NVMe: switch to using blk_queue_write_cache()
[cascardo/linux.git] / drivers / nvme / host / core.c
1 /*
2  * NVM Express device driver
3  * Copyright (c) 2011-2014, Intel Corporation.
4  *
5  * This program is free software; you can redistribute it and/or modify it
6  * under the terms and conditions of the GNU General Public License,
7  * version 2, as published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope it will be useful, but WITHOUT
10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
12  * more details.
13  */
14
15 #include <linux/blkdev.h>
16 #include <linux/blk-mq.h>
17 #include <linux/delay.h>
18 #include <linux/errno.h>
19 #include <linux/hdreg.h>
20 #include <linux/kernel.h>
21 #include <linux/module.h>
22 #include <linux/list_sort.h>
23 #include <linux/slab.h>
24 #include <linux/types.h>
25 #include <linux/pr.h>
26 #include <linux/ptrace.h>
27 #include <linux/nvme_ioctl.h>
28 #include <linux/t10-pi.h>
29 #include <scsi/sg.h>
30 #include <asm/unaligned.h>
31
32 #include "nvme.h"
33
34 #define NVME_MINORS             (1U << MINORBITS)
35
36 unsigned char admin_timeout = 60;
37 module_param(admin_timeout, byte, 0644);
38 MODULE_PARM_DESC(admin_timeout, "timeout in seconds for admin commands");
39 EXPORT_SYMBOL_GPL(admin_timeout);
40
41 unsigned char nvme_io_timeout = 30;
42 module_param_named(io_timeout, nvme_io_timeout, byte, 0644);
43 MODULE_PARM_DESC(io_timeout, "timeout in seconds for I/O");
44 EXPORT_SYMBOL_GPL(nvme_io_timeout);
45
46 unsigned char shutdown_timeout = 5;
47 module_param(shutdown_timeout, byte, 0644);
48 MODULE_PARM_DESC(shutdown_timeout, "timeout in seconds for controller shutdown");
49
50 static int nvme_major;
51 module_param(nvme_major, int, 0);
52
53 static int nvme_char_major;
54 module_param(nvme_char_major, int, 0);
55
56 static LIST_HEAD(nvme_ctrl_list);
57 static DEFINE_SPINLOCK(dev_list_lock);
58
59 static struct class *nvme_class;
60
61 static void nvme_free_ns(struct kref *kref)
62 {
63         struct nvme_ns *ns = container_of(kref, struct nvme_ns, kref);
64
65         if (ns->type == NVME_NS_LIGHTNVM)
66                 nvme_nvm_unregister(ns->queue, ns->disk->disk_name);
67
68         spin_lock(&dev_list_lock);
69         ns->disk->private_data = NULL;
70         spin_unlock(&dev_list_lock);
71
72         put_disk(ns->disk);
73         ida_simple_remove(&ns->ctrl->ns_ida, ns->instance);
74         nvme_put_ctrl(ns->ctrl);
75         kfree(ns);
76 }
77
78 static void nvme_put_ns(struct nvme_ns *ns)
79 {
80         kref_put(&ns->kref, nvme_free_ns);
81 }
82
83 static struct nvme_ns *nvme_get_ns_from_disk(struct gendisk *disk)
84 {
85         struct nvme_ns *ns;
86
87         spin_lock(&dev_list_lock);
88         ns = disk->private_data;
89         if (ns) {
90                 if (!kref_get_unless_zero(&ns->kref))
91                         goto fail;
92                 if (!try_module_get(ns->ctrl->ops->module))
93                         goto fail_put_ns;
94         }
95         spin_unlock(&dev_list_lock);
96
97         return ns;
98
99 fail_put_ns:
100         kref_put(&ns->kref, nvme_free_ns);
101 fail:
102         spin_unlock(&dev_list_lock);
103         return NULL;
104 }
105
106 void nvme_requeue_req(struct request *req)
107 {
108         unsigned long flags;
109
110         blk_mq_requeue_request(req);
111         spin_lock_irqsave(req->q->queue_lock, flags);
112         if (!blk_queue_stopped(req->q))
113                 blk_mq_kick_requeue_list(req->q);
114         spin_unlock_irqrestore(req->q->queue_lock, flags);
115 }
116 EXPORT_SYMBOL_GPL(nvme_requeue_req);
117
118 struct request *nvme_alloc_request(struct request_queue *q,
119                 struct nvme_command *cmd, unsigned int flags)
120 {
121         bool write = cmd->common.opcode & 1;
122         struct request *req;
123
124         req = blk_mq_alloc_request(q, write, flags);
125         if (IS_ERR(req))
126                 return req;
127
128         req->cmd_type = REQ_TYPE_DRV_PRIV;
129         req->cmd_flags |= REQ_FAILFAST_DRIVER;
130         req->__data_len = 0;
131         req->__sector = (sector_t) -1;
132         req->bio = req->biotail = NULL;
133
134         req->cmd = (unsigned char *)cmd;
135         req->cmd_len = sizeof(struct nvme_command);
136
137         return req;
138 }
139 EXPORT_SYMBOL_GPL(nvme_alloc_request);
140
141 static inline void nvme_setup_flush(struct nvme_ns *ns,
142                 struct nvme_command *cmnd)
143 {
144         memset(cmnd, 0, sizeof(*cmnd));
145         cmnd->common.opcode = nvme_cmd_flush;
146         cmnd->common.nsid = cpu_to_le32(ns->ns_id);
147 }
148
149 static inline int nvme_setup_discard(struct nvme_ns *ns, struct request *req,
150                 struct nvme_command *cmnd)
151 {
152         struct nvme_dsm_range *range;
153         struct page *page;
154         int offset;
155         unsigned int nr_bytes = blk_rq_bytes(req);
156
157         range = kmalloc(sizeof(*range), GFP_ATOMIC);
158         if (!range)
159                 return BLK_MQ_RQ_QUEUE_BUSY;
160
161         range->cattr = cpu_to_le32(0);
162         range->nlb = cpu_to_le32(nr_bytes >> ns->lba_shift);
163         range->slba = cpu_to_le64(nvme_block_nr(ns, blk_rq_pos(req)));
164
165         memset(cmnd, 0, sizeof(*cmnd));
166         cmnd->dsm.opcode = nvme_cmd_dsm;
167         cmnd->dsm.nsid = cpu_to_le32(ns->ns_id);
168         cmnd->dsm.nr = 0;
169         cmnd->dsm.attributes = cpu_to_le32(NVME_DSMGMT_AD);
170
171         req->completion_data = range;
172         page = virt_to_page(range);
173         offset = offset_in_page(range);
174         blk_add_request_payload(req, page, offset, sizeof(*range));
175
176         /*
177          * we set __data_len back to the size of the area to be discarded
178          * on disk. This allows us to report completion on the full amount
179          * of blocks described by the request.
180          */
181         req->__data_len = nr_bytes;
182
183         return 0;
184 }
185
186 static inline void nvme_setup_rw(struct nvme_ns *ns, struct request *req,
187                 struct nvme_command *cmnd)
188 {
189         u16 control = 0;
190         u32 dsmgmt = 0;
191
192         if (req->cmd_flags & REQ_FUA)
193                 control |= NVME_RW_FUA;
194         if (req->cmd_flags & (REQ_FAILFAST_DEV | REQ_RAHEAD))
195                 control |= NVME_RW_LR;
196
197         if (req->cmd_flags & REQ_RAHEAD)
198                 dsmgmt |= NVME_RW_DSM_FREQ_PREFETCH;
199
200         memset(cmnd, 0, sizeof(*cmnd));
201         cmnd->rw.opcode = (rq_data_dir(req) ? nvme_cmd_write : nvme_cmd_read);
202         cmnd->rw.command_id = req->tag;
203         cmnd->rw.nsid = cpu_to_le32(ns->ns_id);
204         cmnd->rw.slba = cpu_to_le64(nvme_block_nr(ns, blk_rq_pos(req)));
205         cmnd->rw.length = cpu_to_le16((blk_rq_bytes(req) >> ns->lba_shift) - 1);
206
207         if (ns->ms) {
208                 switch (ns->pi_type) {
209                 case NVME_NS_DPS_PI_TYPE3:
210                         control |= NVME_RW_PRINFO_PRCHK_GUARD;
211                         break;
212                 case NVME_NS_DPS_PI_TYPE1:
213                 case NVME_NS_DPS_PI_TYPE2:
214                         control |= NVME_RW_PRINFO_PRCHK_GUARD |
215                                         NVME_RW_PRINFO_PRCHK_REF;
216                         cmnd->rw.reftag = cpu_to_le32(
217                                         nvme_block_nr(ns, blk_rq_pos(req)));
218                         break;
219                 }
220                 if (!blk_integrity_rq(req))
221                         control |= NVME_RW_PRINFO_PRACT;
222         }
223
224         cmnd->rw.control = cpu_to_le16(control);
225         cmnd->rw.dsmgmt = cpu_to_le32(dsmgmt);
226 }
227
228 int nvme_setup_cmd(struct nvme_ns *ns, struct request *req,
229                 struct nvme_command *cmd)
230 {
231         int ret = 0;
232
233         if (req->cmd_type == REQ_TYPE_DRV_PRIV)
234                 memcpy(cmd, req->cmd, sizeof(*cmd));
235         else if (req->cmd_flags & REQ_FLUSH)
236                 nvme_setup_flush(ns, cmd);
237         else if (req->cmd_flags & REQ_DISCARD)
238                 ret = nvme_setup_discard(ns, req, cmd);
239         else
240                 nvme_setup_rw(ns, req, cmd);
241
242         return ret;
243 }
244 EXPORT_SYMBOL_GPL(nvme_setup_cmd);
245
246 /*
247  * Returns 0 on success.  If the result is negative, it's a Linux error code;
248  * if the result is positive, it's an NVM Express status code
249  */
250 int __nvme_submit_sync_cmd(struct request_queue *q, struct nvme_command *cmd,
251                 struct nvme_completion *cqe, void *buffer, unsigned bufflen,
252                 unsigned timeout)
253 {
254         struct request *req;
255         int ret;
256
257         req = nvme_alloc_request(q, cmd, 0);
258         if (IS_ERR(req))
259                 return PTR_ERR(req);
260
261         req->timeout = timeout ? timeout : ADMIN_TIMEOUT;
262         req->special = cqe;
263
264         if (buffer && bufflen) {
265                 ret = blk_rq_map_kern(q, req, buffer, bufflen, GFP_KERNEL);
266                 if (ret)
267                         goto out;
268         }
269
270         blk_execute_rq(req->q, NULL, req, 0);
271         ret = req->errors;
272  out:
273         blk_mq_free_request(req);
274         return ret;
275 }
276
277 int nvme_submit_sync_cmd(struct request_queue *q, struct nvme_command *cmd,
278                 void *buffer, unsigned bufflen)
279 {
280         return __nvme_submit_sync_cmd(q, cmd, NULL, buffer, bufflen, 0);
281 }
282 EXPORT_SYMBOL_GPL(nvme_submit_sync_cmd);
283
284 int __nvme_submit_user_cmd(struct request_queue *q, struct nvme_command *cmd,
285                 void __user *ubuffer, unsigned bufflen,
286                 void __user *meta_buffer, unsigned meta_len, u32 meta_seed,
287                 u32 *result, unsigned timeout)
288 {
289         bool write = cmd->common.opcode & 1;
290         struct nvme_completion cqe;
291         struct nvme_ns *ns = q->queuedata;
292         struct gendisk *disk = ns ? ns->disk : NULL;
293         struct request *req;
294         struct bio *bio = NULL;
295         void *meta = NULL;
296         int ret;
297
298         req = nvme_alloc_request(q, cmd, 0);
299         if (IS_ERR(req))
300                 return PTR_ERR(req);
301
302         req->timeout = timeout ? timeout : ADMIN_TIMEOUT;
303         req->special = &cqe;
304
305         if (ubuffer && bufflen) {
306                 ret = blk_rq_map_user(q, req, NULL, ubuffer, bufflen,
307                                 GFP_KERNEL);
308                 if (ret)
309                         goto out;
310                 bio = req->bio;
311
312                 if (!disk)
313                         goto submit;
314                 bio->bi_bdev = bdget_disk(disk, 0);
315                 if (!bio->bi_bdev) {
316                         ret = -ENODEV;
317                         goto out_unmap;
318                 }
319
320                 if (meta_buffer && meta_len) {
321                         struct bio_integrity_payload *bip;
322
323                         meta = kmalloc(meta_len, GFP_KERNEL);
324                         if (!meta) {
325                                 ret = -ENOMEM;
326                                 goto out_unmap;
327                         }
328
329                         if (write) {
330                                 if (copy_from_user(meta, meta_buffer,
331                                                 meta_len)) {
332                                         ret = -EFAULT;
333                                         goto out_free_meta;
334                                 }
335                         }
336
337                         bip = bio_integrity_alloc(bio, GFP_KERNEL, 1);
338                         if (IS_ERR(bip)) {
339                                 ret = PTR_ERR(bip);
340                                 goto out_free_meta;
341                         }
342
343                         bip->bip_iter.bi_size = meta_len;
344                         bip->bip_iter.bi_sector = meta_seed;
345
346                         ret = bio_integrity_add_page(bio, virt_to_page(meta),
347                                         meta_len, offset_in_page(meta));
348                         if (ret != meta_len) {
349                                 ret = -ENOMEM;
350                                 goto out_free_meta;
351                         }
352                 }
353         }
354  submit:
355         blk_execute_rq(req->q, disk, req, 0);
356         ret = req->errors;
357         if (result)
358                 *result = le32_to_cpu(cqe.result);
359         if (meta && !ret && !write) {
360                 if (copy_to_user(meta_buffer, meta, meta_len))
361                         ret = -EFAULT;
362         }
363  out_free_meta:
364         kfree(meta);
365  out_unmap:
366         if (bio) {
367                 if (disk && bio->bi_bdev)
368                         bdput(bio->bi_bdev);
369                 blk_rq_unmap_user(bio);
370         }
371  out:
372         blk_mq_free_request(req);
373         return ret;
374 }
375
376 int nvme_submit_user_cmd(struct request_queue *q, struct nvme_command *cmd,
377                 void __user *ubuffer, unsigned bufflen, u32 *result,
378                 unsigned timeout)
379 {
380         return __nvme_submit_user_cmd(q, cmd, ubuffer, bufflen, NULL, 0, 0,
381                         result, timeout);
382 }
383
384 int nvme_identify_ctrl(struct nvme_ctrl *dev, struct nvme_id_ctrl **id)
385 {
386         struct nvme_command c = { };
387         int error;
388
389         /* gcc-4.4.4 (at least) has issues with initializers and anon unions */
390         c.identify.opcode = nvme_admin_identify;
391         c.identify.cns = cpu_to_le32(1);
392
393         *id = kmalloc(sizeof(struct nvme_id_ctrl), GFP_KERNEL);
394         if (!*id)
395                 return -ENOMEM;
396
397         error = nvme_submit_sync_cmd(dev->admin_q, &c, *id,
398                         sizeof(struct nvme_id_ctrl));
399         if (error)
400                 kfree(*id);
401         return error;
402 }
403
404 static int nvme_identify_ns_list(struct nvme_ctrl *dev, unsigned nsid, __le32 *ns_list)
405 {
406         struct nvme_command c = { };
407
408         c.identify.opcode = nvme_admin_identify;
409         c.identify.cns = cpu_to_le32(2);
410         c.identify.nsid = cpu_to_le32(nsid);
411         return nvme_submit_sync_cmd(dev->admin_q, &c, ns_list, 0x1000);
412 }
413
414 int nvme_identify_ns(struct nvme_ctrl *dev, unsigned nsid,
415                 struct nvme_id_ns **id)
416 {
417         struct nvme_command c = { };
418         int error;
419
420         /* gcc-4.4.4 (at least) has issues with initializers and anon unions */
421         c.identify.opcode = nvme_admin_identify,
422         c.identify.nsid = cpu_to_le32(nsid),
423
424         *id = kmalloc(sizeof(struct nvme_id_ns), GFP_KERNEL);
425         if (!*id)
426                 return -ENOMEM;
427
428         error = nvme_submit_sync_cmd(dev->admin_q, &c, *id,
429                         sizeof(struct nvme_id_ns));
430         if (error)
431                 kfree(*id);
432         return error;
433 }
434
435 int nvme_get_features(struct nvme_ctrl *dev, unsigned fid, unsigned nsid,
436                                         dma_addr_t dma_addr, u32 *result)
437 {
438         struct nvme_command c;
439         struct nvme_completion cqe;
440         int ret;
441
442         memset(&c, 0, sizeof(c));
443         c.features.opcode = nvme_admin_get_features;
444         c.features.nsid = cpu_to_le32(nsid);
445         c.features.prp1 = cpu_to_le64(dma_addr);
446         c.features.fid = cpu_to_le32(fid);
447
448         ret = __nvme_submit_sync_cmd(dev->admin_q, &c, &cqe, NULL, 0, 0);
449         if (ret >= 0)
450                 *result = le32_to_cpu(cqe.result);
451         return ret;
452 }
453
454 int nvme_set_features(struct nvme_ctrl *dev, unsigned fid, unsigned dword11,
455                                         dma_addr_t dma_addr, u32 *result)
456 {
457         struct nvme_command c;
458         struct nvme_completion cqe;
459         int ret;
460
461         memset(&c, 0, sizeof(c));
462         c.features.opcode = nvme_admin_set_features;
463         c.features.prp1 = cpu_to_le64(dma_addr);
464         c.features.fid = cpu_to_le32(fid);
465         c.features.dword11 = cpu_to_le32(dword11);
466
467         ret = __nvme_submit_sync_cmd(dev->admin_q, &c, &cqe, NULL, 0, 0);
468         if (ret >= 0)
469                 *result = le32_to_cpu(cqe.result);
470         return ret;
471 }
472
473 int nvme_get_log_page(struct nvme_ctrl *dev, struct nvme_smart_log **log)
474 {
475         struct nvme_command c = { };
476         int error;
477
478         c.common.opcode = nvme_admin_get_log_page,
479         c.common.nsid = cpu_to_le32(0xFFFFFFFF),
480         c.common.cdw10[0] = cpu_to_le32(
481                         (((sizeof(struct nvme_smart_log) / 4) - 1) << 16) |
482                          NVME_LOG_SMART),
483
484         *log = kmalloc(sizeof(struct nvme_smart_log), GFP_KERNEL);
485         if (!*log)
486                 return -ENOMEM;
487
488         error = nvme_submit_sync_cmd(dev->admin_q, &c, *log,
489                         sizeof(struct nvme_smart_log));
490         if (error)
491                 kfree(*log);
492         return error;
493 }
494
495 int nvme_set_queue_count(struct nvme_ctrl *ctrl, int *count)
496 {
497         u32 q_count = (*count - 1) | ((*count - 1) << 16);
498         u32 result;
499         int status, nr_io_queues;
500
501         status = nvme_set_features(ctrl, NVME_FEAT_NUM_QUEUES, q_count, 0,
502                         &result);
503         if (status)
504                 return status;
505
506         nr_io_queues = min(result & 0xffff, result >> 16) + 1;
507         *count = min(*count, nr_io_queues);
508         return 0;
509 }
510 EXPORT_SYMBOL_GPL(nvme_set_queue_count);
511
512 static int nvme_submit_io(struct nvme_ns *ns, struct nvme_user_io __user *uio)
513 {
514         struct nvme_user_io io;
515         struct nvme_command c;
516         unsigned length, meta_len;
517         void __user *metadata;
518
519         if (copy_from_user(&io, uio, sizeof(io)))
520                 return -EFAULT;
521         if (io.flags)
522                 return -EINVAL;
523
524         switch (io.opcode) {
525         case nvme_cmd_write:
526         case nvme_cmd_read:
527         case nvme_cmd_compare:
528                 break;
529         default:
530                 return -EINVAL;
531         }
532
533         length = (io.nblocks + 1) << ns->lba_shift;
534         meta_len = (io.nblocks + 1) * ns->ms;
535         metadata = (void __user *)(uintptr_t)io.metadata;
536
537         if (ns->ext) {
538                 length += meta_len;
539                 meta_len = 0;
540         } else if (meta_len) {
541                 if ((io.metadata & 3) || !io.metadata)
542                         return -EINVAL;
543         }
544
545         memset(&c, 0, sizeof(c));
546         c.rw.opcode = io.opcode;
547         c.rw.flags = io.flags;
548         c.rw.nsid = cpu_to_le32(ns->ns_id);
549         c.rw.slba = cpu_to_le64(io.slba);
550         c.rw.length = cpu_to_le16(io.nblocks);
551         c.rw.control = cpu_to_le16(io.control);
552         c.rw.dsmgmt = cpu_to_le32(io.dsmgmt);
553         c.rw.reftag = cpu_to_le32(io.reftag);
554         c.rw.apptag = cpu_to_le16(io.apptag);
555         c.rw.appmask = cpu_to_le16(io.appmask);
556
557         return __nvme_submit_user_cmd(ns->queue, &c,
558                         (void __user *)(uintptr_t)io.addr, length,
559                         metadata, meta_len, io.slba, NULL, 0);
560 }
561
562 static int nvme_user_cmd(struct nvme_ctrl *ctrl, struct nvme_ns *ns,
563                         struct nvme_passthru_cmd __user *ucmd)
564 {
565         struct nvme_passthru_cmd cmd;
566         struct nvme_command c;
567         unsigned timeout = 0;
568         int status;
569
570         if (!capable(CAP_SYS_ADMIN))
571                 return -EACCES;
572         if (copy_from_user(&cmd, ucmd, sizeof(cmd)))
573                 return -EFAULT;
574         if (cmd.flags)
575                 return -EINVAL;
576
577         memset(&c, 0, sizeof(c));
578         c.common.opcode = cmd.opcode;
579         c.common.flags = cmd.flags;
580         c.common.nsid = cpu_to_le32(cmd.nsid);
581         c.common.cdw2[0] = cpu_to_le32(cmd.cdw2);
582         c.common.cdw2[1] = cpu_to_le32(cmd.cdw3);
583         c.common.cdw10[0] = cpu_to_le32(cmd.cdw10);
584         c.common.cdw10[1] = cpu_to_le32(cmd.cdw11);
585         c.common.cdw10[2] = cpu_to_le32(cmd.cdw12);
586         c.common.cdw10[3] = cpu_to_le32(cmd.cdw13);
587         c.common.cdw10[4] = cpu_to_le32(cmd.cdw14);
588         c.common.cdw10[5] = cpu_to_le32(cmd.cdw15);
589
590         if (cmd.timeout_ms)
591                 timeout = msecs_to_jiffies(cmd.timeout_ms);
592
593         status = nvme_submit_user_cmd(ns ? ns->queue : ctrl->admin_q, &c,
594                         (void __user *)(uintptr_t)cmd.addr, cmd.data_len,
595                         &cmd.result, timeout);
596         if (status >= 0) {
597                 if (put_user(cmd.result, &ucmd->result))
598                         return -EFAULT;
599         }
600
601         return status;
602 }
603
604 static int nvme_ioctl(struct block_device *bdev, fmode_t mode,
605                 unsigned int cmd, unsigned long arg)
606 {
607         struct nvme_ns *ns = bdev->bd_disk->private_data;
608
609         switch (cmd) {
610         case NVME_IOCTL_ID:
611                 force_successful_syscall_return();
612                 return ns->ns_id;
613         case NVME_IOCTL_ADMIN_CMD:
614                 return nvme_user_cmd(ns->ctrl, NULL, (void __user *)arg);
615         case NVME_IOCTL_IO_CMD:
616                 return nvme_user_cmd(ns->ctrl, ns, (void __user *)arg);
617         case NVME_IOCTL_SUBMIT_IO:
618                 return nvme_submit_io(ns, (void __user *)arg);
619 #ifdef CONFIG_BLK_DEV_NVME_SCSI
620         case SG_GET_VERSION_NUM:
621                 return nvme_sg_get_version_num((void __user *)arg);
622         case SG_IO:
623                 return nvme_sg_io(ns, (void __user *)arg);
624 #endif
625         default:
626                 return -ENOTTY;
627         }
628 }
629
630 #ifdef CONFIG_COMPAT
631 static int nvme_compat_ioctl(struct block_device *bdev, fmode_t mode,
632                         unsigned int cmd, unsigned long arg)
633 {
634         switch (cmd) {
635         case SG_IO:
636                 return -ENOIOCTLCMD;
637         }
638         return nvme_ioctl(bdev, mode, cmd, arg);
639 }
640 #else
641 #define nvme_compat_ioctl       NULL
642 #endif
643
644 static int nvme_open(struct block_device *bdev, fmode_t mode)
645 {
646         return nvme_get_ns_from_disk(bdev->bd_disk) ? 0 : -ENXIO;
647 }
648
649 static void nvme_release(struct gendisk *disk, fmode_t mode)
650 {
651         struct nvme_ns *ns = disk->private_data;
652
653         module_put(ns->ctrl->ops->module);
654         nvme_put_ns(ns);
655 }
656
657 static int nvme_getgeo(struct block_device *bdev, struct hd_geometry *geo)
658 {
659         /* some standard values */
660         geo->heads = 1 << 6;
661         geo->sectors = 1 << 5;
662         geo->cylinders = get_capacity(bdev->bd_disk) >> 11;
663         return 0;
664 }
665
666 #ifdef CONFIG_BLK_DEV_INTEGRITY
667 static void nvme_init_integrity(struct nvme_ns *ns)
668 {
669         struct blk_integrity integrity;
670
671         switch (ns->pi_type) {
672         case NVME_NS_DPS_PI_TYPE3:
673                 integrity.profile = &t10_pi_type3_crc;
674                 break;
675         case NVME_NS_DPS_PI_TYPE1:
676         case NVME_NS_DPS_PI_TYPE2:
677                 integrity.profile = &t10_pi_type1_crc;
678                 break;
679         default:
680                 integrity.profile = NULL;
681                 break;
682         }
683         integrity.tuple_size = ns->ms;
684         blk_integrity_register(ns->disk, &integrity);
685         blk_queue_max_integrity_segments(ns->queue, 1);
686 }
687 #else
688 static void nvme_init_integrity(struct nvme_ns *ns)
689 {
690 }
691 #endif /* CONFIG_BLK_DEV_INTEGRITY */
692
693 static void nvme_config_discard(struct nvme_ns *ns)
694 {
695         struct nvme_ctrl *ctrl = ns->ctrl;
696         u32 logical_block_size = queue_logical_block_size(ns->queue);
697
698         if (ctrl->quirks & NVME_QUIRK_DISCARD_ZEROES)
699                 ns->queue->limits.discard_zeroes_data = 1;
700         else
701                 ns->queue->limits.discard_zeroes_data = 0;
702
703         ns->queue->limits.discard_alignment = logical_block_size;
704         ns->queue->limits.discard_granularity = logical_block_size;
705         blk_queue_max_discard_sectors(ns->queue, 0xffffffff);
706         queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, ns->queue);
707 }
708
709 static int nvme_revalidate_disk(struct gendisk *disk)
710 {
711         struct nvme_ns *ns = disk->private_data;
712         struct nvme_id_ns *id;
713         u8 lbaf, pi_type;
714         u16 old_ms;
715         unsigned short bs;
716
717         if (test_bit(NVME_NS_DEAD, &ns->flags)) {
718                 set_capacity(disk, 0);
719                 return -ENODEV;
720         }
721         if (nvme_identify_ns(ns->ctrl, ns->ns_id, &id)) {
722                 dev_warn(disk_to_dev(ns->disk), "%s: Identify failure\n",
723                                 __func__);
724                 return -ENODEV;
725         }
726         if (id->ncap == 0) {
727                 kfree(id);
728                 return -ENODEV;
729         }
730
731         if (nvme_nvm_ns_supported(ns, id) && ns->type != NVME_NS_LIGHTNVM) {
732                 if (nvme_nvm_register(ns->queue, disk->disk_name)) {
733                         dev_warn(disk_to_dev(ns->disk),
734                                 "%s: LightNVM init failure\n", __func__);
735                         kfree(id);
736                         return -ENODEV;
737                 }
738                 ns->type = NVME_NS_LIGHTNVM;
739         }
740
741         if (ns->ctrl->vs >= NVME_VS(1, 1))
742                 memcpy(ns->eui, id->eui64, sizeof(ns->eui));
743         if (ns->ctrl->vs >= NVME_VS(1, 2))
744                 memcpy(ns->uuid, id->nguid, sizeof(ns->uuid));
745
746         old_ms = ns->ms;
747         lbaf = id->flbas & NVME_NS_FLBAS_LBA_MASK;
748         ns->lba_shift = id->lbaf[lbaf].ds;
749         ns->ms = le16_to_cpu(id->lbaf[lbaf].ms);
750         ns->ext = ns->ms && (id->flbas & NVME_NS_FLBAS_META_EXT);
751
752         /*
753          * If identify namespace failed, use default 512 byte block size so
754          * block layer can use before failing read/write for 0 capacity.
755          */
756         if (ns->lba_shift == 0)
757                 ns->lba_shift = 9;
758         bs = 1 << ns->lba_shift;
759         /* XXX: PI implementation requires metadata equal t10 pi tuple size */
760         pi_type = ns->ms == sizeof(struct t10_pi_tuple) ?
761                                         id->dps & NVME_NS_DPS_PI_MASK : 0;
762
763         blk_mq_freeze_queue(disk->queue);
764         if (blk_get_integrity(disk) && (ns->pi_type != pi_type ||
765                                 ns->ms != old_ms ||
766                                 bs != queue_logical_block_size(disk->queue) ||
767                                 (ns->ms && ns->ext)))
768                 blk_integrity_unregister(disk);
769
770         ns->pi_type = pi_type;
771         blk_queue_logical_block_size(ns->queue, bs);
772
773         if (ns->ms && !blk_get_integrity(disk) && !ns->ext)
774                 nvme_init_integrity(ns);
775         if (ns->ms && !(ns->ms == 8 && ns->pi_type) && !blk_get_integrity(disk))
776                 set_capacity(disk, 0);
777         else
778                 set_capacity(disk, le64_to_cpup(&id->nsze) << (ns->lba_shift - 9));
779
780         if (ns->ctrl->oncs & NVME_CTRL_ONCS_DSM)
781                 nvme_config_discard(ns);
782         blk_mq_unfreeze_queue(disk->queue);
783
784         kfree(id);
785         return 0;
786 }
787
788 static char nvme_pr_type(enum pr_type type)
789 {
790         switch (type) {
791         case PR_WRITE_EXCLUSIVE:
792                 return 1;
793         case PR_EXCLUSIVE_ACCESS:
794                 return 2;
795         case PR_WRITE_EXCLUSIVE_REG_ONLY:
796                 return 3;
797         case PR_EXCLUSIVE_ACCESS_REG_ONLY:
798                 return 4;
799         case PR_WRITE_EXCLUSIVE_ALL_REGS:
800                 return 5;
801         case PR_EXCLUSIVE_ACCESS_ALL_REGS:
802                 return 6;
803         default:
804                 return 0;
805         }
806 };
807
808 static int nvme_pr_command(struct block_device *bdev, u32 cdw10,
809                                 u64 key, u64 sa_key, u8 op)
810 {
811         struct nvme_ns *ns = bdev->bd_disk->private_data;
812         struct nvme_command c;
813         u8 data[16] = { 0, };
814
815         put_unaligned_le64(key, &data[0]);
816         put_unaligned_le64(sa_key, &data[8]);
817
818         memset(&c, 0, sizeof(c));
819         c.common.opcode = op;
820         c.common.nsid = cpu_to_le32(ns->ns_id);
821         c.common.cdw10[0] = cpu_to_le32(cdw10);
822
823         return nvme_submit_sync_cmd(ns->queue, &c, data, 16);
824 }
825
826 static int nvme_pr_register(struct block_device *bdev, u64 old,
827                 u64 new, unsigned flags)
828 {
829         u32 cdw10;
830
831         if (flags & ~PR_FL_IGNORE_KEY)
832                 return -EOPNOTSUPP;
833
834         cdw10 = old ? 2 : 0;
835         cdw10 |= (flags & PR_FL_IGNORE_KEY) ? 1 << 3 : 0;
836         cdw10 |= (1 << 30) | (1 << 31); /* PTPL=1 */
837         return nvme_pr_command(bdev, cdw10, old, new, nvme_cmd_resv_register);
838 }
839
840 static int nvme_pr_reserve(struct block_device *bdev, u64 key,
841                 enum pr_type type, unsigned flags)
842 {
843         u32 cdw10;
844
845         if (flags & ~PR_FL_IGNORE_KEY)
846                 return -EOPNOTSUPP;
847
848         cdw10 = nvme_pr_type(type) << 8;
849         cdw10 |= ((flags & PR_FL_IGNORE_KEY) ? 1 << 3 : 0);
850         return nvme_pr_command(bdev, cdw10, key, 0, nvme_cmd_resv_acquire);
851 }
852
853 static int nvme_pr_preempt(struct block_device *bdev, u64 old, u64 new,
854                 enum pr_type type, bool abort)
855 {
856         u32 cdw10 = nvme_pr_type(type) << 8 | abort ? 2 : 1;
857         return nvme_pr_command(bdev, cdw10, old, new, nvme_cmd_resv_acquire);
858 }
859
860 static int nvme_pr_clear(struct block_device *bdev, u64 key)
861 {
862         u32 cdw10 = 1 | (key ? 1 << 3 : 0);
863         return nvme_pr_command(bdev, cdw10, key, 0, nvme_cmd_resv_register);
864 }
865
866 static int nvme_pr_release(struct block_device *bdev, u64 key, enum pr_type type)
867 {
868         u32 cdw10 = nvme_pr_type(type) << 8 | key ? 1 << 3 : 0;
869         return nvme_pr_command(bdev, cdw10, key, 0, nvme_cmd_resv_release);
870 }
871
872 static const struct pr_ops nvme_pr_ops = {
873         .pr_register    = nvme_pr_register,
874         .pr_reserve     = nvme_pr_reserve,
875         .pr_release     = nvme_pr_release,
876         .pr_preempt     = nvme_pr_preempt,
877         .pr_clear       = nvme_pr_clear,
878 };
879
880 static const struct block_device_operations nvme_fops = {
881         .owner          = THIS_MODULE,
882         .ioctl          = nvme_ioctl,
883         .compat_ioctl   = nvme_compat_ioctl,
884         .open           = nvme_open,
885         .release        = nvme_release,
886         .getgeo         = nvme_getgeo,
887         .revalidate_disk= nvme_revalidate_disk,
888         .pr_ops         = &nvme_pr_ops,
889 };
890
891 static int nvme_wait_ready(struct nvme_ctrl *ctrl, u64 cap, bool enabled)
892 {
893         unsigned long timeout =
894                 ((NVME_CAP_TIMEOUT(cap) + 1) * HZ / 2) + jiffies;
895         u32 csts, bit = enabled ? NVME_CSTS_RDY : 0;
896         int ret;
897
898         while ((ret = ctrl->ops->reg_read32(ctrl, NVME_REG_CSTS, &csts)) == 0) {
899                 if ((csts & NVME_CSTS_RDY) == bit)
900                         break;
901
902                 msleep(100);
903                 if (fatal_signal_pending(current))
904                         return -EINTR;
905                 if (time_after(jiffies, timeout)) {
906                         dev_err(ctrl->device,
907                                 "Device not ready; aborting %s\n", enabled ?
908                                                 "initialisation" : "reset");
909                         return -ENODEV;
910                 }
911         }
912
913         return ret;
914 }
915
916 /*
917  * If the device has been passed off to us in an enabled state, just clear
918  * the enabled bit.  The spec says we should set the 'shutdown notification
919  * bits', but doing so may cause the device to complete commands to the
920  * admin queue ... and we don't know what memory that might be pointing at!
921  */
922 int nvme_disable_ctrl(struct nvme_ctrl *ctrl, u64 cap)
923 {
924         int ret;
925
926         ctrl->ctrl_config &= ~NVME_CC_SHN_MASK;
927         ctrl->ctrl_config &= ~NVME_CC_ENABLE;
928
929         ret = ctrl->ops->reg_write32(ctrl, NVME_REG_CC, ctrl->ctrl_config);
930         if (ret)
931                 return ret;
932         return nvme_wait_ready(ctrl, cap, false);
933 }
934 EXPORT_SYMBOL_GPL(nvme_disable_ctrl);
935
936 int nvme_enable_ctrl(struct nvme_ctrl *ctrl, u64 cap)
937 {
938         /*
939          * Default to a 4K page size, with the intention to update this
940          * path in the future to accomodate architectures with differing
941          * kernel and IO page sizes.
942          */
943         unsigned dev_page_min = NVME_CAP_MPSMIN(cap) + 12, page_shift = 12;
944         int ret;
945
946         if (page_shift < dev_page_min) {
947                 dev_err(ctrl->device,
948                         "Minimum device page size %u too large for host (%u)\n",
949                         1 << dev_page_min, 1 << page_shift);
950                 return -ENODEV;
951         }
952
953         ctrl->page_size = 1 << page_shift;
954
955         ctrl->ctrl_config = NVME_CC_CSS_NVM;
956         ctrl->ctrl_config |= (page_shift - 12) << NVME_CC_MPS_SHIFT;
957         ctrl->ctrl_config |= NVME_CC_ARB_RR | NVME_CC_SHN_NONE;
958         ctrl->ctrl_config |= NVME_CC_IOSQES | NVME_CC_IOCQES;
959         ctrl->ctrl_config |= NVME_CC_ENABLE;
960
961         ret = ctrl->ops->reg_write32(ctrl, NVME_REG_CC, ctrl->ctrl_config);
962         if (ret)
963                 return ret;
964         return nvme_wait_ready(ctrl, cap, true);
965 }
966 EXPORT_SYMBOL_GPL(nvme_enable_ctrl);
967
968 int nvme_shutdown_ctrl(struct nvme_ctrl *ctrl)
969 {
970         unsigned long timeout = SHUTDOWN_TIMEOUT + jiffies;
971         u32 csts;
972         int ret;
973
974         ctrl->ctrl_config &= ~NVME_CC_SHN_MASK;
975         ctrl->ctrl_config |= NVME_CC_SHN_NORMAL;
976
977         ret = ctrl->ops->reg_write32(ctrl, NVME_REG_CC, ctrl->ctrl_config);
978         if (ret)
979                 return ret;
980
981         while ((ret = ctrl->ops->reg_read32(ctrl, NVME_REG_CSTS, &csts)) == 0) {
982                 if ((csts & NVME_CSTS_SHST_MASK) == NVME_CSTS_SHST_CMPLT)
983                         break;
984
985                 msleep(100);
986                 if (fatal_signal_pending(current))
987                         return -EINTR;
988                 if (time_after(jiffies, timeout)) {
989                         dev_err(ctrl->device,
990                                 "Device shutdown incomplete; abort shutdown\n");
991                         return -ENODEV;
992                 }
993         }
994
995         return ret;
996 }
997 EXPORT_SYMBOL_GPL(nvme_shutdown_ctrl);
998
999 static void nvme_set_queue_limits(struct nvme_ctrl *ctrl,
1000                 struct request_queue *q)
1001 {
1002         bool vwc = false;
1003
1004         if (ctrl->max_hw_sectors) {
1005                 u32 max_segments =
1006                         (ctrl->max_hw_sectors / (ctrl->page_size >> 9)) + 1;
1007
1008                 blk_queue_max_hw_sectors(q, ctrl->max_hw_sectors);
1009                 blk_queue_max_segments(q, min_t(u32, max_segments, USHRT_MAX));
1010         }
1011         if (ctrl->stripe_size)
1012                 blk_queue_chunk_sectors(q, ctrl->stripe_size >> 9);
1013         blk_queue_virt_boundary(q, ctrl->page_size - 1);
1014         if (ctrl->vwc & NVME_CTRL_VWC_PRESENT)
1015                 vwc = true;
1016         blk_queue_write_cache(q, vwc, vwc);
1017 }
1018
1019 /*
1020  * Initialize the cached copies of the Identify data and various controller
1021  * register in our nvme_ctrl structure.  This should be called as soon as
1022  * the admin queue is fully up and running.
1023  */
1024 int nvme_init_identify(struct nvme_ctrl *ctrl)
1025 {
1026         struct nvme_id_ctrl *id;
1027         u64 cap;
1028         int ret, page_shift;
1029
1030         ret = ctrl->ops->reg_read32(ctrl, NVME_REG_VS, &ctrl->vs);
1031         if (ret) {
1032                 dev_err(ctrl->device, "Reading VS failed (%d)\n", ret);
1033                 return ret;
1034         }
1035
1036         ret = ctrl->ops->reg_read64(ctrl, NVME_REG_CAP, &cap);
1037         if (ret) {
1038                 dev_err(ctrl->device, "Reading CAP failed (%d)\n", ret);
1039                 return ret;
1040         }
1041         page_shift = NVME_CAP_MPSMIN(cap) + 12;
1042
1043         if (ctrl->vs >= NVME_VS(1, 1))
1044                 ctrl->subsystem = NVME_CAP_NSSRC(cap);
1045
1046         ret = nvme_identify_ctrl(ctrl, &id);
1047         if (ret) {
1048                 dev_err(ctrl->device, "Identify Controller failed (%d)\n", ret);
1049                 return -EIO;
1050         }
1051
1052         ctrl->vid = le16_to_cpu(id->vid);
1053         ctrl->oncs = le16_to_cpup(&id->oncs);
1054         atomic_set(&ctrl->abort_limit, id->acl + 1);
1055         ctrl->vwc = id->vwc;
1056         ctrl->cntlid = le16_to_cpup(&id->cntlid);
1057         memcpy(ctrl->serial, id->sn, sizeof(id->sn));
1058         memcpy(ctrl->model, id->mn, sizeof(id->mn));
1059         memcpy(ctrl->firmware_rev, id->fr, sizeof(id->fr));
1060         if (id->mdts)
1061                 ctrl->max_hw_sectors = 1 << (id->mdts + page_shift - 9);
1062         else
1063                 ctrl->max_hw_sectors = UINT_MAX;
1064
1065         if ((ctrl->quirks & NVME_QUIRK_STRIPE_SIZE) && id->vs[3]) {
1066                 unsigned int max_hw_sectors;
1067
1068                 ctrl->stripe_size = 1 << (id->vs[3] + page_shift);
1069                 max_hw_sectors = ctrl->stripe_size >> (page_shift - 9);
1070                 if (ctrl->max_hw_sectors) {
1071                         ctrl->max_hw_sectors = min(max_hw_sectors,
1072                                                         ctrl->max_hw_sectors);
1073                 } else {
1074                         ctrl->max_hw_sectors = max_hw_sectors;
1075                 }
1076         }
1077
1078         nvme_set_queue_limits(ctrl, ctrl->admin_q);
1079
1080         kfree(id);
1081         return 0;
1082 }
1083 EXPORT_SYMBOL_GPL(nvme_init_identify);
1084
1085 static int nvme_dev_open(struct inode *inode, struct file *file)
1086 {
1087         struct nvme_ctrl *ctrl;
1088         int instance = iminor(inode);
1089         int ret = -ENODEV;
1090
1091         spin_lock(&dev_list_lock);
1092         list_for_each_entry(ctrl, &nvme_ctrl_list, node) {
1093                 if (ctrl->instance != instance)
1094                         continue;
1095
1096                 if (!ctrl->admin_q) {
1097                         ret = -EWOULDBLOCK;
1098                         break;
1099                 }
1100                 if (!kref_get_unless_zero(&ctrl->kref))
1101                         break;
1102                 file->private_data = ctrl;
1103                 ret = 0;
1104                 break;
1105         }
1106         spin_unlock(&dev_list_lock);
1107
1108         return ret;
1109 }
1110
1111 static int nvme_dev_release(struct inode *inode, struct file *file)
1112 {
1113         nvme_put_ctrl(file->private_data);
1114         return 0;
1115 }
1116
1117 static int nvme_dev_user_cmd(struct nvme_ctrl *ctrl, void __user *argp)
1118 {
1119         struct nvme_ns *ns;
1120         int ret;
1121
1122         mutex_lock(&ctrl->namespaces_mutex);
1123         if (list_empty(&ctrl->namespaces)) {
1124                 ret = -ENOTTY;
1125                 goto out_unlock;
1126         }
1127
1128         ns = list_first_entry(&ctrl->namespaces, struct nvme_ns, list);
1129         if (ns != list_last_entry(&ctrl->namespaces, struct nvme_ns, list)) {
1130                 dev_warn(ctrl->device,
1131                         "NVME_IOCTL_IO_CMD not supported when multiple namespaces present!\n");
1132                 ret = -EINVAL;
1133                 goto out_unlock;
1134         }
1135
1136         dev_warn(ctrl->device,
1137                 "using deprecated NVME_IOCTL_IO_CMD ioctl on the char device!\n");
1138         kref_get(&ns->kref);
1139         mutex_unlock(&ctrl->namespaces_mutex);
1140
1141         ret = nvme_user_cmd(ctrl, ns, argp);
1142         nvme_put_ns(ns);
1143         return ret;
1144
1145 out_unlock:
1146         mutex_unlock(&ctrl->namespaces_mutex);
1147         return ret;
1148 }
1149
1150 static long nvme_dev_ioctl(struct file *file, unsigned int cmd,
1151                 unsigned long arg)
1152 {
1153         struct nvme_ctrl *ctrl = file->private_data;
1154         void __user *argp = (void __user *)arg;
1155
1156         switch (cmd) {
1157         case NVME_IOCTL_ADMIN_CMD:
1158                 return nvme_user_cmd(ctrl, NULL, argp);
1159         case NVME_IOCTL_IO_CMD:
1160                 return nvme_dev_user_cmd(ctrl, argp);
1161         case NVME_IOCTL_RESET:
1162                 dev_warn(ctrl->device, "resetting controller\n");
1163                 return ctrl->ops->reset_ctrl(ctrl);
1164         case NVME_IOCTL_SUBSYS_RESET:
1165                 return nvme_reset_subsystem(ctrl);
1166         default:
1167                 return -ENOTTY;
1168         }
1169 }
1170
1171 static const struct file_operations nvme_dev_fops = {
1172         .owner          = THIS_MODULE,
1173         .open           = nvme_dev_open,
1174         .release        = nvme_dev_release,
1175         .unlocked_ioctl = nvme_dev_ioctl,
1176         .compat_ioctl   = nvme_dev_ioctl,
1177 };
1178
1179 static ssize_t nvme_sysfs_reset(struct device *dev,
1180                                 struct device_attribute *attr, const char *buf,
1181                                 size_t count)
1182 {
1183         struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
1184         int ret;
1185
1186         ret = ctrl->ops->reset_ctrl(ctrl);
1187         if (ret < 0)
1188                 return ret;
1189         return count;
1190 }
1191 static DEVICE_ATTR(reset_controller, S_IWUSR, NULL, nvme_sysfs_reset);
1192
1193 static ssize_t wwid_show(struct device *dev, struct device_attribute *attr,
1194                                                                 char *buf)
1195 {
1196         struct nvme_ns *ns = dev_to_disk(dev)->private_data;
1197         struct nvme_ctrl *ctrl = ns->ctrl;
1198         int serial_len = sizeof(ctrl->serial);
1199         int model_len = sizeof(ctrl->model);
1200
1201         if (memchr_inv(ns->uuid, 0, sizeof(ns->uuid)))
1202                 return sprintf(buf, "eui.%16phN\n", ns->uuid);
1203
1204         if (memchr_inv(ns->eui, 0, sizeof(ns->eui)))
1205                 return sprintf(buf, "eui.%8phN\n", ns->eui);
1206
1207         while (ctrl->serial[serial_len - 1] == ' ')
1208                 serial_len--;
1209         while (ctrl->model[model_len - 1] == ' ')
1210                 model_len--;
1211
1212         return sprintf(buf, "nvme.%04x-%*phN-%*phN-%08x\n", ctrl->vid,
1213                 serial_len, ctrl->serial, model_len, ctrl->model, ns->ns_id);
1214 }
1215 static DEVICE_ATTR(wwid, S_IRUGO, wwid_show, NULL);
1216
1217 static ssize_t uuid_show(struct device *dev, struct device_attribute *attr,
1218                                                                 char *buf)
1219 {
1220         struct nvme_ns *ns = dev_to_disk(dev)->private_data;
1221         return sprintf(buf, "%pU\n", ns->uuid);
1222 }
1223 static DEVICE_ATTR(uuid, S_IRUGO, uuid_show, NULL);
1224
1225 static ssize_t eui_show(struct device *dev, struct device_attribute *attr,
1226                                                                 char *buf)
1227 {
1228         struct nvme_ns *ns = dev_to_disk(dev)->private_data;
1229         return sprintf(buf, "%8phd\n", ns->eui);
1230 }
1231 static DEVICE_ATTR(eui, S_IRUGO, eui_show, NULL);
1232
1233 static ssize_t nsid_show(struct device *dev, struct device_attribute *attr,
1234                                                                 char *buf)
1235 {
1236         struct nvme_ns *ns = dev_to_disk(dev)->private_data;
1237         return sprintf(buf, "%d\n", ns->ns_id);
1238 }
1239 static DEVICE_ATTR(nsid, S_IRUGO, nsid_show, NULL);
1240
1241 static struct attribute *nvme_ns_attrs[] = {
1242         &dev_attr_wwid.attr,
1243         &dev_attr_uuid.attr,
1244         &dev_attr_eui.attr,
1245         &dev_attr_nsid.attr,
1246         NULL,
1247 };
1248
1249 static umode_t nvme_attrs_are_visible(struct kobject *kobj,
1250                 struct attribute *a, int n)
1251 {
1252         struct device *dev = container_of(kobj, struct device, kobj);
1253         struct nvme_ns *ns = dev_to_disk(dev)->private_data;
1254
1255         if (a == &dev_attr_uuid.attr) {
1256                 if (!memchr_inv(ns->uuid, 0, sizeof(ns->uuid)))
1257                         return 0;
1258         }
1259         if (a == &dev_attr_eui.attr) {
1260                 if (!memchr_inv(ns->eui, 0, sizeof(ns->eui)))
1261                         return 0;
1262         }
1263         return a->mode;
1264 }
1265
1266 static const struct attribute_group nvme_ns_attr_group = {
1267         .attrs          = nvme_ns_attrs,
1268         .is_visible     = nvme_attrs_are_visible,
1269 };
1270
1271 #define nvme_show_str_function(field)                                           \
1272 static ssize_t  field##_show(struct device *dev,                                \
1273                             struct device_attribute *attr, char *buf)           \
1274 {                                                                               \
1275         struct nvme_ctrl *ctrl = dev_get_drvdata(dev);                          \
1276         return sprintf(buf, "%.*s\n", (int)sizeof(ctrl->field), ctrl->field);   \
1277 }                                                                               \
1278 static DEVICE_ATTR(field, S_IRUGO, field##_show, NULL);
1279
1280 #define nvme_show_int_function(field)                                           \
1281 static ssize_t  field##_show(struct device *dev,                                \
1282                             struct device_attribute *attr, char *buf)           \
1283 {                                                                               \
1284         struct nvme_ctrl *ctrl = dev_get_drvdata(dev);                          \
1285         return sprintf(buf, "%d\n", ctrl->field);       \
1286 }                                                                               \
1287 static DEVICE_ATTR(field, S_IRUGO, field##_show, NULL);
1288
1289 nvme_show_str_function(model);
1290 nvme_show_str_function(serial);
1291 nvme_show_str_function(firmware_rev);
1292 nvme_show_int_function(cntlid);
1293
1294 static struct attribute *nvme_dev_attrs[] = {
1295         &dev_attr_reset_controller.attr,
1296         &dev_attr_model.attr,
1297         &dev_attr_serial.attr,
1298         &dev_attr_firmware_rev.attr,
1299         &dev_attr_cntlid.attr,
1300         NULL
1301 };
1302
1303 static struct attribute_group nvme_dev_attrs_group = {
1304         .attrs = nvme_dev_attrs,
1305 };
1306
1307 static const struct attribute_group *nvme_dev_attr_groups[] = {
1308         &nvme_dev_attrs_group,
1309         NULL,
1310 };
1311
1312 static int ns_cmp(void *priv, struct list_head *a, struct list_head *b)
1313 {
1314         struct nvme_ns *nsa = container_of(a, struct nvme_ns, list);
1315         struct nvme_ns *nsb = container_of(b, struct nvme_ns, list);
1316
1317         return nsa->ns_id - nsb->ns_id;
1318 }
1319
1320 static struct nvme_ns *nvme_find_ns(struct nvme_ctrl *ctrl, unsigned nsid)
1321 {
1322         struct nvme_ns *ns;
1323
1324         lockdep_assert_held(&ctrl->namespaces_mutex);
1325
1326         list_for_each_entry(ns, &ctrl->namespaces, list) {
1327                 if (ns->ns_id == nsid)
1328                         return ns;
1329                 if (ns->ns_id > nsid)
1330                         break;
1331         }
1332         return NULL;
1333 }
1334
1335 static void nvme_alloc_ns(struct nvme_ctrl *ctrl, unsigned nsid)
1336 {
1337         struct nvme_ns *ns;
1338         struct gendisk *disk;
1339         int node = dev_to_node(ctrl->dev);
1340
1341         lockdep_assert_held(&ctrl->namespaces_mutex);
1342
1343         ns = kzalloc_node(sizeof(*ns), GFP_KERNEL, node);
1344         if (!ns)
1345                 return;
1346
1347         ns->instance = ida_simple_get(&ctrl->ns_ida, 1, 0, GFP_KERNEL);
1348         if (ns->instance < 0)
1349                 goto out_free_ns;
1350
1351         ns->queue = blk_mq_init_queue(ctrl->tagset);
1352         if (IS_ERR(ns->queue))
1353                 goto out_release_instance;
1354         queue_flag_set_unlocked(QUEUE_FLAG_NONROT, ns->queue);
1355         ns->queue->queuedata = ns;
1356         ns->ctrl = ctrl;
1357
1358         disk = alloc_disk_node(0, node);
1359         if (!disk)
1360                 goto out_free_queue;
1361
1362         kref_init(&ns->kref);
1363         ns->ns_id = nsid;
1364         ns->disk = disk;
1365         ns->lba_shift = 9; /* set to a default value for 512 until disk is validated */
1366
1367
1368         blk_queue_logical_block_size(ns->queue, 1 << ns->lba_shift);
1369         nvme_set_queue_limits(ctrl, ns->queue);
1370
1371         disk->major = nvme_major;
1372         disk->first_minor = 0;
1373         disk->fops = &nvme_fops;
1374         disk->private_data = ns;
1375         disk->queue = ns->queue;
1376         disk->driverfs_dev = ctrl->device;
1377         disk->flags = GENHD_FL_EXT_DEVT;
1378         sprintf(disk->disk_name, "nvme%dn%d", ctrl->instance, ns->instance);
1379
1380         if (nvme_revalidate_disk(ns->disk))
1381                 goto out_free_disk;
1382
1383         list_add_tail(&ns->list, &ctrl->namespaces);
1384         kref_get(&ctrl->kref);
1385         if (ns->type == NVME_NS_LIGHTNVM)
1386                 return;
1387
1388         add_disk(ns->disk);
1389         if (sysfs_create_group(&disk_to_dev(ns->disk)->kobj,
1390                                         &nvme_ns_attr_group))
1391                 pr_warn("%s: failed to create sysfs group for identification\n",
1392                         ns->disk->disk_name);
1393         return;
1394  out_free_disk:
1395         kfree(disk);
1396  out_free_queue:
1397         blk_cleanup_queue(ns->queue);
1398  out_release_instance:
1399         ida_simple_remove(&ctrl->ns_ida, ns->instance);
1400  out_free_ns:
1401         kfree(ns);
1402 }
1403
1404 static void nvme_ns_remove(struct nvme_ns *ns)
1405 {
1406         if (test_and_set_bit(NVME_NS_REMOVING, &ns->flags))
1407                 return;
1408
1409         if (ns->disk->flags & GENHD_FL_UP) {
1410                 if (blk_get_integrity(ns->disk))
1411                         blk_integrity_unregister(ns->disk);
1412                 sysfs_remove_group(&disk_to_dev(ns->disk)->kobj,
1413                                         &nvme_ns_attr_group);
1414                 del_gendisk(ns->disk);
1415                 blk_mq_abort_requeue_list(ns->queue);
1416                 blk_cleanup_queue(ns->queue);
1417         }
1418         mutex_lock(&ns->ctrl->namespaces_mutex);
1419         list_del_init(&ns->list);
1420         mutex_unlock(&ns->ctrl->namespaces_mutex);
1421         nvme_put_ns(ns);
1422 }
1423
1424 static void nvme_validate_ns(struct nvme_ctrl *ctrl, unsigned nsid)
1425 {
1426         struct nvme_ns *ns;
1427
1428         ns = nvme_find_ns(ctrl, nsid);
1429         if (ns) {
1430                 if (revalidate_disk(ns->disk))
1431                         nvme_ns_remove(ns);
1432         } else
1433                 nvme_alloc_ns(ctrl, nsid);
1434 }
1435
1436 static int nvme_scan_ns_list(struct nvme_ctrl *ctrl, unsigned nn)
1437 {
1438         struct nvme_ns *ns;
1439         __le32 *ns_list;
1440         unsigned i, j, nsid, prev = 0, num_lists = DIV_ROUND_UP(nn, 1024);
1441         int ret = 0;
1442
1443         ns_list = kzalloc(0x1000, GFP_KERNEL);
1444         if (!ns_list)
1445                 return -ENOMEM;
1446
1447         for (i = 0; i < num_lists; i++) {
1448                 ret = nvme_identify_ns_list(ctrl, prev, ns_list);
1449                 if (ret)
1450                         goto out;
1451
1452                 for (j = 0; j < min(nn, 1024U); j++) {
1453                         nsid = le32_to_cpu(ns_list[j]);
1454                         if (!nsid)
1455                                 goto out;
1456
1457                         nvme_validate_ns(ctrl, nsid);
1458
1459                         while (++prev < nsid) {
1460                                 ns = nvme_find_ns(ctrl, prev);
1461                                 if (ns)
1462                                         nvme_ns_remove(ns);
1463                         }
1464                 }
1465                 nn -= j;
1466         }
1467  out:
1468         kfree(ns_list);
1469         return ret;
1470 }
1471
1472 static void __nvme_scan_namespaces(struct nvme_ctrl *ctrl, unsigned nn)
1473 {
1474         struct nvme_ns *ns, *next;
1475         unsigned i;
1476
1477         lockdep_assert_held(&ctrl->namespaces_mutex);
1478
1479         for (i = 1; i <= nn; i++)
1480                 nvme_validate_ns(ctrl, i);
1481
1482         list_for_each_entry_safe(ns, next, &ctrl->namespaces, list) {
1483                 if (ns->ns_id > nn)
1484                         nvme_ns_remove(ns);
1485         }
1486 }
1487
1488 void nvme_scan_namespaces(struct nvme_ctrl *ctrl)
1489 {
1490         struct nvme_id_ctrl *id;
1491         unsigned nn;
1492
1493         if (nvme_identify_ctrl(ctrl, &id))
1494                 return;
1495
1496         mutex_lock(&ctrl->namespaces_mutex);
1497         nn = le32_to_cpu(id->nn);
1498         if (ctrl->vs >= NVME_VS(1, 1) &&
1499             !(ctrl->quirks & NVME_QUIRK_IDENTIFY_CNS)) {
1500                 if (!nvme_scan_ns_list(ctrl, nn))
1501                         goto done;
1502         }
1503         __nvme_scan_namespaces(ctrl, le32_to_cpup(&id->nn));
1504  done:
1505         list_sort(NULL, &ctrl->namespaces, ns_cmp);
1506         mutex_unlock(&ctrl->namespaces_mutex);
1507         kfree(id);
1508 }
1509 EXPORT_SYMBOL_GPL(nvme_scan_namespaces);
1510
1511 void nvme_remove_namespaces(struct nvme_ctrl *ctrl)
1512 {
1513         struct nvme_ns *ns, *next;
1514
1515         list_for_each_entry_safe(ns, next, &ctrl->namespaces, list)
1516                 nvme_ns_remove(ns);
1517 }
1518 EXPORT_SYMBOL_GPL(nvme_remove_namespaces);
1519
1520 static DEFINE_IDA(nvme_instance_ida);
1521
1522 static int nvme_set_instance(struct nvme_ctrl *ctrl)
1523 {
1524         int instance, error;
1525
1526         do {
1527                 if (!ida_pre_get(&nvme_instance_ida, GFP_KERNEL))
1528                         return -ENODEV;
1529
1530                 spin_lock(&dev_list_lock);
1531                 error = ida_get_new(&nvme_instance_ida, &instance);
1532                 spin_unlock(&dev_list_lock);
1533         } while (error == -EAGAIN);
1534
1535         if (error)
1536                 return -ENODEV;
1537
1538         ctrl->instance = instance;
1539         return 0;
1540 }
1541
1542 static void nvme_release_instance(struct nvme_ctrl *ctrl)
1543 {
1544         spin_lock(&dev_list_lock);
1545         ida_remove(&nvme_instance_ida, ctrl->instance);
1546         spin_unlock(&dev_list_lock);
1547 }
1548
1549 void nvme_uninit_ctrl(struct nvme_ctrl *ctrl)
1550 {
1551         device_destroy(nvme_class, MKDEV(nvme_char_major, ctrl->instance));
1552
1553         spin_lock(&dev_list_lock);
1554         list_del(&ctrl->node);
1555         spin_unlock(&dev_list_lock);
1556 }
1557 EXPORT_SYMBOL_GPL(nvme_uninit_ctrl);
1558
1559 static void nvme_free_ctrl(struct kref *kref)
1560 {
1561         struct nvme_ctrl *ctrl = container_of(kref, struct nvme_ctrl, kref);
1562
1563         put_device(ctrl->device);
1564         nvme_release_instance(ctrl);
1565         ida_destroy(&ctrl->ns_ida);
1566
1567         ctrl->ops->free_ctrl(ctrl);
1568 }
1569
1570 void nvme_put_ctrl(struct nvme_ctrl *ctrl)
1571 {
1572         kref_put(&ctrl->kref, nvme_free_ctrl);
1573 }
1574 EXPORT_SYMBOL_GPL(nvme_put_ctrl);
1575
1576 /*
1577  * Initialize a NVMe controller structures.  This needs to be called during
1578  * earliest initialization so that we have the initialized structured around
1579  * during probing.
1580  */
1581 int nvme_init_ctrl(struct nvme_ctrl *ctrl, struct device *dev,
1582                 const struct nvme_ctrl_ops *ops, unsigned long quirks)
1583 {
1584         int ret;
1585
1586         INIT_LIST_HEAD(&ctrl->namespaces);
1587         mutex_init(&ctrl->namespaces_mutex);
1588         kref_init(&ctrl->kref);
1589         ctrl->dev = dev;
1590         ctrl->ops = ops;
1591         ctrl->quirks = quirks;
1592
1593         ret = nvme_set_instance(ctrl);
1594         if (ret)
1595                 goto out;
1596
1597         ctrl->device = device_create_with_groups(nvme_class, ctrl->dev,
1598                                 MKDEV(nvme_char_major, ctrl->instance),
1599                                 ctrl, nvme_dev_attr_groups,
1600                                 "nvme%d", ctrl->instance);
1601         if (IS_ERR(ctrl->device)) {
1602                 ret = PTR_ERR(ctrl->device);
1603                 goto out_release_instance;
1604         }
1605         get_device(ctrl->device);
1606         ida_init(&ctrl->ns_ida);
1607
1608         spin_lock(&dev_list_lock);
1609         list_add_tail(&ctrl->node, &nvme_ctrl_list);
1610         spin_unlock(&dev_list_lock);
1611
1612         return 0;
1613 out_release_instance:
1614         nvme_release_instance(ctrl);
1615 out:
1616         return ret;
1617 }
1618 EXPORT_SYMBOL_GPL(nvme_init_ctrl);
1619
1620 /**
1621  * nvme_kill_queues(): Ends all namespace queues
1622  * @ctrl: the dead controller that needs to end
1623  *
1624  * Call this function when the driver determines it is unable to get the
1625  * controller in a state capable of servicing IO.
1626  */
1627 void nvme_kill_queues(struct nvme_ctrl *ctrl)
1628 {
1629         struct nvme_ns *ns;
1630
1631         mutex_lock(&ctrl->namespaces_mutex);
1632         list_for_each_entry(ns, &ctrl->namespaces, list) {
1633                 if (!kref_get_unless_zero(&ns->kref))
1634                         continue;
1635
1636                 /*
1637                  * Revalidating a dead namespace sets capacity to 0. This will
1638                  * end buffered writers dirtying pages that can't be synced.
1639                  */
1640                 if (!test_and_set_bit(NVME_NS_DEAD, &ns->flags))
1641                         revalidate_disk(ns->disk);
1642
1643                 blk_set_queue_dying(ns->queue);
1644                 blk_mq_abort_requeue_list(ns->queue);
1645                 blk_mq_start_stopped_hw_queues(ns->queue, true);
1646
1647                 nvme_put_ns(ns);
1648         }
1649         mutex_unlock(&ctrl->namespaces_mutex);
1650 }
1651 EXPORT_SYMBOL_GPL(nvme_kill_queues);
1652
1653 void nvme_stop_queues(struct nvme_ctrl *ctrl)
1654 {
1655         struct nvme_ns *ns;
1656
1657         mutex_lock(&ctrl->namespaces_mutex);
1658         list_for_each_entry(ns, &ctrl->namespaces, list) {
1659                 spin_lock_irq(ns->queue->queue_lock);
1660                 queue_flag_set(QUEUE_FLAG_STOPPED, ns->queue);
1661                 spin_unlock_irq(ns->queue->queue_lock);
1662
1663                 blk_mq_cancel_requeue_work(ns->queue);
1664                 blk_mq_stop_hw_queues(ns->queue);
1665         }
1666         mutex_unlock(&ctrl->namespaces_mutex);
1667 }
1668 EXPORT_SYMBOL_GPL(nvme_stop_queues);
1669
1670 void nvme_start_queues(struct nvme_ctrl *ctrl)
1671 {
1672         struct nvme_ns *ns;
1673
1674         mutex_lock(&ctrl->namespaces_mutex);
1675         list_for_each_entry(ns, &ctrl->namespaces, list) {
1676                 queue_flag_clear_unlocked(QUEUE_FLAG_STOPPED, ns->queue);
1677                 blk_mq_start_stopped_hw_queues(ns->queue, true);
1678                 blk_mq_kick_requeue_list(ns->queue);
1679         }
1680         mutex_unlock(&ctrl->namespaces_mutex);
1681 }
1682 EXPORT_SYMBOL_GPL(nvme_start_queues);
1683
1684 int __init nvme_core_init(void)
1685 {
1686         int result;
1687
1688         result = register_blkdev(nvme_major, "nvme");
1689         if (result < 0)
1690                 return result;
1691         else if (result > 0)
1692                 nvme_major = result;
1693
1694         result = __register_chrdev(nvme_char_major, 0, NVME_MINORS, "nvme",
1695                                                         &nvme_dev_fops);
1696         if (result < 0)
1697                 goto unregister_blkdev;
1698         else if (result > 0)
1699                 nvme_char_major = result;
1700
1701         nvme_class = class_create(THIS_MODULE, "nvme");
1702         if (IS_ERR(nvme_class)) {
1703                 result = PTR_ERR(nvme_class);
1704                 goto unregister_chrdev;
1705         }
1706
1707         return 0;
1708
1709  unregister_chrdev:
1710         __unregister_chrdev(nvme_char_major, 0, NVME_MINORS, "nvme");
1711  unregister_blkdev:
1712         unregister_blkdev(nvme_major, "nvme");
1713         return result;
1714 }
1715
1716 void nvme_core_exit(void)
1717 {
1718         unregister_blkdev(nvme_major, "nvme");
1719         class_destroy(nvme_class);
1720         __unregister_chrdev(nvme_char_major, 0, NVME_MINORS, "nvme");
1721 }
1722
1723 MODULE_LICENSE("GPL");
1724 MODULE_VERSION("1.0");
1725 module_init(nvme_core_init);
1726 module_exit(nvme_core_exit);