9bbd8866363b55b53d487e981d6eefdf686ced7f
[cascardo/linux.git] / drivers / nvme / host / rdma.c
1 /*
2  * NVMe over Fabrics RDMA host code.
3  * Copyright (c) 2015-2016 HGST, a Western Digital Company.
4  *
5  * This program is free software; you can redistribute it and/or modify it
6  * under the terms and conditions of the GNU General Public License,
7  * version 2, as published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope it will be useful, but WITHOUT
10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
12  * more details.
13  */
14 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
15 #include <linux/module.h>
16 #include <linux/init.h>
17 #include <linux/slab.h>
18 #include <linux/err.h>
19 #include <linux/string.h>
20 #include <linux/atomic.h>
21 #include <linux/blk-mq.h>
22 #include <linux/types.h>
23 #include <linux/list.h>
24 #include <linux/mutex.h>
25 #include <linux/scatterlist.h>
26 #include <linux/nvme.h>
27 #include <asm/unaligned.h>
28
29 #include <rdma/ib_verbs.h>
30 #include <rdma/rdma_cm.h>
31 #include <rdma/ib_cm.h>
32 #include <linux/nvme-rdma.h>
33
34 #include "nvme.h"
35 #include "fabrics.h"
36
37
38 #define NVME_RDMA_CONNECT_TIMEOUT_MS    1000            /* 1 second */
39
40 #define NVME_RDMA_MAX_SEGMENT_SIZE      0xffffff        /* 24-bit SGL field */
41
42 #define NVME_RDMA_MAX_SEGMENTS          256
43
44 #define NVME_RDMA_MAX_INLINE_SEGMENTS   1
45
46 /*
47  * We handle AEN commands ourselves and don't even let the
48  * block layer know about them.
49  */
50 #define NVME_RDMA_NR_AEN_COMMANDS      1
51 #define NVME_RDMA_AQ_BLKMQ_DEPTH       \
52         (NVMF_AQ_DEPTH - NVME_RDMA_NR_AEN_COMMANDS)
53
54 struct nvme_rdma_device {
55         struct ib_device       *dev;
56         struct ib_pd           *pd;
57         struct ib_mr           *mr;
58         struct kref             ref;
59         struct list_head        entry;
60 };
61
62 struct nvme_rdma_qe {
63         struct ib_cqe           cqe;
64         void                    *data;
65         u64                     dma;
66 };
67
68 struct nvme_rdma_queue;
69 struct nvme_rdma_request {
70         struct ib_mr            *mr;
71         struct nvme_rdma_qe     sqe;
72         struct ib_sge           sge[1 + NVME_RDMA_MAX_INLINE_SEGMENTS];
73         u32                     num_sge;
74         int                     nents;
75         bool                    inline_data;
76         struct ib_reg_wr        reg_wr;
77         struct ib_cqe           reg_cqe;
78         struct nvme_rdma_queue  *queue;
79         struct sg_table         sg_table;
80         struct scatterlist      first_sgl[];
81 };
82
83 enum nvme_rdma_queue_flags {
84         NVME_RDMA_Q_CONNECTED = (1 << 0),
85 };
86
87 struct nvme_rdma_queue {
88         struct nvme_rdma_qe     *rsp_ring;
89         u8                      sig_count;
90         int                     queue_size;
91         size_t                  cmnd_capsule_len;
92         struct nvme_rdma_ctrl   *ctrl;
93         struct nvme_rdma_device *device;
94         struct ib_cq            *ib_cq;
95         struct ib_qp            *qp;
96
97         unsigned long           flags;
98         struct rdma_cm_id       *cm_id;
99         int                     cm_error;
100         struct completion       cm_done;
101 };
102
103 struct nvme_rdma_ctrl {
104         /* read and written in the hot path */
105         spinlock_t              lock;
106
107         /* read only in the hot path */
108         struct nvme_rdma_queue  *queues;
109         u32                     queue_count;
110
111         /* other member variables */
112         struct blk_mq_tag_set   tag_set;
113         struct work_struct      delete_work;
114         struct work_struct      reset_work;
115         struct work_struct      err_work;
116
117         struct nvme_rdma_qe     async_event_sqe;
118
119         int                     reconnect_delay;
120         struct delayed_work     reconnect_work;
121
122         struct list_head        list;
123
124         struct blk_mq_tag_set   admin_tag_set;
125         struct nvme_rdma_device *device;
126
127         u64                     cap;
128         u32                     max_fr_pages;
129
130         union {
131                 struct sockaddr addr;
132                 struct sockaddr_in addr_in;
133         };
134
135         struct nvme_ctrl        ctrl;
136 };
137
138 static inline struct nvme_rdma_ctrl *to_rdma_ctrl(struct nvme_ctrl *ctrl)
139 {
140         return container_of(ctrl, struct nvme_rdma_ctrl, ctrl);
141 }
142
143 static LIST_HEAD(device_list);
144 static DEFINE_MUTEX(device_list_mutex);
145
146 static LIST_HEAD(nvme_rdma_ctrl_list);
147 static DEFINE_MUTEX(nvme_rdma_ctrl_mutex);
148
149 static struct workqueue_struct *nvme_rdma_wq;
150
151 /*
152  * Disabling this option makes small I/O goes faster, but is fundamentally
153  * unsafe.  With it turned off we will have to register a global rkey that
154  * allows read and write access to all physical memory.
155  */
156 static bool register_always = true;
157 module_param(register_always, bool, 0444);
158 MODULE_PARM_DESC(register_always,
159          "Use memory registration even for contiguous memory regions");
160
161 static int nvme_rdma_cm_handler(struct rdma_cm_id *cm_id,
162                 struct rdma_cm_event *event);
163 static void nvme_rdma_recv_done(struct ib_cq *cq, struct ib_wc *wc);
164
165 /* XXX: really should move to a generic header sooner or later.. */
166 static inline void put_unaligned_le24(u32 val, u8 *p)
167 {
168         *p++ = val;
169         *p++ = val >> 8;
170         *p++ = val >> 16;
171 }
172
173 static inline int nvme_rdma_queue_idx(struct nvme_rdma_queue *queue)
174 {
175         return queue - queue->ctrl->queues;
176 }
177
178 static inline size_t nvme_rdma_inline_data_size(struct nvme_rdma_queue *queue)
179 {
180         return queue->cmnd_capsule_len - sizeof(struct nvme_command);
181 }
182
183 static void nvme_rdma_free_qe(struct ib_device *ibdev, struct nvme_rdma_qe *qe,
184                 size_t capsule_size, enum dma_data_direction dir)
185 {
186         ib_dma_unmap_single(ibdev, qe->dma, capsule_size, dir);
187         kfree(qe->data);
188 }
189
190 static int nvme_rdma_alloc_qe(struct ib_device *ibdev, struct nvme_rdma_qe *qe,
191                 size_t capsule_size, enum dma_data_direction dir)
192 {
193         qe->data = kzalloc(capsule_size, GFP_KERNEL);
194         if (!qe->data)
195                 return -ENOMEM;
196
197         qe->dma = ib_dma_map_single(ibdev, qe->data, capsule_size, dir);
198         if (ib_dma_mapping_error(ibdev, qe->dma)) {
199                 kfree(qe->data);
200                 return -ENOMEM;
201         }
202
203         return 0;
204 }
205
206 static void nvme_rdma_free_ring(struct ib_device *ibdev,
207                 struct nvme_rdma_qe *ring, size_t ib_queue_size,
208                 size_t capsule_size, enum dma_data_direction dir)
209 {
210         int i;
211
212         for (i = 0; i < ib_queue_size; i++)
213                 nvme_rdma_free_qe(ibdev, &ring[i], capsule_size, dir);
214         kfree(ring);
215 }
216
217 static struct nvme_rdma_qe *nvme_rdma_alloc_ring(struct ib_device *ibdev,
218                 size_t ib_queue_size, size_t capsule_size,
219                 enum dma_data_direction dir)
220 {
221         struct nvme_rdma_qe *ring;
222         int i;
223
224         ring = kcalloc(ib_queue_size, sizeof(struct nvme_rdma_qe), GFP_KERNEL);
225         if (!ring)
226                 return NULL;
227
228         for (i = 0; i < ib_queue_size; i++) {
229                 if (nvme_rdma_alloc_qe(ibdev, &ring[i], capsule_size, dir))
230                         goto out_free_ring;
231         }
232
233         return ring;
234
235 out_free_ring:
236         nvme_rdma_free_ring(ibdev, ring, i, capsule_size, dir);
237         return NULL;
238 }
239
240 static void nvme_rdma_qp_event(struct ib_event *event, void *context)
241 {
242         pr_debug("QP event %d\n", event->event);
243 }
244
245 static int nvme_rdma_wait_for_cm(struct nvme_rdma_queue *queue)
246 {
247         wait_for_completion_interruptible_timeout(&queue->cm_done,
248                         msecs_to_jiffies(NVME_RDMA_CONNECT_TIMEOUT_MS) + 1);
249         return queue->cm_error;
250 }
251
252 static int nvme_rdma_create_qp(struct nvme_rdma_queue *queue, const int factor)
253 {
254         struct nvme_rdma_device *dev = queue->device;
255         struct ib_qp_init_attr init_attr;
256         int ret;
257
258         memset(&init_attr, 0, sizeof(init_attr));
259         init_attr.event_handler = nvme_rdma_qp_event;
260         /* +1 for drain */
261         init_attr.cap.max_send_wr = factor * queue->queue_size + 1;
262         /* +1 for drain */
263         init_attr.cap.max_recv_wr = queue->queue_size + 1;
264         init_attr.cap.max_recv_sge = 1;
265         init_attr.cap.max_send_sge = 1 + NVME_RDMA_MAX_INLINE_SEGMENTS;
266         init_attr.sq_sig_type = IB_SIGNAL_REQ_WR;
267         init_attr.qp_type = IB_QPT_RC;
268         init_attr.send_cq = queue->ib_cq;
269         init_attr.recv_cq = queue->ib_cq;
270
271         ret = rdma_create_qp(queue->cm_id, dev->pd, &init_attr);
272
273         queue->qp = queue->cm_id->qp;
274         return ret;
275 }
276
277 static int nvme_rdma_reinit_request(void *data, struct request *rq)
278 {
279         struct nvme_rdma_ctrl *ctrl = data;
280         struct nvme_rdma_device *dev = ctrl->device;
281         struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
282         int ret = 0;
283
284         if (!req->mr->need_inval)
285                 goto out;
286
287         ib_dereg_mr(req->mr);
288
289         req->mr = ib_alloc_mr(dev->pd, IB_MR_TYPE_MEM_REG,
290                         ctrl->max_fr_pages);
291         if (IS_ERR(req->mr)) {
292                 ret = PTR_ERR(req->mr);
293                 req->mr = NULL;
294         }
295
296         req->mr->need_inval = false;
297
298 out:
299         return ret;
300 }
301
302 static void __nvme_rdma_exit_request(struct nvme_rdma_ctrl *ctrl,
303                 struct request *rq, unsigned int queue_idx)
304 {
305         struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
306         struct nvme_rdma_queue *queue = &ctrl->queues[queue_idx];
307         struct nvme_rdma_device *dev = queue->device;
308
309         if (req->mr)
310                 ib_dereg_mr(req->mr);
311
312         nvme_rdma_free_qe(dev->dev, &req->sqe, sizeof(struct nvme_command),
313                         DMA_TO_DEVICE);
314 }
315
316 static void nvme_rdma_exit_request(void *data, struct request *rq,
317                                 unsigned int hctx_idx, unsigned int rq_idx)
318 {
319         return __nvme_rdma_exit_request(data, rq, hctx_idx + 1);
320 }
321
322 static void nvme_rdma_exit_admin_request(void *data, struct request *rq,
323                                 unsigned int hctx_idx, unsigned int rq_idx)
324 {
325         return __nvme_rdma_exit_request(data, rq, 0);
326 }
327
328 static int __nvme_rdma_init_request(struct nvme_rdma_ctrl *ctrl,
329                 struct request *rq, unsigned int queue_idx)
330 {
331         struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
332         struct nvme_rdma_queue *queue = &ctrl->queues[queue_idx];
333         struct nvme_rdma_device *dev = queue->device;
334         struct ib_device *ibdev = dev->dev;
335         int ret;
336
337         BUG_ON(queue_idx >= ctrl->queue_count);
338
339         ret = nvme_rdma_alloc_qe(ibdev, &req->sqe, sizeof(struct nvme_command),
340                         DMA_TO_DEVICE);
341         if (ret)
342                 return ret;
343
344         req->mr = ib_alloc_mr(dev->pd, IB_MR_TYPE_MEM_REG,
345                         ctrl->max_fr_pages);
346         if (IS_ERR(req->mr)) {
347                 ret = PTR_ERR(req->mr);
348                 goto out_free_qe;
349         }
350
351         req->queue = queue;
352
353         return 0;
354
355 out_free_qe:
356         nvme_rdma_free_qe(dev->dev, &req->sqe, sizeof(struct nvme_command),
357                         DMA_TO_DEVICE);
358         return -ENOMEM;
359 }
360
361 static int nvme_rdma_init_request(void *data, struct request *rq,
362                                 unsigned int hctx_idx, unsigned int rq_idx,
363                                 unsigned int numa_node)
364 {
365         return __nvme_rdma_init_request(data, rq, hctx_idx + 1);
366 }
367
368 static int nvme_rdma_init_admin_request(void *data, struct request *rq,
369                                 unsigned int hctx_idx, unsigned int rq_idx,
370                                 unsigned int numa_node)
371 {
372         return __nvme_rdma_init_request(data, rq, 0);
373 }
374
375 static int nvme_rdma_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
376                 unsigned int hctx_idx)
377 {
378         struct nvme_rdma_ctrl *ctrl = data;
379         struct nvme_rdma_queue *queue = &ctrl->queues[hctx_idx + 1];
380
381         BUG_ON(hctx_idx >= ctrl->queue_count);
382
383         hctx->driver_data = queue;
384         return 0;
385 }
386
387 static int nvme_rdma_init_admin_hctx(struct blk_mq_hw_ctx *hctx, void *data,
388                 unsigned int hctx_idx)
389 {
390         struct nvme_rdma_ctrl *ctrl = data;
391         struct nvme_rdma_queue *queue = &ctrl->queues[0];
392
393         BUG_ON(hctx_idx != 0);
394
395         hctx->driver_data = queue;
396         return 0;
397 }
398
399 static void nvme_rdma_free_dev(struct kref *ref)
400 {
401         struct nvme_rdma_device *ndev =
402                 container_of(ref, struct nvme_rdma_device, ref);
403
404         mutex_lock(&device_list_mutex);
405         list_del(&ndev->entry);
406         mutex_unlock(&device_list_mutex);
407
408         if (!register_always)
409                 ib_dereg_mr(ndev->mr);
410         ib_dealloc_pd(ndev->pd);
411
412         kfree(ndev);
413 }
414
415 static void nvme_rdma_dev_put(struct nvme_rdma_device *dev)
416 {
417         kref_put(&dev->ref, nvme_rdma_free_dev);
418 }
419
420 static int nvme_rdma_dev_get(struct nvme_rdma_device *dev)
421 {
422         return kref_get_unless_zero(&dev->ref);
423 }
424
425 static struct nvme_rdma_device *
426 nvme_rdma_find_get_device(struct rdma_cm_id *cm_id)
427 {
428         struct nvme_rdma_device *ndev;
429
430         mutex_lock(&device_list_mutex);
431         list_for_each_entry(ndev, &device_list, entry) {
432                 if (ndev->dev->node_guid == cm_id->device->node_guid &&
433                     nvme_rdma_dev_get(ndev))
434                         goto out_unlock;
435         }
436
437         ndev = kzalloc(sizeof(*ndev), GFP_KERNEL);
438         if (!ndev)
439                 goto out_err;
440
441         ndev->dev = cm_id->device;
442         kref_init(&ndev->ref);
443
444         ndev->pd = ib_alloc_pd(ndev->dev);
445         if (IS_ERR(ndev->pd))
446                 goto out_free_dev;
447
448         if (!register_always) {
449                 ndev->mr = ib_get_dma_mr(ndev->pd,
450                                             IB_ACCESS_LOCAL_WRITE |
451                                             IB_ACCESS_REMOTE_READ |
452                                             IB_ACCESS_REMOTE_WRITE);
453                 if (IS_ERR(ndev->mr))
454                         goto out_free_pd;
455         }
456
457         if (!(ndev->dev->attrs.device_cap_flags &
458               IB_DEVICE_MEM_MGT_EXTENSIONS)) {
459                 dev_err(&ndev->dev->dev,
460                         "Memory registrations not supported.\n");
461                 goto out_free_mr;
462         }
463
464         list_add(&ndev->entry, &device_list);
465 out_unlock:
466         mutex_unlock(&device_list_mutex);
467         return ndev;
468
469 out_free_mr:
470         if (!register_always)
471                 ib_dereg_mr(ndev->mr);
472 out_free_pd:
473         ib_dealloc_pd(ndev->pd);
474 out_free_dev:
475         kfree(ndev);
476 out_err:
477         mutex_unlock(&device_list_mutex);
478         return NULL;
479 }
480
481 static void nvme_rdma_destroy_queue_ib(struct nvme_rdma_queue *queue)
482 {
483         struct nvme_rdma_device *dev = queue->device;
484         struct ib_device *ibdev = dev->dev;
485
486         rdma_destroy_qp(queue->cm_id);
487         ib_free_cq(queue->ib_cq);
488
489         nvme_rdma_free_ring(ibdev, queue->rsp_ring, queue->queue_size,
490                         sizeof(struct nvme_completion), DMA_FROM_DEVICE);
491
492         nvme_rdma_dev_put(dev);
493 }
494
495 static int nvme_rdma_create_queue_ib(struct nvme_rdma_queue *queue,
496                 struct nvme_rdma_device *dev)
497 {
498         struct ib_device *ibdev = dev->dev;
499         const int send_wr_factor = 3;                   /* MR, SEND, INV */
500         const int cq_factor = send_wr_factor + 1;       /* + RECV */
501         int comp_vector, idx = nvme_rdma_queue_idx(queue);
502
503         int ret;
504
505         queue->device = dev;
506
507         /*
508          * The admin queue is barely used once the controller is live, so don't
509          * bother to spread it out.
510          */
511         if (idx == 0)
512                 comp_vector = 0;
513         else
514                 comp_vector = idx % ibdev->num_comp_vectors;
515
516
517         /* +1 for ib_stop_cq */
518         queue->ib_cq = ib_alloc_cq(dev->dev, queue,
519                                 cq_factor * queue->queue_size + 1, comp_vector,
520                                 IB_POLL_SOFTIRQ);
521         if (IS_ERR(queue->ib_cq)) {
522                 ret = PTR_ERR(queue->ib_cq);
523                 goto out;
524         }
525
526         ret = nvme_rdma_create_qp(queue, send_wr_factor);
527         if (ret)
528                 goto out_destroy_ib_cq;
529
530         queue->rsp_ring = nvme_rdma_alloc_ring(ibdev, queue->queue_size,
531                         sizeof(struct nvme_completion), DMA_FROM_DEVICE);
532         if (!queue->rsp_ring) {
533                 ret = -ENOMEM;
534                 goto out_destroy_qp;
535         }
536
537         return 0;
538
539 out_destroy_qp:
540         ib_destroy_qp(queue->qp);
541 out_destroy_ib_cq:
542         ib_free_cq(queue->ib_cq);
543 out:
544         return ret;
545 }
546
547 static int nvme_rdma_init_queue(struct nvme_rdma_ctrl *ctrl,
548                 int idx, size_t queue_size)
549 {
550         struct nvme_rdma_queue *queue;
551         int ret;
552
553         queue = &ctrl->queues[idx];
554         queue->ctrl = ctrl;
555         init_completion(&queue->cm_done);
556
557         if (idx > 0)
558                 queue->cmnd_capsule_len = ctrl->ctrl.ioccsz * 16;
559         else
560                 queue->cmnd_capsule_len = sizeof(struct nvme_command);
561
562         queue->queue_size = queue_size;
563
564         queue->cm_id = rdma_create_id(&init_net, nvme_rdma_cm_handler, queue,
565                         RDMA_PS_TCP, IB_QPT_RC);
566         if (IS_ERR(queue->cm_id)) {
567                 dev_info(ctrl->ctrl.device,
568                         "failed to create CM ID: %ld\n", PTR_ERR(queue->cm_id));
569                 return PTR_ERR(queue->cm_id);
570         }
571
572         queue->cm_error = -ETIMEDOUT;
573         ret = rdma_resolve_addr(queue->cm_id, NULL, &ctrl->addr,
574                         NVME_RDMA_CONNECT_TIMEOUT_MS);
575         if (ret) {
576                 dev_info(ctrl->ctrl.device,
577                         "rdma_resolve_addr failed (%d).\n", ret);
578                 goto out_destroy_cm_id;
579         }
580
581         ret = nvme_rdma_wait_for_cm(queue);
582         if (ret) {
583                 dev_info(ctrl->ctrl.device,
584                         "rdma_resolve_addr wait failed (%d).\n", ret);
585                 goto out_destroy_cm_id;
586         }
587
588         set_bit(NVME_RDMA_Q_CONNECTED, &queue->flags);
589
590         return 0;
591
592 out_destroy_cm_id:
593         rdma_destroy_id(queue->cm_id);
594         return ret;
595 }
596
597 static void nvme_rdma_stop_queue(struct nvme_rdma_queue *queue)
598 {
599         rdma_disconnect(queue->cm_id);
600         ib_drain_qp(queue->qp);
601 }
602
603 static void nvme_rdma_free_queue(struct nvme_rdma_queue *queue)
604 {
605         nvme_rdma_destroy_queue_ib(queue);
606         rdma_destroy_id(queue->cm_id);
607 }
608
609 static void nvme_rdma_stop_and_free_queue(struct nvme_rdma_queue *queue)
610 {
611         if (!test_and_clear_bit(NVME_RDMA_Q_CONNECTED, &queue->flags))
612                 return;
613         nvme_rdma_stop_queue(queue);
614         nvme_rdma_free_queue(queue);
615 }
616
617 static void nvme_rdma_free_io_queues(struct nvme_rdma_ctrl *ctrl)
618 {
619         int i;
620
621         for (i = 1; i < ctrl->queue_count; i++)
622                 nvme_rdma_stop_and_free_queue(&ctrl->queues[i]);
623 }
624
625 static int nvme_rdma_connect_io_queues(struct nvme_rdma_ctrl *ctrl)
626 {
627         int i, ret = 0;
628
629         for (i = 1; i < ctrl->queue_count; i++) {
630                 ret = nvmf_connect_io_queue(&ctrl->ctrl, i);
631                 if (ret)
632                         break;
633         }
634
635         return ret;
636 }
637
638 static int nvme_rdma_init_io_queues(struct nvme_rdma_ctrl *ctrl)
639 {
640         int i, ret;
641
642         for (i = 1; i < ctrl->queue_count; i++) {
643                 ret = nvme_rdma_init_queue(ctrl, i,
644                                            ctrl->ctrl.opts->queue_size);
645                 if (ret) {
646                         dev_info(ctrl->ctrl.device,
647                                 "failed to initialize i/o queue: %d\n", ret);
648                         goto out_free_queues;
649                 }
650         }
651
652         return 0;
653
654 out_free_queues:
655         for (; i >= 1; i--)
656                 nvme_rdma_stop_and_free_queue(&ctrl->queues[i]);
657
658         return ret;
659 }
660
661 static void nvme_rdma_destroy_admin_queue(struct nvme_rdma_ctrl *ctrl)
662 {
663         nvme_rdma_free_qe(ctrl->queues[0].device->dev, &ctrl->async_event_sqe,
664                         sizeof(struct nvme_command), DMA_TO_DEVICE);
665         nvme_rdma_stop_and_free_queue(&ctrl->queues[0]);
666         blk_cleanup_queue(ctrl->ctrl.admin_q);
667         blk_mq_free_tag_set(&ctrl->admin_tag_set);
668         nvme_rdma_dev_put(ctrl->device);
669 }
670
671 static void nvme_rdma_free_ctrl(struct nvme_ctrl *nctrl)
672 {
673         struct nvme_rdma_ctrl *ctrl = to_rdma_ctrl(nctrl);
674
675         if (list_empty(&ctrl->list))
676                 goto free_ctrl;
677
678         mutex_lock(&nvme_rdma_ctrl_mutex);
679         list_del(&ctrl->list);
680         mutex_unlock(&nvme_rdma_ctrl_mutex);
681
682         kfree(ctrl->queues);
683         nvmf_free_options(nctrl->opts);
684 free_ctrl:
685         kfree(ctrl);
686 }
687
688 static void nvme_rdma_reconnect_ctrl_work(struct work_struct *work)
689 {
690         struct nvme_rdma_ctrl *ctrl = container_of(to_delayed_work(work),
691                         struct nvme_rdma_ctrl, reconnect_work);
692         bool changed;
693         int ret;
694
695         if (ctrl->queue_count > 1) {
696                 nvme_rdma_free_io_queues(ctrl);
697
698                 ret = blk_mq_reinit_tagset(&ctrl->tag_set);
699                 if (ret)
700                         goto requeue;
701         }
702
703         nvme_rdma_stop_and_free_queue(&ctrl->queues[0]);
704
705         ret = blk_mq_reinit_tagset(&ctrl->admin_tag_set);
706         if (ret)
707                 goto requeue;
708
709         ret = nvme_rdma_init_queue(ctrl, 0, NVMF_AQ_DEPTH);
710         if (ret)
711                 goto requeue;
712
713         blk_mq_start_stopped_hw_queues(ctrl->ctrl.admin_q, true);
714
715         ret = nvmf_connect_admin_queue(&ctrl->ctrl);
716         if (ret)
717                 goto stop_admin_q;
718
719         ret = nvme_enable_ctrl(&ctrl->ctrl, ctrl->cap);
720         if (ret)
721                 goto stop_admin_q;
722
723         nvme_start_keep_alive(&ctrl->ctrl);
724
725         if (ctrl->queue_count > 1) {
726                 ret = nvme_rdma_init_io_queues(ctrl);
727                 if (ret)
728                         goto stop_admin_q;
729
730                 ret = nvme_rdma_connect_io_queues(ctrl);
731                 if (ret)
732                         goto stop_admin_q;
733         }
734
735         changed = nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_LIVE);
736         WARN_ON_ONCE(!changed);
737
738         if (ctrl->queue_count > 1) {
739                 nvme_start_queues(&ctrl->ctrl);
740                 nvme_queue_scan(&ctrl->ctrl);
741                 nvme_queue_async_events(&ctrl->ctrl);
742         }
743
744         dev_info(ctrl->ctrl.device, "Successfully reconnected\n");
745
746         return;
747
748 stop_admin_q:
749         blk_mq_stop_hw_queues(ctrl->ctrl.admin_q);
750 requeue:
751         /* Make sure we are not resetting/deleting */
752         if (ctrl->ctrl.state == NVME_CTRL_RECONNECTING) {
753                 dev_info(ctrl->ctrl.device,
754                         "Failed reconnect attempt, requeueing...\n");
755                 queue_delayed_work(nvme_rdma_wq, &ctrl->reconnect_work,
756                                         ctrl->reconnect_delay * HZ);
757         }
758 }
759
760 static void nvme_rdma_error_recovery_work(struct work_struct *work)
761 {
762         struct nvme_rdma_ctrl *ctrl = container_of(work,
763                         struct nvme_rdma_ctrl, err_work);
764
765         nvme_stop_keep_alive(&ctrl->ctrl);
766         if (ctrl->queue_count > 1)
767                 nvme_stop_queues(&ctrl->ctrl);
768         blk_mq_stop_hw_queues(ctrl->ctrl.admin_q);
769
770         /* We must take care of fastfail/requeue all our inflight requests */
771         if (ctrl->queue_count > 1)
772                 blk_mq_tagset_busy_iter(&ctrl->tag_set,
773                                         nvme_cancel_request, &ctrl->ctrl);
774         blk_mq_tagset_busy_iter(&ctrl->admin_tag_set,
775                                 nvme_cancel_request, &ctrl->ctrl);
776
777         dev_info(ctrl->ctrl.device, "reconnecting in %d seconds\n",
778                 ctrl->reconnect_delay);
779
780         queue_delayed_work(nvme_rdma_wq, &ctrl->reconnect_work,
781                                 ctrl->reconnect_delay * HZ);
782 }
783
784 static void nvme_rdma_error_recovery(struct nvme_rdma_ctrl *ctrl)
785 {
786         if (!nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_RECONNECTING))
787                 return;
788
789         queue_work(nvme_rdma_wq, &ctrl->err_work);
790 }
791
792 static void nvme_rdma_wr_error(struct ib_cq *cq, struct ib_wc *wc,
793                 const char *op)
794 {
795         struct nvme_rdma_queue *queue = cq->cq_context;
796         struct nvme_rdma_ctrl *ctrl = queue->ctrl;
797
798         if (ctrl->ctrl.state == NVME_CTRL_LIVE)
799                 dev_info(ctrl->ctrl.device,
800                              "%s for CQE 0x%p failed with status %s (%d)\n",
801                              op, wc->wr_cqe,
802                              ib_wc_status_msg(wc->status), wc->status);
803         nvme_rdma_error_recovery(ctrl);
804 }
805
806 static void nvme_rdma_memreg_done(struct ib_cq *cq, struct ib_wc *wc)
807 {
808         if (unlikely(wc->status != IB_WC_SUCCESS))
809                 nvme_rdma_wr_error(cq, wc, "MEMREG");
810 }
811
812 static void nvme_rdma_inv_rkey_done(struct ib_cq *cq, struct ib_wc *wc)
813 {
814         if (unlikely(wc->status != IB_WC_SUCCESS))
815                 nvme_rdma_wr_error(cq, wc, "LOCAL_INV");
816 }
817
818 static int nvme_rdma_inv_rkey(struct nvme_rdma_queue *queue,
819                 struct nvme_rdma_request *req)
820 {
821         struct ib_send_wr *bad_wr;
822         struct ib_send_wr wr = {
823                 .opcode             = IB_WR_LOCAL_INV,
824                 .next               = NULL,
825                 .num_sge            = 0,
826                 .send_flags         = 0,
827                 .ex.invalidate_rkey = req->mr->rkey,
828         };
829
830         req->reg_cqe.done = nvme_rdma_inv_rkey_done;
831         wr.wr_cqe = &req->reg_cqe;
832
833         return ib_post_send(queue->qp, &wr, &bad_wr);
834 }
835
836 static void nvme_rdma_unmap_data(struct nvme_rdma_queue *queue,
837                 struct request *rq)
838 {
839         struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
840         struct nvme_rdma_ctrl *ctrl = queue->ctrl;
841         struct nvme_rdma_device *dev = queue->device;
842         struct ib_device *ibdev = dev->dev;
843         int res;
844
845         if (!blk_rq_bytes(rq))
846                 return;
847
848         if (req->mr->need_inval) {
849                 res = nvme_rdma_inv_rkey(queue, req);
850                 if (res < 0) {
851                         dev_err(ctrl->ctrl.device,
852                                 "Queueing INV WR for rkey %#x failed (%d)\n",
853                                 req->mr->rkey, res);
854                         nvme_rdma_error_recovery(queue->ctrl);
855                 }
856         }
857
858         ib_dma_unmap_sg(ibdev, req->sg_table.sgl,
859                         req->nents, rq_data_dir(rq) ==
860                                     WRITE ? DMA_TO_DEVICE : DMA_FROM_DEVICE);
861
862         nvme_cleanup_cmd(rq);
863         sg_free_table_chained(&req->sg_table, true);
864 }
865
866 static int nvme_rdma_set_sg_null(struct nvme_command *c)
867 {
868         struct nvme_keyed_sgl_desc *sg = &c->common.dptr.ksgl;
869
870         sg->addr = 0;
871         put_unaligned_le24(0, sg->length);
872         put_unaligned_le32(0, sg->key);
873         sg->type = NVME_KEY_SGL_FMT_DATA_DESC << 4;
874         return 0;
875 }
876
877 static int nvme_rdma_map_sg_inline(struct nvme_rdma_queue *queue,
878                 struct nvme_rdma_request *req, struct nvme_command *c)
879 {
880         struct nvme_sgl_desc *sg = &c->common.dptr.sgl;
881
882         req->sge[1].addr = sg_dma_address(req->sg_table.sgl);
883         req->sge[1].length = sg_dma_len(req->sg_table.sgl);
884         req->sge[1].lkey = queue->device->pd->local_dma_lkey;
885
886         sg->addr = cpu_to_le64(queue->ctrl->ctrl.icdoff);
887         sg->length = cpu_to_le32(sg_dma_len(req->sg_table.sgl));
888         sg->type = (NVME_SGL_FMT_DATA_DESC << 4) | NVME_SGL_FMT_OFFSET;
889
890         req->inline_data = true;
891         req->num_sge++;
892         return 0;
893 }
894
895 static int nvme_rdma_map_sg_single(struct nvme_rdma_queue *queue,
896                 struct nvme_rdma_request *req, struct nvme_command *c)
897 {
898         struct nvme_keyed_sgl_desc *sg = &c->common.dptr.ksgl;
899
900         sg->addr = cpu_to_le64(sg_dma_address(req->sg_table.sgl));
901         put_unaligned_le24(sg_dma_len(req->sg_table.sgl), sg->length);
902         put_unaligned_le32(queue->device->mr->rkey, sg->key);
903         sg->type = NVME_KEY_SGL_FMT_DATA_DESC << 4;
904         return 0;
905 }
906
907 static int nvme_rdma_map_sg_fr(struct nvme_rdma_queue *queue,
908                 struct nvme_rdma_request *req, struct nvme_command *c,
909                 int count)
910 {
911         struct nvme_keyed_sgl_desc *sg = &c->common.dptr.ksgl;
912         int nr;
913
914         nr = ib_map_mr_sg(req->mr, req->sg_table.sgl, count, NULL, PAGE_SIZE);
915         if (nr < count) {
916                 if (nr < 0)
917                         return nr;
918                 return -EINVAL;
919         }
920
921         ib_update_fast_reg_key(req->mr, ib_inc_rkey(req->mr->rkey));
922
923         req->reg_cqe.done = nvme_rdma_memreg_done;
924         memset(&req->reg_wr, 0, sizeof(req->reg_wr));
925         req->reg_wr.wr.opcode = IB_WR_REG_MR;
926         req->reg_wr.wr.wr_cqe = &req->reg_cqe;
927         req->reg_wr.wr.num_sge = 0;
928         req->reg_wr.mr = req->mr;
929         req->reg_wr.key = req->mr->rkey;
930         req->reg_wr.access = IB_ACCESS_LOCAL_WRITE |
931                              IB_ACCESS_REMOTE_READ |
932                              IB_ACCESS_REMOTE_WRITE;
933
934         req->mr->need_inval = true;
935
936         sg->addr = cpu_to_le64(req->mr->iova);
937         put_unaligned_le24(req->mr->length, sg->length);
938         put_unaligned_le32(req->mr->rkey, sg->key);
939         sg->type = (NVME_KEY_SGL_FMT_DATA_DESC << 4) |
940                         NVME_SGL_FMT_INVALIDATE;
941
942         return 0;
943 }
944
945 static int nvme_rdma_map_data(struct nvme_rdma_queue *queue,
946                 struct request *rq, unsigned int map_len,
947                 struct nvme_command *c)
948 {
949         struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
950         struct nvme_rdma_device *dev = queue->device;
951         struct ib_device *ibdev = dev->dev;
952         int nents, count;
953         int ret;
954
955         req->num_sge = 1;
956         req->inline_data = false;
957         req->mr->need_inval = false;
958
959         c->common.flags |= NVME_CMD_SGL_METABUF;
960
961         if (!blk_rq_bytes(rq))
962                 return nvme_rdma_set_sg_null(c);
963
964         req->sg_table.sgl = req->first_sgl;
965         ret = sg_alloc_table_chained(&req->sg_table, rq->nr_phys_segments,
966                                 req->sg_table.sgl);
967         if (ret)
968                 return -ENOMEM;
969
970         nents = blk_rq_map_sg(rq->q, rq, req->sg_table.sgl);
971         BUG_ON(nents > rq->nr_phys_segments);
972         req->nents = nents;
973
974         count = ib_dma_map_sg(ibdev, req->sg_table.sgl, nents,
975                     rq_data_dir(rq) == WRITE ? DMA_TO_DEVICE : DMA_FROM_DEVICE);
976         if (unlikely(count <= 0)) {
977                 sg_free_table_chained(&req->sg_table, true);
978                 return -EIO;
979         }
980
981         if (count == 1) {
982                 if (rq_data_dir(rq) == WRITE &&
983                     map_len <= nvme_rdma_inline_data_size(queue) &&
984                     nvme_rdma_queue_idx(queue))
985                         return nvme_rdma_map_sg_inline(queue, req, c);
986
987                 if (!register_always)
988                         return nvme_rdma_map_sg_single(queue, req, c);
989         }
990
991         return nvme_rdma_map_sg_fr(queue, req, c, count);
992 }
993
994 static void nvme_rdma_send_done(struct ib_cq *cq, struct ib_wc *wc)
995 {
996         if (unlikely(wc->status != IB_WC_SUCCESS))
997                 nvme_rdma_wr_error(cq, wc, "SEND");
998 }
999
1000 static int nvme_rdma_post_send(struct nvme_rdma_queue *queue,
1001                 struct nvme_rdma_qe *qe, struct ib_sge *sge, u32 num_sge,
1002                 struct ib_send_wr *first, bool flush)
1003 {
1004         struct ib_send_wr wr, *bad_wr;
1005         int ret;
1006
1007         sge->addr   = qe->dma;
1008         sge->length = sizeof(struct nvme_command),
1009         sge->lkey   = queue->device->pd->local_dma_lkey;
1010
1011         qe->cqe.done = nvme_rdma_send_done;
1012
1013         wr.next       = NULL;
1014         wr.wr_cqe     = &qe->cqe;
1015         wr.sg_list    = sge;
1016         wr.num_sge    = num_sge;
1017         wr.opcode     = IB_WR_SEND;
1018         wr.send_flags = 0;
1019
1020         /*
1021          * Unsignalled send completions are another giant desaster in the
1022          * IB Verbs spec:  If we don't regularly post signalled sends
1023          * the send queue will fill up and only a QP reset will rescue us.
1024          * Would have been way to obvious to handle this in hardware or
1025          * at least the RDMA stack..
1026          *
1027          * This messy and racy code sniplet is copy and pasted from the iSER
1028          * initiator, and the magic '32' comes from there as well.
1029          *
1030          * Always signal the flushes. The magic request used for the flush
1031          * sequencer is not allocated in our driver's tagset and it's
1032          * triggered to be freed by blk_cleanup_queue(). So we need to
1033          * always mark it as signaled to ensure that the "wr_cqe", which is
1034          * embeded in request's payload, is not freed when __ib_process_cq()
1035          * calls wr_cqe->done().
1036          */
1037         if ((++queue->sig_count % 32) == 0 || flush)
1038                 wr.send_flags |= IB_SEND_SIGNALED;
1039
1040         if (first)
1041                 first->next = &wr;
1042         else
1043                 first = &wr;
1044
1045         ret = ib_post_send(queue->qp, first, &bad_wr);
1046         if (ret) {
1047                 dev_err(queue->ctrl->ctrl.device,
1048                              "%s failed with error code %d\n", __func__, ret);
1049         }
1050         return ret;
1051 }
1052
1053 static int nvme_rdma_post_recv(struct nvme_rdma_queue *queue,
1054                 struct nvme_rdma_qe *qe)
1055 {
1056         struct ib_recv_wr wr, *bad_wr;
1057         struct ib_sge list;
1058         int ret;
1059
1060         list.addr   = qe->dma;
1061         list.length = sizeof(struct nvme_completion);
1062         list.lkey   = queue->device->pd->local_dma_lkey;
1063
1064         qe->cqe.done = nvme_rdma_recv_done;
1065
1066         wr.next     = NULL;
1067         wr.wr_cqe   = &qe->cqe;
1068         wr.sg_list  = &list;
1069         wr.num_sge  = 1;
1070
1071         ret = ib_post_recv(queue->qp, &wr, &bad_wr);
1072         if (ret) {
1073                 dev_err(queue->ctrl->ctrl.device,
1074                         "%s failed with error code %d\n", __func__, ret);
1075         }
1076         return ret;
1077 }
1078
1079 static struct blk_mq_tags *nvme_rdma_tagset(struct nvme_rdma_queue *queue)
1080 {
1081         u32 queue_idx = nvme_rdma_queue_idx(queue);
1082
1083         if (queue_idx == 0)
1084                 return queue->ctrl->admin_tag_set.tags[queue_idx];
1085         return queue->ctrl->tag_set.tags[queue_idx - 1];
1086 }
1087
1088 static void nvme_rdma_submit_async_event(struct nvme_ctrl *arg, int aer_idx)
1089 {
1090         struct nvme_rdma_ctrl *ctrl = to_rdma_ctrl(arg);
1091         struct nvme_rdma_queue *queue = &ctrl->queues[0];
1092         struct ib_device *dev = queue->device->dev;
1093         struct nvme_rdma_qe *sqe = &ctrl->async_event_sqe;
1094         struct nvme_command *cmd = sqe->data;
1095         struct ib_sge sge;
1096         int ret;
1097
1098         if (WARN_ON_ONCE(aer_idx != 0))
1099                 return;
1100
1101         ib_dma_sync_single_for_cpu(dev, sqe->dma, sizeof(*cmd), DMA_TO_DEVICE);
1102
1103         memset(cmd, 0, sizeof(*cmd));
1104         cmd->common.opcode = nvme_admin_async_event;
1105         cmd->common.command_id = NVME_RDMA_AQ_BLKMQ_DEPTH;
1106         cmd->common.flags |= NVME_CMD_SGL_METABUF;
1107         nvme_rdma_set_sg_null(cmd);
1108
1109         ib_dma_sync_single_for_device(dev, sqe->dma, sizeof(*cmd),
1110                         DMA_TO_DEVICE);
1111
1112         ret = nvme_rdma_post_send(queue, sqe, &sge, 1, NULL, false);
1113         WARN_ON_ONCE(ret);
1114 }
1115
1116 static int nvme_rdma_process_nvme_rsp(struct nvme_rdma_queue *queue,
1117                 struct nvme_completion *cqe, struct ib_wc *wc, int tag)
1118 {
1119         u16 status = le16_to_cpu(cqe->status);
1120         struct request *rq;
1121         struct nvme_rdma_request *req;
1122         int ret = 0;
1123
1124         status >>= 1;
1125
1126         rq = blk_mq_tag_to_rq(nvme_rdma_tagset(queue), cqe->command_id);
1127         if (!rq) {
1128                 dev_err(queue->ctrl->ctrl.device,
1129                         "tag 0x%x on QP %#x not found\n",
1130                         cqe->command_id, queue->qp->qp_num);
1131                 nvme_rdma_error_recovery(queue->ctrl);
1132                 return ret;
1133         }
1134         req = blk_mq_rq_to_pdu(rq);
1135
1136         if (rq->cmd_type == REQ_TYPE_DRV_PRIV && rq->special)
1137                 memcpy(rq->special, cqe, sizeof(*cqe));
1138
1139         if (rq->tag == tag)
1140                 ret = 1;
1141
1142         if ((wc->wc_flags & IB_WC_WITH_INVALIDATE) &&
1143             wc->ex.invalidate_rkey == req->mr->rkey)
1144                 req->mr->need_inval = false;
1145
1146         blk_mq_complete_request(rq, status);
1147
1148         return ret;
1149 }
1150
1151 static int __nvme_rdma_recv_done(struct ib_cq *cq, struct ib_wc *wc, int tag)
1152 {
1153         struct nvme_rdma_qe *qe =
1154                 container_of(wc->wr_cqe, struct nvme_rdma_qe, cqe);
1155         struct nvme_rdma_queue *queue = cq->cq_context;
1156         struct ib_device *ibdev = queue->device->dev;
1157         struct nvme_completion *cqe = qe->data;
1158         const size_t len = sizeof(struct nvme_completion);
1159         int ret = 0;
1160
1161         if (unlikely(wc->status != IB_WC_SUCCESS)) {
1162                 nvme_rdma_wr_error(cq, wc, "RECV");
1163                 return 0;
1164         }
1165
1166         ib_dma_sync_single_for_cpu(ibdev, qe->dma, len, DMA_FROM_DEVICE);
1167         /*
1168          * AEN requests are special as they don't time out and can
1169          * survive any kind of queue freeze and often don't respond to
1170          * aborts.  We don't even bother to allocate a struct request
1171          * for them but rather special case them here.
1172          */
1173         if (unlikely(nvme_rdma_queue_idx(queue) == 0 &&
1174                         cqe->command_id >= NVME_RDMA_AQ_BLKMQ_DEPTH))
1175                 nvme_complete_async_event(&queue->ctrl->ctrl, cqe);
1176         else
1177                 ret = nvme_rdma_process_nvme_rsp(queue, cqe, wc, tag);
1178         ib_dma_sync_single_for_device(ibdev, qe->dma, len, DMA_FROM_DEVICE);
1179
1180         nvme_rdma_post_recv(queue, qe);
1181         return ret;
1182 }
1183
1184 static void nvme_rdma_recv_done(struct ib_cq *cq, struct ib_wc *wc)
1185 {
1186         __nvme_rdma_recv_done(cq, wc, -1);
1187 }
1188
1189 static int nvme_rdma_conn_established(struct nvme_rdma_queue *queue)
1190 {
1191         int ret, i;
1192
1193         for (i = 0; i < queue->queue_size; i++) {
1194                 ret = nvme_rdma_post_recv(queue, &queue->rsp_ring[i]);
1195                 if (ret)
1196                         goto out_destroy_queue_ib;
1197         }
1198
1199         return 0;
1200
1201 out_destroy_queue_ib:
1202         nvme_rdma_destroy_queue_ib(queue);
1203         return ret;
1204 }
1205
1206 static int nvme_rdma_conn_rejected(struct nvme_rdma_queue *queue,
1207                 struct rdma_cm_event *ev)
1208 {
1209         if (ev->param.conn.private_data_len) {
1210                 struct nvme_rdma_cm_rej *rej =
1211                         (struct nvme_rdma_cm_rej *)ev->param.conn.private_data;
1212
1213                 dev_err(queue->ctrl->ctrl.device,
1214                         "Connect rejected, status %d.", le16_to_cpu(rej->sts));
1215                 /* XXX: Think of something clever to do here... */
1216         } else {
1217                 dev_err(queue->ctrl->ctrl.device,
1218                         "Connect rejected, no private data.\n");
1219         }
1220
1221         return -ECONNRESET;
1222 }
1223
1224 static int nvme_rdma_addr_resolved(struct nvme_rdma_queue *queue)
1225 {
1226         struct nvme_rdma_device *dev;
1227         int ret;
1228
1229         dev = nvme_rdma_find_get_device(queue->cm_id);
1230         if (!dev) {
1231                 dev_err(queue->cm_id->device->dma_device,
1232                         "no client data found!\n");
1233                 return -ECONNREFUSED;
1234         }
1235
1236         ret = nvme_rdma_create_queue_ib(queue, dev);
1237         if (ret) {
1238                 nvme_rdma_dev_put(dev);
1239                 goto out;
1240         }
1241
1242         ret = rdma_resolve_route(queue->cm_id, NVME_RDMA_CONNECT_TIMEOUT_MS);
1243         if (ret) {
1244                 dev_err(queue->ctrl->ctrl.device,
1245                         "rdma_resolve_route failed (%d).\n",
1246                         queue->cm_error);
1247                 goto out_destroy_queue;
1248         }
1249
1250         return 0;
1251
1252 out_destroy_queue:
1253         nvme_rdma_destroy_queue_ib(queue);
1254 out:
1255         return ret;
1256 }
1257
1258 static int nvme_rdma_route_resolved(struct nvme_rdma_queue *queue)
1259 {
1260         struct nvme_rdma_ctrl *ctrl = queue->ctrl;
1261         struct rdma_conn_param param = { };
1262         struct nvme_rdma_cm_req priv = { };
1263         int ret;
1264
1265         param.qp_num = queue->qp->qp_num;
1266         param.flow_control = 1;
1267
1268         param.responder_resources = queue->device->dev->attrs.max_qp_rd_atom;
1269         /* maximum retry count */
1270         param.retry_count = 7;
1271         param.rnr_retry_count = 7;
1272         param.private_data = &priv;
1273         param.private_data_len = sizeof(priv);
1274
1275         priv.recfmt = cpu_to_le16(NVME_RDMA_CM_FMT_1_0);
1276         priv.qid = cpu_to_le16(nvme_rdma_queue_idx(queue));
1277         /*
1278          * set the admin queue depth to the minimum size
1279          * specified by the Fabrics standard.
1280          */
1281         if (priv.qid == 0) {
1282                 priv.hrqsize = cpu_to_le16(NVMF_AQ_DEPTH);
1283                 priv.hsqsize = cpu_to_le16(NVMF_AQ_DEPTH - 1);
1284         } else {
1285                 /*
1286                  * current interpretation of the fabrics spec
1287                  * is at minimum you make hrqsize sqsize+1, or a
1288                  * 1's based representation of sqsize.
1289                  */
1290                 priv.hrqsize = cpu_to_le16(queue->queue_size);
1291                 priv.hsqsize = cpu_to_le16(queue->ctrl->ctrl.sqsize);
1292         }
1293
1294         ret = rdma_connect(queue->cm_id, &param);
1295         if (ret) {
1296                 dev_err(ctrl->ctrl.device,
1297                         "rdma_connect failed (%d).\n", ret);
1298                 goto out_destroy_queue_ib;
1299         }
1300
1301         return 0;
1302
1303 out_destroy_queue_ib:
1304         nvme_rdma_destroy_queue_ib(queue);
1305         return ret;
1306 }
1307
1308 /**
1309  * nvme_rdma_device_unplug() - Handle RDMA device unplug
1310  * @queue:      Queue that owns the cm_id that caught the event
1311  *
1312  * DEVICE_REMOVAL event notifies us that the RDMA device is about
1313  * to unplug so we should take care of destroying our RDMA resources.
1314  * This event will be generated for each allocated cm_id.
1315  *
1316  * In our case, the RDMA resources are managed per controller and not
1317  * only per queue. So the way we handle this is we trigger an implicit
1318  * controller deletion upon the first DEVICE_REMOVAL event we see, and
1319  * hold the event inflight until the controller deletion is completed.
1320  *
1321  * One exception that we need to handle is the destruction of the cm_id
1322  * that caught the event. Since we hold the callout until the controller
1323  * deletion is completed, we'll deadlock if the controller deletion will
1324  * call rdma_destroy_id on this queue's cm_id. Thus, we claim ownership
1325  * of destroying this queue before-hand, destroy the queue resources,
1326  * then queue the controller deletion which won't destroy this queue and
1327  * we destroy the cm_id implicitely by returning a non-zero rc to the callout.
1328  */
1329 static int nvme_rdma_device_unplug(struct nvme_rdma_queue *queue)
1330 {
1331         struct nvme_rdma_ctrl *ctrl = queue->ctrl;
1332         int ret = 0;
1333
1334         /* Own the controller deletion */
1335         if (!nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_DELETING))
1336                 return 0;
1337
1338         dev_warn(ctrl->ctrl.device,
1339                 "Got rdma device removal event, deleting ctrl\n");
1340
1341         /* Get rid of reconnect work if its running */
1342         cancel_delayed_work_sync(&ctrl->reconnect_work);
1343
1344         /* Disable the queue so ctrl delete won't free it */
1345         if (test_and_clear_bit(NVME_RDMA_Q_CONNECTED, &queue->flags)) {
1346                 /* Free this queue ourselves */
1347                 nvme_rdma_stop_queue(queue);
1348                 nvme_rdma_destroy_queue_ib(queue);
1349
1350                 /* Return non-zero so the cm_id will destroy implicitly */
1351                 ret = 1;
1352         }
1353
1354         /* Queue controller deletion */
1355         queue_work(nvme_rdma_wq, &ctrl->delete_work);
1356         flush_work(&ctrl->delete_work);
1357         return ret;
1358 }
1359
1360 static int nvme_rdma_cm_handler(struct rdma_cm_id *cm_id,
1361                 struct rdma_cm_event *ev)
1362 {
1363         struct nvme_rdma_queue *queue = cm_id->context;
1364         int cm_error = 0;
1365
1366         dev_dbg(queue->ctrl->ctrl.device, "%s (%d): status %d id %p\n",
1367                 rdma_event_msg(ev->event), ev->event,
1368                 ev->status, cm_id);
1369
1370         switch (ev->event) {
1371         case RDMA_CM_EVENT_ADDR_RESOLVED:
1372                 cm_error = nvme_rdma_addr_resolved(queue);
1373                 break;
1374         case RDMA_CM_EVENT_ROUTE_RESOLVED:
1375                 cm_error = nvme_rdma_route_resolved(queue);
1376                 break;
1377         case RDMA_CM_EVENT_ESTABLISHED:
1378                 queue->cm_error = nvme_rdma_conn_established(queue);
1379                 /* complete cm_done regardless of success/failure */
1380                 complete(&queue->cm_done);
1381                 return 0;
1382         case RDMA_CM_EVENT_REJECTED:
1383                 cm_error = nvme_rdma_conn_rejected(queue, ev);
1384                 break;
1385         case RDMA_CM_EVENT_ADDR_ERROR:
1386         case RDMA_CM_EVENT_ROUTE_ERROR:
1387         case RDMA_CM_EVENT_CONNECT_ERROR:
1388         case RDMA_CM_EVENT_UNREACHABLE:
1389                 dev_dbg(queue->ctrl->ctrl.device,
1390                         "CM error event %d\n", ev->event);
1391                 cm_error = -ECONNRESET;
1392                 break;
1393         case RDMA_CM_EVENT_DISCONNECTED:
1394         case RDMA_CM_EVENT_ADDR_CHANGE:
1395         case RDMA_CM_EVENT_TIMEWAIT_EXIT:
1396                 dev_dbg(queue->ctrl->ctrl.device,
1397                         "disconnect received - connection closed\n");
1398                 nvme_rdma_error_recovery(queue->ctrl);
1399                 break;
1400         case RDMA_CM_EVENT_DEVICE_REMOVAL:
1401                 /* return 1 means impliciy CM ID destroy */
1402                 return nvme_rdma_device_unplug(queue);
1403         default:
1404                 dev_err(queue->ctrl->ctrl.device,
1405                         "Unexpected RDMA CM event (%d)\n", ev->event);
1406                 nvme_rdma_error_recovery(queue->ctrl);
1407                 break;
1408         }
1409
1410         if (cm_error) {
1411                 queue->cm_error = cm_error;
1412                 complete(&queue->cm_done);
1413         }
1414
1415         return 0;
1416 }
1417
1418 static enum blk_eh_timer_return
1419 nvme_rdma_timeout(struct request *rq, bool reserved)
1420 {
1421         struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
1422
1423         /* queue error recovery */
1424         nvme_rdma_error_recovery(req->queue->ctrl);
1425
1426         /* fail with DNR on cmd timeout */
1427         rq->errors = NVME_SC_ABORT_REQ | NVME_SC_DNR;
1428
1429         return BLK_EH_HANDLED;
1430 }
1431
1432 static int nvme_rdma_queue_rq(struct blk_mq_hw_ctx *hctx,
1433                 const struct blk_mq_queue_data *bd)
1434 {
1435         struct nvme_ns *ns = hctx->queue->queuedata;
1436         struct nvme_rdma_queue *queue = hctx->driver_data;
1437         struct request *rq = bd->rq;
1438         struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
1439         struct nvme_rdma_qe *sqe = &req->sqe;
1440         struct nvme_command *c = sqe->data;
1441         bool flush = false;
1442         struct ib_device *dev;
1443         unsigned int map_len;
1444         int ret;
1445
1446         WARN_ON_ONCE(rq->tag < 0);
1447
1448         dev = queue->device->dev;
1449         ib_dma_sync_single_for_cpu(dev, sqe->dma,
1450                         sizeof(struct nvme_command), DMA_TO_DEVICE);
1451
1452         ret = nvme_setup_cmd(ns, rq, c);
1453         if (ret)
1454                 return ret;
1455
1456         c->common.command_id = rq->tag;
1457         blk_mq_start_request(rq);
1458
1459         map_len = nvme_map_len(rq);
1460         ret = nvme_rdma_map_data(queue, rq, map_len, c);
1461         if (ret < 0) {
1462                 dev_err(queue->ctrl->ctrl.device,
1463                              "Failed to map data (%d)\n", ret);
1464                 nvme_cleanup_cmd(rq);
1465                 goto err;
1466         }
1467
1468         ib_dma_sync_single_for_device(dev, sqe->dma,
1469                         sizeof(struct nvme_command), DMA_TO_DEVICE);
1470
1471         if (rq->cmd_type == REQ_TYPE_FS && req_op(rq) == REQ_OP_FLUSH)
1472                 flush = true;
1473         ret = nvme_rdma_post_send(queue, sqe, req->sge, req->num_sge,
1474                         req->mr->need_inval ? &req->reg_wr.wr : NULL, flush);
1475         if (ret) {
1476                 nvme_rdma_unmap_data(queue, rq);
1477                 goto err;
1478         }
1479
1480         return BLK_MQ_RQ_QUEUE_OK;
1481 err:
1482         return (ret == -ENOMEM || ret == -EAGAIN) ?
1483                 BLK_MQ_RQ_QUEUE_BUSY : BLK_MQ_RQ_QUEUE_ERROR;
1484 }
1485
1486 static int nvme_rdma_poll(struct blk_mq_hw_ctx *hctx, unsigned int tag)
1487 {
1488         struct nvme_rdma_queue *queue = hctx->driver_data;
1489         struct ib_cq *cq = queue->ib_cq;
1490         struct ib_wc wc;
1491         int found = 0;
1492
1493         ib_req_notify_cq(cq, IB_CQ_NEXT_COMP);
1494         while (ib_poll_cq(cq, 1, &wc) > 0) {
1495                 struct ib_cqe *cqe = wc.wr_cqe;
1496
1497                 if (cqe) {
1498                         if (cqe->done == nvme_rdma_recv_done)
1499                                 found |= __nvme_rdma_recv_done(cq, &wc, tag);
1500                         else
1501                                 cqe->done(cq, &wc);
1502                 }
1503         }
1504
1505         return found;
1506 }
1507
1508 static void nvme_rdma_complete_rq(struct request *rq)
1509 {
1510         struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
1511         struct nvme_rdma_queue *queue = req->queue;
1512         int error = 0;
1513
1514         nvme_rdma_unmap_data(queue, rq);
1515
1516         if (unlikely(rq->errors)) {
1517                 if (nvme_req_needs_retry(rq, rq->errors)) {
1518                         nvme_requeue_req(rq);
1519                         return;
1520                 }
1521
1522                 if (rq->cmd_type == REQ_TYPE_DRV_PRIV)
1523                         error = rq->errors;
1524                 else
1525                         error = nvme_error_status(rq->errors);
1526         }
1527
1528         blk_mq_end_request(rq, error);
1529 }
1530
1531 static struct blk_mq_ops nvme_rdma_mq_ops = {
1532         .queue_rq       = nvme_rdma_queue_rq,
1533         .complete       = nvme_rdma_complete_rq,
1534         .init_request   = nvme_rdma_init_request,
1535         .exit_request   = nvme_rdma_exit_request,
1536         .reinit_request = nvme_rdma_reinit_request,
1537         .init_hctx      = nvme_rdma_init_hctx,
1538         .poll           = nvme_rdma_poll,
1539         .timeout        = nvme_rdma_timeout,
1540 };
1541
1542 static struct blk_mq_ops nvme_rdma_admin_mq_ops = {
1543         .queue_rq       = nvme_rdma_queue_rq,
1544         .complete       = nvme_rdma_complete_rq,
1545         .init_request   = nvme_rdma_init_admin_request,
1546         .exit_request   = nvme_rdma_exit_admin_request,
1547         .reinit_request = nvme_rdma_reinit_request,
1548         .init_hctx      = nvme_rdma_init_admin_hctx,
1549         .timeout        = nvme_rdma_timeout,
1550 };
1551
1552 static int nvme_rdma_configure_admin_queue(struct nvme_rdma_ctrl *ctrl)
1553 {
1554         int error;
1555
1556         error = nvme_rdma_init_queue(ctrl, 0, NVMF_AQ_DEPTH);
1557         if (error)
1558                 return error;
1559
1560         ctrl->device = ctrl->queues[0].device;
1561
1562         /*
1563          * We need a reference on the device as long as the tag_set is alive,
1564          * as the MRs in the request structures need a valid ib_device.
1565          */
1566         error = -EINVAL;
1567         if (!nvme_rdma_dev_get(ctrl->device))
1568                 goto out_free_queue;
1569
1570         ctrl->max_fr_pages = min_t(u32, NVME_RDMA_MAX_SEGMENTS,
1571                 ctrl->device->dev->attrs.max_fast_reg_page_list_len);
1572
1573         memset(&ctrl->admin_tag_set, 0, sizeof(ctrl->admin_tag_set));
1574         ctrl->admin_tag_set.ops = &nvme_rdma_admin_mq_ops;
1575         ctrl->admin_tag_set.queue_depth = NVME_RDMA_AQ_BLKMQ_DEPTH;
1576         ctrl->admin_tag_set.reserved_tags = 2; /* connect + keep-alive */
1577         ctrl->admin_tag_set.numa_node = NUMA_NO_NODE;
1578         ctrl->admin_tag_set.cmd_size = sizeof(struct nvme_rdma_request) +
1579                 SG_CHUNK_SIZE * sizeof(struct scatterlist);
1580         ctrl->admin_tag_set.driver_data = ctrl;
1581         ctrl->admin_tag_set.nr_hw_queues = 1;
1582         ctrl->admin_tag_set.timeout = ADMIN_TIMEOUT;
1583
1584         error = blk_mq_alloc_tag_set(&ctrl->admin_tag_set);
1585         if (error)
1586                 goto out_put_dev;
1587
1588         ctrl->ctrl.admin_q = blk_mq_init_queue(&ctrl->admin_tag_set);
1589         if (IS_ERR(ctrl->ctrl.admin_q)) {
1590                 error = PTR_ERR(ctrl->ctrl.admin_q);
1591                 goto out_free_tagset;
1592         }
1593
1594         error = nvmf_connect_admin_queue(&ctrl->ctrl);
1595         if (error)
1596                 goto out_cleanup_queue;
1597
1598         error = nvmf_reg_read64(&ctrl->ctrl, NVME_REG_CAP, &ctrl->cap);
1599         if (error) {
1600                 dev_err(ctrl->ctrl.device,
1601                         "prop_get NVME_REG_CAP failed\n");
1602                 goto out_cleanup_queue;
1603         }
1604
1605         ctrl->ctrl.sqsize =
1606                 min_t(int, NVME_CAP_MQES(ctrl->cap) + 1, ctrl->ctrl.sqsize);
1607
1608         error = nvme_enable_ctrl(&ctrl->ctrl, ctrl->cap);
1609         if (error)
1610                 goto out_cleanup_queue;
1611
1612         ctrl->ctrl.max_hw_sectors =
1613                 (ctrl->max_fr_pages - 1) << (PAGE_SHIFT - 9);
1614
1615         error = nvme_init_identify(&ctrl->ctrl);
1616         if (error)
1617                 goto out_cleanup_queue;
1618
1619         error = nvme_rdma_alloc_qe(ctrl->queues[0].device->dev,
1620                         &ctrl->async_event_sqe, sizeof(struct nvme_command),
1621                         DMA_TO_DEVICE);
1622         if (error)
1623                 goto out_cleanup_queue;
1624
1625         nvme_start_keep_alive(&ctrl->ctrl);
1626
1627         return 0;
1628
1629 out_cleanup_queue:
1630         blk_cleanup_queue(ctrl->ctrl.admin_q);
1631 out_free_tagset:
1632         /* disconnect and drain the queue before freeing the tagset */
1633         nvme_rdma_stop_queue(&ctrl->queues[0]);
1634         blk_mq_free_tag_set(&ctrl->admin_tag_set);
1635 out_put_dev:
1636         nvme_rdma_dev_put(ctrl->device);
1637 out_free_queue:
1638         nvme_rdma_free_queue(&ctrl->queues[0]);
1639         return error;
1640 }
1641
1642 static void nvme_rdma_shutdown_ctrl(struct nvme_rdma_ctrl *ctrl)
1643 {
1644         nvme_stop_keep_alive(&ctrl->ctrl);
1645         cancel_work_sync(&ctrl->err_work);
1646         cancel_delayed_work_sync(&ctrl->reconnect_work);
1647
1648         if (ctrl->queue_count > 1) {
1649                 nvme_stop_queues(&ctrl->ctrl);
1650                 blk_mq_tagset_busy_iter(&ctrl->tag_set,
1651                                         nvme_cancel_request, &ctrl->ctrl);
1652                 nvme_rdma_free_io_queues(ctrl);
1653         }
1654
1655         if (test_bit(NVME_RDMA_Q_CONNECTED, &ctrl->queues[0].flags))
1656                 nvme_shutdown_ctrl(&ctrl->ctrl);
1657
1658         blk_mq_stop_hw_queues(ctrl->ctrl.admin_q);
1659         blk_mq_tagset_busy_iter(&ctrl->admin_tag_set,
1660                                 nvme_cancel_request, &ctrl->ctrl);
1661         nvme_rdma_destroy_admin_queue(ctrl);
1662 }
1663
1664 static void __nvme_rdma_remove_ctrl(struct nvme_rdma_ctrl *ctrl, bool shutdown)
1665 {
1666         nvme_uninit_ctrl(&ctrl->ctrl);
1667         if (shutdown)
1668                 nvme_rdma_shutdown_ctrl(ctrl);
1669
1670         if (ctrl->ctrl.tagset) {
1671                 blk_cleanup_queue(ctrl->ctrl.connect_q);
1672                 blk_mq_free_tag_set(&ctrl->tag_set);
1673                 nvme_rdma_dev_put(ctrl->device);
1674         }
1675
1676         nvme_put_ctrl(&ctrl->ctrl);
1677 }
1678
1679 static void nvme_rdma_del_ctrl_work(struct work_struct *work)
1680 {
1681         struct nvme_rdma_ctrl *ctrl = container_of(work,
1682                                 struct nvme_rdma_ctrl, delete_work);
1683
1684         __nvme_rdma_remove_ctrl(ctrl, true);
1685 }
1686
1687 static int __nvme_rdma_del_ctrl(struct nvme_rdma_ctrl *ctrl)
1688 {
1689         if (!nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_DELETING))
1690                 return -EBUSY;
1691
1692         if (!queue_work(nvme_rdma_wq, &ctrl->delete_work))
1693                 return -EBUSY;
1694
1695         return 0;
1696 }
1697
1698 static int nvme_rdma_del_ctrl(struct nvme_ctrl *nctrl)
1699 {
1700         struct nvme_rdma_ctrl *ctrl = to_rdma_ctrl(nctrl);
1701         int ret;
1702
1703         ret = __nvme_rdma_del_ctrl(ctrl);
1704         if (ret)
1705                 return ret;
1706
1707         flush_work(&ctrl->delete_work);
1708
1709         return 0;
1710 }
1711
1712 static void nvme_rdma_remove_ctrl_work(struct work_struct *work)
1713 {
1714         struct nvme_rdma_ctrl *ctrl = container_of(work,
1715                                 struct nvme_rdma_ctrl, delete_work);
1716
1717         __nvme_rdma_remove_ctrl(ctrl, false);
1718 }
1719
1720 static void nvme_rdma_reset_ctrl_work(struct work_struct *work)
1721 {
1722         struct nvme_rdma_ctrl *ctrl = container_of(work,
1723                                         struct nvme_rdma_ctrl, reset_work);
1724         int ret;
1725         bool changed;
1726
1727         nvme_rdma_shutdown_ctrl(ctrl);
1728
1729         ret = nvme_rdma_configure_admin_queue(ctrl);
1730         if (ret) {
1731                 /* ctrl is already shutdown, just remove the ctrl */
1732                 INIT_WORK(&ctrl->delete_work, nvme_rdma_remove_ctrl_work);
1733                 goto del_dead_ctrl;
1734         }
1735
1736         if (ctrl->queue_count > 1) {
1737                 ret = blk_mq_reinit_tagset(&ctrl->tag_set);
1738                 if (ret)
1739                         goto del_dead_ctrl;
1740
1741                 ret = nvme_rdma_init_io_queues(ctrl);
1742                 if (ret)
1743                         goto del_dead_ctrl;
1744
1745                 ret = nvme_rdma_connect_io_queues(ctrl);
1746                 if (ret)
1747                         goto del_dead_ctrl;
1748         }
1749
1750         changed = nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_LIVE);
1751         WARN_ON_ONCE(!changed);
1752
1753         if (ctrl->queue_count > 1) {
1754                 nvme_start_queues(&ctrl->ctrl);
1755                 nvme_queue_scan(&ctrl->ctrl);
1756                 nvme_queue_async_events(&ctrl->ctrl);
1757         }
1758
1759         return;
1760
1761 del_dead_ctrl:
1762         /* Deleting this dead controller... */
1763         dev_warn(ctrl->ctrl.device, "Removing after reset failure\n");
1764         WARN_ON(!queue_work(nvme_rdma_wq, &ctrl->delete_work));
1765 }
1766
1767 static int nvme_rdma_reset_ctrl(struct nvme_ctrl *nctrl)
1768 {
1769         struct nvme_rdma_ctrl *ctrl = to_rdma_ctrl(nctrl);
1770
1771         if (!nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_RESETTING))
1772                 return -EBUSY;
1773
1774         if (!queue_work(nvme_rdma_wq, &ctrl->reset_work))
1775                 return -EBUSY;
1776
1777         flush_work(&ctrl->reset_work);
1778
1779         return 0;
1780 }
1781
1782 static const struct nvme_ctrl_ops nvme_rdma_ctrl_ops = {
1783         .name                   = "rdma",
1784         .module                 = THIS_MODULE,
1785         .is_fabrics             = true,
1786         .reg_read32             = nvmf_reg_read32,
1787         .reg_read64             = nvmf_reg_read64,
1788         .reg_write32            = nvmf_reg_write32,
1789         .reset_ctrl             = nvme_rdma_reset_ctrl,
1790         .free_ctrl              = nvme_rdma_free_ctrl,
1791         .submit_async_event     = nvme_rdma_submit_async_event,
1792         .delete_ctrl            = nvme_rdma_del_ctrl,
1793         .get_subsysnqn          = nvmf_get_subsysnqn,
1794         .get_address            = nvmf_get_address,
1795 };
1796
1797 static int nvme_rdma_create_io_queues(struct nvme_rdma_ctrl *ctrl)
1798 {
1799         struct nvmf_ctrl_options *opts = ctrl->ctrl.opts;
1800         int ret;
1801
1802         ret = nvme_set_queue_count(&ctrl->ctrl, &opts->nr_io_queues);
1803         if (ret)
1804                 return ret;
1805
1806         ctrl->queue_count = opts->nr_io_queues + 1;
1807         if (ctrl->queue_count < 2)
1808                 return 0;
1809
1810         dev_info(ctrl->ctrl.device,
1811                 "creating %d I/O queues.\n", opts->nr_io_queues);
1812
1813         ret = nvme_rdma_init_io_queues(ctrl);
1814         if (ret)
1815                 return ret;
1816
1817         /*
1818          * We need a reference on the device as long as the tag_set is alive,
1819          * as the MRs in the request structures need a valid ib_device.
1820          */
1821         ret = -EINVAL;
1822         if (!nvme_rdma_dev_get(ctrl->device))
1823                 goto out_free_io_queues;
1824
1825         memset(&ctrl->tag_set, 0, sizeof(ctrl->tag_set));
1826         ctrl->tag_set.ops = &nvme_rdma_mq_ops;
1827         ctrl->tag_set.queue_depth = ctrl->ctrl.opts->queue_size;
1828         ctrl->tag_set.reserved_tags = 1; /* fabric connect */
1829         ctrl->tag_set.numa_node = NUMA_NO_NODE;
1830         ctrl->tag_set.flags = BLK_MQ_F_SHOULD_MERGE;
1831         ctrl->tag_set.cmd_size = sizeof(struct nvme_rdma_request) +
1832                 SG_CHUNK_SIZE * sizeof(struct scatterlist);
1833         ctrl->tag_set.driver_data = ctrl;
1834         ctrl->tag_set.nr_hw_queues = ctrl->queue_count - 1;
1835         ctrl->tag_set.timeout = NVME_IO_TIMEOUT;
1836
1837         ret = blk_mq_alloc_tag_set(&ctrl->tag_set);
1838         if (ret)
1839                 goto out_put_dev;
1840         ctrl->ctrl.tagset = &ctrl->tag_set;
1841
1842         ctrl->ctrl.connect_q = blk_mq_init_queue(&ctrl->tag_set);
1843         if (IS_ERR(ctrl->ctrl.connect_q)) {
1844                 ret = PTR_ERR(ctrl->ctrl.connect_q);
1845                 goto out_free_tag_set;
1846         }
1847
1848         ret = nvme_rdma_connect_io_queues(ctrl);
1849         if (ret)
1850                 goto out_cleanup_connect_q;
1851
1852         return 0;
1853
1854 out_cleanup_connect_q:
1855         blk_cleanup_queue(ctrl->ctrl.connect_q);
1856 out_free_tag_set:
1857         blk_mq_free_tag_set(&ctrl->tag_set);
1858 out_put_dev:
1859         nvme_rdma_dev_put(ctrl->device);
1860 out_free_io_queues:
1861         nvme_rdma_free_io_queues(ctrl);
1862         return ret;
1863 }
1864
1865 static int nvme_rdma_parse_ipaddr(struct sockaddr_in *in_addr, char *p)
1866 {
1867         u8 *addr = (u8 *)&in_addr->sin_addr.s_addr;
1868         size_t buflen = strlen(p);
1869
1870         /* XXX: handle IPv6 addresses */
1871
1872         if (buflen > INET_ADDRSTRLEN)
1873                 return -EINVAL;
1874         if (in4_pton(p, buflen, addr, '\0', NULL) == 0)
1875                 return -EINVAL;
1876         in_addr->sin_family = AF_INET;
1877         return 0;
1878 }
1879
1880 static struct nvme_ctrl *nvme_rdma_create_ctrl(struct device *dev,
1881                 struct nvmf_ctrl_options *opts)
1882 {
1883         struct nvme_rdma_ctrl *ctrl;
1884         int ret;
1885         bool changed;
1886
1887         ctrl = kzalloc(sizeof(*ctrl), GFP_KERNEL);
1888         if (!ctrl)
1889                 return ERR_PTR(-ENOMEM);
1890         ctrl->ctrl.opts = opts;
1891         INIT_LIST_HEAD(&ctrl->list);
1892
1893         ret = nvme_rdma_parse_ipaddr(&ctrl->addr_in, opts->traddr);
1894         if (ret) {
1895                 pr_err("malformed IP address passed: %s\n", opts->traddr);
1896                 goto out_free_ctrl;
1897         }
1898
1899         if (opts->mask & NVMF_OPT_TRSVCID) {
1900                 u16 port;
1901
1902                 ret = kstrtou16(opts->trsvcid, 0, &port);
1903                 if (ret)
1904                         goto out_free_ctrl;
1905
1906                 ctrl->addr_in.sin_port = cpu_to_be16(port);
1907         } else {
1908                 ctrl->addr_in.sin_port = cpu_to_be16(NVME_RDMA_IP_PORT);
1909         }
1910
1911         ret = nvme_init_ctrl(&ctrl->ctrl, dev, &nvme_rdma_ctrl_ops,
1912                                 0 /* no quirks, we're perfect! */);
1913         if (ret)
1914                 goto out_free_ctrl;
1915
1916         ctrl->reconnect_delay = opts->reconnect_delay;
1917         INIT_DELAYED_WORK(&ctrl->reconnect_work,
1918                         nvme_rdma_reconnect_ctrl_work);
1919         INIT_WORK(&ctrl->err_work, nvme_rdma_error_recovery_work);
1920         INIT_WORK(&ctrl->delete_work, nvme_rdma_del_ctrl_work);
1921         INIT_WORK(&ctrl->reset_work, nvme_rdma_reset_ctrl_work);
1922         spin_lock_init(&ctrl->lock);
1923
1924         ctrl->queue_count = opts->nr_io_queues + 1; /* +1 for admin queue */
1925         ctrl->ctrl.sqsize = opts->queue_size - 1;
1926         ctrl->ctrl.kato = opts->kato;
1927
1928         ret = -ENOMEM;
1929         ctrl->queues = kcalloc(ctrl->queue_count, sizeof(*ctrl->queues),
1930                                 GFP_KERNEL);
1931         if (!ctrl->queues)
1932                 goto out_uninit_ctrl;
1933
1934         ret = nvme_rdma_configure_admin_queue(ctrl);
1935         if (ret)
1936                 goto out_kfree_queues;
1937
1938         /* sanity check icdoff */
1939         if (ctrl->ctrl.icdoff) {
1940                 dev_err(ctrl->ctrl.device, "icdoff is not supported!\n");
1941                 goto out_remove_admin_queue;
1942         }
1943
1944         /* sanity check keyed sgls */
1945         if (!(ctrl->ctrl.sgls & (1 << 20))) {
1946                 dev_err(ctrl->ctrl.device, "Mandatory keyed sgls are not support\n");
1947                 goto out_remove_admin_queue;
1948         }
1949
1950         if (opts->queue_size > ctrl->ctrl.maxcmd) {
1951                 /* warn if maxcmd is lower than queue_size */
1952                 dev_warn(ctrl->ctrl.device,
1953                         "queue_size %zu > ctrl maxcmd %u, clamping down\n",
1954                         opts->queue_size, ctrl->ctrl.maxcmd);
1955                 opts->queue_size = ctrl->ctrl.maxcmd;
1956         }
1957
1958         if (opts->nr_io_queues) {
1959                 ret = nvme_rdma_create_io_queues(ctrl);
1960                 if (ret)
1961                         goto out_remove_admin_queue;
1962         }
1963
1964         changed = nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_LIVE);
1965         WARN_ON_ONCE(!changed);
1966
1967         dev_info(ctrl->ctrl.device, "new ctrl: NQN \"%s\", addr %pISp\n",
1968                 ctrl->ctrl.opts->subsysnqn, &ctrl->addr);
1969
1970         kref_get(&ctrl->ctrl.kref);
1971
1972         mutex_lock(&nvme_rdma_ctrl_mutex);
1973         list_add_tail(&ctrl->list, &nvme_rdma_ctrl_list);
1974         mutex_unlock(&nvme_rdma_ctrl_mutex);
1975
1976         if (opts->nr_io_queues) {
1977                 nvme_queue_scan(&ctrl->ctrl);
1978                 nvme_queue_async_events(&ctrl->ctrl);
1979         }
1980
1981         return &ctrl->ctrl;
1982
1983 out_remove_admin_queue:
1984         nvme_stop_keep_alive(&ctrl->ctrl);
1985         nvme_rdma_destroy_admin_queue(ctrl);
1986 out_kfree_queues:
1987         kfree(ctrl->queues);
1988 out_uninit_ctrl:
1989         nvme_uninit_ctrl(&ctrl->ctrl);
1990         nvme_put_ctrl(&ctrl->ctrl);
1991         if (ret > 0)
1992                 ret = -EIO;
1993         return ERR_PTR(ret);
1994 out_free_ctrl:
1995         kfree(ctrl);
1996         return ERR_PTR(ret);
1997 }
1998
1999 static struct nvmf_transport_ops nvme_rdma_transport = {
2000         .name           = "rdma",
2001         .required_opts  = NVMF_OPT_TRADDR,
2002         .allowed_opts   = NVMF_OPT_TRSVCID | NVMF_OPT_RECONNECT_DELAY,
2003         .create_ctrl    = nvme_rdma_create_ctrl,
2004 };
2005
2006 static int __init nvme_rdma_init_module(void)
2007 {
2008         nvme_rdma_wq = create_workqueue("nvme_rdma_wq");
2009         if (!nvme_rdma_wq)
2010                 return -ENOMEM;
2011
2012         nvmf_register_transport(&nvme_rdma_transport);
2013         return 0;
2014 }
2015
2016 static void __exit nvme_rdma_cleanup_module(void)
2017 {
2018         struct nvme_rdma_ctrl *ctrl;
2019
2020         nvmf_unregister_transport(&nvme_rdma_transport);
2021
2022         mutex_lock(&nvme_rdma_ctrl_mutex);
2023         list_for_each_entry(ctrl, &nvme_rdma_ctrl_list, list)
2024                 __nvme_rdma_del_ctrl(ctrl);
2025         mutex_unlock(&nvme_rdma_ctrl_mutex);
2026
2027         destroy_workqueue(nvme_rdma_wq);
2028 }
2029
2030 module_init(nvme_rdma_init_module);
2031 module_exit(nvme_rdma_cleanup_module);
2032
2033 MODULE_LICENSE("GPL v2");