Merge remote-tracking branch 'regulator/topic/core' into regulator-next
[cascardo/linux.git] / drivers / regulator / core.c
1 /*
2  * core.c  --  Voltage/Current Regulator framework.
3  *
4  * Copyright 2007, 2008 Wolfson Microelectronics PLC.
5  * Copyright 2008 SlimLogic Ltd.
6  *
7  * Author: Liam Girdwood <lrg@slimlogic.co.uk>
8  *
9  *  This program is free software; you can redistribute  it and/or modify it
10  *  under  the terms of  the GNU General  Public License as published by the
11  *  Free Software Foundation;  either version 2 of the  License, or (at your
12  *  option) any later version.
13  *
14  */
15
16 #include <linux/kernel.h>
17 #include <linux/init.h>
18 #include <linux/debugfs.h>
19 #include <linux/device.h>
20 #include <linux/slab.h>
21 #include <linux/async.h>
22 #include <linux/err.h>
23 #include <linux/mutex.h>
24 #include <linux/suspend.h>
25 #include <linux/delay.h>
26 #include <linux/gpio.h>
27 #include <linux/gpio/consumer.h>
28 #include <linux/of.h>
29 #include <linux/regmap.h>
30 #include <linux/regulator/of_regulator.h>
31 #include <linux/regulator/consumer.h>
32 #include <linux/regulator/driver.h>
33 #include <linux/regulator/machine.h>
34 #include <linux/module.h>
35
36 #define CREATE_TRACE_POINTS
37 #include <trace/events/regulator.h>
38
39 #include "dummy.h"
40 #include "internal.h"
41
42 #define rdev_crit(rdev, fmt, ...)                                       \
43         pr_crit("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
44 #define rdev_err(rdev, fmt, ...)                                        \
45         pr_err("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
46 #define rdev_warn(rdev, fmt, ...)                                       \
47         pr_warn("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
48 #define rdev_info(rdev, fmt, ...)                                       \
49         pr_info("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
50 #define rdev_dbg(rdev, fmt, ...)                                        \
51         pr_debug("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
52
53 static DEFINE_MUTEX(regulator_list_mutex);
54 static LIST_HEAD(regulator_map_list);
55 static LIST_HEAD(regulator_ena_gpio_list);
56 static LIST_HEAD(regulator_supply_alias_list);
57 static bool has_full_constraints;
58
59 static struct dentry *debugfs_root;
60
61 static struct class regulator_class;
62
63 /*
64  * struct regulator_map
65  *
66  * Used to provide symbolic supply names to devices.
67  */
68 struct regulator_map {
69         struct list_head list;
70         const char *dev_name;   /* The dev_name() for the consumer */
71         const char *supply;
72         struct regulator_dev *regulator;
73 };
74
75 /*
76  * struct regulator_enable_gpio
77  *
78  * Management for shared enable GPIO pin
79  */
80 struct regulator_enable_gpio {
81         struct list_head list;
82         struct gpio_desc *gpiod;
83         u32 enable_count;       /* a number of enabled shared GPIO */
84         u32 request_count;      /* a number of requested shared GPIO */
85         unsigned int ena_gpio_invert:1;
86 };
87
88 /*
89  * struct regulator_supply_alias
90  *
91  * Used to map lookups for a supply onto an alternative device.
92  */
93 struct regulator_supply_alias {
94         struct list_head list;
95         struct device *src_dev;
96         const char *src_supply;
97         struct device *alias_dev;
98         const char *alias_supply;
99 };
100
101 static int _regulator_is_enabled(struct regulator_dev *rdev);
102 static int _regulator_disable(struct regulator_dev *rdev);
103 static int _regulator_get_voltage(struct regulator_dev *rdev);
104 static int _regulator_get_current_limit(struct regulator_dev *rdev);
105 static unsigned int _regulator_get_mode(struct regulator_dev *rdev);
106 static int _notifier_call_chain(struct regulator_dev *rdev,
107                                   unsigned long event, void *data);
108 static int _regulator_do_set_voltage(struct regulator_dev *rdev,
109                                      int min_uV, int max_uV);
110 static struct regulator *create_regulator(struct regulator_dev *rdev,
111                                           struct device *dev,
112                                           const char *supply_name);
113 static void _regulator_put(struct regulator *regulator);
114
115 static struct regulator_dev *dev_to_rdev(struct device *dev)
116 {
117         return container_of(dev, struct regulator_dev, dev);
118 }
119
120 static const char *rdev_get_name(struct regulator_dev *rdev)
121 {
122         if (rdev->constraints && rdev->constraints->name)
123                 return rdev->constraints->name;
124         else if (rdev->desc->name)
125                 return rdev->desc->name;
126         else
127                 return "";
128 }
129
130 static bool have_full_constraints(void)
131 {
132         return has_full_constraints || of_have_populated_dt();
133 }
134
135 static inline struct regulator_dev *rdev_get_supply(struct regulator_dev *rdev)
136 {
137         if (rdev && rdev->supply)
138                 return rdev->supply->rdev;
139
140         return NULL;
141 }
142
143 /**
144  * regulator_lock_supply - lock a regulator and its supplies
145  * @rdev:         regulator source
146  */
147 static void regulator_lock_supply(struct regulator_dev *rdev)
148 {
149         int i;
150
151         for (i = 0; rdev; rdev = rdev_get_supply(rdev), i++)
152                 mutex_lock_nested(&rdev->mutex, i);
153 }
154
155 /**
156  * regulator_unlock_supply - unlock a regulator and its supplies
157  * @rdev:         regulator source
158  */
159 static void regulator_unlock_supply(struct regulator_dev *rdev)
160 {
161         struct regulator *supply;
162
163         while (1) {
164                 mutex_unlock(&rdev->mutex);
165                 supply = rdev->supply;
166
167                 if (!rdev->supply)
168                         return;
169
170                 rdev = supply->rdev;
171         }
172 }
173
174 /**
175  * of_get_regulator - get a regulator device node based on supply name
176  * @dev: Device pointer for the consumer (of regulator) device
177  * @supply: regulator supply name
178  *
179  * Extract the regulator device node corresponding to the supply name.
180  * returns the device node corresponding to the regulator if found, else
181  * returns NULL.
182  */
183 static struct device_node *of_get_regulator(struct device *dev, const char *supply)
184 {
185         struct device_node *regnode = NULL;
186         char prop_name[32]; /* 32 is max size of property name */
187
188         dev_dbg(dev, "Looking up %s-supply from device tree\n", supply);
189
190         snprintf(prop_name, 32, "%s-supply", supply);
191         regnode = of_parse_phandle(dev->of_node, prop_name, 0);
192
193         if (!regnode) {
194                 dev_dbg(dev, "Looking up %s property in node %s failed",
195                                 prop_name, dev->of_node->full_name);
196                 return NULL;
197         }
198         return regnode;
199 }
200
201 static int _regulator_can_change_status(struct regulator_dev *rdev)
202 {
203         if (!rdev->constraints)
204                 return 0;
205
206         if (rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_STATUS)
207                 return 1;
208         else
209                 return 0;
210 }
211
212 /* Platform voltage constraint check */
213 static int regulator_check_voltage(struct regulator_dev *rdev,
214                                    int *min_uV, int *max_uV)
215 {
216         BUG_ON(*min_uV > *max_uV);
217
218         if (!rdev->constraints) {
219                 rdev_err(rdev, "no constraints\n");
220                 return -ENODEV;
221         }
222         if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE)) {
223                 rdev_err(rdev, "voltage operation not allowed\n");
224                 return -EPERM;
225         }
226
227         if (*max_uV > rdev->constraints->max_uV)
228                 *max_uV = rdev->constraints->max_uV;
229         if (*min_uV < rdev->constraints->min_uV)
230                 *min_uV = rdev->constraints->min_uV;
231
232         if (*min_uV > *max_uV) {
233                 rdev_err(rdev, "unsupportable voltage range: %d-%duV\n",
234                          *min_uV, *max_uV);
235                 return -EINVAL;
236         }
237
238         return 0;
239 }
240
241 /* Make sure we select a voltage that suits the needs of all
242  * regulator consumers
243  */
244 static int regulator_check_consumers(struct regulator_dev *rdev,
245                                      int *min_uV, int *max_uV)
246 {
247         struct regulator *regulator;
248
249         list_for_each_entry(regulator, &rdev->consumer_list, list) {
250                 /*
251                  * Assume consumers that didn't say anything are OK
252                  * with anything in the constraint range.
253                  */
254                 if (!regulator->min_uV && !regulator->max_uV)
255                         continue;
256
257                 if (*max_uV > regulator->max_uV)
258                         *max_uV = regulator->max_uV;
259                 if (*min_uV < regulator->min_uV)
260                         *min_uV = regulator->min_uV;
261         }
262
263         if (*min_uV > *max_uV) {
264                 rdev_err(rdev, "Restricting voltage, %u-%uuV\n",
265                         *min_uV, *max_uV);
266                 return -EINVAL;
267         }
268
269         return 0;
270 }
271
272 /* current constraint check */
273 static int regulator_check_current_limit(struct regulator_dev *rdev,
274                                         int *min_uA, int *max_uA)
275 {
276         BUG_ON(*min_uA > *max_uA);
277
278         if (!rdev->constraints) {
279                 rdev_err(rdev, "no constraints\n");
280                 return -ENODEV;
281         }
282         if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_CURRENT)) {
283                 rdev_err(rdev, "current operation not allowed\n");
284                 return -EPERM;
285         }
286
287         if (*max_uA > rdev->constraints->max_uA)
288                 *max_uA = rdev->constraints->max_uA;
289         if (*min_uA < rdev->constraints->min_uA)
290                 *min_uA = rdev->constraints->min_uA;
291
292         if (*min_uA > *max_uA) {
293                 rdev_err(rdev, "unsupportable current range: %d-%duA\n",
294                          *min_uA, *max_uA);
295                 return -EINVAL;
296         }
297
298         return 0;
299 }
300
301 /* operating mode constraint check */
302 static int regulator_mode_constrain(struct regulator_dev *rdev, int *mode)
303 {
304         switch (*mode) {
305         case REGULATOR_MODE_FAST:
306         case REGULATOR_MODE_NORMAL:
307         case REGULATOR_MODE_IDLE:
308         case REGULATOR_MODE_STANDBY:
309                 break;
310         default:
311                 rdev_err(rdev, "invalid mode %x specified\n", *mode);
312                 return -EINVAL;
313         }
314
315         if (!rdev->constraints) {
316                 rdev_err(rdev, "no constraints\n");
317                 return -ENODEV;
318         }
319         if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_MODE)) {
320                 rdev_err(rdev, "mode operation not allowed\n");
321                 return -EPERM;
322         }
323
324         /* The modes are bitmasks, the most power hungry modes having
325          * the lowest values. If the requested mode isn't supported
326          * try higher modes. */
327         while (*mode) {
328                 if (rdev->constraints->valid_modes_mask & *mode)
329                         return 0;
330                 *mode /= 2;
331         }
332
333         return -EINVAL;
334 }
335
336 /* dynamic regulator mode switching constraint check */
337 static int regulator_check_drms(struct regulator_dev *rdev)
338 {
339         if (!rdev->constraints) {
340                 rdev_err(rdev, "no constraints\n");
341                 return -ENODEV;
342         }
343         if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_DRMS)) {
344                 rdev_dbg(rdev, "drms operation not allowed\n");
345                 return -EPERM;
346         }
347         return 0;
348 }
349
350 static ssize_t regulator_uV_show(struct device *dev,
351                                 struct device_attribute *attr, char *buf)
352 {
353         struct regulator_dev *rdev = dev_get_drvdata(dev);
354         ssize_t ret;
355
356         mutex_lock(&rdev->mutex);
357         ret = sprintf(buf, "%d\n", _regulator_get_voltage(rdev));
358         mutex_unlock(&rdev->mutex);
359
360         return ret;
361 }
362 static DEVICE_ATTR(microvolts, 0444, regulator_uV_show, NULL);
363
364 static ssize_t regulator_uA_show(struct device *dev,
365                                 struct device_attribute *attr, char *buf)
366 {
367         struct regulator_dev *rdev = dev_get_drvdata(dev);
368
369         return sprintf(buf, "%d\n", _regulator_get_current_limit(rdev));
370 }
371 static DEVICE_ATTR(microamps, 0444, regulator_uA_show, NULL);
372
373 static ssize_t name_show(struct device *dev, struct device_attribute *attr,
374                          char *buf)
375 {
376         struct regulator_dev *rdev = dev_get_drvdata(dev);
377
378         return sprintf(buf, "%s\n", rdev_get_name(rdev));
379 }
380 static DEVICE_ATTR_RO(name);
381
382 static ssize_t regulator_print_opmode(char *buf, int mode)
383 {
384         switch (mode) {
385         case REGULATOR_MODE_FAST:
386                 return sprintf(buf, "fast\n");
387         case REGULATOR_MODE_NORMAL:
388                 return sprintf(buf, "normal\n");
389         case REGULATOR_MODE_IDLE:
390                 return sprintf(buf, "idle\n");
391         case REGULATOR_MODE_STANDBY:
392                 return sprintf(buf, "standby\n");
393         }
394         return sprintf(buf, "unknown\n");
395 }
396
397 static ssize_t regulator_opmode_show(struct device *dev,
398                                     struct device_attribute *attr, char *buf)
399 {
400         struct regulator_dev *rdev = dev_get_drvdata(dev);
401
402         return regulator_print_opmode(buf, _regulator_get_mode(rdev));
403 }
404 static DEVICE_ATTR(opmode, 0444, regulator_opmode_show, NULL);
405
406 static ssize_t regulator_print_state(char *buf, int state)
407 {
408         if (state > 0)
409                 return sprintf(buf, "enabled\n");
410         else if (state == 0)
411                 return sprintf(buf, "disabled\n");
412         else
413                 return sprintf(buf, "unknown\n");
414 }
415
416 static ssize_t regulator_state_show(struct device *dev,
417                                    struct device_attribute *attr, char *buf)
418 {
419         struct regulator_dev *rdev = dev_get_drvdata(dev);
420         ssize_t ret;
421
422         mutex_lock(&rdev->mutex);
423         ret = regulator_print_state(buf, _regulator_is_enabled(rdev));
424         mutex_unlock(&rdev->mutex);
425
426         return ret;
427 }
428 static DEVICE_ATTR(state, 0444, regulator_state_show, NULL);
429
430 static ssize_t regulator_status_show(struct device *dev,
431                                    struct device_attribute *attr, char *buf)
432 {
433         struct regulator_dev *rdev = dev_get_drvdata(dev);
434         int status;
435         char *label;
436
437         status = rdev->desc->ops->get_status(rdev);
438         if (status < 0)
439                 return status;
440
441         switch (status) {
442         case REGULATOR_STATUS_OFF:
443                 label = "off";
444                 break;
445         case REGULATOR_STATUS_ON:
446                 label = "on";
447                 break;
448         case REGULATOR_STATUS_ERROR:
449                 label = "error";
450                 break;
451         case REGULATOR_STATUS_FAST:
452                 label = "fast";
453                 break;
454         case REGULATOR_STATUS_NORMAL:
455                 label = "normal";
456                 break;
457         case REGULATOR_STATUS_IDLE:
458                 label = "idle";
459                 break;
460         case REGULATOR_STATUS_STANDBY:
461                 label = "standby";
462                 break;
463         case REGULATOR_STATUS_BYPASS:
464                 label = "bypass";
465                 break;
466         case REGULATOR_STATUS_UNDEFINED:
467                 label = "undefined";
468                 break;
469         default:
470                 return -ERANGE;
471         }
472
473         return sprintf(buf, "%s\n", label);
474 }
475 static DEVICE_ATTR(status, 0444, regulator_status_show, NULL);
476
477 static ssize_t regulator_min_uA_show(struct device *dev,
478                                     struct device_attribute *attr, char *buf)
479 {
480         struct regulator_dev *rdev = dev_get_drvdata(dev);
481
482         if (!rdev->constraints)
483                 return sprintf(buf, "constraint not defined\n");
484
485         return sprintf(buf, "%d\n", rdev->constraints->min_uA);
486 }
487 static DEVICE_ATTR(min_microamps, 0444, regulator_min_uA_show, NULL);
488
489 static ssize_t regulator_max_uA_show(struct device *dev,
490                                     struct device_attribute *attr, char *buf)
491 {
492         struct regulator_dev *rdev = dev_get_drvdata(dev);
493
494         if (!rdev->constraints)
495                 return sprintf(buf, "constraint not defined\n");
496
497         return sprintf(buf, "%d\n", rdev->constraints->max_uA);
498 }
499 static DEVICE_ATTR(max_microamps, 0444, regulator_max_uA_show, NULL);
500
501 static ssize_t regulator_min_uV_show(struct device *dev,
502                                     struct device_attribute *attr, char *buf)
503 {
504         struct regulator_dev *rdev = dev_get_drvdata(dev);
505
506         if (!rdev->constraints)
507                 return sprintf(buf, "constraint not defined\n");
508
509         return sprintf(buf, "%d\n", rdev->constraints->min_uV);
510 }
511 static DEVICE_ATTR(min_microvolts, 0444, regulator_min_uV_show, NULL);
512
513 static ssize_t regulator_max_uV_show(struct device *dev,
514                                     struct device_attribute *attr, char *buf)
515 {
516         struct regulator_dev *rdev = dev_get_drvdata(dev);
517
518         if (!rdev->constraints)
519                 return sprintf(buf, "constraint not defined\n");
520
521         return sprintf(buf, "%d\n", rdev->constraints->max_uV);
522 }
523 static DEVICE_ATTR(max_microvolts, 0444, regulator_max_uV_show, NULL);
524
525 static ssize_t regulator_total_uA_show(struct device *dev,
526                                       struct device_attribute *attr, char *buf)
527 {
528         struct regulator_dev *rdev = dev_get_drvdata(dev);
529         struct regulator *regulator;
530         int uA = 0;
531
532         mutex_lock(&rdev->mutex);
533         list_for_each_entry(regulator, &rdev->consumer_list, list)
534                 uA += regulator->uA_load;
535         mutex_unlock(&rdev->mutex);
536         return sprintf(buf, "%d\n", uA);
537 }
538 static DEVICE_ATTR(requested_microamps, 0444, regulator_total_uA_show, NULL);
539
540 static ssize_t num_users_show(struct device *dev, struct device_attribute *attr,
541                               char *buf)
542 {
543         struct regulator_dev *rdev = dev_get_drvdata(dev);
544         return sprintf(buf, "%d\n", rdev->use_count);
545 }
546 static DEVICE_ATTR_RO(num_users);
547
548 static ssize_t type_show(struct device *dev, struct device_attribute *attr,
549                          char *buf)
550 {
551         struct regulator_dev *rdev = dev_get_drvdata(dev);
552
553         switch (rdev->desc->type) {
554         case REGULATOR_VOLTAGE:
555                 return sprintf(buf, "voltage\n");
556         case REGULATOR_CURRENT:
557                 return sprintf(buf, "current\n");
558         }
559         return sprintf(buf, "unknown\n");
560 }
561 static DEVICE_ATTR_RO(type);
562
563 static ssize_t regulator_suspend_mem_uV_show(struct device *dev,
564                                 struct device_attribute *attr, char *buf)
565 {
566         struct regulator_dev *rdev = dev_get_drvdata(dev);
567
568         return sprintf(buf, "%d\n", rdev->constraints->state_mem.uV);
569 }
570 static DEVICE_ATTR(suspend_mem_microvolts, 0444,
571                 regulator_suspend_mem_uV_show, NULL);
572
573 static ssize_t regulator_suspend_disk_uV_show(struct device *dev,
574                                 struct device_attribute *attr, char *buf)
575 {
576         struct regulator_dev *rdev = dev_get_drvdata(dev);
577
578         return sprintf(buf, "%d\n", rdev->constraints->state_disk.uV);
579 }
580 static DEVICE_ATTR(suspend_disk_microvolts, 0444,
581                 regulator_suspend_disk_uV_show, NULL);
582
583 static ssize_t regulator_suspend_standby_uV_show(struct device *dev,
584                                 struct device_attribute *attr, char *buf)
585 {
586         struct regulator_dev *rdev = dev_get_drvdata(dev);
587
588         return sprintf(buf, "%d\n", rdev->constraints->state_standby.uV);
589 }
590 static DEVICE_ATTR(suspend_standby_microvolts, 0444,
591                 regulator_suspend_standby_uV_show, NULL);
592
593 static ssize_t regulator_suspend_mem_mode_show(struct device *dev,
594                                 struct device_attribute *attr, char *buf)
595 {
596         struct regulator_dev *rdev = dev_get_drvdata(dev);
597
598         return regulator_print_opmode(buf,
599                 rdev->constraints->state_mem.mode);
600 }
601 static DEVICE_ATTR(suspend_mem_mode, 0444,
602                 regulator_suspend_mem_mode_show, NULL);
603
604 static ssize_t regulator_suspend_disk_mode_show(struct device *dev,
605                                 struct device_attribute *attr, char *buf)
606 {
607         struct regulator_dev *rdev = dev_get_drvdata(dev);
608
609         return regulator_print_opmode(buf,
610                 rdev->constraints->state_disk.mode);
611 }
612 static DEVICE_ATTR(suspend_disk_mode, 0444,
613                 regulator_suspend_disk_mode_show, NULL);
614
615 static ssize_t regulator_suspend_standby_mode_show(struct device *dev,
616                                 struct device_attribute *attr, char *buf)
617 {
618         struct regulator_dev *rdev = dev_get_drvdata(dev);
619
620         return regulator_print_opmode(buf,
621                 rdev->constraints->state_standby.mode);
622 }
623 static DEVICE_ATTR(suspend_standby_mode, 0444,
624                 regulator_suspend_standby_mode_show, NULL);
625
626 static ssize_t regulator_suspend_mem_state_show(struct device *dev,
627                                    struct device_attribute *attr, char *buf)
628 {
629         struct regulator_dev *rdev = dev_get_drvdata(dev);
630
631         return regulator_print_state(buf,
632                         rdev->constraints->state_mem.enabled);
633 }
634 static DEVICE_ATTR(suspend_mem_state, 0444,
635                 regulator_suspend_mem_state_show, NULL);
636
637 static ssize_t regulator_suspend_disk_state_show(struct device *dev,
638                                    struct device_attribute *attr, char *buf)
639 {
640         struct regulator_dev *rdev = dev_get_drvdata(dev);
641
642         return regulator_print_state(buf,
643                         rdev->constraints->state_disk.enabled);
644 }
645 static DEVICE_ATTR(suspend_disk_state, 0444,
646                 regulator_suspend_disk_state_show, NULL);
647
648 static ssize_t regulator_suspend_standby_state_show(struct device *dev,
649                                    struct device_attribute *attr, char *buf)
650 {
651         struct regulator_dev *rdev = dev_get_drvdata(dev);
652
653         return regulator_print_state(buf,
654                         rdev->constraints->state_standby.enabled);
655 }
656 static DEVICE_ATTR(suspend_standby_state, 0444,
657                 regulator_suspend_standby_state_show, NULL);
658
659 static ssize_t regulator_bypass_show(struct device *dev,
660                                      struct device_attribute *attr, char *buf)
661 {
662         struct regulator_dev *rdev = dev_get_drvdata(dev);
663         const char *report;
664         bool bypass;
665         int ret;
666
667         ret = rdev->desc->ops->get_bypass(rdev, &bypass);
668
669         if (ret != 0)
670                 report = "unknown";
671         else if (bypass)
672                 report = "enabled";
673         else
674                 report = "disabled";
675
676         return sprintf(buf, "%s\n", report);
677 }
678 static DEVICE_ATTR(bypass, 0444,
679                    regulator_bypass_show, NULL);
680
681 /* Calculate the new optimum regulator operating mode based on the new total
682  * consumer load. All locks held by caller */
683 static int drms_uA_update(struct regulator_dev *rdev)
684 {
685         struct regulator *sibling;
686         int current_uA = 0, output_uV, input_uV, err;
687         unsigned int mode;
688
689         lockdep_assert_held_once(&rdev->mutex);
690
691         /*
692          * first check to see if we can set modes at all, otherwise just
693          * tell the consumer everything is OK.
694          */
695         err = regulator_check_drms(rdev);
696         if (err < 0)
697                 return 0;
698
699         if (!rdev->desc->ops->get_optimum_mode &&
700             !rdev->desc->ops->set_load)
701                 return 0;
702
703         if (!rdev->desc->ops->set_mode &&
704             !rdev->desc->ops->set_load)
705                 return -EINVAL;
706
707         /* get output voltage */
708         output_uV = _regulator_get_voltage(rdev);
709         if (output_uV <= 0) {
710                 rdev_err(rdev, "invalid output voltage found\n");
711                 return -EINVAL;
712         }
713
714         /* get input voltage */
715         input_uV = 0;
716         if (rdev->supply)
717                 input_uV = regulator_get_voltage(rdev->supply);
718         if (input_uV <= 0)
719                 input_uV = rdev->constraints->input_uV;
720         if (input_uV <= 0) {
721                 rdev_err(rdev, "invalid input voltage found\n");
722                 return -EINVAL;
723         }
724
725         /* calc total requested load */
726         list_for_each_entry(sibling, &rdev->consumer_list, list)
727                 current_uA += sibling->uA_load;
728
729         current_uA += rdev->constraints->system_load;
730
731         if (rdev->desc->ops->set_load) {
732                 /* set the optimum mode for our new total regulator load */
733                 err = rdev->desc->ops->set_load(rdev, current_uA);
734                 if (err < 0)
735                         rdev_err(rdev, "failed to set load %d\n", current_uA);
736         } else {
737                 /* now get the optimum mode for our new total regulator load */
738                 mode = rdev->desc->ops->get_optimum_mode(rdev, input_uV,
739                                                          output_uV, current_uA);
740
741                 /* check the new mode is allowed */
742                 err = regulator_mode_constrain(rdev, &mode);
743                 if (err < 0) {
744                         rdev_err(rdev, "failed to get optimum mode @ %d uA %d -> %d uV\n",
745                                  current_uA, input_uV, output_uV);
746                         return err;
747                 }
748
749                 err = rdev->desc->ops->set_mode(rdev, mode);
750                 if (err < 0)
751                         rdev_err(rdev, "failed to set optimum mode %x\n", mode);
752         }
753
754         return err;
755 }
756
757 static int suspend_set_state(struct regulator_dev *rdev,
758         struct regulator_state *rstate)
759 {
760         int ret = 0;
761
762         /* If we have no suspend mode configration don't set anything;
763          * only warn if the driver implements set_suspend_voltage or
764          * set_suspend_mode callback.
765          */
766         if (!rstate->enabled && !rstate->disabled) {
767                 if (rdev->desc->ops->set_suspend_voltage ||
768                     rdev->desc->ops->set_suspend_mode)
769                         rdev_warn(rdev, "No configuration\n");
770                 return 0;
771         }
772
773         if (rstate->enabled && rstate->disabled) {
774                 rdev_err(rdev, "invalid configuration\n");
775                 return -EINVAL;
776         }
777
778         if (rstate->enabled && rdev->desc->ops->set_suspend_enable)
779                 ret = rdev->desc->ops->set_suspend_enable(rdev);
780         else if (rstate->disabled && rdev->desc->ops->set_suspend_disable)
781                 ret = rdev->desc->ops->set_suspend_disable(rdev);
782         else /* OK if set_suspend_enable or set_suspend_disable is NULL */
783                 ret = 0;
784
785         if (ret < 0) {
786                 rdev_err(rdev, "failed to enabled/disable\n");
787                 return ret;
788         }
789
790         if (rdev->desc->ops->set_suspend_voltage && rstate->uV > 0) {
791                 ret = rdev->desc->ops->set_suspend_voltage(rdev, rstate->uV);
792                 if (ret < 0) {
793                         rdev_err(rdev, "failed to set voltage\n");
794                         return ret;
795                 }
796         }
797
798         if (rdev->desc->ops->set_suspend_mode && rstate->mode > 0) {
799                 ret = rdev->desc->ops->set_suspend_mode(rdev, rstate->mode);
800                 if (ret < 0) {
801                         rdev_err(rdev, "failed to set mode\n");
802                         return ret;
803                 }
804         }
805         return ret;
806 }
807
808 /* locks held by caller */
809 static int suspend_prepare(struct regulator_dev *rdev, suspend_state_t state)
810 {
811         lockdep_assert_held_once(&rdev->mutex);
812
813         if (!rdev->constraints)
814                 return -EINVAL;
815
816         switch (state) {
817         case PM_SUSPEND_STANDBY:
818                 return suspend_set_state(rdev,
819                         &rdev->constraints->state_standby);
820         case PM_SUSPEND_MEM:
821                 return suspend_set_state(rdev,
822                         &rdev->constraints->state_mem);
823         case PM_SUSPEND_MAX:
824                 return suspend_set_state(rdev,
825                         &rdev->constraints->state_disk);
826         default:
827                 return -EINVAL;
828         }
829 }
830
831 static void print_constraints(struct regulator_dev *rdev)
832 {
833         struct regulation_constraints *constraints = rdev->constraints;
834         char buf[160] = "";
835         size_t len = sizeof(buf) - 1;
836         int count = 0;
837         int ret;
838
839         if (constraints->min_uV && constraints->max_uV) {
840                 if (constraints->min_uV == constraints->max_uV)
841                         count += scnprintf(buf + count, len - count, "%d mV ",
842                                            constraints->min_uV / 1000);
843                 else
844                         count += scnprintf(buf + count, len - count,
845                                            "%d <--> %d mV ",
846                                            constraints->min_uV / 1000,
847                                            constraints->max_uV / 1000);
848         }
849
850         if (!constraints->min_uV ||
851             constraints->min_uV != constraints->max_uV) {
852                 ret = _regulator_get_voltage(rdev);
853                 if (ret > 0)
854                         count += scnprintf(buf + count, len - count,
855                                            "at %d mV ", ret / 1000);
856         }
857
858         if (constraints->uV_offset)
859                 count += scnprintf(buf + count, len - count, "%dmV offset ",
860                                    constraints->uV_offset / 1000);
861
862         if (constraints->min_uA && constraints->max_uA) {
863                 if (constraints->min_uA == constraints->max_uA)
864                         count += scnprintf(buf + count, len - count, "%d mA ",
865                                            constraints->min_uA / 1000);
866                 else
867                         count += scnprintf(buf + count, len - count,
868                                            "%d <--> %d mA ",
869                                            constraints->min_uA / 1000,
870                                            constraints->max_uA / 1000);
871         }
872
873         if (!constraints->min_uA ||
874             constraints->min_uA != constraints->max_uA) {
875                 ret = _regulator_get_current_limit(rdev);
876                 if (ret > 0)
877                         count += scnprintf(buf + count, len - count,
878                                            "at %d mA ", ret / 1000);
879         }
880
881         if (constraints->valid_modes_mask & REGULATOR_MODE_FAST)
882                 count += scnprintf(buf + count, len - count, "fast ");
883         if (constraints->valid_modes_mask & REGULATOR_MODE_NORMAL)
884                 count += scnprintf(buf + count, len - count, "normal ");
885         if (constraints->valid_modes_mask & REGULATOR_MODE_IDLE)
886                 count += scnprintf(buf + count, len - count, "idle ");
887         if (constraints->valid_modes_mask & REGULATOR_MODE_STANDBY)
888                 count += scnprintf(buf + count, len - count, "standby");
889
890         if (!count)
891                 scnprintf(buf, len, "no parameters");
892
893         rdev_dbg(rdev, "%s\n", buf);
894
895         if ((constraints->min_uV != constraints->max_uV) &&
896             !(constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE))
897                 rdev_warn(rdev,
898                           "Voltage range but no REGULATOR_CHANGE_VOLTAGE\n");
899 }
900
901 static int machine_constraints_voltage(struct regulator_dev *rdev,
902         struct regulation_constraints *constraints)
903 {
904         const struct regulator_ops *ops = rdev->desc->ops;
905         int ret;
906
907         /* do we need to apply the constraint voltage */
908         if (rdev->constraints->apply_uV &&
909             rdev->constraints->min_uV == rdev->constraints->max_uV) {
910                 int current_uV = _regulator_get_voltage(rdev);
911                 if (current_uV < 0) {
912                         rdev_err(rdev,
913                                  "failed to get the current voltage(%d)\n",
914                                  current_uV);
915                         return current_uV;
916                 }
917                 if (current_uV < rdev->constraints->min_uV ||
918                     current_uV > rdev->constraints->max_uV) {
919                         ret = _regulator_do_set_voltage(
920                                 rdev, rdev->constraints->min_uV,
921                                 rdev->constraints->max_uV);
922                         if (ret < 0) {
923                                 rdev_err(rdev,
924                                         "failed to apply %duV constraint(%d)\n",
925                                         rdev->constraints->min_uV, ret);
926                                 return ret;
927                         }
928                 }
929         }
930
931         /* constrain machine-level voltage specs to fit
932          * the actual range supported by this regulator.
933          */
934         if (ops->list_voltage && rdev->desc->n_voltages) {
935                 int     count = rdev->desc->n_voltages;
936                 int     i;
937                 int     min_uV = INT_MAX;
938                 int     max_uV = INT_MIN;
939                 int     cmin = constraints->min_uV;
940                 int     cmax = constraints->max_uV;
941
942                 /* it's safe to autoconfigure fixed-voltage supplies
943                    and the constraints are used by list_voltage. */
944                 if (count == 1 && !cmin) {
945                         cmin = 1;
946                         cmax = INT_MAX;
947                         constraints->min_uV = cmin;
948                         constraints->max_uV = cmax;
949                 }
950
951                 /* voltage constraints are optional */
952                 if ((cmin == 0) && (cmax == 0))
953                         return 0;
954
955                 /* else require explicit machine-level constraints */
956                 if (cmin <= 0 || cmax <= 0 || cmax < cmin) {
957                         rdev_err(rdev, "invalid voltage constraints\n");
958                         return -EINVAL;
959                 }
960
961                 /* initial: [cmin..cmax] valid, [min_uV..max_uV] not */
962                 for (i = 0; i < count; i++) {
963                         int     value;
964
965                         value = ops->list_voltage(rdev, i);
966                         if (value <= 0)
967                                 continue;
968
969                         /* maybe adjust [min_uV..max_uV] */
970                         if (value >= cmin && value < min_uV)
971                                 min_uV = value;
972                         if (value <= cmax && value > max_uV)
973                                 max_uV = value;
974                 }
975
976                 /* final: [min_uV..max_uV] valid iff constraints valid */
977                 if (max_uV < min_uV) {
978                         rdev_err(rdev,
979                                  "unsupportable voltage constraints %u-%uuV\n",
980                                  min_uV, max_uV);
981                         return -EINVAL;
982                 }
983
984                 /* use regulator's subset of machine constraints */
985                 if (constraints->min_uV < min_uV) {
986                         rdev_dbg(rdev, "override min_uV, %d -> %d\n",
987                                  constraints->min_uV, min_uV);
988                         constraints->min_uV = min_uV;
989                 }
990                 if (constraints->max_uV > max_uV) {
991                         rdev_dbg(rdev, "override max_uV, %d -> %d\n",
992                                  constraints->max_uV, max_uV);
993                         constraints->max_uV = max_uV;
994                 }
995         }
996
997         return 0;
998 }
999
1000 static int machine_constraints_current(struct regulator_dev *rdev,
1001         struct regulation_constraints *constraints)
1002 {
1003         const struct regulator_ops *ops = rdev->desc->ops;
1004         int ret;
1005
1006         if (!constraints->min_uA && !constraints->max_uA)
1007                 return 0;
1008
1009         if (constraints->min_uA > constraints->max_uA) {
1010                 rdev_err(rdev, "Invalid current constraints\n");
1011                 return -EINVAL;
1012         }
1013
1014         if (!ops->set_current_limit || !ops->get_current_limit) {
1015                 rdev_warn(rdev, "Operation of current configuration missing\n");
1016                 return 0;
1017         }
1018
1019         /* Set regulator current in constraints range */
1020         ret = ops->set_current_limit(rdev, constraints->min_uA,
1021                         constraints->max_uA);
1022         if (ret < 0) {
1023                 rdev_err(rdev, "Failed to set current constraint, %d\n", ret);
1024                 return ret;
1025         }
1026
1027         return 0;
1028 }
1029
1030 static int _regulator_do_enable(struct regulator_dev *rdev);
1031
1032 /**
1033  * set_machine_constraints - sets regulator constraints
1034  * @rdev: regulator source
1035  * @constraints: constraints to apply
1036  *
1037  * Allows platform initialisation code to define and constrain
1038  * regulator circuits e.g. valid voltage/current ranges, etc.  NOTE:
1039  * Constraints *must* be set by platform code in order for some
1040  * regulator operations to proceed i.e. set_voltage, set_current_limit,
1041  * set_mode.
1042  */
1043 static int set_machine_constraints(struct regulator_dev *rdev,
1044         const struct regulation_constraints *constraints)
1045 {
1046         int ret = 0;
1047         const struct regulator_ops *ops = rdev->desc->ops;
1048
1049         if (constraints)
1050                 rdev->constraints = kmemdup(constraints, sizeof(*constraints),
1051                                             GFP_KERNEL);
1052         else
1053                 rdev->constraints = kzalloc(sizeof(*constraints),
1054                                             GFP_KERNEL);
1055         if (!rdev->constraints)
1056                 return -ENOMEM;
1057
1058         ret = machine_constraints_voltage(rdev, rdev->constraints);
1059         if (ret != 0)
1060                 return ret;
1061
1062         ret = machine_constraints_current(rdev, rdev->constraints);
1063         if (ret != 0)
1064                 return ret;
1065
1066         if (rdev->constraints->ilim_uA && ops->set_input_current_limit) {
1067                 ret = ops->set_input_current_limit(rdev,
1068                                                    rdev->constraints->ilim_uA);
1069                 if (ret < 0) {
1070                         rdev_err(rdev, "failed to set input limit\n");
1071                         return ret;
1072                 }
1073         }
1074
1075         /* do we need to setup our suspend state */
1076         if (rdev->constraints->initial_state) {
1077                 ret = suspend_prepare(rdev, rdev->constraints->initial_state);
1078                 if (ret < 0) {
1079                         rdev_err(rdev, "failed to set suspend state\n");
1080                         return ret;
1081                 }
1082         }
1083
1084         if (rdev->constraints->initial_mode) {
1085                 if (!ops->set_mode) {
1086                         rdev_err(rdev, "no set_mode operation\n");
1087                         return -EINVAL;
1088                 }
1089
1090                 ret = ops->set_mode(rdev, rdev->constraints->initial_mode);
1091                 if (ret < 0) {
1092                         rdev_err(rdev, "failed to set initial mode: %d\n", ret);
1093                         return ret;
1094                 }
1095         }
1096
1097         /* If the constraints say the regulator should be on at this point
1098          * and we have control then make sure it is enabled.
1099          */
1100         if (rdev->constraints->always_on || rdev->constraints->boot_on) {
1101                 ret = _regulator_do_enable(rdev);
1102                 if (ret < 0 && ret != -EINVAL) {
1103                         rdev_err(rdev, "failed to enable\n");
1104                         return ret;
1105                 }
1106         }
1107
1108         if ((rdev->constraints->ramp_delay || rdev->constraints->ramp_disable)
1109                 && ops->set_ramp_delay) {
1110                 ret = ops->set_ramp_delay(rdev, rdev->constraints->ramp_delay);
1111                 if (ret < 0) {
1112                         rdev_err(rdev, "failed to set ramp_delay\n");
1113                         return ret;
1114                 }
1115         }
1116
1117         if (rdev->constraints->pull_down && ops->set_pull_down) {
1118                 ret = ops->set_pull_down(rdev);
1119                 if (ret < 0) {
1120                         rdev_err(rdev, "failed to set pull down\n");
1121                         return ret;
1122                 }
1123         }
1124
1125         if (rdev->constraints->soft_start && ops->set_soft_start) {
1126                 ret = ops->set_soft_start(rdev);
1127                 if (ret < 0) {
1128                         rdev_err(rdev, "failed to set soft start\n");
1129                         return ret;
1130                 }
1131         }
1132
1133         if (rdev->constraints->over_current_protection
1134                 && ops->set_over_current_protection) {
1135                 ret = ops->set_over_current_protection(rdev);
1136                 if (ret < 0) {
1137                         rdev_err(rdev, "failed to set over current protection\n");
1138                         return ret;
1139                 }
1140         }
1141
1142         print_constraints(rdev);
1143         return 0;
1144 }
1145
1146 /**
1147  * set_supply - set regulator supply regulator
1148  * @rdev: regulator name
1149  * @supply_rdev: supply regulator name
1150  *
1151  * Called by platform initialisation code to set the supply regulator for this
1152  * regulator. This ensures that a regulators supply will also be enabled by the
1153  * core if it's child is enabled.
1154  */
1155 static int set_supply(struct regulator_dev *rdev,
1156                       struct regulator_dev *supply_rdev)
1157 {
1158         int err;
1159
1160         rdev_info(rdev, "supplied by %s\n", rdev_get_name(supply_rdev));
1161
1162         if (!try_module_get(supply_rdev->owner))
1163                 return -ENODEV;
1164
1165         rdev->supply = create_regulator(supply_rdev, &rdev->dev, "SUPPLY");
1166         if (rdev->supply == NULL) {
1167                 err = -ENOMEM;
1168                 return err;
1169         }
1170         supply_rdev->open_count++;
1171
1172         return 0;
1173 }
1174
1175 /**
1176  * set_consumer_device_supply - Bind a regulator to a symbolic supply
1177  * @rdev:         regulator source
1178  * @consumer_dev_name: dev_name() string for device supply applies to
1179  * @supply:       symbolic name for supply
1180  *
1181  * Allows platform initialisation code to map physical regulator
1182  * sources to symbolic names for supplies for use by devices.  Devices
1183  * should use these symbolic names to request regulators, avoiding the
1184  * need to provide board-specific regulator names as platform data.
1185  */
1186 static int set_consumer_device_supply(struct regulator_dev *rdev,
1187                                       const char *consumer_dev_name,
1188                                       const char *supply)
1189 {
1190         struct regulator_map *node;
1191         int has_dev;
1192
1193         if (supply == NULL)
1194                 return -EINVAL;
1195
1196         if (consumer_dev_name != NULL)
1197                 has_dev = 1;
1198         else
1199                 has_dev = 0;
1200
1201         list_for_each_entry(node, &regulator_map_list, list) {
1202                 if (node->dev_name && consumer_dev_name) {
1203                         if (strcmp(node->dev_name, consumer_dev_name) != 0)
1204                                 continue;
1205                 } else if (node->dev_name || consumer_dev_name) {
1206                         continue;
1207                 }
1208
1209                 if (strcmp(node->supply, supply) != 0)
1210                         continue;
1211
1212                 pr_debug("%s: %s/%s is '%s' supply; fail %s/%s\n",
1213                          consumer_dev_name,
1214                          dev_name(&node->regulator->dev),
1215                          node->regulator->desc->name,
1216                          supply,
1217                          dev_name(&rdev->dev), rdev_get_name(rdev));
1218                 return -EBUSY;
1219         }
1220
1221         node = kzalloc(sizeof(struct regulator_map), GFP_KERNEL);
1222         if (node == NULL)
1223                 return -ENOMEM;
1224
1225         node->regulator = rdev;
1226         node->supply = supply;
1227
1228         if (has_dev) {
1229                 node->dev_name = kstrdup(consumer_dev_name, GFP_KERNEL);
1230                 if (node->dev_name == NULL) {
1231                         kfree(node);
1232                         return -ENOMEM;
1233                 }
1234         }
1235
1236         list_add(&node->list, &regulator_map_list);
1237         return 0;
1238 }
1239
1240 static void unset_regulator_supplies(struct regulator_dev *rdev)
1241 {
1242         struct regulator_map *node, *n;
1243
1244         list_for_each_entry_safe(node, n, &regulator_map_list, list) {
1245                 if (rdev == node->regulator) {
1246                         list_del(&node->list);
1247                         kfree(node->dev_name);
1248                         kfree(node);
1249                 }
1250         }
1251 }
1252
1253 #define REG_STR_SIZE    64
1254
1255 static struct regulator *create_regulator(struct regulator_dev *rdev,
1256                                           struct device *dev,
1257                                           const char *supply_name)
1258 {
1259         struct regulator *regulator;
1260         char buf[REG_STR_SIZE];
1261         int err, size;
1262
1263         regulator = kzalloc(sizeof(*regulator), GFP_KERNEL);
1264         if (regulator == NULL)
1265                 return NULL;
1266
1267         mutex_lock(&rdev->mutex);
1268         regulator->rdev = rdev;
1269         list_add(&regulator->list, &rdev->consumer_list);
1270
1271         if (dev) {
1272                 regulator->dev = dev;
1273
1274                 /* Add a link to the device sysfs entry */
1275                 size = scnprintf(buf, REG_STR_SIZE, "%s-%s",
1276                                  dev->kobj.name, supply_name);
1277                 if (size >= REG_STR_SIZE)
1278                         goto overflow_err;
1279
1280                 regulator->supply_name = kstrdup(buf, GFP_KERNEL);
1281                 if (regulator->supply_name == NULL)
1282                         goto overflow_err;
1283
1284                 err = sysfs_create_link_nowarn(&rdev->dev.kobj, &dev->kobj,
1285                                         buf);
1286                 if (err) {
1287                         rdev_dbg(rdev, "could not add device link %s err %d\n",
1288                                   dev->kobj.name, err);
1289                         /* non-fatal */
1290                 }
1291         } else {
1292                 regulator->supply_name = kstrdup(supply_name, GFP_KERNEL);
1293                 if (regulator->supply_name == NULL)
1294                         goto overflow_err;
1295         }
1296
1297         regulator->debugfs = debugfs_create_dir(regulator->supply_name,
1298                                                 rdev->debugfs);
1299         if (!regulator->debugfs) {
1300                 rdev_dbg(rdev, "Failed to create debugfs directory\n");
1301         } else {
1302                 debugfs_create_u32("uA_load", 0444, regulator->debugfs,
1303                                    &regulator->uA_load);
1304                 debugfs_create_u32("min_uV", 0444, regulator->debugfs,
1305                                    &regulator->min_uV);
1306                 debugfs_create_u32("max_uV", 0444, regulator->debugfs,
1307                                    &regulator->max_uV);
1308         }
1309
1310         /*
1311          * Check now if the regulator is an always on regulator - if
1312          * it is then we don't need to do nearly so much work for
1313          * enable/disable calls.
1314          */
1315         if (!_regulator_can_change_status(rdev) &&
1316             _regulator_is_enabled(rdev))
1317                 regulator->always_on = true;
1318
1319         mutex_unlock(&rdev->mutex);
1320         return regulator;
1321 overflow_err:
1322         list_del(&regulator->list);
1323         kfree(regulator);
1324         mutex_unlock(&rdev->mutex);
1325         return NULL;
1326 }
1327
1328 static int _regulator_get_enable_time(struct regulator_dev *rdev)
1329 {
1330         if (rdev->constraints && rdev->constraints->enable_time)
1331                 return rdev->constraints->enable_time;
1332         if (!rdev->desc->ops->enable_time)
1333                 return rdev->desc->enable_time;
1334         return rdev->desc->ops->enable_time(rdev);
1335 }
1336
1337 static struct regulator_supply_alias *regulator_find_supply_alias(
1338                 struct device *dev, const char *supply)
1339 {
1340         struct regulator_supply_alias *map;
1341
1342         list_for_each_entry(map, &regulator_supply_alias_list, list)
1343                 if (map->src_dev == dev && strcmp(map->src_supply, supply) == 0)
1344                         return map;
1345
1346         return NULL;
1347 }
1348
1349 static void regulator_supply_alias(struct device **dev, const char **supply)
1350 {
1351         struct regulator_supply_alias *map;
1352
1353         map = regulator_find_supply_alias(*dev, *supply);
1354         if (map) {
1355                 dev_dbg(*dev, "Mapping supply %s to %s,%s\n",
1356                                 *supply, map->alias_supply,
1357                                 dev_name(map->alias_dev));
1358                 *dev = map->alias_dev;
1359                 *supply = map->alias_supply;
1360         }
1361 }
1362
1363 static int of_node_match(struct device *dev, const void *data)
1364 {
1365         return dev->of_node == data;
1366 }
1367
1368 static struct regulator_dev *of_find_regulator_by_node(struct device_node *np)
1369 {
1370         struct device *dev;
1371
1372         dev = class_find_device(&regulator_class, NULL, np, of_node_match);
1373
1374         return dev ? dev_to_rdev(dev) : NULL;
1375 }
1376
1377 static int regulator_match(struct device *dev, const void *data)
1378 {
1379         struct regulator_dev *r = dev_to_rdev(dev);
1380
1381         return strcmp(rdev_get_name(r), data) == 0;
1382 }
1383
1384 static struct regulator_dev *regulator_lookup_by_name(const char *name)
1385 {
1386         struct device *dev;
1387
1388         dev = class_find_device(&regulator_class, NULL, name, regulator_match);
1389
1390         return dev ? dev_to_rdev(dev) : NULL;
1391 }
1392
1393 /**
1394  * regulator_dev_lookup - lookup a regulator device.
1395  * @dev: device for regulator "consumer".
1396  * @supply: Supply name or regulator ID.
1397  * @ret: 0 on success, -ENODEV if lookup fails permanently, -EPROBE_DEFER if
1398  * lookup could succeed in the future.
1399  *
1400  * If successful, returns a struct regulator_dev that corresponds to the name
1401  * @supply and with the embedded struct device refcount incremented by one,
1402  * or NULL on failure. The refcount must be dropped by calling put_device().
1403  */
1404 static struct regulator_dev *regulator_dev_lookup(struct device *dev,
1405                                                   const char *supply,
1406                                                   int *ret)
1407 {
1408         struct regulator_dev *r;
1409         struct device_node *node;
1410         struct regulator_map *map;
1411         const char *devname = NULL;
1412
1413         regulator_supply_alias(&dev, &supply);
1414
1415         /* first do a dt based lookup */
1416         if (dev && dev->of_node) {
1417                 node = of_get_regulator(dev, supply);
1418                 if (node) {
1419                         r = of_find_regulator_by_node(node);
1420                         if (r)
1421                                 return r;
1422                         *ret = -EPROBE_DEFER;
1423                         return NULL;
1424                 } else {
1425                         /*
1426                          * If we couldn't even get the node then it's
1427                          * not just that the device didn't register
1428                          * yet, there's no node and we'll never
1429                          * succeed.
1430                          */
1431                         *ret = -ENODEV;
1432                 }
1433         }
1434
1435         /* if not found, try doing it non-dt way */
1436         if (dev)
1437                 devname = dev_name(dev);
1438
1439         r = regulator_lookup_by_name(supply);
1440         if (r)
1441                 return r;
1442
1443         mutex_lock(&regulator_list_mutex);
1444         list_for_each_entry(map, &regulator_map_list, list) {
1445                 /* If the mapping has a device set up it must match */
1446                 if (map->dev_name &&
1447                     (!devname || strcmp(map->dev_name, devname)))
1448                         continue;
1449
1450                 if (strcmp(map->supply, supply) == 0 &&
1451                     get_device(&map->regulator->dev)) {
1452                         mutex_unlock(&regulator_list_mutex);
1453                         return map->regulator;
1454                 }
1455         }
1456         mutex_unlock(&regulator_list_mutex);
1457
1458         return NULL;
1459 }
1460
1461 static int regulator_resolve_supply(struct regulator_dev *rdev)
1462 {
1463         struct regulator_dev *r;
1464         struct device *dev = rdev->dev.parent;
1465         int ret;
1466
1467         /* No supply to resovle? */
1468         if (!rdev->supply_name)
1469                 return 0;
1470
1471         /* Supply already resolved? */
1472         if (rdev->supply)
1473                 return 0;
1474
1475         r = regulator_dev_lookup(dev, rdev->supply_name, &ret);
1476         if (!r) {
1477                 if (ret == -ENODEV) {
1478                         /*
1479                          * No supply was specified for this regulator and
1480                          * there will never be one.
1481                          */
1482                         return 0;
1483                 }
1484
1485                 /* Did the lookup explicitly defer for us? */
1486                 if (ret == -EPROBE_DEFER)
1487                         return ret;
1488
1489                 if (have_full_constraints()) {
1490                         r = dummy_regulator_rdev;
1491                         get_device(&r->dev);
1492                 } else {
1493                         dev_err(dev, "Failed to resolve %s-supply for %s\n",
1494                                 rdev->supply_name, rdev->desc->name);
1495                         return -EPROBE_DEFER;
1496                 }
1497         }
1498
1499         /* Recursively resolve the supply of the supply */
1500         ret = regulator_resolve_supply(r);
1501         if (ret < 0) {
1502                 put_device(&r->dev);
1503                 return ret;
1504         }
1505
1506         ret = set_supply(rdev, r);
1507         if (ret < 0) {
1508                 put_device(&r->dev);
1509                 return ret;
1510         }
1511
1512         /* Cascade always-on state to supply */
1513         if (_regulator_is_enabled(rdev) && rdev->supply) {
1514                 ret = regulator_enable(rdev->supply);
1515                 if (ret < 0) {
1516                         _regulator_put(rdev->supply);
1517                         return ret;
1518                 }
1519         }
1520
1521         return 0;
1522 }
1523
1524 /* Internal regulator request function */
1525 static struct regulator *_regulator_get(struct device *dev, const char *id,
1526                                         bool exclusive, bool allow_dummy)
1527 {
1528         struct regulator_dev *rdev;
1529         struct regulator *regulator = ERR_PTR(-EPROBE_DEFER);
1530         const char *devname = NULL;
1531         int ret;
1532
1533         if (id == NULL) {
1534                 pr_err("get() with no identifier\n");
1535                 return ERR_PTR(-EINVAL);
1536         }
1537
1538         if (dev)
1539                 devname = dev_name(dev);
1540
1541         if (have_full_constraints())
1542                 ret = -ENODEV;
1543         else
1544                 ret = -EPROBE_DEFER;
1545
1546         rdev = regulator_dev_lookup(dev, id, &ret);
1547         if (rdev)
1548                 goto found;
1549
1550         regulator = ERR_PTR(ret);
1551
1552         /*
1553          * If we have return value from dev_lookup fail, we do not expect to
1554          * succeed, so, quit with appropriate error value
1555          */
1556         if (ret && ret != -ENODEV)
1557                 return regulator;
1558
1559         if (!devname)
1560                 devname = "deviceless";
1561
1562         /*
1563          * Assume that a regulator is physically present and enabled
1564          * even if it isn't hooked up and just provide a dummy.
1565          */
1566         if (have_full_constraints() && allow_dummy) {
1567                 pr_warn("%s supply %s not found, using dummy regulator\n",
1568                         devname, id);
1569
1570                 rdev = dummy_regulator_rdev;
1571                 get_device(&rdev->dev);
1572                 goto found;
1573         /* Don't log an error when called from regulator_get_optional() */
1574         } else if (!have_full_constraints() || exclusive) {
1575                 dev_warn(dev, "dummy supplies not allowed\n");
1576         }
1577
1578         return regulator;
1579
1580 found:
1581         if (rdev->exclusive) {
1582                 regulator = ERR_PTR(-EPERM);
1583                 put_device(&rdev->dev);
1584                 return regulator;
1585         }
1586
1587         if (exclusive && rdev->open_count) {
1588                 regulator = ERR_PTR(-EBUSY);
1589                 put_device(&rdev->dev);
1590                 return regulator;
1591         }
1592
1593         ret = regulator_resolve_supply(rdev);
1594         if (ret < 0) {
1595                 regulator = ERR_PTR(ret);
1596                 put_device(&rdev->dev);
1597                 return regulator;
1598         }
1599
1600         if (!try_module_get(rdev->owner)) {
1601                 put_device(&rdev->dev);
1602                 return regulator;
1603         }
1604
1605         regulator = create_regulator(rdev, dev, id);
1606         if (regulator == NULL) {
1607                 regulator = ERR_PTR(-ENOMEM);
1608                 put_device(&rdev->dev);
1609                 module_put(rdev->owner);
1610                 return regulator;
1611         }
1612
1613         rdev->open_count++;
1614         if (exclusive) {
1615                 rdev->exclusive = 1;
1616
1617                 ret = _regulator_is_enabled(rdev);
1618                 if (ret > 0)
1619                         rdev->use_count = 1;
1620                 else
1621                         rdev->use_count = 0;
1622         }
1623
1624         return regulator;
1625 }
1626
1627 /**
1628  * regulator_get - lookup and obtain a reference to a regulator.
1629  * @dev: device for regulator "consumer"
1630  * @id: Supply name or regulator ID.
1631  *
1632  * Returns a struct regulator corresponding to the regulator producer,
1633  * or IS_ERR() condition containing errno.
1634  *
1635  * Use of supply names configured via regulator_set_device_supply() is
1636  * strongly encouraged.  It is recommended that the supply name used
1637  * should match the name used for the supply and/or the relevant
1638  * device pins in the datasheet.
1639  */
1640 struct regulator *regulator_get(struct device *dev, const char *id)
1641 {
1642         return _regulator_get(dev, id, false, true);
1643 }
1644 EXPORT_SYMBOL_GPL(regulator_get);
1645
1646 /**
1647  * regulator_get_exclusive - obtain exclusive access to a regulator.
1648  * @dev: device for regulator "consumer"
1649  * @id: Supply name or regulator ID.
1650  *
1651  * Returns a struct regulator corresponding to the regulator producer,
1652  * or IS_ERR() condition containing errno.  Other consumers will be
1653  * unable to obtain this regulator while this reference is held and the
1654  * use count for the regulator will be initialised to reflect the current
1655  * state of the regulator.
1656  *
1657  * This is intended for use by consumers which cannot tolerate shared
1658  * use of the regulator such as those which need to force the
1659  * regulator off for correct operation of the hardware they are
1660  * controlling.
1661  *
1662  * Use of supply names configured via regulator_set_device_supply() is
1663  * strongly encouraged.  It is recommended that the supply name used
1664  * should match the name used for the supply and/or the relevant
1665  * device pins in the datasheet.
1666  */
1667 struct regulator *regulator_get_exclusive(struct device *dev, const char *id)
1668 {
1669         return _regulator_get(dev, id, true, false);
1670 }
1671 EXPORT_SYMBOL_GPL(regulator_get_exclusive);
1672
1673 /**
1674  * regulator_get_optional - obtain optional access to a regulator.
1675  * @dev: device for regulator "consumer"
1676  * @id: Supply name or regulator ID.
1677  *
1678  * Returns a struct regulator corresponding to the regulator producer,
1679  * or IS_ERR() condition containing errno.
1680  *
1681  * This is intended for use by consumers for devices which can have
1682  * some supplies unconnected in normal use, such as some MMC devices.
1683  * It can allow the regulator core to provide stub supplies for other
1684  * supplies requested using normal regulator_get() calls without
1685  * disrupting the operation of drivers that can handle absent
1686  * supplies.
1687  *
1688  * Use of supply names configured via regulator_set_device_supply() is
1689  * strongly encouraged.  It is recommended that the supply name used
1690  * should match the name used for the supply and/or the relevant
1691  * device pins in the datasheet.
1692  */
1693 struct regulator *regulator_get_optional(struct device *dev, const char *id)
1694 {
1695         return _regulator_get(dev, id, false, false);
1696 }
1697 EXPORT_SYMBOL_GPL(regulator_get_optional);
1698
1699 /* regulator_list_mutex lock held by regulator_put() */
1700 static void _regulator_put(struct regulator *regulator)
1701 {
1702         struct regulator_dev *rdev;
1703
1704         if (IS_ERR_OR_NULL(regulator))
1705                 return;
1706
1707         lockdep_assert_held_once(&regulator_list_mutex);
1708
1709         rdev = regulator->rdev;
1710
1711         debugfs_remove_recursive(regulator->debugfs);
1712
1713         /* remove any sysfs entries */
1714         if (regulator->dev)
1715                 sysfs_remove_link(&rdev->dev.kobj, regulator->supply_name);
1716         mutex_lock(&rdev->mutex);
1717         list_del(&regulator->list);
1718
1719         rdev->open_count--;
1720         rdev->exclusive = 0;
1721         put_device(&rdev->dev);
1722         mutex_unlock(&rdev->mutex);
1723
1724         kfree(regulator->supply_name);
1725         kfree(regulator);
1726
1727         module_put(rdev->owner);
1728 }
1729
1730 /**
1731  * regulator_put - "free" the regulator source
1732  * @regulator: regulator source
1733  *
1734  * Note: drivers must ensure that all regulator_enable calls made on this
1735  * regulator source are balanced by regulator_disable calls prior to calling
1736  * this function.
1737  */
1738 void regulator_put(struct regulator *regulator)
1739 {
1740         mutex_lock(&regulator_list_mutex);
1741         _regulator_put(regulator);
1742         mutex_unlock(&regulator_list_mutex);
1743 }
1744 EXPORT_SYMBOL_GPL(regulator_put);
1745
1746 /**
1747  * regulator_register_supply_alias - Provide device alias for supply lookup
1748  *
1749  * @dev: device that will be given as the regulator "consumer"
1750  * @id: Supply name or regulator ID
1751  * @alias_dev: device that should be used to lookup the supply
1752  * @alias_id: Supply name or regulator ID that should be used to lookup the
1753  * supply
1754  *
1755  * All lookups for id on dev will instead be conducted for alias_id on
1756  * alias_dev.
1757  */
1758 int regulator_register_supply_alias(struct device *dev, const char *id,
1759                                     struct device *alias_dev,
1760                                     const char *alias_id)
1761 {
1762         struct regulator_supply_alias *map;
1763
1764         map = regulator_find_supply_alias(dev, id);
1765         if (map)
1766                 return -EEXIST;
1767
1768         map = kzalloc(sizeof(struct regulator_supply_alias), GFP_KERNEL);
1769         if (!map)
1770                 return -ENOMEM;
1771
1772         map->src_dev = dev;
1773         map->src_supply = id;
1774         map->alias_dev = alias_dev;
1775         map->alias_supply = alias_id;
1776
1777         list_add(&map->list, &regulator_supply_alias_list);
1778
1779         pr_info("Adding alias for supply %s,%s -> %s,%s\n",
1780                 id, dev_name(dev), alias_id, dev_name(alias_dev));
1781
1782         return 0;
1783 }
1784 EXPORT_SYMBOL_GPL(regulator_register_supply_alias);
1785
1786 /**
1787  * regulator_unregister_supply_alias - Remove device alias
1788  *
1789  * @dev: device that will be given as the regulator "consumer"
1790  * @id: Supply name or regulator ID
1791  *
1792  * Remove a lookup alias if one exists for id on dev.
1793  */
1794 void regulator_unregister_supply_alias(struct device *dev, const char *id)
1795 {
1796         struct regulator_supply_alias *map;
1797
1798         map = regulator_find_supply_alias(dev, id);
1799         if (map) {
1800                 list_del(&map->list);
1801                 kfree(map);
1802         }
1803 }
1804 EXPORT_SYMBOL_GPL(regulator_unregister_supply_alias);
1805
1806 /**
1807  * regulator_bulk_register_supply_alias - register multiple aliases
1808  *
1809  * @dev: device that will be given as the regulator "consumer"
1810  * @id: List of supply names or regulator IDs
1811  * @alias_dev: device that should be used to lookup the supply
1812  * @alias_id: List of supply names or regulator IDs that should be used to
1813  * lookup the supply
1814  * @num_id: Number of aliases to register
1815  *
1816  * @return 0 on success, an errno on failure.
1817  *
1818  * This helper function allows drivers to register several supply
1819  * aliases in one operation.  If any of the aliases cannot be
1820  * registered any aliases that were registered will be removed
1821  * before returning to the caller.
1822  */
1823 int regulator_bulk_register_supply_alias(struct device *dev,
1824                                          const char *const *id,
1825                                          struct device *alias_dev,
1826                                          const char *const *alias_id,
1827                                          int num_id)
1828 {
1829         int i;
1830         int ret;
1831
1832         for (i = 0; i < num_id; ++i) {
1833                 ret = regulator_register_supply_alias(dev, id[i], alias_dev,
1834                                                       alias_id[i]);
1835                 if (ret < 0)
1836                         goto err;
1837         }
1838
1839         return 0;
1840
1841 err:
1842         dev_err(dev,
1843                 "Failed to create supply alias %s,%s -> %s,%s\n",
1844                 id[i], dev_name(dev), alias_id[i], dev_name(alias_dev));
1845
1846         while (--i >= 0)
1847                 regulator_unregister_supply_alias(dev, id[i]);
1848
1849         return ret;
1850 }
1851 EXPORT_SYMBOL_GPL(regulator_bulk_register_supply_alias);
1852
1853 /**
1854  * regulator_bulk_unregister_supply_alias - unregister multiple aliases
1855  *
1856  * @dev: device that will be given as the regulator "consumer"
1857  * @id: List of supply names or regulator IDs
1858  * @num_id: Number of aliases to unregister
1859  *
1860  * This helper function allows drivers to unregister several supply
1861  * aliases in one operation.
1862  */
1863 void regulator_bulk_unregister_supply_alias(struct device *dev,
1864                                             const char *const *id,
1865                                             int num_id)
1866 {
1867         int i;
1868
1869         for (i = 0; i < num_id; ++i)
1870                 regulator_unregister_supply_alias(dev, id[i]);
1871 }
1872 EXPORT_SYMBOL_GPL(regulator_bulk_unregister_supply_alias);
1873
1874
1875 /* Manage enable GPIO list. Same GPIO pin can be shared among regulators */
1876 static int regulator_ena_gpio_request(struct regulator_dev *rdev,
1877                                 const struct regulator_config *config)
1878 {
1879         struct regulator_enable_gpio *pin;
1880         struct gpio_desc *gpiod;
1881         int ret;
1882
1883         gpiod = gpio_to_desc(config->ena_gpio);
1884
1885         list_for_each_entry(pin, &regulator_ena_gpio_list, list) {
1886                 if (pin->gpiod == gpiod) {
1887                         rdev_dbg(rdev, "GPIO %d is already used\n",
1888                                 config->ena_gpio);
1889                         goto update_ena_gpio_to_rdev;
1890                 }
1891         }
1892
1893         ret = gpio_request_one(config->ena_gpio,
1894                                 GPIOF_DIR_OUT | config->ena_gpio_flags,
1895                                 rdev_get_name(rdev));
1896         if (ret)
1897                 return ret;
1898
1899         pin = kzalloc(sizeof(struct regulator_enable_gpio), GFP_KERNEL);
1900         if (pin == NULL) {
1901                 gpio_free(config->ena_gpio);
1902                 return -ENOMEM;
1903         }
1904
1905         pin->gpiod = gpiod;
1906         pin->ena_gpio_invert = config->ena_gpio_invert;
1907         list_add(&pin->list, &regulator_ena_gpio_list);
1908
1909 update_ena_gpio_to_rdev:
1910         pin->request_count++;
1911         rdev->ena_pin = pin;
1912         return 0;
1913 }
1914
1915 static void regulator_ena_gpio_free(struct regulator_dev *rdev)
1916 {
1917         struct regulator_enable_gpio *pin, *n;
1918
1919         if (!rdev->ena_pin)
1920                 return;
1921
1922         /* Free the GPIO only in case of no use */
1923         list_for_each_entry_safe(pin, n, &regulator_ena_gpio_list, list) {
1924                 if (pin->gpiod == rdev->ena_pin->gpiod) {
1925                         if (pin->request_count <= 1) {
1926                                 pin->request_count = 0;
1927                                 gpiod_put(pin->gpiod);
1928                                 list_del(&pin->list);
1929                                 kfree(pin);
1930                                 rdev->ena_pin = NULL;
1931                                 return;
1932                         } else {
1933                                 pin->request_count--;
1934                         }
1935                 }
1936         }
1937 }
1938
1939 /**
1940  * regulator_ena_gpio_ctrl - balance enable_count of each GPIO and actual GPIO pin control
1941  * @rdev: regulator_dev structure
1942  * @enable: enable GPIO at initial use?
1943  *
1944  * GPIO is enabled in case of initial use. (enable_count is 0)
1945  * GPIO is disabled when it is not shared any more. (enable_count <= 1)
1946  */
1947 static int regulator_ena_gpio_ctrl(struct regulator_dev *rdev, bool enable)
1948 {
1949         struct regulator_enable_gpio *pin = rdev->ena_pin;
1950
1951         if (!pin)
1952                 return -EINVAL;
1953
1954         if (enable) {
1955                 /* Enable GPIO at initial use */
1956                 if (pin->enable_count == 0)
1957                         gpiod_set_value_cansleep(pin->gpiod,
1958                                                  !pin->ena_gpio_invert);
1959
1960                 pin->enable_count++;
1961         } else {
1962                 if (pin->enable_count > 1) {
1963                         pin->enable_count--;
1964                         return 0;
1965                 }
1966
1967                 /* Disable GPIO if not used */
1968                 if (pin->enable_count <= 1) {
1969                         gpiod_set_value_cansleep(pin->gpiod,
1970                                                  pin->ena_gpio_invert);
1971                         pin->enable_count = 0;
1972                 }
1973         }
1974
1975         return 0;
1976 }
1977
1978 /**
1979  * _regulator_enable_delay - a delay helper function
1980  * @delay: time to delay in microseconds
1981  *
1982  * Delay for the requested amount of time as per the guidelines in:
1983  *
1984  *     Documentation/timers/timers-howto.txt
1985  *
1986  * The assumption here is that regulators will never be enabled in
1987  * atomic context and therefore sleeping functions can be used.
1988  */
1989 static void _regulator_enable_delay(unsigned int delay)
1990 {
1991         unsigned int ms = delay / 1000;
1992         unsigned int us = delay % 1000;
1993
1994         if (ms > 0) {
1995                 /*
1996                  * For small enough values, handle super-millisecond
1997                  * delays in the usleep_range() call below.
1998                  */
1999                 if (ms < 20)
2000                         us += ms * 1000;
2001                 else
2002                         msleep(ms);
2003         }
2004
2005         /*
2006          * Give the scheduler some room to coalesce with any other
2007          * wakeup sources. For delays shorter than 10 us, don't even
2008          * bother setting up high-resolution timers and just busy-
2009          * loop.
2010          */
2011         if (us >= 10)
2012                 usleep_range(us, us + 100);
2013         else
2014                 udelay(us);
2015 }
2016
2017 static int _regulator_do_enable(struct regulator_dev *rdev)
2018 {
2019         int ret, delay;
2020
2021         /* Query before enabling in case configuration dependent.  */
2022         ret = _regulator_get_enable_time(rdev);
2023         if (ret >= 0) {
2024                 delay = ret;
2025         } else {
2026                 rdev_warn(rdev, "enable_time() failed: %d\n", ret);
2027                 delay = 0;
2028         }
2029
2030         trace_regulator_enable(rdev_get_name(rdev));
2031
2032         if (rdev->desc->off_on_delay) {
2033                 /* if needed, keep a distance of off_on_delay from last time
2034                  * this regulator was disabled.
2035                  */
2036                 unsigned long start_jiffy = jiffies;
2037                 unsigned long intended, max_delay, remaining;
2038
2039                 max_delay = usecs_to_jiffies(rdev->desc->off_on_delay);
2040                 intended = rdev->last_off_jiffy + max_delay;
2041
2042                 if (time_before(start_jiffy, intended)) {
2043                         /* calc remaining jiffies to deal with one-time
2044                          * timer wrapping.
2045                          * in case of multiple timer wrapping, either it can be
2046                          * detected by out-of-range remaining, or it cannot be
2047                          * detected and we gets a panelty of
2048                          * _regulator_enable_delay().
2049                          */
2050                         remaining = intended - start_jiffy;
2051                         if (remaining <= max_delay)
2052                                 _regulator_enable_delay(
2053                                                 jiffies_to_usecs(remaining));
2054                 }
2055         }
2056
2057         if (rdev->ena_pin) {
2058                 if (!rdev->ena_gpio_state) {
2059                         ret = regulator_ena_gpio_ctrl(rdev, true);
2060                         if (ret < 0)
2061                                 return ret;
2062                         rdev->ena_gpio_state = 1;
2063                 }
2064         } else if (rdev->desc->ops->enable) {
2065                 ret = rdev->desc->ops->enable(rdev);
2066                 if (ret < 0)
2067                         return ret;
2068         } else {
2069                 return -EINVAL;
2070         }
2071
2072         /* Allow the regulator to ramp; it would be useful to extend
2073          * this for bulk operations so that the regulators can ramp
2074          * together.  */
2075         trace_regulator_enable_delay(rdev_get_name(rdev));
2076
2077         _regulator_enable_delay(delay);
2078
2079         trace_regulator_enable_complete(rdev_get_name(rdev));
2080
2081         return 0;
2082 }
2083
2084 /* locks held by regulator_enable() */
2085 static int _regulator_enable(struct regulator_dev *rdev)
2086 {
2087         int ret;
2088
2089         lockdep_assert_held_once(&rdev->mutex);
2090
2091         /* check voltage and requested load before enabling */
2092         if (rdev->constraints &&
2093             (rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_DRMS))
2094                 drms_uA_update(rdev);
2095
2096         if (rdev->use_count == 0) {
2097                 /* The regulator may on if it's not switchable or left on */
2098                 ret = _regulator_is_enabled(rdev);
2099                 if (ret == -EINVAL || ret == 0) {
2100                         if (!_regulator_can_change_status(rdev))
2101                                 return -EPERM;
2102
2103                         ret = _regulator_do_enable(rdev);
2104                         if (ret < 0)
2105                                 return ret;
2106
2107                 } else if (ret < 0) {
2108                         rdev_err(rdev, "is_enabled() failed: %d\n", ret);
2109                         return ret;
2110                 }
2111                 /* Fallthrough on positive return values - already enabled */
2112         }
2113
2114         rdev->use_count++;
2115
2116         return 0;
2117 }
2118
2119 /**
2120  * regulator_enable - enable regulator output
2121  * @regulator: regulator source
2122  *
2123  * Request that the regulator be enabled with the regulator output at
2124  * the predefined voltage or current value.  Calls to regulator_enable()
2125  * must be balanced with calls to regulator_disable().
2126  *
2127  * NOTE: the output value can be set by other drivers, boot loader or may be
2128  * hardwired in the regulator.
2129  */
2130 int regulator_enable(struct regulator *regulator)
2131 {
2132         struct regulator_dev *rdev = regulator->rdev;
2133         int ret = 0;
2134
2135         if (regulator->always_on)
2136                 return 0;
2137
2138         if (rdev->supply) {
2139                 ret = regulator_enable(rdev->supply);
2140                 if (ret != 0)
2141                         return ret;
2142         }
2143
2144         mutex_lock(&rdev->mutex);
2145         ret = _regulator_enable(rdev);
2146         mutex_unlock(&rdev->mutex);
2147
2148         if (ret != 0 && rdev->supply)
2149                 regulator_disable(rdev->supply);
2150
2151         return ret;
2152 }
2153 EXPORT_SYMBOL_GPL(regulator_enable);
2154
2155 static int _regulator_do_disable(struct regulator_dev *rdev)
2156 {
2157         int ret;
2158
2159         trace_regulator_disable(rdev_get_name(rdev));
2160
2161         if (rdev->ena_pin) {
2162                 if (rdev->ena_gpio_state) {
2163                         ret = regulator_ena_gpio_ctrl(rdev, false);
2164                         if (ret < 0)
2165                                 return ret;
2166                         rdev->ena_gpio_state = 0;
2167                 }
2168
2169         } else if (rdev->desc->ops->disable) {
2170                 ret = rdev->desc->ops->disable(rdev);
2171                 if (ret != 0)
2172                         return ret;
2173         }
2174
2175         /* cares about last_off_jiffy only if off_on_delay is required by
2176          * device.
2177          */
2178         if (rdev->desc->off_on_delay)
2179                 rdev->last_off_jiffy = jiffies;
2180
2181         trace_regulator_disable_complete(rdev_get_name(rdev));
2182
2183         return 0;
2184 }
2185
2186 /* locks held by regulator_disable() */
2187 static int _regulator_disable(struct regulator_dev *rdev)
2188 {
2189         int ret = 0;
2190
2191         lockdep_assert_held_once(&rdev->mutex);
2192
2193         if (WARN(rdev->use_count <= 0,
2194                  "unbalanced disables for %s\n", rdev_get_name(rdev)))
2195                 return -EIO;
2196
2197         /* are we the last user and permitted to disable ? */
2198         if (rdev->use_count == 1 &&
2199             (rdev->constraints && !rdev->constraints->always_on)) {
2200
2201                 /* we are last user */
2202                 if (_regulator_can_change_status(rdev)) {
2203                         ret = _notifier_call_chain(rdev,
2204                                                    REGULATOR_EVENT_PRE_DISABLE,
2205                                                    NULL);
2206                         if (ret & NOTIFY_STOP_MASK)
2207                                 return -EINVAL;
2208
2209                         ret = _regulator_do_disable(rdev);
2210                         if (ret < 0) {
2211                                 rdev_err(rdev, "failed to disable\n");
2212                                 _notifier_call_chain(rdev,
2213                                                 REGULATOR_EVENT_ABORT_DISABLE,
2214                                                 NULL);
2215                                 return ret;
2216                         }
2217                         _notifier_call_chain(rdev, REGULATOR_EVENT_DISABLE,
2218                                         NULL);
2219                 }
2220
2221                 rdev->use_count = 0;
2222         } else if (rdev->use_count > 1) {
2223
2224                 if (rdev->constraints &&
2225                         (rdev->constraints->valid_ops_mask &
2226                         REGULATOR_CHANGE_DRMS))
2227                         drms_uA_update(rdev);
2228
2229                 rdev->use_count--;
2230         }
2231
2232         return ret;
2233 }
2234
2235 /**
2236  * regulator_disable - disable regulator output
2237  * @regulator: regulator source
2238  *
2239  * Disable the regulator output voltage or current.  Calls to
2240  * regulator_enable() must be balanced with calls to
2241  * regulator_disable().
2242  *
2243  * NOTE: this will only disable the regulator output if no other consumer
2244  * devices have it enabled, the regulator device supports disabling and
2245  * machine constraints permit this operation.
2246  */
2247 int regulator_disable(struct regulator *regulator)
2248 {
2249         struct regulator_dev *rdev = regulator->rdev;
2250         int ret = 0;
2251
2252         if (regulator->always_on)
2253                 return 0;
2254
2255         mutex_lock(&rdev->mutex);
2256         ret = _regulator_disable(rdev);
2257         mutex_unlock(&rdev->mutex);
2258
2259         if (ret == 0 && rdev->supply)
2260                 regulator_disable(rdev->supply);
2261
2262         return ret;
2263 }
2264 EXPORT_SYMBOL_GPL(regulator_disable);
2265
2266 /* locks held by regulator_force_disable() */
2267 static int _regulator_force_disable(struct regulator_dev *rdev)
2268 {
2269         int ret = 0;
2270
2271         lockdep_assert_held_once(&rdev->mutex);
2272
2273         ret = _notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
2274                         REGULATOR_EVENT_PRE_DISABLE, NULL);
2275         if (ret & NOTIFY_STOP_MASK)
2276                 return -EINVAL;
2277
2278         ret = _regulator_do_disable(rdev);
2279         if (ret < 0) {
2280                 rdev_err(rdev, "failed to force disable\n");
2281                 _notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
2282                                 REGULATOR_EVENT_ABORT_DISABLE, NULL);
2283                 return ret;
2284         }
2285
2286         _notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
2287                         REGULATOR_EVENT_DISABLE, NULL);
2288
2289         return 0;
2290 }
2291
2292 /**
2293  * regulator_force_disable - force disable regulator output
2294  * @regulator: regulator source
2295  *
2296  * Forcibly disable the regulator output voltage or current.
2297  * NOTE: this *will* disable the regulator output even if other consumer
2298  * devices have it enabled. This should be used for situations when device
2299  * damage will likely occur if the regulator is not disabled (e.g. over temp).
2300  */
2301 int regulator_force_disable(struct regulator *regulator)
2302 {
2303         struct regulator_dev *rdev = regulator->rdev;
2304         int ret;
2305
2306         mutex_lock(&rdev->mutex);
2307         regulator->uA_load = 0;
2308         ret = _regulator_force_disable(regulator->rdev);
2309         mutex_unlock(&rdev->mutex);
2310
2311         if (rdev->supply)
2312                 while (rdev->open_count--)
2313                         regulator_disable(rdev->supply);
2314
2315         return ret;
2316 }
2317 EXPORT_SYMBOL_GPL(regulator_force_disable);
2318
2319 static void regulator_disable_work(struct work_struct *work)
2320 {
2321         struct regulator_dev *rdev = container_of(work, struct regulator_dev,
2322                                                   disable_work.work);
2323         int count, i, ret;
2324
2325         mutex_lock(&rdev->mutex);
2326
2327         BUG_ON(!rdev->deferred_disables);
2328
2329         count = rdev->deferred_disables;
2330         rdev->deferred_disables = 0;
2331
2332         for (i = 0; i < count; i++) {
2333                 ret = _regulator_disable(rdev);
2334                 if (ret != 0)
2335                         rdev_err(rdev, "Deferred disable failed: %d\n", ret);
2336         }
2337
2338         mutex_unlock(&rdev->mutex);
2339
2340         if (rdev->supply) {
2341                 for (i = 0; i < count; i++) {
2342                         ret = regulator_disable(rdev->supply);
2343                         if (ret != 0) {
2344                                 rdev_err(rdev,
2345                                          "Supply disable failed: %d\n", ret);
2346                         }
2347                 }
2348         }
2349 }
2350
2351 /**
2352  * regulator_disable_deferred - disable regulator output with delay
2353  * @regulator: regulator source
2354  * @ms: miliseconds until the regulator is disabled
2355  *
2356  * Execute regulator_disable() on the regulator after a delay.  This
2357  * is intended for use with devices that require some time to quiesce.
2358  *
2359  * NOTE: this will only disable the regulator output if no other consumer
2360  * devices have it enabled, the regulator device supports disabling and
2361  * machine constraints permit this operation.
2362  */
2363 int regulator_disable_deferred(struct regulator *regulator, int ms)
2364 {
2365         struct regulator_dev *rdev = regulator->rdev;
2366
2367         if (regulator->always_on)
2368                 return 0;
2369
2370         if (!ms)
2371                 return regulator_disable(regulator);
2372
2373         mutex_lock(&rdev->mutex);
2374         rdev->deferred_disables++;
2375         mutex_unlock(&rdev->mutex);
2376
2377         queue_delayed_work(system_power_efficient_wq, &rdev->disable_work,
2378                            msecs_to_jiffies(ms));
2379         return 0;
2380 }
2381 EXPORT_SYMBOL_GPL(regulator_disable_deferred);
2382
2383 static int _regulator_is_enabled(struct regulator_dev *rdev)
2384 {
2385         /* A GPIO control always takes precedence */
2386         if (rdev->ena_pin)
2387                 return rdev->ena_gpio_state;
2388
2389         /* If we don't know then assume that the regulator is always on */
2390         if (!rdev->desc->ops->is_enabled)
2391                 return 1;
2392
2393         return rdev->desc->ops->is_enabled(rdev);
2394 }
2395
2396 static int _regulator_list_voltage(struct regulator *regulator,
2397                                     unsigned selector, int lock)
2398 {
2399         struct regulator_dev *rdev = regulator->rdev;
2400         const struct regulator_ops *ops = rdev->desc->ops;
2401         int ret;
2402
2403         if (rdev->desc->fixed_uV && rdev->desc->n_voltages == 1 && !selector)
2404                 return rdev->desc->fixed_uV;
2405
2406         if (ops->list_voltage) {
2407                 if (selector >= rdev->desc->n_voltages)
2408                         return -EINVAL;
2409                 if (lock)
2410                         mutex_lock(&rdev->mutex);
2411                 ret = ops->list_voltage(rdev, selector);
2412                 if (lock)
2413                         mutex_unlock(&rdev->mutex);
2414         } else if (rdev->supply) {
2415                 ret = _regulator_list_voltage(rdev->supply, selector, lock);
2416         } else {
2417                 return -EINVAL;
2418         }
2419
2420         if (ret > 0) {
2421                 if (ret < rdev->constraints->min_uV)
2422                         ret = 0;
2423                 else if (ret > rdev->constraints->max_uV)
2424                         ret = 0;
2425         }
2426
2427         return ret;
2428 }
2429
2430 /**
2431  * regulator_is_enabled - is the regulator output enabled
2432  * @regulator: regulator source
2433  *
2434  * Returns positive if the regulator driver backing the source/client
2435  * has requested that the device be enabled, zero if it hasn't, else a
2436  * negative errno code.
2437  *
2438  * Note that the device backing this regulator handle can have multiple
2439  * users, so it might be enabled even if regulator_enable() was never
2440  * called for this particular source.
2441  */
2442 int regulator_is_enabled(struct regulator *regulator)
2443 {
2444         int ret;
2445
2446         if (regulator->always_on)
2447                 return 1;
2448
2449         mutex_lock(&regulator->rdev->mutex);
2450         ret = _regulator_is_enabled(regulator->rdev);
2451         mutex_unlock(&regulator->rdev->mutex);
2452
2453         return ret;
2454 }
2455 EXPORT_SYMBOL_GPL(regulator_is_enabled);
2456
2457 /**
2458  * regulator_can_change_voltage - check if regulator can change voltage
2459  * @regulator: regulator source
2460  *
2461  * Returns positive if the regulator driver backing the source/client
2462  * can change its voltage, false otherwise. Useful for detecting fixed
2463  * or dummy regulators and disabling voltage change logic in the client
2464  * driver.
2465  */
2466 int regulator_can_change_voltage(struct regulator *regulator)
2467 {
2468         struct regulator_dev    *rdev = regulator->rdev;
2469
2470         if (rdev->constraints &&
2471             (rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE)) {
2472                 if (rdev->desc->n_voltages - rdev->desc->linear_min_sel > 1)
2473                         return 1;
2474
2475                 if (rdev->desc->continuous_voltage_range &&
2476                     rdev->constraints->min_uV && rdev->constraints->max_uV &&
2477                     rdev->constraints->min_uV != rdev->constraints->max_uV)
2478                         return 1;
2479         }
2480
2481         return 0;
2482 }
2483 EXPORT_SYMBOL_GPL(regulator_can_change_voltage);
2484
2485 /**
2486  * regulator_count_voltages - count regulator_list_voltage() selectors
2487  * @regulator: regulator source
2488  *
2489  * Returns number of selectors, or negative errno.  Selectors are
2490  * numbered starting at zero, and typically correspond to bitfields
2491  * in hardware registers.
2492  */
2493 int regulator_count_voltages(struct regulator *regulator)
2494 {
2495         struct regulator_dev    *rdev = regulator->rdev;
2496
2497         if (rdev->desc->n_voltages)
2498                 return rdev->desc->n_voltages;
2499
2500         if (!rdev->supply)
2501                 return -EINVAL;
2502
2503         return regulator_count_voltages(rdev->supply);
2504 }
2505 EXPORT_SYMBOL_GPL(regulator_count_voltages);
2506
2507 /**
2508  * regulator_list_voltage - enumerate supported voltages
2509  * @regulator: regulator source
2510  * @selector: identify voltage to list
2511  * Context: can sleep
2512  *
2513  * Returns a voltage that can be passed to @regulator_set_voltage(),
2514  * zero if this selector code can't be used on this system, or a
2515  * negative errno.
2516  */
2517 int regulator_list_voltage(struct regulator *regulator, unsigned selector)
2518 {
2519         return _regulator_list_voltage(regulator, selector, 1);
2520 }
2521 EXPORT_SYMBOL_GPL(regulator_list_voltage);
2522
2523 /**
2524  * regulator_get_regmap - get the regulator's register map
2525  * @regulator: regulator source
2526  *
2527  * Returns the register map for the given regulator, or an ERR_PTR value
2528  * if the regulator doesn't use regmap.
2529  */
2530 struct regmap *regulator_get_regmap(struct regulator *regulator)
2531 {
2532         struct regmap *map = regulator->rdev->regmap;
2533
2534         return map ? map : ERR_PTR(-EOPNOTSUPP);
2535 }
2536
2537 /**
2538  * regulator_get_hardware_vsel_register - get the HW voltage selector register
2539  * @regulator: regulator source
2540  * @vsel_reg: voltage selector register, output parameter
2541  * @vsel_mask: mask for voltage selector bitfield, output parameter
2542  *
2543  * Returns the hardware register offset and bitmask used for setting the
2544  * regulator voltage. This might be useful when configuring voltage-scaling
2545  * hardware or firmware that can make I2C requests behind the kernel's back,
2546  * for example.
2547  *
2548  * On success, the output parameters @vsel_reg and @vsel_mask are filled in
2549  * and 0 is returned, otherwise a negative errno is returned.
2550  */
2551 int regulator_get_hardware_vsel_register(struct regulator *regulator,
2552                                          unsigned *vsel_reg,
2553                                          unsigned *vsel_mask)
2554 {
2555         struct regulator_dev *rdev = regulator->rdev;
2556         const struct regulator_ops *ops = rdev->desc->ops;
2557
2558         if (ops->set_voltage_sel != regulator_set_voltage_sel_regmap)
2559                 return -EOPNOTSUPP;
2560
2561          *vsel_reg = rdev->desc->vsel_reg;
2562          *vsel_mask = rdev->desc->vsel_mask;
2563
2564          return 0;
2565 }
2566 EXPORT_SYMBOL_GPL(regulator_get_hardware_vsel_register);
2567
2568 /**
2569  * regulator_list_hardware_vsel - get the HW-specific register value for a selector
2570  * @regulator: regulator source
2571  * @selector: identify voltage to list
2572  *
2573  * Converts the selector to a hardware-specific voltage selector that can be
2574  * directly written to the regulator registers. The address of the voltage
2575  * register can be determined by calling @regulator_get_hardware_vsel_register.
2576  *
2577  * On error a negative errno is returned.
2578  */
2579 int regulator_list_hardware_vsel(struct regulator *regulator,
2580                                  unsigned selector)
2581 {
2582         struct regulator_dev *rdev = regulator->rdev;
2583         const struct regulator_ops *ops = rdev->desc->ops;
2584
2585         if (selector >= rdev->desc->n_voltages)
2586                 return -EINVAL;
2587         if (ops->set_voltage_sel != regulator_set_voltage_sel_regmap)
2588                 return -EOPNOTSUPP;
2589
2590         return selector;
2591 }
2592 EXPORT_SYMBOL_GPL(regulator_list_hardware_vsel);
2593
2594 /**
2595  * regulator_get_linear_step - return the voltage step size between VSEL values
2596  * @regulator: regulator source
2597  *
2598  * Returns the voltage step size between VSEL values for linear
2599  * regulators, or return 0 if the regulator isn't a linear regulator.
2600  */
2601 unsigned int regulator_get_linear_step(struct regulator *regulator)
2602 {
2603         struct regulator_dev *rdev = regulator->rdev;
2604
2605         return rdev->desc->uV_step;
2606 }
2607 EXPORT_SYMBOL_GPL(regulator_get_linear_step);
2608
2609 /**
2610  * regulator_is_supported_voltage - check if a voltage range can be supported
2611  *
2612  * @regulator: Regulator to check.
2613  * @min_uV: Minimum required voltage in uV.
2614  * @max_uV: Maximum required voltage in uV.
2615  *
2616  * Returns a boolean or a negative error code.
2617  */
2618 int regulator_is_supported_voltage(struct regulator *regulator,
2619                                    int min_uV, int max_uV)
2620 {
2621         struct regulator_dev *rdev = regulator->rdev;
2622         int i, voltages, ret;
2623
2624         /* If we can't change voltage check the current voltage */
2625         if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE)) {
2626                 ret = regulator_get_voltage(regulator);
2627                 if (ret >= 0)
2628                         return min_uV <= ret && ret <= max_uV;
2629                 else
2630                         return ret;
2631         }
2632
2633         /* Any voltage within constrains range is fine? */
2634         if (rdev->desc->continuous_voltage_range)
2635                 return min_uV >= rdev->constraints->min_uV &&
2636                                 max_uV <= rdev->constraints->max_uV;
2637
2638         ret = regulator_count_voltages(regulator);
2639         if (ret < 0)
2640                 return ret;
2641         voltages = ret;
2642
2643         for (i = 0; i < voltages; i++) {
2644                 ret = regulator_list_voltage(regulator, i);
2645
2646                 if (ret >= min_uV && ret <= max_uV)
2647                         return 1;
2648         }
2649
2650         return 0;
2651 }
2652 EXPORT_SYMBOL_GPL(regulator_is_supported_voltage);
2653
2654 static int regulator_map_voltage(struct regulator_dev *rdev, int min_uV,
2655                                  int max_uV)
2656 {
2657         const struct regulator_desc *desc = rdev->desc;
2658
2659         if (desc->ops->map_voltage)
2660                 return desc->ops->map_voltage(rdev, min_uV, max_uV);
2661
2662         if (desc->ops->list_voltage == regulator_list_voltage_linear)
2663                 return regulator_map_voltage_linear(rdev, min_uV, max_uV);
2664
2665         if (desc->ops->list_voltage == regulator_list_voltage_linear_range)
2666                 return regulator_map_voltage_linear_range(rdev, min_uV, max_uV);
2667
2668         return regulator_map_voltage_iterate(rdev, min_uV, max_uV);
2669 }
2670
2671 static int _regulator_call_set_voltage(struct regulator_dev *rdev,
2672                                        int min_uV, int max_uV,
2673                                        unsigned *selector)
2674 {
2675         struct pre_voltage_change_data data;
2676         int ret;
2677
2678         data.old_uV = _regulator_get_voltage(rdev);
2679         data.min_uV = min_uV;
2680         data.max_uV = max_uV;
2681         ret = _notifier_call_chain(rdev, REGULATOR_EVENT_PRE_VOLTAGE_CHANGE,
2682                                    &data);
2683         if (ret & NOTIFY_STOP_MASK)
2684                 return -EINVAL;
2685
2686         ret = rdev->desc->ops->set_voltage(rdev, min_uV, max_uV, selector);
2687         if (ret >= 0)
2688                 return ret;
2689
2690         _notifier_call_chain(rdev, REGULATOR_EVENT_ABORT_VOLTAGE_CHANGE,
2691                              (void *)data.old_uV);
2692
2693         return ret;
2694 }
2695
2696 static int _regulator_call_set_voltage_sel(struct regulator_dev *rdev,
2697                                            int uV, unsigned selector)
2698 {
2699         struct pre_voltage_change_data data;
2700         int ret;
2701
2702         data.old_uV = _regulator_get_voltage(rdev);
2703         data.min_uV = uV;
2704         data.max_uV = uV;
2705         ret = _notifier_call_chain(rdev, REGULATOR_EVENT_PRE_VOLTAGE_CHANGE,
2706                                    &data);
2707         if (ret & NOTIFY_STOP_MASK)
2708                 return -EINVAL;
2709
2710         ret = rdev->desc->ops->set_voltage_sel(rdev, selector);
2711         if (ret >= 0)
2712                 return ret;
2713
2714         _notifier_call_chain(rdev, REGULATOR_EVENT_ABORT_VOLTAGE_CHANGE,
2715                              (void *)data.old_uV);
2716
2717         return ret;
2718 }
2719
2720 static int _regulator_do_set_voltage(struct regulator_dev *rdev,
2721                                      int min_uV, int max_uV)
2722 {
2723         int ret;
2724         int delay = 0;
2725         int best_val = 0;
2726         unsigned int selector;
2727         int old_selector = -1;
2728
2729         trace_regulator_set_voltage(rdev_get_name(rdev), min_uV, max_uV);
2730
2731         min_uV += rdev->constraints->uV_offset;
2732         max_uV += rdev->constraints->uV_offset;
2733
2734         /*
2735          * If we can't obtain the old selector there is not enough
2736          * info to call set_voltage_time_sel().
2737          */
2738         if (_regulator_is_enabled(rdev) &&
2739             rdev->desc->ops->set_voltage_time_sel &&
2740             rdev->desc->ops->get_voltage_sel) {
2741                 old_selector = rdev->desc->ops->get_voltage_sel(rdev);
2742                 if (old_selector < 0)
2743                         return old_selector;
2744         }
2745
2746         if (rdev->desc->ops->set_voltage) {
2747                 ret = _regulator_call_set_voltage(rdev, min_uV, max_uV,
2748                                                   &selector);
2749
2750                 if (ret >= 0) {
2751                         if (rdev->desc->ops->list_voltage)
2752                                 best_val = rdev->desc->ops->list_voltage(rdev,
2753                                                                          selector);
2754                         else
2755                                 best_val = _regulator_get_voltage(rdev);
2756                 }
2757
2758         } else if (rdev->desc->ops->set_voltage_sel) {
2759                 ret = regulator_map_voltage(rdev, min_uV, max_uV);
2760                 if (ret >= 0) {
2761                         best_val = rdev->desc->ops->list_voltage(rdev, ret);
2762                         if (min_uV <= best_val && max_uV >= best_val) {
2763                                 selector = ret;
2764                                 if (old_selector == selector)
2765                                         ret = 0;
2766                                 else
2767                                         ret = _regulator_call_set_voltage_sel(
2768                                                 rdev, best_val, selector);
2769                         } else {
2770                                 ret = -EINVAL;
2771                         }
2772                 }
2773         } else {
2774                 ret = -EINVAL;
2775         }
2776
2777         /* Call set_voltage_time_sel if successfully obtained old_selector */
2778         if (ret == 0 && !rdev->constraints->ramp_disable && old_selector >= 0
2779                 && old_selector != selector) {
2780
2781                 delay = rdev->desc->ops->set_voltage_time_sel(rdev,
2782                                                 old_selector, selector);
2783                 if (delay < 0) {
2784                         rdev_warn(rdev, "set_voltage_time_sel() failed: %d\n",
2785                                   delay);
2786                         delay = 0;
2787                 }
2788
2789                 /* Insert any necessary delays */
2790                 if (delay >= 1000) {
2791                         mdelay(delay / 1000);
2792                         udelay(delay % 1000);
2793                 } else if (delay) {
2794                         udelay(delay);
2795                 }
2796         }
2797
2798         if (ret == 0 && best_val >= 0) {
2799                 unsigned long data = best_val;
2800
2801                 _notifier_call_chain(rdev, REGULATOR_EVENT_VOLTAGE_CHANGE,
2802                                      (void *)data);
2803         }
2804
2805         trace_regulator_set_voltage_complete(rdev_get_name(rdev), best_val);
2806
2807         return ret;
2808 }
2809
2810 static int regulator_set_voltage_unlocked(struct regulator *regulator,
2811                                           int min_uV, int max_uV)
2812 {
2813         struct regulator_dev *rdev = regulator->rdev;
2814         int ret = 0;
2815         int old_min_uV, old_max_uV;
2816         int current_uV;
2817         int best_supply_uV = 0;
2818         int supply_change_uV = 0;
2819
2820         /* If we're setting the same range as last time the change
2821          * should be a noop (some cpufreq implementations use the same
2822          * voltage for multiple frequencies, for example).
2823          */
2824         if (regulator->min_uV == min_uV && regulator->max_uV == max_uV)
2825                 goto out;
2826
2827         /* If we're trying to set a range that overlaps the current voltage,
2828          * return successfully even though the regulator does not support
2829          * changing the voltage.
2830          */
2831         if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE)) {
2832                 current_uV = _regulator_get_voltage(rdev);
2833                 if (min_uV <= current_uV && current_uV <= max_uV) {
2834                         regulator->min_uV = min_uV;
2835                         regulator->max_uV = max_uV;
2836                         goto out;
2837                 }
2838         }
2839
2840         /* sanity check */
2841         if (!rdev->desc->ops->set_voltage &&
2842             !rdev->desc->ops->set_voltage_sel) {
2843                 ret = -EINVAL;
2844                 goto out;
2845         }
2846
2847         /* constraints check */
2848         ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
2849         if (ret < 0)
2850                 goto out;
2851
2852         /* restore original values in case of error */
2853         old_min_uV = regulator->min_uV;
2854         old_max_uV = regulator->max_uV;
2855         regulator->min_uV = min_uV;
2856         regulator->max_uV = max_uV;
2857
2858         ret = regulator_check_consumers(rdev, &min_uV, &max_uV);
2859         if (ret < 0)
2860                 goto out2;
2861
2862         if (rdev->supply && (rdev->desc->min_dropout_uV ||
2863                                 !rdev->desc->ops->get_voltage)) {
2864                 int current_supply_uV;
2865                 int selector;
2866
2867                 selector = regulator_map_voltage(rdev, min_uV, max_uV);
2868                 if (selector < 0) {
2869                         ret = selector;
2870                         goto out2;
2871                 }
2872
2873                 best_supply_uV = _regulator_list_voltage(regulator, selector, 0);
2874                 if (best_supply_uV < 0) {
2875                         ret = best_supply_uV;
2876                         goto out2;
2877                 }
2878
2879                 best_supply_uV += rdev->desc->min_dropout_uV;
2880
2881                 current_supply_uV = _regulator_get_voltage(rdev->supply->rdev);
2882                 if (current_supply_uV < 0) {
2883                         ret = current_supply_uV;
2884                         goto out2;
2885                 }
2886
2887                 supply_change_uV = best_supply_uV - current_supply_uV;
2888         }
2889
2890         if (supply_change_uV > 0) {
2891                 ret = regulator_set_voltage_unlocked(rdev->supply,
2892                                 best_supply_uV, INT_MAX);
2893                 if (ret) {
2894                         dev_err(&rdev->dev, "Failed to increase supply voltage: %d\n",
2895                                         ret);
2896                         goto out2;
2897                 }
2898         }
2899
2900         ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);
2901         if (ret < 0)
2902                 goto out2;
2903
2904         if (supply_change_uV < 0) {
2905                 ret = regulator_set_voltage_unlocked(rdev->supply,
2906                                 best_supply_uV, INT_MAX);
2907                 if (ret)
2908                         dev_warn(&rdev->dev, "Failed to decrease supply voltage: %d\n",
2909                                         ret);
2910                 /* No need to fail here */
2911                 ret = 0;
2912         }
2913
2914 out:
2915         return ret;
2916 out2:
2917         regulator->min_uV = old_min_uV;
2918         regulator->max_uV = old_max_uV;
2919
2920         return ret;
2921 }
2922
2923 /**
2924  * regulator_set_voltage - set regulator output voltage
2925  * @regulator: regulator source
2926  * @min_uV: Minimum required voltage in uV
2927  * @max_uV: Maximum acceptable voltage in uV
2928  *
2929  * Sets a voltage regulator to the desired output voltage. This can be set
2930  * during any regulator state. IOW, regulator can be disabled or enabled.
2931  *
2932  * If the regulator is enabled then the voltage will change to the new value
2933  * immediately otherwise if the regulator is disabled the regulator will
2934  * output at the new voltage when enabled.
2935  *
2936  * NOTE: If the regulator is shared between several devices then the lowest
2937  * request voltage that meets the system constraints will be used.
2938  * Regulator system constraints must be set for this regulator before
2939  * calling this function otherwise this call will fail.
2940  */
2941 int regulator_set_voltage(struct regulator *regulator, int min_uV, int max_uV)
2942 {
2943         int ret = 0;
2944
2945         regulator_lock_supply(regulator->rdev);
2946
2947         ret = regulator_set_voltage_unlocked(regulator, min_uV, max_uV);
2948
2949         regulator_unlock_supply(regulator->rdev);
2950
2951         return ret;
2952 }
2953 EXPORT_SYMBOL_GPL(regulator_set_voltage);
2954
2955 /**
2956  * regulator_set_voltage_time - get raise/fall time
2957  * @regulator: regulator source
2958  * @old_uV: starting voltage in microvolts
2959  * @new_uV: target voltage in microvolts
2960  *
2961  * Provided with the starting and ending voltage, this function attempts to
2962  * calculate the time in microseconds required to rise or fall to this new
2963  * voltage.
2964  */
2965 int regulator_set_voltage_time(struct regulator *regulator,
2966                                int old_uV, int new_uV)
2967 {
2968         struct regulator_dev *rdev = regulator->rdev;
2969         const struct regulator_ops *ops = rdev->desc->ops;
2970         int old_sel = -1;
2971         int new_sel = -1;
2972         int voltage;
2973         int i;
2974
2975         /* Currently requires operations to do this */
2976         if (!ops->list_voltage || !ops->set_voltage_time_sel
2977             || !rdev->desc->n_voltages)
2978                 return -EINVAL;
2979
2980         for (i = 0; i < rdev->desc->n_voltages; i++) {
2981                 /* We only look for exact voltage matches here */
2982                 voltage = regulator_list_voltage(regulator, i);
2983                 if (voltage < 0)
2984                         return -EINVAL;
2985                 if (voltage == 0)
2986                         continue;
2987                 if (voltage == old_uV)
2988                         old_sel = i;
2989                 if (voltage == new_uV)
2990                         new_sel = i;
2991         }
2992
2993         if (old_sel < 0 || new_sel < 0)
2994                 return -EINVAL;
2995
2996         return ops->set_voltage_time_sel(rdev, old_sel, new_sel);
2997 }
2998 EXPORT_SYMBOL_GPL(regulator_set_voltage_time);
2999
3000 /**
3001  * regulator_set_voltage_time_sel - get raise/fall time
3002  * @rdev: regulator source device
3003  * @old_selector: selector for starting voltage
3004  * @new_selector: selector for target voltage
3005  *
3006  * Provided with the starting and target voltage selectors, this function
3007  * returns time in microseconds required to rise or fall to this new voltage
3008  *
3009  * Drivers providing ramp_delay in regulation_constraints can use this as their
3010  * set_voltage_time_sel() operation.
3011  */
3012 int regulator_set_voltage_time_sel(struct regulator_dev *rdev,
3013                                    unsigned int old_selector,
3014                                    unsigned int new_selector)
3015 {
3016         unsigned int ramp_delay = 0;
3017         int old_volt, new_volt;
3018
3019         if (rdev->constraints->ramp_delay)
3020                 ramp_delay = rdev->constraints->ramp_delay;
3021         else if (rdev->desc->ramp_delay)
3022                 ramp_delay = rdev->desc->ramp_delay;
3023
3024         if (ramp_delay == 0) {
3025                 rdev_warn(rdev, "ramp_delay not set\n");
3026                 return 0;
3027         }
3028
3029         /* sanity check */
3030         if (!rdev->desc->ops->list_voltage)
3031                 return -EINVAL;
3032
3033         old_volt = rdev->desc->ops->list_voltage(rdev, old_selector);
3034         new_volt = rdev->desc->ops->list_voltage(rdev, new_selector);
3035
3036         return DIV_ROUND_UP(abs(new_volt - old_volt), ramp_delay);
3037 }
3038 EXPORT_SYMBOL_GPL(regulator_set_voltage_time_sel);
3039
3040 /**
3041  * regulator_sync_voltage - re-apply last regulator output voltage
3042  * @regulator: regulator source
3043  *
3044  * Re-apply the last configured voltage.  This is intended to be used
3045  * where some external control source the consumer is cooperating with
3046  * has caused the configured voltage to change.
3047  */
3048 int regulator_sync_voltage(struct regulator *regulator)
3049 {
3050         struct regulator_dev *rdev = regulator->rdev;
3051         int ret, min_uV, max_uV;
3052
3053         mutex_lock(&rdev->mutex);
3054
3055         if (!rdev->desc->ops->set_voltage &&
3056             !rdev->desc->ops->set_voltage_sel) {
3057                 ret = -EINVAL;
3058                 goto out;
3059         }
3060
3061         /* This is only going to work if we've had a voltage configured. */
3062         if (!regulator->min_uV && !regulator->max_uV) {
3063                 ret = -EINVAL;
3064                 goto out;
3065         }
3066
3067         min_uV = regulator->min_uV;
3068         max_uV = regulator->max_uV;
3069
3070         /* This should be a paranoia check... */
3071         ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
3072         if (ret < 0)
3073                 goto out;
3074
3075         ret = regulator_check_consumers(rdev, &min_uV, &max_uV);
3076         if (ret < 0)
3077                 goto out;
3078
3079         ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);
3080
3081 out:
3082         mutex_unlock(&rdev->mutex);
3083         return ret;
3084 }
3085 EXPORT_SYMBOL_GPL(regulator_sync_voltage);
3086
3087 static int _regulator_get_voltage(struct regulator_dev *rdev)
3088 {
3089         int sel, ret;
3090
3091         if (rdev->desc->ops->get_voltage_sel) {
3092                 sel = rdev->desc->ops->get_voltage_sel(rdev);
3093                 if (sel < 0)
3094                         return sel;
3095                 ret = rdev->desc->ops->list_voltage(rdev, sel);
3096         } else if (rdev->desc->ops->get_voltage) {
3097                 ret = rdev->desc->ops->get_voltage(rdev);
3098         } else if (rdev->desc->ops->list_voltage) {
3099                 ret = rdev->desc->ops->list_voltage(rdev, 0);
3100         } else if (rdev->desc->fixed_uV && (rdev->desc->n_voltages == 1)) {
3101                 ret = rdev->desc->fixed_uV;
3102         } else if (rdev->supply) {
3103                 ret = _regulator_get_voltage(rdev->supply->rdev);
3104         } else {
3105                 return -EINVAL;
3106         }
3107
3108         if (ret < 0)
3109                 return ret;
3110         return ret - rdev->constraints->uV_offset;
3111 }
3112
3113 /**
3114  * regulator_get_voltage - get regulator output voltage
3115  * @regulator: regulator source
3116  *
3117  * This returns the current regulator voltage in uV.
3118  *
3119  * NOTE: If the regulator is disabled it will return the voltage value. This
3120  * function should not be used to determine regulator state.
3121  */
3122 int regulator_get_voltage(struct regulator *regulator)
3123 {
3124         int ret;
3125
3126         regulator_lock_supply(regulator->rdev);
3127
3128         ret = _regulator_get_voltage(regulator->rdev);
3129
3130         regulator_unlock_supply(regulator->rdev);
3131
3132         return ret;
3133 }
3134 EXPORT_SYMBOL_GPL(regulator_get_voltage);
3135
3136 /**
3137  * regulator_set_current_limit - set regulator output current limit
3138  * @regulator: regulator source
3139  * @min_uA: Minimum supported current in uA
3140  * @max_uA: Maximum supported current in uA
3141  *
3142  * Sets current sink to the desired output current. This can be set during
3143  * any regulator state. IOW, regulator can be disabled or enabled.
3144  *
3145  * If the regulator is enabled then the current will change to the new value
3146  * immediately otherwise if the regulator is disabled the regulator will
3147  * output at the new current when enabled.
3148  *
3149  * NOTE: Regulator system constraints must be set for this regulator before
3150  * calling this function otherwise this call will fail.
3151  */
3152 int regulator_set_current_limit(struct regulator *regulator,
3153                                int min_uA, int max_uA)
3154 {
3155         struct regulator_dev *rdev = regulator->rdev;
3156         int ret;
3157
3158         mutex_lock(&rdev->mutex);
3159
3160         /* sanity check */
3161         if (!rdev->desc->ops->set_current_limit) {
3162                 ret = -EINVAL;
3163                 goto out;
3164         }
3165
3166         /* constraints check */
3167         ret = regulator_check_current_limit(rdev, &min_uA, &max_uA);
3168         if (ret < 0)
3169                 goto out;
3170
3171         ret = rdev->desc->ops->set_current_limit(rdev, min_uA, max_uA);
3172 out:
3173         mutex_unlock(&rdev->mutex);
3174         return ret;
3175 }
3176 EXPORT_SYMBOL_GPL(regulator_set_current_limit);
3177
3178 static int _regulator_get_current_limit(struct regulator_dev *rdev)
3179 {
3180         int ret;
3181
3182         mutex_lock(&rdev->mutex);
3183
3184         /* sanity check */
3185         if (!rdev->desc->ops->get_current_limit) {
3186                 ret = -EINVAL;
3187                 goto out;
3188         }
3189
3190         ret = rdev->desc->ops->get_current_limit(rdev);
3191 out:
3192         mutex_unlock(&rdev->mutex);
3193         return ret;
3194 }
3195
3196 /**
3197  * regulator_get_current_limit - get regulator output current
3198  * @regulator: regulator source
3199  *
3200  * This returns the current supplied by the specified current sink in uA.
3201  *
3202  * NOTE: If the regulator is disabled it will return the current value. This
3203  * function should not be used to determine regulator state.
3204  */
3205 int regulator_get_current_limit(struct regulator *regulator)
3206 {
3207         return _regulator_get_current_limit(regulator->rdev);
3208 }
3209 EXPORT_SYMBOL_GPL(regulator_get_current_limit);
3210
3211 /**
3212  * regulator_set_mode - set regulator operating mode
3213  * @regulator: regulator source
3214  * @mode: operating mode - one of the REGULATOR_MODE constants
3215  *
3216  * Set regulator operating mode to increase regulator efficiency or improve
3217  * regulation performance.
3218  *
3219  * NOTE: Regulator system constraints must be set for this regulator before
3220  * calling this function otherwise this call will fail.
3221  */
3222 int regulator_set_mode(struct regulator *regulator, unsigned int mode)
3223 {
3224         struct regulator_dev *rdev = regulator->rdev;
3225         int ret;
3226         int regulator_curr_mode;
3227
3228         mutex_lock(&rdev->mutex);
3229
3230         /* sanity check */
3231         if (!rdev->desc->ops->set_mode) {
3232                 ret = -EINVAL;
3233                 goto out;
3234         }
3235
3236         /* return if the same mode is requested */
3237         if (rdev->desc->ops->get_mode) {
3238                 regulator_curr_mode = rdev->desc->ops->get_mode(rdev);
3239                 if (regulator_curr_mode == mode) {
3240                         ret = 0;
3241                         goto out;
3242                 }
3243         }
3244
3245         /* constraints check */
3246         ret = regulator_mode_constrain(rdev, &mode);
3247         if (ret < 0)
3248                 goto out;
3249
3250         ret = rdev->desc->ops->set_mode(rdev, mode);
3251 out:
3252         mutex_unlock(&rdev->mutex);
3253         return ret;
3254 }
3255 EXPORT_SYMBOL_GPL(regulator_set_mode);
3256
3257 static unsigned int _regulator_get_mode(struct regulator_dev *rdev)
3258 {
3259         int ret;
3260
3261         mutex_lock(&rdev->mutex);
3262
3263         /* sanity check */
3264         if (!rdev->desc->ops->get_mode) {
3265                 ret = -EINVAL;
3266                 goto out;
3267         }
3268
3269         ret = rdev->desc->ops->get_mode(rdev);
3270 out:
3271         mutex_unlock(&rdev->mutex);
3272         return ret;
3273 }
3274
3275 /**
3276  * regulator_get_mode - get regulator operating mode
3277  * @regulator: regulator source
3278  *
3279  * Get the current regulator operating mode.
3280  */
3281 unsigned int regulator_get_mode(struct regulator *regulator)
3282 {
3283         return _regulator_get_mode(regulator->rdev);
3284 }
3285 EXPORT_SYMBOL_GPL(regulator_get_mode);
3286
3287 /**
3288  * regulator_set_load - set regulator load
3289  * @regulator: regulator source
3290  * @uA_load: load current
3291  *
3292  * Notifies the regulator core of a new device load. This is then used by
3293  * DRMS (if enabled by constraints) to set the most efficient regulator
3294  * operating mode for the new regulator loading.
3295  *
3296  * Consumer devices notify their supply regulator of the maximum power
3297  * they will require (can be taken from device datasheet in the power
3298  * consumption tables) when they change operational status and hence power
3299  * state. Examples of operational state changes that can affect power
3300  * consumption are :-
3301  *
3302  *    o Device is opened / closed.
3303  *    o Device I/O is about to begin or has just finished.
3304  *    o Device is idling in between work.
3305  *
3306  * This information is also exported via sysfs to userspace.
3307  *
3308  * DRMS will sum the total requested load on the regulator and change
3309  * to the most efficient operating mode if platform constraints allow.
3310  *
3311  * On error a negative errno is returned.
3312  */
3313 int regulator_set_load(struct regulator *regulator, int uA_load)
3314 {
3315         struct regulator_dev *rdev = regulator->rdev;
3316         int ret;
3317
3318         mutex_lock(&rdev->mutex);
3319         regulator->uA_load = uA_load;
3320         ret = drms_uA_update(rdev);
3321         mutex_unlock(&rdev->mutex);
3322
3323         return ret;
3324 }
3325 EXPORT_SYMBOL_GPL(regulator_set_load);
3326
3327 /**
3328  * regulator_allow_bypass - allow the regulator to go into bypass mode
3329  *
3330  * @regulator: Regulator to configure
3331  * @enable: enable or disable bypass mode
3332  *
3333  * Allow the regulator to go into bypass mode if all other consumers
3334  * for the regulator also enable bypass mode and the machine
3335  * constraints allow this.  Bypass mode means that the regulator is
3336  * simply passing the input directly to the output with no regulation.
3337  */
3338 int regulator_allow_bypass(struct regulator *regulator, bool enable)
3339 {
3340         struct regulator_dev *rdev = regulator->rdev;
3341         int ret = 0;
3342
3343         if (!rdev->desc->ops->set_bypass)
3344                 return 0;
3345
3346         if (rdev->constraints &&
3347             !(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_BYPASS))
3348                 return 0;
3349
3350         mutex_lock(&rdev->mutex);
3351
3352         if (enable && !regulator->bypass) {
3353                 rdev->bypass_count++;
3354
3355                 if (rdev->bypass_count == rdev->open_count) {
3356                         ret = rdev->desc->ops->set_bypass(rdev, enable);
3357                         if (ret != 0)
3358                                 rdev->bypass_count--;
3359                 }
3360
3361         } else if (!enable && regulator->bypass) {
3362                 rdev->bypass_count--;
3363
3364                 if (rdev->bypass_count != rdev->open_count) {
3365                         ret = rdev->desc->ops->set_bypass(rdev, enable);
3366                         if (ret != 0)
3367                                 rdev->bypass_count++;
3368                 }
3369         }
3370
3371         if (ret == 0)
3372                 regulator->bypass = enable;
3373
3374         mutex_unlock(&rdev->mutex);
3375
3376         return ret;
3377 }
3378 EXPORT_SYMBOL_GPL(regulator_allow_bypass);
3379
3380 /**
3381  * regulator_register_notifier - register regulator event notifier
3382  * @regulator: regulator source
3383  * @nb: notifier block
3384  *
3385  * Register notifier block to receive regulator events.
3386  */
3387 int regulator_register_notifier(struct regulator *regulator,
3388                               struct notifier_block *nb)
3389 {
3390         return blocking_notifier_chain_register(&regulator->rdev->notifier,
3391                                                 nb);
3392 }
3393 EXPORT_SYMBOL_GPL(regulator_register_notifier);
3394
3395 /**
3396  * regulator_unregister_notifier - unregister regulator event notifier
3397  * @regulator: regulator source
3398  * @nb: notifier block
3399  *
3400  * Unregister regulator event notifier block.
3401  */
3402 int regulator_unregister_notifier(struct regulator *regulator,
3403                                 struct notifier_block *nb)
3404 {
3405         return blocking_notifier_chain_unregister(&regulator->rdev->notifier,
3406                                                   nb);
3407 }
3408 EXPORT_SYMBOL_GPL(regulator_unregister_notifier);
3409
3410 /* notify regulator consumers and downstream regulator consumers.
3411  * Note mutex must be held by caller.
3412  */
3413 static int _notifier_call_chain(struct regulator_dev *rdev,
3414                                   unsigned long event, void *data)
3415 {
3416         /* call rdev chain first */
3417         return blocking_notifier_call_chain(&rdev->notifier, event, data);
3418 }
3419
3420 /**
3421  * regulator_bulk_get - get multiple regulator consumers
3422  *
3423  * @dev:           Device to supply
3424  * @num_consumers: Number of consumers to register
3425  * @consumers:     Configuration of consumers; clients are stored here.
3426  *
3427  * @return 0 on success, an errno on failure.
3428  *
3429  * This helper function allows drivers to get several regulator
3430  * consumers in one operation.  If any of the regulators cannot be
3431  * acquired then any regulators that were allocated will be freed
3432  * before returning to the caller.
3433  */
3434 int regulator_bulk_get(struct device *dev, int num_consumers,
3435                        struct regulator_bulk_data *consumers)
3436 {
3437         int i;
3438         int ret;
3439
3440         for (i = 0; i < num_consumers; i++)
3441                 consumers[i].consumer = NULL;
3442
3443         for (i = 0; i < num_consumers; i++) {
3444                 consumers[i].consumer = _regulator_get(dev,
3445                                                        consumers[i].supply,
3446                                                        false,
3447                                                        !consumers[i].optional);
3448                 if (IS_ERR(consumers[i].consumer)) {
3449                         ret = PTR_ERR(consumers[i].consumer);
3450                         dev_err(dev, "Failed to get supply '%s': %d\n",
3451                                 consumers[i].supply, ret);
3452                         consumers[i].consumer = NULL;
3453                         goto err;
3454                 }
3455         }
3456
3457         return 0;
3458
3459 err:
3460         while (--i >= 0)
3461                 regulator_put(consumers[i].consumer);
3462
3463         return ret;
3464 }
3465 EXPORT_SYMBOL_GPL(regulator_bulk_get);
3466
3467 static void regulator_bulk_enable_async(void *data, async_cookie_t cookie)
3468 {
3469         struct regulator_bulk_data *bulk = data;
3470
3471         bulk->ret = regulator_enable(bulk->consumer);
3472 }
3473
3474 /**
3475  * regulator_bulk_enable - enable multiple regulator consumers
3476  *
3477  * @num_consumers: Number of consumers
3478  * @consumers:     Consumer data; clients are stored here.
3479  * @return         0 on success, an errno on failure
3480  *
3481  * This convenience API allows consumers to enable multiple regulator
3482  * clients in a single API call.  If any consumers cannot be enabled
3483  * then any others that were enabled will be disabled again prior to
3484  * return.
3485  */
3486 int regulator_bulk_enable(int num_consumers,
3487                           struct regulator_bulk_data *consumers)
3488 {
3489         ASYNC_DOMAIN_EXCLUSIVE(async_domain);
3490         int i;
3491         int ret = 0;
3492
3493         for (i = 0; i < num_consumers; i++) {
3494                 if (consumers[i].consumer->always_on)
3495                         consumers[i].ret = 0;
3496                 else
3497                         async_schedule_domain(regulator_bulk_enable_async,
3498                                               &consumers[i], &async_domain);
3499         }
3500
3501         async_synchronize_full_domain(&async_domain);
3502
3503         /* If any consumer failed we need to unwind any that succeeded */
3504         for (i = 0; i < num_consumers; i++) {
3505                 if (consumers[i].ret != 0) {
3506                         ret = consumers[i].ret;
3507                         goto err;
3508                 }
3509         }
3510
3511         return 0;
3512
3513 err:
3514         for (i = 0; i < num_consumers; i++) {
3515                 if (consumers[i].ret < 0)
3516                         pr_err("Failed to enable %s: %d\n", consumers[i].supply,
3517                                consumers[i].ret);
3518                 else
3519                         regulator_disable(consumers[i].consumer);
3520         }
3521
3522         return ret;
3523 }
3524 EXPORT_SYMBOL_GPL(regulator_bulk_enable);
3525
3526 /**
3527  * regulator_bulk_disable - disable multiple regulator consumers
3528  *
3529  * @num_consumers: Number of consumers
3530  * @consumers:     Consumer data; clients are stored here.
3531  * @return         0 on success, an errno on failure
3532  *
3533  * This convenience API allows consumers to disable multiple regulator
3534  * clients in a single API call.  If any consumers cannot be disabled
3535  * then any others that were disabled will be enabled again prior to
3536  * return.
3537  */
3538 int regulator_bulk_disable(int num_consumers,
3539                            struct regulator_bulk_data *consumers)
3540 {
3541         int i;
3542         int ret, r;
3543
3544         for (i = num_consumers - 1; i >= 0; --i) {
3545                 ret = regulator_disable(consumers[i].consumer);
3546                 if (ret != 0)
3547                         goto err;
3548         }
3549
3550         return 0;
3551
3552 err:
3553         pr_err("Failed to disable %s: %d\n", consumers[i].supply, ret);
3554         for (++i; i < num_consumers; ++i) {
3555                 r = regulator_enable(consumers[i].consumer);
3556                 if (r != 0)
3557                         pr_err("Failed to reename %s: %d\n",
3558                                consumers[i].supply, r);
3559         }
3560
3561         return ret;
3562 }
3563 EXPORT_SYMBOL_GPL(regulator_bulk_disable);
3564
3565 /**
3566  * regulator_bulk_force_disable - force disable multiple regulator consumers
3567  *
3568  * @num_consumers: Number of consumers
3569  * @consumers:     Consumer data; clients are stored here.
3570  * @return         0 on success, an errno on failure
3571  *
3572  * This convenience API allows consumers to forcibly disable multiple regulator
3573  * clients in a single API call.
3574  * NOTE: This should be used for situations when device damage will
3575  * likely occur if the regulators are not disabled (e.g. over temp).
3576  * Although regulator_force_disable function call for some consumers can
3577  * return error numbers, the function is called for all consumers.
3578  */
3579 int regulator_bulk_force_disable(int num_consumers,
3580                            struct regulator_bulk_data *consumers)
3581 {
3582         int i;
3583         int ret;
3584
3585         for (i = 0; i < num_consumers; i++)
3586                 consumers[i].ret =
3587                             regulator_force_disable(consumers[i].consumer);
3588
3589         for (i = 0; i < num_consumers; i++) {
3590                 if (consumers[i].ret != 0) {
3591                         ret = consumers[i].ret;
3592                         goto out;
3593                 }
3594         }
3595
3596         return 0;
3597 out:
3598         return ret;
3599 }
3600 EXPORT_SYMBOL_GPL(regulator_bulk_force_disable);
3601
3602 /**
3603  * regulator_bulk_free - free multiple regulator consumers
3604  *
3605  * @num_consumers: Number of consumers
3606  * @consumers:     Consumer data; clients are stored here.
3607  *
3608  * This convenience API allows consumers to free multiple regulator
3609  * clients in a single API call.
3610  */
3611 void regulator_bulk_free(int num_consumers,
3612                          struct regulator_bulk_data *consumers)
3613 {
3614         int i;
3615
3616         for (i = 0; i < num_consumers; i++) {
3617                 regulator_put(consumers[i].consumer);
3618                 consumers[i].consumer = NULL;
3619         }
3620 }
3621 EXPORT_SYMBOL_GPL(regulator_bulk_free);
3622
3623 /**
3624  * regulator_notifier_call_chain - call regulator event notifier
3625  * @rdev: regulator source
3626  * @event: notifier block
3627  * @data: callback-specific data.
3628  *
3629  * Called by regulator drivers to notify clients a regulator event has
3630  * occurred. We also notify regulator clients downstream.
3631  * Note lock must be held by caller.
3632  */
3633 int regulator_notifier_call_chain(struct regulator_dev *rdev,
3634                                   unsigned long event, void *data)
3635 {
3636         lockdep_assert_held_once(&rdev->mutex);
3637
3638         _notifier_call_chain(rdev, event, data);
3639         return NOTIFY_DONE;
3640
3641 }
3642 EXPORT_SYMBOL_GPL(regulator_notifier_call_chain);
3643
3644 /**
3645  * regulator_mode_to_status - convert a regulator mode into a status
3646  *
3647  * @mode: Mode to convert
3648  *
3649  * Convert a regulator mode into a status.
3650  */
3651 int regulator_mode_to_status(unsigned int mode)
3652 {
3653         switch (mode) {
3654         case REGULATOR_MODE_FAST:
3655                 return REGULATOR_STATUS_FAST;
3656         case REGULATOR_MODE_NORMAL:
3657                 return REGULATOR_STATUS_NORMAL;
3658         case REGULATOR_MODE_IDLE:
3659                 return REGULATOR_STATUS_IDLE;
3660         case REGULATOR_MODE_STANDBY:
3661                 return REGULATOR_STATUS_STANDBY;
3662         default:
3663                 return REGULATOR_STATUS_UNDEFINED;
3664         }
3665 }
3666 EXPORT_SYMBOL_GPL(regulator_mode_to_status);
3667
3668 static struct attribute *regulator_dev_attrs[] = {
3669         &dev_attr_name.attr,
3670         &dev_attr_num_users.attr,
3671         &dev_attr_type.attr,
3672         &dev_attr_microvolts.attr,
3673         &dev_attr_microamps.attr,
3674         &dev_attr_opmode.attr,
3675         &dev_attr_state.attr,
3676         &dev_attr_status.attr,
3677         &dev_attr_bypass.attr,
3678         &dev_attr_requested_microamps.attr,
3679         &dev_attr_min_microvolts.attr,
3680         &dev_attr_max_microvolts.attr,
3681         &dev_attr_min_microamps.attr,
3682         &dev_attr_max_microamps.attr,
3683         &dev_attr_suspend_standby_state.attr,
3684         &dev_attr_suspend_mem_state.attr,
3685         &dev_attr_suspend_disk_state.attr,
3686         &dev_attr_suspend_standby_microvolts.attr,
3687         &dev_attr_suspend_mem_microvolts.attr,
3688         &dev_attr_suspend_disk_microvolts.attr,
3689         &dev_attr_suspend_standby_mode.attr,
3690         &dev_attr_suspend_mem_mode.attr,
3691         &dev_attr_suspend_disk_mode.attr,
3692         NULL
3693 };
3694
3695 /*
3696  * To avoid cluttering sysfs (and memory) with useless state, only
3697  * create attributes that can be meaningfully displayed.
3698  */
3699 static umode_t regulator_attr_is_visible(struct kobject *kobj,
3700                                          struct attribute *attr, int idx)
3701 {
3702         struct device *dev = kobj_to_dev(kobj);
3703         struct regulator_dev *rdev = dev_to_rdev(dev);
3704         const struct regulator_ops *ops = rdev->desc->ops;
3705         umode_t mode = attr->mode;
3706
3707         /* these three are always present */
3708         if (attr == &dev_attr_name.attr ||
3709             attr == &dev_attr_num_users.attr ||
3710             attr == &dev_attr_type.attr)
3711                 return mode;
3712
3713         /* some attributes need specific methods to be displayed */
3714         if (attr == &dev_attr_microvolts.attr) {
3715                 if ((ops->get_voltage && ops->get_voltage(rdev) >= 0) ||
3716                     (ops->get_voltage_sel && ops->get_voltage_sel(rdev) >= 0) ||
3717                     (ops->list_voltage && ops->list_voltage(rdev, 0) >= 0) ||
3718                     (rdev->desc->fixed_uV && rdev->desc->n_voltages == 1))
3719                         return mode;
3720                 return 0;
3721         }
3722
3723         if (attr == &dev_attr_microamps.attr)
3724                 return ops->get_current_limit ? mode : 0;
3725
3726         if (attr == &dev_attr_opmode.attr)
3727                 return ops->get_mode ? mode : 0;
3728
3729         if (attr == &dev_attr_state.attr)
3730                 return (rdev->ena_pin || ops->is_enabled) ? mode : 0;
3731
3732         if (attr == &dev_attr_status.attr)
3733                 return ops->get_status ? mode : 0;
3734
3735         if (attr == &dev_attr_bypass.attr)
3736                 return ops->get_bypass ? mode : 0;
3737
3738         /* some attributes are type-specific */
3739         if (attr == &dev_attr_requested_microamps.attr)
3740                 return rdev->desc->type == REGULATOR_CURRENT ? mode : 0;
3741
3742         /* constraints need specific supporting methods */
3743         if (attr == &dev_attr_min_microvolts.attr ||
3744             attr == &dev_attr_max_microvolts.attr)
3745                 return (ops->set_voltage || ops->set_voltage_sel) ? mode : 0;
3746
3747         if (attr == &dev_attr_min_microamps.attr ||
3748             attr == &dev_attr_max_microamps.attr)
3749                 return ops->set_current_limit ? mode : 0;
3750
3751         if (attr == &dev_attr_suspend_standby_state.attr ||
3752             attr == &dev_attr_suspend_mem_state.attr ||
3753             attr == &dev_attr_suspend_disk_state.attr)
3754                 return mode;
3755
3756         if (attr == &dev_attr_suspend_standby_microvolts.attr ||
3757             attr == &dev_attr_suspend_mem_microvolts.attr ||
3758             attr == &dev_attr_suspend_disk_microvolts.attr)
3759                 return ops->set_suspend_voltage ? mode : 0;
3760
3761         if (attr == &dev_attr_suspend_standby_mode.attr ||
3762             attr == &dev_attr_suspend_mem_mode.attr ||
3763             attr == &dev_attr_suspend_disk_mode.attr)
3764                 return ops->set_suspend_mode ? mode : 0;
3765
3766         return mode;
3767 }
3768
3769 static const struct attribute_group regulator_dev_group = {
3770         .attrs = regulator_dev_attrs,
3771         .is_visible = regulator_attr_is_visible,
3772 };
3773
3774 static const struct attribute_group *regulator_dev_groups[] = {
3775         &regulator_dev_group,
3776         NULL
3777 };
3778
3779 static void regulator_dev_release(struct device *dev)
3780 {
3781         struct regulator_dev *rdev = dev_get_drvdata(dev);
3782
3783         kfree(rdev->constraints);
3784         of_node_put(rdev->dev.of_node);
3785         kfree(rdev);
3786 }
3787
3788 static struct class regulator_class = {
3789         .name = "regulator",
3790         .dev_release = regulator_dev_release,
3791         .dev_groups = regulator_dev_groups,
3792 };
3793
3794 static void rdev_init_debugfs(struct regulator_dev *rdev)
3795 {
3796         struct device *parent = rdev->dev.parent;
3797         const char *rname = rdev_get_name(rdev);
3798         char name[NAME_MAX];
3799
3800         /* Avoid duplicate debugfs directory names */
3801         if (parent && rname == rdev->desc->name) {
3802                 snprintf(name, sizeof(name), "%s-%s", dev_name(parent),
3803                          rname);
3804                 rname = name;
3805         }
3806
3807         rdev->debugfs = debugfs_create_dir(rname, debugfs_root);
3808         if (!rdev->debugfs) {
3809                 rdev_warn(rdev, "Failed to create debugfs directory\n");
3810                 return;
3811         }
3812
3813         debugfs_create_u32("use_count", 0444, rdev->debugfs,
3814                            &rdev->use_count);
3815         debugfs_create_u32("open_count", 0444, rdev->debugfs,
3816                            &rdev->open_count);
3817         debugfs_create_u32("bypass_count", 0444, rdev->debugfs,
3818                            &rdev->bypass_count);
3819 }
3820
3821 /**
3822  * regulator_register - register regulator
3823  * @regulator_desc: regulator to register
3824  * @cfg: runtime configuration for regulator
3825  *
3826  * Called by regulator drivers to register a regulator.
3827  * Returns a valid pointer to struct regulator_dev on success
3828  * or an ERR_PTR() on error.
3829  */
3830 struct regulator_dev *
3831 regulator_register(const struct regulator_desc *regulator_desc,
3832                    const struct regulator_config *cfg)
3833 {
3834         const struct regulation_constraints *constraints = NULL;
3835         const struct regulator_init_data *init_data;
3836         struct regulator_config *config = NULL;
3837         static atomic_t regulator_no = ATOMIC_INIT(-1);
3838         struct regulator_dev *rdev;
3839         struct device *dev;
3840         int ret, i;
3841
3842         if (regulator_desc == NULL || cfg == NULL)
3843                 return ERR_PTR(-EINVAL);
3844
3845         dev = cfg->dev;
3846         WARN_ON(!dev);
3847
3848         if (regulator_desc->name == NULL || regulator_desc->ops == NULL)
3849                 return ERR_PTR(-EINVAL);
3850
3851         if (regulator_desc->type != REGULATOR_VOLTAGE &&
3852             regulator_desc->type != REGULATOR_CURRENT)
3853                 return ERR_PTR(-EINVAL);
3854
3855         /* Only one of each should be implemented */
3856         WARN_ON(regulator_desc->ops->get_voltage &&
3857                 regulator_desc->ops->get_voltage_sel);
3858         WARN_ON(regulator_desc->ops->set_voltage &&
3859                 regulator_desc->ops->set_voltage_sel);
3860
3861         /* If we're using selectors we must implement list_voltage. */
3862         if (regulator_desc->ops->get_voltage_sel &&
3863             !regulator_desc->ops->list_voltage) {
3864                 return ERR_PTR(-EINVAL);
3865         }
3866         if (regulator_desc->ops->set_voltage_sel &&
3867             !regulator_desc->ops->list_voltage) {
3868                 return ERR_PTR(-EINVAL);
3869         }
3870
3871         rdev = kzalloc(sizeof(struct regulator_dev), GFP_KERNEL);
3872         if (rdev == NULL)
3873                 return ERR_PTR(-ENOMEM);
3874
3875         /*
3876          * Duplicate the config so the driver could override it after
3877          * parsing init data.
3878          */
3879         config = kmemdup(cfg, sizeof(*cfg), GFP_KERNEL);
3880         if (config == NULL) {
3881                 kfree(rdev);
3882                 return ERR_PTR(-ENOMEM);
3883         }
3884
3885         init_data = regulator_of_get_init_data(dev, regulator_desc, config,
3886                                                &rdev->dev.of_node);
3887         if (!init_data) {
3888                 init_data = config->init_data;
3889                 rdev->dev.of_node = of_node_get(config->of_node);
3890         }
3891
3892         mutex_lock(&regulator_list_mutex);
3893
3894         mutex_init(&rdev->mutex);
3895         rdev->reg_data = config->driver_data;
3896         rdev->owner = regulator_desc->owner;
3897         rdev->desc = regulator_desc;
3898         if (config->regmap)
3899                 rdev->regmap = config->regmap;
3900         else if (dev_get_regmap(dev, NULL))
3901                 rdev->regmap = dev_get_regmap(dev, NULL);
3902         else if (dev->parent)
3903                 rdev->regmap = dev_get_regmap(dev->parent, NULL);
3904         INIT_LIST_HEAD(&rdev->consumer_list);
3905         INIT_LIST_HEAD(&rdev->list);
3906         BLOCKING_INIT_NOTIFIER_HEAD(&rdev->notifier);
3907         INIT_DELAYED_WORK(&rdev->disable_work, regulator_disable_work);
3908
3909         /* preform any regulator specific init */
3910         if (init_data && init_data->regulator_init) {
3911                 ret = init_data->regulator_init(rdev->reg_data);
3912                 if (ret < 0)
3913                         goto clean;
3914         }
3915
3916         if ((config->ena_gpio || config->ena_gpio_initialized) &&
3917             gpio_is_valid(config->ena_gpio)) {
3918                 ret = regulator_ena_gpio_request(rdev, config);
3919                 if (ret != 0) {
3920                         rdev_err(rdev, "Failed to request enable GPIO%d: %d\n",
3921                                  config->ena_gpio, ret);
3922                         goto clean;
3923                 }
3924         }
3925
3926         /* register with sysfs */
3927         rdev->dev.class = &regulator_class;
3928         rdev->dev.parent = dev;
3929         dev_set_name(&rdev->dev, "regulator.%lu",
3930                     (unsigned long) atomic_inc_return(&regulator_no));
3931         ret = device_register(&rdev->dev);
3932         if (ret != 0) {
3933                 put_device(&rdev->dev);
3934                 goto wash;
3935         }
3936
3937         dev_set_drvdata(&rdev->dev, rdev);
3938
3939         /* set regulator constraints */
3940         if (init_data)
3941                 constraints = &init_data->constraints;
3942
3943         ret = set_machine_constraints(rdev, constraints);
3944         if (ret < 0)
3945                 goto scrub;
3946
3947         if (init_data && init_data->supply_regulator)
3948                 rdev->supply_name = init_data->supply_regulator;
3949         else if (regulator_desc->supply_name)
3950                 rdev->supply_name = regulator_desc->supply_name;
3951
3952         /* add consumers devices */
3953         if (init_data) {
3954                 for (i = 0; i < init_data->num_consumer_supplies; i++) {
3955                         ret = set_consumer_device_supply(rdev,
3956                                 init_data->consumer_supplies[i].dev_name,
3957                                 init_data->consumer_supplies[i].supply);
3958                         if (ret < 0) {
3959                                 dev_err(dev, "Failed to set supply %s\n",
3960                                         init_data->consumer_supplies[i].supply);
3961                                 goto unset_supplies;
3962                         }
3963                 }
3964         }
3965
3966         rdev_init_debugfs(rdev);
3967 out:
3968         mutex_unlock(&regulator_list_mutex);
3969         kfree(config);
3970         return rdev;
3971
3972 unset_supplies:
3973         unset_regulator_supplies(rdev);
3974
3975 scrub:
3976         regulator_ena_gpio_free(rdev);
3977         device_unregister(&rdev->dev);
3978         /* device core frees rdev */
3979         rdev = ERR_PTR(ret);
3980         goto out;
3981
3982 wash:
3983         regulator_ena_gpio_free(rdev);
3984 clean:
3985         kfree(rdev);
3986         rdev = ERR_PTR(ret);
3987         goto out;
3988 }
3989 EXPORT_SYMBOL_GPL(regulator_register);
3990
3991 /**
3992  * regulator_unregister - unregister regulator
3993  * @rdev: regulator to unregister
3994  *
3995  * Called by regulator drivers to unregister a regulator.
3996  */
3997 void regulator_unregister(struct regulator_dev *rdev)
3998 {
3999         if (rdev == NULL)
4000                 return;
4001
4002         if (rdev->supply) {
4003                 while (rdev->use_count--)
4004                         regulator_disable(rdev->supply);
4005                 regulator_put(rdev->supply);
4006         }
4007         mutex_lock(&regulator_list_mutex);
4008         debugfs_remove_recursive(rdev->debugfs);
4009         flush_work(&rdev->disable_work.work);
4010         WARN_ON(rdev->open_count);
4011         unset_regulator_supplies(rdev);
4012         list_del(&rdev->list);
4013         mutex_unlock(&regulator_list_mutex);
4014         regulator_ena_gpio_free(rdev);
4015         device_unregister(&rdev->dev);
4016 }
4017 EXPORT_SYMBOL_GPL(regulator_unregister);
4018
4019 static int _regulator_suspend_prepare(struct device *dev, void *data)
4020 {
4021         struct regulator_dev *rdev = dev_to_rdev(dev);
4022         const suspend_state_t *state = data;
4023         int ret;
4024
4025         mutex_lock(&rdev->mutex);
4026         ret = suspend_prepare(rdev, *state);
4027         mutex_unlock(&rdev->mutex);
4028
4029         return ret;
4030 }
4031
4032 /**
4033  * regulator_suspend_prepare - prepare regulators for system wide suspend
4034  * @state: system suspend state
4035  *
4036  * Configure each regulator with it's suspend operating parameters for state.
4037  * This will usually be called by machine suspend code prior to supending.
4038  */
4039 int regulator_suspend_prepare(suspend_state_t state)
4040 {
4041         /* ON is handled by regulator active state */
4042         if (state == PM_SUSPEND_ON)
4043                 return -EINVAL;
4044
4045         return class_for_each_device(&regulator_class, NULL, &state,
4046                                      _regulator_suspend_prepare);
4047 }
4048 EXPORT_SYMBOL_GPL(regulator_suspend_prepare);
4049
4050 static int _regulator_suspend_finish(struct device *dev, void *data)
4051 {
4052         struct regulator_dev *rdev = dev_to_rdev(dev);
4053         int ret;
4054
4055         mutex_lock(&rdev->mutex);
4056         if (rdev->use_count > 0  || rdev->constraints->always_on) {
4057                 if (!_regulator_is_enabled(rdev)) {
4058                         ret = _regulator_do_enable(rdev);
4059                         if (ret)
4060                                 dev_err(dev,
4061                                         "Failed to resume regulator %d\n",
4062                                         ret);
4063                 }
4064         } else {
4065                 if (!have_full_constraints())
4066                         goto unlock;
4067                 if (!_regulator_is_enabled(rdev))
4068                         goto unlock;
4069
4070                 ret = _regulator_do_disable(rdev);
4071                 if (ret)
4072                         dev_err(dev, "Failed to suspend regulator %d\n", ret);
4073         }
4074 unlock:
4075         mutex_unlock(&rdev->mutex);
4076
4077         /* Keep processing regulators in spite of any errors */
4078         return 0;
4079 }
4080
4081 /**
4082  * regulator_suspend_finish - resume regulators from system wide suspend
4083  *
4084  * Turn on regulators that might be turned off by regulator_suspend_prepare
4085  * and that should be turned on according to the regulators properties.
4086  */
4087 int regulator_suspend_finish(void)
4088 {
4089         return class_for_each_device(&regulator_class, NULL, NULL,
4090                                      _regulator_suspend_finish);
4091 }
4092 EXPORT_SYMBOL_GPL(regulator_suspend_finish);
4093
4094 /**
4095  * regulator_has_full_constraints - the system has fully specified constraints
4096  *
4097  * Calling this function will cause the regulator API to disable all
4098  * regulators which have a zero use count and don't have an always_on
4099  * constraint in a late_initcall.
4100  *
4101  * The intention is that this will become the default behaviour in a
4102  * future kernel release so users are encouraged to use this facility
4103  * now.
4104  */
4105 void regulator_has_full_constraints(void)
4106 {
4107         has_full_constraints = 1;
4108 }
4109 EXPORT_SYMBOL_GPL(regulator_has_full_constraints);
4110
4111 /**
4112  * rdev_get_drvdata - get rdev regulator driver data
4113  * @rdev: regulator
4114  *
4115  * Get rdev regulator driver private data. This call can be used in the
4116  * regulator driver context.
4117  */
4118 void *rdev_get_drvdata(struct regulator_dev *rdev)
4119 {
4120         return rdev->reg_data;
4121 }
4122 EXPORT_SYMBOL_GPL(rdev_get_drvdata);
4123
4124 /**
4125  * regulator_get_drvdata - get regulator driver data
4126  * @regulator: regulator
4127  *
4128  * Get regulator driver private data. This call can be used in the consumer
4129  * driver context when non API regulator specific functions need to be called.
4130  */
4131 void *regulator_get_drvdata(struct regulator *regulator)
4132 {
4133         return regulator->rdev->reg_data;
4134 }
4135 EXPORT_SYMBOL_GPL(regulator_get_drvdata);
4136
4137 /**
4138  * regulator_set_drvdata - set regulator driver data
4139  * @regulator: regulator
4140  * @data: data
4141  */
4142 void regulator_set_drvdata(struct regulator *regulator, void *data)
4143 {
4144         regulator->rdev->reg_data = data;
4145 }
4146 EXPORT_SYMBOL_GPL(regulator_set_drvdata);
4147
4148 /**
4149  * regulator_get_id - get regulator ID
4150  * @rdev: regulator
4151  */
4152 int rdev_get_id(struct regulator_dev *rdev)
4153 {
4154         return rdev->desc->id;
4155 }
4156 EXPORT_SYMBOL_GPL(rdev_get_id);
4157
4158 struct device *rdev_get_dev(struct regulator_dev *rdev)
4159 {
4160         return &rdev->dev;
4161 }
4162 EXPORT_SYMBOL_GPL(rdev_get_dev);
4163
4164 void *regulator_get_init_drvdata(struct regulator_init_data *reg_init_data)
4165 {
4166         return reg_init_data->driver_data;
4167 }
4168 EXPORT_SYMBOL_GPL(regulator_get_init_drvdata);
4169
4170 #ifdef CONFIG_DEBUG_FS
4171 static ssize_t supply_map_read_file(struct file *file, char __user *user_buf,
4172                                     size_t count, loff_t *ppos)
4173 {
4174         char *buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
4175         ssize_t len, ret = 0;
4176         struct regulator_map *map;
4177
4178         if (!buf)
4179                 return -ENOMEM;
4180
4181         list_for_each_entry(map, &regulator_map_list, list) {
4182                 len = snprintf(buf + ret, PAGE_SIZE - ret,
4183                                "%s -> %s.%s\n",
4184                                rdev_get_name(map->regulator), map->dev_name,
4185                                map->supply);
4186                 if (len >= 0)
4187                         ret += len;
4188                 if (ret > PAGE_SIZE) {
4189                         ret = PAGE_SIZE;
4190                         break;
4191                 }
4192         }
4193
4194         ret = simple_read_from_buffer(user_buf, count, ppos, buf, ret);
4195
4196         kfree(buf);
4197
4198         return ret;
4199 }
4200 #endif
4201
4202 static const struct file_operations supply_map_fops = {
4203 #ifdef CONFIG_DEBUG_FS
4204         .read = supply_map_read_file,
4205         .llseek = default_llseek,
4206 #endif
4207 };
4208
4209 #ifdef CONFIG_DEBUG_FS
4210 struct summary_data {
4211         struct seq_file *s;
4212         struct regulator_dev *parent;
4213         int level;
4214 };
4215
4216 static void regulator_summary_show_subtree(struct seq_file *s,
4217                                            struct regulator_dev *rdev,
4218                                            int level);
4219
4220 static int regulator_summary_show_children(struct device *dev, void *data)
4221 {
4222         struct regulator_dev *rdev = dev_to_rdev(dev);
4223         struct summary_data *summary_data = data;
4224
4225         if (rdev->supply && rdev->supply->rdev == summary_data->parent)
4226                 regulator_summary_show_subtree(summary_data->s, rdev,
4227                                                summary_data->level + 1);
4228
4229         return 0;
4230 }
4231
4232 static void regulator_summary_show_subtree(struct seq_file *s,
4233                                            struct regulator_dev *rdev,
4234                                            int level)
4235 {
4236         struct regulation_constraints *c;
4237         struct regulator *consumer;
4238         struct summary_data summary_data;
4239
4240         if (!rdev)
4241                 return;
4242
4243         seq_printf(s, "%*s%-*s %3d %4d %6d ",
4244                    level * 3 + 1, "",
4245                    30 - level * 3, rdev_get_name(rdev),
4246                    rdev->use_count, rdev->open_count, rdev->bypass_count);
4247
4248         seq_printf(s, "%5dmV ", _regulator_get_voltage(rdev) / 1000);
4249         seq_printf(s, "%5dmA ", _regulator_get_current_limit(rdev) / 1000);
4250
4251         c = rdev->constraints;
4252         if (c) {
4253                 switch (rdev->desc->type) {
4254                 case REGULATOR_VOLTAGE:
4255                         seq_printf(s, "%5dmV %5dmV ",
4256                                    c->min_uV / 1000, c->max_uV / 1000);
4257                         break;
4258                 case REGULATOR_CURRENT:
4259                         seq_printf(s, "%5dmA %5dmA ",
4260                                    c->min_uA / 1000, c->max_uA / 1000);
4261                         break;
4262                 }
4263         }
4264
4265         seq_puts(s, "\n");
4266
4267         list_for_each_entry(consumer, &rdev->consumer_list, list) {
4268                 if (consumer->dev->class == &regulator_class)
4269                         continue;
4270
4271                 seq_printf(s, "%*s%-*s ",
4272                            (level + 1) * 3 + 1, "",
4273                            30 - (level + 1) * 3, dev_name(consumer->dev));
4274
4275                 switch (rdev->desc->type) {
4276                 case REGULATOR_VOLTAGE:
4277                         seq_printf(s, "%37dmV %5dmV",
4278                                    consumer->min_uV / 1000,
4279                                    consumer->max_uV / 1000);
4280                         break;
4281                 case REGULATOR_CURRENT:
4282                         break;
4283                 }
4284
4285                 seq_puts(s, "\n");
4286         }
4287
4288         summary_data.s = s;
4289         summary_data.level = level;
4290         summary_data.parent = rdev;
4291
4292         class_for_each_device(&regulator_class, NULL, &summary_data,
4293                               regulator_summary_show_children);
4294 }
4295
4296 static int regulator_summary_show_roots(struct device *dev, void *data)
4297 {
4298         struct regulator_dev *rdev = dev_to_rdev(dev);
4299         struct seq_file *s = data;
4300
4301         if (!rdev->supply)
4302                 regulator_summary_show_subtree(s, rdev, 0);
4303
4304         return 0;
4305 }
4306
4307 static int regulator_summary_show(struct seq_file *s, void *data)
4308 {
4309         seq_puts(s, " regulator                      use open bypass voltage current     min     max\n");
4310         seq_puts(s, "-------------------------------------------------------------------------------\n");
4311
4312         class_for_each_device(&regulator_class, NULL, s,
4313                               regulator_summary_show_roots);
4314
4315         return 0;
4316 }
4317
4318 static int regulator_summary_open(struct inode *inode, struct file *file)
4319 {
4320         return single_open(file, regulator_summary_show, inode->i_private);
4321 }
4322 #endif
4323
4324 static const struct file_operations regulator_summary_fops = {
4325 #ifdef CONFIG_DEBUG_FS
4326         .open           = regulator_summary_open,
4327         .read           = seq_read,
4328         .llseek         = seq_lseek,
4329         .release        = single_release,
4330 #endif
4331 };
4332
4333 static int __init regulator_init(void)
4334 {
4335         int ret;
4336
4337         ret = class_register(&regulator_class);
4338
4339         debugfs_root = debugfs_create_dir("regulator", NULL);
4340         if (!debugfs_root)
4341                 pr_warn("regulator: Failed to create debugfs directory\n");
4342
4343         debugfs_create_file("supply_map", 0444, debugfs_root, NULL,
4344                             &supply_map_fops);
4345
4346         debugfs_create_file("regulator_summary", 0444, debugfs_root,
4347                             NULL, &regulator_summary_fops);
4348
4349         regulator_dummy_init();
4350
4351         return ret;
4352 }
4353
4354 /* init early to allow our consumers to complete system booting */
4355 core_initcall(regulator_init);
4356
4357 static int __init regulator_late_cleanup(struct device *dev, void *data)
4358 {
4359         struct regulator_dev *rdev = dev_to_rdev(dev);
4360         const struct regulator_ops *ops = rdev->desc->ops;
4361         struct regulation_constraints *c = rdev->constraints;
4362         int enabled, ret;
4363
4364         if (c && c->always_on)
4365                 return 0;
4366
4367         if (c && !(c->valid_ops_mask & REGULATOR_CHANGE_STATUS))
4368                 return 0;
4369
4370         mutex_lock(&rdev->mutex);
4371
4372         if (rdev->use_count)
4373                 goto unlock;
4374
4375         /* If we can't read the status assume it's on. */
4376         if (ops->is_enabled)
4377                 enabled = ops->is_enabled(rdev);
4378         else
4379                 enabled = 1;
4380
4381         if (!enabled)
4382                 goto unlock;
4383
4384         if (have_full_constraints()) {
4385                 /* We log since this may kill the system if it goes
4386                  * wrong. */
4387                 rdev_info(rdev, "disabling\n");
4388                 ret = _regulator_do_disable(rdev);
4389                 if (ret != 0)
4390                         rdev_err(rdev, "couldn't disable: %d\n", ret);
4391         } else {
4392                 /* The intention is that in future we will
4393                  * assume that full constraints are provided
4394                  * so warn even if we aren't going to do
4395                  * anything here.
4396                  */
4397                 rdev_warn(rdev, "incomplete constraints, leaving on\n");
4398         }
4399
4400 unlock:
4401         mutex_unlock(&rdev->mutex);
4402
4403         return 0;
4404 }
4405
4406 static int __init regulator_init_complete(void)
4407 {
4408         /*
4409          * Since DT doesn't provide an idiomatic mechanism for
4410          * enabling full constraints and since it's much more natural
4411          * with DT to provide them just assume that a DT enabled
4412          * system has full constraints.
4413          */
4414         if (of_have_populated_dt())
4415                 has_full_constraints = true;
4416
4417         /* If we have a full configuration then disable any regulators
4418          * we have permission to change the status for and which are
4419          * not in use or always_on.  This is effectively the default
4420          * for DT and ACPI as they have full constraints.
4421          */
4422         class_for_each_device(&regulator_class, NULL, NULL,
4423                               regulator_late_cleanup);
4424
4425         return 0;
4426 }
4427 late_initcall_sync(regulator_init_complete);