Merge branches 'pm-cpuidle', 'pm-opp' and 'pm-avs'
[cascardo/linux.git] / drivers / nvme / host / core.c
1 /*
2  * NVM Express device driver
3  * Copyright (c) 2011-2014, Intel Corporation.
4  *
5  * This program is free software; you can redistribute it and/or modify it
6  * under the terms and conditions of the GNU General Public License,
7  * version 2, as published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope it will be useful, but WITHOUT
10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
12  * more details.
13  */
14
15 #include <linux/blkdev.h>
16 #include <linux/blk-mq.h>
17 #include <linux/delay.h>
18 #include <linux/errno.h>
19 #include <linux/hdreg.h>
20 #include <linux/kernel.h>
21 #include <linux/module.h>
22 #include <linux/list_sort.h>
23 #include <linux/slab.h>
24 #include <linux/types.h>
25 #include <linux/pr.h>
26 #include <linux/ptrace.h>
27 #include <linux/nvme_ioctl.h>
28 #include <linux/t10-pi.h>
29 #include <scsi/sg.h>
30 #include <asm/unaligned.h>
31
32 #include "nvme.h"
33 #include "fabrics.h"
34
35 #define NVME_MINORS             (1U << MINORBITS)
36
37 unsigned char admin_timeout = 60;
38 module_param(admin_timeout, byte, 0644);
39 MODULE_PARM_DESC(admin_timeout, "timeout in seconds for admin commands");
40 EXPORT_SYMBOL_GPL(admin_timeout);
41
42 unsigned char nvme_io_timeout = 30;
43 module_param_named(io_timeout, nvme_io_timeout, byte, 0644);
44 MODULE_PARM_DESC(io_timeout, "timeout in seconds for I/O");
45 EXPORT_SYMBOL_GPL(nvme_io_timeout);
46
47 unsigned char shutdown_timeout = 5;
48 module_param(shutdown_timeout, byte, 0644);
49 MODULE_PARM_DESC(shutdown_timeout, "timeout in seconds for controller shutdown");
50
51 unsigned int nvme_max_retries = 5;
52 module_param_named(max_retries, nvme_max_retries, uint, 0644);
53 MODULE_PARM_DESC(max_retries, "max number of retries a command may have");
54 EXPORT_SYMBOL_GPL(nvme_max_retries);
55
56 static int nvme_char_major;
57 module_param(nvme_char_major, int, 0);
58
59 static LIST_HEAD(nvme_ctrl_list);
60 static DEFINE_SPINLOCK(dev_list_lock);
61
62 static struct class *nvme_class;
63
64 void nvme_cancel_request(struct request *req, void *data, bool reserved)
65 {
66         int status;
67
68         if (!blk_mq_request_started(req))
69                 return;
70
71         dev_dbg_ratelimited(((struct nvme_ctrl *) data)->device,
72                                 "Cancelling I/O %d", req->tag);
73
74         status = NVME_SC_ABORT_REQ;
75         if (blk_queue_dying(req->q))
76                 status |= NVME_SC_DNR;
77         blk_mq_complete_request(req, status);
78 }
79 EXPORT_SYMBOL_GPL(nvme_cancel_request);
80
81 bool nvme_change_ctrl_state(struct nvme_ctrl *ctrl,
82                 enum nvme_ctrl_state new_state)
83 {
84         enum nvme_ctrl_state old_state;
85         bool changed = false;
86
87         spin_lock_irq(&ctrl->lock);
88
89         old_state = ctrl->state;
90         switch (new_state) {
91         case NVME_CTRL_LIVE:
92                 switch (old_state) {
93                 case NVME_CTRL_NEW:
94                 case NVME_CTRL_RESETTING:
95                 case NVME_CTRL_RECONNECTING:
96                         changed = true;
97                         /* FALLTHRU */
98                 default:
99                         break;
100                 }
101                 break;
102         case NVME_CTRL_RESETTING:
103                 switch (old_state) {
104                 case NVME_CTRL_NEW:
105                 case NVME_CTRL_LIVE:
106                 case NVME_CTRL_RECONNECTING:
107                         changed = true;
108                         /* FALLTHRU */
109                 default:
110                         break;
111                 }
112                 break;
113         case NVME_CTRL_RECONNECTING:
114                 switch (old_state) {
115                 case NVME_CTRL_LIVE:
116                         changed = true;
117                         /* FALLTHRU */
118                 default:
119                         break;
120                 }
121                 break;
122         case NVME_CTRL_DELETING:
123                 switch (old_state) {
124                 case NVME_CTRL_LIVE:
125                 case NVME_CTRL_RESETTING:
126                 case NVME_CTRL_RECONNECTING:
127                         changed = true;
128                         /* FALLTHRU */
129                 default:
130                         break;
131                 }
132                 break;
133         case NVME_CTRL_DEAD:
134                 switch (old_state) {
135                 case NVME_CTRL_DELETING:
136                         changed = true;
137                         /* FALLTHRU */
138                 default:
139                         break;
140                 }
141                 break;
142         default:
143                 break;
144         }
145
146         if (changed)
147                 ctrl->state = new_state;
148
149         spin_unlock_irq(&ctrl->lock);
150
151         return changed;
152 }
153 EXPORT_SYMBOL_GPL(nvme_change_ctrl_state);
154
155 static void nvme_free_ns(struct kref *kref)
156 {
157         struct nvme_ns *ns = container_of(kref, struct nvme_ns, kref);
158
159         if (ns->type == NVME_NS_LIGHTNVM)
160                 nvme_nvm_unregister(ns->queue, ns->disk->disk_name);
161
162         spin_lock(&dev_list_lock);
163         ns->disk->private_data = NULL;
164         spin_unlock(&dev_list_lock);
165
166         put_disk(ns->disk);
167         ida_simple_remove(&ns->ctrl->ns_ida, ns->instance);
168         nvme_put_ctrl(ns->ctrl);
169         kfree(ns);
170 }
171
172 static void nvme_put_ns(struct nvme_ns *ns)
173 {
174         kref_put(&ns->kref, nvme_free_ns);
175 }
176
177 static struct nvme_ns *nvme_get_ns_from_disk(struct gendisk *disk)
178 {
179         struct nvme_ns *ns;
180
181         spin_lock(&dev_list_lock);
182         ns = disk->private_data;
183         if (ns) {
184                 if (!kref_get_unless_zero(&ns->kref))
185                         goto fail;
186                 if (!try_module_get(ns->ctrl->ops->module))
187                         goto fail_put_ns;
188         }
189         spin_unlock(&dev_list_lock);
190
191         return ns;
192
193 fail_put_ns:
194         kref_put(&ns->kref, nvme_free_ns);
195 fail:
196         spin_unlock(&dev_list_lock);
197         return NULL;
198 }
199
200 void nvme_requeue_req(struct request *req)
201 {
202         unsigned long flags;
203
204         blk_mq_requeue_request(req);
205         spin_lock_irqsave(req->q->queue_lock, flags);
206         if (!blk_queue_stopped(req->q))
207                 blk_mq_kick_requeue_list(req->q);
208         spin_unlock_irqrestore(req->q->queue_lock, flags);
209 }
210 EXPORT_SYMBOL_GPL(nvme_requeue_req);
211
212 struct request *nvme_alloc_request(struct request_queue *q,
213                 struct nvme_command *cmd, unsigned int flags, int qid)
214 {
215         struct request *req;
216
217         if (qid == NVME_QID_ANY) {
218                 req = blk_mq_alloc_request(q, nvme_is_write(cmd), flags);
219         } else {
220                 req = blk_mq_alloc_request_hctx(q, nvme_is_write(cmd), flags,
221                                 qid ? qid - 1 : 0);
222         }
223         if (IS_ERR(req))
224                 return req;
225
226         req->cmd_type = REQ_TYPE_DRV_PRIV;
227         req->cmd_flags |= REQ_FAILFAST_DRIVER;
228         req->cmd = (unsigned char *)cmd;
229         req->cmd_len = sizeof(struct nvme_command);
230
231         return req;
232 }
233 EXPORT_SYMBOL_GPL(nvme_alloc_request);
234
235 static inline void nvme_setup_flush(struct nvme_ns *ns,
236                 struct nvme_command *cmnd)
237 {
238         memset(cmnd, 0, sizeof(*cmnd));
239         cmnd->common.opcode = nvme_cmd_flush;
240         cmnd->common.nsid = cpu_to_le32(ns->ns_id);
241 }
242
243 static inline int nvme_setup_discard(struct nvme_ns *ns, struct request *req,
244                 struct nvme_command *cmnd)
245 {
246         struct nvme_dsm_range *range;
247         struct page *page;
248         int offset;
249         unsigned int nr_bytes = blk_rq_bytes(req);
250
251         range = kmalloc(sizeof(*range), GFP_ATOMIC);
252         if (!range)
253                 return BLK_MQ_RQ_QUEUE_BUSY;
254
255         range->cattr = cpu_to_le32(0);
256         range->nlb = cpu_to_le32(nr_bytes >> ns->lba_shift);
257         range->slba = cpu_to_le64(nvme_block_nr(ns, blk_rq_pos(req)));
258
259         memset(cmnd, 0, sizeof(*cmnd));
260         cmnd->dsm.opcode = nvme_cmd_dsm;
261         cmnd->dsm.nsid = cpu_to_le32(ns->ns_id);
262         cmnd->dsm.nr = 0;
263         cmnd->dsm.attributes = cpu_to_le32(NVME_DSMGMT_AD);
264
265         req->completion_data = range;
266         page = virt_to_page(range);
267         offset = offset_in_page(range);
268         blk_add_request_payload(req, page, offset, sizeof(*range));
269
270         /*
271          * we set __data_len back to the size of the area to be discarded
272          * on disk. This allows us to report completion on the full amount
273          * of blocks described by the request.
274          */
275         req->__data_len = nr_bytes;
276
277         return 0;
278 }
279
280 static inline void nvme_setup_rw(struct nvme_ns *ns, struct request *req,
281                 struct nvme_command *cmnd)
282 {
283         u16 control = 0;
284         u32 dsmgmt = 0;
285
286         if (req->cmd_flags & REQ_FUA)
287                 control |= NVME_RW_FUA;
288         if (req->cmd_flags & (REQ_FAILFAST_DEV | REQ_RAHEAD))
289                 control |= NVME_RW_LR;
290
291         if (req->cmd_flags & REQ_RAHEAD)
292                 dsmgmt |= NVME_RW_DSM_FREQ_PREFETCH;
293
294         memset(cmnd, 0, sizeof(*cmnd));
295         cmnd->rw.opcode = (rq_data_dir(req) ? nvme_cmd_write : nvme_cmd_read);
296         cmnd->rw.command_id = req->tag;
297         cmnd->rw.nsid = cpu_to_le32(ns->ns_id);
298         cmnd->rw.slba = cpu_to_le64(nvme_block_nr(ns, blk_rq_pos(req)));
299         cmnd->rw.length = cpu_to_le16((blk_rq_bytes(req) >> ns->lba_shift) - 1);
300
301         if (ns->ms) {
302                 switch (ns->pi_type) {
303                 case NVME_NS_DPS_PI_TYPE3:
304                         control |= NVME_RW_PRINFO_PRCHK_GUARD;
305                         break;
306                 case NVME_NS_DPS_PI_TYPE1:
307                 case NVME_NS_DPS_PI_TYPE2:
308                         control |= NVME_RW_PRINFO_PRCHK_GUARD |
309                                         NVME_RW_PRINFO_PRCHK_REF;
310                         cmnd->rw.reftag = cpu_to_le32(
311                                         nvme_block_nr(ns, blk_rq_pos(req)));
312                         break;
313                 }
314                 if (!blk_integrity_rq(req))
315                         control |= NVME_RW_PRINFO_PRACT;
316         }
317
318         cmnd->rw.control = cpu_to_le16(control);
319         cmnd->rw.dsmgmt = cpu_to_le32(dsmgmt);
320 }
321
322 int nvme_setup_cmd(struct nvme_ns *ns, struct request *req,
323                 struct nvme_command *cmd)
324 {
325         int ret = 0;
326
327         if (req->cmd_type == REQ_TYPE_DRV_PRIV)
328                 memcpy(cmd, req->cmd, sizeof(*cmd));
329         else if (req_op(req) == REQ_OP_FLUSH)
330                 nvme_setup_flush(ns, cmd);
331         else if (req_op(req) == REQ_OP_DISCARD)
332                 ret = nvme_setup_discard(ns, req, cmd);
333         else
334                 nvme_setup_rw(ns, req, cmd);
335
336         return ret;
337 }
338 EXPORT_SYMBOL_GPL(nvme_setup_cmd);
339
340 /*
341  * Returns 0 on success.  If the result is negative, it's a Linux error code;
342  * if the result is positive, it's an NVM Express status code
343  */
344 int __nvme_submit_sync_cmd(struct request_queue *q, struct nvme_command *cmd,
345                 struct nvme_completion *cqe, void *buffer, unsigned bufflen,
346                 unsigned timeout, int qid, int at_head, int flags)
347 {
348         struct request *req;
349         int ret;
350
351         req = nvme_alloc_request(q, cmd, flags, qid);
352         if (IS_ERR(req))
353                 return PTR_ERR(req);
354
355         req->timeout = timeout ? timeout : ADMIN_TIMEOUT;
356         req->special = cqe;
357
358         if (buffer && bufflen) {
359                 ret = blk_rq_map_kern(q, req, buffer, bufflen, GFP_KERNEL);
360                 if (ret)
361                         goto out;
362         }
363
364         blk_execute_rq(req->q, NULL, req, at_head);
365         ret = req->errors;
366  out:
367         blk_mq_free_request(req);
368         return ret;
369 }
370 EXPORT_SYMBOL_GPL(__nvme_submit_sync_cmd);
371
372 int nvme_submit_sync_cmd(struct request_queue *q, struct nvme_command *cmd,
373                 void *buffer, unsigned bufflen)
374 {
375         return __nvme_submit_sync_cmd(q, cmd, NULL, buffer, bufflen, 0,
376                         NVME_QID_ANY, 0, 0);
377 }
378 EXPORT_SYMBOL_GPL(nvme_submit_sync_cmd);
379
380 int __nvme_submit_user_cmd(struct request_queue *q, struct nvme_command *cmd,
381                 void __user *ubuffer, unsigned bufflen,
382                 void __user *meta_buffer, unsigned meta_len, u32 meta_seed,
383                 u32 *result, unsigned timeout)
384 {
385         bool write = nvme_is_write(cmd);
386         struct nvme_completion cqe;
387         struct nvme_ns *ns = q->queuedata;
388         struct gendisk *disk = ns ? ns->disk : NULL;
389         struct request *req;
390         struct bio *bio = NULL;
391         void *meta = NULL;
392         int ret;
393
394         req = nvme_alloc_request(q, cmd, 0, NVME_QID_ANY);
395         if (IS_ERR(req))
396                 return PTR_ERR(req);
397
398         req->timeout = timeout ? timeout : ADMIN_TIMEOUT;
399         req->special = &cqe;
400
401         if (ubuffer && bufflen) {
402                 ret = blk_rq_map_user(q, req, NULL, ubuffer, bufflen,
403                                 GFP_KERNEL);
404                 if (ret)
405                         goto out;
406                 bio = req->bio;
407
408                 if (!disk)
409                         goto submit;
410                 bio->bi_bdev = bdget_disk(disk, 0);
411                 if (!bio->bi_bdev) {
412                         ret = -ENODEV;
413                         goto out_unmap;
414                 }
415
416                 if (meta_buffer && meta_len) {
417                         struct bio_integrity_payload *bip;
418
419                         meta = kmalloc(meta_len, GFP_KERNEL);
420                         if (!meta) {
421                                 ret = -ENOMEM;
422                                 goto out_unmap;
423                         }
424
425                         if (write) {
426                                 if (copy_from_user(meta, meta_buffer,
427                                                 meta_len)) {
428                                         ret = -EFAULT;
429                                         goto out_free_meta;
430                                 }
431                         }
432
433                         bip = bio_integrity_alloc(bio, GFP_KERNEL, 1);
434                         if (IS_ERR(bip)) {
435                                 ret = PTR_ERR(bip);
436                                 goto out_free_meta;
437                         }
438
439                         bip->bip_iter.bi_size = meta_len;
440                         bip->bip_iter.bi_sector = meta_seed;
441
442                         ret = bio_integrity_add_page(bio, virt_to_page(meta),
443                                         meta_len, offset_in_page(meta));
444                         if (ret != meta_len) {
445                                 ret = -ENOMEM;
446                                 goto out_free_meta;
447                         }
448                 }
449         }
450  submit:
451         blk_execute_rq(req->q, disk, req, 0);
452         ret = req->errors;
453         if (result)
454                 *result = le32_to_cpu(cqe.result);
455         if (meta && !ret && !write) {
456                 if (copy_to_user(meta_buffer, meta, meta_len))
457                         ret = -EFAULT;
458         }
459  out_free_meta:
460         kfree(meta);
461  out_unmap:
462         if (bio) {
463                 if (disk && bio->bi_bdev)
464                         bdput(bio->bi_bdev);
465                 blk_rq_unmap_user(bio);
466         }
467  out:
468         blk_mq_free_request(req);
469         return ret;
470 }
471
472 int nvme_submit_user_cmd(struct request_queue *q, struct nvme_command *cmd,
473                 void __user *ubuffer, unsigned bufflen, u32 *result,
474                 unsigned timeout)
475 {
476         return __nvme_submit_user_cmd(q, cmd, ubuffer, bufflen, NULL, 0, 0,
477                         result, timeout);
478 }
479
480 static void nvme_keep_alive_end_io(struct request *rq, int error)
481 {
482         struct nvme_ctrl *ctrl = rq->end_io_data;
483
484         blk_mq_free_request(rq);
485
486         if (error) {
487                 dev_err(ctrl->device,
488                         "failed nvme_keep_alive_end_io error=%d\n", error);
489                 return;
490         }
491
492         schedule_delayed_work(&ctrl->ka_work, ctrl->kato * HZ);
493 }
494
495 static int nvme_keep_alive(struct nvme_ctrl *ctrl)
496 {
497         struct nvme_command c;
498         struct request *rq;
499
500         memset(&c, 0, sizeof(c));
501         c.common.opcode = nvme_admin_keep_alive;
502
503         rq = nvme_alloc_request(ctrl->admin_q, &c, BLK_MQ_REQ_RESERVED,
504                         NVME_QID_ANY);
505         if (IS_ERR(rq))
506                 return PTR_ERR(rq);
507
508         rq->timeout = ctrl->kato * HZ;
509         rq->end_io_data = ctrl;
510
511         blk_execute_rq_nowait(rq->q, NULL, rq, 0, nvme_keep_alive_end_io);
512
513         return 0;
514 }
515
516 static void nvme_keep_alive_work(struct work_struct *work)
517 {
518         struct nvme_ctrl *ctrl = container_of(to_delayed_work(work),
519                         struct nvme_ctrl, ka_work);
520
521         if (nvme_keep_alive(ctrl)) {
522                 /* allocation failure, reset the controller */
523                 dev_err(ctrl->device, "keep-alive failed\n");
524                 ctrl->ops->reset_ctrl(ctrl);
525                 return;
526         }
527 }
528
529 void nvme_start_keep_alive(struct nvme_ctrl *ctrl)
530 {
531         if (unlikely(ctrl->kato == 0))
532                 return;
533
534         INIT_DELAYED_WORK(&ctrl->ka_work, nvme_keep_alive_work);
535         schedule_delayed_work(&ctrl->ka_work, ctrl->kato * HZ);
536 }
537 EXPORT_SYMBOL_GPL(nvme_start_keep_alive);
538
539 void nvme_stop_keep_alive(struct nvme_ctrl *ctrl)
540 {
541         if (unlikely(ctrl->kato == 0))
542                 return;
543
544         cancel_delayed_work_sync(&ctrl->ka_work);
545 }
546 EXPORT_SYMBOL_GPL(nvme_stop_keep_alive);
547
548 int nvme_identify_ctrl(struct nvme_ctrl *dev, struct nvme_id_ctrl **id)
549 {
550         struct nvme_command c = { };
551         int error;
552
553         /* gcc-4.4.4 (at least) has issues with initializers and anon unions */
554         c.identify.opcode = nvme_admin_identify;
555         c.identify.cns = cpu_to_le32(1);
556
557         *id = kmalloc(sizeof(struct nvme_id_ctrl), GFP_KERNEL);
558         if (!*id)
559                 return -ENOMEM;
560
561         error = nvme_submit_sync_cmd(dev->admin_q, &c, *id,
562                         sizeof(struct nvme_id_ctrl));
563         if (error)
564                 kfree(*id);
565         return error;
566 }
567
568 static int nvme_identify_ns_list(struct nvme_ctrl *dev, unsigned nsid, __le32 *ns_list)
569 {
570         struct nvme_command c = { };
571
572         c.identify.opcode = nvme_admin_identify;
573         c.identify.cns = cpu_to_le32(2);
574         c.identify.nsid = cpu_to_le32(nsid);
575         return nvme_submit_sync_cmd(dev->admin_q, &c, ns_list, 0x1000);
576 }
577
578 int nvme_identify_ns(struct nvme_ctrl *dev, unsigned nsid,
579                 struct nvme_id_ns **id)
580 {
581         struct nvme_command c = { };
582         int error;
583
584         /* gcc-4.4.4 (at least) has issues with initializers and anon unions */
585         c.identify.opcode = nvme_admin_identify,
586         c.identify.nsid = cpu_to_le32(nsid),
587
588         *id = kmalloc(sizeof(struct nvme_id_ns), GFP_KERNEL);
589         if (!*id)
590                 return -ENOMEM;
591
592         error = nvme_submit_sync_cmd(dev->admin_q, &c, *id,
593                         sizeof(struct nvme_id_ns));
594         if (error)
595                 kfree(*id);
596         return error;
597 }
598
599 int nvme_get_features(struct nvme_ctrl *dev, unsigned fid, unsigned nsid,
600                                         dma_addr_t dma_addr, u32 *result)
601 {
602         struct nvme_command c;
603         struct nvme_completion cqe;
604         int ret;
605
606         memset(&c, 0, sizeof(c));
607         c.features.opcode = nvme_admin_get_features;
608         c.features.nsid = cpu_to_le32(nsid);
609         c.features.dptr.prp1 = cpu_to_le64(dma_addr);
610         c.features.fid = cpu_to_le32(fid);
611
612         ret = __nvme_submit_sync_cmd(dev->admin_q, &c, &cqe, NULL, 0, 0,
613                         NVME_QID_ANY, 0, 0);
614         if (ret >= 0 && result)
615                 *result = le32_to_cpu(cqe.result);
616         return ret;
617 }
618
619 int nvme_set_features(struct nvme_ctrl *dev, unsigned fid, unsigned dword11,
620                                         dma_addr_t dma_addr, u32 *result)
621 {
622         struct nvme_command c;
623         struct nvme_completion cqe;
624         int ret;
625
626         memset(&c, 0, sizeof(c));
627         c.features.opcode = nvme_admin_set_features;
628         c.features.dptr.prp1 = cpu_to_le64(dma_addr);
629         c.features.fid = cpu_to_le32(fid);
630         c.features.dword11 = cpu_to_le32(dword11);
631
632         ret = __nvme_submit_sync_cmd(dev->admin_q, &c, &cqe, NULL, 0, 0,
633                         NVME_QID_ANY, 0, 0);
634         if (ret >= 0 && result)
635                 *result = le32_to_cpu(cqe.result);
636         return ret;
637 }
638
639 int nvme_get_log_page(struct nvme_ctrl *dev, struct nvme_smart_log **log)
640 {
641         struct nvme_command c = { };
642         int error;
643
644         c.common.opcode = nvme_admin_get_log_page,
645         c.common.nsid = cpu_to_le32(0xFFFFFFFF),
646         c.common.cdw10[0] = cpu_to_le32(
647                         (((sizeof(struct nvme_smart_log) / 4) - 1) << 16) |
648                          NVME_LOG_SMART),
649
650         *log = kmalloc(sizeof(struct nvme_smart_log), GFP_KERNEL);
651         if (!*log)
652                 return -ENOMEM;
653
654         error = nvme_submit_sync_cmd(dev->admin_q, &c, *log,
655                         sizeof(struct nvme_smart_log));
656         if (error)
657                 kfree(*log);
658         return error;
659 }
660
661 int nvme_set_queue_count(struct nvme_ctrl *ctrl, int *count)
662 {
663         u32 q_count = (*count - 1) | ((*count - 1) << 16);
664         u32 result;
665         int status, nr_io_queues;
666
667         status = nvme_set_features(ctrl, NVME_FEAT_NUM_QUEUES, q_count, 0,
668                         &result);
669         if (status < 0)
670                 return status;
671
672         /*
673          * Degraded controllers might return an error when setting the queue
674          * count.  We still want to be able to bring them online and offer
675          * access to the admin queue, as that might be only way to fix them up.
676          */
677         if (status > 0) {
678                 dev_err(ctrl->dev, "Could not set queue count (%d)\n", status);
679                 *count = 0;
680         } else {
681                 nr_io_queues = min(result & 0xffff, result >> 16) + 1;
682                 *count = min(*count, nr_io_queues);
683         }
684
685         return 0;
686 }
687 EXPORT_SYMBOL_GPL(nvme_set_queue_count);
688
689 static int nvme_submit_io(struct nvme_ns *ns, struct nvme_user_io __user *uio)
690 {
691         struct nvme_user_io io;
692         struct nvme_command c;
693         unsigned length, meta_len;
694         void __user *metadata;
695
696         if (copy_from_user(&io, uio, sizeof(io)))
697                 return -EFAULT;
698         if (io.flags)
699                 return -EINVAL;
700
701         switch (io.opcode) {
702         case nvme_cmd_write:
703         case nvme_cmd_read:
704         case nvme_cmd_compare:
705                 break;
706         default:
707                 return -EINVAL;
708         }
709
710         length = (io.nblocks + 1) << ns->lba_shift;
711         meta_len = (io.nblocks + 1) * ns->ms;
712         metadata = (void __user *)(uintptr_t)io.metadata;
713
714         if (ns->ext) {
715                 length += meta_len;
716                 meta_len = 0;
717         } else if (meta_len) {
718                 if ((io.metadata & 3) || !io.metadata)
719                         return -EINVAL;
720         }
721
722         memset(&c, 0, sizeof(c));
723         c.rw.opcode = io.opcode;
724         c.rw.flags = io.flags;
725         c.rw.nsid = cpu_to_le32(ns->ns_id);
726         c.rw.slba = cpu_to_le64(io.slba);
727         c.rw.length = cpu_to_le16(io.nblocks);
728         c.rw.control = cpu_to_le16(io.control);
729         c.rw.dsmgmt = cpu_to_le32(io.dsmgmt);
730         c.rw.reftag = cpu_to_le32(io.reftag);
731         c.rw.apptag = cpu_to_le16(io.apptag);
732         c.rw.appmask = cpu_to_le16(io.appmask);
733
734         return __nvme_submit_user_cmd(ns->queue, &c,
735                         (void __user *)(uintptr_t)io.addr, length,
736                         metadata, meta_len, io.slba, NULL, 0);
737 }
738
739 static int nvme_user_cmd(struct nvme_ctrl *ctrl, struct nvme_ns *ns,
740                         struct nvme_passthru_cmd __user *ucmd)
741 {
742         struct nvme_passthru_cmd cmd;
743         struct nvme_command c;
744         unsigned timeout = 0;
745         int status;
746
747         if (!capable(CAP_SYS_ADMIN))
748                 return -EACCES;
749         if (copy_from_user(&cmd, ucmd, sizeof(cmd)))
750                 return -EFAULT;
751         if (cmd.flags)
752                 return -EINVAL;
753
754         memset(&c, 0, sizeof(c));
755         c.common.opcode = cmd.opcode;
756         c.common.flags = cmd.flags;
757         c.common.nsid = cpu_to_le32(cmd.nsid);
758         c.common.cdw2[0] = cpu_to_le32(cmd.cdw2);
759         c.common.cdw2[1] = cpu_to_le32(cmd.cdw3);
760         c.common.cdw10[0] = cpu_to_le32(cmd.cdw10);
761         c.common.cdw10[1] = cpu_to_le32(cmd.cdw11);
762         c.common.cdw10[2] = cpu_to_le32(cmd.cdw12);
763         c.common.cdw10[3] = cpu_to_le32(cmd.cdw13);
764         c.common.cdw10[4] = cpu_to_le32(cmd.cdw14);
765         c.common.cdw10[5] = cpu_to_le32(cmd.cdw15);
766
767         if (cmd.timeout_ms)
768                 timeout = msecs_to_jiffies(cmd.timeout_ms);
769
770         status = nvme_submit_user_cmd(ns ? ns->queue : ctrl->admin_q, &c,
771                         (void __user *)(uintptr_t)cmd.addr, cmd.data_len,
772                         &cmd.result, timeout);
773         if (status >= 0) {
774                 if (put_user(cmd.result, &ucmd->result))
775                         return -EFAULT;
776         }
777
778         return status;
779 }
780
781 static int nvme_ioctl(struct block_device *bdev, fmode_t mode,
782                 unsigned int cmd, unsigned long arg)
783 {
784         struct nvme_ns *ns = bdev->bd_disk->private_data;
785
786         switch (cmd) {
787         case NVME_IOCTL_ID:
788                 force_successful_syscall_return();
789                 return ns->ns_id;
790         case NVME_IOCTL_ADMIN_CMD:
791                 return nvme_user_cmd(ns->ctrl, NULL, (void __user *)arg);
792         case NVME_IOCTL_IO_CMD:
793                 return nvme_user_cmd(ns->ctrl, ns, (void __user *)arg);
794         case NVME_IOCTL_SUBMIT_IO:
795                 return nvme_submit_io(ns, (void __user *)arg);
796 #ifdef CONFIG_BLK_DEV_NVME_SCSI
797         case SG_GET_VERSION_NUM:
798                 return nvme_sg_get_version_num((void __user *)arg);
799         case SG_IO:
800                 return nvme_sg_io(ns, (void __user *)arg);
801 #endif
802         default:
803                 return -ENOTTY;
804         }
805 }
806
807 #ifdef CONFIG_COMPAT
808 static int nvme_compat_ioctl(struct block_device *bdev, fmode_t mode,
809                         unsigned int cmd, unsigned long arg)
810 {
811         switch (cmd) {
812         case SG_IO:
813                 return -ENOIOCTLCMD;
814         }
815         return nvme_ioctl(bdev, mode, cmd, arg);
816 }
817 #else
818 #define nvme_compat_ioctl       NULL
819 #endif
820
821 static int nvme_open(struct block_device *bdev, fmode_t mode)
822 {
823         return nvme_get_ns_from_disk(bdev->bd_disk) ? 0 : -ENXIO;
824 }
825
826 static void nvme_release(struct gendisk *disk, fmode_t mode)
827 {
828         struct nvme_ns *ns = disk->private_data;
829
830         module_put(ns->ctrl->ops->module);
831         nvme_put_ns(ns);
832 }
833
834 static int nvme_getgeo(struct block_device *bdev, struct hd_geometry *geo)
835 {
836         /* some standard values */
837         geo->heads = 1 << 6;
838         geo->sectors = 1 << 5;
839         geo->cylinders = get_capacity(bdev->bd_disk) >> 11;
840         return 0;
841 }
842
843 #ifdef CONFIG_BLK_DEV_INTEGRITY
844 static void nvme_init_integrity(struct nvme_ns *ns)
845 {
846         struct blk_integrity integrity;
847
848         memset(&integrity, 0, sizeof(integrity));
849         switch (ns->pi_type) {
850         case NVME_NS_DPS_PI_TYPE3:
851                 integrity.profile = &t10_pi_type3_crc;
852                 integrity.tag_size = sizeof(u16) + sizeof(u32);
853                 integrity.flags |= BLK_INTEGRITY_DEVICE_CAPABLE;
854                 break;
855         case NVME_NS_DPS_PI_TYPE1:
856         case NVME_NS_DPS_PI_TYPE2:
857                 integrity.profile = &t10_pi_type1_crc;
858                 integrity.tag_size = sizeof(u16);
859                 integrity.flags |= BLK_INTEGRITY_DEVICE_CAPABLE;
860                 break;
861         default:
862                 integrity.profile = NULL;
863                 break;
864         }
865         integrity.tuple_size = ns->ms;
866         blk_integrity_register(ns->disk, &integrity);
867         blk_queue_max_integrity_segments(ns->queue, 1);
868 }
869 #else
870 static void nvme_init_integrity(struct nvme_ns *ns)
871 {
872 }
873 #endif /* CONFIG_BLK_DEV_INTEGRITY */
874
875 static void nvme_config_discard(struct nvme_ns *ns)
876 {
877         struct nvme_ctrl *ctrl = ns->ctrl;
878         u32 logical_block_size = queue_logical_block_size(ns->queue);
879
880         if (ctrl->quirks & NVME_QUIRK_DISCARD_ZEROES)
881                 ns->queue->limits.discard_zeroes_data = 1;
882         else
883                 ns->queue->limits.discard_zeroes_data = 0;
884
885         ns->queue->limits.discard_alignment = logical_block_size;
886         ns->queue->limits.discard_granularity = logical_block_size;
887         blk_queue_max_discard_sectors(ns->queue, UINT_MAX);
888         queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, ns->queue);
889 }
890
891 static int nvme_revalidate_disk(struct gendisk *disk)
892 {
893         struct nvme_ns *ns = disk->private_data;
894         struct nvme_id_ns *id;
895         u8 lbaf, pi_type;
896         u16 old_ms;
897         unsigned short bs;
898
899         if (test_bit(NVME_NS_DEAD, &ns->flags)) {
900                 set_capacity(disk, 0);
901                 return -ENODEV;
902         }
903         if (nvme_identify_ns(ns->ctrl, ns->ns_id, &id)) {
904                 dev_warn(disk_to_dev(ns->disk), "%s: Identify failure\n",
905                                 __func__);
906                 return -ENODEV;
907         }
908         if (id->ncap == 0) {
909                 kfree(id);
910                 return -ENODEV;
911         }
912
913         if (nvme_nvm_ns_supported(ns, id) && ns->type != NVME_NS_LIGHTNVM) {
914                 if (nvme_nvm_register(ns->queue, disk->disk_name)) {
915                         dev_warn(disk_to_dev(ns->disk),
916                                 "%s: LightNVM init failure\n", __func__);
917                         kfree(id);
918                         return -ENODEV;
919                 }
920                 ns->type = NVME_NS_LIGHTNVM;
921         }
922
923         if (ns->ctrl->vs >= NVME_VS(1, 1))
924                 memcpy(ns->eui, id->eui64, sizeof(ns->eui));
925         if (ns->ctrl->vs >= NVME_VS(1, 2))
926                 memcpy(ns->uuid, id->nguid, sizeof(ns->uuid));
927
928         old_ms = ns->ms;
929         lbaf = id->flbas & NVME_NS_FLBAS_LBA_MASK;
930         ns->lba_shift = id->lbaf[lbaf].ds;
931         ns->ms = le16_to_cpu(id->lbaf[lbaf].ms);
932         ns->ext = ns->ms && (id->flbas & NVME_NS_FLBAS_META_EXT);
933
934         /*
935          * If identify namespace failed, use default 512 byte block size so
936          * block layer can use before failing read/write for 0 capacity.
937          */
938         if (ns->lba_shift == 0)
939                 ns->lba_shift = 9;
940         bs = 1 << ns->lba_shift;
941         /* XXX: PI implementation requires metadata equal t10 pi tuple size */
942         pi_type = ns->ms == sizeof(struct t10_pi_tuple) ?
943                                         id->dps & NVME_NS_DPS_PI_MASK : 0;
944
945         blk_mq_freeze_queue(disk->queue);
946         if (blk_get_integrity(disk) && (ns->pi_type != pi_type ||
947                                 ns->ms != old_ms ||
948                                 bs != queue_logical_block_size(disk->queue) ||
949                                 (ns->ms && ns->ext)))
950                 blk_integrity_unregister(disk);
951
952         ns->pi_type = pi_type;
953         blk_queue_logical_block_size(ns->queue, bs);
954
955         if (ns->ms && !blk_get_integrity(disk) && !ns->ext)
956                 nvme_init_integrity(ns);
957         if (ns->ms && !(ns->ms == 8 && ns->pi_type) && !blk_get_integrity(disk))
958                 set_capacity(disk, 0);
959         else
960                 set_capacity(disk, le64_to_cpup(&id->nsze) << (ns->lba_shift - 9));
961
962         if (ns->ctrl->oncs & NVME_CTRL_ONCS_DSM)
963                 nvme_config_discard(ns);
964         blk_mq_unfreeze_queue(disk->queue);
965
966         kfree(id);
967         return 0;
968 }
969
970 static char nvme_pr_type(enum pr_type type)
971 {
972         switch (type) {
973         case PR_WRITE_EXCLUSIVE:
974                 return 1;
975         case PR_EXCLUSIVE_ACCESS:
976                 return 2;
977         case PR_WRITE_EXCLUSIVE_REG_ONLY:
978                 return 3;
979         case PR_EXCLUSIVE_ACCESS_REG_ONLY:
980                 return 4;
981         case PR_WRITE_EXCLUSIVE_ALL_REGS:
982                 return 5;
983         case PR_EXCLUSIVE_ACCESS_ALL_REGS:
984                 return 6;
985         default:
986                 return 0;
987         }
988 };
989
990 static int nvme_pr_command(struct block_device *bdev, u32 cdw10,
991                                 u64 key, u64 sa_key, u8 op)
992 {
993         struct nvme_ns *ns = bdev->bd_disk->private_data;
994         struct nvme_command c;
995         u8 data[16] = { 0, };
996
997         put_unaligned_le64(key, &data[0]);
998         put_unaligned_le64(sa_key, &data[8]);
999
1000         memset(&c, 0, sizeof(c));
1001         c.common.opcode = op;
1002         c.common.nsid = cpu_to_le32(ns->ns_id);
1003         c.common.cdw10[0] = cpu_to_le32(cdw10);
1004
1005         return nvme_submit_sync_cmd(ns->queue, &c, data, 16);
1006 }
1007
1008 static int nvme_pr_register(struct block_device *bdev, u64 old,
1009                 u64 new, unsigned flags)
1010 {
1011         u32 cdw10;
1012
1013         if (flags & ~PR_FL_IGNORE_KEY)
1014                 return -EOPNOTSUPP;
1015
1016         cdw10 = old ? 2 : 0;
1017         cdw10 |= (flags & PR_FL_IGNORE_KEY) ? 1 << 3 : 0;
1018         cdw10 |= (1 << 30) | (1 << 31); /* PTPL=1 */
1019         return nvme_pr_command(bdev, cdw10, old, new, nvme_cmd_resv_register);
1020 }
1021
1022 static int nvme_pr_reserve(struct block_device *bdev, u64 key,
1023                 enum pr_type type, unsigned flags)
1024 {
1025         u32 cdw10;
1026
1027         if (flags & ~PR_FL_IGNORE_KEY)
1028                 return -EOPNOTSUPP;
1029
1030         cdw10 = nvme_pr_type(type) << 8;
1031         cdw10 |= ((flags & PR_FL_IGNORE_KEY) ? 1 << 3 : 0);
1032         return nvme_pr_command(bdev, cdw10, key, 0, nvme_cmd_resv_acquire);
1033 }
1034
1035 static int nvme_pr_preempt(struct block_device *bdev, u64 old, u64 new,
1036                 enum pr_type type, bool abort)
1037 {
1038         u32 cdw10 = nvme_pr_type(type) << 8 | abort ? 2 : 1;
1039         return nvme_pr_command(bdev, cdw10, old, new, nvme_cmd_resv_acquire);
1040 }
1041
1042 static int nvme_pr_clear(struct block_device *bdev, u64 key)
1043 {
1044         u32 cdw10 = 1 | (key ? 1 << 3 : 0);
1045         return nvme_pr_command(bdev, cdw10, key, 0, nvme_cmd_resv_register);
1046 }
1047
1048 static int nvme_pr_release(struct block_device *bdev, u64 key, enum pr_type type)
1049 {
1050         u32 cdw10 = nvme_pr_type(type) << 8 | key ? 1 << 3 : 0;
1051         return nvme_pr_command(bdev, cdw10, key, 0, nvme_cmd_resv_release);
1052 }
1053
1054 static const struct pr_ops nvme_pr_ops = {
1055         .pr_register    = nvme_pr_register,
1056         .pr_reserve     = nvme_pr_reserve,
1057         .pr_release     = nvme_pr_release,
1058         .pr_preempt     = nvme_pr_preempt,
1059         .pr_clear       = nvme_pr_clear,
1060 };
1061
1062 static const struct block_device_operations nvme_fops = {
1063         .owner          = THIS_MODULE,
1064         .ioctl          = nvme_ioctl,
1065         .compat_ioctl   = nvme_compat_ioctl,
1066         .open           = nvme_open,
1067         .release        = nvme_release,
1068         .getgeo         = nvme_getgeo,
1069         .revalidate_disk= nvme_revalidate_disk,
1070         .pr_ops         = &nvme_pr_ops,
1071 };
1072
1073 static int nvme_wait_ready(struct nvme_ctrl *ctrl, u64 cap, bool enabled)
1074 {
1075         unsigned long timeout =
1076                 ((NVME_CAP_TIMEOUT(cap) + 1) * HZ / 2) + jiffies;
1077         u32 csts, bit = enabled ? NVME_CSTS_RDY : 0;
1078         int ret;
1079
1080         while ((ret = ctrl->ops->reg_read32(ctrl, NVME_REG_CSTS, &csts)) == 0) {
1081                 if ((csts & NVME_CSTS_RDY) == bit)
1082                         break;
1083
1084                 msleep(100);
1085                 if (fatal_signal_pending(current))
1086                         return -EINTR;
1087                 if (time_after(jiffies, timeout)) {
1088                         dev_err(ctrl->device,
1089                                 "Device not ready; aborting %s\n", enabled ?
1090                                                 "initialisation" : "reset");
1091                         return -ENODEV;
1092                 }
1093         }
1094
1095         return ret;
1096 }
1097
1098 /*
1099  * If the device has been passed off to us in an enabled state, just clear
1100  * the enabled bit.  The spec says we should set the 'shutdown notification
1101  * bits', but doing so may cause the device to complete commands to the
1102  * admin queue ... and we don't know what memory that might be pointing at!
1103  */
1104 int nvme_disable_ctrl(struct nvme_ctrl *ctrl, u64 cap)
1105 {
1106         int ret;
1107
1108         ctrl->ctrl_config &= ~NVME_CC_SHN_MASK;
1109         ctrl->ctrl_config &= ~NVME_CC_ENABLE;
1110
1111         ret = ctrl->ops->reg_write32(ctrl, NVME_REG_CC, ctrl->ctrl_config);
1112         if (ret)
1113                 return ret;
1114
1115         /* Checking for ctrl->tagset is a trick to avoid sleeping on module
1116          * load, since we only need the quirk on reset_controller. Notice
1117          * that the HGST device needs this delay only in firmware activation
1118          * procedure; unfortunately we have no (easy) way to verify this.
1119          */
1120         if ((ctrl->quirks & NVME_QUIRK_DELAY_BEFORE_CHK_RDY) && ctrl->tagset)
1121                 msleep(NVME_QUIRK_DELAY_AMOUNT);
1122
1123         return nvme_wait_ready(ctrl, cap, false);
1124 }
1125 EXPORT_SYMBOL_GPL(nvme_disable_ctrl);
1126
1127 int nvme_enable_ctrl(struct nvme_ctrl *ctrl, u64 cap)
1128 {
1129         /*
1130          * Default to a 4K page size, with the intention to update this
1131          * path in the future to accomodate architectures with differing
1132          * kernel and IO page sizes.
1133          */
1134         unsigned dev_page_min = NVME_CAP_MPSMIN(cap) + 12, page_shift = 12;
1135         int ret;
1136
1137         if (page_shift < dev_page_min) {
1138                 dev_err(ctrl->device,
1139                         "Minimum device page size %u too large for host (%u)\n",
1140                         1 << dev_page_min, 1 << page_shift);
1141                 return -ENODEV;
1142         }
1143
1144         ctrl->page_size = 1 << page_shift;
1145
1146         ctrl->ctrl_config = NVME_CC_CSS_NVM;
1147         ctrl->ctrl_config |= (page_shift - 12) << NVME_CC_MPS_SHIFT;
1148         ctrl->ctrl_config |= NVME_CC_ARB_RR | NVME_CC_SHN_NONE;
1149         ctrl->ctrl_config |= NVME_CC_IOSQES | NVME_CC_IOCQES;
1150         ctrl->ctrl_config |= NVME_CC_ENABLE;
1151
1152         ret = ctrl->ops->reg_write32(ctrl, NVME_REG_CC, ctrl->ctrl_config);
1153         if (ret)
1154                 return ret;
1155         return nvme_wait_ready(ctrl, cap, true);
1156 }
1157 EXPORT_SYMBOL_GPL(nvme_enable_ctrl);
1158
1159 int nvme_shutdown_ctrl(struct nvme_ctrl *ctrl)
1160 {
1161         unsigned long timeout = SHUTDOWN_TIMEOUT + jiffies;
1162         u32 csts;
1163         int ret;
1164
1165         ctrl->ctrl_config &= ~NVME_CC_SHN_MASK;
1166         ctrl->ctrl_config |= NVME_CC_SHN_NORMAL;
1167
1168         ret = ctrl->ops->reg_write32(ctrl, NVME_REG_CC, ctrl->ctrl_config);
1169         if (ret)
1170                 return ret;
1171
1172         while ((ret = ctrl->ops->reg_read32(ctrl, NVME_REG_CSTS, &csts)) == 0) {
1173                 if ((csts & NVME_CSTS_SHST_MASK) == NVME_CSTS_SHST_CMPLT)
1174                         break;
1175
1176                 msleep(100);
1177                 if (fatal_signal_pending(current))
1178                         return -EINTR;
1179                 if (time_after(jiffies, timeout)) {
1180                         dev_err(ctrl->device,
1181                                 "Device shutdown incomplete; abort shutdown\n");
1182                         return -ENODEV;
1183                 }
1184         }
1185
1186         return ret;
1187 }
1188 EXPORT_SYMBOL_GPL(nvme_shutdown_ctrl);
1189
1190 static void nvme_set_queue_limits(struct nvme_ctrl *ctrl,
1191                 struct request_queue *q)
1192 {
1193         bool vwc = false;
1194
1195         if (ctrl->max_hw_sectors) {
1196                 u32 max_segments =
1197                         (ctrl->max_hw_sectors / (ctrl->page_size >> 9)) + 1;
1198
1199                 blk_queue_max_hw_sectors(q, ctrl->max_hw_sectors);
1200                 blk_queue_max_segments(q, min_t(u32, max_segments, USHRT_MAX));
1201         }
1202         if (ctrl->stripe_size)
1203                 blk_queue_chunk_sectors(q, ctrl->stripe_size >> 9);
1204         blk_queue_virt_boundary(q, ctrl->page_size - 1);
1205         if (ctrl->vwc & NVME_CTRL_VWC_PRESENT)
1206                 vwc = true;
1207         blk_queue_write_cache(q, vwc, vwc);
1208 }
1209
1210 /*
1211  * Initialize the cached copies of the Identify data and various controller
1212  * register in our nvme_ctrl structure.  This should be called as soon as
1213  * the admin queue is fully up and running.
1214  */
1215 int nvme_init_identify(struct nvme_ctrl *ctrl)
1216 {
1217         struct nvme_id_ctrl *id;
1218         u64 cap;
1219         int ret, page_shift;
1220         u32 max_hw_sectors;
1221
1222         ret = ctrl->ops->reg_read32(ctrl, NVME_REG_VS, &ctrl->vs);
1223         if (ret) {
1224                 dev_err(ctrl->device, "Reading VS failed (%d)\n", ret);
1225                 return ret;
1226         }
1227
1228         ret = ctrl->ops->reg_read64(ctrl, NVME_REG_CAP, &cap);
1229         if (ret) {
1230                 dev_err(ctrl->device, "Reading CAP failed (%d)\n", ret);
1231                 return ret;
1232         }
1233         page_shift = NVME_CAP_MPSMIN(cap) + 12;
1234
1235         if (ctrl->vs >= NVME_VS(1, 1))
1236                 ctrl->subsystem = NVME_CAP_NSSRC(cap);
1237
1238         ret = nvme_identify_ctrl(ctrl, &id);
1239         if (ret) {
1240                 dev_err(ctrl->device, "Identify Controller failed (%d)\n", ret);
1241                 return -EIO;
1242         }
1243
1244         ctrl->vid = le16_to_cpu(id->vid);
1245         ctrl->oncs = le16_to_cpup(&id->oncs);
1246         atomic_set(&ctrl->abort_limit, id->acl + 1);
1247         ctrl->vwc = id->vwc;
1248         ctrl->cntlid = le16_to_cpup(&id->cntlid);
1249         memcpy(ctrl->serial, id->sn, sizeof(id->sn));
1250         memcpy(ctrl->model, id->mn, sizeof(id->mn));
1251         memcpy(ctrl->firmware_rev, id->fr, sizeof(id->fr));
1252         if (id->mdts)
1253                 max_hw_sectors = 1 << (id->mdts + page_shift - 9);
1254         else
1255                 max_hw_sectors = UINT_MAX;
1256         ctrl->max_hw_sectors =
1257                 min_not_zero(ctrl->max_hw_sectors, max_hw_sectors);
1258
1259         if ((ctrl->quirks & NVME_QUIRK_STRIPE_SIZE) && id->vs[3]) {
1260                 unsigned int max_hw_sectors;
1261
1262                 ctrl->stripe_size = 1 << (id->vs[3] + page_shift);
1263                 max_hw_sectors = ctrl->stripe_size >> (page_shift - 9);
1264                 if (ctrl->max_hw_sectors) {
1265                         ctrl->max_hw_sectors = min(max_hw_sectors,
1266                                                         ctrl->max_hw_sectors);
1267                 } else {
1268                         ctrl->max_hw_sectors = max_hw_sectors;
1269                 }
1270         }
1271
1272         nvme_set_queue_limits(ctrl, ctrl->admin_q);
1273         ctrl->sgls = le32_to_cpu(id->sgls);
1274         ctrl->kas = le16_to_cpu(id->kas);
1275
1276         if (ctrl->ops->is_fabrics) {
1277                 ctrl->icdoff = le16_to_cpu(id->icdoff);
1278                 ctrl->ioccsz = le32_to_cpu(id->ioccsz);
1279                 ctrl->iorcsz = le32_to_cpu(id->iorcsz);
1280                 ctrl->maxcmd = le16_to_cpu(id->maxcmd);
1281
1282                 /*
1283                  * In fabrics we need to verify the cntlid matches the
1284                  * admin connect
1285                  */
1286                 if (ctrl->cntlid != le16_to_cpu(id->cntlid))
1287                         ret = -EINVAL;
1288
1289                 if (!ctrl->opts->discovery_nqn && !ctrl->kas) {
1290                         dev_err(ctrl->dev,
1291                                 "keep-alive support is mandatory for fabrics\n");
1292                         ret = -EINVAL;
1293                 }
1294         } else {
1295                 ctrl->cntlid = le16_to_cpu(id->cntlid);
1296         }
1297
1298         kfree(id);
1299         return ret;
1300 }
1301 EXPORT_SYMBOL_GPL(nvme_init_identify);
1302
1303 static int nvme_dev_open(struct inode *inode, struct file *file)
1304 {
1305         struct nvme_ctrl *ctrl;
1306         int instance = iminor(inode);
1307         int ret = -ENODEV;
1308
1309         spin_lock(&dev_list_lock);
1310         list_for_each_entry(ctrl, &nvme_ctrl_list, node) {
1311                 if (ctrl->instance != instance)
1312                         continue;
1313
1314                 if (!ctrl->admin_q) {
1315                         ret = -EWOULDBLOCK;
1316                         break;
1317                 }
1318                 if (!kref_get_unless_zero(&ctrl->kref))
1319                         break;
1320                 file->private_data = ctrl;
1321                 ret = 0;
1322                 break;
1323         }
1324         spin_unlock(&dev_list_lock);
1325
1326         return ret;
1327 }
1328
1329 static int nvme_dev_release(struct inode *inode, struct file *file)
1330 {
1331         nvme_put_ctrl(file->private_data);
1332         return 0;
1333 }
1334
1335 static int nvme_dev_user_cmd(struct nvme_ctrl *ctrl, void __user *argp)
1336 {
1337         struct nvme_ns *ns;
1338         int ret;
1339
1340         mutex_lock(&ctrl->namespaces_mutex);
1341         if (list_empty(&ctrl->namespaces)) {
1342                 ret = -ENOTTY;
1343                 goto out_unlock;
1344         }
1345
1346         ns = list_first_entry(&ctrl->namespaces, struct nvme_ns, list);
1347         if (ns != list_last_entry(&ctrl->namespaces, struct nvme_ns, list)) {
1348                 dev_warn(ctrl->device,
1349                         "NVME_IOCTL_IO_CMD not supported when multiple namespaces present!\n");
1350                 ret = -EINVAL;
1351                 goto out_unlock;
1352         }
1353
1354         dev_warn(ctrl->device,
1355                 "using deprecated NVME_IOCTL_IO_CMD ioctl on the char device!\n");
1356         kref_get(&ns->kref);
1357         mutex_unlock(&ctrl->namespaces_mutex);
1358
1359         ret = nvme_user_cmd(ctrl, ns, argp);
1360         nvme_put_ns(ns);
1361         return ret;
1362
1363 out_unlock:
1364         mutex_unlock(&ctrl->namespaces_mutex);
1365         return ret;
1366 }
1367
1368 static long nvme_dev_ioctl(struct file *file, unsigned int cmd,
1369                 unsigned long arg)
1370 {
1371         struct nvme_ctrl *ctrl = file->private_data;
1372         void __user *argp = (void __user *)arg;
1373
1374         switch (cmd) {
1375         case NVME_IOCTL_ADMIN_CMD:
1376                 return nvme_user_cmd(ctrl, NULL, argp);
1377         case NVME_IOCTL_IO_CMD:
1378                 return nvme_dev_user_cmd(ctrl, argp);
1379         case NVME_IOCTL_RESET:
1380                 dev_warn(ctrl->device, "resetting controller\n");
1381                 return ctrl->ops->reset_ctrl(ctrl);
1382         case NVME_IOCTL_SUBSYS_RESET:
1383                 return nvme_reset_subsystem(ctrl);
1384         case NVME_IOCTL_RESCAN:
1385                 nvme_queue_scan(ctrl);
1386                 return 0;
1387         default:
1388                 return -ENOTTY;
1389         }
1390 }
1391
1392 static const struct file_operations nvme_dev_fops = {
1393         .owner          = THIS_MODULE,
1394         .open           = nvme_dev_open,
1395         .release        = nvme_dev_release,
1396         .unlocked_ioctl = nvme_dev_ioctl,
1397         .compat_ioctl   = nvme_dev_ioctl,
1398 };
1399
1400 static ssize_t nvme_sysfs_reset(struct device *dev,
1401                                 struct device_attribute *attr, const char *buf,
1402                                 size_t count)
1403 {
1404         struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
1405         int ret;
1406
1407         ret = ctrl->ops->reset_ctrl(ctrl);
1408         if (ret < 0)
1409                 return ret;
1410         return count;
1411 }
1412 static DEVICE_ATTR(reset_controller, S_IWUSR, NULL, nvme_sysfs_reset);
1413
1414 static ssize_t nvme_sysfs_rescan(struct device *dev,
1415                                 struct device_attribute *attr, const char *buf,
1416                                 size_t count)
1417 {
1418         struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
1419
1420         nvme_queue_scan(ctrl);
1421         return count;
1422 }
1423 static DEVICE_ATTR(rescan_controller, S_IWUSR, NULL, nvme_sysfs_rescan);
1424
1425 static ssize_t wwid_show(struct device *dev, struct device_attribute *attr,
1426                                                                 char *buf)
1427 {
1428         struct nvme_ns *ns = dev_to_disk(dev)->private_data;
1429         struct nvme_ctrl *ctrl = ns->ctrl;
1430         int serial_len = sizeof(ctrl->serial);
1431         int model_len = sizeof(ctrl->model);
1432
1433         if (memchr_inv(ns->uuid, 0, sizeof(ns->uuid)))
1434                 return sprintf(buf, "eui.%16phN\n", ns->uuid);
1435
1436         if (memchr_inv(ns->eui, 0, sizeof(ns->eui)))
1437                 return sprintf(buf, "eui.%8phN\n", ns->eui);
1438
1439         while (ctrl->serial[serial_len - 1] == ' ')
1440                 serial_len--;
1441         while (ctrl->model[model_len - 1] == ' ')
1442                 model_len--;
1443
1444         return sprintf(buf, "nvme.%04x-%*phN-%*phN-%08x\n", ctrl->vid,
1445                 serial_len, ctrl->serial, model_len, ctrl->model, ns->ns_id);
1446 }
1447 static DEVICE_ATTR(wwid, S_IRUGO, wwid_show, NULL);
1448
1449 static ssize_t uuid_show(struct device *dev, struct device_attribute *attr,
1450                                                                 char *buf)
1451 {
1452         struct nvme_ns *ns = dev_to_disk(dev)->private_data;
1453         return sprintf(buf, "%pU\n", ns->uuid);
1454 }
1455 static DEVICE_ATTR(uuid, S_IRUGO, uuid_show, NULL);
1456
1457 static ssize_t eui_show(struct device *dev, struct device_attribute *attr,
1458                                                                 char *buf)
1459 {
1460         struct nvme_ns *ns = dev_to_disk(dev)->private_data;
1461         return sprintf(buf, "%8phd\n", ns->eui);
1462 }
1463 static DEVICE_ATTR(eui, S_IRUGO, eui_show, NULL);
1464
1465 static ssize_t nsid_show(struct device *dev, struct device_attribute *attr,
1466                                                                 char *buf)
1467 {
1468         struct nvme_ns *ns = dev_to_disk(dev)->private_data;
1469         return sprintf(buf, "%d\n", ns->ns_id);
1470 }
1471 static DEVICE_ATTR(nsid, S_IRUGO, nsid_show, NULL);
1472
1473 static struct attribute *nvme_ns_attrs[] = {
1474         &dev_attr_wwid.attr,
1475         &dev_attr_uuid.attr,
1476         &dev_attr_eui.attr,
1477         &dev_attr_nsid.attr,
1478         NULL,
1479 };
1480
1481 static umode_t nvme_ns_attrs_are_visible(struct kobject *kobj,
1482                 struct attribute *a, int n)
1483 {
1484         struct device *dev = container_of(kobj, struct device, kobj);
1485         struct nvme_ns *ns = dev_to_disk(dev)->private_data;
1486
1487         if (a == &dev_attr_uuid.attr) {
1488                 if (!memchr_inv(ns->uuid, 0, sizeof(ns->uuid)))
1489                         return 0;
1490         }
1491         if (a == &dev_attr_eui.attr) {
1492                 if (!memchr_inv(ns->eui, 0, sizeof(ns->eui)))
1493                         return 0;
1494         }
1495         return a->mode;
1496 }
1497
1498 static const struct attribute_group nvme_ns_attr_group = {
1499         .attrs          = nvme_ns_attrs,
1500         .is_visible     = nvme_ns_attrs_are_visible,
1501 };
1502
1503 #define nvme_show_str_function(field)                                           \
1504 static ssize_t  field##_show(struct device *dev,                                \
1505                             struct device_attribute *attr, char *buf)           \
1506 {                                                                               \
1507         struct nvme_ctrl *ctrl = dev_get_drvdata(dev);                          \
1508         return sprintf(buf, "%.*s\n", (int)sizeof(ctrl->field), ctrl->field);   \
1509 }                                                                               \
1510 static DEVICE_ATTR(field, S_IRUGO, field##_show, NULL);
1511
1512 #define nvme_show_int_function(field)                                           \
1513 static ssize_t  field##_show(struct device *dev,                                \
1514                             struct device_attribute *attr, char *buf)           \
1515 {                                                                               \
1516         struct nvme_ctrl *ctrl = dev_get_drvdata(dev);                          \
1517         return sprintf(buf, "%d\n", ctrl->field);       \
1518 }                                                                               \
1519 static DEVICE_ATTR(field, S_IRUGO, field##_show, NULL);
1520
1521 nvme_show_str_function(model);
1522 nvme_show_str_function(serial);
1523 nvme_show_str_function(firmware_rev);
1524 nvme_show_int_function(cntlid);
1525
1526 static ssize_t nvme_sysfs_delete(struct device *dev,
1527                                 struct device_attribute *attr, const char *buf,
1528                                 size_t count)
1529 {
1530         struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
1531
1532         if (device_remove_file_self(dev, attr))
1533                 ctrl->ops->delete_ctrl(ctrl);
1534         return count;
1535 }
1536 static DEVICE_ATTR(delete_controller, S_IWUSR, NULL, nvme_sysfs_delete);
1537
1538 static ssize_t nvme_sysfs_show_transport(struct device *dev,
1539                                          struct device_attribute *attr,
1540                                          char *buf)
1541 {
1542         struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
1543
1544         return snprintf(buf, PAGE_SIZE, "%s\n", ctrl->ops->name);
1545 }
1546 static DEVICE_ATTR(transport, S_IRUGO, nvme_sysfs_show_transport, NULL);
1547
1548 static ssize_t nvme_sysfs_show_subsysnqn(struct device *dev,
1549                                          struct device_attribute *attr,
1550                                          char *buf)
1551 {
1552         struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
1553
1554         return snprintf(buf, PAGE_SIZE, "%s\n",
1555                         ctrl->ops->get_subsysnqn(ctrl));
1556 }
1557 static DEVICE_ATTR(subsysnqn, S_IRUGO, nvme_sysfs_show_subsysnqn, NULL);
1558
1559 static ssize_t nvme_sysfs_show_address(struct device *dev,
1560                                          struct device_attribute *attr,
1561                                          char *buf)
1562 {
1563         struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
1564
1565         return ctrl->ops->get_address(ctrl, buf, PAGE_SIZE);
1566 }
1567 static DEVICE_ATTR(address, S_IRUGO, nvme_sysfs_show_address, NULL);
1568
1569 static struct attribute *nvme_dev_attrs[] = {
1570         &dev_attr_reset_controller.attr,
1571         &dev_attr_rescan_controller.attr,
1572         &dev_attr_model.attr,
1573         &dev_attr_serial.attr,
1574         &dev_attr_firmware_rev.attr,
1575         &dev_attr_cntlid.attr,
1576         &dev_attr_delete_controller.attr,
1577         &dev_attr_transport.attr,
1578         &dev_attr_subsysnqn.attr,
1579         &dev_attr_address.attr,
1580         NULL
1581 };
1582
1583 #define CHECK_ATTR(ctrl, a, name)               \
1584         if ((a) == &dev_attr_##name.attr &&     \
1585             !(ctrl)->ops->get_##name)           \
1586                 return 0
1587
1588 static umode_t nvme_dev_attrs_are_visible(struct kobject *kobj,
1589                 struct attribute *a, int n)
1590 {
1591         struct device *dev = container_of(kobj, struct device, kobj);
1592         struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
1593
1594         if (a == &dev_attr_delete_controller.attr) {
1595                 if (!ctrl->ops->delete_ctrl)
1596                         return 0;
1597         }
1598
1599         CHECK_ATTR(ctrl, a, subsysnqn);
1600         CHECK_ATTR(ctrl, a, address);
1601
1602         return a->mode;
1603 }
1604
1605 static struct attribute_group nvme_dev_attrs_group = {
1606         .attrs          = nvme_dev_attrs,
1607         .is_visible     = nvme_dev_attrs_are_visible,
1608 };
1609
1610 static const struct attribute_group *nvme_dev_attr_groups[] = {
1611         &nvme_dev_attrs_group,
1612         NULL,
1613 };
1614
1615 static int ns_cmp(void *priv, struct list_head *a, struct list_head *b)
1616 {
1617         struct nvme_ns *nsa = container_of(a, struct nvme_ns, list);
1618         struct nvme_ns *nsb = container_of(b, struct nvme_ns, list);
1619
1620         return nsa->ns_id - nsb->ns_id;
1621 }
1622
1623 static struct nvme_ns *nvme_find_get_ns(struct nvme_ctrl *ctrl, unsigned nsid)
1624 {
1625         struct nvme_ns *ns, *ret = NULL;
1626
1627         mutex_lock(&ctrl->namespaces_mutex);
1628         list_for_each_entry(ns, &ctrl->namespaces, list) {
1629                 if (ns->ns_id == nsid) {
1630                         kref_get(&ns->kref);
1631                         ret = ns;
1632                         break;
1633                 }
1634                 if (ns->ns_id > nsid)
1635                         break;
1636         }
1637         mutex_unlock(&ctrl->namespaces_mutex);
1638         return ret;
1639 }
1640
1641 static void nvme_alloc_ns(struct nvme_ctrl *ctrl, unsigned nsid)
1642 {
1643         struct nvme_ns *ns;
1644         struct gendisk *disk;
1645         int node = dev_to_node(ctrl->dev);
1646
1647         ns = kzalloc_node(sizeof(*ns), GFP_KERNEL, node);
1648         if (!ns)
1649                 return;
1650
1651         ns->instance = ida_simple_get(&ctrl->ns_ida, 1, 0, GFP_KERNEL);
1652         if (ns->instance < 0)
1653                 goto out_free_ns;
1654
1655         ns->queue = blk_mq_init_queue(ctrl->tagset);
1656         if (IS_ERR(ns->queue))
1657                 goto out_release_instance;
1658         queue_flag_set_unlocked(QUEUE_FLAG_NONROT, ns->queue);
1659         ns->queue->queuedata = ns;
1660         ns->ctrl = ctrl;
1661
1662         disk = alloc_disk_node(0, node);
1663         if (!disk)
1664                 goto out_free_queue;
1665
1666         kref_init(&ns->kref);
1667         ns->ns_id = nsid;
1668         ns->disk = disk;
1669         ns->lba_shift = 9; /* set to a default value for 512 until disk is validated */
1670
1671
1672         blk_queue_logical_block_size(ns->queue, 1 << ns->lba_shift);
1673         nvme_set_queue_limits(ctrl, ns->queue);
1674
1675         disk->fops = &nvme_fops;
1676         disk->private_data = ns;
1677         disk->queue = ns->queue;
1678         disk->flags = GENHD_FL_EXT_DEVT;
1679         sprintf(disk->disk_name, "nvme%dn%d", ctrl->instance, ns->instance);
1680
1681         if (nvme_revalidate_disk(ns->disk))
1682                 goto out_free_disk;
1683
1684         mutex_lock(&ctrl->namespaces_mutex);
1685         list_add_tail(&ns->list, &ctrl->namespaces);
1686         mutex_unlock(&ctrl->namespaces_mutex);
1687
1688         kref_get(&ctrl->kref);
1689         if (ns->type == NVME_NS_LIGHTNVM)
1690                 return;
1691
1692         device_add_disk(ctrl->device, ns->disk);
1693         if (sysfs_create_group(&disk_to_dev(ns->disk)->kobj,
1694                                         &nvme_ns_attr_group))
1695                 pr_warn("%s: failed to create sysfs group for identification\n",
1696                         ns->disk->disk_name);
1697         return;
1698  out_free_disk:
1699         kfree(disk);
1700  out_free_queue:
1701         blk_cleanup_queue(ns->queue);
1702  out_release_instance:
1703         ida_simple_remove(&ctrl->ns_ida, ns->instance);
1704  out_free_ns:
1705         kfree(ns);
1706 }
1707
1708 static void nvme_ns_remove(struct nvme_ns *ns)
1709 {
1710         if (test_and_set_bit(NVME_NS_REMOVING, &ns->flags))
1711                 return;
1712
1713         if (ns->disk->flags & GENHD_FL_UP) {
1714                 if (blk_get_integrity(ns->disk))
1715                         blk_integrity_unregister(ns->disk);
1716                 sysfs_remove_group(&disk_to_dev(ns->disk)->kobj,
1717                                         &nvme_ns_attr_group);
1718                 del_gendisk(ns->disk);
1719                 blk_mq_abort_requeue_list(ns->queue);
1720                 blk_cleanup_queue(ns->queue);
1721         }
1722
1723         mutex_lock(&ns->ctrl->namespaces_mutex);
1724         list_del_init(&ns->list);
1725         mutex_unlock(&ns->ctrl->namespaces_mutex);
1726
1727         nvme_put_ns(ns);
1728 }
1729
1730 static void nvme_validate_ns(struct nvme_ctrl *ctrl, unsigned nsid)
1731 {
1732         struct nvme_ns *ns;
1733
1734         ns = nvme_find_get_ns(ctrl, nsid);
1735         if (ns) {
1736                 if (revalidate_disk(ns->disk))
1737                         nvme_ns_remove(ns);
1738                 nvme_put_ns(ns);
1739         } else
1740                 nvme_alloc_ns(ctrl, nsid);
1741 }
1742
1743 static void nvme_remove_invalid_namespaces(struct nvme_ctrl *ctrl,
1744                                         unsigned nsid)
1745 {
1746         struct nvme_ns *ns, *next;
1747
1748         list_for_each_entry_safe(ns, next, &ctrl->namespaces, list) {
1749                 if (ns->ns_id > nsid)
1750                         nvme_ns_remove(ns);
1751         }
1752 }
1753
1754 static int nvme_scan_ns_list(struct nvme_ctrl *ctrl, unsigned nn)
1755 {
1756         struct nvme_ns *ns;
1757         __le32 *ns_list;
1758         unsigned i, j, nsid, prev = 0, num_lists = DIV_ROUND_UP(nn, 1024);
1759         int ret = 0;
1760
1761         ns_list = kzalloc(0x1000, GFP_KERNEL);
1762         if (!ns_list)
1763                 return -ENOMEM;
1764
1765         for (i = 0; i < num_lists; i++) {
1766                 ret = nvme_identify_ns_list(ctrl, prev, ns_list);
1767                 if (ret)
1768                         goto free;
1769
1770                 for (j = 0; j < min(nn, 1024U); j++) {
1771                         nsid = le32_to_cpu(ns_list[j]);
1772                         if (!nsid)
1773                                 goto out;
1774
1775                         nvme_validate_ns(ctrl, nsid);
1776
1777                         while (++prev < nsid) {
1778                                 ns = nvme_find_get_ns(ctrl, prev);
1779                                 if (ns) {
1780                                         nvme_ns_remove(ns);
1781                                         nvme_put_ns(ns);
1782                                 }
1783                         }
1784                 }
1785                 nn -= j;
1786         }
1787  out:
1788         nvme_remove_invalid_namespaces(ctrl, prev);
1789  free:
1790         kfree(ns_list);
1791         return ret;
1792 }
1793
1794 static void nvme_scan_ns_sequential(struct nvme_ctrl *ctrl, unsigned nn)
1795 {
1796         unsigned i;
1797
1798         for (i = 1; i <= nn; i++)
1799                 nvme_validate_ns(ctrl, i);
1800
1801         nvme_remove_invalid_namespaces(ctrl, nn);
1802 }
1803
1804 static void nvme_scan_work(struct work_struct *work)
1805 {
1806         struct nvme_ctrl *ctrl =
1807                 container_of(work, struct nvme_ctrl, scan_work);
1808         struct nvme_id_ctrl *id;
1809         unsigned nn;
1810
1811         if (ctrl->state != NVME_CTRL_LIVE)
1812                 return;
1813
1814         if (nvme_identify_ctrl(ctrl, &id))
1815                 return;
1816
1817         nn = le32_to_cpu(id->nn);
1818         if (ctrl->vs >= NVME_VS(1, 1) &&
1819             !(ctrl->quirks & NVME_QUIRK_IDENTIFY_CNS)) {
1820                 if (!nvme_scan_ns_list(ctrl, nn))
1821                         goto done;
1822         }
1823         nvme_scan_ns_sequential(ctrl, nn);
1824  done:
1825         mutex_lock(&ctrl->namespaces_mutex);
1826         list_sort(NULL, &ctrl->namespaces, ns_cmp);
1827         mutex_unlock(&ctrl->namespaces_mutex);
1828         kfree(id);
1829
1830         if (ctrl->ops->post_scan)
1831                 ctrl->ops->post_scan(ctrl);
1832 }
1833
1834 void nvme_queue_scan(struct nvme_ctrl *ctrl)
1835 {
1836         /*
1837          * Do not queue new scan work when a controller is reset during
1838          * removal.
1839          */
1840         if (ctrl->state == NVME_CTRL_LIVE)
1841                 schedule_work(&ctrl->scan_work);
1842 }
1843 EXPORT_SYMBOL_GPL(nvme_queue_scan);
1844
1845 /*
1846  * This function iterates the namespace list unlocked to allow recovery from
1847  * controller failure. It is up to the caller to ensure the namespace list is
1848  * not modified by scan work while this function is executing.
1849  */
1850 void nvme_remove_namespaces(struct nvme_ctrl *ctrl)
1851 {
1852         struct nvme_ns *ns, *next;
1853
1854         /*
1855          * The dead states indicates the controller was not gracefully
1856          * disconnected. In that case, we won't be able to flush any data while
1857          * removing the namespaces' disks; fail all the queues now to avoid
1858          * potentially having to clean up the failed sync later.
1859          */
1860         if (ctrl->state == NVME_CTRL_DEAD)
1861                 nvme_kill_queues(ctrl);
1862
1863         list_for_each_entry_safe(ns, next, &ctrl->namespaces, list)
1864                 nvme_ns_remove(ns);
1865 }
1866 EXPORT_SYMBOL_GPL(nvme_remove_namespaces);
1867
1868 static void nvme_async_event_work(struct work_struct *work)
1869 {
1870         struct nvme_ctrl *ctrl =
1871                 container_of(work, struct nvme_ctrl, async_event_work);
1872
1873         spin_lock_irq(&ctrl->lock);
1874         while (ctrl->event_limit > 0) {
1875                 int aer_idx = --ctrl->event_limit;
1876
1877                 spin_unlock_irq(&ctrl->lock);
1878                 ctrl->ops->submit_async_event(ctrl, aer_idx);
1879                 spin_lock_irq(&ctrl->lock);
1880         }
1881         spin_unlock_irq(&ctrl->lock);
1882 }
1883
1884 void nvme_complete_async_event(struct nvme_ctrl *ctrl,
1885                 struct nvme_completion *cqe)
1886 {
1887         u16 status = le16_to_cpu(cqe->status) >> 1;
1888         u32 result = le32_to_cpu(cqe->result);
1889
1890         if (status == NVME_SC_SUCCESS || status == NVME_SC_ABORT_REQ) {
1891                 ++ctrl->event_limit;
1892                 schedule_work(&ctrl->async_event_work);
1893         }
1894
1895         if (status != NVME_SC_SUCCESS)
1896                 return;
1897
1898         switch (result & 0xff07) {
1899         case NVME_AER_NOTICE_NS_CHANGED:
1900                 dev_info(ctrl->device, "rescanning\n");
1901                 nvme_queue_scan(ctrl);
1902                 break;
1903         default:
1904                 dev_warn(ctrl->device, "async event result %08x\n", result);
1905         }
1906 }
1907 EXPORT_SYMBOL_GPL(nvme_complete_async_event);
1908
1909 void nvme_queue_async_events(struct nvme_ctrl *ctrl)
1910 {
1911         ctrl->event_limit = NVME_NR_AERS;
1912         schedule_work(&ctrl->async_event_work);
1913 }
1914 EXPORT_SYMBOL_GPL(nvme_queue_async_events);
1915
1916 static DEFINE_IDA(nvme_instance_ida);
1917
1918 static int nvme_set_instance(struct nvme_ctrl *ctrl)
1919 {
1920         int instance, error;
1921
1922         do {
1923                 if (!ida_pre_get(&nvme_instance_ida, GFP_KERNEL))
1924                         return -ENODEV;
1925
1926                 spin_lock(&dev_list_lock);
1927                 error = ida_get_new(&nvme_instance_ida, &instance);
1928                 spin_unlock(&dev_list_lock);
1929         } while (error == -EAGAIN);
1930
1931         if (error)
1932                 return -ENODEV;
1933
1934         ctrl->instance = instance;
1935         return 0;
1936 }
1937
1938 static void nvme_release_instance(struct nvme_ctrl *ctrl)
1939 {
1940         spin_lock(&dev_list_lock);
1941         ida_remove(&nvme_instance_ida, ctrl->instance);
1942         spin_unlock(&dev_list_lock);
1943 }
1944
1945 void nvme_uninit_ctrl(struct nvme_ctrl *ctrl)
1946 {
1947         flush_work(&ctrl->async_event_work);
1948         flush_work(&ctrl->scan_work);
1949         nvme_remove_namespaces(ctrl);
1950
1951         device_destroy(nvme_class, MKDEV(nvme_char_major, ctrl->instance));
1952
1953         spin_lock(&dev_list_lock);
1954         list_del(&ctrl->node);
1955         spin_unlock(&dev_list_lock);
1956 }
1957 EXPORT_SYMBOL_GPL(nvme_uninit_ctrl);
1958
1959 static void nvme_free_ctrl(struct kref *kref)
1960 {
1961         struct nvme_ctrl *ctrl = container_of(kref, struct nvme_ctrl, kref);
1962
1963         put_device(ctrl->device);
1964         nvme_release_instance(ctrl);
1965         ida_destroy(&ctrl->ns_ida);
1966
1967         ctrl->ops->free_ctrl(ctrl);
1968 }
1969
1970 void nvme_put_ctrl(struct nvme_ctrl *ctrl)
1971 {
1972         kref_put(&ctrl->kref, nvme_free_ctrl);
1973 }
1974 EXPORT_SYMBOL_GPL(nvme_put_ctrl);
1975
1976 /*
1977  * Initialize a NVMe controller structures.  This needs to be called during
1978  * earliest initialization so that we have the initialized structured around
1979  * during probing.
1980  */
1981 int nvme_init_ctrl(struct nvme_ctrl *ctrl, struct device *dev,
1982                 const struct nvme_ctrl_ops *ops, unsigned long quirks)
1983 {
1984         int ret;
1985
1986         ctrl->state = NVME_CTRL_NEW;
1987         spin_lock_init(&ctrl->lock);
1988         INIT_LIST_HEAD(&ctrl->namespaces);
1989         mutex_init(&ctrl->namespaces_mutex);
1990         kref_init(&ctrl->kref);
1991         ctrl->dev = dev;
1992         ctrl->ops = ops;
1993         ctrl->quirks = quirks;
1994         INIT_WORK(&ctrl->scan_work, nvme_scan_work);
1995         INIT_WORK(&ctrl->async_event_work, nvme_async_event_work);
1996
1997         ret = nvme_set_instance(ctrl);
1998         if (ret)
1999                 goto out;
2000
2001         ctrl->device = device_create_with_groups(nvme_class, ctrl->dev,
2002                                 MKDEV(nvme_char_major, ctrl->instance),
2003                                 ctrl, nvme_dev_attr_groups,
2004                                 "nvme%d", ctrl->instance);
2005         if (IS_ERR(ctrl->device)) {
2006                 ret = PTR_ERR(ctrl->device);
2007                 goto out_release_instance;
2008         }
2009         get_device(ctrl->device);
2010         ida_init(&ctrl->ns_ida);
2011
2012         spin_lock(&dev_list_lock);
2013         list_add_tail(&ctrl->node, &nvme_ctrl_list);
2014         spin_unlock(&dev_list_lock);
2015
2016         return 0;
2017 out_release_instance:
2018         nvme_release_instance(ctrl);
2019 out:
2020         return ret;
2021 }
2022 EXPORT_SYMBOL_GPL(nvme_init_ctrl);
2023
2024 /**
2025  * nvme_kill_queues(): Ends all namespace queues
2026  * @ctrl: the dead controller that needs to end
2027  *
2028  * Call this function when the driver determines it is unable to get the
2029  * controller in a state capable of servicing IO.
2030  */
2031 void nvme_kill_queues(struct nvme_ctrl *ctrl)
2032 {
2033         struct nvme_ns *ns;
2034
2035         mutex_lock(&ctrl->namespaces_mutex);
2036         list_for_each_entry(ns, &ctrl->namespaces, list) {
2037                 /*
2038                  * Revalidating a dead namespace sets capacity to 0. This will
2039                  * end buffered writers dirtying pages that can't be synced.
2040                  */
2041                 if (!test_and_set_bit(NVME_NS_DEAD, &ns->flags))
2042                         revalidate_disk(ns->disk);
2043
2044                 blk_set_queue_dying(ns->queue);
2045                 blk_mq_abort_requeue_list(ns->queue);
2046                 blk_mq_start_stopped_hw_queues(ns->queue, true);
2047         }
2048         mutex_unlock(&ctrl->namespaces_mutex);
2049 }
2050 EXPORT_SYMBOL_GPL(nvme_kill_queues);
2051
2052 void nvme_stop_queues(struct nvme_ctrl *ctrl)
2053 {
2054         struct nvme_ns *ns;
2055
2056         mutex_lock(&ctrl->namespaces_mutex);
2057         list_for_each_entry(ns, &ctrl->namespaces, list) {
2058                 spin_lock_irq(ns->queue->queue_lock);
2059                 queue_flag_set(QUEUE_FLAG_STOPPED, ns->queue);
2060                 spin_unlock_irq(ns->queue->queue_lock);
2061
2062                 blk_mq_cancel_requeue_work(ns->queue);
2063                 blk_mq_stop_hw_queues(ns->queue);
2064         }
2065         mutex_unlock(&ctrl->namespaces_mutex);
2066 }
2067 EXPORT_SYMBOL_GPL(nvme_stop_queues);
2068
2069 void nvme_start_queues(struct nvme_ctrl *ctrl)
2070 {
2071         struct nvme_ns *ns;
2072
2073         mutex_lock(&ctrl->namespaces_mutex);
2074         list_for_each_entry(ns, &ctrl->namespaces, list) {
2075                 queue_flag_clear_unlocked(QUEUE_FLAG_STOPPED, ns->queue);
2076                 blk_mq_start_stopped_hw_queues(ns->queue, true);
2077                 blk_mq_kick_requeue_list(ns->queue);
2078         }
2079         mutex_unlock(&ctrl->namespaces_mutex);
2080 }
2081 EXPORT_SYMBOL_GPL(nvme_start_queues);
2082
2083 int __init nvme_core_init(void)
2084 {
2085         int result;
2086
2087         result = __register_chrdev(nvme_char_major, 0, NVME_MINORS, "nvme",
2088                                                         &nvme_dev_fops);
2089         if (result < 0)
2090                 return result;
2091         else if (result > 0)
2092                 nvme_char_major = result;
2093
2094         nvme_class = class_create(THIS_MODULE, "nvme");
2095         if (IS_ERR(nvme_class)) {
2096                 result = PTR_ERR(nvme_class);
2097                 goto unregister_chrdev;
2098         }
2099
2100         return 0;
2101
2102  unregister_chrdev:
2103         __unregister_chrdev(nvme_char_major, 0, NVME_MINORS, "nvme");
2104         return result;
2105 }
2106
2107 void nvme_core_exit(void)
2108 {
2109         class_destroy(nvme_class);
2110         __unregister_chrdev(nvme_char_major, 0, NVME_MINORS, "nvme");
2111 }
2112
2113 MODULE_LICENSE("GPL");
2114 MODULE_VERSION("1.0");
2115 module_init(nvme_core_init);
2116 module_exit(nvme_core_exit);