Merge tag 'berlin-dt-for-v4.9-1' of git://git.infradead.org/users/hesselba/linux...
[cascardo/linux.git] / drivers / nvme / host / rdma.c
1 /*
2  * NVMe over Fabrics RDMA host code.
3  * Copyright (c) 2015-2016 HGST, a Western Digital Company.
4  *
5  * This program is free software; you can redistribute it and/or modify it
6  * under the terms and conditions of the GNU General Public License,
7  * version 2, as published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope it will be useful, but WITHOUT
10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
12  * more details.
13  */
14 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
15 #include <linux/module.h>
16 #include <linux/init.h>
17 #include <linux/slab.h>
18 #include <linux/err.h>
19 #include <linux/string.h>
20 #include <linux/atomic.h>
21 #include <linux/blk-mq.h>
22 #include <linux/types.h>
23 #include <linux/list.h>
24 #include <linux/mutex.h>
25 #include <linux/scatterlist.h>
26 #include <linux/nvme.h>
27 #include <asm/unaligned.h>
28
29 #include <rdma/ib_verbs.h>
30 #include <rdma/rdma_cm.h>
31 #include <rdma/ib_cm.h>
32 #include <linux/nvme-rdma.h>
33
34 #include "nvme.h"
35 #include "fabrics.h"
36
37
38 #define NVME_RDMA_CONNECT_TIMEOUT_MS    1000            /* 1 second */
39
40 #define NVME_RDMA_MAX_SEGMENT_SIZE      0xffffff        /* 24-bit SGL field */
41
42 #define NVME_RDMA_MAX_SEGMENTS          256
43
44 #define NVME_RDMA_MAX_INLINE_SEGMENTS   1
45
46 #define NVME_RDMA_MAX_PAGES_PER_MR      512
47
48 #define NVME_RDMA_DEF_RECONNECT_DELAY   20
49
50 /*
51  * We handle AEN commands ourselves and don't even let the
52  * block layer know about them.
53  */
54 #define NVME_RDMA_NR_AEN_COMMANDS      1
55 #define NVME_RDMA_AQ_BLKMQ_DEPTH       \
56         (NVMF_AQ_DEPTH - NVME_RDMA_NR_AEN_COMMANDS)
57
58 struct nvme_rdma_device {
59         struct ib_device       *dev;
60         struct ib_pd           *pd;
61         struct ib_mr           *mr;
62         struct kref             ref;
63         struct list_head        entry;
64 };
65
66 struct nvme_rdma_qe {
67         struct ib_cqe           cqe;
68         void                    *data;
69         u64                     dma;
70 };
71
72 struct nvme_rdma_queue;
73 struct nvme_rdma_request {
74         struct ib_mr            *mr;
75         struct nvme_rdma_qe     sqe;
76         struct ib_sge           sge[1 + NVME_RDMA_MAX_INLINE_SEGMENTS];
77         u32                     num_sge;
78         int                     nents;
79         bool                    inline_data;
80         bool                    need_inval;
81         struct ib_reg_wr        reg_wr;
82         struct ib_cqe           reg_cqe;
83         struct nvme_rdma_queue  *queue;
84         struct sg_table         sg_table;
85         struct scatterlist      first_sgl[];
86 };
87
88 enum nvme_rdma_queue_flags {
89         NVME_RDMA_Q_CONNECTED = (1 << 0),
90 };
91
92 struct nvme_rdma_queue {
93         struct nvme_rdma_qe     *rsp_ring;
94         u8                      sig_count;
95         int                     queue_size;
96         size_t                  cmnd_capsule_len;
97         struct nvme_rdma_ctrl   *ctrl;
98         struct nvme_rdma_device *device;
99         struct ib_cq            *ib_cq;
100         struct ib_qp            *qp;
101
102         unsigned long           flags;
103         struct rdma_cm_id       *cm_id;
104         int                     cm_error;
105         struct completion       cm_done;
106 };
107
108 struct nvme_rdma_ctrl {
109         /* read and written in the hot path */
110         spinlock_t              lock;
111
112         /* read only in the hot path */
113         struct nvme_rdma_queue  *queues;
114         u32                     queue_count;
115
116         /* other member variables */
117         struct blk_mq_tag_set   tag_set;
118         struct work_struct      delete_work;
119         struct work_struct      reset_work;
120         struct work_struct      err_work;
121
122         struct nvme_rdma_qe     async_event_sqe;
123
124         int                     reconnect_delay;
125         struct delayed_work     reconnect_work;
126
127         struct list_head        list;
128
129         struct blk_mq_tag_set   admin_tag_set;
130         struct nvme_rdma_device *device;
131
132         u64                     cap;
133         u32                     max_fr_pages;
134
135         union {
136                 struct sockaddr addr;
137                 struct sockaddr_in addr_in;
138         };
139
140         struct nvme_ctrl        ctrl;
141 };
142
143 static inline struct nvme_rdma_ctrl *to_rdma_ctrl(struct nvme_ctrl *ctrl)
144 {
145         return container_of(ctrl, struct nvme_rdma_ctrl, ctrl);
146 }
147
148 static LIST_HEAD(device_list);
149 static DEFINE_MUTEX(device_list_mutex);
150
151 static LIST_HEAD(nvme_rdma_ctrl_list);
152 static DEFINE_MUTEX(nvme_rdma_ctrl_mutex);
153
154 static struct workqueue_struct *nvme_rdma_wq;
155
156 /*
157  * Disabling this option makes small I/O goes faster, but is fundamentally
158  * unsafe.  With it turned off we will have to register a global rkey that
159  * allows read and write access to all physical memory.
160  */
161 static bool register_always = true;
162 module_param(register_always, bool, 0444);
163 MODULE_PARM_DESC(register_always,
164          "Use memory registration even for contiguous memory regions");
165
166 static int nvme_rdma_cm_handler(struct rdma_cm_id *cm_id,
167                 struct rdma_cm_event *event);
168 static void nvme_rdma_recv_done(struct ib_cq *cq, struct ib_wc *wc);
169
170 /* XXX: really should move to a generic header sooner or later.. */
171 static inline void put_unaligned_le24(u32 val, u8 *p)
172 {
173         *p++ = val;
174         *p++ = val >> 8;
175         *p++ = val >> 16;
176 }
177
178 static inline int nvme_rdma_queue_idx(struct nvme_rdma_queue *queue)
179 {
180         return queue - queue->ctrl->queues;
181 }
182
183 static inline size_t nvme_rdma_inline_data_size(struct nvme_rdma_queue *queue)
184 {
185         return queue->cmnd_capsule_len - sizeof(struct nvme_command);
186 }
187
188 static void nvme_rdma_free_qe(struct ib_device *ibdev, struct nvme_rdma_qe *qe,
189                 size_t capsule_size, enum dma_data_direction dir)
190 {
191         ib_dma_unmap_single(ibdev, qe->dma, capsule_size, dir);
192         kfree(qe->data);
193 }
194
195 static int nvme_rdma_alloc_qe(struct ib_device *ibdev, struct nvme_rdma_qe *qe,
196                 size_t capsule_size, enum dma_data_direction dir)
197 {
198         qe->data = kzalloc(capsule_size, GFP_KERNEL);
199         if (!qe->data)
200                 return -ENOMEM;
201
202         qe->dma = ib_dma_map_single(ibdev, qe->data, capsule_size, dir);
203         if (ib_dma_mapping_error(ibdev, qe->dma)) {
204                 kfree(qe->data);
205                 return -ENOMEM;
206         }
207
208         return 0;
209 }
210
211 static void nvme_rdma_free_ring(struct ib_device *ibdev,
212                 struct nvme_rdma_qe *ring, size_t ib_queue_size,
213                 size_t capsule_size, enum dma_data_direction dir)
214 {
215         int i;
216
217         for (i = 0; i < ib_queue_size; i++)
218                 nvme_rdma_free_qe(ibdev, &ring[i], capsule_size, dir);
219         kfree(ring);
220 }
221
222 static struct nvme_rdma_qe *nvme_rdma_alloc_ring(struct ib_device *ibdev,
223                 size_t ib_queue_size, size_t capsule_size,
224                 enum dma_data_direction dir)
225 {
226         struct nvme_rdma_qe *ring;
227         int i;
228
229         ring = kcalloc(ib_queue_size, sizeof(struct nvme_rdma_qe), GFP_KERNEL);
230         if (!ring)
231                 return NULL;
232
233         for (i = 0; i < ib_queue_size; i++) {
234                 if (nvme_rdma_alloc_qe(ibdev, &ring[i], capsule_size, dir))
235                         goto out_free_ring;
236         }
237
238         return ring;
239
240 out_free_ring:
241         nvme_rdma_free_ring(ibdev, ring, i, capsule_size, dir);
242         return NULL;
243 }
244
245 static void nvme_rdma_qp_event(struct ib_event *event, void *context)
246 {
247         pr_debug("QP event %d\n", event->event);
248 }
249
250 static int nvme_rdma_wait_for_cm(struct nvme_rdma_queue *queue)
251 {
252         wait_for_completion_interruptible_timeout(&queue->cm_done,
253                         msecs_to_jiffies(NVME_RDMA_CONNECT_TIMEOUT_MS) + 1);
254         return queue->cm_error;
255 }
256
257 static int nvme_rdma_create_qp(struct nvme_rdma_queue *queue, const int factor)
258 {
259         struct nvme_rdma_device *dev = queue->device;
260         struct ib_qp_init_attr init_attr;
261         int ret;
262
263         memset(&init_attr, 0, sizeof(init_attr));
264         init_attr.event_handler = nvme_rdma_qp_event;
265         /* +1 for drain */
266         init_attr.cap.max_send_wr = factor * queue->queue_size + 1;
267         /* +1 for drain */
268         init_attr.cap.max_recv_wr = queue->queue_size + 1;
269         init_attr.cap.max_recv_sge = 1;
270         init_attr.cap.max_send_sge = 1 + NVME_RDMA_MAX_INLINE_SEGMENTS;
271         init_attr.sq_sig_type = IB_SIGNAL_REQ_WR;
272         init_attr.qp_type = IB_QPT_RC;
273         init_attr.send_cq = queue->ib_cq;
274         init_attr.recv_cq = queue->ib_cq;
275
276         ret = rdma_create_qp(queue->cm_id, dev->pd, &init_attr);
277
278         queue->qp = queue->cm_id->qp;
279         return ret;
280 }
281
282 static int nvme_rdma_reinit_request(void *data, struct request *rq)
283 {
284         struct nvme_rdma_ctrl *ctrl = data;
285         struct nvme_rdma_device *dev = ctrl->device;
286         struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
287         int ret = 0;
288
289         if (!req->need_inval)
290                 goto out;
291
292         ib_dereg_mr(req->mr);
293
294         req->mr = ib_alloc_mr(dev->pd, IB_MR_TYPE_MEM_REG,
295                         ctrl->max_fr_pages);
296         if (IS_ERR(req->mr)) {
297                 ret = PTR_ERR(req->mr);
298                 req->mr = NULL;
299         }
300
301         req->need_inval = false;
302
303 out:
304         return ret;
305 }
306
307 static void __nvme_rdma_exit_request(struct nvme_rdma_ctrl *ctrl,
308                 struct request *rq, unsigned int queue_idx)
309 {
310         struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
311         struct nvme_rdma_queue *queue = &ctrl->queues[queue_idx];
312         struct nvme_rdma_device *dev = queue->device;
313
314         if (req->mr)
315                 ib_dereg_mr(req->mr);
316
317         nvme_rdma_free_qe(dev->dev, &req->sqe, sizeof(struct nvme_command),
318                         DMA_TO_DEVICE);
319 }
320
321 static void nvme_rdma_exit_request(void *data, struct request *rq,
322                                 unsigned int hctx_idx, unsigned int rq_idx)
323 {
324         return __nvme_rdma_exit_request(data, rq, hctx_idx + 1);
325 }
326
327 static void nvme_rdma_exit_admin_request(void *data, struct request *rq,
328                                 unsigned int hctx_idx, unsigned int rq_idx)
329 {
330         return __nvme_rdma_exit_request(data, rq, 0);
331 }
332
333 static int __nvme_rdma_init_request(struct nvme_rdma_ctrl *ctrl,
334                 struct request *rq, unsigned int queue_idx)
335 {
336         struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
337         struct nvme_rdma_queue *queue = &ctrl->queues[queue_idx];
338         struct nvme_rdma_device *dev = queue->device;
339         struct ib_device *ibdev = dev->dev;
340         int ret;
341
342         BUG_ON(queue_idx >= ctrl->queue_count);
343
344         ret = nvme_rdma_alloc_qe(ibdev, &req->sqe, sizeof(struct nvme_command),
345                         DMA_TO_DEVICE);
346         if (ret)
347                 return ret;
348
349         req->mr = ib_alloc_mr(dev->pd, IB_MR_TYPE_MEM_REG,
350                         ctrl->max_fr_pages);
351         if (IS_ERR(req->mr)) {
352                 ret = PTR_ERR(req->mr);
353                 goto out_free_qe;
354         }
355
356         req->queue = queue;
357
358         return 0;
359
360 out_free_qe:
361         nvme_rdma_free_qe(dev->dev, &req->sqe, sizeof(struct nvme_command),
362                         DMA_TO_DEVICE);
363         return -ENOMEM;
364 }
365
366 static int nvme_rdma_init_request(void *data, struct request *rq,
367                                 unsigned int hctx_idx, unsigned int rq_idx,
368                                 unsigned int numa_node)
369 {
370         return __nvme_rdma_init_request(data, rq, hctx_idx + 1);
371 }
372
373 static int nvme_rdma_init_admin_request(void *data, struct request *rq,
374                                 unsigned int hctx_idx, unsigned int rq_idx,
375                                 unsigned int numa_node)
376 {
377         return __nvme_rdma_init_request(data, rq, 0);
378 }
379
380 static int nvme_rdma_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
381                 unsigned int hctx_idx)
382 {
383         struct nvme_rdma_ctrl *ctrl = data;
384         struct nvme_rdma_queue *queue = &ctrl->queues[hctx_idx + 1];
385
386         BUG_ON(hctx_idx >= ctrl->queue_count);
387
388         hctx->driver_data = queue;
389         return 0;
390 }
391
392 static int nvme_rdma_init_admin_hctx(struct blk_mq_hw_ctx *hctx, void *data,
393                 unsigned int hctx_idx)
394 {
395         struct nvme_rdma_ctrl *ctrl = data;
396         struct nvme_rdma_queue *queue = &ctrl->queues[0];
397
398         BUG_ON(hctx_idx != 0);
399
400         hctx->driver_data = queue;
401         return 0;
402 }
403
404 static void nvme_rdma_free_dev(struct kref *ref)
405 {
406         struct nvme_rdma_device *ndev =
407                 container_of(ref, struct nvme_rdma_device, ref);
408
409         mutex_lock(&device_list_mutex);
410         list_del(&ndev->entry);
411         mutex_unlock(&device_list_mutex);
412
413         if (!register_always)
414                 ib_dereg_mr(ndev->mr);
415         ib_dealloc_pd(ndev->pd);
416
417         kfree(ndev);
418 }
419
420 static void nvme_rdma_dev_put(struct nvme_rdma_device *dev)
421 {
422         kref_put(&dev->ref, nvme_rdma_free_dev);
423 }
424
425 static int nvme_rdma_dev_get(struct nvme_rdma_device *dev)
426 {
427         return kref_get_unless_zero(&dev->ref);
428 }
429
430 static struct nvme_rdma_device *
431 nvme_rdma_find_get_device(struct rdma_cm_id *cm_id)
432 {
433         struct nvme_rdma_device *ndev;
434
435         mutex_lock(&device_list_mutex);
436         list_for_each_entry(ndev, &device_list, entry) {
437                 if (ndev->dev->node_guid == cm_id->device->node_guid &&
438                     nvme_rdma_dev_get(ndev))
439                         goto out_unlock;
440         }
441
442         ndev = kzalloc(sizeof(*ndev), GFP_KERNEL);
443         if (!ndev)
444                 goto out_err;
445
446         ndev->dev = cm_id->device;
447         kref_init(&ndev->ref);
448
449         ndev->pd = ib_alloc_pd(ndev->dev);
450         if (IS_ERR(ndev->pd))
451                 goto out_free_dev;
452
453         if (!register_always) {
454                 ndev->mr = ib_get_dma_mr(ndev->pd,
455                                             IB_ACCESS_LOCAL_WRITE |
456                                             IB_ACCESS_REMOTE_READ |
457                                             IB_ACCESS_REMOTE_WRITE);
458                 if (IS_ERR(ndev->mr))
459                         goto out_free_pd;
460         }
461
462         if (!(ndev->dev->attrs.device_cap_flags &
463               IB_DEVICE_MEM_MGT_EXTENSIONS)) {
464                 dev_err(&ndev->dev->dev,
465                         "Memory registrations not supported.\n");
466                 goto out_free_mr;
467         }
468
469         list_add(&ndev->entry, &device_list);
470 out_unlock:
471         mutex_unlock(&device_list_mutex);
472         return ndev;
473
474 out_free_mr:
475         if (!register_always)
476                 ib_dereg_mr(ndev->mr);
477 out_free_pd:
478         ib_dealloc_pd(ndev->pd);
479 out_free_dev:
480         kfree(ndev);
481 out_err:
482         mutex_unlock(&device_list_mutex);
483         return NULL;
484 }
485
486 static void nvme_rdma_destroy_queue_ib(struct nvme_rdma_queue *queue)
487 {
488         struct nvme_rdma_device *dev = queue->device;
489         struct ib_device *ibdev = dev->dev;
490
491         rdma_destroy_qp(queue->cm_id);
492         ib_free_cq(queue->ib_cq);
493
494         nvme_rdma_free_ring(ibdev, queue->rsp_ring, queue->queue_size,
495                         sizeof(struct nvme_completion), DMA_FROM_DEVICE);
496
497         nvme_rdma_dev_put(dev);
498 }
499
500 static int nvme_rdma_create_queue_ib(struct nvme_rdma_queue *queue,
501                 struct nvme_rdma_device *dev)
502 {
503         struct ib_device *ibdev = dev->dev;
504         const int send_wr_factor = 3;                   /* MR, SEND, INV */
505         const int cq_factor = send_wr_factor + 1;       /* + RECV */
506         int comp_vector, idx = nvme_rdma_queue_idx(queue);
507
508         int ret;
509
510         queue->device = dev;
511
512         /*
513          * The admin queue is barely used once the controller is live, so don't
514          * bother to spread it out.
515          */
516         if (idx == 0)
517                 comp_vector = 0;
518         else
519                 comp_vector = idx % ibdev->num_comp_vectors;
520
521
522         /* +1 for ib_stop_cq */
523         queue->ib_cq = ib_alloc_cq(dev->dev, queue,
524                                 cq_factor * queue->queue_size + 1, comp_vector,
525                                 IB_POLL_SOFTIRQ);
526         if (IS_ERR(queue->ib_cq)) {
527                 ret = PTR_ERR(queue->ib_cq);
528                 goto out;
529         }
530
531         ret = nvme_rdma_create_qp(queue, send_wr_factor);
532         if (ret)
533                 goto out_destroy_ib_cq;
534
535         queue->rsp_ring = nvme_rdma_alloc_ring(ibdev, queue->queue_size,
536                         sizeof(struct nvme_completion), DMA_FROM_DEVICE);
537         if (!queue->rsp_ring) {
538                 ret = -ENOMEM;
539                 goto out_destroy_qp;
540         }
541
542         return 0;
543
544 out_destroy_qp:
545         ib_destroy_qp(queue->qp);
546 out_destroy_ib_cq:
547         ib_free_cq(queue->ib_cq);
548 out:
549         return ret;
550 }
551
552 static int nvme_rdma_init_queue(struct nvme_rdma_ctrl *ctrl,
553                 int idx, size_t queue_size)
554 {
555         struct nvme_rdma_queue *queue;
556         int ret;
557
558         queue = &ctrl->queues[idx];
559         queue->ctrl = ctrl;
560         init_completion(&queue->cm_done);
561
562         if (idx > 0)
563                 queue->cmnd_capsule_len = ctrl->ctrl.ioccsz * 16;
564         else
565                 queue->cmnd_capsule_len = sizeof(struct nvme_command);
566
567         queue->queue_size = queue_size;
568
569         queue->cm_id = rdma_create_id(&init_net, nvme_rdma_cm_handler, queue,
570                         RDMA_PS_TCP, IB_QPT_RC);
571         if (IS_ERR(queue->cm_id)) {
572                 dev_info(ctrl->ctrl.device,
573                         "failed to create CM ID: %ld\n", PTR_ERR(queue->cm_id));
574                 return PTR_ERR(queue->cm_id);
575         }
576
577         queue->cm_error = -ETIMEDOUT;
578         ret = rdma_resolve_addr(queue->cm_id, NULL, &ctrl->addr,
579                         NVME_RDMA_CONNECT_TIMEOUT_MS);
580         if (ret) {
581                 dev_info(ctrl->ctrl.device,
582                         "rdma_resolve_addr failed (%d).\n", ret);
583                 goto out_destroy_cm_id;
584         }
585
586         ret = nvme_rdma_wait_for_cm(queue);
587         if (ret) {
588                 dev_info(ctrl->ctrl.device,
589                         "rdma_resolve_addr wait failed (%d).\n", ret);
590                 goto out_destroy_cm_id;
591         }
592
593         set_bit(NVME_RDMA_Q_CONNECTED, &queue->flags);
594
595         return 0;
596
597 out_destroy_cm_id:
598         rdma_destroy_id(queue->cm_id);
599         return ret;
600 }
601
602 static void nvme_rdma_stop_queue(struct nvme_rdma_queue *queue)
603 {
604         rdma_disconnect(queue->cm_id);
605         ib_drain_qp(queue->qp);
606 }
607
608 static void nvme_rdma_free_queue(struct nvme_rdma_queue *queue)
609 {
610         nvme_rdma_destroy_queue_ib(queue);
611         rdma_destroy_id(queue->cm_id);
612 }
613
614 static void nvme_rdma_stop_and_free_queue(struct nvme_rdma_queue *queue)
615 {
616         if (!test_and_clear_bit(NVME_RDMA_Q_CONNECTED, &queue->flags))
617                 return;
618         nvme_rdma_stop_queue(queue);
619         nvme_rdma_free_queue(queue);
620 }
621
622 static void nvme_rdma_free_io_queues(struct nvme_rdma_ctrl *ctrl)
623 {
624         int i;
625
626         for (i = 1; i < ctrl->queue_count; i++)
627                 nvme_rdma_stop_and_free_queue(&ctrl->queues[i]);
628 }
629
630 static int nvme_rdma_connect_io_queues(struct nvme_rdma_ctrl *ctrl)
631 {
632         int i, ret = 0;
633
634         for (i = 1; i < ctrl->queue_count; i++) {
635                 ret = nvmf_connect_io_queue(&ctrl->ctrl, i);
636                 if (ret)
637                         break;
638         }
639
640         return ret;
641 }
642
643 static int nvme_rdma_init_io_queues(struct nvme_rdma_ctrl *ctrl)
644 {
645         int i, ret;
646
647         for (i = 1; i < ctrl->queue_count; i++) {
648                 ret = nvme_rdma_init_queue(ctrl, i, ctrl->ctrl.sqsize);
649                 if (ret) {
650                         dev_info(ctrl->ctrl.device,
651                                 "failed to initialize i/o queue: %d\n", ret);
652                         goto out_free_queues;
653                 }
654         }
655
656         return 0;
657
658 out_free_queues:
659         for (; i >= 1; i--)
660                 nvme_rdma_stop_and_free_queue(&ctrl->queues[i]);
661
662         return ret;
663 }
664
665 static void nvme_rdma_destroy_admin_queue(struct nvme_rdma_ctrl *ctrl)
666 {
667         nvme_rdma_free_qe(ctrl->queues[0].device->dev, &ctrl->async_event_sqe,
668                         sizeof(struct nvme_command), DMA_TO_DEVICE);
669         nvme_rdma_stop_and_free_queue(&ctrl->queues[0]);
670         blk_cleanup_queue(ctrl->ctrl.admin_q);
671         blk_mq_free_tag_set(&ctrl->admin_tag_set);
672         nvme_rdma_dev_put(ctrl->device);
673 }
674
675 static void nvme_rdma_free_ctrl(struct nvme_ctrl *nctrl)
676 {
677         struct nvme_rdma_ctrl *ctrl = to_rdma_ctrl(nctrl);
678
679         if (list_empty(&ctrl->list))
680                 goto free_ctrl;
681
682         mutex_lock(&nvme_rdma_ctrl_mutex);
683         list_del(&ctrl->list);
684         mutex_unlock(&nvme_rdma_ctrl_mutex);
685
686         kfree(ctrl->queues);
687         nvmf_free_options(nctrl->opts);
688 free_ctrl:
689         kfree(ctrl);
690 }
691
692 static void nvme_rdma_reconnect_ctrl_work(struct work_struct *work)
693 {
694         struct nvme_rdma_ctrl *ctrl = container_of(to_delayed_work(work),
695                         struct nvme_rdma_ctrl, reconnect_work);
696         bool changed;
697         int ret;
698
699         if (ctrl->queue_count > 1) {
700                 nvme_rdma_free_io_queues(ctrl);
701
702                 ret = blk_mq_reinit_tagset(&ctrl->tag_set);
703                 if (ret)
704                         goto requeue;
705         }
706
707         nvme_rdma_stop_and_free_queue(&ctrl->queues[0]);
708
709         ret = blk_mq_reinit_tagset(&ctrl->admin_tag_set);
710         if (ret)
711                 goto requeue;
712
713         ret = nvme_rdma_init_queue(ctrl, 0, NVMF_AQ_DEPTH);
714         if (ret)
715                 goto requeue;
716
717         blk_mq_start_stopped_hw_queues(ctrl->ctrl.admin_q, true);
718
719         ret = nvmf_connect_admin_queue(&ctrl->ctrl);
720         if (ret)
721                 goto stop_admin_q;
722
723         ret = nvme_enable_ctrl(&ctrl->ctrl, ctrl->cap);
724         if (ret)
725                 goto stop_admin_q;
726
727         nvme_start_keep_alive(&ctrl->ctrl);
728
729         if (ctrl->queue_count > 1) {
730                 ret = nvme_rdma_init_io_queues(ctrl);
731                 if (ret)
732                         goto stop_admin_q;
733
734                 ret = nvme_rdma_connect_io_queues(ctrl);
735                 if (ret)
736                         goto stop_admin_q;
737         }
738
739         changed = nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_LIVE);
740         WARN_ON_ONCE(!changed);
741
742         if (ctrl->queue_count > 1) {
743                 nvme_start_queues(&ctrl->ctrl);
744                 nvme_queue_scan(&ctrl->ctrl);
745                 nvme_queue_async_events(&ctrl->ctrl);
746         }
747
748         dev_info(ctrl->ctrl.device, "Successfully reconnected\n");
749
750         return;
751
752 stop_admin_q:
753         blk_mq_stop_hw_queues(ctrl->ctrl.admin_q);
754 requeue:
755         /* Make sure we are not resetting/deleting */
756         if (ctrl->ctrl.state == NVME_CTRL_RECONNECTING) {
757                 dev_info(ctrl->ctrl.device,
758                         "Failed reconnect attempt, requeueing...\n");
759                 queue_delayed_work(nvme_rdma_wq, &ctrl->reconnect_work,
760                                         ctrl->reconnect_delay * HZ);
761         }
762 }
763
764 static void nvme_rdma_error_recovery_work(struct work_struct *work)
765 {
766         struct nvme_rdma_ctrl *ctrl = container_of(work,
767                         struct nvme_rdma_ctrl, err_work);
768
769         nvme_stop_keep_alive(&ctrl->ctrl);
770         if (ctrl->queue_count > 1)
771                 nvme_stop_queues(&ctrl->ctrl);
772         blk_mq_stop_hw_queues(ctrl->ctrl.admin_q);
773
774         /* We must take care of fastfail/requeue all our inflight requests */
775         if (ctrl->queue_count > 1)
776                 blk_mq_tagset_busy_iter(&ctrl->tag_set,
777                                         nvme_cancel_request, &ctrl->ctrl);
778         blk_mq_tagset_busy_iter(&ctrl->admin_tag_set,
779                                 nvme_cancel_request, &ctrl->ctrl);
780
781         dev_info(ctrl->ctrl.device, "reconnecting in %d seconds\n",
782                 ctrl->reconnect_delay);
783
784         queue_delayed_work(nvme_rdma_wq, &ctrl->reconnect_work,
785                                 ctrl->reconnect_delay * HZ);
786 }
787
788 static void nvme_rdma_error_recovery(struct nvme_rdma_ctrl *ctrl)
789 {
790         if (!nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_RECONNECTING))
791                 return;
792
793         queue_work(nvme_rdma_wq, &ctrl->err_work);
794 }
795
796 static void nvme_rdma_wr_error(struct ib_cq *cq, struct ib_wc *wc,
797                 const char *op)
798 {
799         struct nvme_rdma_queue *queue = cq->cq_context;
800         struct nvme_rdma_ctrl *ctrl = queue->ctrl;
801
802         if (ctrl->ctrl.state == NVME_CTRL_LIVE)
803                 dev_info(ctrl->ctrl.device,
804                              "%s for CQE 0x%p failed with status %s (%d)\n",
805                              op, wc->wr_cqe,
806                              ib_wc_status_msg(wc->status), wc->status);
807         nvme_rdma_error_recovery(ctrl);
808 }
809
810 static void nvme_rdma_memreg_done(struct ib_cq *cq, struct ib_wc *wc)
811 {
812         if (unlikely(wc->status != IB_WC_SUCCESS))
813                 nvme_rdma_wr_error(cq, wc, "MEMREG");
814 }
815
816 static void nvme_rdma_inv_rkey_done(struct ib_cq *cq, struct ib_wc *wc)
817 {
818         if (unlikely(wc->status != IB_WC_SUCCESS))
819                 nvme_rdma_wr_error(cq, wc, "LOCAL_INV");
820 }
821
822 static int nvme_rdma_inv_rkey(struct nvme_rdma_queue *queue,
823                 struct nvme_rdma_request *req)
824 {
825         struct ib_send_wr *bad_wr;
826         struct ib_send_wr wr = {
827                 .opcode             = IB_WR_LOCAL_INV,
828                 .next               = NULL,
829                 .num_sge            = 0,
830                 .send_flags         = 0,
831                 .ex.invalidate_rkey = req->mr->rkey,
832         };
833
834         req->reg_cqe.done = nvme_rdma_inv_rkey_done;
835         wr.wr_cqe = &req->reg_cqe;
836
837         return ib_post_send(queue->qp, &wr, &bad_wr);
838 }
839
840 static void nvme_rdma_unmap_data(struct nvme_rdma_queue *queue,
841                 struct request *rq)
842 {
843         struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
844         struct nvme_rdma_ctrl *ctrl = queue->ctrl;
845         struct nvme_rdma_device *dev = queue->device;
846         struct ib_device *ibdev = dev->dev;
847         int res;
848
849         if (!blk_rq_bytes(rq))
850                 return;
851
852         if (req->need_inval) {
853                 res = nvme_rdma_inv_rkey(queue, req);
854                 if (res < 0) {
855                         dev_err(ctrl->ctrl.device,
856                                 "Queueing INV WR for rkey %#x failed (%d)\n",
857                                 req->mr->rkey, res);
858                         nvme_rdma_error_recovery(queue->ctrl);
859                 }
860         }
861
862         ib_dma_unmap_sg(ibdev, req->sg_table.sgl,
863                         req->nents, rq_data_dir(rq) ==
864                                     WRITE ? DMA_TO_DEVICE : DMA_FROM_DEVICE);
865
866         nvme_cleanup_cmd(rq);
867         sg_free_table_chained(&req->sg_table, true);
868 }
869
870 static int nvme_rdma_set_sg_null(struct nvme_command *c)
871 {
872         struct nvme_keyed_sgl_desc *sg = &c->common.dptr.ksgl;
873
874         sg->addr = 0;
875         put_unaligned_le24(0, sg->length);
876         put_unaligned_le32(0, sg->key);
877         sg->type = NVME_KEY_SGL_FMT_DATA_DESC << 4;
878         return 0;
879 }
880
881 static int nvme_rdma_map_sg_inline(struct nvme_rdma_queue *queue,
882                 struct nvme_rdma_request *req, struct nvme_command *c)
883 {
884         struct nvme_sgl_desc *sg = &c->common.dptr.sgl;
885
886         req->sge[1].addr = sg_dma_address(req->sg_table.sgl);
887         req->sge[1].length = sg_dma_len(req->sg_table.sgl);
888         req->sge[1].lkey = queue->device->pd->local_dma_lkey;
889
890         sg->addr = cpu_to_le64(queue->ctrl->ctrl.icdoff);
891         sg->length = cpu_to_le32(sg_dma_len(req->sg_table.sgl));
892         sg->type = (NVME_SGL_FMT_DATA_DESC << 4) | NVME_SGL_FMT_OFFSET;
893
894         req->inline_data = true;
895         req->num_sge++;
896         return 0;
897 }
898
899 static int nvme_rdma_map_sg_single(struct nvme_rdma_queue *queue,
900                 struct nvme_rdma_request *req, struct nvme_command *c)
901 {
902         struct nvme_keyed_sgl_desc *sg = &c->common.dptr.ksgl;
903
904         sg->addr = cpu_to_le64(sg_dma_address(req->sg_table.sgl));
905         put_unaligned_le24(sg_dma_len(req->sg_table.sgl), sg->length);
906         put_unaligned_le32(queue->device->mr->rkey, sg->key);
907         sg->type = NVME_KEY_SGL_FMT_DATA_DESC << 4;
908         return 0;
909 }
910
911 static int nvme_rdma_map_sg_fr(struct nvme_rdma_queue *queue,
912                 struct nvme_rdma_request *req, struct nvme_command *c,
913                 int count)
914 {
915         struct nvme_keyed_sgl_desc *sg = &c->common.dptr.ksgl;
916         int nr;
917
918         nr = ib_map_mr_sg(req->mr, req->sg_table.sgl, count, NULL, PAGE_SIZE);
919         if (nr < count) {
920                 if (nr < 0)
921                         return nr;
922                 return -EINVAL;
923         }
924
925         ib_update_fast_reg_key(req->mr, ib_inc_rkey(req->mr->rkey));
926
927         req->reg_cqe.done = nvme_rdma_memreg_done;
928         memset(&req->reg_wr, 0, sizeof(req->reg_wr));
929         req->reg_wr.wr.opcode = IB_WR_REG_MR;
930         req->reg_wr.wr.wr_cqe = &req->reg_cqe;
931         req->reg_wr.wr.num_sge = 0;
932         req->reg_wr.mr = req->mr;
933         req->reg_wr.key = req->mr->rkey;
934         req->reg_wr.access = IB_ACCESS_LOCAL_WRITE |
935                              IB_ACCESS_REMOTE_READ |
936                              IB_ACCESS_REMOTE_WRITE;
937
938         req->need_inval = true;
939
940         sg->addr = cpu_to_le64(req->mr->iova);
941         put_unaligned_le24(req->mr->length, sg->length);
942         put_unaligned_le32(req->mr->rkey, sg->key);
943         sg->type = (NVME_KEY_SGL_FMT_DATA_DESC << 4) |
944                         NVME_SGL_FMT_INVALIDATE;
945
946         return 0;
947 }
948
949 static int nvme_rdma_map_data(struct nvme_rdma_queue *queue,
950                 struct request *rq, unsigned int map_len,
951                 struct nvme_command *c)
952 {
953         struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
954         struct nvme_rdma_device *dev = queue->device;
955         struct ib_device *ibdev = dev->dev;
956         int nents, count;
957         int ret;
958
959         req->num_sge = 1;
960         req->inline_data = false;
961         req->need_inval = false;
962
963         c->common.flags |= NVME_CMD_SGL_METABUF;
964
965         if (!blk_rq_bytes(rq))
966                 return nvme_rdma_set_sg_null(c);
967
968         req->sg_table.sgl = req->first_sgl;
969         ret = sg_alloc_table_chained(&req->sg_table, rq->nr_phys_segments,
970                                 req->sg_table.sgl);
971         if (ret)
972                 return -ENOMEM;
973
974         nents = blk_rq_map_sg(rq->q, rq, req->sg_table.sgl);
975         BUG_ON(nents > rq->nr_phys_segments);
976         req->nents = nents;
977
978         count = ib_dma_map_sg(ibdev, req->sg_table.sgl, nents,
979                     rq_data_dir(rq) == WRITE ? DMA_TO_DEVICE : DMA_FROM_DEVICE);
980         if (unlikely(count <= 0)) {
981                 sg_free_table_chained(&req->sg_table, true);
982                 return -EIO;
983         }
984
985         if (count == 1) {
986                 if (rq_data_dir(rq) == WRITE &&
987                     map_len <= nvme_rdma_inline_data_size(queue) &&
988                     nvme_rdma_queue_idx(queue))
989                         return nvme_rdma_map_sg_inline(queue, req, c);
990
991                 if (!register_always)
992                         return nvme_rdma_map_sg_single(queue, req, c);
993         }
994
995         return nvme_rdma_map_sg_fr(queue, req, c, count);
996 }
997
998 static void nvme_rdma_send_done(struct ib_cq *cq, struct ib_wc *wc)
999 {
1000         if (unlikely(wc->status != IB_WC_SUCCESS))
1001                 nvme_rdma_wr_error(cq, wc, "SEND");
1002 }
1003
1004 static int nvme_rdma_post_send(struct nvme_rdma_queue *queue,
1005                 struct nvme_rdma_qe *qe, struct ib_sge *sge, u32 num_sge,
1006                 struct ib_send_wr *first, bool flush)
1007 {
1008         struct ib_send_wr wr, *bad_wr;
1009         int ret;
1010
1011         sge->addr   = qe->dma;
1012         sge->length = sizeof(struct nvme_command),
1013         sge->lkey   = queue->device->pd->local_dma_lkey;
1014
1015         qe->cqe.done = nvme_rdma_send_done;
1016
1017         wr.next       = NULL;
1018         wr.wr_cqe     = &qe->cqe;
1019         wr.sg_list    = sge;
1020         wr.num_sge    = num_sge;
1021         wr.opcode     = IB_WR_SEND;
1022         wr.send_flags = 0;
1023
1024         /*
1025          * Unsignalled send completions are another giant desaster in the
1026          * IB Verbs spec:  If we don't regularly post signalled sends
1027          * the send queue will fill up and only a QP reset will rescue us.
1028          * Would have been way to obvious to handle this in hardware or
1029          * at least the RDMA stack..
1030          *
1031          * This messy and racy code sniplet is copy and pasted from the iSER
1032          * initiator, and the magic '32' comes from there as well.
1033          *
1034          * Always signal the flushes. The magic request used for the flush
1035          * sequencer is not allocated in our driver's tagset and it's
1036          * triggered to be freed by blk_cleanup_queue(). So we need to
1037          * always mark it as signaled to ensure that the "wr_cqe", which is
1038          * embeded in request's payload, is not freed when __ib_process_cq()
1039          * calls wr_cqe->done().
1040          */
1041         if ((++queue->sig_count % 32) == 0 || flush)
1042                 wr.send_flags |= IB_SEND_SIGNALED;
1043
1044         if (first)
1045                 first->next = &wr;
1046         else
1047                 first = &wr;
1048
1049         ret = ib_post_send(queue->qp, first, &bad_wr);
1050         if (ret) {
1051                 dev_err(queue->ctrl->ctrl.device,
1052                              "%s failed with error code %d\n", __func__, ret);
1053         }
1054         return ret;
1055 }
1056
1057 static int nvme_rdma_post_recv(struct nvme_rdma_queue *queue,
1058                 struct nvme_rdma_qe *qe)
1059 {
1060         struct ib_recv_wr wr, *bad_wr;
1061         struct ib_sge list;
1062         int ret;
1063
1064         list.addr   = qe->dma;
1065         list.length = sizeof(struct nvme_completion);
1066         list.lkey   = queue->device->pd->local_dma_lkey;
1067
1068         qe->cqe.done = nvme_rdma_recv_done;
1069
1070         wr.next     = NULL;
1071         wr.wr_cqe   = &qe->cqe;
1072         wr.sg_list  = &list;
1073         wr.num_sge  = 1;
1074
1075         ret = ib_post_recv(queue->qp, &wr, &bad_wr);
1076         if (ret) {
1077                 dev_err(queue->ctrl->ctrl.device,
1078                         "%s failed with error code %d\n", __func__, ret);
1079         }
1080         return ret;
1081 }
1082
1083 static struct blk_mq_tags *nvme_rdma_tagset(struct nvme_rdma_queue *queue)
1084 {
1085         u32 queue_idx = nvme_rdma_queue_idx(queue);
1086
1087         if (queue_idx == 0)
1088                 return queue->ctrl->admin_tag_set.tags[queue_idx];
1089         return queue->ctrl->tag_set.tags[queue_idx - 1];
1090 }
1091
1092 static void nvme_rdma_submit_async_event(struct nvme_ctrl *arg, int aer_idx)
1093 {
1094         struct nvme_rdma_ctrl *ctrl = to_rdma_ctrl(arg);
1095         struct nvme_rdma_queue *queue = &ctrl->queues[0];
1096         struct ib_device *dev = queue->device->dev;
1097         struct nvme_rdma_qe *sqe = &ctrl->async_event_sqe;
1098         struct nvme_command *cmd = sqe->data;
1099         struct ib_sge sge;
1100         int ret;
1101
1102         if (WARN_ON_ONCE(aer_idx != 0))
1103                 return;
1104
1105         ib_dma_sync_single_for_cpu(dev, sqe->dma, sizeof(*cmd), DMA_TO_DEVICE);
1106
1107         memset(cmd, 0, sizeof(*cmd));
1108         cmd->common.opcode = nvme_admin_async_event;
1109         cmd->common.command_id = NVME_RDMA_AQ_BLKMQ_DEPTH;
1110         cmd->common.flags |= NVME_CMD_SGL_METABUF;
1111         nvme_rdma_set_sg_null(cmd);
1112
1113         ib_dma_sync_single_for_device(dev, sqe->dma, sizeof(*cmd),
1114                         DMA_TO_DEVICE);
1115
1116         ret = nvme_rdma_post_send(queue, sqe, &sge, 1, NULL, false);
1117         WARN_ON_ONCE(ret);
1118 }
1119
1120 static int nvme_rdma_process_nvme_rsp(struct nvme_rdma_queue *queue,
1121                 struct nvme_completion *cqe, struct ib_wc *wc, int tag)
1122 {
1123         u16 status = le16_to_cpu(cqe->status);
1124         struct request *rq;
1125         struct nvme_rdma_request *req;
1126         int ret = 0;
1127
1128         status >>= 1;
1129
1130         rq = blk_mq_tag_to_rq(nvme_rdma_tagset(queue), cqe->command_id);
1131         if (!rq) {
1132                 dev_err(queue->ctrl->ctrl.device,
1133                         "tag 0x%x on QP %#x not found\n",
1134                         cqe->command_id, queue->qp->qp_num);
1135                 nvme_rdma_error_recovery(queue->ctrl);
1136                 return ret;
1137         }
1138         req = blk_mq_rq_to_pdu(rq);
1139
1140         if (rq->cmd_type == REQ_TYPE_DRV_PRIV && rq->special)
1141                 memcpy(rq->special, cqe, sizeof(*cqe));
1142
1143         if (rq->tag == tag)
1144                 ret = 1;
1145
1146         if ((wc->wc_flags & IB_WC_WITH_INVALIDATE) &&
1147             wc->ex.invalidate_rkey == req->mr->rkey)
1148                 req->need_inval = false;
1149
1150         blk_mq_complete_request(rq, status);
1151
1152         return ret;
1153 }
1154
1155 static int __nvme_rdma_recv_done(struct ib_cq *cq, struct ib_wc *wc, int tag)
1156 {
1157         struct nvme_rdma_qe *qe =
1158                 container_of(wc->wr_cqe, struct nvme_rdma_qe, cqe);
1159         struct nvme_rdma_queue *queue = cq->cq_context;
1160         struct ib_device *ibdev = queue->device->dev;
1161         struct nvme_completion *cqe = qe->data;
1162         const size_t len = sizeof(struct nvme_completion);
1163         int ret = 0;
1164
1165         if (unlikely(wc->status != IB_WC_SUCCESS)) {
1166                 nvme_rdma_wr_error(cq, wc, "RECV");
1167                 return 0;
1168         }
1169
1170         ib_dma_sync_single_for_cpu(ibdev, qe->dma, len, DMA_FROM_DEVICE);
1171         /*
1172          * AEN requests are special as they don't time out and can
1173          * survive any kind of queue freeze and often don't respond to
1174          * aborts.  We don't even bother to allocate a struct request
1175          * for them but rather special case them here.
1176          */
1177         if (unlikely(nvme_rdma_queue_idx(queue) == 0 &&
1178                         cqe->command_id >= NVME_RDMA_AQ_BLKMQ_DEPTH))
1179                 nvme_complete_async_event(&queue->ctrl->ctrl, cqe);
1180         else
1181                 ret = nvme_rdma_process_nvme_rsp(queue, cqe, wc, tag);
1182         ib_dma_sync_single_for_device(ibdev, qe->dma, len, DMA_FROM_DEVICE);
1183
1184         nvme_rdma_post_recv(queue, qe);
1185         return ret;
1186 }
1187
1188 static void nvme_rdma_recv_done(struct ib_cq *cq, struct ib_wc *wc)
1189 {
1190         __nvme_rdma_recv_done(cq, wc, -1);
1191 }
1192
1193 static int nvme_rdma_conn_established(struct nvme_rdma_queue *queue)
1194 {
1195         int ret, i;
1196
1197         for (i = 0; i < queue->queue_size; i++) {
1198                 ret = nvme_rdma_post_recv(queue, &queue->rsp_ring[i]);
1199                 if (ret)
1200                         goto out_destroy_queue_ib;
1201         }
1202
1203         return 0;
1204
1205 out_destroy_queue_ib:
1206         nvme_rdma_destroy_queue_ib(queue);
1207         return ret;
1208 }
1209
1210 static int nvme_rdma_conn_rejected(struct nvme_rdma_queue *queue,
1211                 struct rdma_cm_event *ev)
1212 {
1213         if (ev->param.conn.private_data_len) {
1214                 struct nvme_rdma_cm_rej *rej =
1215                         (struct nvme_rdma_cm_rej *)ev->param.conn.private_data;
1216
1217                 dev_err(queue->ctrl->ctrl.device,
1218                         "Connect rejected, status %d.", le16_to_cpu(rej->sts));
1219                 /* XXX: Think of something clever to do here... */
1220         } else {
1221                 dev_err(queue->ctrl->ctrl.device,
1222                         "Connect rejected, no private data.\n");
1223         }
1224
1225         return -ECONNRESET;
1226 }
1227
1228 static int nvme_rdma_addr_resolved(struct nvme_rdma_queue *queue)
1229 {
1230         struct nvme_rdma_device *dev;
1231         int ret;
1232
1233         dev = nvme_rdma_find_get_device(queue->cm_id);
1234         if (!dev) {
1235                 dev_err(queue->cm_id->device->dma_device,
1236                         "no client data found!\n");
1237                 return -ECONNREFUSED;
1238         }
1239
1240         ret = nvme_rdma_create_queue_ib(queue, dev);
1241         if (ret) {
1242                 nvme_rdma_dev_put(dev);
1243                 goto out;
1244         }
1245
1246         ret = rdma_resolve_route(queue->cm_id, NVME_RDMA_CONNECT_TIMEOUT_MS);
1247         if (ret) {
1248                 dev_err(queue->ctrl->ctrl.device,
1249                         "rdma_resolve_route failed (%d).\n",
1250                         queue->cm_error);
1251                 goto out_destroy_queue;
1252         }
1253
1254         return 0;
1255
1256 out_destroy_queue:
1257         nvme_rdma_destroy_queue_ib(queue);
1258 out:
1259         return ret;
1260 }
1261
1262 static int nvme_rdma_route_resolved(struct nvme_rdma_queue *queue)
1263 {
1264         struct nvme_rdma_ctrl *ctrl = queue->ctrl;
1265         struct rdma_conn_param param = { };
1266         struct nvme_rdma_cm_req priv = { };
1267         int ret;
1268
1269         param.qp_num = queue->qp->qp_num;
1270         param.flow_control = 1;
1271
1272         param.responder_resources = queue->device->dev->attrs.max_qp_rd_atom;
1273         /* maximum retry count */
1274         param.retry_count = 7;
1275         param.rnr_retry_count = 7;
1276         param.private_data = &priv;
1277         param.private_data_len = sizeof(priv);
1278
1279         priv.recfmt = cpu_to_le16(NVME_RDMA_CM_FMT_1_0);
1280         priv.qid = cpu_to_le16(nvme_rdma_queue_idx(queue));
1281         priv.hrqsize = cpu_to_le16(queue->queue_size);
1282         priv.hsqsize = cpu_to_le16(queue->queue_size);
1283
1284         ret = rdma_connect(queue->cm_id, &param);
1285         if (ret) {
1286                 dev_err(ctrl->ctrl.device,
1287                         "rdma_connect failed (%d).\n", ret);
1288                 goto out_destroy_queue_ib;
1289         }
1290
1291         return 0;
1292
1293 out_destroy_queue_ib:
1294         nvme_rdma_destroy_queue_ib(queue);
1295         return ret;
1296 }
1297
1298 /**
1299  * nvme_rdma_device_unplug() - Handle RDMA device unplug
1300  * @queue:      Queue that owns the cm_id that caught the event
1301  *
1302  * DEVICE_REMOVAL event notifies us that the RDMA device is about
1303  * to unplug so we should take care of destroying our RDMA resources.
1304  * This event will be generated for each allocated cm_id.
1305  *
1306  * In our case, the RDMA resources are managed per controller and not
1307  * only per queue. So the way we handle this is we trigger an implicit
1308  * controller deletion upon the first DEVICE_REMOVAL event we see, and
1309  * hold the event inflight until the controller deletion is completed.
1310  *
1311  * One exception that we need to handle is the destruction of the cm_id
1312  * that caught the event. Since we hold the callout until the controller
1313  * deletion is completed, we'll deadlock if the controller deletion will
1314  * call rdma_destroy_id on this queue's cm_id. Thus, we claim ownership
1315  * of destroying this queue before-hand, destroy the queue resources,
1316  * then queue the controller deletion which won't destroy this queue and
1317  * we destroy the cm_id implicitely by returning a non-zero rc to the callout.
1318  */
1319 static int nvme_rdma_device_unplug(struct nvme_rdma_queue *queue)
1320 {
1321         struct nvme_rdma_ctrl *ctrl = queue->ctrl;
1322         int ret;
1323
1324         /* Own the controller deletion */
1325         if (!nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_DELETING))
1326                 return 0;
1327
1328         dev_warn(ctrl->ctrl.device,
1329                 "Got rdma device removal event, deleting ctrl\n");
1330
1331         /* Get rid of reconnect work if its running */
1332         cancel_delayed_work_sync(&ctrl->reconnect_work);
1333
1334         /* Disable the queue so ctrl delete won't free it */
1335         if (test_and_clear_bit(NVME_RDMA_Q_CONNECTED, &queue->flags)) {
1336                 /* Free this queue ourselves */
1337                 nvme_rdma_stop_queue(queue);
1338                 nvme_rdma_destroy_queue_ib(queue);
1339
1340                 /* Return non-zero so the cm_id will destroy implicitly */
1341                 ret = 1;
1342         }
1343
1344         /* Queue controller deletion */
1345         queue_work(nvme_rdma_wq, &ctrl->delete_work);
1346         flush_work(&ctrl->delete_work);
1347         return ret;
1348 }
1349
1350 static int nvme_rdma_cm_handler(struct rdma_cm_id *cm_id,
1351                 struct rdma_cm_event *ev)
1352 {
1353         struct nvme_rdma_queue *queue = cm_id->context;
1354         int cm_error = 0;
1355
1356         dev_dbg(queue->ctrl->ctrl.device, "%s (%d): status %d id %p\n",
1357                 rdma_event_msg(ev->event), ev->event,
1358                 ev->status, cm_id);
1359
1360         switch (ev->event) {
1361         case RDMA_CM_EVENT_ADDR_RESOLVED:
1362                 cm_error = nvme_rdma_addr_resolved(queue);
1363                 break;
1364         case RDMA_CM_EVENT_ROUTE_RESOLVED:
1365                 cm_error = nvme_rdma_route_resolved(queue);
1366                 break;
1367         case RDMA_CM_EVENT_ESTABLISHED:
1368                 queue->cm_error = nvme_rdma_conn_established(queue);
1369                 /* complete cm_done regardless of success/failure */
1370                 complete(&queue->cm_done);
1371                 return 0;
1372         case RDMA_CM_EVENT_REJECTED:
1373                 cm_error = nvme_rdma_conn_rejected(queue, ev);
1374                 break;
1375         case RDMA_CM_EVENT_ADDR_ERROR:
1376         case RDMA_CM_EVENT_ROUTE_ERROR:
1377         case RDMA_CM_EVENT_CONNECT_ERROR:
1378         case RDMA_CM_EVENT_UNREACHABLE:
1379                 dev_dbg(queue->ctrl->ctrl.device,
1380                         "CM error event %d\n", ev->event);
1381                 cm_error = -ECONNRESET;
1382                 break;
1383         case RDMA_CM_EVENT_DISCONNECTED:
1384         case RDMA_CM_EVENT_ADDR_CHANGE:
1385         case RDMA_CM_EVENT_TIMEWAIT_EXIT:
1386                 dev_dbg(queue->ctrl->ctrl.device,
1387                         "disconnect received - connection closed\n");
1388                 nvme_rdma_error_recovery(queue->ctrl);
1389                 break;
1390         case RDMA_CM_EVENT_DEVICE_REMOVAL:
1391                 /* return 1 means impliciy CM ID destroy */
1392                 return nvme_rdma_device_unplug(queue);
1393         default:
1394                 dev_err(queue->ctrl->ctrl.device,
1395                         "Unexpected RDMA CM event (%d)\n", ev->event);
1396                 nvme_rdma_error_recovery(queue->ctrl);
1397                 break;
1398         }
1399
1400         if (cm_error) {
1401                 queue->cm_error = cm_error;
1402                 complete(&queue->cm_done);
1403         }
1404
1405         return 0;
1406 }
1407
1408 static enum blk_eh_timer_return
1409 nvme_rdma_timeout(struct request *rq, bool reserved)
1410 {
1411         struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
1412
1413         /* queue error recovery */
1414         nvme_rdma_error_recovery(req->queue->ctrl);
1415
1416         /* fail with DNR on cmd timeout */
1417         rq->errors = NVME_SC_ABORT_REQ | NVME_SC_DNR;
1418
1419         return BLK_EH_HANDLED;
1420 }
1421
1422 static int nvme_rdma_queue_rq(struct blk_mq_hw_ctx *hctx,
1423                 const struct blk_mq_queue_data *bd)
1424 {
1425         struct nvme_ns *ns = hctx->queue->queuedata;
1426         struct nvme_rdma_queue *queue = hctx->driver_data;
1427         struct request *rq = bd->rq;
1428         struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
1429         struct nvme_rdma_qe *sqe = &req->sqe;
1430         struct nvme_command *c = sqe->data;
1431         bool flush = false;
1432         struct ib_device *dev;
1433         unsigned int map_len;
1434         int ret;
1435
1436         WARN_ON_ONCE(rq->tag < 0);
1437
1438         dev = queue->device->dev;
1439         ib_dma_sync_single_for_cpu(dev, sqe->dma,
1440                         sizeof(struct nvme_command), DMA_TO_DEVICE);
1441
1442         ret = nvme_setup_cmd(ns, rq, c);
1443         if (ret)
1444                 return ret;
1445
1446         c->common.command_id = rq->tag;
1447         blk_mq_start_request(rq);
1448
1449         map_len = nvme_map_len(rq);
1450         ret = nvme_rdma_map_data(queue, rq, map_len, c);
1451         if (ret < 0) {
1452                 dev_err(queue->ctrl->ctrl.device,
1453                              "Failed to map data (%d)\n", ret);
1454                 nvme_cleanup_cmd(rq);
1455                 goto err;
1456         }
1457
1458         ib_dma_sync_single_for_device(dev, sqe->dma,
1459                         sizeof(struct nvme_command), DMA_TO_DEVICE);
1460
1461         if (rq->cmd_type == REQ_TYPE_FS && req_op(rq) == REQ_OP_FLUSH)
1462                 flush = true;
1463         ret = nvme_rdma_post_send(queue, sqe, req->sge, req->num_sge,
1464                         req->need_inval ? &req->reg_wr.wr : NULL, flush);
1465         if (ret) {
1466                 nvme_rdma_unmap_data(queue, rq);
1467                 goto err;
1468         }
1469
1470         return BLK_MQ_RQ_QUEUE_OK;
1471 err:
1472         return (ret == -ENOMEM || ret == -EAGAIN) ?
1473                 BLK_MQ_RQ_QUEUE_BUSY : BLK_MQ_RQ_QUEUE_ERROR;
1474 }
1475
1476 static int nvme_rdma_poll(struct blk_mq_hw_ctx *hctx, unsigned int tag)
1477 {
1478         struct nvme_rdma_queue *queue = hctx->driver_data;
1479         struct ib_cq *cq = queue->ib_cq;
1480         struct ib_wc wc;
1481         int found = 0;
1482
1483         ib_req_notify_cq(cq, IB_CQ_NEXT_COMP);
1484         while (ib_poll_cq(cq, 1, &wc) > 0) {
1485                 struct ib_cqe *cqe = wc.wr_cqe;
1486
1487                 if (cqe) {
1488                         if (cqe->done == nvme_rdma_recv_done)
1489                                 found |= __nvme_rdma_recv_done(cq, &wc, tag);
1490                         else
1491                                 cqe->done(cq, &wc);
1492                 }
1493         }
1494
1495         return found;
1496 }
1497
1498 static void nvme_rdma_complete_rq(struct request *rq)
1499 {
1500         struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
1501         struct nvme_rdma_queue *queue = req->queue;
1502         int error = 0;
1503
1504         nvme_rdma_unmap_data(queue, rq);
1505
1506         if (unlikely(rq->errors)) {
1507                 if (nvme_req_needs_retry(rq, rq->errors)) {
1508                         nvme_requeue_req(rq);
1509                         return;
1510                 }
1511
1512                 if (rq->cmd_type == REQ_TYPE_DRV_PRIV)
1513                         error = rq->errors;
1514                 else
1515                         error = nvme_error_status(rq->errors);
1516         }
1517
1518         blk_mq_end_request(rq, error);
1519 }
1520
1521 static struct blk_mq_ops nvme_rdma_mq_ops = {
1522         .queue_rq       = nvme_rdma_queue_rq,
1523         .complete       = nvme_rdma_complete_rq,
1524         .map_queue      = blk_mq_map_queue,
1525         .init_request   = nvme_rdma_init_request,
1526         .exit_request   = nvme_rdma_exit_request,
1527         .reinit_request = nvme_rdma_reinit_request,
1528         .init_hctx      = nvme_rdma_init_hctx,
1529         .poll           = nvme_rdma_poll,
1530         .timeout        = nvme_rdma_timeout,
1531 };
1532
1533 static struct blk_mq_ops nvme_rdma_admin_mq_ops = {
1534         .queue_rq       = nvme_rdma_queue_rq,
1535         .complete       = nvme_rdma_complete_rq,
1536         .map_queue      = blk_mq_map_queue,
1537         .init_request   = nvme_rdma_init_admin_request,
1538         .exit_request   = nvme_rdma_exit_admin_request,
1539         .reinit_request = nvme_rdma_reinit_request,
1540         .init_hctx      = nvme_rdma_init_admin_hctx,
1541         .timeout        = nvme_rdma_timeout,
1542 };
1543
1544 static int nvme_rdma_configure_admin_queue(struct nvme_rdma_ctrl *ctrl)
1545 {
1546         int error;
1547
1548         error = nvme_rdma_init_queue(ctrl, 0, NVMF_AQ_DEPTH);
1549         if (error)
1550                 return error;
1551
1552         ctrl->device = ctrl->queues[0].device;
1553
1554         /*
1555          * We need a reference on the device as long as the tag_set is alive,
1556          * as the MRs in the request structures need a valid ib_device.
1557          */
1558         error = -EINVAL;
1559         if (!nvme_rdma_dev_get(ctrl->device))
1560                 goto out_free_queue;
1561
1562         ctrl->max_fr_pages = min_t(u32, NVME_RDMA_MAX_SEGMENTS,
1563                 ctrl->device->dev->attrs.max_fast_reg_page_list_len);
1564
1565         memset(&ctrl->admin_tag_set, 0, sizeof(ctrl->admin_tag_set));
1566         ctrl->admin_tag_set.ops = &nvme_rdma_admin_mq_ops;
1567         ctrl->admin_tag_set.queue_depth = NVME_RDMA_AQ_BLKMQ_DEPTH;
1568         ctrl->admin_tag_set.reserved_tags = 2; /* connect + keep-alive */
1569         ctrl->admin_tag_set.numa_node = NUMA_NO_NODE;
1570         ctrl->admin_tag_set.cmd_size = sizeof(struct nvme_rdma_request) +
1571                 SG_CHUNK_SIZE * sizeof(struct scatterlist);
1572         ctrl->admin_tag_set.driver_data = ctrl;
1573         ctrl->admin_tag_set.nr_hw_queues = 1;
1574         ctrl->admin_tag_set.timeout = ADMIN_TIMEOUT;
1575
1576         error = blk_mq_alloc_tag_set(&ctrl->admin_tag_set);
1577         if (error)
1578                 goto out_put_dev;
1579
1580         ctrl->ctrl.admin_q = blk_mq_init_queue(&ctrl->admin_tag_set);
1581         if (IS_ERR(ctrl->ctrl.admin_q)) {
1582                 error = PTR_ERR(ctrl->ctrl.admin_q);
1583                 goto out_free_tagset;
1584         }
1585
1586         error = nvmf_connect_admin_queue(&ctrl->ctrl);
1587         if (error)
1588                 goto out_cleanup_queue;
1589
1590         error = nvmf_reg_read64(&ctrl->ctrl, NVME_REG_CAP, &ctrl->cap);
1591         if (error) {
1592                 dev_err(ctrl->ctrl.device,
1593                         "prop_get NVME_REG_CAP failed\n");
1594                 goto out_cleanup_queue;
1595         }
1596
1597         ctrl->ctrl.sqsize =
1598                 min_t(int, NVME_CAP_MQES(ctrl->cap) + 1, ctrl->ctrl.sqsize);
1599
1600         error = nvme_enable_ctrl(&ctrl->ctrl, ctrl->cap);
1601         if (error)
1602                 goto out_cleanup_queue;
1603
1604         ctrl->ctrl.max_hw_sectors =
1605                 (ctrl->max_fr_pages - 1) << (PAGE_SHIFT - 9);
1606
1607         error = nvme_init_identify(&ctrl->ctrl);
1608         if (error)
1609                 goto out_cleanup_queue;
1610
1611         error = nvme_rdma_alloc_qe(ctrl->queues[0].device->dev,
1612                         &ctrl->async_event_sqe, sizeof(struct nvme_command),
1613                         DMA_TO_DEVICE);
1614         if (error)
1615                 goto out_cleanup_queue;
1616
1617         nvme_start_keep_alive(&ctrl->ctrl);
1618
1619         return 0;
1620
1621 out_cleanup_queue:
1622         blk_cleanup_queue(ctrl->ctrl.admin_q);
1623 out_free_tagset:
1624         /* disconnect and drain the queue before freeing the tagset */
1625         nvme_rdma_stop_queue(&ctrl->queues[0]);
1626         blk_mq_free_tag_set(&ctrl->admin_tag_set);
1627 out_put_dev:
1628         nvme_rdma_dev_put(ctrl->device);
1629 out_free_queue:
1630         nvme_rdma_free_queue(&ctrl->queues[0]);
1631         return error;
1632 }
1633
1634 static void nvme_rdma_shutdown_ctrl(struct nvme_rdma_ctrl *ctrl)
1635 {
1636         nvme_stop_keep_alive(&ctrl->ctrl);
1637         cancel_work_sync(&ctrl->err_work);
1638         cancel_delayed_work_sync(&ctrl->reconnect_work);
1639
1640         if (ctrl->queue_count > 1) {
1641                 nvme_stop_queues(&ctrl->ctrl);
1642                 blk_mq_tagset_busy_iter(&ctrl->tag_set,
1643                                         nvme_cancel_request, &ctrl->ctrl);
1644                 nvme_rdma_free_io_queues(ctrl);
1645         }
1646
1647         if (test_bit(NVME_RDMA_Q_CONNECTED, &ctrl->queues[0].flags))
1648                 nvme_shutdown_ctrl(&ctrl->ctrl);
1649
1650         blk_mq_stop_hw_queues(ctrl->ctrl.admin_q);
1651         blk_mq_tagset_busy_iter(&ctrl->admin_tag_set,
1652                                 nvme_cancel_request, &ctrl->ctrl);
1653         nvme_rdma_destroy_admin_queue(ctrl);
1654 }
1655
1656 static void __nvme_rdma_remove_ctrl(struct nvme_rdma_ctrl *ctrl, bool shutdown)
1657 {
1658         nvme_uninit_ctrl(&ctrl->ctrl);
1659         if (shutdown)
1660                 nvme_rdma_shutdown_ctrl(ctrl);
1661
1662         if (ctrl->ctrl.tagset) {
1663                 blk_cleanup_queue(ctrl->ctrl.connect_q);
1664                 blk_mq_free_tag_set(&ctrl->tag_set);
1665                 nvme_rdma_dev_put(ctrl->device);
1666         }
1667
1668         nvme_put_ctrl(&ctrl->ctrl);
1669 }
1670
1671 static void nvme_rdma_del_ctrl_work(struct work_struct *work)
1672 {
1673         struct nvme_rdma_ctrl *ctrl = container_of(work,
1674                                 struct nvme_rdma_ctrl, delete_work);
1675
1676         __nvme_rdma_remove_ctrl(ctrl, true);
1677 }
1678
1679 static int __nvme_rdma_del_ctrl(struct nvme_rdma_ctrl *ctrl)
1680 {
1681         if (!nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_DELETING))
1682                 return -EBUSY;
1683
1684         if (!queue_work(nvme_rdma_wq, &ctrl->delete_work))
1685                 return -EBUSY;
1686
1687         return 0;
1688 }
1689
1690 static int nvme_rdma_del_ctrl(struct nvme_ctrl *nctrl)
1691 {
1692         struct nvme_rdma_ctrl *ctrl = to_rdma_ctrl(nctrl);
1693         int ret;
1694
1695         ret = __nvme_rdma_del_ctrl(ctrl);
1696         if (ret)
1697                 return ret;
1698
1699         flush_work(&ctrl->delete_work);
1700
1701         return 0;
1702 }
1703
1704 static void nvme_rdma_remove_ctrl_work(struct work_struct *work)
1705 {
1706         struct nvme_rdma_ctrl *ctrl = container_of(work,
1707                                 struct nvme_rdma_ctrl, delete_work);
1708
1709         __nvme_rdma_remove_ctrl(ctrl, false);
1710 }
1711
1712 static void nvme_rdma_reset_ctrl_work(struct work_struct *work)
1713 {
1714         struct nvme_rdma_ctrl *ctrl = container_of(work,
1715                                         struct nvme_rdma_ctrl, reset_work);
1716         int ret;
1717         bool changed;
1718
1719         nvme_rdma_shutdown_ctrl(ctrl);
1720
1721         ret = nvme_rdma_configure_admin_queue(ctrl);
1722         if (ret) {
1723                 /* ctrl is already shutdown, just remove the ctrl */
1724                 INIT_WORK(&ctrl->delete_work, nvme_rdma_remove_ctrl_work);
1725                 goto del_dead_ctrl;
1726         }
1727
1728         if (ctrl->queue_count > 1) {
1729                 ret = blk_mq_reinit_tagset(&ctrl->tag_set);
1730                 if (ret)
1731                         goto del_dead_ctrl;
1732
1733                 ret = nvme_rdma_init_io_queues(ctrl);
1734                 if (ret)
1735                         goto del_dead_ctrl;
1736
1737                 ret = nvme_rdma_connect_io_queues(ctrl);
1738                 if (ret)
1739                         goto del_dead_ctrl;
1740         }
1741
1742         changed = nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_LIVE);
1743         WARN_ON_ONCE(!changed);
1744
1745         if (ctrl->queue_count > 1) {
1746                 nvme_start_queues(&ctrl->ctrl);
1747                 nvme_queue_scan(&ctrl->ctrl);
1748                 nvme_queue_async_events(&ctrl->ctrl);
1749         }
1750
1751         return;
1752
1753 del_dead_ctrl:
1754         /* Deleting this dead controller... */
1755         dev_warn(ctrl->ctrl.device, "Removing after reset failure\n");
1756         WARN_ON(!queue_work(nvme_rdma_wq, &ctrl->delete_work));
1757 }
1758
1759 static int nvme_rdma_reset_ctrl(struct nvme_ctrl *nctrl)
1760 {
1761         struct nvme_rdma_ctrl *ctrl = to_rdma_ctrl(nctrl);
1762
1763         if (!nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_RESETTING))
1764                 return -EBUSY;
1765
1766         if (!queue_work(nvme_rdma_wq, &ctrl->reset_work))
1767                 return -EBUSY;
1768
1769         flush_work(&ctrl->reset_work);
1770
1771         return 0;
1772 }
1773
1774 static const struct nvme_ctrl_ops nvme_rdma_ctrl_ops = {
1775         .name                   = "rdma",
1776         .module                 = THIS_MODULE,
1777         .is_fabrics             = true,
1778         .reg_read32             = nvmf_reg_read32,
1779         .reg_read64             = nvmf_reg_read64,
1780         .reg_write32            = nvmf_reg_write32,
1781         .reset_ctrl             = nvme_rdma_reset_ctrl,
1782         .free_ctrl              = nvme_rdma_free_ctrl,
1783         .submit_async_event     = nvme_rdma_submit_async_event,
1784         .delete_ctrl            = nvme_rdma_del_ctrl,
1785         .get_subsysnqn          = nvmf_get_subsysnqn,
1786         .get_address            = nvmf_get_address,
1787 };
1788
1789 static int nvme_rdma_create_io_queues(struct nvme_rdma_ctrl *ctrl)
1790 {
1791         struct nvmf_ctrl_options *opts = ctrl->ctrl.opts;
1792         int ret;
1793
1794         ret = nvme_set_queue_count(&ctrl->ctrl, &opts->nr_io_queues);
1795         if (ret)
1796                 return ret;
1797
1798         ctrl->queue_count = opts->nr_io_queues + 1;
1799         if (ctrl->queue_count < 2)
1800                 return 0;
1801
1802         dev_info(ctrl->ctrl.device,
1803                 "creating %d I/O queues.\n", opts->nr_io_queues);
1804
1805         ret = nvme_rdma_init_io_queues(ctrl);
1806         if (ret)
1807                 return ret;
1808
1809         /*
1810          * We need a reference on the device as long as the tag_set is alive,
1811          * as the MRs in the request structures need a valid ib_device.
1812          */
1813         ret = -EINVAL;
1814         if (!nvme_rdma_dev_get(ctrl->device))
1815                 goto out_free_io_queues;
1816
1817         memset(&ctrl->tag_set, 0, sizeof(ctrl->tag_set));
1818         ctrl->tag_set.ops = &nvme_rdma_mq_ops;
1819         ctrl->tag_set.queue_depth = ctrl->ctrl.sqsize;
1820         ctrl->tag_set.reserved_tags = 1; /* fabric connect */
1821         ctrl->tag_set.numa_node = NUMA_NO_NODE;
1822         ctrl->tag_set.flags = BLK_MQ_F_SHOULD_MERGE;
1823         ctrl->tag_set.cmd_size = sizeof(struct nvme_rdma_request) +
1824                 SG_CHUNK_SIZE * sizeof(struct scatterlist);
1825         ctrl->tag_set.driver_data = ctrl;
1826         ctrl->tag_set.nr_hw_queues = ctrl->queue_count - 1;
1827         ctrl->tag_set.timeout = NVME_IO_TIMEOUT;
1828
1829         ret = blk_mq_alloc_tag_set(&ctrl->tag_set);
1830         if (ret)
1831                 goto out_put_dev;
1832         ctrl->ctrl.tagset = &ctrl->tag_set;
1833
1834         ctrl->ctrl.connect_q = blk_mq_init_queue(&ctrl->tag_set);
1835         if (IS_ERR(ctrl->ctrl.connect_q)) {
1836                 ret = PTR_ERR(ctrl->ctrl.connect_q);
1837                 goto out_free_tag_set;
1838         }
1839
1840         ret = nvme_rdma_connect_io_queues(ctrl);
1841         if (ret)
1842                 goto out_cleanup_connect_q;
1843
1844         return 0;
1845
1846 out_cleanup_connect_q:
1847         blk_cleanup_queue(ctrl->ctrl.connect_q);
1848 out_free_tag_set:
1849         blk_mq_free_tag_set(&ctrl->tag_set);
1850 out_put_dev:
1851         nvme_rdma_dev_put(ctrl->device);
1852 out_free_io_queues:
1853         nvme_rdma_free_io_queues(ctrl);
1854         return ret;
1855 }
1856
1857 static int nvme_rdma_parse_ipaddr(struct sockaddr_in *in_addr, char *p)
1858 {
1859         u8 *addr = (u8 *)&in_addr->sin_addr.s_addr;
1860         size_t buflen = strlen(p);
1861
1862         /* XXX: handle IPv6 addresses */
1863
1864         if (buflen > INET_ADDRSTRLEN)
1865                 return -EINVAL;
1866         if (in4_pton(p, buflen, addr, '\0', NULL) == 0)
1867                 return -EINVAL;
1868         in_addr->sin_family = AF_INET;
1869         return 0;
1870 }
1871
1872 static struct nvme_ctrl *nvme_rdma_create_ctrl(struct device *dev,
1873                 struct nvmf_ctrl_options *opts)
1874 {
1875         struct nvme_rdma_ctrl *ctrl;
1876         int ret;
1877         bool changed;
1878
1879         ctrl = kzalloc(sizeof(*ctrl), GFP_KERNEL);
1880         if (!ctrl)
1881                 return ERR_PTR(-ENOMEM);
1882         ctrl->ctrl.opts = opts;
1883         INIT_LIST_HEAD(&ctrl->list);
1884
1885         ret = nvme_rdma_parse_ipaddr(&ctrl->addr_in, opts->traddr);
1886         if (ret) {
1887                 pr_err("malformed IP address passed: %s\n", opts->traddr);
1888                 goto out_free_ctrl;
1889         }
1890
1891         if (opts->mask & NVMF_OPT_TRSVCID) {
1892                 u16 port;
1893
1894                 ret = kstrtou16(opts->trsvcid, 0, &port);
1895                 if (ret)
1896                         goto out_free_ctrl;
1897
1898                 ctrl->addr_in.sin_port = cpu_to_be16(port);
1899         } else {
1900                 ctrl->addr_in.sin_port = cpu_to_be16(NVME_RDMA_IP_PORT);
1901         }
1902
1903         ret = nvme_init_ctrl(&ctrl->ctrl, dev, &nvme_rdma_ctrl_ops,
1904                                 0 /* no quirks, we're perfect! */);
1905         if (ret)
1906                 goto out_free_ctrl;
1907
1908         ctrl->reconnect_delay = opts->reconnect_delay;
1909         INIT_DELAYED_WORK(&ctrl->reconnect_work,
1910                         nvme_rdma_reconnect_ctrl_work);
1911         INIT_WORK(&ctrl->err_work, nvme_rdma_error_recovery_work);
1912         INIT_WORK(&ctrl->delete_work, nvme_rdma_del_ctrl_work);
1913         INIT_WORK(&ctrl->reset_work, nvme_rdma_reset_ctrl_work);
1914         spin_lock_init(&ctrl->lock);
1915
1916         ctrl->queue_count = opts->nr_io_queues + 1; /* +1 for admin queue */
1917         ctrl->ctrl.sqsize = opts->queue_size;
1918         ctrl->ctrl.kato = opts->kato;
1919
1920         ret = -ENOMEM;
1921         ctrl->queues = kcalloc(ctrl->queue_count, sizeof(*ctrl->queues),
1922                                 GFP_KERNEL);
1923         if (!ctrl->queues)
1924                 goto out_uninit_ctrl;
1925
1926         ret = nvme_rdma_configure_admin_queue(ctrl);
1927         if (ret)
1928                 goto out_kfree_queues;
1929
1930         /* sanity check icdoff */
1931         if (ctrl->ctrl.icdoff) {
1932                 dev_err(ctrl->ctrl.device, "icdoff is not supported!\n");
1933                 goto out_remove_admin_queue;
1934         }
1935
1936         /* sanity check keyed sgls */
1937         if (!(ctrl->ctrl.sgls & (1 << 20))) {
1938                 dev_err(ctrl->ctrl.device, "Mandatory keyed sgls are not support\n");
1939                 goto out_remove_admin_queue;
1940         }
1941
1942         if (opts->queue_size > ctrl->ctrl.maxcmd) {
1943                 /* warn if maxcmd is lower than queue_size */
1944                 dev_warn(ctrl->ctrl.device,
1945                         "queue_size %zu > ctrl maxcmd %u, clamping down\n",
1946                         opts->queue_size, ctrl->ctrl.maxcmd);
1947                 opts->queue_size = ctrl->ctrl.maxcmd;
1948         }
1949
1950         if (opts->nr_io_queues) {
1951                 ret = nvme_rdma_create_io_queues(ctrl);
1952                 if (ret)
1953                         goto out_remove_admin_queue;
1954         }
1955
1956         changed = nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_LIVE);
1957         WARN_ON_ONCE(!changed);
1958
1959         dev_info(ctrl->ctrl.device, "new ctrl: NQN \"%s\", addr %pISp\n",
1960                 ctrl->ctrl.opts->subsysnqn, &ctrl->addr);
1961
1962         kref_get(&ctrl->ctrl.kref);
1963
1964         mutex_lock(&nvme_rdma_ctrl_mutex);
1965         list_add_tail(&ctrl->list, &nvme_rdma_ctrl_list);
1966         mutex_unlock(&nvme_rdma_ctrl_mutex);
1967
1968         if (opts->nr_io_queues) {
1969                 nvme_queue_scan(&ctrl->ctrl);
1970                 nvme_queue_async_events(&ctrl->ctrl);
1971         }
1972
1973         return &ctrl->ctrl;
1974
1975 out_remove_admin_queue:
1976         nvme_stop_keep_alive(&ctrl->ctrl);
1977         nvme_rdma_destroy_admin_queue(ctrl);
1978 out_kfree_queues:
1979         kfree(ctrl->queues);
1980 out_uninit_ctrl:
1981         nvme_uninit_ctrl(&ctrl->ctrl);
1982         nvme_put_ctrl(&ctrl->ctrl);
1983         if (ret > 0)
1984                 ret = -EIO;
1985         return ERR_PTR(ret);
1986 out_free_ctrl:
1987         kfree(ctrl);
1988         return ERR_PTR(ret);
1989 }
1990
1991 static struct nvmf_transport_ops nvme_rdma_transport = {
1992         .name           = "rdma",
1993         .required_opts  = NVMF_OPT_TRADDR,
1994         .allowed_opts   = NVMF_OPT_TRSVCID | NVMF_OPT_RECONNECT_DELAY,
1995         .create_ctrl    = nvme_rdma_create_ctrl,
1996 };
1997
1998 static int __init nvme_rdma_init_module(void)
1999 {
2000         nvme_rdma_wq = create_workqueue("nvme_rdma_wq");
2001         if (!nvme_rdma_wq)
2002                 return -ENOMEM;
2003
2004         nvmf_register_transport(&nvme_rdma_transport);
2005         return 0;
2006 }
2007
2008 static void __exit nvme_rdma_cleanup_module(void)
2009 {
2010         struct nvme_rdma_ctrl *ctrl;
2011
2012         nvmf_unregister_transport(&nvme_rdma_transport);
2013
2014         mutex_lock(&nvme_rdma_ctrl_mutex);
2015         list_for_each_entry(ctrl, &nvme_rdma_ctrl_list, list)
2016                 __nvme_rdma_del_ctrl(ctrl);
2017         mutex_unlock(&nvme_rdma_ctrl_mutex);
2018
2019         destroy_workqueue(nvme_rdma_wq);
2020 }
2021
2022 module_init(nvme_rdma_init_module);
2023 module_exit(nvme_rdma_cleanup_module);
2024
2025 MODULE_LICENSE("GPL v2");