submit_user_cmd(ns->queue, &c,
607                         (void __user *)(uintptr_t)io.addr, length,
608                         metadata, meta_len, io.slba, NULL, 0);
609 }
610
611 static int nvme_user_cmd(struct nvme_ctrl *ctrl, struct nvme_ns *ns,
612                         struct nvme_passthru_cmd __user *ucmd)
613 {
614         struct nvme_passthru_cmd cmd;
615         struct nvme_command c;
616         unsigned timeout = 0;
617         int status;
618
619         if (!capable(CAP_SYS_ADMIN))
620                 return -EACCES;
621         if (copy_from_user(&cmd, ucmd, sizeof(cmd)))
622                 return -EFAULT;
623         if (cmd.flags)
624                 return -EINVAL;
625
626         memset(&c, 0, sizeof(c));
627         c.common.opcode = cmd.opcode;
628         c.common.flags = cmd.flags;
629         c.common.nsid = cpu_to_le32(cmd.nsid);
630         c.common.cdw2[0] = cpu_to_le32(cmd.cdw2);
631         c.common.cdw2[1] = cpu_to_le32(cmd.cdw3);
632         c.common.cdw10[0] = cpu_to_le32(cmd.cdw10);
633         c.common.cdw10[1] = cpu_to_le32(cmd.cdw11);
634         c.common.cdw10[2] = cpu_to_le32(cmd.cdw12);
635         c.common.cdw10[3] = cpu_to_le32(cmd.cdw13);
636         c.common.cdw10[4] = cpu_to_le32(cmd.cdw14);
637         c.common.cdw10[5] = cpu_to_le32(cmd.cdw15);
638
639         if (cmd.timeout_ms)
640                 timeout = msecs_to_jiffies(cmd.timeout_ms);
641
642         status = nvme_submit_user_cmd(ns ? ns->queue : ctrl->admin_q, &c,
643                         (void __user *)(uintptr_t)cmd.addr, cmd.data_len,
644                         &cmd.result, timeout);
645         if (status >= 0) {
646                 if (put_user(cmd.result, &ucmd->result))
647                         return -EFAULT;
648         }
649
650         return status;
651 }
652
653 static int nvme_ioctl(struct block_device *bdev, fmode_t mode,
654                 unsigned int cmd, unsigned long arg)
655 {
656         struct nvme_ns *ns = bdev->bd_disk->private_data;
657
658         switch (cmd) {
659         case NVME_IOCTL_ID:
660                 force_successful_syscall_return();
661                 return ns->ns_id;
662         case NVME_IOCTL_ADMIN_CMD:
663                 return nvme_user_cmd(ns->ctrl, NULL, (void __user *)arg);
664         case NVME_IOCTL_IO_CMD:
665                 return nvme_user_cmd(ns->ctrl, ns, (void __user *)arg);
666         case NVME_IOCTL_SUBMIT_IO:
667                 return nvme_submit_io(ns, (void __user *)arg);
668 #ifdef CONFIG_BLK_DEV_NVME_SCSI
669         case SG_GET_VERSION_NUM:
670                 return nvme_sg_get_version_num((void __user *)arg);
671         case SG_IO:
672                 return nvme_sg_io(ns, (void __user *)arg);
673 #endif
674         default:
675                 return -ENOTTY;
676         }
677 }
678
679 #ifdef CONFIG_COMPAT
680 static int nvme_compat_ioctl(struct block_device *bdev, fmode_t mode,
681                         unsigned int cmd, unsigned long arg)
682 {
683         switch (cmd) {
684         case SG_IO:
685                 return -ENOIOCTLCMD;
686         }
687         return nvme_ioctl(bdev, mode, cmd, arg);
688 }
689 #else
690 #define nvme_compat_ioctl       NULL
691 #endif
692
693 static int nvme_open(struct block_device *bdev, fmode_t mode)
694 {
695         return nvme_get_ns_from_disk(bdev->bd_disk) ? 0 : -ENXIO;
696 }
697
698 static void nvme_release(struct gendisk *disk, fmode_t mode)
699 {
700         struct nvme_ns *ns = disk->private_data;
701
702         module_put(ns->ctrl->ops->module);
703         nvme_put_ns(ns);
704 }
705
706 static int nvme_getgeo(struct block_device *bdev, struct hd_geometry *geo)
707 {
708         /* some standard values */
709         geo->heads = 1 << 6;
710         geo->sectors = 1 << 5;
711         geo->cylinders = get_capacity(bdev->bd_disk) >> 11;
712         return 0;
713 }
714
715 #ifdef CONFIG_BLK_DEV_INTEGRITY
716 static void nvme_init_integrity(struct nvme_ns *ns)
717 {
718         struct blk_integrity integrity;
719
720         switch (ns->pi_type) {
721         case NVME_NS_DPS_PI_TYPE3:
722                 integrity.profile = &t10_pi_type3_crc;
723                 break;
724         case NVME_NS_DPS_PI_TYPE1:
725         case NVME_NS_DPS_PI_TYPE2:
726                 integrity.profile = &t10_pi_type1_crc;
727                 break;
728         default:
729                 integrity.profile = NULL;
730                 break;
731         }
732         integrity.tuple_size = ns->ms;
733         blk_integrity_register(ns->disk, &integrity);
734         blk_queue_max_integrity_segments(ns->queue, 1);
735 }
736 #else
737 static void nvme_init_integrity(struct nvme_ns *ns)
738 {
739 }
740 #endif /* CONFIG_BLK_DEV_INTEGRITY */
741
742 static void nvme_config_discard(struct nvme_ns *ns)
743 {
744         struct nvme_ctrl *ctrl = ns->ctrl;
745         u32 logical_block_size = queue_logical_block_size(ns->queue);
746
747         if (ctrl->quirks & NVME_QUIRK_DISCARD_ZEROES)
748                 ns->queue->limits.discard_zeroes_data = 1;
749         else
750                 ns->queue->limits.discard_zeroes_data = 0;
751
752         ns->queue->limits.discard_alignment = logical_block_size;
753         ns->queue->limits.discard_granularity = logical_block_size;
754         blk_queue_max_discard_sectors(ns->queue, 0xffffffff);
755         queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, ns->queue);
756 }
757
758 static int nvme_revalidate_disk(struct gendisk *disk)
759 {
760         struct nvme_ns *ns = disk->private_data;
761         struct nvme_id_ns *id;
762         u8 lbaf, pi_type;
763         u16 old_ms;
764         unsigned short bs;
765
766         if (test_bit(NVME_NS_DEAD, &ns->flags)) {
767                 set_capacity(disk, 0);
768                 return -ENODEV;
769         }
770         if (nvme_identify_ns(ns->ctrl, ns->ns_id, &id)) {
771                 dev_warn(disk_to_dev(ns->disk), "%s: Identify failure\n",
772                                 __func__);
773                 return -ENODEV;
774         }
775         if (id->ncap == 0) {
776                 kfree(id);
777                 return -ENODEV;
778         }
779
780         if (nvme_nvm_ns_supported(ns, id) && ns->type != NVME_NS_LIGHTNVM) {
781                 if (nvme_nvm_register(ns->queue, disk->disk_name)) {
782                         dev_warn(disk_to_dev(ns->disk),
783                                 "%s: LightNVM init failure\n", __func__);
784                         kfree(id);
785                         return -ENODEV;
786                 }
787                 ns->type = NVME_NS_LIGHTNVM;
788         }
789
790         if (ns->ctrl->vs >= NVME_VS(1, 1))
791                 memcpy(ns->eui, id->eui64, sizeof(ns->eui));
792         if (ns->ctrl->vs >= NVME_VS(1, 2))
793                 memcpy(ns->uuid, id->nguid, sizeof(ns->uuid));
794
795         old_ms = ns->ms;
796         lbaf = id->flbas & NVME_NS_FLBAS_LBA_MASK;
797         ns->lba_shift = id->lbaf[lbaf].ds;
798         ns->ms = le16_to_cpu(id->lbaf[lbaf].ms);
799         ns->ext = ns->ms && (id->flbas & NVME_NS_FLBAS_META_EXT);
800
801         /*
802          * If identify namespace failed, use default 512 byte block size so
803          * block layer can use before failing read/write for 0 capacity.
804          */
805         if (ns->lba_shift == 0)
806                 ns->lba_shift = 9;
807         bs = 1 << ns->lba_shift;
808         /* XXX: PI implementation requires metadata equal t10 pi tuple size */
809         pi_type = ns->ms == sizeof(struct t10_pi_tuple) ?
810                                         id->dps & NVME_NS_DPS_PI_MASK : 0;
811
812         blk_mq_freeze_queue(disk->queue);
813         if (blk_get_integrity(disk) && (ns->pi_type != pi_type ||
814                                 ns->ms != old_ms ||
815                                 bs != queue_logical_block_size(disk->queue) ||
816                                 (ns->ms && ns->ext)))
817                 blk_integrity_unregister(disk);
818
819         ns->pi_type = pi_type;
820         blk_queue_logical_block_size(ns->queue, bs);
821
822         if (ns->ms && !blk_get_integrity(disk) && !ns->ext)
823                 nvme_init_integrity(ns);
824         if (ns->ms && !(ns->ms == 8 && ns->pi_type) && !blk_get_integrity(disk))
825                 set_capacity(disk, 0);
826         else
827                 set_capacity(disk, le64_to_cpup(&id->nsze) << (ns->lba_shift - 9));
828
829         if (ns->ctrl->oncs & NVME_CTRL_ONCS_DSM)
830                 nvme_config_discard(ns);
831         blk_mq_unfreeze_queue(disk->queue);
832
833         kfree(id);
834         return 0;
835 }
836
837 static char nvme_pr_type(enum pr_type type)
838 {
839         switch (type) {
840         case PR_WRITE_EXCLUSIVE:
841                 return 1;
842         case PR_EXCLUSIVE_ACCESS:
843                 return 2;
844         case PR_WRITE_EXCLUSIVE_REG_ONLY:
845                 return 3;
846         case PR_EXCLUSIVE_ACCESS_REG_ONLY:
847                 return 4;
848         case PR_WRITE_EXCLUSIVE_ALL_REGS:
849                 return 5;
850         case PR_EXCLUSIVE_ACCESS_ALL_REGS:
851                 return 6;
852         default:
853                 return 0;
854         }
855 };
856
857 static int nvme_pr_command(struct block_device *bdev, u32 cdw10,
858                                 u64 key, u64 sa_key, u8 op)
859 {
860         struct nvme_ns *ns = bdev->bd_disk->private_data;
861         struct nvme_command c;
862         u8 data[16] = { 0, };
863
864         put_unaligned_le64(key, &data[0]);
865         put_unaligned_le64(sa_key, &data[8]);
866
867         memset(&c, 0, sizeof(c));
868         c.common.opcode = op;
869         c.common.nsid = cpu_to_le32(ns->ns_id);
870         c.common.cdw10[0] = cpu_to_le32(cdw10);
871
872         return nvme_submit_sync_cmd(ns->queue, &c, data, 16);
873 }
874
875 static int nvme_pr_register(struct block_device *bdev, u64 old,
876                 u64 new, unsigned flags)
877 {
878         u32 cdw10;
879
880         if (flags & ~PR_FL_IGNORE_KEY)
881                 return -EOPNOTSUPP;
882
883         cdw10 = old ? 2 : 0;
884         cdw10 |= (flags & PR_FL_IGNORE_KEY) ? 1 << 3 : 0;
885         cdw10 |= (1 << 30) | (1 << 31); /* PTPL=1 */
886         return nvme_pr_command(bdev, cdw10, old, new, nvme_cmd_resv_register);
887 }
888
889 static int nvme_pr_reserve(struct block_device *bdev, u64 key,
890                 enum pr_type type, unsigned flags)
891 {
892         u32 cdw10;
893
894         if (flags & ~PR_FL_IGNORE_KEY)
895                 return -EOPNOTSUPP;
896
897         cdw10 = nvme_pr_type(type) << 8;
898         cdw10 |= ((flags & PR_FL_IGNORE_KEY) ? 1 << 3 : 0);
899         return nvme_pr_command(bdev, cdw10, key, 0, nvme_cmd_resv_acquire);
900 }
901
902 static int nvme_pr_preempt(struct block_device *bdev, u64 old, u64 new,
903                 enum pr_type type, bool abort)
904 {
905         u32 cdw10 = nvme_pr_type(type) << 8 | abort ? 2 : 1;
906         return nvme_pr_command(bdev, cdw10, old, new, nvme_cmd_resv_acquire);
907 }
908
909 static int nvme_pr_clear(struct block_device *bdev, u64 key)
910 {
911         u32 cdw10 = 1 | (key ? 1 << 3 : 0);
912         return nvme_pr_command(bdev, cdw10, key, 0, nvme_cmd_resv_register);
913 }
914
915 static int nvme_pr_release(struct block_device *bdev, u64 key, enum pr_type type)
916 {
917         u32 cdw10 = nvme_pr_type(type) << 8 | key ? 1 << 3 : 0;
918         return nvme_pr_command(bdev, cdw10, key, 0, nvme_cmd_resv_release);
919 }
920
921 static const struct pr_ops nvme_pr_ops = {
922         .pr_register    = nvme_pr_register,
923         .pr_reserve     = nvme_pr_reserve,
924         .pr_release     = nvme_pr_release,
925         .pr_preempt     = nvme_pr_preempt,
926         .pr_clear       = nvme_pr_clear,
927 };
928
929 static const struct block_device_operations nvme_fops = {
930         .owner          = THIS_MODULE,
931         .ioctl          = nvme_ioctl,
932         .compat_ioctl   = nvme_compat_ioctl,
933         .open           = nvme_open,
934         .release        = nvme_release,
935         .getgeo         = nvme_getgeo,
936         .revalidate_disk= nvme_revalidate_disk,
937         .pr_ops         = &nvme_pr_ops,
938 };
939
940 static int nvme_wait_ready(struct nvme_ctrl *ctrl, u64 cap, bool enabled)
941 {
942         unsigned long timeout =
943                 ((NVME_CAP_TIMEOUT(cap) + 1) * HZ / 2) + jiffies;
944         u32 csts, bit = enabled ? NVME_CSTS_RDY : 0;
945         int ret;
946
947         while ((ret = ctrl->ops->reg_read32(ctrl, NVME_REG_CSTS, &csts)) == 0) {
948                 if ((csts & NVME_CSTS_RDY) == bit)
949                         break;
950
951                 msleep(100);
952                 if (fatal_signal_pending(current))
953                         return -EINTR;
954                 if (time_after(jiffies, timeout)) {
955                         dev_err(ctrl->device,
956                                 "Device not ready; aborting %s\n", enabled ?
957                                                 "initialisation" : "reset");
958                         return -ENODEV;
959                 }
960         }
961
962         return ret;
963 }
964
965 /*
966  * If the device has been passed off to us in an enabled state, just clear
967  * the enabled bit.  The spec says we should set the 'shutdown notification
968  * bits', but doing so may cause the device to complete commands to the
969  * admin queue ... and we don't know what memory that might be pointing at!
970  */
971 int nvme_disable_ctrl(struct nvme_ctrl *ctrl, u64 cap)
972 {
973         int ret;
974
975         ctrl->ctrl_config &= ~NVME_CC_SHN_MASK;
976         ctrl->ctrl_config &= ~NVME_CC_ENABLE;
977
978         ret = ctrl->ops->reg_write32(ctrl, NVME_REG_CC, ctrl->ctrl_config);
979         if (ret)
980                 return ret;
981         return nvme_wait_ready(ctrl, cap, false);
982 }
983 EXPORT_SYMBOL_GPL(nvme_disable_ctrl);
984
985 int nvme_enable_ctrl(struct nvme_ctrl *ctrl, u64 cap)
986 {
987         /*
988          * Default to a 4K page size, with the intention to update this
989          * path in the future to accomodate architectures with differing
990          * kernel and IO page sizes.
991          */
992         unsigned dev_page_min = NVME_CAP_MPSMIN(cap) + 12, page_shift = 12;
993         int ret;
994
995         if (page_shift < dev_page_min) {
996                 dev_err(ctrl->device,
997                         "Minimum device page size %u too large for host (%u)\n",
998                         1 << dev_page_min, 1 << page_shift);
999                 return -ENODEV;
1000         }
1001
1002         ctrl->page_size = 1 << page_shift;
1003
1004         ctrl->ctrl_config = NVME_CC_CSS_NVM;
1005         ctrl->ctrl_config |= (page_shift - 12) << NVME_CC_MPS_SHIFT;
1006         ctrl->ctrl_config |= NVME_CC_ARB_RR | NVME_CC_SHN_NONE;
1007         ctrl->ctrl_config |= NVME_CC_IOSQES | NVME_CC_IOCQES;
1008         ctrl->ctrl_config |= NVME_CC_ENABLE;
1009
1010         ret = ctrl->ops->reg_write32(ctrl, NVME_REG_CC, ctrl->ctrl_config);
1011         if (ret)
1012                 return ret;
1013         return nvme_wait_ready(ctrl, cap, true);
1014 }
1015 EXPORT_SYMBOL_GPL(nvme_enable_ctrl);
1016
1017 int nvme_shutdown_ctrl(struct nvme_ctrl *ctrl)
1018 {
1019         unsigned long timeout = SHUTDOWN_TIMEOUT + jiffies;
1020         u32 csts;
1021         int ret;
1022
1023         ctrl->ctrl_config &= ~NVME_CC_SHN_MASK;
1024         ctrl->ctrl_config |= NVME_CC_SHN_NORMAL;
1025
1026         ret = ctrl->ops->reg_write32(ctrl, NVME_REG_CC, ctrl->ctrl_config);
1027         if (ret)
1028                 return ret;
1029
1030         while ((ret = ctrl->ops->reg_read32(ctrl, NVME_REG_CSTS, &csts)) == 0) {
1031                 if ((csts & NVME_CSTS_SHST_MASK) == NVME_CSTS_SHST_CMPLT)
1032                         break;
1033
1034                 msleep(100);
1035                 if (fatal_signal_pending(current))
1036                         return -EINTR;
1037                 if (time_after(jiffies, timeout)) {
1038                         dev_err(ctrl->device,
1039                                 "Device shutdown incomplete; abort shutdown\n");
1040                         return -ENODEV;
1041                 }
1042         }
1043
1044         return ret;
1045 }
1046 EXPORT_SYMBOL_GPL(nvme_shutdown_ctrl);
1047
1048 static void nvme_set_queue_limits(struct nvme_ctrl *ctrl,
1049                 struct request_queue *q)
1050 {
1051         bool vwc = false;
1052
1053         if (ctrl->max_hw_sectors) {
1054                 u32 max_segments =
1055                         (ctrl->max_hw_sectors / (ctrl->page_size >> 9)) + 1;
1056
1057                 blk_queue_max_hw_sectors(q, ctrl->max_hw_sectors);
1058                 blk_queue_max_segments(q, min_t(u32, max_segments, USHRT_MAX));
1059         }
1060         if (ctrl->stripe_size)
1061                 blk_queue_chunk_sectors(q, ctrl->stripe_size >> 9);
1062         blk_queue_virt_boundary(q, ctrl->page_size - 1);
1063         if (ctrl->vwc & NVME_CTRL_VWC_PRESENT)
1064                 vwc = true;
1065         blk_queue_write_cache(q, vwc, vwc);
1066 }
1067
1068 /*
1069  * Initialize the cached copies of the Identify data and various controller
1070  * register in our nvme_ctrl structure.  This should be called as soon as
1071  * the admin queue is fully up and running.
1072  */
1073 int nvme_init_identify(struct nvme_ctrl *ctrl)
1074 {
1075         struct nvme_id_ctrl *id;
1076         u64 cap;
1077         int ret, page_shift;
1078
1079         ret = ctrl->ops->reg_read32(ctrl, NVME_REG_VS, &ctrl->vs);
1080         if (ret) {
1081                 dev_err(ctrl->device, "Reading VS failed (%d)\n", ret);
1082                 return ret;
1083         }
1084
1085         ret = ctrl->ops->reg_read64(ctrl, NVME_REG_CAP, &cap);
1086         if (ret) {
1087                 dev_err(ctrl->device, "Reading CAP failed (%d)\n", ret);
1088                 return ret;
1089         }
1090         page_shift = NVME_CAP_MPSMIN(cap) + 12;
1091
1092         if (ctrl->vs >= NVME_VS(1, 1))
1093                 ctrl->subsystem = NVME_CAP_NSSRC(cap);
1094
1095         ret = nvme_identify_ctrl(ctrl, &id);
1096         if (ret) {
1097                 dev_err(ctrl->device, "Identify Controller failed (%d)\n", ret);
1098                 return -EIO;
1099         }
1100
1101         ctrl->vid = le16_to_cpu(id->vid);
1102         ctrl->oncs = le16_to_cpup(&id->oncs);
1103         atomic_set(&ctrl->abort_limit, id->acl + 1);
1104         ctrl->vwc = id->vwc;
1105         ctrl->cntlid = le16_to_cpup(&id->cntlid);
1106         memcpy(ctrl->serial, id->sn, sizeof(id->sn));
1107         memcpy(ctrl->model, id->mn, sizeof(id->mn));
1108         memcpy(ctrl->firmware_rev, id->fr, sizeof(id->fr));
1109         if (id->mdts)
1110                 ctrl->max_hw_sectors = 1 << (id->mdts + page_shift - 9);
1111         else
1112                 ctrl->max_hw_sectors = UINT_MAX;
1113
1114         if ((ctrl->quirks & NVME_QUIRK_STRIPE_SIZE) && id->vs[3]) {
1115                 unsigned int max_hw_sectors;
1116
1117                 ctrl->stripe_size = 1 << (id->vs[3] + page_shift);
1118                 max_hw_sectors = ctrl->stripe_size >> (page_shift - 9);
1119                 if (ctrl->max_hw_sectors) {
1120                         ctrl->max_hw_sectors = min(max_hw_sectors,
1121                                                         ctrl->max_hw_sectors);
1122                 } else {
1123                         ctrl->max_hw_sectors = max_hw_sectors;
1124                 }
1125         }
1126
1127         nvme_set_queue_limits(ctrl, ctrl->admin_q);
1128
1129         kfree(id);
1130         return 0;
1131 }
1132 EXPORT_SYMBOL_GPL(nvme_init_identify);
1133
1134 static int nvme_dev_open(struct inode *inode, struct file *file)
1135 {
1136         struct nvme_ctrl *ctrl;
1137         int instance = iminor(inode);
1138         int ret = -ENODEV;
1139
1140         spin_lock(&dev_list_lock);
1141         list_for_each_entry(ctrl, &nvme_ctrl_list, node) {
1142                 if (ctrl->instance != instance)
1143                         continue;
1144
1145                 if (!ctrl->admin_q) {
1146                         ret = -EWOULDBLOCK;
1147                         break;
1148                 }
1149                 if (!kref_get_unless_zero(&ctrl->kref))
1150                         break;
1151                 file->private_data = ctrl;
1152                 ret = 0;
1153                 break;
1154         }
1155         spin_unlock(&dev_list_lock);
1156
1157         return ret;
1158 }
1159
1160 static int nvme_dev_release(struct inode *inode, struct file *file)
1161 {
1162         nvme_put_ctrl(file->private_data);
1163         return 0;
1164 }
1165
1166 static int nvme_dev_user_cmd(struct nvme_ctrl *ctrl, void __user *argp)
1167 {
1168         struct nvme_ns *ns;
1169         int ret;
1170
1171         mutex_lock(&ctrl->namespaces_mutex);
1172         if (list_empty(&ctrl->namespaces)) {
1173                 ret = -ENOTTY;
1174                 goto out_unlock;
1175         }
1176
1177         ns = list_first_entry(&ctrl->namespaces, struct nvme_ns, list);
1178         if (ns != list_last_entry(&ctrl->namespaces, struct nvme_ns, list)) {
1179                 dev_warn(ctrl->device,
1180                         "NVME_IOCTL_IO_CMD not supported when multiple namespaces present!\n");
1181                 ret = -EINVAL;
1182                 goto out_unlock;
1183         }
1184
1185         dev_warn(ctrl->device,
1186                 "using deprecated NVME_IOCTL_IO_CMD ioctl on the char device!\n");
1187         kref_get(&ns->kref);
1188         mutex_unlock(&ctrl->namespaces_mutex);
1189
1190         ret = nvme_user_cmd(ctrl, ns, argp);
1191         nvme_put_ns(ns);
1192         return ret;
1193
1194 out_unlock:
1195         mutex_unlock(&ctrl->namespaces_mutex);
1196         return ret;
1197 }
1198
1199 static long nvme_dev_ioctl(struct file *file, unsigned int cmd,
1200                 unsigned long arg)
1201 {
1202         struct nvme_ctrl *ctrl = file->private_data;
1203         void __user *argp = (void __user *)arg;
1204
1205         switch (cmd) {
1206         case NVME_IOCTL_ADMIN_CMD:
1207                 return nvme_user_cmd(ctrl, NULL, argp);
1208         case NVME_IOCTL_IO_CMD:
1209                 return nvme_dev_user_cmd(ctrl, argp);
1210         case NVME_IOCTL_RESET:
1211                 dev_warn(ctrl->device, "resetting controller\n");
1212                 return ctrl->ops->reset_ctrl(ctrl);
1213         case NVME_IOCTL_SUBSYS_RESET:
1214                 return nvme_reset_subsystem(ctrl);
1215         default:
1216                 return -ENOTTY;
1217         }
1218 }
1219
1220 static const struct file_operations nvme_dev_fops = {
1221         .owner          = THIS_MODULE,
1222         .open           = nvme_dev_open,
1223         .release        = nvme_dev_release,
1224         .unlocked_ioctl = nvme_dev_ioctl,
1225         .compat_ioctl   = nvme_dev_ioctl,
1226 };
1227
1228 static ssize_t nvme_sysfs_reset(struct device *dev,
1229                                 struct device_attribute *attr, const char *buf,
1230                                 size_t count)
1231 {
1232         struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
1233         int ret;
1234
1235         ret = ctrl->ops->reset_ctrl(ctrl);
1236         if (ret < 0)
1237                 return ret;
1238         return count;
1239 }
1240 static DEVICE_ATTR(reset_controller, S_IWUSR, NULL, nvme_sysfs_reset);
1241
1242 static ssize_t wwid_show(struct device *dev, struct device_attribute *attr,
1243                                                                 char *buf)
1244 {
1245         struct nvme_ns *ns = dev_to_disk(dev)->private_data;
1246         struct nvme_ctrl *ctrl = ns->ctrl;
1247         int serial_len = sizeof(ctrl->serial);
1248         int model_len = sizeof(ctrl->model);
1249
1250         if (memchr_inv(ns->uuid, 0, sizeof(ns->uuid)))
1251                 return sprintf(buf, "eui.%16phN\n", ns->uuid);
1252
1253         if (memchr_inv(ns->eui, 0, sizeof(ns->eui)))
1254                 return sprintf(buf, "eui.%8phN\n", ns->eui);
1255
1256         while (ctrl->serial[serial_len - 1] == ' ')
1257                 serial_len--;
1258         while (ctrl->model[model_len - 1] == ' ')
1259                 model_len--;
1260
1261         return sprintf(buf, "nvme.%04x-%*phN-%*phN-%08x\n", ctrl->vid,
1262                 serial_len, ctrl->serial, model_len, ctrl->model, ns->ns_id);
1263 }
1264 static DEVICE_ATTR(wwid, S_IRUGO, wwid_show, NULL);
1265
1266 static ssize_t uuid_show(struct device *dev, struct device_attribute *attr,
1267                                                                 char *buf)
1268 {
1269         struct nvme_ns *ns = dev_to_disk(dev)->private_data;
1270         return sprintf(buf, "%pU\n", ns->uuid);
1271 }
1272 static DEVICE_ATTR(uuid, S_IRUGO, uuid_show, NULL);
1273
1274 static ssize_t eui_show(struct device *dev, struct device_attribute *attr,
1275                                                                 char *buf)
1276 {
1277         struct nvme_ns *ns = dev_to_disk(dev)->private_data;
1278         return sprintf(buf, "%8phd\n", ns->eui);
1279 }
1280 static DEVICE_ATTR(eui, S_IRUGO, eui_show, NULL);
1281
1282 static ssize_t nsid_show(struct device *dev, struct device_attribute *attr,
1283                                                                 char *buf)
1284 {
1285         struct nvme_ns *ns = dev_to_disk(dev)->private_data;
1286         return sprintf(buf, "%d\n", ns->ns_id);
1287 }
1288 static DEVICE_ATTR(nsid, S_IRUGO, nsid_show, NULL);
1289
1290 static struct attribute *nvme_ns_attrs[] = {
1291         &dev_attr_wwid.attr,
1292         &dev_attr_uuid.attr,
1293         &dev_attr_eui.attr,
1294         &dev_attr_nsid.attr,
1295         NULL,
1296 };
1297
1298 static umode_t nvme_attrs_are_visible(struct kobject *kobj,
1299                 struct attribute *a, int n)
1300 {
1301         struct device *dev = container_of(kobj, struct device, kobj);
1302         struct nvme_ns *ns = dev_to_disk(dev)->private_data;
1303
1304         if (a == &dev_attr_uuid.attr) {
1305                 if (!memchr_inv(ns->uuid, 0, sizeof(ns->uuid)))
1306                         return 0;
1307         }
1308         if (a == &dev_attr_eui.attr) {
1309                 if (!memchr_inv(ns->eui, 0, sizeof(ns->eui)))
1310                         return 0;
1311         }
1312         return a->mode;
1313 }
1314
1315 static const struct attribute_group nvme_ns_attr_group = {
1316         .attrs          = nvme_ns_attrs,
1317         .is_visible     = nvme_attrs_are_visible,
1318 };
1319
1320 #define nvme_show_str_function(field)                                           \
1321 static ssize_t  field##_show(struct device *dev,                                \
1322                             struct device_attribute *attr, char *buf)           \
1323 {                                                                               \
1324         struct nvme_ctrl *ctrl = dev_get_drvdata(dev);                          \
1325         return sprintf(buf, "%.*s\n", (int)sizeof(ctrl->field), ctrl->field);   \
1326 }                                                                               \
1327 static DEVICE_ATTR(field, S_IRUGO, field##_show, NULL);
1328
1329 #define nvme_show_int_function(field)                                           \
1330 static ssize_t  field##_show(struct device *dev,                                \
1331                             struct device_attribute *attr, char *buf)           \
1332 {                                                                               \
1333         struct nvme_ctrl *ctrl = dev_get_drvdata(dev);                          \
1334         return sprintf(buf, "%d\n", ctrl->field);       \
1335 }                                                                               \
1336 static DEVICE_ATTR(field, S_IRUGO, field##_show, NULL);
1337
1338 nvme_show_str_function(model);
1339 nvme_show_str_function(serial);
1340 nvme_show_str_function(firmware_rev);
1341 nvme_show_int_function(cntlid);
1342
1343 static struct attribute *nvme_dev_attrs[] = {
1344         &dev_attr_reset_controller.attr,
1345         &dev_attr_model.attr,
1346         &dev_attr_serial.attr,
1347         &dev_attr_firmware_rev.attr,
1348         &dev_attr_cntlid.attr,
1349         NULL
1350 };
1351
1352 static struct attribute_group nvme_dev_attrs_group = {
1353         .attrs = nvme_dev_attrs,
1354 };
1355
1356 static const struct attribute_group *nvme_dev_attr_groups[] = {
1357         &nvme_dev_attrs_group,
1358         NULL,
1359 };
1360
1361 static int ns_cmp(void *priv, struct list_head *a, struct list_head *b)
1362 {
1363         struct nvme_ns *nsa = container_of(a, struct nvme_ns, list);
1364         struct nvme_ns *nsb = container_of(b, struct nvme_ns, list);
1365
1366         return nsa->ns_id - nsb->ns_id;
1367 }
1368
1369 static struct nvme_ns *nvme_find_ns(struct nvme_ctrl *ctrl, unsigned nsid)
1370 {
1371         struct nvme_ns *ns;
1372
1373         lockdep_assert_held(&ctrl->namespaces_mutex);
1374
1375         list_for_each_entry(ns, &ctrl->namespaces, list) {
1376                 if (ns->ns_id == nsid)
1377                         return ns;
1378                 if (ns->ns_id > nsid)
1379                         break;
1380         }
1381         return NULL;
1382 }
1383
1384 static void nvme_alloc_ns(struct nvme_ctrl *ctrl, unsigned nsid)
1385 {
1386         struct nvme_ns *ns;
1387         struct gendisk *disk;
1388         int node = dev_to_node(ctrl->dev);
1389
1390         lockdep_assert_held(&ctrl->namespaces_mutex);
1391
1392         ns = kzalloc_node(sizeof(*ns), GFP_KERNEL, node);
1393         if (!ns)
1394                 return;
1395
1396         ns->instance = ida_simple_get(&ctrl->ns_ida, 1, 0, GFP_KERNEL);
1397         if (ns->instance < 0)
1398                 goto out_free_ns;
1399
1400         ns->queue = blk_mq_init_queue(ctrl->tagset);
1401         if (IS_ERR(ns->queue))
1402                 goto out_release_instance;
1403         queue_flag_set_unlocked(QUEUE_FLAG_NONROT, ns->queue);
1404         ns->queue->queuedata = ns;
1405         ns->ctrl = ctrl;
1406
1407         disk = alloc_disk_node(0, node);
1408         if (!disk)
1409                 goto out_free_queue;
1410
1411         kref_init(&ns->kref);
1412         ns->ns_id = nsid;
1413         ns->disk = disk;
1414         ns->lba_shift = 9; /* set to a default value for 512 until disk is validated */
1415
1416
1417         blk_queue_logical_block_size(ns->queue, 1 << ns->lba_shift);
1418         nvme_set_queue_limits(ctrl, ns->queue);
1419
1420         disk->major = nvme_major;
1421         disk->first_minor = 0;
1422         disk->fops = &nvme_fops;
1423         disk->private_data = ns;
1424         disk->queue = ns->queue;
1425         disk->driverfs_dev = ctrl->device;
1426         disk->flags = GENHD_FL_EXT_DEVT;
1427         sprintf(disk->disk_name, "nvme%dn%d", ctrl->instance, ns->instance);
1428
1429         if (nvme_revalidate_disk(ns->disk))
1430                 goto out_free_disk;
1431
1432         list_add_tail_rcu(&ns->list, &ctrl->namespaces);
1433         kref_get(&ctrl->kref);
1434         if (ns->type == NVME_NS_LIGHTNVM)
1435                 return;
1436
1437         add_disk(ns->disk);
1438         if (sysfs_create_group(&disk_to_dev(ns->disk)->kobj,
1439                                         &nvme_ns_attr_group))
1440                 pr_warn("%s: failed to create sysfs group for identification\n",
1441                         ns->disk->disk_name);
1442         return;
1443  out_free_disk:
1444         kfree(disk);
1445  out_free_queue:
1446         blk_cleanup_queue(ns->queue);
1447  out_release_instance:
1448         ida_simple_remove(&ctrl->ns_ida, ns->instance);
1449  out_free_ns:
1450         kfree(ns);
1451 }
1452
1453 static void nvme_ns_remove(struct nvme_ns *ns)
1454 {
1455         lockdep_assert_held(&ns->ctrl->namespaces_mutex);
1456
1457         if (test_and_set_bit(NVME_NS_REMOVING, &ns->flags))
1458                 return;
1459
1460         if (ns->disk->flags & GENHD_FL_UP) {
1461                 if (blk_get_integrity(ns->disk))
1462                         blk_integrity_unregister(ns->disk);
1463                 sysfs_remove_group(&disk_to_dev(ns->disk)->kobj,
1464                                         &nvme_ns_attr_group);
1465                 del_gendisk(ns->disk);
1466                 blk_mq_abort_requeue_list(ns->queue);
1467                 blk_cleanup_queue(ns->queue);
1468         }
1469         list_del_init(&ns->list);
1470         synchronize_rcu();
1471         nvme_put_ns(ns);
1472 }
1473
1474 static void nvme_validate_ns(struct nvme_ctrl *ctrl, unsigned nsid)
1475 {
1476         struct nvme_ns *ns;
1477
1478         ns = nvme_find_ns(ctrl, nsid);
1479         if (ns) {
1480                 if (revalidate_disk(ns->disk))
1481                         nvme_ns_remove(ns);
1482         } else
1483                 nvme_alloc_ns(ctrl, nsid);
1484 }
1485
1486 static int nvme_scan_ns_list(struct nvme_ctrl *ctrl, unsigned nn)
1487 {
1488         struct nvme_ns *ns;
1489         __le32 *ns_list;
1490         unsigned i, j, nsid, prev = 0, num_lists = DIV_ROUND_UP(nn, 1024);
1491         int ret = 0;
1492
1493         ns_list = kzalloc(0x1000, GFP_KERNEL);
1494         if (!ns_list)
1495                 return -ENOMEM;
1496
1497         for (i = 0; i < num_lists; i++) {
1498                 ret = nvme_identify_ns_list(ctrl, prev, ns_list);
1499                 if (ret)
1500                         goto out;
1501
1502                 for (j = 0; j < min(nn, 1024U); j++) {
1503                         nsid = le32_to_cpu(ns_list[j]);
1504                         if (!nsid)
1505                                 goto out;
1506
1507                         nvme_validate_ns(ctrl, nsid);
1508
1509                         while (++prev < nsid) {
1510                                 ns = nvme_find_ns(ctrl, prev);
1511                                 if (ns)
1512                                         nvme_ns_remove(ns);
1513                         }
1514                 }
1515                 nn -= j;
1516         }
1517  out:
1518         kfree(ns_list);
1519         return ret;
1520 }
1521
1522 static void nvme_scan_ns_sequential(struct nvme_ctrl *ctrl, unsigned nn)
1523 {
1524         struct nvme_ns *ns, *next;
1525         unsigned i;
1526
1527         lockdep_assert_held(&ctrl->namespaces_mutex);
1528
1529         for (i = 1; i <= nn; i++)
1530                 nvme_validate_ns(ctrl, i);
1531
1532         list_for_each_entry_safe(ns, next, &ctrl->namespaces, list) {
1533                 if (ns->ns_id > nn)
1534                         nvme_ns_remove(ns);
1535         }
1536 }
1537
1538 static void nvme_scan_work(struct work_struct *work)
1539 {
1540         struct nvme_ctrl *ctrl =
1541                 container_of(work, struct nvme_ctrl, scan_work);
1542         struct nvme_id_ctrl *id;
1543         unsigned nn;
1544
1545         if (ctrl->state != NVME_CTRL_LIVE)
1546                 return;
1547
1548         if (nvme_identify_ctrl(ctrl, &id))
1549                 return;
1550
1551         mutex_lock(&ctrl->namespaces_mutex);
1552         nn = le32_to_cpu(id->nn);
1553         if (ctrl->vs >= NVME_VS(1, 1) &&
1554             !(ctrl->quirks & NVME_QUIRK_IDENTIFY_CNS)) {
1555                 if (!nvme_scan_ns_list(ctrl, nn))
1556                         goto done;
1557         }
1558         nvme_scan_ns_sequential(ctrl, nn);
1559  done:
1560         list_sort(NULL, &ctrl->namespaces, ns_cmp);
1561         mutex_unlock(&ctrl->namespaces_mutex);
1562         kfree(id);
1563
1564         if (ctrl->ops->post_scan)
1565                 ctrl->ops->post_scan(ctrl);
1566 }
1567
1568 void nvme_queue_scan(struct nvme_ctrl *ctrl)
1569 {
1570         /*
1571          * Do not queue new scan work when a controller is reset during
1572          * removal.
1573          */
1574         if (ctrl->state == NVME_CTRL_LIVE)
1575                 schedule_work(&ctrl->scan_work);
1576 }
1577 EXPORT_SYMBOL_GPL(nvme_queue_scan);
1578
1579 void nvme_remove_namespaces(struct nvme_ctrl *ctrl)
1580 {
1581         struct nvme_ns *ns, *next;
1582
1583         mutex_lock(&ctrl->namespaces_mutex);
1584         list_for_each_entry_safe(ns, next, &ctrl->namespaces, list)
1585                 nvme_ns_remove(ns);
1586         mutex_unlock(&ctrl->namespaces_mutex);
1587 }
1588 EXPORT_SYMBOL_GPL(nvme_remove_namespaces);
1589
1590 static void nvme_async_event_work(struct work_struct *work)
1591 {
1592         struct nvme_ctrl *ctrl =
1593                 container_of(work, struct nvme_ctrl, async_event_work);
1594
1595         spin_lock_irq(&ctrl->lock);
1596         while (ctrl->event_limit > 0) {
1597                 int aer_idx = --ctrl->event_limit;
1598
1599                 spin_unlock_irq(&ctrl->lock);
1600                 ctrl->ops->submit_async_event(ctrl, aer_idx);
1601                 spin_lock_irq(&ctrl->lock);
1602         }
1603         spin_unlock_irq(&ctrl->lock);
1604 }
1605
1606 void nvme_complete_async_event(struct nvme_ctrl *ctrl,
1607                 struct nvme_completion *cqe)
1608 {
1609         u16 status = le16_to_cpu(cqe->status) >> 1;
1610         u32 result = le32_to_cpu(cqe->result);
1611
1612         if (status == NVME_SC_SUCCESS || status == NVME_SC_ABORT_REQ) {
1613                 ++ctrl->event_limit;
1614                 schedule_work(&ctrl->async_event_work);
1615         }
1616
1617         if (status != NVME_SC_SUCCESS)
1618                 return;
1619
1620         switch (result & 0xff07) {
1621         case NVME_AER_NOTICE_NS_CHANGED:
1622                 dev_info(ctrl->device, "rescanning\n");
1623                 nvme_queue_scan(ctrl);
1624                 break;
1625         default:
1626                 dev_warn(ctrl->device, "async event result %08x\n", result);
1627         }
1628 }
1629 EXPORT_SYMBOL_GPL(nvme_complete_async_event);
1630
1631 void nvme_queue_async_events(struct nvme_ctrl *ctrl)
1632 {
1633         ctrl->event_limit = NVME_NR_AERS;
1634         schedule_work(&ctrl->async_event_work);
1635 }
1636 EXPORT_SYMBOL_GPL(nvme_queue_async_events);
1637
1638 static DEFINE_IDA(nvme_instance_ida);
1639
1640 static int nvme_set_instance(struct nvme_ctrl *ctrl)
1641 {
1642         int instance, error;
1643
1644         do {
1645                 if (!ida_pre_get(&nvme_instance_ida, GFP_KERNEL))
1646                         return -ENODEV;
1647
1648                 spin_lock(&dev_list_lock);
1649                 error = ida_get_new(&nvme_instance_ida, &instance);
1650                 spin_unlock(&dev_list_lock);
1651         } while (error == -EAGAIN);
1652
1653         if (error)
1654                 return -ENODEV;
1655
1656         ctrl->instance = instance;
1657         return 0;
1658 }
1659
1660 static void nvme_release_instance(struct nvme_ctrl *ctrl)
1661 {
1662         spin_lock(&dev_list_lock);
1663         ida_remove(&nvme_instance_ida, ctrl->instance);
1664         spin_unlock(&dev_list_lock);
1665 }
1666
1667 void nvme_uninit_ctrl(struct nvme_ctrl *ctrl)
1668 {
1669         flush_work(&ctrl->async_event_work);
1670         flush_work(&ctrl->scan_work);
1671         nvme_remove_namespaces(ctrl);
1672
1673         device_destroy(nvme_class, MKDEV(nvme_char_major, ctrl->instance));
1674
1675         spin_lock(&dev_list_lock);
1676         list_del(&ctrl->node);
1677         spin_unlock(&dev_list_lock);
1678 }
1679 EXPORT_SYMBOL_GPL(nvme_uninit_ctrl);
1680
1681 static void nvme_free_ctrl(struct kref *kref)
1682 {
1683         struct nvme_ctrl *ctrl = container_of(kref, struct nvme_ctrl, kref);
1684
1685         put_device(ctrl->device);
1686         nvme_release_instance(ctrl);
1687         ida_destroy(&ctrl->ns_ida);
1688
1689         ctrl->ops->free_ctrl(ctrl);
1690 }
1691
1692 void nvme_put_ctrl(struct nvme_ctrl *ctrl)
1693 {
1694         kref_put(&ctrl->kref, nvme_free_ctrl);
1695 }
1696 EXPORT_SYMBOL_GPL(nvme_put_ctrl);
1697
1698 /*
1699  * Initialize a NVMe controller structures.  This needs to be called during
1700  * earliest initialization so that we have the initialized structured around
1701  * during probing.
1702  */
1703 int nvme_init_ctrl(struct nvme_ctrl *ctrl, struct device *dev,
1704                 const struct nvme_ctrl_ops *ops, unsigned long quirks)
1705 {
1706         int ret;
1707
1708         ctrl->state = NVME_CTRL_NEW;
1709         spin_lock_init(&ctrl->lock);
1710         INIT_LIST_HEAD(&ctrl->namespaces);
1711         mutex_init(&ctrl->namespaces_mutex);
1712         kref_init(&ctrl->kref);
1713         ctrl->dev = dev;
1714         ctrl->ops = ops;
1715         ctrl->quirks = quirks;
1716         INIT_WORK(&ctrl->scan_work, nvme_scan_work);
1717         INIT_WORK(&ctrl->async_event_work, nvme_async_event_work);
1718
1719         ret = nvme_set_instance(ctrl);
1720         if (ret)
1721                 goto out;
1722
1723         ctrl->device = device_create_with_groups(nvme_class, ctrl->dev,
1724                                 MKDEV(nvme_char_major, ctrl->instance),
1725                                 ctrl, nvme_dev_attr_groups,
1726                                 "nvme%d", ctrl->instance);
1727         if (IS_ERR(ctrl->device)) {
1728                 ret = PTR_ERR(ctrl->device);
1729                 goto out_release_instance;
1730         }
1731         get_device(ctrl->device);
1732         ida_init(&ctrl->ns_ida);
1733
1734         spin_lock(&dev_list_lock);
1735         list_add_tail(&ctrl->node, &nvme_ctrl_list);
1736         spin_unlock(&dev_list_lock);
1737
1738         return 0;
1739 out_release_instance:
1740         nvme_release_instance(ctrl);
1741 out:
1742         return ret;
1743 }
1744 EXPORT_SYMBOL_GPL(nvme_init_ctrl);
1745
1746 /**
1747  * nvme_kill_queues(): Ends all namespace queues
1748  * @ctrl: the dead controller that needs to end
1749  *
1750  * Call this function when the driver determines it is unable to get the
1751  * controller in a state capable of servicing IO.
1752  */
1753 void nvme_kill_queues(struct nvme_ctrl *ctrl)
1754 {
1755         struct nvme_ns *ns;
1756
1757         rcu_read_lock();
1758         list_for_each_entry_rcu(ns, &ctrl->namespaces, list) {
1759                 if (!kref_get_unless_zero(&ns->kref))
1760                         continue;
1761
1762                 /*
1763                  * Revalidating a dead namespace sets capacity to 0. This will
1764                  * end buffered writers dirtying pages that can't be synced.
1765                  */
1766                 if (!test_and_set_bit(NVME_NS_DEAD, &ns->flags))
1767                         revalidate_disk(ns->disk);
1768
1769                 blk_set_queue_dying(ns->queue);
1770                 blk_mq_abort_requeue_list(ns->queue);
1771                 blk_mq_start_stopped_hw_queues(ns->queue, true);
1772
1773                 nvme_put_ns(ns);
1774         }
1775         rcu_read_unlock();
1776 }
1777 EXPORT_SYMBOL_GPL(nvme_kill_queues);
1778
1779 void nvme_stop_queues(struct nvme_ctrl *ctrl)
1780 {
1781         struct nvme_ns *ns;
1782
1783         rcu_read_lock();
1784         list_for_each_entry_rcu(ns, &ctrl->namespaces, list) {
1785                 spin_lock_irq(ns->queue->queue_lock);
1786                 queue_flag_set(QUEUE_FLAG_STOPPED, ns->queue);
1787                 spin_unlock_irq(ns->queue->queue_lock);
1788
1789                 blk_mq_cancel_requeue_work(ns->queue);
1790                 blk_mq_stop_hw_queues(ns->queue);
1791         }
1792         rcu_read_unlock();
1793 }
1794 EXPORT_SYMBOL_GPL(nvme_stop_queues);
1795
1796 void nvme_start_queues(struct nvme_ctrl *ctrl)
1797 {
1798         struct nvme_ns *ns;
1799
1800         rcu_read_lock();
1801         list_for_each_entry_rcu(ns, &ctrl->namespaces, list) {
1802                 queue_flag_clear_unlocked(QUEUE_FLAG_STOPPED, ns->queue);
1803                 blk_mq_start_stopped_hw_queues(ns->queue, true);
1804                 blk_mq_kick_requeue_list(ns->queue);
1805         }
1806         rcu_read_unlock();
1807 }
1808 EXPORT_SYMBOL_GPL(nvme_start_queues);
1809
1810 int __init nvme_core_init(void)
1811 {
1812         int result;
1813
1814         result = register_blkdev(nvme_major, "nvme");
1815         if (result < 0)
1816                 return result;
1817         else if (result > 0)
1818                 nvme_major = result;
1819
1820         result = __register_chrdev(nvme_char_major, 0, NVME_MINORS, "nvme",
1821                                                         &nvme_dev_fops);
1822         if (result < 0)
1823                 goto unregister_blkdev;
1824         else if (result > 0)
1825                 nvme_char_major = result;
1826
1827         nvme_class = class_create(THIS_MODULE, "nvme");
1828         if (IS_ERR(nvme_class)) {
1829                 result = PTR_ERR(nvme_class);
1830                 goto unregister_chrdev;
1831         }
1832
1833         return 0;
1834
1835  unregister_chrdev:
1836         __unregister_chrdev(nvme_char_major, 0, NVME_MINORS, "nvme");
1837  unregister_blkdev:
1838         unregister_blkdev(nvme_major, "nvme");
1839         return result;
1840 }
1841
1842 void nvme_core_exit(void)
1843 {
1844         class_destroy(nvme_class);
1845         __unregister_chrdev(nvme_char_major, 0, NVME_MINORS, "nvme");
1846         unregister_blkdev(nvme_major, "nvme");
1847 }
1848
1849 MODULE_LICENSE("GPL");
1850 MODULE_VERSION("1.0");
1851 module_init(nvme_core_init);
1852 module_exit(nvme_core_exit);