Merge branches 'pm-sleep', 'pm-cpufreq', 'pm-core' and 'pm-opp'
[cascardo/linux.git] / drivers / of / of_reserved_mem.c
1 /*
2  * Device tree based initialization code for reserved memory.
3  *
4  * Copyright (c) 2013, 2015 The Linux Foundation. All Rights Reserved.
5  * Copyright (c) 2013,2014 Samsung Electronics Co., Ltd.
6  *              http://www.samsung.com
7  * Author: Marek Szyprowski <m.szyprowski@samsung.com>
8  * Author: Josh Cartwright <joshc@codeaurora.org>
9  *
10  * This program is free software; you can redistribute it and/or
11  * modify it under the terms of the GNU General Public License as
12  * published by the Free Software Foundation; either version 2 of the
13  * License or (at your optional) any later version of the license.
14  */
15
16 #include <linux/err.h>
17 #include <linux/of.h>
18 #include <linux/of_fdt.h>
19 #include <linux/of_platform.h>
20 #include <linux/mm.h>
21 #include <linux/sizes.h>
22 #include <linux/of_reserved_mem.h>
23 #include <linux/sort.h>
24 #include <linux/slab.h>
25
26 #define MAX_RESERVED_REGIONS    16
27 static struct reserved_mem reserved_mem[MAX_RESERVED_REGIONS];
28 static int reserved_mem_count;
29
30 #if defined(CONFIG_HAVE_MEMBLOCK)
31 #include <linux/memblock.h>
32 int __init __weak early_init_dt_alloc_reserved_memory_arch(phys_addr_t size,
33         phys_addr_t align, phys_addr_t start, phys_addr_t end, bool nomap,
34         phys_addr_t *res_base)
35 {
36         phys_addr_t base;
37         /*
38          * We use __memblock_alloc_base() because memblock_alloc_base()
39          * panic()s on allocation failure.
40          */
41         end = !end ? MEMBLOCK_ALLOC_ANYWHERE : end;
42         base = __memblock_alloc_base(size, align, end);
43         if (!base)
44                 return -ENOMEM;
45
46         /*
47          * Check if the allocated region fits in to start..end window
48          */
49         if (base < start) {
50                 memblock_free(base, size);
51                 return -ENOMEM;
52         }
53
54         *res_base = base;
55         if (nomap)
56                 return memblock_remove(base, size);
57         return 0;
58 }
59 #else
60 int __init __weak early_init_dt_alloc_reserved_memory_arch(phys_addr_t size,
61         phys_addr_t align, phys_addr_t start, phys_addr_t end, bool nomap,
62         phys_addr_t *res_base)
63 {
64         pr_err("Reserved memory not supported, ignoring region 0x%llx%s\n",
65                   size, nomap ? " (nomap)" : "");
66         return -ENOSYS;
67 }
68 #endif
69
70 /**
71  * res_mem_save_node() - save fdt node for second pass initialization
72  */
73 void __init fdt_reserved_mem_save_node(unsigned long node, const char *uname,
74                                       phys_addr_t base, phys_addr_t size)
75 {
76         struct reserved_mem *rmem = &reserved_mem[reserved_mem_count];
77
78         if (reserved_mem_count == ARRAY_SIZE(reserved_mem)) {
79                 pr_err("Reserved memory: not enough space all defined regions.\n");
80                 return;
81         }
82
83         rmem->fdt_node = node;
84         rmem->name = uname;
85         rmem->base = base;
86         rmem->size = size;
87
88         reserved_mem_count++;
89         return;
90 }
91
92 /**
93  * res_mem_alloc_size() - allocate reserved memory described by 'size', 'align'
94  *                        and 'alloc-ranges' properties
95  */
96 static int __init __reserved_mem_alloc_size(unsigned long node,
97         const char *uname, phys_addr_t *res_base, phys_addr_t *res_size)
98 {
99         int t_len = (dt_root_addr_cells + dt_root_size_cells) * sizeof(__be32);
100         phys_addr_t start = 0, end = 0;
101         phys_addr_t base = 0, align = 0, size;
102         int len;
103         const __be32 *prop;
104         int nomap;
105         int ret;
106
107         prop = of_get_flat_dt_prop(node, "size", &len);
108         if (!prop)
109                 return -EINVAL;
110
111         if (len != dt_root_size_cells * sizeof(__be32)) {
112                 pr_err("Reserved memory: invalid size property in '%s' node.\n",
113                                 uname);
114                 return -EINVAL;
115         }
116         size = dt_mem_next_cell(dt_root_size_cells, &prop);
117
118         nomap = of_get_flat_dt_prop(node, "no-map", NULL) != NULL;
119
120         prop = of_get_flat_dt_prop(node, "alignment", &len);
121         if (prop) {
122                 if (len != dt_root_addr_cells * sizeof(__be32)) {
123                         pr_err("Reserved memory: invalid alignment property in '%s' node.\n",
124                                 uname);
125                         return -EINVAL;
126                 }
127                 align = dt_mem_next_cell(dt_root_addr_cells, &prop);
128         }
129
130         /* Need adjust the alignment to satisfy the CMA requirement */
131         if (IS_ENABLED(CONFIG_CMA)
132             && of_flat_dt_is_compatible(node, "shared-dma-pool")
133             && of_get_flat_dt_prop(node, "reusable", NULL)
134             && !of_get_flat_dt_prop(node, "no-map", NULL)) {
135                 unsigned long order =
136                         max_t(unsigned long, MAX_ORDER - 1, pageblock_order);
137
138                 align = max(align, (phys_addr_t)PAGE_SIZE << order);
139         }
140
141         prop = of_get_flat_dt_prop(node, "alloc-ranges", &len);
142         if (prop) {
143
144                 if (len % t_len != 0) {
145                         pr_err("Reserved memory: invalid alloc-ranges property in '%s', skipping node.\n",
146                                uname);
147                         return -EINVAL;
148                 }
149
150                 base = 0;
151
152                 while (len > 0) {
153                         start = dt_mem_next_cell(dt_root_addr_cells, &prop);
154                         end = start + dt_mem_next_cell(dt_root_size_cells,
155                                                        &prop);
156
157                         ret = early_init_dt_alloc_reserved_memory_arch(size,
158                                         align, start, end, nomap, &base);
159                         if (ret == 0) {
160                                 pr_debug("Reserved memory: allocated memory for '%s' node: base %pa, size %ld MiB\n",
161                                         uname, &base,
162                                         (unsigned long)size / SZ_1M);
163                                 break;
164                         }
165                         len -= t_len;
166                 }
167
168         } else {
169                 ret = early_init_dt_alloc_reserved_memory_arch(size, align,
170                                                         0, 0, nomap, &base);
171                 if (ret == 0)
172                         pr_debug("Reserved memory: allocated memory for '%s' node: base %pa, size %ld MiB\n",
173                                 uname, &base, (unsigned long)size / SZ_1M);
174         }
175
176         if (base == 0) {
177                 pr_info("Reserved memory: failed to allocate memory for node '%s'\n",
178                         uname);
179                 return -ENOMEM;
180         }
181
182         *res_base = base;
183         *res_size = size;
184
185         return 0;
186 }
187
188 static const struct of_device_id __rmem_of_table_sentinel
189         __used __section(__reservedmem_of_table_end);
190
191 /**
192  * res_mem_init_node() - call region specific reserved memory init code
193  */
194 static int __init __reserved_mem_init_node(struct reserved_mem *rmem)
195 {
196         extern const struct of_device_id __reservedmem_of_table[];
197         const struct of_device_id *i;
198
199         for (i = __reservedmem_of_table; i < &__rmem_of_table_sentinel; i++) {
200                 reservedmem_of_init_fn initfn = i->data;
201                 const char *compat = i->compatible;
202
203                 if (!of_flat_dt_is_compatible(rmem->fdt_node, compat))
204                         continue;
205
206                 if (initfn(rmem) == 0) {
207                         pr_info("Reserved memory: initialized node %s, compatible id %s\n",
208                                 rmem->name, compat);
209                         return 0;
210                 }
211         }
212         return -ENOENT;
213 }
214
215 static int __init __rmem_cmp(const void *a, const void *b)
216 {
217         const struct reserved_mem *ra = a, *rb = b;
218
219         if (ra->base < rb->base)
220                 return -1;
221
222         if (ra->base > rb->base)
223                 return 1;
224
225         return 0;
226 }
227
228 static void __init __rmem_check_for_overlap(void)
229 {
230         int i;
231
232         if (reserved_mem_count < 2)
233                 return;
234
235         sort(reserved_mem, reserved_mem_count, sizeof(reserved_mem[0]),
236              __rmem_cmp, NULL);
237         for (i = 0; i < reserved_mem_count - 1; i++) {
238                 struct reserved_mem *this, *next;
239
240                 this = &reserved_mem[i];
241                 next = &reserved_mem[i + 1];
242                 if (!(this->base && next->base))
243                         continue;
244                 if (this->base + this->size > next->base) {
245                         phys_addr_t this_end, next_end;
246
247                         this_end = this->base + this->size;
248                         next_end = next->base + next->size;
249                         pr_err("Reserved memory: OVERLAP DETECTED!\n%s (%pa--%pa) overlaps with %s (%pa--%pa)\n",
250                                this->name, &this->base, &this_end,
251                                next->name, &next->base, &next_end);
252                 }
253         }
254 }
255
256 /**
257  * fdt_init_reserved_mem - allocate and init all saved reserved memory regions
258  */
259 void __init fdt_init_reserved_mem(void)
260 {
261         int i;
262
263         /* check for overlapping reserved regions */
264         __rmem_check_for_overlap();
265
266         for (i = 0; i < reserved_mem_count; i++) {
267                 struct reserved_mem *rmem = &reserved_mem[i];
268                 unsigned long node = rmem->fdt_node;
269                 int len;
270                 const __be32 *prop;
271                 int err = 0;
272
273                 prop = of_get_flat_dt_prop(node, "phandle", &len);
274                 if (!prop)
275                         prop = of_get_flat_dt_prop(node, "linux,phandle", &len);
276                 if (prop)
277                         rmem->phandle = of_read_number(prop, len/4);
278
279                 if (rmem->size == 0)
280                         err = __reserved_mem_alloc_size(node, rmem->name,
281                                                  &rmem->base, &rmem->size);
282                 if (err == 0)
283                         __reserved_mem_init_node(rmem);
284         }
285 }
286
287 static inline struct reserved_mem *__find_rmem(struct device_node *node)
288 {
289         unsigned int i;
290
291         if (!node->phandle)
292                 return NULL;
293
294         for (i = 0; i < reserved_mem_count; i++)
295                 if (reserved_mem[i].phandle == node->phandle)
296                         return &reserved_mem[i];
297         return NULL;
298 }
299
300 struct rmem_assigned_device {
301         struct device *dev;
302         struct reserved_mem *rmem;
303         struct list_head list;
304 };
305
306 static LIST_HEAD(of_rmem_assigned_device_list);
307 static DEFINE_MUTEX(of_rmem_assigned_device_mutex);
308
309 /**
310  * of_reserved_mem_device_init_by_idx() - assign reserved memory region to
311  *                                        given device
312  * @dev:        Pointer to the device to configure
313  * @np:         Pointer to the device_node with 'reserved-memory' property
314  * @idx:        Index of selected region
315  *
316  * This function assigns respective DMA-mapping operations based on reserved
317  * memory region specified by 'memory-region' property in @np node to the @dev
318  * device. When driver needs to use more than one reserved memory region, it
319  * should allocate child devices and initialize regions by name for each of
320  * child device.
321  *
322  * Returns error code or zero on success.
323  */
324 int of_reserved_mem_device_init_by_idx(struct device *dev,
325                                        struct device_node *np, int idx)
326 {
327         struct rmem_assigned_device *rd;
328         struct device_node *target;
329         struct reserved_mem *rmem;
330         int ret;
331
332         if (!np || !dev)
333                 return -EINVAL;
334
335         target = of_parse_phandle(np, "memory-region", idx);
336         if (!target)
337                 return -ENODEV;
338
339         rmem = __find_rmem(target);
340         of_node_put(target);
341
342         if (!rmem || !rmem->ops || !rmem->ops->device_init)
343                 return -EINVAL;
344
345         rd = kmalloc(sizeof(struct rmem_assigned_device), GFP_KERNEL);
346         if (!rd)
347                 return -ENOMEM;
348
349         ret = rmem->ops->device_init(rmem, dev);
350         if (ret == 0) {
351                 rd->dev = dev;
352                 rd->rmem = rmem;
353
354                 mutex_lock(&of_rmem_assigned_device_mutex);
355                 list_add(&rd->list, &of_rmem_assigned_device_list);
356                 mutex_unlock(&of_rmem_assigned_device_mutex);
357
358                 dev_info(dev, "assigned reserved memory node %s\n", rmem->name);
359         } else {
360                 kfree(rd);
361         }
362
363         return ret;
364 }
365 EXPORT_SYMBOL_GPL(of_reserved_mem_device_init_by_idx);
366
367 /**
368  * of_reserved_mem_device_release() - release reserved memory device structures
369  * @dev:        Pointer to the device to deconfigure
370  *
371  * This function releases structures allocated for memory region handling for
372  * the given device.
373  */
374 void of_reserved_mem_device_release(struct device *dev)
375 {
376         struct rmem_assigned_device *rd;
377         struct reserved_mem *rmem = NULL;
378
379         mutex_lock(&of_rmem_assigned_device_mutex);
380         list_for_each_entry(rd, &of_rmem_assigned_device_list, list) {
381                 if (rd->dev == dev) {
382                         rmem = rd->rmem;
383                         list_del(&rd->list);
384                         kfree(rd);
385                         break;
386                 }
387         }
388         mutex_unlock(&of_rmem_assigned_device_mutex);
389
390         if (!rmem || !rmem->ops || !rmem->ops->device_release)
391                 return;
392
393         rmem->ops->device_release(rmem, dev);
394 }
395 EXPORT_SYMBOL_GPL(of_reserved_mem_device_release);