Merge remote-tracking branches 'regulator/topic/88pm800', 'regulator/topic/ab8500...
[cascardo/linux.git] / drivers / regulator / core.c
1 /*
2  * core.c  --  Voltage/Current Regulator framework.
3  *
4  * Copyright 2007, 2008 Wolfson Microelectronics PLC.
5  * Copyright 2008 SlimLogic Ltd.
6  *
7  * Author: Liam Girdwood <lrg@slimlogic.co.uk>
8  *
9  *  This program is free software; you can redistribute  it and/or modify it
10  *  under  the terms of  the GNU General  Public License as published by the
11  *  Free Software Foundation;  either version 2 of the  License, or (at your
12  *  option) any later version.
13  *
14  */
15
16 #include <linux/kernel.h>
17 #include <linux/init.h>
18 #include <linux/debugfs.h>
19 #include <linux/device.h>
20 #include <linux/slab.h>
21 #include <linux/async.h>
22 #include <linux/err.h>
23 #include <linux/mutex.h>
24 #include <linux/suspend.h>
25 #include <linux/delay.h>
26 #include <linux/gpio.h>
27 #include <linux/of.h>
28 #include <linux/regmap.h>
29 #include <linux/regulator/of_regulator.h>
30 #include <linux/regulator/consumer.h>
31 #include <linux/regulator/driver.h>
32 #include <linux/regulator/machine.h>
33 #include <linux/module.h>
34
35 #define CREATE_TRACE_POINTS
36 #include <trace/events/regulator.h>
37
38 #include "dummy.h"
39 #include "internal.h"
40
41 #define rdev_crit(rdev, fmt, ...)                                       \
42         pr_crit("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
43 #define rdev_err(rdev, fmt, ...)                                        \
44         pr_err("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
45 #define rdev_warn(rdev, fmt, ...)                                       \
46         pr_warn("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
47 #define rdev_info(rdev, fmt, ...)                                       \
48         pr_info("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
49 #define rdev_dbg(rdev, fmt, ...)                                        \
50         pr_debug("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
51
52 static DEFINE_MUTEX(regulator_list_mutex);
53 static LIST_HEAD(regulator_list);
54 static LIST_HEAD(regulator_map_list);
55 static LIST_HEAD(regulator_ena_gpio_list);
56 static LIST_HEAD(regulator_supply_alias_list);
57 static bool has_full_constraints;
58
59 static struct dentry *debugfs_root;
60
61 /*
62  * struct regulator_map
63  *
64  * Used to provide symbolic supply names to devices.
65  */
66 struct regulator_map {
67         struct list_head list;
68         const char *dev_name;   /* The dev_name() for the consumer */
69         const char *supply;
70         struct regulator_dev *regulator;
71 };
72
73 /*
74  * struct regulator_enable_gpio
75  *
76  * Management for shared enable GPIO pin
77  */
78 struct regulator_enable_gpio {
79         struct list_head list;
80         int gpio;
81         u32 enable_count;       /* a number of enabled shared GPIO */
82         u32 request_count;      /* a number of requested shared GPIO */
83         unsigned int ena_gpio_invert:1;
84 };
85
86 /*
87  * struct regulator_supply_alias
88  *
89  * Used to map lookups for a supply onto an alternative device.
90  */
91 struct regulator_supply_alias {
92         struct list_head list;
93         struct device *src_dev;
94         const char *src_supply;
95         struct device *alias_dev;
96         const char *alias_supply;
97 };
98
99 static int _regulator_is_enabled(struct regulator_dev *rdev);
100 static int _regulator_disable(struct regulator_dev *rdev);
101 static int _regulator_get_voltage(struct regulator_dev *rdev);
102 static int _regulator_get_current_limit(struct regulator_dev *rdev);
103 static unsigned int _regulator_get_mode(struct regulator_dev *rdev);
104 static void _notifier_call_chain(struct regulator_dev *rdev,
105                                   unsigned long event, void *data);
106 static int _regulator_do_set_voltage(struct regulator_dev *rdev,
107                                      int min_uV, int max_uV);
108 static struct regulator *create_regulator(struct regulator_dev *rdev,
109                                           struct device *dev,
110                                           const char *supply_name);
111
112 static const char *rdev_get_name(struct regulator_dev *rdev)
113 {
114         if (rdev->constraints && rdev->constraints->name)
115                 return rdev->constraints->name;
116         else if (rdev->desc->name)
117                 return rdev->desc->name;
118         else
119                 return "";
120 }
121
122 static bool have_full_constraints(void)
123 {
124         return has_full_constraints || of_have_populated_dt();
125 }
126
127 /**
128  * of_get_regulator - get a regulator device node based on supply name
129  * @dev: Device pointer for the consumer (of regulator) device
130  * @supply: regulator supply name
131  *
132  * Extract the regulator device node corresponding to the supply name.
133  * returns the device node corresponding to the regulator if found, else
134  * returns NULL.
135  */
136 static struct device_node *of_get_regulator(struct device *dev, const char *supply)
137 {
138         struct device_node *regnode = NULL;
139         char prop_name[32]; /* 32 is max size of property name */
140
141         dev_dbg(dev, "Looking up %s-supply from device tree\n", supply);
142
143         snprintf(prop_name, 32, "%s-supply", supply);
144         regnode = of_parse_phandle(dev->of_node, prop_name, 0);
145
146         if (!regnode) {
147                 dev_dbg(dev, "Looking up %s property in node %s failed",
148                                 prop_name, dev->of_node->full_name);
149                 return NULL;
150         }
151         return regnode;
152 }
153
154 static int _regulator_can_change_status(struct regulator_dev *rdev)
155 {
156         if (!rdev->constraints)
157                 return 0;
158
159         if (rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_STATUS)
160                 return 1;
161         else
162                 return 0;
163 }
164
165 /* Platform voltage constraint check */
166 static int regulator_check_voltage(struct regulator_dev *rdev,
167                                    int *min_uV, int *max_uV)
168 {
169         BUG_ON(*min_uV > *max_uV);
170
171         if (!rdev->constraints) {
172                 rdev_err(rdev, "no constraints\n");
173                 return -ENODEV;
174         }
175         if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE)) {
176                 rdev_err(rdev, "operation not allowed\n");
177                 return -EPERM;
178         }
179
180         if (*max_uV > rdev->constraints->max_uV)
181                 *max_uV = rdev->constraints->max_uV;
182         if (*min_uV < rdev->constraints->min_uV)
183                 *min_uV = rdev->constraints->min_uV;
184
185         if (*min_uV > *max_uV) {
186                 rdev_err(rdev, "unsupportable voltage range: %d-%duV\n",
187                          *min_uV, *max_uV);
188                 return -EINVAL;
189         }
190
191         return 0;
192 }
193
194 /* Make sure we select a voltage that suits the needs of all
195  * regulator consumers
196  */
197 static int regulator_check_consumers(struct regulator_dev *rdev,
198                                      int *min_uV, int *max_uV)
199 {
200         struct regulator *regulator;
201
202         list_for_each_entry(regulator, &rdev->consumer_list, list) {
203                 /*
204                  * Assume consumers that didn't say anything are OK
205                  * with anything in the constraint range.
206                  */
207                 if (!regulator->min_uV && !regulator->max_uV)
208                         continue;
209
210                 if (*max_uV > regulator->max_uV)
211                         *max_uV = regulator->max_uV;
212                 if (*min_uV < regulator->min_uV)
213                         *min_uV = regulator->min_uV;
214         }
215
216         if (*min_uV > *max_uV) {
217                 rdev_err(rdev, "Restricting voltage, %u-%uuV\n",
218                         *min_uV, *max_uV);
219                 return -EINVAL;
220         }
221
222         return 0;
223 }
224
225 /* current constraint check */
226 static int regulator_check_current_limit(struct regulator_dev *rdev,
227                                         int *min_uA, int *max_uA)
228 {
229         BUG_ON(*min_uA > *max_uA);
230
231         if (!rdev->constraints) {
232                 rdev_err(rdev, "no constraints\n");
233                 return -ENODEV;
234         }
235         if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_CURRENT)) {
236                 rdev_err(rdev, "operation not allowed\n");
237                 return -EPERM;
238         }
239
240         if (*max_uA > rdev->constraints->max_uA)
241                 *max_uA = rdev->constraints->max_uA;
242         if (*min_uA < rdev->constraints->min_uA)
243                 *min_uA = rdev->constraints->min_uA;
244
245         if (*min_uA > *max_uA) {
246                 rdev_err(rdev, "unsupportable current range: %d-%duA\n",
247                          *min_uA, *max_uA);
248                 return -EINVAL;
249         }
250
251         return 0;
252 }
253
254 /* operating mode constraint check */
255 static int regulator_mode_constrain(struct regulator_dev *rdev, int *mode)
256 {
257         switch (*mode) {
258         case REGULATOR_MODE_FAST:
259         case REGULATOR_MODE_NORMAL:
260         case REGULATOR_MODE_IDLE:
261         case REGULATOR_MODE_STANDBY:
262                 break;
263         default:
264                 rdev_err(rdev, "invalid mode %x specified\n", *mode);
265                 return -EINVAL;
266         }
267
268         if (!rdev->constraints) {
269                 rdev_err(rdev, "no constraints\n");
270                 return -ENODEV;
271         }
272         if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_MODE)) {
273                 rdev_err(rdev, "operation not allowed\n");
274                 return -EPERM;
275         }
276
277         /* The modes are bitmasks, the most power hungry modes having
278          * the lowest values. If the requested mode isn't supported
279          * try higher modes. */
280         while (*mode) {
281                 if (rdev->constraints->valid_modes_mask & *mode)
282                         return 0;
283                 *mode /= 2;
284         }
285
286         return -EINVAL;
287 }
288
289 /* dynamic regulator mode switching constraint check */
290 static int regulator_check_drms(struct regulator_dev *rdev)
291 {
292         if (!rdev->constraints) {
293                 rdev_err(rdev, "no constraints\n");
294                 return -ENODEV;
295         }
296         if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_DRMS)) {
297                 rdev_err(rdev, "operation not allowed\n");
298                 return -EPERM;
299         }
300         return 0;
301 }
302
303 static ssize_t regulator_uV_show(struct device *dev,
304                                 struct device_attribute *attr, char *buf)
305 {
306         struct regulator_dev *rdev = dev_get_drvdata(dev);
307         ssize_t ret;
308
309         mutex_lock(&rdev->mutex);
310         ret = sprintf(buf, "%d\n", _regulator_get_voltage(rdev));
311         mutex_unlock(&rdev->mutex);
312
313         return ret;
314 }
315 static DEVICE_ATTR(microvolts, 0444, regulator_uV_show, NULL);
316
317 static ssize_t regulator_uA_show(struct device *dev,
318                                 struct device_attribute *attr, char *buf)
319 {
320         struct regulator_dev *rdev = dev_get_drvdata(dev);
321
322         return sprintf(buf, "%d\n", _regulator_get_current_limit(rdev));
323 }
324 static DEVICE_ATTR(microamps, 0444, regulator_uA_show, NULL);
325
326 static ssize_t name_show(struct device *dev, struct device_attribute *attr,
327                          char *buf)
328 {
329         struct regulator_dev *rdev = dev_get_drvdata(dev);
330
331         return sprintf(buf, "%s\n", rdev_get_name(rdev));
332 }
333 static DEVICE_ATTR_RO(name);
334
335 static ssize_t regulator_print_opmode(char *buf, int mode)
336 {
337         switch (mode) {
338         case REGULATOR_MODE_FAST:
339                 return sprintf(buf, "fast\n");
340         case REGULATOR_MODE_NORMAL:
341                 return sprintf(buf, "normal\n");
342         case REGULATOR_MODE_IDLE:
343                 return sprintf(buf, "idle\n");
344         case REGULATOR_MODE_STANDBY:
345                 return sprintf(buf, "standby\n");
346         }
347         return sprintf(buf, "unknown\n");
348 }
349
350 static ssize_t regulator_opmode_show(struct device *dev,
351                                     struct device_attribute *attr, char *buf)
352 {
353         struct regulator_dev *rdev = dev_get_drvdata(dev);
354
355         return regulator_print_opmode(buf, _regulator_get_mode(rdev));
356 }
357 static DEVICE_ATTR(opmode, 0444, regulator_opmode_show, NULL);
358
359 static ssize_t regulator_print_state(char *buf, int state)
360 {
361         if (state > 0)
362                 return sprintf(buf, "enabled\n");
363         else if (state == 0)
364                 return sprintf(buf, "disabled\n");
365         else
366                 return sprintf(buf, "unknown\n");
367 }
368
369 static ssize_t regulator_state_show(struct device *dev,
370                                    struct device_attribute *attr, char *buf)
371 {
372         struct regulator_dev *rdev = dev_get_drvdata(dev);
373         ssize_t ret;
374
375         mutex_lock(&rdev->mutex);
376         ret = regulator_print_state(buf, _regulator_is_enabled(rdev));
377         mutex_unlock(&rdev->mutex);
378
379         return ret;
380 }
381 static DEVICE_ATTR(state, 0444, regulator_state_show, NULL);
382
383 static ssize_t regulator_status_show(struct device *dev,
384                                    struct device_attribute *attr, char *buf)
385 {
386         struct regulator_dev *rdev = dev_get_drvdata(dev);
387         int status;
388         char *label;
389
390         status = rdev->desc->ops->get_status(rdev);
391         if (status < 0)
392                 return status;
393
394         switch (status) {
395         case REGULATOR_STATUS_OFF:
396                 label = "off";
397                 break;
398         case REGULATOR_STATUS_ON:
399                 label = "on";
400                 break;
401         case REGULATOR_STATUS_ERROR:
402                 label = "error";
403                 break;
404         case REGULATOR_STATUS_FAST:
405                 label = "fast";
406                 break;
407         case REGULATOR_STATUS_NORMAL:
408                 label = "normal";
409                 break;
410         case REGULATOR_STATUS_IDLE:
411                 label = "idle";
412                 break;
413         case REGULATOR_STATUS_STANDBY:
414                 label = "standby";
415                 break;
416         case REGULATOR_STATUS_BYPASS:
417                 label = "bypass";
418                 break;
419         case REGULATOR_STATUS_UNDEFINED:
420                 label = "undefined";
421                 break;
422         default:
423                 return -ERANGE;
424         }
425
426         return sprintf(buf, "%s\n", label);
427 }
428 static DEVICE_ATTR(status, 0444, regulator_status_show, NULL);
429
430 static ssize_t regulator_min_uA_show(struct device *dev,
431                                     struct device_attribute *attr, char *buf)
432 {
433         struct regulator_dev *rdev = dev_get_drvdata(dev);
434
435         if (!rdev->constraints)
436                 return sprintf(buf, "constraint not defined\n");
437
438         return sprintf(buf, "%d\n", rdev->constraints->min_uA);
439 }
440 static DEVICE_ATTR(min_microamps, 0444, regulator_min_uA_show, NULL);
441
442 static ssize_t regulator_max_uA_show(struct device *dev,
443                                     struct device_attribute *attr, char *buf)
444 {
445         struct regulator_dev *rdev = dev_get_drvdata(dev);
446
447         if (!rdev->constraints)
448                 return sprintf(buf, "constraint not defined\n");
449
450         return sprintf(buf, "%d\n", rdev->constraints->max_uA);
451 }
452 static DEVICE_ATTR(max_microamps, 0444, regulator_max_uA_show, NULL);
453
454 static ssize_t regulator_min_uV_show(struct device *dev,
455                                     struct device_attribute *attr, char *buf)
456 {
457         struct regulator_dev *rdev = dev_get_drvdata(dev);
458
459         if (!rdev->constraints)
460                 return sprintf(buf, "constraint not defined\n");
461
462         return sprintf(buf, "%d\n", rdev->constraints->min_uV);
463 }
464 static DEVICE_ATTR(min_microvolts, 0444, regulator_min_uV_show, NULL);
465
466 static ssize_t regulator_max_uV_show(struct device *dev,
467                                     struct device_attribute *attr, char *buf)
468 {
469         struct regulator_dev *rdev = dev_get_drvdata(dev);
470
471         if (!rdev->constraints)
472                 return sprintf(buf, "constraint not defined\n");
473
474         return sprintf(buf, "%d\n", rdev->constraints->max_uV);
475 }
476 static DEVICE_ATTR(max_microvolts, 0444, regulator_max_uV_show, NULL);
477
478 static ssize_t regulator_total_uA_show(struct device *dev,
479                                       struct device_attribute *attr, char *buf)
480 {
481         struct regulator_dev *rdev = dev_get_drvdata(dev);
482         struct regulator *regulator;
483         int uA = 0;
484
485         mutex_lock(&rdev->mutex);
486         list_for_each_entry(regulator, &rdev->consumer_list, list)
487                 uA += regulator->uA_load;
488         mutex_unlock(&rdev->mutex);
489         return sprintf(buf, "%d\n", uA);
490 }
491 static DEVICE_ATTR(requested_microamps, 0444, regulator_total_uA_show, NULL);
492
493 static ssize_t num_users_show(struct device *dev, struct device_attribute *attr,
494                               char *buf)
495 {
496         struct regulator_dev *rdev = dev_get_drvdata(dev);
497         return sprintf(buf, "%d\n", rdev->use_count);
498 }
499 static DEVICE_ATTR_RO(num_users);
500
501 static ssize_t type_show(struct device *dev, struct device_attribute *attr,
502                          char *buf)
503 {
504         struct regulator_dev *rdev = dev_get_drvdata(dev);
505
506         switch (rdev->desc->type) {
507         case REGULATOR_VOLTAGE:
508                 return sprintf(buf, "voltage\n");
509         case REGULATOR_CURRENT:
510                 return sprintf(buf, "current\n");
511         }
512         return sprintf(buf, "unknown\n");
513 }
514 static DEVICE_ATTR_RO(type);
515
516 static ssize_t regulator_suspend_mem_uV_show(struct device *dev,
517                                 struct device_attribute *attr, char *buf)
518 {
519         struct regulator_dev *rdev = dev_get_drvdata(dev);
520
521         return sprintf(buf, "%d\n", rdev->constraints->state_mem.uV);
522 }
523 static DEVICE_ATTR(suspend_mem_microvolts, 0444,
524                 regulator_suspend_mem_uV_show, NULL);
525
526 static ssize_t regulator_suspend_disk_uV_show(struct device *dev,
527                                 struct device_attribute *attr, char *buf)
528 {
529         struct regulator_dev *rdev = dev_get_drvdata(dev);
530
531         return sprintf(buf, "%d\n", rdev->constraints->state_disk.uV);
532 }
533 static DEVICE_ATTR(suspend_disk_microvolts, 0444,
534                 regulator_suspend_disk_uV_show, NULL);
535
536 static ssize_t regulator_suspend_standby_uV_show(struct device *dev,
537                                 struct device_attribute *attr, char *buf)
538 {
539         struct regulator_dev *rdev = dev_get_drvdata(dev);
540
541         return sprintf(buf, "%d\n", rdev->constraints->state_standby.uV);
542 }
543 static DEVICE_ATTR(suspend_standby_microvolts, 0444,
544                 regulator_suspend_standby_uV_show, NULL);
545
546 static ssize_t regulator_suspend_mem_mode_show(struct device *dev,
547                                 struct device_attribute *attr, char *buf)
548 {
549         struct regulator_dev *rdev = dev_get_drvdata(dev);
550
551         return regulator_print_opmode(buf,
552                 rdev->constraints->state_mem.mode);
553 }
554 static DEVICE_ATTR(suspend_mem_mode, 0444,
555                 regulator_suspend_mem_mode_show, NULL);
556
557 static ssize_t regulator_suspend_disk_mode_show(struct device *dev,
558                                 struct device_attribute *attr, char *buf)
559 {
560         struct regulator_dev *rdev = dev_get_drvdata(dev);
561
562         return regulator_print_opmode(buf,
563                 rdev->constraints->state_disk.mode);
564 }
565 static DEVICE_ATTR(suspend_disk_mode, 0444,
566                 regulator_suspend_disk_mode_show, NULL);
567
568 static ssize_t regulator_suspend_standby_mode_show(struct device *dev,
569                                 struct device_attribute *attr, char *buf)
570 {
571         struct regulator_dev *rdev = dev_get_drvdata(dev);
572
573         return regulator_print_opmode(buf,
574                 rdev->constraints->state_standby.mode);
575 }
576 static DEVICE_ATTR(suspend_standby_mode, 0444,
577                 regulator_suspend_standby_mode_show, NULL);
578
579 static ssize_t regulator_suspend_mem_state_show(struct device *dev,
580                                    struct device_attribute *attr, char *buf)
581 {
582         struct regulator_dev *rdev = dev_get_drvdata(dev);
583
584         return regulator_print_state(buf,
585                         rdev->constraints->state_mem.enabled);
586 }
587 static DEVICE_ATTR(suspend_mem_state, 0444,
588                 regulator_suspend_mem_state_show, NULL);
589
590 static ssize_t regulator_suspend_disk_state_show(struct device *dev,
591                                    struct device_attribute *attr, char *buf)
592 {
593         struct regulator_dev *rdev = dev_get_drvdata(dev);
594
595         return regulator_print_state(buf,
596                         rdev->constraints->state_disk.enabled);
597 }
598 static DEVICE_ATTR(suspend_disk_state, 0444,
599                 regulator_suspend_disk_state_show, NULL);
600
601 static ssize_t regulator_suspend_standby_state_show(struct device *dev,
602                                    struct device_attribute *attr, char *buf)
603 {
604         struct regulator_dev *rdev = dev_get_drvdata(dev);
605
606         return regulator_print_state(buf,
607                         rdev->constraints->state_standby.enabled);
608 }
609 static DEVICE_ATTR(suspend_standby_state, 0444,
610                 regulator_suspend_standby_state_show, NULL);
611
612 static ssize_t regulator_bypass_show(struct device *dev,
613                                      struct device_attribute *attr, char *buf)
614 {
615         struct regulator_dev *rdev = dev_get_drvdata(dev);
616         const char *report;
617         bool bypass;
618         int ret;
619
620         ret = rdev->desc->ops->get_bypass(rdev, &bypass);
621
622         if (ret != 0)
623                 report = "unknown";
624         else if (bypass)
625                 report = "enabled";
626         else
627                 report = "disabled";
628
629         return sprintf(buf, "%s\n", report);
630 }
631 static DEVICE_ATTR(bypass, 0444,
632                    regulator_bypass_show, NULL);
633
634 /*
635  * These are the only attributes are present for all regulators.
636  * Other attributes are a function of regulator functionality.
637  */
638 static struct attribute *regulator_dev_attrs[] = {
639         &dev_attr_name.attr,
640         &dev_attr_num_users.attr,
641         &dev_attr_type.attr,
642         NULL,
643 };
644 ATTRIBUTE_GROUPS(regulator_dev);
645
646 static void regulator_dev_release(struct device *dev)
647 {
648         struct regulator_dev *rdev = dev_get_drvdata(dev);
649         kfree(rdev);
650 }
651
652 static struct class regulator_class = {
653         .name = "regulator",
654         .dev_release = regulator_dev_release,
655         .dev_groups = regulator_dev_groups,
656 };
657
658 /* Calculate the new optimum regulator operating mode based on the new total
659  * consumer load. All locks held by caller */
660 static void drms_uA_update(struct regulator_dev *rdev)
661 {
662         struct regulator *sibling;
663         int current_uA = 0, output_uV, input_uV, err;
664         unsigned int mode;
665
666         err = regulator_check_drms(rdev);
667         if (err < 0 || !rdev->desc->ops->get_optimum_mode ||
668             (!rdev->desc->ops->get_voltage &&
669              !rdev->desc->ops->get_voltage_sel) ||
670             !rdev->desc->ops->set_mode)
671                 return;
672
673         /* get output voltage */
674         output_uV = _regulator_get_voltage(rdev);
675         if (output_uV <= 0)
676                 return;
677
678         /* get input voltage */
679         input_uV = 0;
680         if (rdev->supply)
681                 input_uV = regulator_get_voltage(rdev->supply);
682         if (input_uV <= 0)
683                 input_uV = rdev->constraints->input_uV;
684         if (input_uV <= 0)
685                 return;
686
687         /* calc total requested load */
688         list_for_each_entry(sibling, &rdev->consumer_list, list)
689                 current_uA += sibling->uA_load;
690
691         /* now get the optimum mode for our new total regulator load */
692         mode = rdev->desc->ops->get_optimum_mode(rdev, input_uV,
693                                                   output_uV, current_uA);
694
695         /* check the new mode is allowed */
696         err = regulator_mode_constrain(rdev, &mode);
697         if (err == 0)
698                 rdev->desc->ops->set_mode(rdev, mode);
699 }
700
701 static int suspend_set_state(struct regulator_dev *rdev,
702         struct regulator_state *rstate)
703 {
704         int ret = 0;
705
706         /* If we have no suspend mode configration don't set anything;
707          * only warn if the driver implements set_suspend_voltage or
708          * set_suspend_mode callback.
709          */
710         if (!rstate->enabled && !rstate->disabled) {
711                 if (rdev->desc->ops->set_suspend_voltage ||
712                     rdev->desc->ops->set_suspend_mode)
713                         rdev_warn(rdev, "No configuration\n");
714                 return 0;
715         }
716
717         if (rstate->enabled && rstate->disabled) {
718                 rdev_err(rdev, "invalid configuration\n");
719                 return -EINVAL;
720         }
721
722         if (rstate->enabled && rdev->desc->ops->set_suspend_enable)
723                 ret = rdev->desc->ops->set_suspend_enable(rdev);
724         else if (rstate->disabled && rdev->desc->ops->set_suspend_disable)
725                 ret = rdev->desc->ops->set_suspend_disable(rdev);
726         else /* OK if set_suspend_enable or set_suspend_disable is NULL */
727                 ret = 0;
728
729         if (ret < 0) {
730                 rdev_err(rdev, "failed to enabled/disable\n");
731                 return ret;
732         }
733
734         if (rdev->desc->ops->set_suspend_voltage && rstate->uV > 0) {
735                 ret = rdev->desc->ops->set_suspend_voltage(rdev, rstate->uV);
736                 if (ret < 0) {
737                         rdev_err(rdev, "failed to set voltage\n");
738                         return ret;
739                 }
740         }
741
742         if (rdev->desc->ops->set_suspend_mode && rstate->mode > 0) {
743                 ret = rdev->desc->ops->set_suspend_mode(rdev, rstate->mode);
744                 if (ret < 0) {
745                         rdev_err(rdev, "failed to set mode\n");
746                         return ret;
747                 }
748         }
749         return ret;
750 }
751
752 /* locks held by caller */
753 static int suspend_prepare(struct regulator_dev *rdev, suspend_state_t state)
754 {
755         if (!rdev->constraints)
756                 return -EINVAL;
757
758         switch (state) {
759         case PM_SUSPEND_STANDBY:
760                 return suspend_set_state(rdev,
761                         &rdev->constraints->state_standby);
762         case PM_SUSPEND_MEM:
763                 return suspend_set_state(rdev,
764                         &rdev->constraints->state_mem);
765         case PM_SUSPEND_MAX:
766                 return suspend_set_state(rdev,
767                         &rdev->constraints->state_disk);
768         default:
769                 return -EINVAL;
770         }
771 }
772
773 static void print_constraints(struct regulator_dev *rdev)
774 {
775         struct regulation_constraints *constraints = rdev->constraints;
776         char buf[80] = "";
777         int count = 0;
778         int ret;
779
780         if (constraints->min_uV && constraints->max_uV) {
781                 if (constraints->min_uV == constraints->max_uV)
782                         count += sprintf(buf + count, "%d mV ",
783                                          constraints->min_uV / 1000);
784                 else
785                         count += sprintf(buf + count, "%d <--> %d mV ",
786                                          constraints->min_uV / 1000,
787                                          constraints->max_uV / 1000);
788         }
789
790         if (!constraints->min_uV ||
791             constraints->min_uV != constraints->max_uV) {
792                 ret = _regulator_get_voltage(rdev);
793                 if (ret > 0)
794                         count += sprintf(buf + count, "at %d mV ", ret / 1000);
795         }
796
797         if (constraints->uV_offset)
798                 count += sprintf(buf, "%dmV offset ",
799                                  constraints->uV_offset / 1000);
800
801         if (constraints->min_uA && constraints->max_uA) {
802                 if (constraints->min_uA == constraints->max_uA)
803                         count += sprintf(buf + count, "%d mA ",
804                                          constraints->min_uA / 1000);
805                 else
806                         count += sprintf(buf + count, "%d <--> %d mA ",
807                                          constraints->min_uA / 1000,
808                                          constraints->max_uA / 1000);
809         }
810
811         if (!constraints->min_uA ||
812             constraints->min_uA != constraints->max_uA) {
813                 ret = _regulator_get_current_limit(rdev);
814                 if (ret > 0)
815                         count += sprintf(buf + count, "at %d mA ", ret / 1000);
816         }
817
818         if (constraints->valid_modes_mask & REGULATOR_MODE_FAST)
819                 count += sprintf(buf + count, "fast ");
820         if (constraints->valid_modes_mask & REGULATOR_MODE_NORMAL)
821                 count += sprintf(buf + count, "normal ");
822         if (constraints->valid_modes_mask & REGULATOR_MODE_IDLE)
823                 count += sprintf(buf + count, "idle ");
824         if (constraints->valid_modes_mask & REGULATOR_MODE_STANDBY)
825                 count += sprintf(buf + count, "standby");
826
827         if (!count)
828                 sprintf(buf, "no parameters");
829
830         rdev_info(rdev, "%s\n", buf);
831
832         if ((constraints->min_uV != constraints->max_uV) &&
833             !(constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE))
834                 rdev_warn(rdev,
835                           "Voltage range but no REGULATOR_CHANGE_VOLTAGE\n");
836 }
837
838 static int machine_constraints_voltage(struct regulator_dev *rdev,
839         struct regulation_constraints *constraints)
840 {
841         struct regulator_ops *ops = rdev->desc->ops;
842         int ret;
843
844         /* do we need to apply the constraint voltage */
845         if (rdev->constraints->apply_uV &&
846             rdev->constraints->min_uV == rdev->constraints->max_uV) {
847                 int current_uV = _regulator_get_voltage(rdev);
848                 if (current_uV < 0) {
849                         rdev_err(rdev,
850                                  "failed to get the current voltage(%d)\n",
851                                  current_uV);
852                         return current_uV;
853                 }
854                 if (current_uV < rdev->constraints->min_uV ||
855                     current_uV > rdev->constraints->max_uV) {
856                         ret = _regulator_do_set_voltage(
857                                 rdev, rdev->constraints->min_uV,
858                                 rdev->constraints->max_uV);
859                         if (ret < 0) {
860                                 rdev_err(rdev,
861                                         "failed to apply %duV constraint(%d)\n",
862                                         rdev->constraints->min_uV, ret);
863                                 return ret;
864                         }
865                 }
866         }
867
868         /* constrain machine-level voltage specs to fit
869          * the actual range supported by this regulator.
870          */
871         if (ops->list_voltage && rdev->desc->n_voltages) {
872                 int     count = rdev->desc->n_voltages;
873                 int     i;
874                 int     min_uV = INT_MAX;
875                 int     max_uV = INT_MIN;
876                 int     cmin = constraints->min_uV;
877                 int     cmax = constraints->max_uV;
878
879                 /* it's safe to autoconfigure fixed-voltage supplies
880                    and the constraints are used by list_voltage. */
881                 if (count == 1 && !cmin) {
882                         cmin = 1;
883                         cmax = INT_MAX;
884                         constraints->min_uV = cmin;
885                         constraints->max_uV = cmax;
886                 }
887
888                 /* voltage constraints are optional */
889                 if ((cmin == 0) && (cmax == 0))
890                         return 0;
891
892                 /* else require explicit machine-level constraints */
893                 if (cmin <= 0 || cmax <= 0 || cmax < cmin) {
894                         rdev_err(rdev, "invalid voltage constraints\n");
895                         return -EINVAL;
896                 }
897
898                 /* initial: [cmin..cmax] valid, [min_uV..max_uV] not */
899                 for (i = 0; i < count; i++) {
900                         int     value;
901
902                         value = ops->list_voltage(rdev, i);
903                         if (value <= 0)
904                                 continue;
905
906                         /* maybe adjust [min_uV..max_uV] */
907                         if (value >= cmin && value < min_uV)
908                                 min_uV = value;
909                         if (value <= cmax && value > max_uV)
910                                 max_uV = value;
911                 }
912
913                 /* final: [min_uV..max_uV] valid iff constraints valid */
914                 if (max_uV < min_uV) {
915                         rdev_err(rdev,
916                                  "unsupportable voltage constraints %u-%uuV\n",
917                                  min_uV, max_uV);
918                         return -EINVAL;
919                 }
920
921                 /* use regulator's subset of machine constraints */
922                 if (constraints->min_uV < min_uV) {
923                         rdev_dbg(rdev, "override min_uV, %d -> %d\n",
924                                  constraints->min_uV, min_uV);
925                         constraints->min_uV = min_uV;
926                 }
927                 if (constraints->max_uV > max_uV) {
928                         rdev_dbg(rdev, "override max_uV, %d -> %d\n",
929                                  constraints->max_uV, max_uV);
930                         constraints->max_uV = max_uV;
931                 }
932         }
933
934         return 0;
935 }
936
937 static int machine_constraints_current(struct regulator_dev *rdev,
938         struct regulation_constraints *constraints)
939 {
940         struct regulator_ops *ops = rdev->desc->ops;
941         int ret;
942
943         if (!constraints->min_uA && !constraints->max_uA)
944                 return 0;
945
946         if (constraints->min_uA > constraints->max_uA) {
947                 rdev_err(rdev, "Invalid current constraints\n");
948                 return -EINVAL;
949         }
950
951         if (!ops->set_current_limit || !ops->get_current_limit) {
952                 rdev_warn(rdev, "Operation of current configuration missing\n");
953                 return 0;
954         }
955
956         /* Set regulator current in constraints range */
957         ret = ops->set_current_limit(rdev, constraints->min_uA,
958                         constraints->max_uA);
959         if (ret < 0) {
960                 rdev_err(rdev, "Failed to set current constraint, %d\n", ret);
961                 return ret;
962         }
963
964         return 0;
965 }
966
967 static int _regulator_do_enable(struct regulator_dev *rdev);
968
969 /**
970  * set_machine_constraints - sets regulator constraints
971  * @rdev: regulator source
972  * @constraints: constraints to apply
973  *
974  * Allows platform initialisation code to define and constrain
975  * regulator circuits e.g. valid voltage/current ranges, etc.  NOTE:
976  * Constraints *must* be set by platform code in order for some
977  * regulator operations to proceed i.e. set_voltage, set_current_limit,
978  * set_mode.
979  */
980 static int set_machine_constraints(struct regulator_dev *rdev,
981         const struct regulation_constraints *constraints)
982 {
983         int ret = 0;
984         struct regulator_ops *ops = rdev->desc->ops;
985
986         if (constraints)
987                 rdev->constraints = kmemdup(constraints, sizeof(*constraints),
988                                             GFP_KERNEL);
989         else
990                 rdev->constraints = kzalloc(sizeof(*constraints),
991                                             GFP_KERNEL);
992         if (!rdev->constraints)
993                 return -ENOMEM;
994
995         ret = machine_constraints_voltage(rdev, rdev->constraints);
996         if (ret != 0)
997                 goto out;
998
999         ret = machine_constraints_current(rdev, rdev->constraints);
1000         if (ret != 0)
1001                 goto out;
1002
1003         /* do we need to setup our suspend state */
1004         if (rdev->constraints->initial_state) {
1005                 ret = suspend_prepare(rdev, rdev->constraints->initial_state);
1006                 if (ret < 0) {
1007                         rdev_err(rdev, "failed to set suspend state\n");
1008                         goto out;
1009                 }
1010         }
1011
1012         if (rdev->constraints->initial_mode) {
1013                 if (!ops->set_mode) {
1014                         rdev_err(rdev, "no set_mode operation\n");
1015                         ret = -EINVAL;
1016                         goto out;
1017                 }
1018
1019                 ret = ops->set_mode(rdev, rdev->constraints->initial_mode);
1020                 if (ret < 0) {
1021                         rdev_err(rdev, "failed to set initial mode: %d\n", ret);
1022                         goto out;
1023                 }
1024         }
1025
1026         /* If the constraints say the regulator should be on at this point
1027          * and we have control then make sure it is enabled.
1028          */
1029         if (rdev->constraints->always_on || rdev->constraints->boot_on) {
1030                 ret = _regulator_do_enable(rdev);
1031                 if (ret < 0 && ret != -EINVAL) {
1032                         rdev_err(rdev, "failed to enable\n");
1033                         goto out;
1034                 }
1035         }
1036
1037         if ((rdev->constraints->ramp_delay || rdev->constraints->ramp_disable)
1038                 && ops->set_ramp_delay) {
1039                 ret = ops->set_ramp_delay(rdev, rdev->constraints->ramp_delay);
1040                 if (ret < 0) {
1041                         rdev_err(rdev, "failed to set ramp_delay\n");
1042                         goto out;
1043                 }
1044         }
1045
1046         print_constraints(rdev);
1047         return 0;
1048 out:
1049         kfree(rdev->constraints);
1050         rdev->constraints = NULL;
1051         return ret;
1052 }
1053
1054 /**
1055  * set_supply - set regulator supply regulator
1056  * @rdev: regulator name
1057  * @supply_rdev: supply regulator name
1058  *
1059  * Called by platform initialisation code to set the supply regulator for this
1060  * regulator. This ensures that a regulators supply will also be enabled by the
1061  * core if it's child is enabled.
1062  */
1063 static int set_supply(struct regulator_dev *rdev,
1064                       struct regulator_dev *supply_rdev)
1065 {
1066         int err;
1067
1068         rdev_info(rdev, "supplied by %s\n", rdev_get_name(supply_rdev));
1069
1070         rdev->supply = create_regulator(supply_rdev, &rdev->dev, "SUPPLY");
1071         if (rdev->supply == NULL) {
1072                 err = -ENOMEM;
1073                 return err;
1074         }
1075         supply_rdev->open_count++;
1076
1077         return 0;
1078 }
1079
1080 /**
1081  * set_consumer_device_supply - Bind a regulator to a symbolic supply
1082  * @rdev:         regulator source
1083  * @consumer_dev_name: dev_name() string for device supply applies to
1084  * @supply:       symbolic name for supply
1085  *
1086  * Allows platform initialisation code to map physical regulator
1087  * sources to symbolic names for supplies for use by devices.  Devices
1088  * should use these symbolic names to request regulators, avoiding the
1089  * need to provide board-specific regulator names as platform data.
1090  */
1091 static int set_consumer_device_supply(struct regulator_dev *rdev,
1092                                       const char *consumer_dev_name,
1093                                       const char *supply)
1094 {
1095         struct regulator_map *node;
1096         int has_dev;
1097
1098         if (supply == NULL)
1099                 return -EINVAL;
1100
1101         if (consumer_dev_name != NULL)
1102                 has_dev = 1;
1103         else
1104                 has_dev = 0;
1105
1106         list_for_each_entry(node, &regulator_map_list, list) {
1107                 if (node->dev_name && consumer_dev_name) {
1108                         if (strcmp(node->dev_name, consumer_dev_name) != 0)
1109                                 continue;
1110                 } else if (node->dev_name || consumer_dev_name) {
1111                         continue;
1112                 }
1113
1114                 if (strcmp(node->supply, supply) != 0)
1115                         continue;
1116
1117                 pr_debug("%s: %s/%s is '%s' supply; fail %s/%s\n",
1118                          consumer_dev_name,
1119                          dev_name(&node->regulator->dev),
1120                          node->regulator->desc->name,
1121                          supply,
1122                          dev_name(&rdev->dev), rdev_get_name(rdev));
1123                 return -EBUSY;
1124         }
1125
1126         node = kzalloc(sizeof(struct regulator_map), GFP_KERNEL);
1127         if (node == NULL)
1128                 return -ENOMEM;
1129
1130         node->regulator = rdev;
1131         node->supply = supply;
1132
1133         if (has_dev) {
1134                 node->dev_name = kstrdup(consumer_dev_name, GFP_KERNEL);
1135                 if (node->dev_name == NULL) {
1136                         kfree(node);
1137                         return -ENOMEM;
1138                 }
1139         }
1140
1141         list_add(&node->list, &regulator_map_list);
1142         return 0;
1143 }
1144
1145 static void unset_regulator_supplies(struct regulator_dev *rdev)
1146 {
1147         struct regulator_map *node, *n;
1148
1149         list_for_each_entry_safe(node, n, &regulator_map_list, list) {
1150                 if (rdev == node->regulator) {
1151                         list_del(&node->list);
1152                         kfree(node->dev_name);
1153                         kfree(node);
1154                 }
1155         }
1156 }
1157
1158 #define REG_STR_SIZE    64
1159
1160 static struct regulator *create_regulator(struct regulator_dev *rdev,
1161                                           struct device *dev,
1162                                           const char *supply_name)
1163 {
1164         struct regulator *regulator;
1165         char buf[REG_STR_SIZE];
1166         int err, size;
1167
1168         regulator = kzalloc(sizeof(*regulator), GFP_KERNEL);
1169         if (regulator == NULL)
1170                 return NULL;
1171
1172         mutex_lock(&rdev->mutex);
1173         regulator->rdev = rdev;
1174         list_add(&regulator->list, &rdev->consumer_list);
1175
1176         if (dev) {
1177                 regulator->dev = dev;
1178
1179                 /* Add a link to the device sysfs entry */
1180                 size = scnprintf(buf, REG_STR_SIZE, "%s-%s",
1181                                  dev->kobj.name, supply_name);
1182                 if (size >= REG_STR_SIZE)
1183                         goto overflow_err;
1184
1185                 regulator->supply_name = kstrdup(buf, GFP_KERNEL);
1186                 if (regulator->supply_name == NULL)
1187                         goto overflow_err;
1188
1189                 err = sysfs_create_link(&rdev->dev.kobj, &dev->kobj,
1190                                         buf);
1191                 if (err) {
1192                         rdev_warn(rdev, "could not add device link %s err %d\n",
1193                                   dev->kobj.name, err);
1194                         /* non-fatal */
1195                 }
1196         } else {
1197                 regulator->supply_name = kstrdup(supply_name, GFP_KERNEL);
1198                 if (regulator->supply_name == NULL)
1199                         goto overflow_err;
1200         }
1201
1202         regulator->debugfs = debugfs_create_dir(regulator->supply_name,
1203                                                 rdev->debugfs);
1204         if (!regulator->debugfs) {
1205                 rdev_warn(rdev, "Failed to create debugfs directory\n");
1206         } else {
1207                 debugfs_create_u32("uA_load", 0444, regulator->debugfs,
1208                                    &regulator->uA_load);
1209                 debugfs_create_u32("min_uV", 0444, regulator->debugfs,
1210                                    &regulator->min_uV);
1211                 debugfs_create_u32("max_uV", 0444, regulator->debugfs,
1212                                    &regulator->max_uV);
1213         }
1214
1215         /*
1216          * Check now if the regulator is an always on regulator - if
1217          * it is then we don't need to do nearly so much work for
1218          * enable/disable calls.
1219          */
1220         if (!_regulator_can_change_status(rdev) &&
1221             _regulator_is_enabled(rdev))
1222                 regulator->always_on = true;
1223
1224         mutex_unlock(&rdev->mutex);
1225         return regulator;
1226 overflow_err:
1227         list_del(&regulator->list);
1228         kfree(regulator);
1229         mutex_unlock(&rdev->mutex);
1230         return NULL;
1231 }
1232
1233 static int _regulator_get_enable_time(struct regulator_dev *rdev)
1234 {
1235         if (rdev->constraints && rdev->constraints->enable_time)
1236                 return rdev->constraints->enable_time;
1237         if (!rdev->desc->ops->enable_time)
1238                 return rdev->desc->enable_time;
1239         return rdev->desc->ops->enable_time(rdev);
1240 }
1241
1242 static struct regulator_supply_alias *regulator_find_supply_alias(
1243                 struct device *dev, const char *supply)
1244 {
1245         struct regulator_supply_alias *map;
1246
1247         list_for_each_entry(map, &regulator_supply_alias_list, list)
1248                 if (map->src_dev == dev && strcmp(map->src_supply, supply) == 0)
1249                         return map;
1250
1251         return NULL;
1252 }
1253
1254 static void regulator_supply_alias(struct device **dev, const char **supply)
1255 {
1256         struct regulator_supply_alias *map;
1257
1258         map = regulator_find_supply_alias(*dev, *supply);
1259         if (map) {
1260                 dev_dbg(*dev, "Mapping supply %s to %s,%s\n",
1261                                 *supply, map->alias_supply,
1262                                 dev_name(map->alias_dev));
1263                 *dev = map->alias_dev;
1264                 *supply = map->alias_supply;
1265         }
1266 }
1267
1268 static struct regulator_dev *regulator_dev_lookup(struct device *dev,
1269                                                   const char *supply,
1270                                                   int *ret)
1271 {
1272         struct regulator_dev *r;
1273         struct device_node *node;
1274         struct regulator_map *map;
1275         const char *devname = NULL;
1276
1277         regulator_supply_alias(&dev, &supply);
1278
1279         /* first do a dt based lookup */
1280         if (dev && dev->of_node) {
1281                 node = of_get_regulator(dev, supply);
1282                 if (node) {
1283                         list_for_each_entry(r, &regulator_list, list)
1284                                 if (r->dev.parent &&
1285                                         node == r->dev.of_node)
1286                                         return r;
1287                         *ret = -EPROBE_DEFER;
1288                         return NULL;
1289                 } else {
1290                         /*
1291                          * If we couldn't even get the node then it's
1292                          * not just that the device didn't register
1293                          * yet, there's no node and we'll never
1294                          * succeed.
1295                          */
1296                         *ret = -ENODEV;
1297                 }
1298         }
1299
1300         /* if not found, try doing it non-dt way */
1301         if (dev)
1302                 devname = dev_name(dev);
1303
1304         list_for_each_entry(r, &regulator_list, list)
1305                 if (strcmp(rdev_get_name(r), supply) == 0)
1306                         return r;
1307
1308         list_for_each_entry(map, &regulator_map_list, list) {
1309                 /* If the mapping has a device set up it must match */
1310                 if (map->dev_name &&
1311                     (!devname || strcmp(map->dev_name, devname)))
1312                         continue;
1313
1314                 if (strcmp(map->supply, supply) == 0)
1315                         return map->regulator;
1316         }
1317
1318
1319         return NULL;
1320 }
1321
1322 /* Internal regulator request function */
1323 static struct regulator *_regulator_get(struct device *dev, const char *id,
1324                                         bool exclusive, bool allow_dummy)
1325 {
1326         struct regulator_dev *rdev;
1327         struct regulator *regulator = ERR_PTR(-EPROBE_DEFER);
1328         const char *devname = NULL;
1329         int ret;
1330
1331         if (id == NULL) {
1332                 pr_err("get() with no identifier\n");
1333                 return ERR_PTR(-EINVAL);
1334         }
1335
1336         if (dev)
1337                 devname = dev_name(dev);
1338
1339         if (have_full_constraints())
1340                 ret = -ENODEV;
1341         else
1342                 ret = -EPROBE_DEFER;
1343
1344         mutex_lock(&regulator_list_mutex);
1345
1346         rdev = regulator_dev_lookup(dev, id, &ret);
1347         if (rdev)
1348                 goto found;
1349
1350         regulator = ERR_PTR(ret);
1351
1352         /*
1353          * If we have return value from dev_lookup fail, we do not expect to
1354          * succeed, so, quit with appropriate error value
1355          */
1356         if (ret && ret != -ENODEV)
1357                 goto out;
1358
1359         if (!devname)
1360                 devname = "deviceless";
1361
1362         /*
1363          * Assume that a regulator is physically present and enabled
1364          * even if it isn't hooked up and just provide a dummy.
1365          */
1366         if (have_full_constraints() && allow_dummy) {
1367                 pr_warn("%s supply %s not found, using dummy regulator\n",
1368                         devname, id);
1369
1370                 rdev = dummy_regulator_rdev;
1371                 goto found;
1372         /* Don't log an error when called from regulator_get_optional() */
1373         } else if (!have_full_constraints() || exclusive) {
1374                 dev_warn(dev, "dummy supplies not allowed\n");
1375         }
1376
1377         mutex_unlock(&regulator_list_mutex);
1378         return regulator;
1379
1380 found:
1381         if (rdev->exclusive) {
1382                 regulator = ERR_PTR(-EPERM);
1383                 goto out;
1384         }
1385
1386         if (exclusive && rdev->open_count) {
1387                 regulator = ERR_PTR(-EBUSY);
1388                 goto out;
1389         }
1390
1391         if (!try_module_get(rdev->owner))
1392                 goto out;
1393
1394         regulator = create_regulator(rdev, dev, id);
1395         if (regulator == NULL) {
1396                 regulator = ERR_PTR(-ENOMEM);
1397                 module_put(rdev->owner);
1398                 goto out;
1399         }
1400
1401         rdev->open_count++;
1402         if (exclusive) {
1403                 rdev->exclusive = 1;
1404
1405                 ret = _regulator_is_enabled(rdev);
1406                 if (ret > 0)
1407                         rdev->use_count = 1;
1408                 else
1409                         rdev->use_count = 0;
1410         }
1411
1412 out:
1413         mutex_unlock(&regulator_list_mutex);
1414
1415         return regulator;
1416 }
1417
1418 /**
1419  * regulator_get - lookup and obtain a reference to a regulator.
1420  * @dev: device for regulator "consumer"
1421  * @id: Supply name or regulator ID.
1422  *
1423  * Returns a struct regulator corresponding to the regulator producer,
1424  * or IS_ERR() condition containing errno.
1425  *
1426  * Use of supply names configured via regulator_set_device_supply() is
1427  * strongly encouraged.  It is recommended that the supply name used
1428  * should match the name used for the supply and/or the relevant
1429  * device pins in the datasheet.
1430  */
1431 struct regulator *regulator_get(struct device *dev, const char *id)
1432 {
1433         return _regulator_get(dev, id, false, true);
1434 }
1435 EXPORT_SYMBOL_GPL(regulator_get);
1436
1437 /**
1438  * regulator_get_exclusive - obtain exclusive access to a regulator.
1439  * @dev: device for regulator "consumer"
1440  * @id: Supply name or regulator ID.
1441  *
1442  * Returns a struct regulator corresponding to the regulator producer,
1443  * or IS_ERR() condition containing errno.  Other consumers will be
1444  * unable to obtain this regulator while this reference is held and the
1445  * use count for the regulator will be initialised to reflect the current
1446  * state of the regulator.
1447  *
1448  * This is intended for use by consumers which cannot tolerate shared
1449  * use of the regulator such as those which need to force the
1450  * regulator off for correct operation of the hardware they are
1451  * controlling.
1452  *
1453  * Use of supply names configured via regulator_set_device_supply() is
1454  * strongly encouraged.  It is recommended that the supply name used
1455  * should match the name used for the supply and/or the relevant
1456  * device pins in the datasheet.
1457  */
1458 struct regulator *regulator_get_exclusive(struct device *dev, const char *id)
1459 {
1460         return _regulator_get(dev, id, true, false);
1461 }
1462 EXPORT_SYMBOL_GPL(regulator_get_exclusive);
1463
1464 /**
1465  * regulator_get_optional - obtain optional access to a regulator.
1466  * @dev: device for regulator "consumer"
1467  * @id: Supply name or regulator ID.
1468  *
1469  * Returns a struct regulator corresponding to the regulator producer,
1470  * or IS_ERR() condition containing errno.
1471  *
1472  * This is intended for use by consumers for devices which can have
1473  * some supplies unconnected in normal use, such as some MMC devices.
1474  * It can allow the regulator core to provide stub supplies for other
1475  * supplies requested using normal regulator_get() calls without
1476  * disrupting the operation of drivers that can handle absent
1477  * supplies.
1478  *
1479  * Use of supply names configured via regulator_set_device_supply() is
1480  * strongly encouraged.  It is recommended that the supply name used
1481  * should match the name used for the supply and/or the relevant
1482  * device pins in the datasheet.
1483  */
1484 struct regulator *regulator_get_optional(struct device *dev, const char *id)
1485 {
1486         return _regulator_get(dev, id, false, false);
1487 }
1488 EXPORT_SYMBOL_GPL(regulator_get_optional);
1489
1490 /* Locks held by regulator_put() */
1491 static void _regulator_put(struct regulator *regulator)
1492 {
1493         struct regulator_dev *rdev;
1494
1495         if (regulator == NULL || IS_ERR(regulator))
1496                 return;
1497
1498         rdev = regulator->rdev;
1499
1500         debugfs_remove_recursive(regulator->debugfs);
1501
1502         /* remove any sysfs entries */
1503         if (regulator->dev)
1504                 sysfs_remove_link(&rdev->dev.kobj, regulator->supply_name);
1505         kfree(regulator->supply_name);
1506         list_del(&regulator->list);
1507         kfree(regulator);
1508
1509         rdev->open_count--;
1510         rdev->exclusive = 0;
1511
1512         module_put(rdev->owner);
1513 }
1514
1515 /**
1516  * regulator_put - "free" the regulator source
1517  * @regulator: regulator source
1518  *
1519  * Note: drivers must ensure that all regulator_enable calls made on this
1520  * regulator source are balanced by regulator_disable calls prior to calling
1521  * this function.
1522  */
1523 void regulator_put(struct regulator *regulator)
1524 {
1525         mutex_lock(&regulator_list_mutex);
1526         _regulator_put(regulator);
1527         mutex_unlock(&regulator_list_mutex);
1528 }
1529 EXPORT_SYMBOL_GPL(regulator_put);
1530
1531 /**
1532  * regulator_register_supply_alias - Provide device alias for supply lookup
1533  *
1534  * @dev: device that will be given as the regulator "consumer"
1535  * @id: Supply name or regulator ID
1536  * @alias_dev: device that should be used to lookup the supply
1537  * @alias_id: Supply name or regulator ID that should be used to lookup the
1538  * supply
1539  *
1540  * All lookups for id on dev will instead be conducted for alias_id on
1541  * alias_dev.
1542  */
1543 int regulator_register_supply_alias(struct device *dev, const char *id,
1544                                     struct device *alias_dev,
1545                                     const char *alias_id)
1546 {
1547         struct regulator_supply_alias *map;
1548
1549         map = regulator_find_supply_alias(dev, id);
1550         if (map)
1551                 return -EEXIST;
1552
1553         map = kzalloc(sizeof(struct regulator_supply_alias), GFP_KERNEL);
1554         if (!map)
1555                 return -ENOMEM;
1556
1557         map->src_dev = dev;
1558         map->src_supply = id;
1559         map->alias_dev = alias_dev;
1560         map->alias_supply = alias_id;
1561
1562         list_add(&map->list, &regulator_supply_alias_list);
1563
1564         pr_info("Adding alias for supply %s,%s -> %s,%s\n",
1565                 id, dev_name(dev), alias_id, dev_name(alias_dev));
1566
1567         return 0;
1568 }
1569 EXPORT_SYMBOL_GPL(regulator_register_supply_alias);
1570
1571 /**
1572  * regulator_unregister_supply_alias - Remove device alias
1573  *
1574  * @dev: device that will be given as the regulator "consumer"
1575  * @id: Supply name or regulator ID
1576  *
1577  * Remove a lookup alias if one exists for id on dev.
1578  */
1579 void regulator_unregister_supply_alias(struct device *dev, const char *id)
1580 {
1581         struct regulator_supply_alias *map;
1582
1583         map = regulator_find_supply_alias(dev, id);
1584         if (map) {
1585                 list_del(&map->list);
1586                 kfree(map);
1587         }
1588 }
1589 EXPORT_SYMBOL_GPL(regulator_unregister_supply_alias);
1590
1591 /**
1592  * regulator_bulk_register_supply_alias - register multiple aliases
1593  *
1594  * @dev: device that will be given as the regulator "consumer"
1595  * @id: List of supply names or regulator IDs
1596  * @alias_dev: device that should be used to lookup the supply
1597  * @alias_id: List of supply names or regulator IDs that should be used to
1598  * lookup the supply
1599  * @num_id: Number of aliases to register
1600  *
1601  * @return 0 on success, an errno on failure.
1602  *
1603  * This helper function allows drivers to register several supply
1604  * aliases in one operation.  If any of the aliases cannot be
1605  * registered any aliases that were registered will be removed
1606  * before returning to the caller.
1607  */
1608 int regulator_bulk_register_supply_alias(struct device *dev,
1609                                          const char *const *id,
1610                                          struct device *alias_dev,
1611                                          const char *const *alias_id,
1612                                          int num_id)
1613 {
1614         int i;
1615         int ret;
1616
1617         for (i = 0; i < num_id; ++i) {
1618                 ret = regulator_register_supply_alias(dev, id[i], alias_dev,
1619                                                       alias_id[i]);
1620                 if (ret < 0)
1621                         goto err;
1622         }
1623
1624         return 0;
1625
1626 err:
1627         dev_err(dev,
1628                 "Failed to create supply alias %s,%s -> %s,%s\n",
1629                 id[i], dev_name(dev), alias_id[i], dev_name(alias_dev));
1630
1631         while (--i >= 0)
1632                 regulator_unregister_supply_alias(dev, id[i]);
1633
1634         return ret;
1635 }
1636 EXPORT_SYMBOL_GPL(regulator_bulk_register_supply_alias);
1637
1638 /**
1639  * regulator_bulk_unregister_supply_alias - unregister multiple aliases
1640  *
1641  * @dev: device that will be given as the regulator "consumer"
1642  * @id: List of supply names or regulator IDs
1643  * @num_id: Number of aliases to unregister
1644  *
1645  * This helper function allows drivers to unregister several supply
1646  * aliases in one operation.
1647  */
1648 void regulator_bulk_unregister_supply_alias(struct device *dev,
1649                                             const char *const *id,
1650                                             int num_id)
1651 {
1652         int i;
1653
1654         for (i = 0; i < num_id; ++i)
1655                 regulator_unregister_supply_alias(dev, id[i]);
1656 }
1657 EXPORT_SYMBOL_GPL(regulator_bulk_unregister_supply_alias);
1658
1659
1660 /* Manage enable GPIO list. Same GPIO pin can be shared among regulators */
1661 static int regulator_ena_gpio_request(struct regulator_dev *rdev,
1662                                 const struct regulator_config *config)
1663 {
1664         struct regulator_enable_gpio *pin;
1665         int ret;
1666
1667         list_for_each_entry(pin, &regulator_ena_gpio_list, list) {
1668                 if (pin->gpio == config->ena_gpio) {
1669                         rdev_dbg(rdev, "GPIO %d is already used\n",
1670                                 config->ena_gpio);
1671                         goto update_ena_gpio_to_rdev;
1672                 }
1673         }
1674
1675         ret = gpio_request_one(config->ena_gpio,
1676                                 GPIOF_DIR_OUT | config->ena_gpio_flags,
1677                                 rdev_get_name(rdev));
1678         if (ret)
1679                 return ret;
1680
1681         pin = kzalloc(sizeof(struct regulator_enable_gpio), GFP_KERNEL);
1682         if (pin == NULL) {
1683                 gpio_free(config->ena_gpio);
1684                 return -ENOMEM;
1685         }
1686
1687         pin->gpio = config->ena_gpio;
1688         pin->ena_gpio_invert = config->ena_gpio_invert;
1689         list_add(&pin->list, &regulator_ena_gpio_list);
1690
1691 update_ena_gpio_to_rdev:
1692         pin->request_count++;
1693         rdev->ena_pin = pin;
1694         return 0;
1695 }
1696
1697 static void regulator_ena_gpio_free(struct regulator_dev *rdev)
1698 {
1699         struct regulator_enable_gpio *pin, *n;
1700
1701         if (!rdev->ena_pin)
1702                 return;
1703
1704         /* Free the GPIO only in case of no use */
1705         list_for_each_entry_safe(pin, n, &regulator_ena_gpio_list, list) {
1706                 if (pin->gpio == rdev->ena_pin->gpio) {
1707                         if (pin->request_count <= 1) {
1708                                 pin->request_count = 0;
1709                                 gpio_free(pin->gpio);
1710                                 list_del(&pin->list);
1711                                 kfree(pin);
1712                         } else {
1713                                 pin->request_count--;
1714                         }
1715                 }
1716         }
1717 }
1718
1719 /**
1720  * regulator_ena_gpio_ctrl - balance enable_count of each GPIO and actual GPIO pin control
1721  * @rdev: regulator_dev structure
1722  * @enable: enable GPIO at initial use?
1723  *
1724  * GPIO is enabled in case of initial use. (enable_count is 0)
1725  * GPIO is disabled when it is not shared any more. (enable_count <= 1)
1726  */
1727 static int regulator_ena_gpio_ctrl(struct regulator_dev *rdev, bool enable)
1728 {
1729         struct regulator_enable_gpio *pin = rdev->ena_pin;
1730
1731         if (!pin)
1732                 return -EINVAL;
1733
1734         if (enable) {
1735                 /* Enable GPIO at initial use */
1736                 if (pin->enable_count == 0)
1737                         gpio_set_value_cansleep(pin->gpio,
1738                                                 !pin->ena_gpio_invert);
1739
1740                 pin->enable_count++;
1741         } else {
1742                 if (pin->enable_count > 1) {
1743                         pin->enable_count--;
1744                         return 0;
1745                 }
1746
1747                 /* Disable GPIO if not used */
1748                 if (pin->enable_count <= 1) {
1749                         gpio_set_value_cansleep(pin->gpio,
1750                                                 pin->ena_gpio_invert);
1751                         pin->enable_count = 0;
1752                 }
1753         }
1754
1755         return 0;
1756 }
1757
1758 static int _regulator_do_enable(struct regulator_dev *rdev)
1759 {
1760         int ret, delay;
1761
1762         /* Query before enabling in case configuration dependent.  */
1763         ret = _regulator_get_enable_time(rdev);
1764         if (ret >= 0) {
1765                 delay = ret;
1766         } else {
1767                 rdev_warn(rdev, "enable_time() failed: %d\n", ret);
1768                 delay = 0;
1769         }
1770
1771         trace_regulator_enable(rdev_get_name(rdev));
1772
1773         if (rdev->ena_pin) {
1774                 ret = regulator_ena_gpio_ctrl(rdev, true);
1775                 if (ret < 0)
1776                         return ret;
1777                 rdev->ena_gpio_state = 1;
1778         } else if (rdev->desc->ops->enable) {
1779                 ret = rdev->desc->ops->enable(rdev);
1780                 if (ret < 0)
1781                         return ret;
1782         } else {
1783                 return -EINVAL;
1784         }
1785
1786         /* Allow the regulator to ramp; it would be useful to extend
1787          * this for bulk operations so that the regulators can ramp
1788          * together.  */
1789         trace_regulator_enable_delay(rdev_get_name(rdev));
1790
1791         /*
1792          * Delay for the requested amount of time as per the guidelines in:
1793          *
1794          *     Documentation/timers/timers-howto.txt
1795          *
1796          * The assumption here is that regulators will never be enabled in
1797          * atomic context and therefore sleeping functions can be used.
1798          */
1799         if (delay) {
1800                 unsigned int ms = delay / 1000;
1801                 unsigned int us = delay % 1000;
1802
1803                 if (ms > 0) {
1804                         /*
1805                          * For small enough values, handle super-millisecond
1806                          * delays in the usleep_range() call below.
1807                          */
1808                         if (ms < 20)
1809                                 us += ms * 1000;
1810                         else
1811                                 msleep(ms);
1812                 }
1813
1814                 /*
1815                  * Give the scheduler some room to coalesce with any other
1816                  * wakeup sources. For delays shorter than 10 us, don't even
1817                  * bother setting up high-resolution timers and just busy-
1818                  * loop.
1819                  */
1820                 if (us >= 10)
1821                         usleep_range(us, us + 100);
1822                 else
1823                         udelay(us);
1824         }
1825
1826         trace_regulator_enable_complete(rdev_get_name(rdev));
1827
1828         return 0;
1829 }
1830
1831 /* locks held by regulator_enable() */
1832 static int _regulator_enable(struct regulator_dev *rdev)
1833 {
1834         int ret;
1835
1836         /* check voltage and requested load before enabling */
1837         if (rdev->constraints &&
1838             (rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_DRMS))
1839                 drms_uA_update(rdev);
1840
1841         if (rdev->use_count == 0) {
1842                 /* The regulator may on if it's not switchable or left on */
1843                 ret = _regulator_is_enabled(rdev);
1844                 if (ret == -EINVAL || ret == 0) {
1845                         if (!_regulator_can_change_status(rdev))
1846                                 return -EPERM;
1847
1848                         ret = _regulator_do_enable(rdev);
1849                         if (ret < 0)
1850                                 return ret;
1851
1852                 } else if (ret < 0) {
1853                         rdev_err(rdev, "is_enabled() failed: %d\n", ret);
1854                         return ret;
1855                 }
1856                 /* Fallthrough on positive return values - already enabled */
1857         }
1858
1859         rdev->use_count++;
1860
1861         return 0;
1862 }
1863
1864 /**
1865  * regulator_enable - enable regulator output
1866  * @regulator: regulator source
1867  *
1868  * Request that the regulator be enabled with the regulator output at
1869  * the predefined voltage or current value.  Calls to regulator_enable()
1870  * must be balanced with calls to regulator_disable().
1871  *
1872  * NOTE: the output value can be set by other drivers, boot loader or may be
1873  * hardwired in the regulator.
1874  */
1875 int regulator_enable(struct regulator *regulator)
1876 {
1877         struct regulator_dev *rdev = regulator->rdev;
1878         int ret = 0;
1879
1880         if (regulator->always_on)
1881                 return 0;
1882
1883         if (rdev->supply) {
1884                 ret = regulator_enable(rdev->supply);
1885                 if (ret != 0)
1886                         return ret;
1887         }
1888
1889         mutex_lock(&rdev->mutex);
1890         ret = _regulator_enable(rdev);
1891         mutex_unlock(&rdev->mutex);
1892
1893         if (ret != 0 && rdev->supply)
1894                 regulator_disable(rdev->supply);
1895
1896         return ret;
1897 }
1898 EXPORT_SYMBOL_GPL(regulator_enable);
1899
1900 static int _regulator_do_disable(struct regulator_dev *rdev)
1901 {
1902         int ret;
1903
1904         trace_regulator_disable(rdev_get_name(rdev));
1905
1906         if (rdev->ena_pin) {
1907                 ret = regulator_ena_gpio_ctrl(rdev, false);
1908                 if (ret < 0)
1909                         return ret;
1910                 rdev->ena_gpio_state = 0;
1911
1912         } else if (rdev->desc->ops->disable) {
1913                 ret = rdev->desc->ops->disable(rdev);
1914                 if (ret != 0)
1915                         return ret;
1916         }
1917
1918         trace_regulator_disable_complete(rdev_get_name(rdev));
1919
1920         return 0;
1921 }
1922
1923 /* locks held by regulator_disable() */
1924 static int _regulator_disable(struct regulator_dev *rdev)
1925 {
1926         int ret = 0;
1927
1928         if (WARN(rdev->use_count <= 0,
1929                  "unbalanced disables for %s\n", rdev_get_name(rdev)))
1930                 return -EIO;
1931
1932         /* are we the last user and permitted to disable ? */
1933         if (rdev->use_count == 1 &&
1934             (rdev->constraints && !rdev->constraints->always_on)) {
1935
1936                 /* we are last user */
1937                 if (_regulator_can_change_status(rdev)) {
1938                         ret = _regulator_do_disable(rdev);
1939                         if (ret < 0) {
1940                                 rdev_err(rdev, "failed to disable\n");
1941                                 return ret;
1942                         }
1943                         _notifier_call_chain(rdev, REGULATOR_EVENT_DISABLE,
1944                                         NULL);
1945                 }
1946
1947                 rdev->use_count = 0;
1948         } else if (rdev->use_count > 1) {
1949
1950                 if (rdev->constraints &&
1951                         (rdev->constraints->valid_ops_mask &
1952                         REGULATOR_CHANGE_DRMS))
1953                         drms_uA_update(rdev);
1954
1955                 rdev->use_count--;
1956         }
1957
1958         return ret;
1959 }
1960
1961 /**
1962  * regulator_disable - disable regulator output
1963  * @regulator: regulator source
1964  *
1965  * Disable the regulator output voltage or current.  Calls to
1966  * regulator_enable() must be balanced with calls to
1967  * regulator_disable().
1968  *
1969  * NOTE: this will only disable the regulator output if no other consumer
1970  * devices have it enabled, the regulator device supports disabling and
1971  * machine constraints permit this operation.
1972  */
1973 int regulator_disable(struct regulator *regulator)
1974 {
1975         struct regulator_dev *rdev = regulator->rdev;
1976         int ret = 0;
1977
1978         if (regulator->always_on)
1979                 return 0;
1980
1981         mutex_lock(&rdev->mutex);
1982         ret = _regulator_disable(rdev);
1983         mutex_unlock(&rdev->mutex);
1984
1985         if (ret == 0 && rdev->supply)
1986                 regulator_disable(rdev->supply);
1987
1988         return ret;
1989 }
1990 EXPORT_SYMBOL_GPL(regulator_disable);
1991
1992 /* locks held by regulator_force_disable() */
1993 static int _regulator_force_disable(struct regulator_dev *rdev)
1994 {
1995         int ret = 0;
1996
1997         ret = _regulator_do_disable(rdev);
1998         if (ret < 0) {
1999                 rdev_err(rdev, "failed to force disable\n");
2000                 return ret;
2001         }
2002
2003         _notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
2004                         REGULATOR_EVENT_DISABLE, NULL);
2005
2006         return 0;
2007 }
2008
2009 /**
2010  * regulator_force_disable - force disable regulator output
2011  * @regulator: regulator source
2012  *
2013  * Forcibly disable the regulator output voltage or current.
2014  * NOTE: this *will* disable the regulator output even if other consumer
2015  * devices have it enabled. This should be used for situations when device
2016  * damage will likely occur if the regulator is not disabled (e.g. over temp).
2017  */
2018 int regulator_force_disable(struct regulator *regulator)
2019 {
2020         struct regulator_dev *rdev = regulator->rdev;
2021         int ret;
2022
2023         mutex_lock(&rdev->mutex);
2024         regulator->uA_load = 0;
2025         ret = _regulator_force_disable(regulator->rdev);
2026         mutex_unlock(&rdev->mutex);
2027
2028         if (rdev->supply)
2029                 while (rdev->open_count--)
2030                         regulator_disable(rdev->supply);
2031
2032         return ret;
2033 }
2034 EXPORT_SYMBOL_GPL(regulator_force_disable);
2035
2036 static void regulator_disable_work(struct work_struct *work)
2037 {
2038         struct regulator_dev *rdev = container_of(work, struct regulator_dev,
2039                                                   disable_work.work);
2040         int count, i, ret;
2041
2042         mutex_lock(&rdev->mutex);
2043
2044         BUG_ON(!rdev->deferred_disables);
2045
2046         count = rdev->deferred_disables;
2047         rdev->deferred_disables = 0;
2048
2049         for (i = 0; i < count; i++) {
2050                 ret = _regulator_disable(rdev);
2051                 if (ret != 0)
2052                         rdev_err(rdev, "Deferred disable failed: %d\n", ret);
2053         }
2054
2055         mutex_unlock(&rdev->mutex);
2056
2057         if (rdev->supply) {
2058                 for (i = 0; i < count; i++) {
2059                         ret = regulator_disable(rdev->supply);
2060                         if (ret != 0) {
2061                                 rdev_err(rdev,
2062                                          "Supply disable failed: %d\n", ret);
2063                         }
2064                 }
2065         }
2066 }
2067
2068 /**
2069  * regulator_disable_deferred - disable regulator output with delay
2070  * @regulator: regulator source
2071  * @ms: miliseconds until the regulator is disabled
2072  *
2073  * Execute regulator_disable() on the regulator after a delay.  This
2074  * is intended for use with devices that require some time to quiesce.
2075  *
2076  * NOTE: this will only disable the regulator output if no other consumer
2077  * devices have it enabled, the regulator device supports disabling and
2078  * machine constraints permit this operation.
2079  */
2080 int regulator_disable_deferred(struct regulator *regulator, int ms)
2081 {
2082         struct regulator_dev *rdev = regulator->rdev;
2083         int ret;
2084
2085         if (regulator->always_on)
2086                 return 0;
2087
2088         if (!ms)
2089                 return regulator_disable(regulator);
2090
2091         mutex_lock(&rdev->mutex);
2092         rdev->deferred_disables++;
2093         mutex_unlock(&rdev->mutex);
2094
2095         ret = queue_delayed_work(system_power_efficient_wq,
2096                                  &rdev->disable_work,
2097                                  msecs_to_jiffies(ms));
2098         if (ret < 0)
2099                 return ret;
2100         else
2101                 return 0;
2102 }
2103 EXPORT_SYMBOL_GPL(regulator_disable_deferred);
2104
2105 static int _regulator_is_enabled(struct regulator_dev *rdev)
2106 {
2107         /* A GPIO control always takes precedence */
2108         if (rdev->ena_pin)
2109                 return rdev->ena_gpio_state;
2110
2111         /* If we don't know then assume that the regulator is always on */
2112         if (!rdev->desc->ops->is_enabled)
2113                 return 1;
2114
2115         return rdev->desc->ops->is_enabled(rdev);
2116 }
2117
2118 /**
2119  * regulator_is_enabled - is the regulator output enabled
2120  * @regulator: regulator source
2121  *
2122  * Returns positive if the regulator driver backing the source/client
2123  * has requested that the device be enabled, zero if it hasn't, else a
2124  * negative errno code.
2125  *
2126  * Note that the device backing this regulator handle can have multiple
2127  * users, so it might be enabled even if regulator_enable() was never
2128  * called for this particular source.
2129  */
2130 int regulator_is_enabled(struct regulator *regulator)
2131 {
2132         int ret;
2133
2134         if (regulator->always_on)
2135                 return 1;
2136
2137         mutex_lock(&regulator->rdev->mutex);
2138         ret = _regulator_is_enabled(regulator->rdev);
2139         mutex_unlock(&regulator->rdev->mutex);
2140
2141         return ret;
2142 }
2143 EXPORT_SYMBOL_GPL(regulator_is_enabled);
2144
2145 /**
2146  * regulator_can_change_voltage - check if regulator can change voltage
2147  * @regulator: regulator source
2148  *
2149  * Returns positive if the regulator driver backing the source/client
2150  * can change its voltage, false otherwise. Useful for detecting fixed
2151  * or dummy regulators and disabling voltage change logic in the client
2152  * driver.
2153  */
2154 int regulator_can_change_voltage(struct regulator *regulator)
2155 {
2156         struct regulator_dev    *rdev = regulator->rdev;
2157
2158         if (rdev->constraints &&
2159             (rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE)) {
2160                 if (rdev->desc->n_voltages - rdev->desc->linear_min_sel > 1)
2161                         return 1;
2162
2163                 if (rdev->desc->continuous_voltage_range &&
2164                     rdev->constraints->min_uV && rdev->constraints->max_uV &&
2165                     rdev->constraints->min_uV != rdev->constraints->max_uV)
2166                         return 1;
2167         }
2168
2169         return 0;
2170 }
2171 EXPORT_SYMBOL_GPL(regulator_can_change_voltage);
2172
2173 /**
2174  * regulator_count_voltages - count regulator_list_voltage() selectors
2175  * @regulator: regulator source
2176  *
2177  * Returns number of selectors, or negative errno.  Selectors are
2178  * numbered starting at zero, and typically correspond to bitfields
2179  * in hardware registers.
2180  */
2181 int regulator_count_voltages(struct regulator *regulator)
2182 {
2183         struct regulator_dev    *rdev = regulator->rdev;
2184
2185         if (rdev->desc->n_voltages)
2186                 return rdev->desc->n_voltages;
2187
2188         if (!rdev->supply)
2189                 return -EINVAL;
2190
2191         return regulator_count_voltages(rdev->supply);
2192 }
2193 EXPORT_SYMBOL_GPL(regulator_count_voltages);
2194
2195 /**
2196  * regulator_list_voltage - enumerate supported voltages
2197  * @regulator: regulator source
2198  * @selector: identify voltage to list
2199  * Context: can sleep
2200  *
2201  * Returns a voltage that can be passed to @regulator_set_voltage(),
2202  * zero if this selector code can't be used on this system, or a
2203  * negative errno.
2204  */
2205 int regulator_list_voltage(struct regulator *regulator, unsigned selector)
2206 {
2207         struct regulator_dev    *rdev = regulator->rdev;
2208         struct regulator_ops    *ops = rdev->desc->ops;
2209         int                     ret;
2210
2211         if (rdev->desc->fixed_uV && rdev->desc->n_voltages == 1 && !selector)
2212                 return rdev->desc->fixed_uV;
2213
2214         if (ops->list_voltage) {
2215                 if (selector >= rdev->desc->n_voltages)
2216                         return -EINVAL;
2217                 mutex_lock(&rdev->mutex);
2218                 ret = ops->list_voltage(rdev, selector);
2219                 mutex_unlock(&rdev->mutex);
2220         } else if (rdev->supply) {
2221                 ret = regulator_list_voltage(rdev->supply, selector);
2222         } else {
2223                 return -EINVAL;
2224         }
2225
2226         if (ret > 0) {
2227                 if (ret < rdev->constraints->min_uV)
2228                         ret = 0;
2229                 else if (ret > rdev->constraints->max_uV)
2230                         ret = 0;
2231         }
2232
2233         return ret;
2234 }
2235 EXPORT_SYMBOL_GPL(regulator_list_voltage);
2236
2237 /**
2238  * regulator_get_linear_step - return the voltage step size between VSEL values
2239  * @regulator: regulator source
2240  *
2241  * Returns the voltage step size between VSEL values for linear
2242  * regulators, or return 0 if the regulator isn't a linear regulator.
2243  */
2244 unsigned int regulator_get_linear_step(struct regulator *regulator)
2245 {
2246         struct regulator_dev *rdev = regulator->rdev;
2247
2248         return rdev->desc->uV_step;
2249 }
2250 EXPORT_SYMBOL_GPL(regulator_get_linear_step);
2251
2252 /**
2253  * regulator_is_supported_voltage - check if a voltage range can be supported
2254  *
2255  * @regulator: Regulator to check.
2256  * @min_uV: Minimum required voltage in uV.
2257  * @max_uV: Maximum required voltage in uV.
2258  *
2259  * Returns a boolean or a negative error code.
2260  */
2261 int regulator_is_supported_voltage(struct regulator *regulator,
2262                                    int min_uV, int max_uV)
2263 {
2264         struct regulator_dev *rdev = regulator->rdev;
2265         int i, voltages, ret;
2266
2267         /* If we can't change voltage check the current voltage */
2268         if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE)) {
2269                 ret = regulator_get_voltage(regulator);
2270                 if (ret >= 0)
2271                         return min_uV <= ret && ret <= max_uV;
2272                 else
2273                         return ret;
2274         }
2275
2276         /* Any voltage within constrains range is fine? */
2277         if (rdev->desc->continuous_voltage_range)
2278                 return min_uV >= rdev->constraints->min_uV &&
2279                                 max_uV <= rdev->constraints->max_uV;
2280
2281         ret = regulator_count_voltages(regulator);
2282         if (ret < 0)
2283                 return ret;
2284         voltages = ret;
2285
2286         for (i = 0; i < voltages; i++) {
2287                 ret = regulator_list_voltage(regulator, i);
2288
2289                 if (ret >= min_uV && ret <= max_uV)
2290                         return 1;
2291         }
2292
2293         return 0;
2294 }
2295 EXPORT_SYMBOL_GPL(regulator_is_supported_voltage);
2296
2297 static int _regulator_do_set_voltage(struct regulator_dev *rdev,
2298                                      int min_uV, int max_uV)
2299 {
2300         int ret;
2301         int delay = 0;
2302         int best_val = 0;
2303         unsigned int selector;
2304         int old_selector = -1;
2305
2306         trace_regulator_set_voltage(rdev_get_name(rdev), min_uV, max_uV);
2307
2308         min_uV += rdev->constraints->uV_offset;
2309         max_uV += rdev->constraints->uV_offset;
2310
2311         /*
2312          * If we can't obtain the old selector there is not enough
2313          * info to call set_voltage_time_sel().
2314          */
2315         if (_regulator_is_enabled(rdev) &&
2316             rdev->desc->ops->set_voltage_time_sel &&
2317             rdev->desc->ops->get_voltage_sel) {
2318                 old_selector = rdev->desc->ops->get_voltage_sel(rdev);
2319                 if (old_selector < 0)
2320                         return old_selector;
2321         }
2322
2323         if (rdev->desc->ops->set_voltage) {
2324                 ret = rdev->desc->ops->set_voltage(rdev, min_uV, max_uV,
2325                                                    &selector);
2326
2327                 if (ret >= 0) {
2328                         if (rdev->desc->ops->list_voltage)
2329                                 best_val = rdev->desc->ops->list_voltage(rdev,
2330                                                                          selector);
2331                         else
2332                                 best_val = _regulator_get_voltage(rdev);
2333                 }
2334
2335         } else if (rdev->desc->ops->set_voltage_sel) {
2336                 if (rdev->desc->ops->map_voltage) {
2337                         ret = rdev->desc->ops->map_voltage(rdev, min_uV,
2338                                                            max_uV);
2339                 } else {
2340                         if (rdev->desc->ops->list_voltage ==
2341                             regulator_list_voltage_linear)
2342                                 ret = regulator_map_voltage_linear(rdev,
2343                                                                 min_uV, max_uV);
2344                         else if (rdev->desc->ops->list_voltage ==
2345                                  regulator_list_voltage_linear_range)
2346                                 ret = regulator_map_voltage_linear_range(rdev,
2347                                                                 min_uV, max_uV);
2348                         else
2349                                 ret = regulator_map_voltage_iterate(rdev,
2350                                                                 min_uV, max_uV);
2351                 }
2352
2353                 if (ret >= 0) {
2354                         best_val = rdev->desc->ops->list_voltage(rdev, ret);
2355                         if (min_uV <= best_val && max_uV >= best_val) {
2356                                 selector = ret;
2357                                 if (old_selector == selector)
2358                                         ret = 0;
2359                                 else
2360                                         ret = rdev->desc->ops->set_voltage_sel(
2361                                                                 rdev, ret);
2362                         } else {
2363                                 ret = -EINVAL;
2364                         }
2365                 }
2366         } else {
2367                 ret = -EINVAL;
2368         }
2369
2370         /* Call set_voltage_time_sel if successfully obtained old_selector */
2371         if (ret == 0 && !rdev->constraints->ramp_disable && old_selector >= 0
2372                 && old_selector != selector) {
2373
2374                 delay = rdev->desc->ops->set_voltage_time_sel(rdev,
2375                                                 old_selector, selector);
2376                 if (delay < 0) {
2377                         rdev_warn(rdev, "set_voltage_time_sel() failed: %d\n",
2378                                   delay);
2379                         delay = 0;
2380                 }
2381
2382                 /* Insert any necessary delays */
2383                 if (delay >= 1000) {
2384                         mdelay(delay / 1000);
2385                         udelay(delay % 1000);
2386                 } else if (delay) {
2387                         udelay(delay);
2388                 }
2389         }
2390
2391         if (ret == 0 && best_val >= 0) {
2392                 unsigned long data = best_val;
2393
2394                 _notifier_call_chain(rdev, REGULATOR_EVENT_VOLTAGE_CHANGE,
2395                                      (void *)data);
2396         }
2397
2398         trace_regulator_set_voltage_complete(rdev_get_name(rdev), best_val);
2399
2400         return ret;
2401 }
2402
2403 /**
2404  * regulator_set_voltage - set regulator output voltage
2405  * @regulator: regulator source
2406  * @min_uV: Minimum required voltage in uV
2407  * @max_uV: Maximum acceptable voltage in uV
2408  *
2409  * Sets a voltage regulator to the desired output voltage. This can be set
2410  * during any regulator state. IOW, regulator can be disabled or enabled.
2411  *
2412  * If the regulator is enabled then the voltage will change to the new value
2413  * immediately otherwise if the regulator is disabled the regulator will
2414  * output at the new voltage when enabled.
2415  *
2416  * NOTE: If the regulator is shared between several devices then the lowest
2417  * request voltage that meets the system constraints will be used.
2418  * Regulator system constraints must be set for this regulator before
2419  * calling this function otherwise this call will fail.
2420  */
2421 int regulator_set_voltage(struct regulator *regulator, int min_uV, int max_uV)
2422 {
2423         struct regulator_dev *rdev = regulator->rdev;
2424         int ret = 0;
2425         int old_min_uV, old_max_uV;
2426         int current_uV;
2427
2428         mutex_lock(&rdev->mutex);
2429
2430         /* If we're setting the same range as last time the change
2431          * should be a noop (some cpufreq implementations use the same
2432          * voltage for multiple frequencies, for example).
2433          */
2434         if (regulator->min_uV == min_uV && regulator->max_uV == max_uV)
2435                 goto out;
2436
2437         /* If we're trying to set a range that overlaps the current voltage,
2438          * return succesfully even though the regulator does not support
2439          * changing the voltage.
2440          */
2441         if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE)) {
2442                 current_uV = _regulator_get_voltage(rdev);
2443                 if (min_uV <= current_uV && current_uV <= max_uV) {
2444                         regulator->min_uV = min_uV;
2445                         regulator->max_uV = max_uV;
2446                         goto out;
2447                 }
2448         }
2449
2450         /* sanity check */
2451         if (!rdev->desc->ops->set_voltage &&
2452             !rdev->desc->ops->set_voltage_sel) {
2453                 ret = -EINVAL;
2454                 goto out;
2455         }
2456
2457         /* constraints check */
2458         ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
2459         if (ret < 0)
2460                 goto out;
2461
2462         /* restore original values in case of error */
2463         old_min_uV = regulator->min_uV;
2464         old_max_uV = regulator->max_uV;
2465         regulator->min_uV = min_uV;
2466         regulator->max_uV = max_uV;
2467
2468         ret = regulator_check_consumers(rdev, &min_uV, &max_uV);
2469         if (ret < 0)
2470                 goto out2;
2471
2472         ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);
2473         if (ret < 0)
2474                 goto out2;
2475
2476 out:
2477         mutex_unlock(&rdev->mutex);
2478         return ret;
2479 out2:
2480         regulator->min_uV = old_min_uV;
2481         regulator->max_uV = old_max_uV;
2482         mutex_unlock(&rdev->mutex);
2483         return ret;
2484 }
2485 EXPORT_SYMBOL_GPL(regulator_set_voltage);
2486
2487 /**
2488  * regulator_set_voltage_time - get raise/fall time
2489  * @regulator: regulator source
2490  * @old_uV: starting voltage in microvolts
2491  * @new_uV: target voltage in microvolts
2492  *
2493  * Provided with the starting and ending voltage, this function attempts to
2494  * calculate the time in microseconds required to rise or fall to this new
2495  * voltage.
2496  */
2497 int regulator_set_voltage_time(struct regulator *regulator,
2498                                int old_uV, int new_uV)
2499 {
2500         struct regulator_dev    *rdev = regulator->rdev;
2501         struct regulator_ops    *ops = rdev->desc->ops;
2502         int old_sel = -1;
2503         int new_sel = -1;
2504         int voltage;
2505         int i;
2506
2507         /* Currently requires operations to do this */
2508         if (!ops->list_voltage || !ops->set_voltage_time_sel
2509             || !rdev->desc->n_voltages)
2510                 return -EINVAL;
2511
2512         for (i = 0; i < rdev->desc->n_voltages; i++) {
2513                 /* We only look for exact voltage matches here */
2514                 voltage = regulator_list_voltage(regulator, i);
2515                 if (voltage < 0)
2516                         return -EINVAL;
2517                 if (voltage == 0)
2518                         continue;
2519                 if (voltage == old_uV)
2520                         old_sel = i;
2521                 if (voltage == new_uV)
2522                         new_sel = i;
2523         }
2524
2525         if (old_sel < 0 || new_sel < 0)
2526                 return -EINVAL;
2527
2528         return ops->set_voltage_time_sel(rdev, old_sel, new_sel);
2529 }
2530 EXPORT_SYMBOL_GPL(regulator_set_voltage_time);
2531
2532 /**
2533  * regulator_set_voltage_time_sel - get raise/fall time
2534  * @rdev: regulator source device
2535  * @old_selector: selector for starting voltage
2536  * @new_selector: selector for target voltage
2537  *
2538  * Provided with the starting and target voltage selectors, this function
2539  * returns time in microseconds required to rise or fall to this new voltage
2540  *
2541  * Drivers providing ramp_delay in regulation_constraints can use this as their
2542  * set_voltage_time_sel() operation.
2543  */
2544 int regulator_set_voltage_time_sel(struct regulator_dev *rdev,
2545                                    unsigned int old_selector,
2546                                    unsigned int new_selector)
2547 {
2548         unsigned int ramp_delay = 0;
2549         int old_volt, new_volt;
2550
2551         if (rdev->constraints->ramp_delay)
2552                 ramp_delay = rdev->constraints->ramp_delay;
2553         else if (rdev->desc->ramp_delay)
2554                 ramp_delay = rdev->desc->ramp_delay;
2555
2556         if (ramp_delay == 0) {
2557                 rdev_warn(rdev, "ramp_delay not set\n");
2558                 return 0;
2559         }
2560
2561         /* sanity check */
2562         if (!rdev->desc->ops->list_voltage)
2563                 return -EINVAL;
2564
2565         old_volt = rdev->desc->ops->list_voltage(rdev, old_selector);
2566         new_volt = rdev->desc->ops->list_voltage(rdev, new_selector);
2567
2568         return DIV_ROUND_UP(abs(new_volt - old_volt), ramp_delay);
2569 }
2570 EXPORT_SYMBOL_GPL(regulator_set_voltage_time_sel);
2571
2572 /**
2573  * regulator_sync_voltage - re-apply last regulator output voltage
2574  * @regulator: regulator source
2575  *
2576  * Re-apply the last configured voltage.  This is intended to be used
2577  * where some external control source the consumer is cooperating with
2578  * has caused the configured voltage to change.
2579  */
2580 int regulator_sync_voltage(struct regulator *regulator)
2581 {
2582         struct regulator_dev *rdev = regulator->rdev;
2583         int ret, min_uV, max_uV;
2584
2585         mutex_lock(&rdev->mutex);
2586
2587         if (!rdev->desc->ops->set_voltage &&
2588             !rdev->desc->ops->set_voltage_sel) {
2589                 ret = -EINVAL;
2590                 goto out;
2591         }
2592
2593         /* This is only going to work if we've had a voltage configured. */
2594         if (!regulator->min_uV && !regulator->max_uV) {
2595                 ret = -EINVAL;
2596                 goto out;
2597         }
2598
2599         min_uV = regulator->min_uV;
2600         max_uV = regulator->max_uV;
2601
2602         /* This should be a paranoia check... */
2603         ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
2604         if (ret < 0)
2605                 goto out;
2606
2607         ret = regulator_check_consumers(rdev, &min_uV, &max_uV);
2608         if (ret < 0)
2609                 goto out;
2610
2611         ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);
2612
2613 out:
2614         mutex_unlock(&rdev->mutex);
2615         return ret;
2616 }
2617 EXPORT_SYMBOL_GPL(regulator_sync_voltage);
2618
2619 static int _regulator_get_voltage(struct regulator_dev *rdev)
2620 {
2621         int sel, ret;
2622
2623         if (rdev->desc->ops->get_voltage_sel) {
2624                 sel = rdev->desc->ops->get_voltage_sel(rdev);
2625                 if (sel < 0)
2626                         return sel;
2627                 ret = rdev->desc->ops->list_voltage(rdev, sel);
2628         } else if (rdev->desc->ops->get_voltage) {
2629                 ret = rdev->desc->ops->get_voltage(rdev);
2630         } else if (rdev->desc->ops->list_voltage) {
2631                 ret = rdev->desc->ops->list_voltage(rdev, 0);
2632         } else if (rdev->desc->fixed_uV && (rdev->desc->n_voltages == 1)) {
2633                 ret = rdev->desc->fixed_uV;
2634         } else if (rdev->supply) {
2635                 ret = regulator_get_voltage(rdev->supply);
2636         } else {
2637                 return -EINVAL;
2638         }
2639
2640         if (ret < 0)
2641                 return ret;
2642         return ret - rdev->constraints->uV_offset;
2643 }
2644
2645 /**
2646  * regulator_get_voltage - get regulator output voltage
2647  * @regulator: regulator source
2648  *
2649  * This returns the current regulator voltage in uV.
2650  *
2651  * NOTE: If the regulator is disabled it will return the voltage value. This
2652  * function should not be used to determine regulator state.
2653  */
2654 int regulator_get_voltage(struct regulator *regulator)
2655 {
2656         int ret;
2657
2658         mutex_lock(&regulator->rdev->mutex);
2659
2660         ret = _regulator_get_voltage(regulator->rdev);
2661
2662         mutex_unlock(&regulator->rdev->mutex);
2663
2664         return ret;
2665 }
2666 EXPORT_SYMBOL_GPL(regulator_get_voltage);
2667
2668 /**
2669  * regulator_set_current_limit - set regulator output current limit
2670  * @regulator: regulator source
2671  * @min_uA: Minimum supported current in uA
2672  * @max_uA: Maximum supported current in uA
2673  *
2674  * Sets current sink to the desired output current. This can be set during
2675  * any regulator state. IOW, regulator can be disabled or enabled.
2676  *
2677  * If the regulator is enabled then the current will change to the new value
2678  * immediately otherwise if the regulator is disabled the regulator will
2679  * output at the new current when enabled.
2680  *
2681  * NOTE: Regulator system constraints must be set for this regulator before
2682  * calling this function otherwise this call will fail.
2683  */
2684 int regulator_set_current_limit(struct regulator *regulator,
2685                                int min_uA, int max_uA)
2686 {
2687         struct regulator_dev *rdev = regulator->rdev;
2688         int ret;
2689
2690         mutex_lock(&rdev->mutex);
2691
2692         /* sanity check */
2693         if (!rdev->desc->ops->set_current_limit) {
2694                 ret = -EINVAL;
2695                 goto out;
2696         }
2697
2698         /* constraints check */
2699         ret = regulator_check_current_limit(rdev, &min_uA, &max_uA);
2700         if (ret < 0)
2701                 goto out;
2702
2703         ret = rdev->desc->ops->set_current_limit(rdev, min_uA, max_uA);
2704 out:
2705         mutex_unlock(&rdev->mutex);
2706         return ret;
2707 }
2708 EXPORT_SYMBOL_GPL(regulator_set_current_limit);
2709
2710 static int _regulator_get_current_limit(struct regulator_dev *rdev)
2711 {
2712         int ret;
2713
2714         mutex_lock(&rdev->mutex);
2715
2716         /* sanity check */
2717         if (!rdev->desc->ops->get_current_limit) {
2718                 ret = -EINVAL;
2719                 goto out;
2720         }
2721
2722         ret = rdev->desc->ops->get_current_limit(rdev);
2723 out:
2724         mutex_unlock(&rdev->mutex);
2725         return ret;
2726 }
2727
2728 /**
2729  * regulator_get_current_limit - get regulator output current
2730  * @regulator: regulator source
2731  *
2732  * This returns the current supplied by the specified current sink in uA.
2733  *
2734  * NOTE: If the regulator is disabled it will return the current value. This
2735  * function should not be used to determine regulator state.
2736  */
2737 int regulator_get_current_limit(struct regulator *regulator)
2738 {
2739         return _regulator_get_current_limit(regulator->rdev);
2740 }
2741 EXPORT_SYMBOL_GPL(regulator_get_current_limit);
2742
2743 /**
2744  * regulator_set_mode - set regulator operating mode
2745  * @regulator: regulator source
2746  * @mode: operating mode - one of the REGULATOR_MODE constants
2747  *
2748  * Set regulator operating mode to increase regulator efficiency or improve
2749  * regulation performance.
2750  *
2751  * NOTE: Regulator system constraints must be set for this regulator before
2752  * calling this function otherwise this call will fail.
2753  */
2754 int regulator_set_mode(struct regulator *regulator, unsigned int mode)
2755 {
2756         struct regulator_dev *rdev = regulator->rdev;
2757         int ret;
2758         int regulator_curr_mode;
2759
2760         mutex_lock(&rdev->mutex);
2761
2762         /* sanity check */
2763         if (!rdev->desc->ops->set_mode) {
2764                 ret = -EINVAL;
2765                 goto out;
2766         }
2767
2768         /* return if the same mode is requested */
2769         if (rdev->desc->ops->get_mode) {
2770                 regulator_curr_mode = rdev->desc->ops->get_mode(rdev);
2771                 if (regulator_curr_mode == mode) {
2772                         ret = 0;
2773                         goto out;
2774                 }
2775         }
2776
2777         /* constraints check */
2778         ret = regulator_mode_constrain(rdev, &mode);
2779         if (ret < 0)
2780                 goto out;
2781
2782         ret = rdev->desc->ops->set_mode(rdev, mode);
2783 out:
2784         mutex_unlock(&rdev->mutex);
2785         return ret;
2786 }
2787 EXPORT_SYMBOL_GPL(regulator_set_mode);
2788
2789 static unsigned int _regulator_get_mode(struct regulator_dev *rdev)
2790 {
2791         int ret;
2792
2793         mutex_lock(&rdev->mutex);
2794
2795         /* sanity check */
2796         if (!rdev->desc->ops->get_mode) {
2797                 ret = -EINVAL;
2798                 goto out;
2799         }
2800
2801         ret = rdev->desc->ops->get_mode(rdev);
2802 out:
2803         mutex_unlock(&rdev->mutex);
2804         return ret;
2805 }
2806
2807 /**
2808  * regulator_get_mode - get regulator operating mode
2809  * @regulator: regulator source
2810  *
2811  * Get the current regulator operating mode.
2812  */
2813 unsigned int regulator_get_mode(struct regulator *regulator)
2814 {
2815         return _regulator_get_mode(regulator->rdev);
2816 }
2817 EXPORT_SYMBOL_GPL(regulator_get_mode);
2818
2819 /**
2820  * regulator_set_optimum_mode - set regulator optimum operating mode
2821  * @regulator: regulator source
2822  * @uA_load: load current
2823  *
2824  * Notifies the regulator core of a new device load. This is then used by
2825  * DRMS (if enabled by constraints) to set the most efficient regulator
2826  * operating mode for the new regulator loading.
2827  *
2828  * Consumer devices notify their supply regulator of the maximum power
2829  * they will require (can be taken from device datasheet in the power
2830  * consumption tables) when they change operational status and hence power
2831  * state. Examples of operational state changes that can affect power
2832  * consumption are :-
2833  *
2834  *    o Device is opened / closed.
2835  *    o Device I/O is about to begin or has just finished.
2836  *    o Device is idling in between work.
2837  *
2838  * This information is also exported via sysfs to userspace.
2839  *
2840  * DRMS will sum the total requested load on the regulator and change
2841  * to the most efficient operating mode if platform constraints allow.
2842  *
2843  * Returns the new regulator mode or error.
2844  */
2845 int regulator_set_optimum_mode(struct regulator *regulator, int uA_load)
2846 {
2847         struct regulator_dev *rdev = regulator->rdev;
2848         struct regulator *consumer;
2849         int ret, output_uV, input_uV = 0, total_uA_load = 0;
2850         unsigned int mode;
2851
2852         if (rdev->supply)
2853                 input_uV = regulator_get_voltage(rdev->supply);
2854
2855         mutex_lock(&rdev->mutex);
2856
2857         /*
2858          * first check to see if we can set modes at all, otherwise just
2859          * tell the consumer everything is OK.
2860          */
2861         regulator->uA_load = uA_load;
2862         ret = regulator_check_drms(rdev);
2863         if (ret < 0) {
2864                 ret = 0;
2865                 goto out;
2866         }
2867
2868         if (!rdev->desc->ops->get_optimum_mode)
2869                 goto out;
2870
2871         /*
2872          * we can actually do this so any errors are indicators of
2873          * potential real failure.
2874          */
2875         ret = -EINVAL;
2876
2877         if (!rdev->desc->ops->set_mode)
2878                 goto out;
2879
2880         /* get output voltage */
2881         output_uV = _regulator_get_voltage(rdev);
2882         if (output_uV <= 0) {
2883                 rdev_err(rdev, "invalid output voltage found\n");
2884                 goto out;
2885         }
2886
2887         /* No supply? Use constraint voltage */
2888         if (input_uV <= 0)
2889                 input_uV = rdev->constraints->input_uV;
2890         if (input_uV <= 0) {
2891                 rdev_err(rdev, "invalid input voltage found\n");
2892                 goto out;
2893         }
2894
2895         /* calc total requested load for this regulator */
2896         list_for_each_entry(consumer, &rdev->consumer_list, list)
2897                 total_uA_load += consumer->uA_load;
2898
2899         mode = rdev->desc->ops->get_optimum_mode(rdev,
2900                                                  input_uV, output_uV,
2901                                                  total_uA_load);
2902         ret = regulator_mode_constrain(rdev, &mode);
2903         if (ret < 0) {
2904                 rdev_err(rdev, "failed to get optimum mode @ %d uA %d -> %d uV\n",
2905                          total_uA_load, input_uV, output_uV);
2906                 goto out;
2907         }
2908
2909         ret = rdev->desc->ops->set_mode(rdev, mode);
2910         if (ret < 0) {
2911                 rdev_err(rdev, "failed to set optimum mode %x\n", mode);
2912                 goto out;
2913         }
2914         ret = mode;
2915 out:
2916         mutex_unlock(&rdev->mutex);
2917         return ret;
2918 }
2919 EXPORT_SYMBOL_GPL(regulator_set_optimum_mode);
2920
2921 /**
2922  * regulator_allow_bypass - allow the regulator to go into bypass mode
2923  *
2924  * @regulator: Regulator to configure
2925  * @enable: enable or disable bypass mode
2926  *
2927  * Allow the regulator to go into bypass mode if all other consumers
2928  * for the regulator also enable bypass mode and the machine
2929  * constraints allow this.  Bypass mode means that the regulator is
2930  * simply passing the input directly to the output with no regulation.
2931  */
2932 int regulator_allow_bypass(struct regulator *regulator, bool enable)
2933 {
2934         struct regulator_dev *rdev = regulator->rdev;
2935         int ret = 0;
2936
2937         if (!rdev->desc->ops->set_bypass)
2938                 return 0;
2939
2940         if (rdev->constraints &&
2941             !(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_BYPASS))
2942                 return 0;
2943
2944         mutex_lock(&rdev->mutex);
2945
2946         if (enable && !regulator->bypass) {
2947                 rdev->bypass_count++;
2948
2949                 if (rdev->bypass_count == rdev->open_count) {
2950                         ret = rdev->desc->ops->set_bypass(rdev, enable);
2951                         if (ret != 0)
2952                                 rdev->bypass_count--;
2953                 }
2954
2955         } else if (!enable && regulator->bypass) {
2956                 rdev->bypass_count--;
2957
2958                 if (rdev->bypass_count != rdev->open_count) {
2959                         ret = rdev->desc->ops->set_bypass(rdev, enable);
2960                         if (ret != 0)
2961                                 rdev->bypass_count++;
2962                 }
2963         }
2964
2965         if (ret == 0)
2966                 regulator->bypass = enable;
2967
2968         mutex_unlock(&rdev->mutex);
2969
2970         return ret;
2971 }
2972 EXPORT_SYMBOL_GPL(regulator_allow_bypass);
2973
2974 /**
2975  * regulator_register_notifier - register regulator event notifier
2976  * @regulator: regulator source
2977  * @nb: notifier block
2978  *
2979  * Register notifier block to receive regulator events.
2980  */
2981 int regulator_register_notifier(struct regulator *regulator,
2982                               struct notifier_block *nb)
2983 {
2984         return blocking_notifier_chain_register(&regulator->rdev->notifier,
2985                                                 nb);
2986 }
2987 EXPORT_SYMBOL_GPL(regulator_register_notifier);
2988
2989 /**
2990  * regulator_unregister_notifier - unregister regulator event notifier
2991  * @regulator: regulator source
2992  * @nb: notifier block
2993  *
2994  * Unregister regulator event notifier block.
2995  */
2996 int regulator_unregister_notifier(struct regulator *regulator,
2997                                 struct notifier_block *nb)
2998 {
2999         return blocking_notifier_chain_unregister(&regulator->rdev->notifier,
3000                                                   nb);
3001 }
3002 EXPORT_SYMBOL_GPL(regulator_unregister_notifier);
3003
3004 /* notify regulator consumers and downstream regulator consumers.
3005  * Note mutex must be held by caller.
3006  */
3007 static void _notifier_call_chain(struct regulator_dev *rdev,
3008                                   unsigned long event, void *data)
3009 {
3010         /* call rdev chain first */
3011         blocking_notifier_call_chain(&rdev->notifier, event, data);
3012 }
3013
3014 /**
3015  * regulator_bulk_get - get multiple regulator consumers
3016  *
3017  * @dev:           Device to supply
3018  * @num_consumers: Number of consumers to register
3019  * @consumers:     Configuration of consumers; clients are stored here.
3020  *
3021  * @return 0 on success, an errno on failure.
3022  *
3023  * This helper function allows drivers to get several regulator
3024  * consumers in one operation.  If any of the regulators cannot be
3025  * acquired then any regulators that were allocated will be freed
3026  * before returning to the caller.
3027  */
3028 int regulator_bulk_get(struct device *dev, int num_consumers,
3029                        struct regulator_bulk_data *consumers)
3030 {
3031         int i;
3032         int ret;
3033
3034         for (i = 0; i < num_consumers; i++)
3035                 consumers[i].consumer = NULL;
3036
3037         for (i = 0; i < num_consumers; i++) {
3038                 consumers[i].consumer = regulator_get(dev,
3039                                                       consumers[i].supply);
3040                 if (IS_ERR(consumers[i].consumer)) {
3041                         ret = PTR_ERR(consumers[i].consumer);
3042                         dev_err(dev, "Failed to get supply '%s': %d\n",
3043                                 consumers[i].supply, ret);
3044                         consumers[i].consumer = NULL;
3045                         goto err;
3046                 }
3047         }
3048
3049         return 0;
3050
3051 err:
3052         while (--i >= 0)
3053                 regulator_put(consumers[i].consumer);
3054
3055         return ret;
3056 }
3057 EXPORT_SYMBOL_GPL(regulator_bulk_get);
3058
3059 static void regulator_bulk_enable_async(void *data, async_cookie_t cookie)
3060 {
3061         struct regulator_bulk_data *bulk = data;
3062
3063         bulk->ret = regulator_enable(bulk->consumer);
3064 }
3065
3066 /**
3067  * regulator_bulk_enable - enable multiple regulator consumers
3068  *
3069  * @num_consumers: Number of consumers
3070  * @consumers:     Consumer data; clients are stored here.
3071  * @return         0 on success, an errno on failure
3072  *
3073  * This convenience API allows consumers to enable multiple regulator
3074  * clients in a single API call.  If any consumers cannot be enabled
3075  * then any others that were enabled will be disabled again prior to
3076  * return.
3077  */
3078 int regulator_bulk_enable(int num_consumers,
3079                           struct regulator_bulk_data *consumers)
3080 {
3081         ASYNC_DOMAIN_EXCLUSIVE(async_domain);
3082         int i;
3083         int ret = 0;
3084
3085         for (i = 0; i < num_consumers; i++) {
3086                 if (consumers[i].consumer->always_on)
3087                         consumers[i].ret = 0;
3088                 else
3089                         async_schedule_domain(regulator_bulk_enable_async,
3090                                               &consumers[i], &async_domain);
3091         }
3092
3093         async_synchronize_full_domain(&async_domain);
3094
3095         /* If any consumer failed we need to unwind any that succeeded */
3096         for (i = 0; i < num_consumers; i++) {
3097                 if (consumers[i].ret != 0) {
3098                         ret = consumers[i].ret;
3099                         goto err;
3100                 }
3101         }
3102
3103         return 0;
3104
3105 err:
3106         for (i = 0; i < num_consumers; i++) {
3107                 if (consumers[i].ret < 0)
3108                         pr_err("Failed to enable %s: %d\n", consumers[i].supply,
3109                                consumers[i].ret);
3110                 else
3111                         regulator_disable(consumers[i].consumer);
3112         }
3113
3114         return ret;
3115 }
3116 EXPORT_SYMBOL_GPL(regulator_bulk_enable);
3117
3118 /**
3119  * regulator_bulk_disable - disable multiple regulator consumers
3120  *
3121  * @num_consumers: Number of consumers
3122  * @consumers:     Consumer data; clients are stored here.
3123  * @return         0 on success, an errno on failure
3124  *
3125  * This convenience API allows consumers to disable multiple regulator
3126  * clients in a single API call.  If any consumers cannot be disabled
3127  * then any others that were disabled will be enabled again prior to
3128  * return.
3129  */
3130 int regulator_bulk_disable(int num_consumers,
3131                            struct regulator_bulk_data *consumers)
3132 {
3133         int i;
3134         int ret, r;
3135
3136         for (i = num_consumers - 1; i >= 0; --i) {
3137                 ret = regulator_disable(consumers[i].consumer);
3138                 if (ret != 0)
3139                         goto err;
3140         }
3141
3142         return 0;
3143
3144 err:
3145         pr_err("Failed to disable %s: %d\n", consumers[i].supply, ret);
3146         for (++i; i < num_consumers; ++i) {
3147                 r = regulator_enable(consumers[i].consumer);
3148                 if (r != 0)
3149                         pr_err("Failed to reename %s: %d\n",
3150                                consumers[i].supply, r);
3151         }
3152
3153         return ret;
3154 }
3155 EXPORT_SYMBOL_GPL(regulator_bulk_disable);
3156
3157 /**
3158  * regulator_bulk_force_disable - force disable multiple regulator consumers
3159  *
3160  * @num_consumers: Number of consumers
3161  * @consumers:     Consumer data; clients are stored here.
3162  * @return         0 on success, an errno on failure
3163  *
3164  * This convenience API allows consumers to forcibly disable multiple regulator
3165  * clients in a single API call.
3166  * NOTE: This should be used for situations when device damage will
3167  * likely occur if the regulators are not disabled (e.g. over temp).
3168  * Although regulator_force_disable function call for some consumers can
3169  * return error numbers, the function is called for all consumers.
3170  */
3171 int regulator_bulk_force_disable(int num_consumers,
3172                            struct regulator_bulk_data *consumers)
3173 {
3174         int i;
3175         int ret;
3176
3177         for (i = 0; i < num_consumers; i++)
3178                 consumers[i].ret =
3179                             regulator_force_disable(consumers[i].consumer);
3180
3181         for (i = 0; i < num_consumers; i++) {
3182                 if (consumers[i].ret != 0) {
3183                         ret = consumers[i].ret;
3184                         goto out;
3185                 }
3186         }
3187
3188         return 0;
3189 out:
3190         return ret;
3191 }
3192 EXPORT_SYMBOL_GPL(regulator_bulk_force_disable);
3193
3194 /**
3195  * regulator_bulk_free - free multiple regulator consumers
3196  *
3197  * @num_consumers: Number of consumers
3198  * @consumers:     Consumer data; clients are stored here.
3199  *
3200  * This convenience API allows consumers to free multiple regulator
3201  * clients in a single API call.
3202  */
3203 void regulator_bulk_free(int num_consumers,
3204                          struct regulator_bulk_data *consumers)
3205 {
3206         int i;
3207
3208         for (i = 0; i < num_consumers; i++) {
3209                 regulator_put(consumers[i].consumer);
3210                 consumers[i].consumer = NULL;
3211         }
3212 }
3213 EXPORT_SYMBOL_GPL(regulator_bulk_free);
3214
3215 /**
3216  * regulator_notifier_call_chain - call regulator event notifier
3217  * @rdev: regulator source
3218  * @event: notifier block
3219  * @data: callback-specific data.
3220  *
3221  * Called by regulator drivers to notify clients a regulator event has
3222  * occurred. We also notify regulator clients downstream.
3223  * Note lock must be held by caller.
3224  */
3225 int regulator_notifier_call_chain(struct regulator_dev *rdev,
3226                                   unsigned long event, void *data)
3227 {
3228         _notifier_call_chain(rdev, event, data);
3229         return NOTIFY_DONE;
3230
3231 }
3232 EXPORT_SYMBOL_GPL(regulator_notifier_call_chain);
3233
3234 /**
3235  * regulator_mode_to_status - convert a regulator mode into a status
3236  *
3237  * @mode: Mode to convert
3238  *
3239  * Convert a regulator mode into a status.
3240  */
3241 int regulator_mode_to_status(unsigned int mode)
3242 {
3243         switch (mode) {
3244         case REGULATOR_MODE_FAST:
3245                 return REGULATOR_STATUS_FAST;
3246         case REGULATOR_MODE_NORMAL:
3247                 return REGULATOR_STATUS_NORMAL;
3248         case REGULATOR_MODE_IDLE:
3249                 return REGULATOR_STATUS_IDLE;
3250         case REGULATOR_MODE_STANDBY:
3251                 return REGULATOR_STATUS_STANDBY;
3252         default:
3253                 return REGULATOR_STATUS_UNDEFINED;
3254         }
3255 }
3256 EXPORT_SYMBOL_GPL(regulator_mode_to_status);
3257
3258 /*
3259  * To avoid cluttering sysfs (and memory) with useless state, only
3260  * create attributes that can be meaningfully displayed.
3261  */
3262 static int add_regulator_attributes(struct regulator_dev *rdev)
3263 {
3264         struct device           *dev = &rdev->dev;
3265         struct regulator_ops    *ops = rdev->desc->ops;
3266         int                     status = 0;
3267
3268         /* some attributes need specific methods to be displayed */
3269         if ((ops->get_voltage && ops->get_voltage(rdev) >= 0) ||
3270             (ops->get_voltage_sel && ops->get_voltage_sel(rdev) >= 0) ||
3271             (ops->list_voltage && ops->list_voltage(rdev, 0) >= 0) ||
3272                 (rdev->desc->fixed_uV && (rdev->desc->n_voltages == 1))) {
3273                 status = device_create_file(dev, &dev_attr_microvolts);
3274                 if (status < 0)
3275                         return status;
3276         }
3277         if (ops->get_current_limit) {
3278                 status = device_create_file(dev, &dev_attr_microamps);
3279                 if (status < 0)
3280                         return status;
3281         }
3282         if (ops->get_mode) {
3283                 status = device_create_file(dev, &dev_attr_opmode);
3284                 if (status < 0)
3285                         return status;
3286         }
3287         if (rdev->ena_pin || ops->is_enabled) {
3288                 status = device_create_file(dev, &dev_attr_state);
3289                 if (status < 0)
3290                         return status;
3291         }
3292         if (ops->get_status) {
3293                 status = device_create_file(dev, &dev_attr_status);
3294                 if (status < 0)
3295                         return status;
3296         }
3297         if (ops->get_bypass) {
3298                 status = device_create_file(dev, &dev_attr_bypass);
3299                 if (status < 0)
3300                         return status;
3301         }
3302
3303         /* some attributes are type-specific */
3304         if (rdev->desc->type == REGULATOR_CURRENT) {
3305                 status = device_create_file(dev, &dev_attr_requested_microamps);
3306                 if (status < 0)
3307                         return status;
3308         }
3309
3310         /* all the other attributes exist to support constraints;
3311          * don't show them if there are no constraints, or if the
3312          * relevant supporting methods are missing.
3313          */
3314         if (!rdev->constraints)
3315                 return status;
3316
3317         /* constraints need specific supporting methods */
3318         if (ops->set_voltage || ops->set_voltage_sel) {
3319                 status = device_create_file(dev, &dev_attr_min_microvolts);
3320                 if (status < 0)
3321                         return status;
3322                 status = device_create_file(dev, &dev_attr_max_microvolts);
3323                 if (status < 0)
3324                         return status;
3325         }
3326         if (ops->set_current_limit) {
3327                 status = device_create_file(dev, &dev_attr_min_microamps);
3328                 if (status < 0)
3329                         return status;
3330                 status = device_create_file(dev, &dev_attr_max_microamps);
3331                 if (status < 0)
3332                         return status;
3333         }
3334
3335         status = device_create_file(dev, &dev_attr_suspend_standby_state);
3336         if (status < 0)
3337                 return status;
3338         status = device_create_file(dev, &dev_attr_suspend_mem_state);
3339         if (status < 0)
3340                 return status;
3341         status = device_create_file(dev, &dev_attr_suspend_disk_state);
3342         if (status < 0)
3343                 return status;
3344
3345         if (ops->set_suspend_voltage) {
3346                 status = device_create_file(dev,
3347                                 &dev_attr_suspend_standby_microvolts);
3348                 if (status < 0)
3349                         return status;
3350                 status = device_create_file(dev,
3351                                 &dev_attr_suspend_mem_microvolts);
3352                 if (status < 0)
3353                         return status;
3354                 status = device_create_file(dev,
3355                                 &dev_attr_suspend_disk_microvolts);
3356                 if (status < 0)
3357                         return status;
3358         }
3359
3360         if (ops->set_suspend_mode) {
3361                 status = device_create_file(dev,
3362                                 &dev_attr_suspend_standby_mode);
3363                 if (status < 0)
3364                         return status;
3365                 status = device_create_file(dev,
3366                                 &dev_attr_suspend_mem_mode);
3367                 if (status < 0)
3368                         return status;
3369                 status = device_create_file(dev,
3370                                 &dev_attr_suspend_disk_mode);
3371                 if (status < 0)
3372                         return status;
3373         }
3374
3375         return status;
3376 }
3377
3378 static void rdev_init_debugfs(struct regulator_dev *rdev)
3379 {
3380         rdev->debugfs = debugfs_create_dir(rdev_get_name(rdev), debugfs_root);
3381         if (!rdev->debugfs) {
3382                 rdev_warn(rdev, "Failed to create debugfs directory\n");
3383                 return;
3384         }
3385
3386         debugfs_create_u32("use_count", 0444, rdev->debugfs,
3387                            &rdev->use_count);
3388         debugfs_create_u32("open_count", 0444, rdev->debugfs,
3389                            &rdev->open_count);
3390         debugfs_create_u32("bypass_count", 0444, rdev->debugfs,
3391                            &rdev->bypass_count);
3392 }
3393
3394 /**
3395  * regulator_register - register regulator
3396  * @regulator_desc: regulator to register
3397  * @config: runtime configuration for regulator
3398  *
3399  * Called by regulator drivers to register a regulator.
3400  * Returns a valid pointer to struct regulator_dev on success
3401  * or an ERR_PTR() on error.
3402  */
3403 struct regulator_dev *
3404 regulator_register(const struct regulator_desc *regulator_desc,
3405                    const struct regulator_config *config)
3406 {
3407         const struct regulation_constraints *constraints = NULL;
3408         const struct regulator_init_data *init_data;
3409         static atomic_t regulator_no = ATOMIC_INIT(0);
3410         struct regulator_dev *rdev;
3411         struct device *dev;
3412         int ret, i;
3413         const char *supply = NULL;
3414
3415         if (regulator_desc == NULL || config == NULL)
3416                 return ERR_PTR(-EINVAL);
3417
3418         dev = config->dev;
3419         WARN_ON(!dev);
3420
3421         if (regulator_desc->name == NULL || regulator_desc->ops == NULL)
3422                 return ERR_PTR(-EINVAL);
3423
3424         if (regulator_desc->type != REGULATOR_VOLTAGE &&
3425             regulator_desc->type != REGULATOR_CURRENT)
3426                 return ERR_PTR(-EINVAL);
3427
3428         /* Only one of each should be implemented */
3429         WARN_ON(regulator_desc->ops->get_voltage &&
3430                 regulator_desc->ops->get_voltage_sel);
3431         WARN_ON(regulator_desc->ops->set_voltage &&
3432                 regulator_desc->ops->set_voltage_sel);
3433
3434         /* If we're using selectors we must implement list_voltage. */
3435         if (regulator_desc->ops->get_voltage_sel &&
3436             !regulator_desc->ops->list_voltage) {
3437                 return ERR_PTR(-EINVAL);
3438         }
3439         if (regulator_desc->ops->set_voltage_sel &&
3440             !regulator_desc->ops->list_voltage) {
3441                 return ERR_PTR(-EINVAL);
3442         }
3443
3444         init_data = config->init_data;
3445
3446         rdev = kzalloc(sizeof(struct regulator_dev), GFP_KERNEL);
3447         if (rdev == NULL)
3448                 return ERR_PTR(-ENOMEM);
3449
3450         mutex_lock(&regulator_list_mutex);
3451
3452         mutex_init(&rdev->mutex);
3453         rdev->reg_data = config->driver_data;
3454         rdev->owner = regulator_desc->owner;
3455         rdev->desc = regulator_desc;
3456         if (config->regmap)
3457                 rdev->regmap = config->regmap;
3458         else if (dev_get_regmap(dev, NULL))
3459                 rdev->regmap = dev_get_regmap(dev, NULL);
3460         else if (dev->parent)
3461                 rdev->regmap = dev_get_regmap(dev->parent, NULL);
3462         INIT_LIST_HEAD(&rdev->consumer_list);
3463         INIT_LIST_HEAD(&rdev->list);
3464         BLOCKING_INIT_NOTIFIER_HEAD(&rdev->notifier);
3465         INIT_DELAYED_WORK(&rdev->disable_work, regulator_disable_work);
3466
3467         /* preform any regulator specific init */
3468         if (init_data && init_data->regulator_init) {
3469                 ret = init_data->regulator_init(rdev->reg_data);
3470                 if (ret < 0)
3471                         goto clean;
3472         }
3473
3474         /* register with sysfs */
3475         rdev->dev.class = &regulator_class;
3476         rdev->dev.of_node = of_node_get(config->of_node);
3477         rdev->dev.parent = dev;
3478         dev_set_name(&rdev->dev, "regulator.%d",
3479                      atomic_inc_return(&regulator_no) - 1);
3480         ret = device_register(&rdev->dev);
3481         if (ret != 0) {
3482                 put_device(&rdev->dev);
3483                 goto clean;
3484         }
3485
3486         dev_set_drvdata(&rdev->dev, rdev);
3487
3488         if (config->ena_gpio && gpio_is_valid(config->ena_gpio)) {
3489                 ret = regulator_ena_gpio_request(rdev, config);
3490                 if (ret != 0) {
3491                         rdev_err(rdev, "Failed to request enable GPIO%d: %d\n",
3492                                  config->ena_gpio, ret);
3493                         goto wash;
3494                 }
3495
3496                 if (config->ena_gpio_flags & GPIOF_OUT_INIT_HIGH)
3497                         rdev->ena_gpio_state = 1;
3498
3499                 if (config->ena_gpio_invert)
3500                         rdev->ena_gpio_state = !rdev->ena_gpio_state;
3501         }
3502
3503         /* set regulator constraints */
3504         if (init_data)
3505                 constraints = &init_data->constraints;
3506
3507         ret = set_machine_constraints(rdev, constraints);
3508         if (ret < 0)
3509                 goto scrub;
3510
3511         /* add attributes supported by this regulator */
3512         ret = add_regulator_attributes(rdev);
3513         if (ret < 0)
3514                 goto scrub;
3515
3516         if (init_data && init_data->supply_regulator)
3517                 supply = init_data->supply_regulator;
3518         else if (regulator_desc->supply_name)
3519                 supply = regulator_desc->supply_name;
3520
3521         if (supply) {
3522                 struct regulator_dev *r;
3523
3524                 r = regulator_dev_lookup(dev, supply, &ret);
3525
3526                 if (ret == -ENODEV) {
3527                         /*
3528                          * No supply was specified for this regulator and
3529                          * there will never be one.
3530                          */
3531                         ret = 0;
3532                         goto add_dev;
3533                 } else if (!r) {
3534                         dev_err(dev, "Failed to find supply %s\n", supply);
3535                         ret = -EPROBE_DEFER;
3536                         goto scrub;
3537                 }
3538
3539                 ret = set_supply(rdev, r);
3540                 if (ret < 0)
3541                         goto scrub;
3542
3543                 /* Enable supply if rail is enabled */
3544                 if (_regulator_is_enabled(rdev)) {
3545                         ret = regulator_enable(rdev->supply);
3546                         if (ret < 0)
3547                                 goto scrub;
3548                 }
3549         }
3550
3551 add_dev:
3552         /* add consumers devices */
3553         if (init_data) {
3554                 for (i = 0; i < init_data->num_consumer_supplies; i++) {
3555                         ret = set_consumer_device_supply(rdev,
3556                                 init_data->consumer_supplies[i].dev_name,
3557                                 init_data->consumer_supplies[i].supply);
3558                         if (ret < 0) {
3559                                 dev_err(dev, "Failed to set supply %s\n",
3560                                         init_data->consumer_supplies[i].supply);
3561                                 goto unset_supplies;
3562                         }
3563                 }
3564         }
3565
3566         list_add(&rdev->list, &regulator_list);
3567
3568         rdev_init_debugfs(rdev);
3569 out:
3570         mutex_unlock(&regulator_list_mutex);
3571         return rdev;
3572
3573 unset_supplies:
3574         unset_regulator_supplies(rdev);
3575
3576 scrub:
3577         if (rdev->supply)
3578                 _regulator_put(rdev->supply);
3579         regulator_ena_gpio_free(rdev);
3580         kfree(rdev->constraints);
3581 wash:
3582         device_unregister(&rdev->dev);
3583         /* device core frees rdev */
3584         rdev = ERR_PTR(ret);
3585         goto out;
3586
3587 clean:
3588         kfree(rdev);
3589         rdev = ERR_PTR(ret);
3590         goto out;
3591 }
3592 EXPORT_SYMBOL_GPL(regulator_register);
3593
3594 /**
3595  * regulator_unregister - unregister regulator
3596  * @rdev: regulator to unregister
3597  *
3598  * Called by regulator drivers to unregister a regulator.
3599  */
3600 void regulator_unregister(struct regulator_dev *rdev)
3601 {
3602         if (rdev == NULL)
3603                 return;
3604
3605         if (rdev->supply) {
3606                 while (rdev->use_count--)
3607                         regulator_disable(rdev->supply);
3608                 regulator_put(rdev->supply);
3609         }
3610         mutex_lock(&regulator_list_mutex);
3611         debugfs_remove_recursive(rdev->debugfs);
3612         flush_work(&rdev->disable_work.work);
3613         WARN_ON(rdev->open_count);
3614         unset_regulator_supplies(rdev);
3615         list_del(&rdev->list);
3616         kfree(rdev->constraints);
3617         regulator_ena_gpio_free(rdev);
3618         of_node_put(rdev->dev.of_node);
3619         device_unregister(&rdev->dev);
3620         mutex_unlock(&regulator_list_mutex);
3621 }
3622 EXPORT_SYMBOL_GPL(regulator_unregister);
3623
3624 /**
3625  * regulator_suspend_prepare - prepare regulators for system wide suspend
3626  * @state: system suspend state
3627  *
3628  * Configure each regulator with it's suspend operating parameters for state.
3629  * This will usually be called by machine suspend code prior to supending.
3630  */
3631 int regulator_suspend_prepare(suspend_state_t state)
3632 {
3633         struct regulator_dev *rdev;
3634         int ret = 0;
3635
3636         /* ON is handled by regulator active state */
3637         if (state == PM_SUSPEND_ON)
3638                 return -EINVAL;
3639
3640         mutex_lock(&regulator_list_mutex);
3641         list_for_each_entry(rdev, &regulator_list, list) {
3642
3643                 mutex_lock(&rdev->mutex);
3644                 ret = suspend_prepare(rdev, state);
3645                 mutex_unlock(&rdev->mutex);
3646
3647                 if (ret < 0) {
3648                         rdev_err(rdev, "failed to prepare\n");
3649                         goto out;
3650                 }
3651         }
3652 out:
3653         mutex_unlock(&regulator_list_mutex);
3654         return ret;
3655 }
3656 EXPORT_SYMBOL_GPL(regulator_suspend_prepare);
3657
3658 /**
3659  * regulator_suspend_finish - resume regulators from system wide suspend
3660  *
3661  * Turn on regulators that might be turned off by regulator_suspend_prepare
3662  * and that should be turned on according to the regulators properties.
3663  */
3664 int regulator_suspend_finish(void)
3665 {
3666         struct regulator_dev *rdev;
3667         int ret = 0, error;
3668
3669         mutex_lock(&regulator_list_mutex);
3670         list_for_each_entry(rdev, &regulator_list, list) {
3671                 mutex_lock(&rdev->mutex);
3672                 if (rdev->use_count > 0  || rdev->constraints->always_on) {
3673                         error = _regulator_do_enable(rdev);
3674                         if (error)
3675                                 ret = error;
3676                 } else {
3677                         if (!have_full_constraints())
3678                                 goto unlock;
3679                         if (!_regulator_is_enabled(rdev))
3680                                 goto unlock;
3681
3682                         error = _regulator_do_disable(rdev);
3683                         if (error)
3684                                 ret = error;
3685                 }
3686 unlock:
3687                 mutex_unlock(&rdev->mutex);
3688         }
3689         mutex_unlock(&regulator_list_mutex);
3690         return ret;
3691 }
3692 EXPORT_SYMBOL_GPL(regulator_suspend_finish);
3693
3694 /**
3695  * regulator_has_full_constraints - the system has fully specified constraints
3696  *
3697  * Calling this function will cause the regulator API to disable all
3698  * regulators which have a zero use count and don't have an always_on
3699  * constraint in a late_initcall.
3700  *
3701  * The intention is that this will become the default behaviour in a
3702  * future kernel release so users are encouraged to use this facility
3703  * now.
3704  */
3705 void regulator_has_full_constraints(void)
3706 {
3707         has_full_constraints = 1;
3708 }
3709 EXPORT_SYMBOL_GPL(regulator_has_full_constraints);
3710
3711 /**
3712  * rdev_get_drvdata - get rdev regulator driver data
3713  * @rdev: regulator
3714  *
3715  * Get rdev regulator driver private data. This call can be used in the
3716  * regulator driver context.
3717  */
3718 void *rdev_get_drvdata(struct regulator_dev *rdev)
3719 {
3720         return rdev->reg_data;
3721 }
3722 EXPORT_SYMBOL_GPL(rdev_get_drvdata);
3723
3724 /**
3725  * regulator_get_drvdata - get regulator driver data
3726  * @regulator: regulator
3727  *
3728  * Get regulator driver private data. This call can be used in the consumer
3729  * driver context when non API regulator specific functions need to be called.
3730  */
3731 void *regulator_get_drvdata(struct regulator *regulator)
3732 {
3733         return regulator->rdev->reg_data;
3734 }
3735 EXPORT_SYMBOL_GPL(regulator_get_drvdata);
3736
3737 /**
3738  * regulator_set_drvdata - set regulator driver data
3739  * @regulator: regulator
3740  * @data: data
3741  */
3742 void regulator_set_drvdata(struct regulator *regulator, void *data)
3743 {
3744         regulator->rdev->reg_data = data;
3745 }
3746 EXPORT_SYMBOL_GPL(regulator_set_drvdata);
3747
3748 /**
3749  * regulator_get_id - get regulator ID
3750  * @rdev: regulator
3751  */
3752 int rdev_get_id(struct regulator_dev *rdev)
3753 {
3754         return rdev->desc->id;
3755 }
3756 EXPORT_SYMBOL_GPL(rdev_get_id);
3757
3758 struct device *rdev_get_dev(struct regulator_dev *rdev)
3759 {
3760         return &rdev->dev;
3761 }
3762 EXPORT_SYMBOL_GPL(rdev_get_dev);
3763
3764 void *regulator_get_init_drvdata(struct regulator_init_data *reg_init_data)
3765 {
3766         return reg_init_data->driver_data;
3767 }
3768 EXPORT_SYMBOL_GPL(regulator_get_init_drvdata);
3769
3770 #ifdef CONFIG_DEBUG_FS
3771 static ssize_t supply_map_read_file(struct file *file, char __user *user_buf,
3772                                     size_t count, loff_t *ppos)
3773 {
3774         char *buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
3775         ssize_t len, ret = 0;
3776         struct regulator_map *map;
3777
3778         if (!buf)
3779                 return -ENOMEM;
3780
3781         list_for_each_entry(map, &regulator_map_list, list) {
3782                 len = snprintf(buf + ret, PAGE_SIZE - ret,
3783                                "%s -> %s.%s\n",
3784                                rdev_get_name(map->regulator), map->dev_name,
3785                                map->supply);
3786                 if (len >= 0)
3787                         ret += len;
3788                 if (ret > PAGE_SIZE) {
3789                         ret = PAGE_SIZE;
3790                         break;
3791                 }
3792         }
3793
3794         ret = simple_read_from_buffer(user_buf, count, ppos, buf, ret);
3795
3796         kfree(buf);
3797
3798         return ret;
3799 }
3800 #endif
3801
3802 static const struct file_operations supply_map_fops = {
3803 #ifdef CONFIG_DEBUG_FS
3804         .read = supply_map_read_file,
3805         .llseek = default_llseek,
3806 #endif
3807 };
3808
3809 static int __init regulator_init(void)
3810 {
3811         int ret;
3812
3813         ret = class_register(&regulator_class);
3814
3815         debugfs_root = debugfs_create_dir("regulator", NULL);
3816         if (!debugfs_root)
3817                 pr_warn("regulator: Failed to create debugfs directory\n");
3818
3819         debugfs_create_file("supply_map", 0444, debugfs_root, NULL,
3820                             &supply_map_fops);
3821
3822         regulator_dummy_init();
3823
3824         return ret;
3825 }
3826
3827 /* init early to allow our consumers to complete system booting */
3828 core_initcall(regulator_init);
3829
3830 static int __init regulator_init_complete(void)
3831 {
3832         struct regulator_dev *rdev;
3833         struct regulator_ops *ops;
3834         struct regulation_constraints *c;
3835         int enabled, ret;
3836
3837         /*
3838          * Since DT doesn't provide an idiomatic mechanism for
3839          * enabling full constraints and since it's much more natural
3840          * with DT to provide them just assume that a DT enabled
3841          * system has full constraints.
3842          */
3843         if (of_have_populated_dt())
3844                 has_full_constraints = true;
3845
3846         mutex_lock(&regulator_list_mutex);
3847
3848         /* If we have a full configuration then disable any regulators
3849          * we have permission to change the status for and which are
3850          * not in use or always_on.  This is effectively the default
3851          * for DT and ACPI as they have full constraints.
3852          */
3853         list_for_each_entry(rdev, &regulator_list, list) {
3854                 ops = rdev->desc->ops;
3855                 c = rdev->constraints;
3856
3857                 if (c && c->always_on)
3858                         continue;
3859
3860                 if (c && !(c->valid_ops_mask & REGULATOR_CHANGE_STATUS))
3861                         continue;
3862
3863                 mutex_lock(&rdev->mutex);
3864
3865                 if (rdev->use_count)
3866                         goto unlock;
3867
3868                 /* If we can't read the status assume it's on. */
3869                 if (ops->is_enabled)
3870                         enabled = ops->is_enabled(rdev);
3871                 else
3872                         enabled = 1;
3873
3874                 if (!enabled)
3875                         goto unlock;
3876
3877                 if (have_full_constraints()) {
3878                         /* We log since this may kill the system if it
3879                          * goes wrong. */
3880                         rdev_info(rdev, "disabling\n");
3881                         ret = _regulator_do_disable(rdev);
3882                         if (ret != 0)
3883                                 rdev_err(rdev, "couldn't disable: %d\n", ret);
3884                 } else {
3885                         /* The intention is that in future we will
3886                          * assume that full constraints are provided
3887                          * so warn even if we aren't going to do
3888                          * anything here.
3889                          */
3890                         rdev_warn(rdev, "incomplete constraints, leaving on\n");
3891                 }
3892
3893 unlock:
3894                 mutex_unlock(&rdev->mutex);
3895         }
3896
3897         mutex_unlock(&regulator_list_mutex);
3898
3899         return 0;
3900 }
3901 late_initcall_sync(regulator_init_complete);