ARM: OMAP3: fix dpll4_m3_ck and dpll4_m4_ck dividers
[cascardo/linux.git] / drivers / regulator / core.c
1 /*
2  * core.c  --  Voltage/Current Regulator framework.
3  *
4  * Copyright 2007, 2008 Wolfson Microelectronics PLC.
5  * Copyright 2008 SlimLogic Ltd.
6  *
7  * Author: Liam Girdwood <lrg@slimlogic.co.uk>
8  *
9  *  This program is free software; you can redistribute  it and/or modify it
10  *  under  the terms of  the GNU General  Public License as published by the
11  *  Free Software Foundation;  either version 2 of the  License, or (at your
12  *  option) any later version.
13  *
14  */
15
16 #include <linux/kernel.h>
17 #include <linux/init.h>
18 #include <linux/debugfs.h>
19 #include <linux/device.h>
20 #include <linux/slab.h>
21 #include <linux/async.h>
22 #include <linux/err.h>
23 #include <linux/mutex.h>
24 #include <linux/suspend.h>
25 #include <linux/delay.h>
26 #include <linux/gpio.h>
27 #include <linux/of.h>
28 #include <linux/regmap.h>
29 #include <linux/regulator/of_regulator.h>
30 #include <linux/regulator/consumer.h>
31 #include <linux/regulator/driver.h>
32 #include <linux/regulator/machine.h>
33 #include <linux/module.h>
34
35 #define CREATE_TRACE_POINTS
36 #include <trace/events/regulator.h>
37
38 #include "dummy.h"
39
40 #define rdev_crit(rdev, fmt, ...)                                       \
41         pr_crit("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
42 #define rdev_err(rdev, fmt, ...)                                        \
43         pr_err("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
44 #define rdev_warn(rdev, fmt, ...)                                       \
45         pr_warn("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
46 #define rdev_info(rdev, fmt, ...)                                       \
47         pr_info("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
48 #define rdev_dbg(rdev, fmt, ...)                                        \
49         pr_debug("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
50
51 static DEFINE_MUTEX(regulator_list_mutex);
52 static LIST_HEAD(regulator_list);
53 static LIST_HEAD(regulator_map_list);
54 static LIST_HEAD(regulator_ena_gpio_list);
55 static bool has_full_constraints;
56 static bool board_wants_dummy_regulator;
57
58 static struct dentry *debugfs_root;
59
60 /*
61  * struct regulator_map
62  *
63  * Used to provide symbolic supply names to devices.
64  */
65 struct regulator_map {
66         struct list_head list;
67         const char *dev_name;   /* The dev_name() for the consumer */
68         const char *supply;
69         struct regulator_dev *regulator;
70 };
71
72 /*
73  * struct regulator_enable_gpio
74  *
75  * Management for shared enable GPIO pin
76  */
77 struct regulator_enable_gpio {
78         struct list_head list;
79         int gpio;
80         u32 enable_count;       /* a number of enabled shared GPIO */
81         u32 request_count;      /* a number of requested shared GPIO */
82         unsigned int ena_gpio_invert:1;
83 };
84
85 /*
86  * struct regulator
87  *
88  * One for each consumer device.
89  */
90 struct regulator {
91         struct device *dev;
92         struct list_head list;
93         unsigned int always_on:1;
94         unsigned int bypass:1;
95         int uA_load;
96         int min_uV;
97         int max_uV;
98         char *supply_name;
99         struct device_attribute dev_attr;
100         struct regulator_dev *rdev;
101         struct dentry *debugfs;
102 };
103
104 static int _regulator_is_enabled(struct regulator_dev *rdev);
105 static int _regulator_disable(struct regulator_dev *rdev);
106 static int _regulator_get_voltage(struct regulator_dev *rdev);
107 static int _regulator_get_current_limit(struct regulator_dev *rdev);
108 static unsigned int _regulator_get_mode(struct regulator_dev *rdev);
109 static void _notifier_call_chain(struct regulator_dev *rdev,
110                                   unsigned long event, void *data);
111 static int _regulator_do_set_voltage(struct regulator_dev *rdev,
112                                      int min_uV, int max_uV);
113 static struct regulator *create_regulator(struct regulator_dev *rdev,
114                                           struct device *dev,
115                                           const char *supply_name);
116
117 static const char *rdev_get_name(struct regulator_dev *rdev)
118 {
119         if (rdev->constraints && rdev->constraints->name)
120                 return rdev->constraints->name;
121         else if (rdev->desc->name)
122                 return rdev->desc->name;
123         else
124                 return "";
125 }
126
127 /**
128  * of_get_regulator - get a regulator device node based on supply name
129  * @dev: Device pointer for the consumer (of regulator) device
130  * @supply: regulator supply name
131  *
132  * Extract the regulator device node corresponding to the supply name.
133  * returns the device node corresponding to the regulator if found, else
134  * returns NULL.
135  */
136 static struct device_node *of_get_regulator(struct device *dev, const char *supply)
137 {
138         struct device_node *regnode = NULL;
139         char prop_name[32]; /* 32 is max size of property name */
140
141         dev_dbg(dev, "Looking up %s-supply from device tree\n", supply);
142
143         snprintf(prop_name, 32, "%s-supply", supply);
144         regnode = of_parse_phandle(dev->of_node, prop_name, 0);
145
146         if (!regnode) {
147                 dev_dbg(dev, "Looking up %s property in node %s failed",
148                                 prop_name, dev->of_node->full_name);
149                 return NULL;
150         }
151         return regnode;
152 }
153
154 static int _regulator_can_change_status(struct regulator_dev *rdev)
155 {
156         if (!rdev->constraints)
157                 return 0;
158
159         if (rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_STATUS)
160                 return 1;
161         else
162                 return 0;
163 }
164
165 /* Platform voltage constraint check */
166 static int regulator_check_voltage(struct regulator_dev *rdev,
167                                    int *min_uV, int *max_uV)
168 {
169         BUG_ON(*min_uV > *max_uV);
170
171         if (!rdev->constraints) {
172                 rdev_err(rdev, "no constraints\n");
173                 return -ENODEV;
174         }
175         if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE)) {
176                 rdev_err(rdev, "operation not allowed\n");
177                 return -EPERM;
178         }
179
180         if (*max_uV > rdev->constraints->max_uV)
181                 *max_uV = rdev->constraints->max_uV;
182         if (*min_uV < rdev->constraints->min_uV)
183                 *min_uV = rdev->constraints->min_uV;
184
185         if (*min_uV > *max_uV) {
186                 rdev_err(rdev, "unsupportable voltage range: %d-%duV\n",
187                          *min_uV, *max_uV);
188                 return -EINVAL;
189         }
190
191         return 0;
192 }
193
194 /* Make sure we select a voltage that suits the needs of all
195  * regulator consumers
196  */
197 static int regulator_check_consumers(struct regulator_dev *rdev,
198                                      int *min_uV, int *max_uV)
199 {
200         struct regulator *regulator;
201
202         list_for_each_entry(regulator, &rdev->consumer_list, list) {
203                 /*
204                  * Assume consumers that didn't say anything are OK
205                  * with anything in the constraint range.
206                  */
207                 if (!regulator->min_uV && !regulator->max_uV)
208                         continue;
209
210                 if (*max_uV > regulator->max_uV)
211                         *max_uV = regulator->max_uV;
212                 if (*min_uV < regulator->min_uV)
213                         *min_uV = regulator->min_uV;
214         }
215
216         if (*min_uV > *max_uV) {
217                 rdev_err(rdev, "Restricting voltage, %u-%uuV\n",
218                         *min_uV, *max_uV);
219                 return -EINVAL;
220         }
221
222         return 0;
223 }
224
225 /* current constraint check */
226 static int regulator_check_current_limit(struct regulator_dev *rdev,
227                                         int *min_uA, int *max_uA)
228 {
229         BUG_ON(*min_uA > *max_uA);
230
231         if (!rdev->constraints) {
232                 rdev_err(rdev, "no constraints\n");
233                 return -ENODEV;
234         }
235         if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_CURRENT)) {
236                 rdev_err(rdev, "operation not allowed\n");
237                 return -EPERM;
238         }
239
240         if (*max_uA > rdev->constraints->max_uA)
241                 *max_uA = rdev->constraints->max_uA;
242         if (*min_uA < rdev->constraints->min_uA)
243                 *min_uA = rdev->constraints->min_uA;
244
245         if (*min_uA > *max_uA) {
246                 rdev_err(rdev, "unsupportable current range: %d-%duA\n",
247                          *min_uA, *max_uA);
248                 return -EINVAL;
249         }
250
251         return 0;
252 }
253
254 /* operating mode constraint check */
255 static int regulator_mode_constrain(struct regulator_dev *rdev, int *mode)
256 {
257         switch (*mode) {
258         case REGULATOR_MODE_FAST:
259         case REGULATOR_MODE_NORMAL:
260         case REGULATOR_MODE_IDLE:
261         case REGULATOR_MODE_STANDBY:
262                 break;
263         default:
264                 rdev_err(rdev, "invalid mode %x specified\n", *mode);
265                 return -EINVAL;
266         }
267
268         if (!rdev->constraints) {
269                 rdev_err(rdev, "no constraints\n");
270                 return -ENODEV;
271         }
272         if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_MODE)) {
273                 rdev_err(rdev, "operation not allowed\n");
274                 return -EPERM;
275         }
276
277         /* The modes are bitmasks, the most power hungry modes having
278          * the lowest values. If the requested mode isn't supported
279          * try higher modes. */
280         while (*mode) {
281                 if (rdev->constraints->valid_modes_mask & *mode)
282                         return 0;
283                 *mode /= 2;
284         }
285
286         return -EINVAL;
287 }
288
289 /* dynamic regulator mode switching constraint check */
290 static int regulator_check_drms(struct regulator_dev *rdev)
291 {
292         if (!rdev->constraints) {
293                 rdev_err(rdev, "no constraints\n");
294                 return -ENODEV;
295         }
296         if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_DRMS)) {
297                 rdev_err(rdev, "operation not allowed\n");
298                 return -EPERM;
299         }
300         return 0;
301 }
302
303 static ssize_t regulator_uV_show(struct device *dev,
304                                 struct device_attribute *attr, char *buf)
305 {
306         struct regulator_dev *rdev = dev_get_drvdata(dev);
307         ssize_t ret;
308
309         mutex_lock(&rdev->mutex);
310         ret = sprintf(buf, "%d\n", _regulator_get_voltage(rdev));
311         mutex_unlock(&rdev->mutex);
312
313         return ret;
314 }
315 static DEVICE_ATTR(microvolts, 0444, regulator_uV_show, NULL);
316
317 static ssize_t regulator_uA_show(struct device *dev,
318                                 struct device_attribute *attr, char *buf)
319 {
320         struct regulator_dev *rdev = dev_get_drvdata(dev);
321
322         return sprintf(buf, "%d\n", _regulator_get_current_limit(rdev));
323 }
324 static DEVICE_ATTR(microamps, 0444, regulator_uA_show, NULL);
325
326 static ssize_t name_show(struct device *dev, struct device_attribute *attr,
327                          char *buf)
328 {
329         struct regulator_dev *rdev = dev_get_drvdata(dev);
330
331         return sprintf(buf, "%s\n", rdev_get_name(rdev));
332 }
333 static DEVICE_ATTR_RO(name);
334
335 static ssize_t regulator_print_opmode(char *buf, int mode)
336 {
337         switch (mode) {
338         case REGULATOR_MODE_FAST:
339                 return sprintf(buf, "fast\n");
340         case REGULATOR_MODE_NORMAL:
341                 return sprintf(buf, "normal\n");
342         case REGULATOR_MODE_IDLE:
343                 return sprintf(buf, "idle\n");
344         case REGULATOR_MODE_STANDBY:
345                 return sprintf(buf, "standby\n");
346         }
347         return sprintf(buf, "unknown\n");
348 }
349
350 static ssize_t regulator_opmode_show(struct device *dev,
351                                     struct device_attribute *attr, char *buf)
352 {
353         struct regulator_dev *rdev = dev_get_drvdata(dev);
354
355         return regulator_print_opmode(buf, _regulator_get_mode(rdev));
356 }
357 static DEVICE_ATTR(opmode, 0444, regulator_opmode_show, NULL);
358
359 static ssize_t regulator_print_state(char *buf, int state)
360 {
361         if (state > 0)
362                 return sprintf(buf, "enabled\n");
363         else if (state == 0)
364                 return sprintf(buf, "disabled\n");
365         else
366                 return sprintf(buf, "unknown\n");
367 }
368
369 static ssize_t regulator_state_show(struct device *dev,
370                                    struct device_attribute *attr, char *buf)
371 {
372         struct regulator_dev *rdev = dev_get_drvdata(dev);
373         ssize_t ret;
374
375         mutex_lock(&rdev->mutex);
376         ret = regulator_print_state(buf, _regulator_is_enabled(rdev));
377         mutex_unlock(&rdev->mutex);
378
379         return ret;
380 }
381 static DEVICE_ATTR(state, 0444, regulator_state_show, NULL);
382
383 static ssize_t regulator_status_show(struct device *dev,
384                                    struct device_attribute *attr, char *buf)
385 {
386         struct regulator_dev *rdev = dev_get_drvdata(dev);
387         int status;
388         char *label;
389
390         status = rdev->desc->ops->get_status(rdev);
391         if (status < 0)
392                 return status;
393
394         switch (status) {
395         case REGULATOR_STATUS_OFF:
396                 label = "off";
397                 break;
398         case REGULATOR_STATUS_ON:
399                 label = "on";
400                 break;
401         case REGULATOR_STATUS_ERROR:
402                 label = "error";
403                 break;
404         case REGULATOR_STATUS_FAST:
405                 label = "fast";
406                 break;
407         case REGULATOR_STATUS_NORMAL:
408                 label = "normal";
409                 break;
410         case REGULATOR_STATUS_IDLE:
411                 label = "idle";
412                 break;
413         case REGULATOR_STATUS_STANDBY:
414                 label = "standby";
415                 break;
416         case REGULATOR_STATUS_BYPASS:
417                 label = "bypass";
418                 break;
419         case REGULATOR_STATUS_UNDEFINED:
420                 label = "undefined";
421                 break;
422         default:
423                 return -ERANGE;
424         }
425
426         return sprintf(buf, "%s\n", label);
427 }
428 static DEVICE_ATTR(status, 0444, regulator_status_show, NULL);
429
430 static ssize_t regulator_min_uA_show(struct device *dev,
431                                     struct device_attribute *attr, char *buf)
432 {
433         struct regulator_dev *rdev = dev_get_drvdata(dev);
434
435         if (!rdev->constraints)
436                 return sprintf(buf, "constraint not defined\n");
437
438         return sprintf(buf, "%d\n", rdev->constraints->min_uA);
439 }
440 static DEVICE_ATTR(min_microamps, 0444, regulator_min_uA_show, NULL);
441
442 static ssize_t regulator_max_uA_show(struct device *dev,
443                                     struct device_attribute *attr, char *buf)
444 {
445         struct regulator_dev *rdev = dev_get_drvdata(dev);
446
447         if (!rdev->constraints)
448                 return sprintf(buf, "constraint not defined\n");
449
450         return sprintf(buf, "%d\n", rdev->constraints->max_uA);
451 }
452 static DEVICE_ATTR(max_microamps, 0444, regulator_max_uA_show, NULL);
453
454 static ssize_t regulator_min_uV_show(struct device *dev,
455                                     struct device_attribute *attr, char *buf)
456 {
457         struct regulator_dev *rdev = dev_get_drvdata(dev);
458
459         if (!rdev->constraints)
460                 return sprintf(buf, "constraint not defined\n");
461
462         return sprintf(buf, "%d\n", rdev->constraints->min_uV);
463 }
464 static DEVICE_ATTR(min_microvolts, 0444, regulator_min_uV_show, NULL);
465
466 static ssize_t regulator_max_uV_show(struct device *dev,
467                                     struct device_attribute *attr, char *buf)
468 {
469         struct regulator_dev *rdev = dev_get_drvdata(dev);
470
471         if (!rdev->constraints)
472                 return sprintf(buf, "constraint not defined\n");
473
474         return sprintf(buf, "%d\n", rdev->constraints->max_uV);
475 }
476 static DEVICE_ATTR(max_microvolts, 0444, regulator_max_uV_show, NULL);
477
478 static ssize_t regulator_total_uA_show(struct device *dev,
479                                       struct device_attribute *attr, char *buf)
480 {
481         struct regulator_dev *rdev = dev_get_drvdata(dev);
482         struct regulator *regulator;
483         int uA = 0;
484
485         mutex_lock(&rdev->mutex);
486         list_for_each_entry(regulator, &rdev->consumer_list, list)
487                 uA += regulator->uA_load;
488         mutex_unlock(&rdev->mutex);
489         return sprintf(buf, "%d\n", uA);
490 }
491 static DEVICE_ATTR(requested_microamps, 0444, regulator_total_uA_show, NULL);
492
493 static ssize_t num_users_show(struct device *dev, struct device_attribute *attr,
494                               char *buf)
495 {
496         struct regulator_dev *rdev = dev_get_drvdata(dev);
497         return sprintf(buf, "%d\n", rdev->use_count);
498 }
499 static DEVICE_ATTR_RO(num_users);
500
501 static ssize_t type_show(struct device *dev, struct device_attribute *attr,
502                          char *buf)
503 {
504         struct regulator_dev *rdev = dev_get_drvdata(dev);
505
506         switch (rdev->desc->type) {
507         case REGULATOR_VOLTAGE:
508                 return sprintf(buf, "voltage\n");
509         case REGULATOR_CURRENT:
510                 return sprintf(buf, "current\n");
511         }
512         return sprintf(buf, "unknown\n");
513 }
514 static DEVICE_ATTR_RO(type);
515
516 static ssize_t regulator_suspend_mem_uV_show(struct device *dev,
517                                 struct device_attribute *attr, char *buf)
518 {
519         struct regulator_dev *rdev = dev_get_drvdata(dev);
520
521         return sprintf(buf, "%d\n", rdev->constraints->state_mem.uV);
522 }
523 static DEVICE_ATTR(suspend_mem_microvolts, 0444,
524                 regulator_suspend_mem_uV_show, NULL);
525
526 static ssize_t regulator_suspend_disk_uV_show(struct device *dev,
527                                 struct device_attribute *attr, char *buf)
528 {
529         struct regulator_dev *rdev = dev_get_drvdata(dev);
530
531         return sprintf(buf, "%d\n", rdev->constraints->state_disk.uV);
532 }
533 static DEVICE_ATTR(suspend_disk_microvolts, 0444,
534                 regulator_suspend_disk_uV_show, NULL);
535
536 static ssize_t regulator_suspend_standby_uV_show(struct device *dev,
537                                 struct device_attribute *attr, char *buf)
538 {
539         struct regulator_dev *rdev = dev_get_drvdata(dev);
540
541         return sprintf(buf, "%d\n", rdev->constraints->state_standby.uV);
542 }
543 static DEVICE_ATTR(suspend_standby_microvolts, 0444,
544                 regulator_suspend_standby_uV_show, NULL);
545
546 static ssize_t regulator_suspend_mem_mode_show(struct device *dev,
547                                 struct device_attribute *attr, char *buf)
548 {
549         struct regulator_dev *rdev = dev_get_drvdata(dev);
550
551         return regulator_print_opmode(buf,
552                 rdev->constraints->state_mem.mode);
553 }
554 static DEVICE_ATTR(suspend_mem_mode, 0444,
555                 regulator_suspend_mem_mode_show, NULL);
556
557 static ssize_t regulator_suspend_disk_mode_show(struct device *dev,
558                                 struct device_attribute *attr, char *buf)
559 {
560         struct regulator_dev *rdev = dev_get_drvdata(dev);
561
562         return regulator_print_opmode(buf,
563                 rdev->constraints->state_disk.mode);
564 }
565 static DEVICE_ATTR(suspend_disk_mode, 0444,
566                 regulator_suspend_disk_mode_show, NULL);
567
568 static ssize_t regulator_suspend_standby_mode_show(struct device *dev,
569                                 struct device_attribute *attr, char *buf)
570 {
571         struct regulator_dev *rdev = dev_get_drvdata(dev);
572
573         return regulator_print_opmode(buf,
574                 rdev->constraints->state_standby.mode);
575 }
576 static DEVICE_ATTR(suspend_standby_mode, 0444,
577                 regulator_suspend_standby_mode_show, NULL);
578
579 static ssize_t regulator_suspend_mem_state_show(struct device *dev,
580                                    struct device_attribute *attr, char *buf)
581 {
582         struct regulator_dev *rdev = dev_get_drvdata(dev);
583
584         return regulator_print_state(buf,
585                         rdev->constraints->state_mem.enabled);
586 }
587 static DEVICE_ATTR(suspend_mem_state, 0444,
588                 regulator_suspend_mem_state_show, NULL);
589
590 static ssize_t regulator_suspend_disk_state_show(struct device *dev,
591                                    struct device_attribute *attr, char *buf)
592 {
593         struct regulator_dev *rdev = dev_get_drvdata(dev);
594
595         return regulator_print_state(buf,
596                         rdev->constraints->state_disk.enabled);
597 }
598 static DEVICE_ATTR(suspend_disk_state, 0444,
599                 regulator_suspend_disk_state_show, NULL);
600
601 static ssize_t regulator_suspend_standby_state_show(struct device *dev,
602                                    struct device_attribute *attr, char *buf)
603 {
604         struct regulator_dev *rdev = dev_get_drvdata(dev);
605
606         return regulator_print_state(buf,
607                         rdev->constraints->state_standby.enabled);
608 }
609 static DEVICE_ATTR(suspend_standby_state, 0444,
610                 regulator_suspend_standby_state_show, NULL);
611
612 static ssize_t regulator_bypass_show(struct device *dev,
613                                      struct device_attribute *attr, char *buf)
614 {
615         struct regulator_dev *rdev = dev_get_drvdata(dev);
616         const char *report;
617         bool bypass;
618         int ret;
619
620         ret = rdev->desc->ops->get_bypass(rdev, &bypass);
621
622         if (ret != 0)
623                 report = "unknown";
624         else if (bypass)
625                 report = "enabled";
626         else
627                 report = "disabled";
628
629         return sprintf(buf, "%s\n", report);
630 }
631 static DEVICE_ATTR(bypass, 0444,
632                    regulator_bypass_show, NULL);
633
634 /*
635  * These are the only attributes are present for all regulators.
636  * Other attributes are a function of regulator functionality.
637  */
638 static struct attribute *regulator_dev_attrs[] = {
639         &dev_attr_name.attr,
640         &dev_attr_num_users.attr,
641         &dev_attr_type.attr,
642         NULL,
643 };
644 ATTRIBUTE_GROUPS(regulator_dev);
645
646 static void regulator_dev_release(struct device *dev)
647 {
648         struct regulator_dev *rdev = dev_get_drvdata(dev);
649         kfree(rdev);
650 }
651
652 static struct class regulator_class = {
653         .name = "regulator",
654         .dev_release = regulator_dev_release,
655         .dev_groups = regulator_dev_groups,
656 };
657
658 /* Calculate the new optimum regulator operating mode based on the new total
659  * consumer load. All locks held by caller */
660 static void drms_uA_update(struct regulator_dev *rdev)
661 {
662         struct regulator *sibling;
663         int current_uA = 0, output_uV, input_uV, err;
664         unsigned int mode;
665
666         err = regulator_check_drms(rdev);
667         if (err < 0 || !rdev->desc->ops->get_optimum_mode ||
668             (!rdev->desc->ops->get_voltage &&
669              !rdev->desc->ops->get_voltage_sel) ||
670             !rdev->desc->ops->set_mode)
671                 return;
672
673         /* get output voltage */
674         output_uV = _regulator_get_voltage(rdev);
675         if (output_uV <= 0)
676                 return;
677
678         /* get input voltage */
679         input_uV = 0;
680         if (rdev->supply)
681                 input_uV = regulator_get_voltage(rdev->supply);
682         if (input_uV <= 0)
683                 input_uV = rdev->constraints->input_uV;
684         if (input_uV <= 0)
685                 return;
686
687         /* calc total requested load */
688         list_for_each_entry(sibling, &rdev->consumer_list, list)
689                 current_uA += sibling->uA_load;
690
691         /* now get the optimum mode for our new total regulator load */
692         mode = rdev->desc->ops->get_optimum_mode(rdev, input_uV,
693                                                   output_uV, current_uA);
694
695         /* check the new mode is allowed */
696         err = regulator_mode_constrain(rdev, &mode);
697         if (err == 0)
698                 rdev->desc->ops->set_mode(rdev, mode);
699 }
700
701 static int suspend_set_state(struct regulator_dev *rdev,
702         struct regulator_state *rstate)
703 {
704         int ret = 0;
705
706         /* If we have no suspend mode configration don't set anything;
707          * only warn if the driver implements set_suspend_voltage or
708          * set_suspend_mode callback.
709          */
710         if (!rstate->enabled && !rstate->disabled) {
711                 if (rdev->desc->ops->set_suspend_voltage ||
712                     rdev->desc->ops->set_suspend_mode)
713                         rdev_warn(rdev, "No configuration\n");
714                 return 0;
715         }
716
717         if (rstate->enabled && rstate->disabled) {
718                 rdev_err(rdev, "invalid configuration\n");
719                 return -EINVAL;
720         }
721
722         if (rstate->enabled && rdev->desc->ops->set_suspend_enable)
723                 ret = rdev->desc->ops->set_suspend_enable(rdev);
724         else if (rstate->disabled && rdev->desc->ops->set_suspend_disable)
725                 ret = rdev->desc->ops->set_suspend_disable(rdev);
726         else /* OK if set_suspend_enable or set_suspend_disable is NULL */
727                 ret = 0;
728
729         if (ret < 0) {
730                 rdev_err(rdev, "failed to enabled/disable\n");
731                 return ret;
732         }
733
734         if (rdev->desc->ops->set_suspend_voltage && rstate->uV > 0) {
735                 ret = rdev->desc->ops->set_suspend_voltage(rdev, rstate->uV);
736                 if (ret < 0) {
737                         rdev_err(rdev, "failed to set voltage\n");
738                         return ret;
739                 }
740         }
741
742         if (rdev->desc->ops->set_suspend_mode && rstate->mode > 0) {
743                 ret = rdev->desc->ops->set_suspend_mode(rdev, rstate->mode);
744                 if (ret < 0) {
745                         rdev_err(rdev, "failed to set mode\n");
746                         return ret;
747                 }
748         }
749         return ret;
750 }
751
752 /* locks held by caller */
753 static int suspend_prepare(struct regulator_dev *rdev, suspend_state_t state)
754 {
755         if (!rdev->constraints)
756                 return -EINVAL;
757
758         switch (state) {
759         case PM_SUSPEND_STANDBY:
760                 return suspend_set_state(rdev,
761                         &rdev->constraints->state_standby);
762         case PM_SUSPEND_MEM:
763                 return suspend_set_state(rdev,
764                         &rdev->constraints->state_mem);
765         case PM_SUSPEND_MAX:
766                 return suspend_set_state(rdev,
767                         &rdev->constraints->state_disk);
768         default:
769                 return -EINVAL;
770         }
771 }
772
773 static void print_constraints(struct regulator_dev *rdev)
774 {
775         struct regulation_constraints *constraints = rdev->constraints;
776         char buf[80] = "";
777         int count = 0;
778         int ret;
779
780         if (constraints->min_uV && constraints->max_uV) {
781                 if (constraints->min_uV == constraints->max_uV)
782                         count += sprintf(buf + count, "%d mV ",
783                                          constraints->min_uV / 1000);
784                 else
785                         count += sprintf(buf + count, "%d <--> %d mV ",
786                                          constraints->min_uV / 1000,
787                                          constraints->max_uV / 1000);
788         }
789
790         if (!constraints->min_uV ||
791             constraints->min_uV != constraints->max_uV) {
792                 ret = _regulator_get_voltage(rdev);
793                 if (ret > 0)
794                         count += sprintf(buf + count, "at %d mV ", ret / 1000);
795         }
796
797         if (constraints->uV_offset)
798                 count += sprintf(buf, "%dmV offset ",
799                                  constraints->uV_offset / 1000);
800
801         if (constraints->min_uA && constraints->max_uA) {
802                 if (constraints->min_uA == constraints->max_uA)
803                         count += sprintf(buf + count, "%d mA ",
804                                          constraints->min_uA / 1000);
805                 else
806                         count += sprintf(buf + count, "%d <--> %d mA ",
807                                          constraints->min_uA / 1000,
808                                          constraints->max_uA / 1000);
809         }
810
811         if (!constraints->min_uA ||
812             constraints->min_uA != constraints->max_uA) {
813                 ret = _regulator_get_current_limit(rdev);
814                 if (ret > 0)
815                         count += sprintf(buf + count, "at %d mA ", ret / 1000);
816         }
817
818         if (constraints->valid_modes_mask & REGULATOR_MODE_FAST)
819                 count += sprintf(buf + count, "fast ");
820         if (constraints->valid_modes_mask & REGULATOR_MODE_NORMAL)
821                 count += sprintf(buf + count, "normal ");
822         if (constraints->valid_modes_mask & REGULATOR_MODE_IDLE)
823                 count += sprintf(buf + count, "idle ");
824         if (constraints->valid_modes_mask & REGULATOR_MODE_STANDBY)
825                 count += sprintf(buf + count, "standby");
826
827         if (!count)
828                 sprintf(buf, "no parameters");
829
830         rdev_info(rdev, "%s\n", buf);
831
832         if ((constraints->min_uV != constraints->max_uV) &&
833             !(constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE))
834                 rdev_warn(rdev,
835                           "Voltage range but no REGULATOR_CHANGE_VOLTAGE\n");
836 }
837
838 static int machine_constraints_voltage(struct regulator_dev *rdev,
839         struct regulation_constraints *constraints)
840 {
841         struct regulator_ops *ops = rdev->desc->ops;
842         int ret;
843
844         /* do we need to apply the constraint voltage */
845         if (rdev->constraints->apply_uV &&
846             rdev->constraints->min_uV == rdev->constraints->max_uV) {
847                 ret = _regulator_do_set_voltage(rdev,
848                                                 rdev->constraints->min_uV,
849                                                 rdev->constraints->max_uV);
850                 if (ret < 0) {
851                         rdev_err(rdev, "failed to apply %duV constraint\n",
852                                  rdev->constraints->min_uV);
853                         return ret;
854                 }
855         }
856
857         /* constrain machine-level voltage specs to fit
858          * the actual range supported by this regulator.
859          */
860         if (ops->list_voltage && rdev->desc->n_voltages) {
861                 int     count = rdev->desc->n_voltages;
862                 int     i;
863                 int     min_uV = INT_MAX;
864                 int     max_uV = INT_MIN;
865                 int     cmin = constraints->min_uV;
866                 int     cmax = constraints->max_uV;
867
868                 /* it's safe to autoconfigure fixed-voltage supplies
869                    and the constraints are used by list_voltage. */
870                 if (count == 1 && !cmin) {
871                         cmin = 1;
872                         cmax = INT_MAX;
873                         constraints->min_uV = cmin;
874                         constraints->max_uV = cmax;
875                 }
876
877                 /* voltage constraints are optional */
878                 if ((cmin == 0) && (cmax == 0))
879                         return 0;
880
881                 /* else require explicit machine-level constraints */
882                 if (cmin <= 0 || cmax <= 0 || cmax < cmin) {
883                         rdev_err(rdev, "invalid voltage constraints\n");
884                         return -EINVAL;
885                 }
886
887                 /* initial: [cmin..cmax] valid, [min_uV..max_uV] not */
888                 for (i = 0; i < count; i++) {
889                         int     value;
890
891                         value = ops->list_voltage(rdev, i);
892                         if (value <= 0)
893                                 continue;
894
895                         /* maybe adjust [min_uV..max_uV] */
896                         if (value >= cmin && value < min_uV)
897                                 min_uV = value;
898                         if (value <= cmax && value > max_uV)
899                                 max_uV = value;
900                 }
901
902                 /* final: [min_uV..max_uV] valid iff constraints valid */
903                 if (max_uV < min_uV) {
904                         rdev_err(rdev,
905                                  "unsupportable voltage constraints %u-%uuV\n",
906                                  min_uV, max_uV);
907                         return -EINVAL;
908                 }
909
910                 /* use regulator's subset of machine constraints */
911                 if (constraints->min_uV < min_uV) {
912                         rdev_dbg(rdev, "override min_uV, %d -> %d\n",
913                                  constraints->min_uV, min_uV);
914                         constraints->min_uV = min_uV;
915                 }
916                 if (constraints->max_uV > max_uV) {
917                         rdev_dbg(rdev, "override max_uV, %d -> %d\n",
918                                  constraints->max_uV, max_uV);
919                         constraints->max_uV = max_uV;
920                 }
921         }
922
923         return 0;
924 }
925
926 /**
927  * set_machine_constraints - sets regulator constraints
928  * @rdev: regulator source
929  * @constraints: constraints to apply
930  *
931  * Allows platform initialisation code to define and constrain
932  * regulator circuits e.g. valid voltage/current ranges, etc.  NOTE:
933  * Constraints *must* be set by platform code in order for some
934  * regulator operations to proceed i.e. set_voltage, set_current_limit,
935  * set_mode.
936  */
937 static int set_machine_constraints(struct regulator_dev *rdev,
938         const struct regulation_constraints *constraints)
939 {
940         int ret = 0;
941         struct regulator_ops *ops = rdev->desc->ops;
942
943         if (constraints)
944                 rdev->constraints = kmemdup(constraints, sizeof(*constraints),
945                                             GFP_KERNEL);
946         else
947                 rdev->constraints = kzalloc(sizeof(*constraints),
948                                             GFP_KERNEL);
949         if (!rdev->constraints)
950                 return -ENOMEM;
951
952         ret = machine_constraints_voltage(rdev, rdev->constraints);
953         if (ret != 0)
954                 goto out;
955
956         /* do we need to setup our suspend state */
957         if (rdev->constraints->initial_state) {
958                 ret = suspend_prepare(rdev, rdev->constraints->initial_state);
959                 if (ret < 0) {
960                         rdev_err(rdev, "failed to set suspend state\n");
961                         goto out;
962                 }
963         }
964
965         if (rdev->constraints->initial_mode) {
966                 if (!ops->set_mode) {
967                         rdev_err(rdev, "no set_mode operation\n");
968                         ret = -EINVAL;
969                         goto out;
970                 }
971
972                 ret = ops->set_mode(rdev, rdev->constraints->initial_mode);
973                 if (ret < 0) {
974                         rdev_err(rdev, "failed to set initial mode: %d\n", ret);
975                         goto out;
976                 }
977         }
978
979         /* If the constraints say the regulator should be on at this point
980          * and we have control then make sure it is enabled.
981          */
982         if ((rdev->constraints->always_on || rdev->constraints->boot_on) &&
983             ops->enable) {
984                 ret = ops->enable(rdev);
985                 if (ret < 0) {
986                         rdev_err(rdev, "failed to enable\n");
987                         goto out;
988                 }
989         }
990
991         if ((rdev->constraints->ramp_delay || rdev->constraints->ramp_disable)
992                 && ops->set_ramp_delay) {
993                 ret = ops->set_ramp_delay(rdev, rdev->constraints->ramp_delay);
994                 if (ret < 0) {
995                         rdev_err(rdev, "failed to set ramp_delay\n");
996                         goto out;
997                 }
998         }
999
1000         print_constraints(rdev);
1001         return 0;
1002 out:
1003         kfree(rdev->constraints);
1004         rdev->constraints = NULL;
1005         return ret;
1006 }
1007
1008 /**
1009  * set_supply - set regulator supply regulator
1010  * @rdev: regulator name
1011  * @supply_rdev: supply regulator name
1012  *
1013  * Called by platform initialisation code to set the supply regulator for this
1014  * regulator. This ensures that a regulators supply will also be enabled by the
1015  * core if it's child is enabled.
1016  */
1017 static int set_supply(struct regulator_dev *rdev,
1018                       struct regulator_dev *supply_rdev)
1019 {
1020         int err;
1021
1022         rdev_info(rdev, "supplied by %s\n", rdev_get_name(supply_rdev));
1023
1024         rdev->supply = create_regulator(supply_rdev, &rdev->dev, "SUPPLY");
1025         if (rdev->supply == NULL) {
1026                 err = -ENOMEM;
1027                 return err;
1028         }
1029         supply_rdev->open_count++;
1030
1031         return 0;
1032 }
1033
1034 /**
1035  * set_consumer_device_supply - Bind a regulator to a symbolic supply
1036  * @rdev:         regulator source
1037  * @consumer_dev_name: dev_name() string for device supply applies to
1038  * @supply:       symbolic name for supply
1039  *
1040  * Allows platform initialisation code to map physical regulator
1041  * sources to symbolic names for supplies for use by devices.  Devices
1042  * should use these symbolic names to request regulators, avoiding the
1043  * need to provide board-specific regulator names as platform data.
1044  */
1045 static int set_consumer_device_supply(struct regulator_dev *rdev,
1046                                       const char *consumer_dev_name,
1047                                       const char *supply)
1048 {
1049         struct regulator_map *node;
1050         int has_dev;
1051
1052         if (supply == NULL)
1053                 return -EINVAL;
1054
1055         if (consumer_dev_name != NULL)
1056                 has_dev = 1;
1057         else
1058                 has_dev = 0;
1059
1060         list_for_each_entry(node, &regulator_map_list, list) {
1061                 if (node->dev_name && consumer_dev_name) {
1062                         if (strcmp(node->dev_name, consumer_dev_name) != 0)
1063                                 continue;
1064                 } else if (node->dev_name || consumer_dev_name) {
1065                         continue;
1066                 }
1067
1068                 if (strcmp(node->supply, supply) != 0)
1069                         continue;
1070
1071                 pr_debug("%s: %s/%s is '%s' supply; fail %s/%s\n",
1072                          consumer_dev_name,
1073                          dev_name(&node->regulator->dev),
1074                          node->regulator->desc->name,
1075                          supply,
1076                          dev_name(&rdev->dev), rdev_get_name(rdev));
1077                 return -EBUSY;
1078         }
1079
1080         node = kzalloc(sizeof(struct regulator_map), GFP_KERNEL);
1081         if (node == NULL)
1082                 return -ENOMEM;
1083
1084         node->regulator = rdev;
1085         node->supply = supply;
1086
1087         if (has_dev) {
1088                 node->dev_name = kstrdup(consumer_dev_name, GFP_KERNEL);
1089                 if (node->dev_name == NULL) {
1090                         kfree(node);
1091                         return -ENOMEM;
1092                 }
1093         }
1094
1095         list_add(&node->list, &regulator_map_list);
1096         return 0;
1097 }
1098
1099 static void unset_regulator_supplies(struct regulator_dev *rdev)
1100 {
1101         struct regulator_map *node, *n;
1102
1103         list_for_each_entry_safe(node, n, &regulator_map_list, list) {
1104                 if (rdev == node->regulator) {
1105                         list_del(&node->list);
1106                         kfree(node->dev_name);
1107                         kfree(node);
1108                 }
1109         }
1110 }
1111
1112 #define REG_STR_SIZE    64
1113
1114 static struct regulator *create_regulator(struct regulator_dev *rdev,
1115                                           struct device *dev,
1116                                           const char *supply_name)
1117 {
1118         struct regulator *regulator;
1119         char buf[REG_STR_SIZE];
1120         int err, size;
1121
1122         regulator = kzalloc(sizeof(*regulator), GFP_KERNEL);
1123         if (regulator == NULL)
1124                 return NULL;
1125
1126         mutex_lock(&rdev->mutex);
1127         regulator->rdev = rdev;
1128         list_add(&regulator->list, &rdev->consumer_list);
1129
1130         if (dev) {
1131                 regulator->dev = dev;
1132
1133                 /* Add a link to the device sysfs entry */
1134                 size = scnprintf(buf, REG_STR_SIZE, "%s-%s",
1135                                  dev->kobj.name, supply_name);
1136                 if (size >= REG_STR_SIZE)
1137                         goto overflow_err;
1138
1139                 regulator->supply_name = kstrdup(buf, GFP_KERNEL);
1140                 if (regulator->supply_name == NULL)
1141                         goto overflow_err;
1142
1143                 err = sysfs_create_link(&rdev->dev.kobj, &dev->kobj,
1144                                         buf);
1145                 if (err) {
1146                         rdev_warn(rdev, "could not add device link %s err %d\n",
1147                                   dev->kobj.name, err);
1148                         /* non-fatal */
1149                 }
1150         } else {
1151                 regulator->supply_name = kstrdup(supply_name, GFP_KERNEL);
1152                 if (regulator->supply_name == NULL)
1153                         goto overflow_err;
1154         }
1155
1156         regulator->debugfs = debugfs_create_dir(regulator->supply_name,
1157                                                 rdev->debugfs);
1158         if (!regulator->debugfs) {
1159                 rdev_warn(rdev, "Failed to create debugfs directory\n");
1160         } else {
1161                 debugfs_create_u32("uA_load", 0444, regulator->debugfs,
1162                                    &regulator->uA_load);
1163                 debugfs_create_u32("min_uV", 0444, regulator->debugfs,
1164                                    &regulator->min_uV);
1165                 debugfs_create_u32("max_uV", 0444, regulator->debugfs,
1166                                    &regulator->max_uV);
1167         }
1168
1169         /*
1170          * Check now if the regulator is an always on regulator - if
1171          * it is then we don't need to do nearly so much work for
1172          * enable/disable calls.
1173          */
1174         if (!_regulator_can_change_status(rdev) &&
1175             _regulator_is_enabled(rdev))
1176                 regulator->always_on = true;
1177
1178         mutex_unlock(&rdev->mutex);
1179         return regulator;
1180 overflow_err:
1181         list_del(&regulator->list);
1182         kfree(regulator);
1183         mutex_unlock(&rdev->mutex);
1184         return NULL;
1185 }
1186
1187 static int _regulator_get_enable_time(struct regulator_dev *rdev)
1188 {
1189         if (!rdev->desc->ops->enable_time)
1190                 return rdev->desc->enable_time;
1191         return rdev->desc->ops->enable_time(rdev);
1192 }
1193
1194 static struct regulator_dev *regulator_dev_lookup(struct device *dev,
1195                                                   const char *supply,
1196                                                   int *ret)
1197 {
1198         struct regulator_dev *r;
1199         struct device_node *node;
1200         struct regulator_map *map;
1201         const char *devname = NULL;
1202
1203         /* first do a dt based lookup */
1204         if (dev && dev->of_node) {
1205                 node = of_get_regulator(dev, supply);
1206                 if (node) {
1207                         list_for_each_entry(r, &regulator_list, list)
1208                                 if (r->dev.parent &&
1209                                         node == r->dev.of_node)
1210                                         return r;
1211                 } else {
1212                         /*
1213                          * If we couldn't even get the node then it's
1214                          * not just that the device didn't register
1215                          * yet, there's no node and we'll never
1216                          * succeed.
1217                          */
1218                         *ret = -ENODEV;
1219                 }
1220         }
1221
1222         /* if not found, try doing it non-dt way */
1223         if (dev)
1224                 devname = dev_name(dev);
1225
1226         list_for_each_entry(r, &regulator_list, list)
1227                 if (strcmp(rdev_get_name(r), supply) == 0)
1228                         return r;
1229
1230         list_for_each_entry(map, &regulator_map_list, list) {
1231                 /* If the mapping has a device set up it must match */
1232                 if (map->dev_name &&
1233                     (!devname || strcmp(map->dev_name, devname)))
1234                         continue;
1235
1236                 if (strcmp(map->supply, supply) == 0)
1237                         return map->regulator;
1238         }
1239
1240
1241         return NULL;
1242 }
1243
1244 /* Internal regulator request function */
1245 static struct regulator *_regulator_get(struct device *dev, const char *id,
1246                                         bool exclusive)
1247 {
1248         struct regulator_dev *rdev;
1249         struct regulator *regulator = ERR_PTR(-EPROBE_DEFER);
1250         const char *devname = NULL;
1251         int ret = 0;
1252
1253         if (id == NULL) {
1254                 pr_err("get() with no identifier\n");
1255                 return regulator;
1256         }
1257
1258         if (dev)
1259                 devname = dev_name(dev);
1260
1261         mutex_lock(&regulator_list_mutex);
1262
1263         rdev = regulator_dev_lookup(dev, id, &ret);
1264         if (rdev)
1265                 goto found;
1266
1267         /*
1268          * If we have return value from dev_lookup fail, we do not expect to
1269          * succeed, so, quit with appropriate error value
1270          */
1271         if (ret) {
1272                 regulator = ERR_PTR(ret);
1273                 goto out;
1274         }
1275
1276         if (board_wants_dummy_regulator) {
1277                 rdev = dummy_regulator_rdev;
1278                 goto found;
1279         }
1280
1281 #ifdef CONFIG_REGULATOR_DUMMY
1282         if (!devname)
1283                 devname = "deviceless";
1284
1285         /* If the board didn't flag that it was fully constrained then
1286          * substitute in a dummy regulator so consumers can continue.
1287          */
1288         if (!has_full_constraints) {
1289                 pr_warn("%s supply %s not found, using dummy regulator\n",
1290                         devname, id);
1291                 rdev = dummy_regulator_rdev;
1292                 goto found;
1293         }
1294 #endif
1295
1296         mutex_unlock(&regulator_list_mutex);
1297         return regulator;
1298
1299 found:
1300         if (rdev->exclusive) {
1301                 regulator = ERR_PTR(-EPERM);
1302                 goto out;
1303         }
1304
1305         if (exclusive && rdev->open_count) {
1306                 regulator = ERR_PTR(-EBUSY);
1307                 goto out;
1308         }
1309
1310         if (!try_module_get(rdev->owner))
1311                 goto out;
1312
1313         regulator = create_regulator(rdev, dev, id);
1314         if (regulator == NULL) {
1315                 regulator = ERR_PTR(-ENOMEM);
1316                 module_put(rdev->owner);
1317                 goto out;
1318         }
1319
1320         rdev->open_count++;
1321         if (exclusive) {
1322                 rdev->exclusive = 1;
1323
1324                 ret = _regulator_is_enabled(rdev);
1325                 if (ret > 0)
1326                         rdev->use_count = 1;
1327                 else
1328                         rdev->use_count = 0;
1329         }
1330
1331 out:
1332         mutex_unlock(&regulator_list_mutex);
1333
1334         return regulator;
1335 }
1336
1337 /**
1338  * regulator_get - lookup and obtain a reference to a regulator.
1339  * @dev: device for regulator "consumer"
1340  * @id: Supply name or regulator ID.
1341  *
1342  * Returns a struct regulator corresponding to the regulator producer,
1343  * or IS_ERR() condition containing errno.
1344  *
1345  * Use of supply names configured via regulator_set_device_supply() is
1346  * strongly encouraged.  It is recommended that the supply name used
1347  * should match the name used for the supply and/or the relevant
1348  * device pins in the datasheet.
1349  */
1350 struct regulator *regulator_get(struct device *dev, const char *id)
1351 {
1352         return _regulator_get(dev, id, false);
1353 }
1354 EXPORT_SYMBOL_GPL(regulator_get);
1355
1356 static void devm_regulator_release(struct device *dev, void *res)
1357 {
1358         regulator_put(*(struct regulator **)res);
1359 }
1360
1361 /**
1362  * devm_regulator_get - Resource managed regulator_get()
1363  * @dev: device for regulator "consumer"
1364  * @id: Supply name or regulator ID.
1365  *
1366  * Managed regulator_get(). Regulators returned from this function are
1367  * automatically regulator_put() on driver detach. See regulator_get() for more
1368  * information.
1369  */
1370 struct regulator *devm_regulator_get(struct device *dev, const char *id)
1371 {
1372         struct regulator **ptr, *regulator;
1373
1374         ptr = devres_alloc(devm_regulator_release, sizeof(*ptr), GFP_KERNEL);
1375         if (!ptr)
1376                 return ERR_PTR(-ENOMEM);
1377
1378         regulator = regulator_get(dev, id);
1379         if (!IS_ERR(regulator)) {
1380                 *ptr = regulator;
1381                 devres_add(dev, ptr);
1382         } else {
1383                 devres_free(ptr);
1384         }
1385
1386         return regulator;
1387 }
1388 EXPORT_SYMBOL_GPL(devm_regulator_get);
1389
1390 /**
1391  * regulator_get_exclusive - obtain exclusive access to a regulator.
1392  * @dev: device for regulator "consumer"
1393  * @id: Supply name or regulator ID.
1394  *
1395  * Returns a struct regulator corresponding to the regulator producer,
1396  * or IS_ERR() condition containing errno.  Other consumers will be
1397  * unable to obtain this reference is held and the use count for the
1398  * regulator will be initialised to reflect the current state of the
1399  * regulator.
1400  *
1401  * This is intended for use by consumers which cannot tolerate shared
1402  * use of the regulator such as those which need to force the
1403  * regulator off for correct operation of the hardware they are
1404  * controlling.
1405  *
1406  * Use of supply names configured via regulator_set_device_supply() is
1407  * strongly encouraged.  It is recommended that the supply name used
1408  * should match the name used for the supply and/or the relevant
1409  * device pins in the datasheet.
1410  */
1411 struct regulator *regulator_get_exclusive(struct device *dev, const char *id)
1412 {
1413         return _regulator_get(dev, id, true);
1414 }
1415 EXPORT_SYMBOL_GPL(regulator_get_exclusive);
1416
1417 /**
1418  * regulator_get_optional - obtain optional access to a regulator.
1419  * @dev: device for regulator "consumer"
1420  * @id: Supply name or regulator ID.
1421  *
1422  * Returns a struct regulator corresponding to the regulator producer,
1423  * or IS_ERR() condition containing errno.  Other consumers will be
1424  * unable to obtain this reference is held and the use count for the
1425  * regulator will be initialised to reflect the current state of the
1426  * regulator.
1427  *
1428  * This is intended for use by consumers for devices which can have
1429  * some supplies unconnected in normal use, such as some MMC devices.
1430  * It can allow the regulator core to provide stub supplies for other
1431  * supplies requested using normal regulator_get() calls without
1432  * disrupting the operation of drivers that can handle absent
1433  * supplies.
1434  *
1435  * Use of supply names configured via regulator_set_device_supply() is
1436  * strongly encouraged.  It is recommended that the supply name used
1437  * should match the name used for the supply and/or the relevant
1438  * device pins in the datasheet.
1439  */
1440 struct regulator *regulator_get_optional(struct device *dev, const char *id)
1441 {
1442         return _regulator_get(dev, id, 0);
1443 }
1444 EXPORT_SYMBOL_GPL(regulator_get_optional);
1445
1446 /**
1447  * devm_regulator_get_optional - Resource managed regulator_get_optional()
1448  * @dev: device for regulator "consumer"
1449  * @id: Supply name or regulator ID.
1450  *
1451  * Managed regulator_get_optional(). Regulators returned from this
1452  * function are automatically regulator_put() on driver detach. See
1453  * regulator_get_optional() for more information.
1454  */
1455 struct regulator *devm_regulator_get_optional(struct device *dev,
1456                                               const char *id)
1457 {
1458         struct regulator **ptr, *regulator;
1459
1460         ptr = devres_alloc(devm_regulator_release, sizeof(*ptr), GFP_KERNEL);
1461         if (!ptr)
1462                 return ERR_PTR(-ENOMEM);
1463
1464         regulator = regulator_get_optional(dev, id);
1465         if (!IS_ERR(regulator)) {
1466                 *ptr = regulator;
1467                 devres_add(dev, ptr);
1468         } else {
1469                 devres_free(ptr);
1470         }
1471
1472         return regulator;
1473 }
1474 EXPORT_SYMBOL_GPL(devm_regulator_get_optional);
1475
1476 /* Locks held by regulator_put() */
1477 static void _regulator_put(struct regulator *regulator)
1478 {
1479         struct regulator_dev *rdev;
1480
1481         if (regulator == NULL || IS_ERR(regulator))
1482                 return;
1483
1484         rdev = regulator->rdev;
1485
1486         debugfs_remove_recursive(regulator->debugfs);
1487
1488         /* remove any sysfs entries */
1489         if (regulator->dev)
1490                 sysfs_remove_link(&rdev->dev.kobj, regulator->supply_name);
1491         kfree(regulator->supply_name);
1492         list_del(&regulator->list);
1493         kfree(regulator);
1494
1495         rdev->open_count--;
1496         rdev->exclusive = 0;
1497
1498         module_put(rdev->owner);
1499 }
1500
1501 /**
1502  * devm_regulator_get_exclusive - Resource managed regulator_get_exclusive()
1503  * @dev: device for regulator "consumer"
1504  * @id: Supply name or regulator ID.
1505  *
1506  * Managed regulator_get_exclusive(). Regulators returned from this function
1507  * are automatically regulator_put() on driver detach. See regulator_get() for
1508  * more information.
1509  */
1510 struct regulator *devm_regulator_get_exclusive(struct device *dev,
1511                                                const char *id)
1512 {
1513         struct regulator **ptr, *regulator;
1514
1515         ptr = devres_alloc(devm_regulator_release, sizeof(*ptr), GFP_KERNEL);
1516         if (!ptr)
1517                 return ERR_PTR(-ENOMEM);
1518
1519         regulator = _regulator_get(dev, id, 1);
1520         if (!IS_ERR(regulator)) {
1521                 *ptr = regulator;
1522                 devres_add(dev, ptr);
1523         } else {
1524                 devres_free(ptr);
1525         }
1526
1527         return regulator;
1528 }
1529 EXPORT_SYMBOL_GPL(devm_regulator_get_exclusive);
1530
1531 /**
1532  * regulator_put - "free" the regulator source
1533  * @regulator: regulator source
1534  *
1535  * Note: drivers must ensure that all regulator_enable calls made on this
1536  * regulator source are balanced by regulator_disable calls prior to calling
1537  * this function.
1538  */
1539 void regulator_put(struct regulator *regulator)
1540 {
1541         mutex_lock(&regulator_list_mutex);
1542         _regulator_put(regulator);
1543         mutex_unlock(&regulator_list_mutex);
1544 }
1545 EXPORT_SYMBOL_GPL(regulator_put);
1546
1547 static int devm_regulator_match(struct device *dev, void *res, void *data)
1548 {
1549         struct regulator **r = res;
1550         if (!r || !*r) {
1551                 WARN_ON(!r || !*r);
1552                 return 0;
1553         }
1554         return *r == data;
1555 }
1556
1557 /**
1558  * devm_regulator_put - Resource managed regulator_put()
1559  * @regulator: regulator to free
1560  *
1561  * Deallocate a regulator allocated with devm_regulator_get(). Normally
1562  * this function will not need to be called and the resource management
1563  * code will ensure that the resource is freed.
1564  */
1565 void devm_regulator_put(struct regulator *regulator)
1566 {
1567         int rc;
1568
1569         rc = devres_release(regulator->dev, devm_regulator_release,
1570                             devm_regulator_match, regulator);
1571         if (rc != 0)
1572                 WARN_ON(rc);
1573 }
1574 EXPORT_SYMBOL_GPL(devm_regulator_put);
1575
1576 /* Manage enable GPIO list. Same GPIO pin can be shared among regulators */
1577 static int regulator_ena_gpio_request(struct regulator_dev *rdev,
1578                                 const struct regulator_config *config)
1579 {
1580         struct regulator_enable_gpio *pin;
1581         int ret;
1582
1583         list_for_each_entry(pin, &regulator_ena_gpio_list, list) {
1584                 if (pin->gpio == config->ena_gpio) {
1585                         rdev_dbg(rdev, "GPIO %d is already used\n",
1586                                 config->ena_gpio);
1587                         goto update_ena_gpio_to_rdev;
1588                 }
1589         }
1590
1591         ret = gpio_request_one(config->ena_gpio,
1592                                 GPIOF_DIR_OUT | config->ena_gpio_flags,
1593                                 rdev_get_name(rdev));
1594         if (ret)
1595                 return ret;
1596
1597         pin = kzalloc(sizeof(struct regulator_enable_gpio), GFP_KERNEL);
1598         if (pin == NULL) {
1599                 gpio_free(config->ena_gpio);
1600                 return -ENOMEM;
1601         }
1602
1603         pin->gpio = config->ena_gpio;
1604         pin->ena_gpio_invert = config->ena_gpio_invert;
1605         list_add(&pin->list, &regulator_ena_gpio_list);
1606
1607 update_ena_gpio_to_rdev:
1608         pin->request_count++;
1609         rdev->ena_pin = pin;
1610         return 0;
1611 }
1612
1613 static void regulator_ena_gpio_free(struct regulator_dev *rdev)
1614 {
1615         struct regulator_enable_gpio *pin, *n;
1616
1617         if (!rdev->ena_pin)
1618                 return;
1619
1620         /* Free the GPIO only in case of no use */
1621         list_for_each_entry_safe(pin, n, &regulator_ena_gpio_list, list) {
1622                 if (pin->gpio == rdev->ena_pin->gpio) {
1623                         if (pin->request_count <= 1) {
1624                                 pin->request_count = 0;
1625                                 gpio_free(pin->gpio);
1626                                 list_del(&pin->list);
1627                                 kfree(pin);
1628                         } else {
1629                                 pin->request_count--;
1630                         }
1631                 }
1632         }
1633 }
1634
1635 /**
1636  * regulator_ena_gpio_ctrl - balance enable_count of each GPIO and actual GPIO pin control
1637  * @rdev: regulator_dev structure
1638  * @enable: enable GPIO at initial use?
1639  *
1640  * GPIO is enabled in case of initial use. (enable_count is 0)
1641  * GPIO is disabled when it is not shared any more. (enable_count <= 1)
1642  */
1643 static int regulator_ena_gpio_ctrl(struct regulator_dev *rdev, bool enable)
1644 {
1645         struct regulator_enable_gpio *pin = rdev->ena_pin;
1646
1647         if (!pin)
1648                 return -EINVAL;
1649
1650         if (enable) {
1651                 /* Enable GPIO at initial use */
1652                 if (pin->enable_count == 0)
1653                         gpio_set_value_cansleep(pin->gpio,
1654                                                 !pin->ena_gpio_invert);
1655
1656                 pin->enable_count++;
1657         } else {
1658                 if (pin->enable_count > 1) {
1659                         pin->enable_count--;
1660                         return 0;
1661                 }
1662
1663                 /* Disable GPIO if not used */
1664                 if (pin->enable_count <= 1) {
1665                         gpio_set_value_cansleep(pin->gpio,
1666                                                 pin->ena_gpio_invert);
1667                         pin->enable_count = 0;
1668                 }
1669         }
1670
1671         return 0;
1672 }
1673
1674 static int _regulator_do_enable(struct regulator_dev *rdev)
1675 {
1676         int ret, delay;
1677
1678         /* Query before enabling in case configuration dependent.  */
1679         ret = _regulator_get_enable_time(rdev);
1680         if (ret >= 0) {
1681                 delay = ret;
1682         } else {
1683                 rdev_warn(rdev, "enable_time() failed: %d\n", ret);
1684                 delay = 0;
1685         }
1686
1687         trace_regulator_enable(rdev_get_name(rdev));
1688
1689         if (rdev->ena_pin) {
1690                 ret = regulator_ena_gpio_ctrl(rdev, true);
1691                 if (ret < 0)
1692                         return ret;
1693                 rdev->ena_gpio_state = 1;
1694         } else if (rdev->desc->ops->enable) {
1695                 ret = rdev->desc->ops->enable(rdev);
1696                 if (ret < 0)
1697                         return ret;
1698         } else {
1699                 return -EINVAL;
1700         }
1701
1702         /* Allow the regulator to ramp; it would be useful to extend
1703          * this for bulk operations so that the regulators can ramp
1704          * together.  */
1705         trace_regulator_enable_delay(rdev_get_name(rdev));
1706
1707         if (delay >= 1000) {
1708                 mdelay(delay / 1000);
1709                 udelay(delay % 1000);
1710         } else if (delay) {
1711                 udelay(delay);
1712         }
1713
1714         trace_regulator_enable_complete(rdev_get_name(rdev));
1715
1716         return 0;
1717 }
1718
1719 /* locks held by regulator_enable() */
1720 static int _regulator_enable(struct regulator_dev *rdev)
1721 {
1722         int ret;
1723
1724         /* check voltage and requested load before enabling */
1725         if (rdev->constraints &&
1726             (rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_DRMS))
1727                 drms_uA_update(rdev);
1728
1729         if (rdev->use_count == 0) {
1730                 /* The regulator may on if it's not switchable or left on */
1731                 ret = _regulator_is_enabled(rdev);
1732                 if (ret == -EINVAL || ret == 0) {
1733                         if (!_regulator_can_change_status(rdev))
1734                                 return -EPERM;
1735
1736                         ret = _regulator_do_enable(rdev);
1737                         if (ret < 0)
1738                                 return ret;
1739
1740                 } else if (ret < 0) {
1741                         rdev_err(rdev, "is_enabled() failed: %d\n", ret);
1742                         return ret;
1743                 }
1744                 /* Fallthrough on positive return values - already enabled */
1745         }
1746
1747         rdev->use_count++;
1748
1749         return 0;
1750 }
1751
1752 /**
1753  * regulator_enable - enable regulator output
1754  * @regulator: regulator source
1755  *
1756  * Request that the regulator be enabled with the regulator output at
1757  * the predefined voltage or current value.  Calls to regulator_enable()
1758  * must be balanced with calls to regulator_disable().
1759  *
1760  * NOTE: the output value can be set by other drivers, boot loader or may be
1761  * hardwired in the regulator.
1762  */
1763 int regulator_enable(struct regulator *regulator)
1764 {
1765         struct regulator_dev *rdev = regulator->rdev;
1766         int ret = 0;
1767
1768         if (regulator->always_on)
1769                 return 0;
1770
1771         if (rdev->supply) {
1772                 ret = regulator_enable(rdev->supply);
1773                 if (ret != 0)
1774                         return ret;
1775         }
1776
1777         mutex_lock(&rdev->mutex);
1778         ret = _regulator_enable(rdev);
1779         mutex_unlock(&rdev->mutex);
1780
1781         if (ret != 0 && rdev->supply)
1782                 regulator_disable(rdev->supply);
1783
1784         return ret;
1785 }
1786 EXPORT_SYMBOL_GPL(regulator_enable);
1787
1788 static int _regulator_do_disable(struct regulator_dev *rdev)
1789 {
1790         int ret;
1791
1792         trace_regulator_disable(rdev_get_name(rdev));
1793
1794         if (rdev->ena_pin) {
1795                 ret = regulator_ena_gpio_ctrl(rdev, false);
1796                 if (ret < 0)
1797                         return ret;
1798                 rdev->ena_gpio_state = 0;
1799
1800         } else if (rdev->desc->ops->disable) {
1801                 ret = rdev->desc->ops->disable(rdev);
1802                 if (ret != 0)
1803                         return ret;
1804         }
1805
1806         trace_regulator_disable_complete(rdev_get_name(rdev));
1807
1808         _notifier_call_chain(rdev, REGULATOR_EVENT_DISABLE,
1809                              NULL);
1810         return 0;
1811 }
1812
1813 /* locks held by regulator_disable() */
1814 static int _regulator_disable(struct regulator_dev *rdev)
1815 {
1816         int ret = 0;
1817
1818         if (WARN(rdev->use_count <= 0,
1819                  "unbalanced disables for %s\n", rdev_get_name(rdev)))
1820                 return -EIO;
1821
1822         /* are we the last user and permitted to disable ? */
1823         if (rdev->use_count == 1 &&
1824             (rdev->constraints && !rdev->constraints->always_on)) {
1825
1826                 /* we are last user */
1827                 if (_regulator_can_change_status(rdev)) {
1828                         ret = _regulator_do_disable(rdev);
1829                         if (ret < 0) {
1830                                 rdev_err(rdev, "failed to disable\n");
1831                                 return ret;
1832                         }
1833                 }
1834
1835                 rdev->use_count = 0;
1836         } else if (rdev->use_count > 1) {
1837
1838                 if (rdev->constraints &&
1839                         (rdev->constraints->valid_ops_mask &
1840                         REGULATOR_CHANGE_DRMS))
1841                         drms_uA_update(rdev);
1842
1843                 rdev->use_count--;
1844         }
1845
1846         return ret;
1847 }
1848
1849 /**
1850  * regulator_disable - disable regulator output
1851  * @regulator: regulator source
1852  *
1853  * Disable the regulator output voltage or current.  Calls to
1854  * regulator_enable() must be balanced with calls to
1855  * regulator_disable().
1856  *
1857  * NOTE: this will only disable the regulator output if no other consumer
1858  * devices have it enabled, the regulator device supports disabling and
1859  * machine constraints permit this operation.
1860  */
1861 int regulator_disable(struct regulator *regulator)
1862 {
1863         struct regulator_dev *rdev = regulator->rdev;
1864         int ret = 0;
1865
1866         if (regulator->always_on)
1867                 return 0;
1868
1869         mutex_lock(&rdev->mutex);
1870         ret = _regulator_disable(rdev);
1871         mutex_unlock(&rdev->mutex);
1872
1873         if (ret == 0 && rdev->supply)
1874                 regulator_disable(rdev->supply);
1875
1876         return ret;
1877 }
1878 EXPORT_SYMBOL_GPL(regulator_disable);
1879
1880 /* locks held by regulator_force_disable() */
1881 static int _regulator_force_disable(struct regulator_dev *rdev)
1882 {
1883         int ret = 0;
1884
1885         /* force disable */
1886         if (rdev->desc->ops->disable) {
1887                 /* ah well, who wants to live forever... */
1888                 ret = rdev->desc->ops->disable(rdev);
1889                 if (ret < 0) {
1890                         rdev_err(rdev, "failed to force disable\n");
1891                         return ret;
1892                 }
1893                 /* notify other consumers that power has been forced off */
1894                 _notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
1895                         REGULATOR_EVENT_DISABLE, NULL);
1896         }
1897
1898         return ret;
1899 }
1900
1901 /**
1902  * regulator_force_disable - force disable regulator output
1903  * @regulator: regulator source
1904  *
1905  * Forcibly disable the regulator output voltage or current.
1906  * NOTE: this *will* disable the regulator output even if other consumer
1907  * devices have it enabled. This should be used for situations when device
1908  * damage will likely occur if the regulator is not disabled (e.g. over temp).
1909  */
1910 int regulator_force_disable(struct regulator *regulator)
1911 {
1912         struct regulator_dev *rdev = regulator->rdev;
1913         int ret;
1914
1915         mutex_lock(&rdev->mutex);
1916         regulator->uA_load = 0;
1917         ret = _regulator_force_disable(regulator->rdev);
1918         mutex_unlock(&rdev->mutex);
1919
1920         if (rdev->supply)
1921                 while (rdev->open_count--)
1922                         regulator_disable(rdev->supply);
1923
1924         return ret;
1925 }
1926 EXPORT_SYMBOL_GPL(regulator_force_disable);
1927
1928 static void regulator_disable_work(struct work_struct *work)
1929 {
1930         struct regulator_dev *rdev = container_of(work, struct regulator_dev,
1931                                                   disable_work.work);
1932         int count, i, ret;
1933
1934         mutex_lock(&rdev->mutex);
1935
1936         BUG_ON(!rdev->deferred_disables);
1937
1938         count = rdev->deferred_disables;
1939         rdev->deferred_disables = 0;
1940
1941         for (i = 0; i < count; i++) {
1942                 ret = _regulator_disable(rdev);
1943                 if (ret != 0)
1944                         rdev_err(rdev, "Deferred disable failed: %d\n", ret);
1945         }
1946
1947         mutex_unlock(&rdev->mutex);
1948
1949         if (rdev->supply) {
1950                 for (i = 0; i < count; i++) {
1951                         ret = regulator_disable(rdev->supply);
1952                         if (ret != 0) {
1953                                 rdev_err(rdev,
1954                                          "Supply disable failed: %d\n", ret);
1955                         }
1956                 }
1957         }
1958 }
1959
1960 /**
1961  * regulator_disable_deferred - disable regulator output with delay
1962  * @regulator: regulator source
1963  * @ms: miliseconds until the regulator is disabled
1964  *
1965  * Execute regulator_disable() on the regulator after a delay.  This
1966  * is intended for use with devices that require some time to quiesce.
1967  *
1968  * NOTE: this will only disable the regulator output if no other consumer
1969  * devices have it enabled, the regulator device supports disabling and
1970  * machine constraints permit this operation.
1971  */
1972 int regulator_disable_deferred(struct regulator *regulator, int ms)
1973 {
1974         struct regulator_dev *rdev = regulator->rdev;
1975         int ret;
1976
1977         if (regulator->always_on)
1978                 return 0;
1979
1980         if (!ms)
1981                 return regulator_disable(regulator);
1982
1983         mutex_lock(&rdev->mutex);
1984         rdev->deferred_disables++;
1985         mutex_unlock(&rdev->mutex);
1986
1987         ret = queue_delayed_work(system_power_efficient_wq,
1988                                  &rdev->disable_work,
1989                                  msecs_to_jiffies(ms));
1990         if (ret < 0)
1991                 return ret;
1992         else
1993                 return 0;
1994 }
1995 EXPORT_SYMBOL_GPL(regulator_disable_deferred);
1996
1997 static int _regulator_is_enabled(struct regulator_dev *rdev)
1998 {
1999         /* A GPIO control always takes precedence */
2000         if (rdev->ena_pin)
2001                 return rdev->ena_gpio_state;
2002
2003         /* If we don't know then assume that the regulator is always on */
2004         if (!rdev->desc->ops->is_enabled)
2005                 return 1;
2006
2007         return rdev->desc->ops->is_enabled(rdev);
2008 }
2009
2010 /**
2011  * regulator_is_enabled - is the regulator output enabled
2012  * @regulator: regulator source
2013  *
2014  * Returns positive if the regulator driver backing the source/client
2015  * has requested that the device be enabled, zero if it hasn't, else a
2016  * negative errno code.
2017  *
2018  * Note that the device backing this regulator handle can have multiple
2019  * users, so it might be enabled even if regulator_enable() was never
2020  * called for this particular source.
2021  */
2022 int regulator_is_enabled(struct regulator *regulator)
2023 {
2024         int ret;
2025
2026         if (regulator->always_on)
2027                 return 1;
2028
2029         mutex_lock(&regulator->rdev->mutex);
2030         ret = _regulator_is_enabled(regulator->rdev);
2031         mutex_unlock(&regulator->rdev->mutex);
2032
2033         return ret;
2034 }
2035 EXPORT_SYMBOL_GPL(regulator_is_enabled);
2036
2037 /**
2038  * regulator_can_change_voltage - check if regulator can change voltage
2039  * @regulator: regulator source
2040  *
2041  * Returns positive if the regulator driver backing the source/client
2042  * can change its voltage, false otherwise. Usefull for detecting fixed
2043  * or dummy regulators and disabling voltage change logic in the client
2044  * driver.
2045  */
2046 int regulator_can_change_voltage(struct regulator *regulator)
2047 {
2048         struct regulator_dev    *rdev = regulator->rdev;
2049
2050         if (rdev->constraints &&
2051             (rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE)) {
2052                 if (rdev->desc->n_voltages - rdev->desc->linear_min_sel > 1)
2053                         return 1;
2054
2055                 if (rdev->desc->continuous_voltage_range &&
2056                     rdev->constraints->min_uV && rdev->constraints->max_uV &&
2057                     rdev->constraints->min_uV != rdev->constraints->max_uV)
2058                         return 1;
2059         }
2060
2061         return 0;
2062 }
2063 EXPORT_SYMBOL_GPL(regulator_can_change_voltage);
2064
2065 /**
2066  * regulator_count_voltages - count regulator_list_voltage() selectors
2067  * @regulator: regulator source
2068  *
2069  * Returns number of selectors, or negative errno.  Selectors are
2070  * numbered starting at zero, and typically correspond to bitfields
2071  * in hardware registers.
2072  */
2073 int regulator_count_voltages(struct regulator *regulator)
2074 {
2075         struct regulator_dev    *rdev = regulator->rdev;
2076
2077         return rdev->desc->n_voltages ? : -EINVAL;
2078 }
2079 EXPORT_SYMBOL_GPL(regulator_count_voltages);
2080
2081 /**
2082  * regulator_list_voltage - enumerate supported voltages
2083  * @regulator: regulator source
2084  * @selector: identify voltage to list
2085  * Context: can sleep
2086  *
2087  * Returns a voltage that can be passed to @regulator_set_voltage(),
2088  * zero if this selector code can't be used on this system, or a
2089  * negative errno.
2090  */
2091 int regulator_list_voltage(struct regulator *regulator, unsigned selector)
2092 {
2093         struct regulator_dev    *rdev = regulator->rdev;
2094         struct regulator_ops    *ops = rdev->desc->ops;
2095         int                     ret;
2096
2097         if (!ops->list_voltage || selector >= rdev->desc->n_voltages)
2098                 return -EINVAL;
2099
2100         mutex_lock(&rdev->mutex);
2101         ret = ops->list_voltage(rdev, selector);
2102         mutex_unlock(&rdev->mutex);
2103
2104         if (ret > 0) {
2105                 if (ret < rdev->constraints->min_uV)
2106                         ret = 0;
2107                 else if (ret > rdev->constraints->max_uV)
2108                         ret = 0;
2109         }
2110
2111         return ret;
2112 }
2113 EXPORT_SYMBOL_GPL(regulator_list_voltage);
2114
2115 /**
2116  * regulator_get_linear_step - return the voltage step size between VSEL values
2117  * @regulator: regulator source
2118  *
2119  * Returns the voltage step size between VSEL values for linear
2120  * regulators, or return 0 if the regulator isn't a linear regulator.
2121  */
2122 unsigned int regulator_get_linear_step(struct regulator *regulator)
2123 {
2124         struct regulator_dev *rdev = regulator->rdev;
2125
2126         return rdev->desc->uV_step;
2127 }
2128 EXPORT_SYMBOL_GPL(regulator_get_linear_step);
2129
2130 /**
2131  * regulator_is_supported_voltage - check if a voltage range can be supported
2132  *
2133  * @regulator: Regulator to check.
2134  * @min_uV: Minimum required voltage in uV.
2135  * @max_uV: Maximum required voltage in uV.
2136  *
2137  * Returns a boolean or a negative error code.
2138  */
2139 int regulator_is_supported_voltage(struct regulator *regulator,
2140                                    int min_uV, int max_uV)
2141 {
2142         struct regulator_dev *rdev = regulator->rdev;
2143         int i, voltages, ret;
2144
2145         /* If we can't change voltage check the current voltage */
2146         if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE)) {
2147                 ret = regulator_get_voltage(regulator);
2148                 if (ret >= 0)
2149                         return (min_uV <= ret && ret <= max_uV);
2150                 else
2151                         return ret;
2152         }
2153
2154         /* Any voltage within constrains range is fine? */
2155         if (rdev->desc->continuous_voltage_range)
2156                 return min_uV >= rdev->constraints->min_uV &&
2157                                 max_uV <= rdev->constraints->max_uV;
2158
2159         ret = regulator_count_voltages(regulator);
2160         if (ret < 0)
2161                 return ret;
2162         voltages = ret;
2163
2164         for (i = 0; i < voltages; i++) {
2165                 ret = regulator_list_voltage(regulator, i);
2166
2167                 if (ret >= min_uV && ret <= max_uV)
2168                         return 1;
2169         }
2170
2171         return 0;
2172 }
2173 EXPORT_SYMBOL_GPL(regulator_is_supported_voltage);
2174
2175 static int _regulator_do_set_voltage(struct regulator_dev *rdev,
2176                                      int min_uV, int max_uV)
2177 {
2178         int ret;
2179         int delay = 0;
2180         int best_val = 0;
2181         unsigned int selector;
2182         int old_selector = -1;
2183
2184         trace_regulator_set_voltage(rdev_get_name(rdev), min_uV, max_uV);
2185
2186         min_uV += rdev->constraints->uV_offset;
2187         max_uV += rdev->constraints->uV_offset;
2188
2189         /*
2190          * If we can't obtain the old selector there is not enough
2191          * info to call set_voltage_time_sel().
2192          */
2193         if (_regulator_is_enabled(rdev) &&
2194             rdev->desc->ops->set_voltage_time_sel &&
2195             rdev->desc->ops->get_voltage_sel) {
2196                 old_selector = rdev->desc->ops->get_voltage_sel(rdev);
2197                 if (old_selector < 0)
2198                         return old_selector;
2199         }
2200
2201         if (rdev->desc->ops->set_voltage) {
2202                 ret = rdev->desc->ops->set_voltage(rdev, min_uV, max_uV,
2203                                                    &selector);
2204
2205                 if (ret >= 0) {
2206                         if (rdev->desc->ops->list_voltage)
2207                                 best_val = rdev->desc->ops->list_voltage(rdev,
2208                                                                          selector);
2209                         else
2210                                 best_val = _regulator_get_voltage(rdev);
2211                 }
2212
2213         } else if (rdev->desc->ops->set_voltage_sel) {
2214                 if (rdev->desc->ops->map_voltage) {
2215                         ret = rdev->desc->ops->map_voltage(rdev, min_uV,
2216                                                            max_uV);
2217                 } else {
2218                         if (rdev->desc->ops->list_voltage ==
2219                             regulator_list_voltage_linear)
2220                                 ret = regulator_map_voltage_linear(rdev,
2221                                                                 min_uV, max_uV);
2222                         else
2223                                 ret = regulator_map_voltage_iterate(rdev,
2224                                                                 min_uV, max_uV);
2225                 }
2226
2227                 if (ret >= 0) {
2228                         best_val = rdev->desc->ops->list_voltage(rdev, ret);
2229                         if (min_uV <= best_val && max_uV >= best_val) {
2230                                 selector = ret;
2231                                 if (old_selector == selector)
2232                                         ret = 0;
2233                                 else
2234                                         ret = rdev->desc->ops->set_voltage_sel(
2235                                                                 rdev, ret);
2236                         } else {
2237                                 ret = -EINVAL;
2238                         }
2239                 }
2240         } else {
2241                 ret = -EINVAL;
2242         }
2243
2244         /* Call set_voltage_time_sel if successfully obtained old_selector */
2245         if (ret == 0 && !rdev->constraints->ramp_disable && old_selector >= 0
2246                 && old_selector != selector) {
2247
2248                 delay = rdev->desc->ops->set_voltage_time_sel(rdev,
2249                                                 old_selector, selector);
2250                 if (delay < 0) {
2251                         rdev_warn(rdev, "set_voltage_time_sel() failed: %d\n",
2252                                   delay);
2253                         delay = 0;
2254                 }
2255
2256                 /* Insert any necessary delays */
2257                 if (delay >= 1000) {
2258                         mdelay(delay / 1000);
2259                         udelay(delay % 1000);
2260                 } else if (delay) {
2261                         udelay(delay);
2262                 }
2263         }
2264
2265         if (ret == 0 && best_val >= 0) {
2266                 unsigned long data = best_val;
2267
2268                 _notifier_call_chain(rdev, REGULATOR_EVENT_VOLTAGE_CHANGE,
2269                                      (void *)data);
2270         }
2271
2272         trace_regulator_set_voltage_complete(rdev_get_name(rdev), best_val);
2273
2274         return ret;
2275 }
2276
2277 /**
2278  * regulator_set_voltage - set regulator output voltage
2279  * @regulator: regulator source
2280  * @min_uV: Minimum required voltage in uV
2281  * @max_uV: Maximum acceptable voltage in uV
2282  *
2283  * Sets a voltage regulator to the desired output voltage. This can be set
2284  * during any regulator state. IOW, regulator can be disabled or enabled.
2285  *
2286  * If the regulator is enabled then the voltage will change to the new value
2287  * immediately otherwise if the regulator is disabled the regulator will
2288  * output at the new voltage when enabled.
2289  *
2290  * NOTE: If the regulator is shared between several devices then the lowest
2291  * request voltage that meets the system constraints will be used.
2292  * Regulator system constraints must be set for this regulator before
2293  * calling this function otherwise this call will fail.
2294  */
2295 int regulator_set_voltage(struct regulator *regulator, int min_uV, int max_uV)
2296 {
2297         struct regulator_dev *rdev = regulator->rdev;
2298         int ret = 0;
2299         int old_min_uV, old_max_uV;
2300
2301         mutex_lock(&rdev->mutex);
2302
2303         /* If we're setting the same range as last time the change
2304          * should be a noop (some cpufreq implementations use the same
2305          * voltage for multiple frequencies, for example).
2306          */
2307         if (regulator->min_uV == min_uV && regulator->max_uV == max_uV)
2308                 goto out;
2309
2310         /* sanity check */
2311         if (!rdev->desc->ops->set_voltage &&
2312             !rdev->desc->ops->set_voltage_sel) {
2313                 ret = -EINVAL;
2314                 goto out;
2315         }
2316
2317         /* constraints check */
2318         ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
2319         if (ret < 0)
2320                 goto out;
2321         
2322         /* restore original values in case of error */
2323         old_min_uV = regulator->min_uV;
2324         old_max_uV = regulator->max_uV;
2325         regulator->min_uV = min_uV;
2326         regulator->max_uV = max_uV;
2327
2328         ret = regulator_check_consumers(rdev, &min_uV, &max_uV);
2329         if (ret < 0)
2330                 goto out2;
2331
2332         ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);
2333         if (ret < 0)
2334                 goto out2;
2335         
2336 out:
2337         mutex_unlock(&rdev->mutex);
2338         return ret;
2339 out2:
2340         regulator->min_uV = old_min_uV;
2341         regulator->max_uV = old_max_uV;
2342         mutex_unlock(&rdev->mutex);
2343         return ret;
2344 }
2345 EXPORT_SYMBOL_GPL(regulator_set_voltage);
2346
2347 /**
2348  * regulator_set_voltage_time - get raise/fall time
2349  * @regulator: regulator source
2350  * @old_uV: starting voltage in microvolts
2351  * @new_uV: target voltage in microvolts
2352  *
2353  * Provided with the starting and ending voltage, this function attempts to
2354  * calculate the time in microseconds required to rise or fall to this new
2355  * voltage.
2356  */
2357 int regulator_set_voltage_time(struct regulator *regulator,
2358                                int old_uV, int new_uV)
2359 {
2360         struct regulator_dev    *rdev = regulator->rdev;
2361         struct regulator_ops    *ops = rdev->desc->ops;
2362         int old_sel = -1;
2363         int new_sel = -1;
2364         int voltage;
2365         int i;
2366
2367         /* Currently requires operations to do this */
2368         if (!ops->list_voltage || !ops->set_voltage_time_sel
2369             || !rdev->desc->n_voltages)
2370                 return -EINVAL;
2371
2372         for (i = 0; i < rdev->desc->n_voltages; i++) {
2373                 /* We only look for exact voltage matches here */
2374                 voltage = regulator_list_voltage(regulator, i);
2375                 if (voltage < 0)
2376                         return -EINVAL;
2377                 if (voltage == 0)
2378                         continue;
2379                 if (voltage == old_uV)
2380                         old_sel = i;
2381                 if (voltage == new_uV)
2382                         new_sel = i;
2383         }
2384
2385         if (old_sel < 0 || new_sel < 0)
2386                 return -EINVAL;
2387
2388         return ops->set_voltage_time_sel(rdev, old_sel, new_sel);
2389 }
2390 EXPORT_SYMBOL_GPL(regulator_set_voltage_time);
2391
2392 /**
2393  * regulator_set_voltage_time_sel - get raise/fall time
2394  * @rdev: regulator source device
2395  * @old_selector: selector for starting voltage
2396  * @new_selector: selector for target voltage
2397  *
2398  * Provided with the starting and target voltage selectors, this function
2399  * returns time in microseconds required to rise or fall to this new voltage
2400  *
2401  * Drivers providing ramp_delay in regulation_constraints can use this as their
2402  * set_voltage_time_sel() operation.
2403  */
2404 int regulator_set_voltage_time_sel(struct regulator_dev *rdev,
2405                                    unsigned int old_selector,
2406                                    unsigned int new_selector)
2407 {
2408         unsigned int ramp_delay = 0;
2409         int old_volt, new_volt;
2410
2411         if (rdev->constraints->ramp_delay)
2412                 ramp_delay = rdev->constraints->ramp_delay;
2413         else if (rdev->desc->ramp_delay)
2414                 ramp_delay = rdev->desc->ramp_delay;
2415
2416         if (ramp_delay == 0) {
2417                 rdev_warn(rdev, "ramp_delay not set\n");
2418                 return 0;
2419         }
2420
2421         /* sanity check */
2422         if (!rdev->desc->ops->list_voltage)
2423                 return -EINVAL;
2424
2425         old_volt = rdev->desc->ops->list_voltage(rdev, old_selector);
2426         new_volt = rdev->desc->ops->list_voltage(rdev, new_selector);
2427
2428         return DIV_ROUND_UP(abs(new_volt - old_volt), ramp_delay);
2429 }
2430 EXPORT_SYMBOL_GPL(regulator_set_voltage_time_sel);
2431
2432 /**
2433  * regulator_sync_voltage - re-apply last regulator output voltage
2434  * @regulator: regulator source
2435  *
2436  * Re-apply the last configured voltage.  This is intended to be used
2437  * where some external control source the consumer is cooperating with
2438  * has caused the configured voltage to change.
2439  */
2440 int regulator_sync_voltage(struct regulator *regulator)
2441 {
2442         struct regulator_dev *rdev = regulator->rdev;
2443         int ret, min_uV, max_uV;
2444
2445         mutex_lock(&rdev->mutex);
2446
2447         if (!rdev->desc->ops->set_voltage &&
2448             !rdev->desc->ops->set_voltage_sel) {
2449                 ret = -EINVAL;
2450                 goto out;
2451         }
2452
2453         /* This is only going to work if we've had a voltage configured. */
2454         if (!regulator->min_uV && !regulator->max_uV) {
2455                 ret = -EINVAL;
2456                 goto out;
2457         }
2458
2459         min_uV = regulator->min_uV;
2460         max_uV = regulator->max_uV;
2461
2462         /* This should be a paranoia check... */
2463         ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
2464         if (ret < 0)
2465                 goto out;
2466
2467         ret = regulator_check_consumers(rdev, &min_uV, &max_uV);
2468         if (ret < 0)
2469                 goto out;
2470
2471         ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);
2472
2473 out:
2474         mutex_unlock(&rdev->mutex);
2475         return ret;
2476 }
2477 EXPORT_SYMBOL_GPL(regulator_sync_voltage);
2478
2479 static int _regulator_get_voltage(struct regulator_dev *rdev)
2480 {
2481         int sel, ret;
2482
2483         if (rdev->desc->ops->get_voltage_sel) {
2484                 sel = rdev->desc->ops->get_voltage_sel(rdev);
2485                 if (sel < 0)
2486                         return sel;
2487                 ret = rdev->desc->ops->list_voltage(rdev, sel);
2488         } else if (rdev->desc->ops->get_voltage) {
2489                 ret = rdev->desc->ops->get_voltage(rdev);
2490         } else if (rdev->desc->ops->list_voltage) {
2491                 ret = rdev->desc->ops->list_voltage(rdev, 0);
2492         } else {
2493                 return -EINVAL;
2494         }
2495
2496         if (ret < 0)
2497                 return ret;
2498         return ret - rdev->constraints->uV_offset;
2499 }
2500
2501 /**
2502  * regulator_get_voltage - get regulator output voltage
2503  * @regulator: regulator source
2504  *
2505  * This returns the current regulator voltage in uV.
2506  *
2507  * NOTE: If the regulator is disabled it will return the voltage value. This
2508  * function should not be used to determine regulator state.
2509  */
2510 int regulator_get_voltage(struct regulator *regulator)
2511 {
2512         int ret;
2513
2514         mutex_lock(&regulator->rdev->mutex);
2515
2516         ret = _regulator_get_voltage(regulator->rdev);
2517
2518         mutex_unlock(&regulator->rdev->mutex);
2519
2520         return ret;
2521 }
2522 EXPORT_SYMBOL_GPL(regulator_get_voltage);
2523
2524 /**
2525  * regulator_set_current_limit - set regulator output current limit
2526  * @regulator: regulator source
2527  * @min_uA: Minimum supported current in uA
2528  * @max_uA: Maximum supported current in uA
2529  *
2530  * Sets current sink to the desired output current. This can be set during
2531  * any regulator state. IOW, regulator can be disabled or enabled.
2532  *
2533  * If the regulator is enabled then the current will change to the new value
2534  * immediately otherwise if the regulator is disabled the regulator will
2535  * output at the new current when enabled.
2536  *
2537  * NOTE: Regulator system constraints must be set for this regulator before
2538  * calling this function otherwise this call will fail.
2539  */
2540 int regulator_set_current_limit(struct regulator *regulator,
2541                                int min_uA, int max_uA)
2542 {
2543         struct regulator_dev *rdev = regulator->rdev;
2544         int ret;
2545
2546         mutex_lock(&rdev->mutex);
2547
2548         /* sanity check */
2549         if (!rdev->desc->ops->set_current_limit) {
2550                 ret = -EINVAL;
2551                 goto out;
2552         }
2553
2554         /* constraints check */
2555         ret = regulator_check_current_limit(rdev, &min_uA, &max_uA);
2556         if (ret < 0)
2557                 goto out;
2558
2559         ret = rdev->desc->ops->set_current_limit(rdev, min_uA, max_uA);
2560 out:
2561         mutex_unlock(&rdev->mutex);
2562         return ret;
2563 }
2564 EXPORT_SYMBOL_GPL(regulator_set_current_limit);
2565
2566 static int _regulator_get_current_limit(struct regulator_dev *rdev)
2567 {
2568         int ret;
2569
2570         mutex_lock(&rdev->mutex);
2571
2572         /* sanity check */
2573         if (!rdev->desc->ops->get_current_limit) {
2574                 ret = -EINVAL;
2575                 goto out;
2576         }
2577
2578         ret = rdev->desc->ops->get_current_limit(rdev);
2579 out:
2580         mutex_unlock(&rdev->mutex);
2581         return ret;
2582 }
2583
2584 /**
2585  * regulator_get_current_limit - get regulator output current
2586  * @regulator: regulator source
2587  *
2588  * This returns the current supplied by the specified current sink in uA.
2589  *
2590  * NOTE: If the regulator is disabled it will return the current value. This
2591  * function should not be used to determine regulator state.
2592  */
2593 int regulator_get_current_limit(struct regulator *regulator)
2594 {
2595         return _regulator_get_current_limit(regulator->rdev);
2596 }
2597 EXPORT_SYMBOL_GPL(regulator_get_current_limit);
2598
2599 /**
2600  * regulator_set_mode - set regulator operating mode
2601  * @regulator: regulator source
2602  * @mode: operating mode - one of the REGULATOR_MODE constants
2603  *
2604  * Set regulator operating mode to increase regulator efficiency or improve
2605  * regulation performance.
2606  *
2607  * NOTE: Regulator system constraints must be set for this regulator before
2608  * calling this function otherwise this call will fail.
2609  */
2610 int regulator_set_mode(struct regulator *regulator, unsigned int mode)
2611 {
2612         struct regulator_dev *rdev = regulator->rdev;
2613         int ret;
2614         int regulator_curr_mode;
2615
2616         mutex_lock(&rdev->mutex);
2617
2618         /* sanity check */
2619         if (!rdev->desc->ops->set_mode) {
2620                 ret = -EINVAL;
2621                 goto out;
2622         }
2623
2624         /* return if the same mode is requested */
2625         if (rdev->desc->ops->get_mode) {
2626                 regulator_curr_mode = rdev->desc->ops->get_mode(rdev);
2627                 if (regulator_curr_mode == mode) {
2628                         ret = 0;
2629                         goto out;
2630                 }
2631         }
2632
2633         /* constraints check */
2634         ret = regulator_mode_constrain(rdev, &mode);
2635         if (ret < 0)
2636                 goto out;
2637
2638         ret = rdev->desc->ops->set_mode(rdev, mode);
2639 out:
2640         mutex_unlock(&rdev->mutex);
2641         return ret;
2642 }
2643 EXPORT_SYMBOL_GPL(regulator_set_mode);
2644
2645 static unsigned int _regulator_get_mode(struct regulator_dev *rdev)
2646 {
2647         int ret;
2648
2649         mutex_lock(&rdev->mutex);
2650
2651         /* sanity check */
2652         if (!rdev->desc->ops->get_mode) {
2653                 ret = -EINVAL;
2654                 goto out;
2655         }
2656
2657         ret = rdev->desc->ops->get_mode(rdev);
2658 out:
2659         mutex_unlock(&rdev->mutex);
2660         return ret;
2661 }
2662
2663 /**
2664  * regulator_get_mode - get regulator operating mode
2665  * @regulator: regulator source
2666  *
2667  * Get the current regulator operating mode.
2668  */
2669 unsigned int regulator_get_mode(struct regulator *regulator)
2670 {
2671         return _regulator_get_mode(regulator->rdev);
2672 }
2673 EXPORT_SYMBOL_GPL(regulator_get_mode);
2674
2675 /**
2676  * regulator_set_optimum_mode - set regulator optimum operating mode
2677  * @regulator: regulator source
2678  * @uA_load: load current
2679  *
2680  * Notifies the regulator core of a new device load. This is then used by
2681  * DRMS (if enabled by constraints) to set the most efficient regulator
2682  * operating mode for the new regulator loading.
2683  *
2684  * Consumer devices notify their supply regulator of the maximum power
2685  * they will require (can be taken from device datasheet in the power
2686  * consumption tables) when they change operational status and hence power
2687  * state. Examples of operational state changes that can affect power
2688  * consumption are :-
2689  *
2690  *    o Device is opened / closed.
2691  *    o Device I/O is about to begin or has just finished.
2692  *    o Device is idling in between work.
2693  *
2694  * This information is also exported via sysfs to userspace.
2695  *
2696  * DRMS will sum the total requested load on the regulator and change
2697  * to the most efficient operating mode if platform constraints allow.
2698  *
2699  * Returns the new regulator mode or error.
2700  */
2701 int regulator_set_optimum_mode(struct regulator *regulator, int uA_load)
2702 {
2703         struct regulator_dev *rdev = regulator->rdev;
2704         struct regulator *consumer;
2705         int ret, output_uV, input_uV = 0, total_uA_load = 0;
2706         unsigned int mode;
2707
2708         if (rdev->supply)
2709                 input_uV = regulator_get_voltage(rdev->supply);
2710
2711         mutex_lock(&rdev->mutex);
2712
2713         /*
2714          * first check to see if we can set modes at all, otherwise just
2715          * tell the consumer everything is OK.
2716          */
2717         regulator->uA_load = uA_load;
2718         ret = regulator_check_drms(rdev);
2719         if (ret < 0) {
2720                 ret = 0;
2721                 goto out;
2722         }
2723
2724         if (!rdev->desc->ops->get_optimum_mode)
2725                 goto out;
2726
2727         /*
2728          * we can actually do this so any errors are indicators of
2729          * potential real failure.
2730          */
2731         ret = -EINVAL;
2732
2733         if (!rdev->desc->ops->set_mode)
2734                 goto out;
2735
2736         /* get output voltage */
2737         output_uV = _regulator_get_voltage(rdev);
2738         if (output_uV <= 0) {
2739                 rdev_err(rdev, "invalid output voltage found\n");
2740                 goto out;
2741         }
2742
2743         /* No supply? Use constraint voltage */
2744         if (input_uV <= 0)
2745                 input_uV = rdev->constraints->input_uV;
2746         if (input_uV <= 0) {
2747                 rdev_err(rdev, "invalid input voltage found\n");
2748                 goto out;
2749         }
2750
2751         /* calc total requested load for this regulator */
2752         list_for_each_entry(consumer, &rdev->consumer_list, list)
2753                 total_uA_load += consumer->uA_load;
2754
2755         mode = rdev->desc->ops->get_optimum_mode(rdev,
2756                                                  input_uV, output_uV,
2757                                                  total_uA_load);
2758         ret = regulator_mode_constrain(rdev, &mode);
2759         if (ret < 0) {
2760                 rdev_err(rdev, "failed to get optimum mode @ %d uA %d -> %d uV\n",
2761                          total_uA_load, input_uV, output_uV);
2762                 goto out;
2763         }
2764
2765         ret = rdev->desc->ops->set_mode(rdev, mode);
2766         if (ret < 0) {
2767                 rdev_err(rdev, "failed to set optimum mode %x\n", mode);
2768                 goto out;
2769         }
2770         ret = mode;
2771 out:
2772         mutex_unlock(&rdev->mutex);
2773         return ret;
2774 }
2775 EXPORT_SYMBOL_GPL(regulator_set_optimum_mode);
2776
2777 /**
2778  * regulator_allow_bypass - allow the regulator to go into bypass mode
2779  *
2780  * @regulator: Regulator to configure
2781  * @enable: enable or disable bypass mode
2782  *
2783  * Allow the regulator to go into bypass mode if all other consumers
2784  * for the regulator also enable bypass mode and the machine
2785  * constraints allow this.  Bypass mode means that the regulator is
2786  * simply passing the input directly to the output with no regulation.
2787  */
2788 int regulator_allow_bypass(struct regulator *regulator, bool enable)
2789 {
2790         struct regulator_dev *rdev = regulator->rdev;
2791         int ret = 0;
2792
2793         if (!rdev->desc->ops->set_bypass)
2794                 return 0;
2795
2796         if (rdev->constraints &&
2797             !(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_BYPASS))
2798                 return 0;
2799
2800         mutex_lock(&rdev->mutex);
2801
2802         if (enable && !regulator->bypass) {
2803                 rdev->bypass_count++;
2804
2805                 if (rdev->bypass_count == rdev->open_count) {
2806                         ret = rdev->desc->ops->set_bypass(rdev, enable);
2807                         if (ret != 0)
2808                                 rdev->bypass_count--;
2809                 }
2810
2811         } else if (!enable && regulator->bypass) {
2812                 rdev->bypass_count--;
2813
2814                 if (rdev->bypass_count != rdev->open_count) {
2815                         ret = rdev->desc->ops->set_bypass(rdev, enable);
2816                         if (ret != 0)
2817                                 rdev->bypass_count++;
2818                 }
2819         }
2820
2821         if (ret == 0)
2822                 regulator->bypass = enable;
2823
2824         mutex_unlock(&rdev->mutex);
2825
2826         return ret;
2827 }
2828 EXPORT_SYMBOL_GPL(regulator_allow_bypass);
2829
2830 /**
2831  * regulator_register_notifier - register regulator event notifier
2832  * @regulator: regulator source
2833  * @nb: notifier block
2834  *
2835  * Register notifier block to receive regulator events.
2836  */
2837 int regulator_register_notifier(struct regulator *regulator,
2838                               struct notifier_block *nb)
2839 {
2840         return blocking_notifier_chain_register(&regulator->rdev->notifier,
2841                                                 nb);
2842 }
2843 EXPORT_SYMBOL_GPL(regulator_register_notifier);
2844
2845 /**
2846  * regulator_unregister_notifier - unregister regulator event notifier
2847  * @regulator: regulator source
2848  * @nb: notifier block
2849  *
2850  * Unregister regulator event notifier block.
2851  */
2852 int regulator_unregister_notifier(struct regulator *regulator,
2853                                 struct notifier_block *nb)
2854 {
2855         return blocking_notifier_chain_unregister(&regulator->rdev->notifier,
2856                                                   nb);
2857 }
2858 EXPORT_SYMBOL_GPL(regulator_unregister_notifier);
2859
2860 /* notify regulator consumers and downstream regulator consumers.
2861  * Note mutex must be held by caller.
2862  */
2863 static void _notifier_call_chain(struct regulator_dev *rdev,
2864                                   unsigned long event, void *data)
2865 {
2866         /* call rdev chain first */
2867         blocking_notifier_call_chain(&rdev->notifier, event, data);
2868 }
2869
2870 /**
2871  * regulator_bulk_get - get multiple regulator consumers
2872  *
2873  * @dev:           Device to supply
2874  * @num_consumers: Number of consumers to register
2875  * @consumers:     Configuration of consumers; clients are stored here.
2876  *
2877  * @return 0 on success, an errno on failure.
2878  *
2879  * This helper function allows drivers to get several regulator
2880  * consumers in one operation.  If any of the regulators cannot be
2881  * acquired then any regulators that were allocated will be freed
2882  * before returning to the caller.
2883  */
2884 int regulator_bulk_get(struct device *dev, int num_consumers,
2885                        struct regulator_bulk_data *consumers)
2886 {
2887         int i;
2888         int ret;
2889
2890         for (i = 0; i < num_consumers; i++)
2891                 consumers[i].consumer = NULL;
2892
2893         for (i = 0; i < num_consumers; i++) {
2894                 consumers[i].consumer = regulator_get(dev,
2895                                                       consumers[i].supply);
2896                 if (IS_ERR(consumers[i].consumer)) {
2897                         ret = PTR_ERR(consumers[i].consumer);
2898                         dev_err(dev, "Failed to get supply '%s': %d\n",
2899                                 consumers[i].supply, ret);
2900                         consumers[i].consumer = NULL;
2901                         goto err;
2902                 }
2903         }
2904
2905         return 0;
2906
2907 err:
2908         while (--i >= 0)
2909                 regulator_put(consumers[i].consumer);
2910
2911         return ret;
2912 }
2913 EXPORT_SYMBOL_GPL(regulator_bulk_get);
2914
2915 /**
2916  * devm_regulator_bulk_get - managed get multiple regulator consumers
2917  *
2918  * @dev:           Device to supply
2919  * @num_consumers: Number of consumers to register
2920  * @consumers:     Configuration of consumers; clients are stored here.
2921  *
2922  * @return 0 on success, an errno on failure.
2923  *
2924  * This helper function allows drivers to get several regulator
2925  * consumers in one operation with management, the regulators will
2926  * automatically be freed when the device is unbound.  If any of the
2927  * regulators cannot be acquired then any regulators that were
2928  * allocated will be freed before returning to the caller.
2929  */
2930 int devm_regulator_bulk_get(struct device *dev, int num_consumers,
2931                             struct regulator_bulk_data *consumers)
2932 {
2933         int i;
2934         int ret;
2935
2936         for (i = 0; i < num_consumers; i++)
2937                 consumers[i].consumer = NULL;
2938
2939         for (i = 0; i < num_consumers; i++) {
2940                 consumers[i].consumer = devm_regulator_get(dev,
2941                                                            consumers[i].supply);
2942                 if (IS_ERR(consumers[i].consumer)) {
2943                         ret = PTR_ERR(consumers[i].consumer);
2944                         dev_err(dev, "Failed to get supply '%s': %d\n",
2945                                 consumers[i].supply, ret);
2946                         consumers[i].consumer = NULL;
2947                         goto err;
2948                 }
2949         }
2950
2951         return 0;
2952
2953 err:
2954         for (i = 0; i < num_consumers && consumers[i].consumer; i++)
2955                 devm_regulator_put(consumers[i].consumer);
2956
2957         return ret;
2958 }
2959 EXPORT_SYMBOL_GPL(devm_regulator_bulk_get);
2960
2961 static void regulator_bulk_enable_async(void *data, async_cookie_t cookie)
2962 {
2963         struct regulator_bulk_data *bulk = data;
2964
2965         bulk->ret = regulator_enable(bulk->consumer);
2966 }
2967
2968 /**
2969  * regulator_bulk_enable - enable multiple regulator consumers
2970  *
2971  * @num_consumers: Number of consumers
2972  * @consumers:     Consumer data; clients are stored here.
2973  * @return         0 on success, an errno on failure
2974  *
2975  * This convenience API allows consumers to enable multiple regulator
2976  * clients in a single API call.  If any consumers cannot be enabled
2977  * then any others that were enabled will be disabled again prior to
2978  * return.
2979  */
2980 int regulator_bulk_enable(int num_consumers,
2981                           struct regulator_bulk_data *consumers)
2982 {
2983         ASYNC_DOMAIN_EXCLUSIVE(async_domain);
2984         int i;
2985         int ret = 0;
2986
2987         for (i = 0; i < num_consumers; i++) {
2988                 if (consumers[i].consumer->always_on)
2989                         consumers[i].ret = 0;
2990                 else
2991                         async_schedule_domain(regulator_bulk_enable_async,
2992                                               &consumers[i], &async_domain);
2993         }
2994
2995         async_synchronize_full_domain(&async_domain);
2996
2997         /* If any consumer failed we need to unwind any that succeeded */
2998         for (i = 0; i < num_consumers; i++) {
2999                 if (consumers[i].ret != 0) {
3000                         ret = consumers[i].ret;
3001                         goto err;
3002                 }
3003         }
3004
3005         return 0;
3006
3007 err:
3008         for (i = 0; i < num_consumers; i++) {
3009                 if (consumers[i].ret < 0)
3010                         pr_err("Failed to enable %s: %d\n", consumers[i].supply,
3011                                consumers[i].ret);
3012                 else
3013                         regulator_disable(consumers[i].consumer);
3014         }
3015
3016         return ret;
3017 }
3018 EXPORT_SYMBOL_GPL(regulator_bulk_enable);
3019
3020 /**
3021  * regulator_bulk_disable - disable multiple regulator consumers
3022  *
3023  * @num_consumers: Number of consumers
3024  * @consumers:     Consumer data; clients are stored here.
3025  * @return         0 on success, an errno on failure
3026  *
3027  * This convenience API allows consumers to disable multiple regulator
3028  * clients in a single API call.  If any consumers cannot be disabled
3029  * then any others that were disabled will be enabled again prior to
3030  * return.
3031  */
3032 int regulator_bulk_disable(int num_consumers,
3033                            struct regulator_bulk_data *consumers)
3034 {
3035         int i;
3036         int ret, r;
3037
3038         for (i = num_consumers - 1; i >= 0; --i) {
3039                 ret = regulator_disable(consumers[i].consumer);
3040                 if (ret != 0)
3041                         goto err;
3042         }
3043
3044         return 0;
3045
3046 err:
3047         pr_err("Failed to disable %s: %d\n", consumers[i].supply, ret);
3048         for (++i; i < num_consumers; ++i) {
3049                 r = regulator_enable(consumers[i].consumer);
3050                 if (r != 0)
3051                         pr_err("Failed to reename %s: %d\n",
3052                                consumers[i].supply, r);
3053         }
3054
3055         return ret;
3056 }
3057 EXPORT_SYMBOL_GPL(regulator_bulk_disable);
3058
3059 /**
3060  * regulator_bulk_force_disable - force disable multiple regulator consumers
3061  *
3062  * @num_consumers: Number of consumers
3063  * @consumers:     Consumer data; clients are stored here.
3064  * @return         0 on success, an errno on failure
3065  *
3066  * This convenience API allows consumers to forcibly disable multiple regulator
3067  * clients in a single API call.
3068  * NOTE: This should be used for situations when device damage will
3069  * likely occur if the regulators are not disabled (e.g. over temp).
3070  * Although regulator_force_disable function call for some consumers can
3071  * return error numbers, the function is called for all consumers.
3072  */
3073 int regulator_bulk_force_disable(int num_consumers,
3074                            struct regulator_bulk_data *consumers)
3075 {
3076         int i;
3077         int ret;
3078
3079         for (i = 0; i < num_consumers; i++)
3080                 consumers[i].ret =
3081                             regulator_force_disable(consumers[i].consumer);
3082
3083         for (i = 0; i < num_consumers; i++) {
3084                 if (consumers[i].ret != 0) {
3085                         ret = consumers[i].ret;
3086                         goto out;
3087                 }
3088         }
3089
3090         return 0;
3091 out:
3092         return ret;
3093 }
3094 EXPORT_SYMBOL_GPL(regulator_bulk_force_disable);
3095
3096 /**
3097  * regulator_bulk_free - free multiple regulator consumers
3098  *
3099  * @num_consumers: Number of consumers
3100  * @consumers:     Consumer data; clients are stored here.
3101  *
3102  * This convenience API allows consumers to free multiple regulator
3103  * clients in a single API call.
3104  */
3105 void regulator_bulk_free(int num_consumers,
3106                          struct regulator_bulk_data *consumers)
3107 {
3108         int i;
3109
3110         for (i = 0; i < num_consumers; i++) {
3111                 regulator_put(consumers[i].consumer);
3112                 consumers[i].consumer = NULL;
3113         }
3114 }
3115 EXPORT_SYMBOL_GPL(regulator_bulk_free);
3116
3117 /**
3118  * regulator_notifier_call_chain - call regulator event notifier
3119  * @rdev: regulator source
3120  * @event: notifier block
3121  * @data: callback-specific data.
3122  *
3123  * Called by regulator drivers to notify clients a regulator event has
3124  * occurred. We also notify regulator clients downstream.
3125  * Note lock must be held by caller.
3126  */
3127 int regulator_notifier_call_chain(struct regulator_dev *rdev,
3128                                   unsigned long event, void *data)
3129 {
3130         _notifier_call_chain(rdev, event, data);
3131         return NOTIFY_DONE;
3132
3133 }
3134 EXPORT_SYMBOL_GPL(regulator_notifier_call_chain);
3135
3136 /**
3137  * regulator_mode_to_status - convert a regulator mode into a status
3138  *
3139  * @mode: Mode to convert
3140  *
3141  * Convert a regulator mode into a status.
3142  */
3143 int regulator_mode_to_status(unsigned int mode)
3144 {
3145         switch (mode) {
3146         case REGULATOR_MODE_FAST:
3147                 return REGULATOR_STATUS_FAST;
3148         case REGULATOR_MODE_NORMAL:
3149                 return REGULATOR_STATUS_NORMAL;
3150         case REGULATOR_MODE_IDLE:
3151                 return REGULATOR_STATUS_IDLE;
3152         case REGULATOR_MODE_STANDBY:
3153                 return REGULATOR_STATUS_STANDBY;
3154         default:
3155                 return REGULATOR_STATUS_UNDEFINED;
3156         }
3157 }
3158 EXPORT_SYMBOL_GPL(regulator_mode_to_status);
3159
3160 /*
3161  * To avoid cluttering sysfs (and memory) with useless state, only
3162  * create attributes that can be meaningfully displayed.
3163  */
3164 static int add_regulator_attributes(struct regulator_dev *rdev)
3165 {
3166         struct device           *dev = &rdev->dev;
3167         struct regulator_ops    *ops = rdev->desc->ops;
3168         int                     status = 0;
3169
3170         /* some attributes need specific methods to be displayed */
3171         if ((ops->get_voltage && ops->get_voltage(rdev) >= 0) ||
3172             (ops->get_voltage_sel && ops->get_voltage_sel(rdev) >= 0) ||
3173             (ops->list_voltage && ops->list_voltage(rdev, 0) >= 0)) {
3174                 status = device_create_file(dev, &dev_attr_microvolts);
3175                 if (status < 0)
3176                         return status;
3177         }
3178         if (ops->get_current_limit) {
3179                 status = device_create_file(dev, &dev_attr_microamps);
3180                 if (status < 0)
3181                         return status;
3182         }
3183         if (ops->get_mode) {
3184                 status = device_create_file(dev, &dev_attr_opmode);
3185                 if (status < 0)
3186                         return status;
3187         }
3188         if (rdev->ena_pin || ops->is_enabled) {
3189                 status = device_create_file(dev, &dev_attr_state);
3190                 if (status < 0)
3191                         return status;
3192         }
3193         if (ops->get_status) {
3194                 status = device_create_file(dev, &dev_attr_status);
3195                 if (status < 0)
3196                         return status;
3197         }
3198         if (ops->get_bypass) {
3199                 status = device_create_file(dev, &dev_attr_bypass);
3200                 if (status < 0)
3201                         return status;
3202         }
3203
3204         /* some attributes are type-specific */
3205         if (rdev->desc->type == REGULATOR_CURRENT) {
3206                 status = device_create_file(dev, &dev_attr_requested_microamps);
3207                 if (status < 0)
3208                         return status;
3209         }
3210
3211         /* all the other attributes exist to support constraints;
3212          * don't show them if there are no constraints, or if the
3213          * relevant supporting methods are missing.
3214          */
3215         if (!rdev->constraints)
3216                 return status;
3217
3218         /* constraints need specific supporting methods */
3219         if (ops->set_voltage || ops->set_voltage_sel) {
3220                 status = device_create_file(dev, &dev_attr_min_microvolts);
3221                 if (status < 0)
3222                         return status;
3223                 status = device_create_file(dev, &dev_attr_max_microvolts);
3224                 if (status < 0)
3225                         return status;
3226         }
3227         if (ops->set_current_limit) {
3228                 status = device_create_file(dev, &dev_attr_min_microamps);
3229                 if (status < 0)
3230                         return status;
3231                 status = device_create_file(dev, &dev_attr_max_microamps);
3232                 if (status < 0)
3233                         return status;
3234         }
3235
3236         status = device_create_file(dev, &dev_attr_suspend_standby_state);
3237         if (status < 0)
3238                 return status;
3239         status = device_create_file(dev, &dev_attr_suspend_mem_state);
3240         if (status < 0)
3241                 return status;
3242         status = device_create_file(dev, &dev_attr_suspend_disk_state);
3243         if (status < 0)
3244                 return status;
3245
3246         if (ops->set_suspend_voltage) {
3247                 status = device_create_file(dev,
3248                                 &dev_attr_suspend_standby_microvolts);
3249                 if (status < 0)
3250                         return status;
3251                 status = device_create_file(dev,
3252                                 &dev_attr_suspend_mem_microvolts);
3253                 if (status < 0)
3254                         return status;
3255                 status = device_create_file(dev,
3256                                 &dev_attr_suspend_disk_microvolts);
3257                 if (status < 0)
3258                         return status;
3259         }
3260
3261         if (ops->set_suspend_mode) {
3262                 status = device_create_file(dev,
3263                                 &dev_attr_suspend_standby_mode);
3264                 if (status < 0)
3265                         return status;
3266                 status = device_create_file(dev,
3267                                 &dev_attr_suspend_mem_mode);
3268                 if (status < 0)
3269                         return status;
3270                 status = device_create_file(dev,
3271                                 &dev_attr_suspend_disk_mode);
3272                 if (status < 0)
3273                         return status;
3274         }
3275
3276         return status;
3277 }
3278
3279 static void rdev_init_debugfs(struct regulator_dev *rdev)
3280 {
3281         rdev->debugfs = debugfs_create_dir(rdev_get_name(rdev), debugfs_root);
3282         if (!rdev->debugfs) {
3283                 rdev_warn(rdev, "Failed to create debugfs directory\n");
3284                 return;
3285         }
3286
3287         debugfs_create_u32("use_count", 0444, rdev->debugfs,
3288                            &rdev->use_count);
3289         debugfs_create_u32("open_count", 0444, rdev->debugfs,
3290                            &rdev->open_count);
3291         debugfs_create_u32("bypass_count", 0444, rdev->debugfs,
3292                            &rdev->bypass_count);
3293 }
3294
3295 /**
3296  * regulator_register - register regulator
3297  * @regulator_desc: regulator to register
3298  * @config: runtime configuration for regulator
3299  *
3300  * Called by regulator drivers to register a regulator.
3301  * Returns a valid pointer to struct regulator_dev on success
3302  * or an ERR_PTR() on error.
3303  */
3304 struct regulator_dev *
3305 regulator_register(const struct regulator_desc *regulator_desc,
3306                    const struct regulator_config *config)
3307 {
3308         const struct regulation_constraints *constraints = NULL;
3309         const struct regulator_init_data *init_data;
3310         static atomic_t regulator_no = ATOMIC_INIT(0);
3311         struct regulator_dev *rdev;
3312         struct device *dev;
3313         int ret, i;
3314         const char *supply = NULL;
3315
3316         if (regulator_desc == NULL || config == NULL)
3317                 return ERR_PTR(-EINVAL);
3318
3319         dev = config->dev;
3320         WARN_ON(!dev);
3321
3322         if (regulator_desc->name == NULL || regulator_desc->ops == NULL)
3323                 return ERR_PTR(-EINVAL);
3324
3325         if (regulator_desc->type != REGULATOR_VOLTAGE &&
3326             regulator_desc->type != REGULATOR_CURRENT)
3327                 return ERR_PTR(-EINVAL);
3328
3329         /* Only one of each should be implemented */
3330         WARN_ON(regulator_desc->ops->get_voltage &&
3331                 regulator_desc->ops->get_voltage_sel);
3332         WARN_ON(regulator_desc->ops->set_voltage &&
3333                 regulator_desc->ops->set_voltage_sel);
3334
3335         /* If we're using selectors we must implement list_voltage. */
3336         if (regulator_desc->ops->get_voltage_sel &&
3337             !regulator_desc->ops->list_voltage) {
3338                 return ERR_PTR(-EINVAL);
3339         }
3340         if (regulator_desc->ops->set_voltage_sel &&
3341             !regulator_desc->ops->list_voltage) {
3342                 return ERR_PTR(-EINVAL);
3343         }
3344
3345         init_data = config->init_data;
3346
3347         rdev = kzalloc(sizeof(struct regulator_dev), GFP_KERNEL);
3348         if (rdev == NULL)
3349                 return ERR_PTR(-ENOMEM);
3350
3351         mutex_lock(&regulator_list_mutex);
3352
3353         mutex_init(&rdev->mutex);
3354         rdev->reg_data = config->driver_data;
3355         rdev->owner = regulator_desc->owner;
3356         rdev->desc = regulator_desc;
3357         if (config->regmap)
3358                 rdev->regmap = config->regmap;
3359         else if (dev_get_regmap(dev, NULL))
3360                 rdev->regmap = dev_get_regmap(dev, NULL);
3361         else if (dev->parent)
3362                 rdev->regmap = dev_get_regmap(dev->parent, NULL);
3363         INIT_LIST_HEAD(&rdev->consumer_list);
3364         INIT_LIST_HEAD(&rdev->list);
3365         BLOCKING_INIT_NOTIFIER_HEAD(&rdev->notifier);
3366         INIT_DELAYED_WORK(&rdev->disable_work, regulator_disable_work);
3367
3368         /* preform any regulator specific init */
3369         if (init_data && init_data->regulator_init) {
3370                 ret = init_data->regulator_init(rdev->reg_data);
3371                 if (ret < 0)
3372                         goto clean;
3373         }
3374
3375         /* register with sysfs */
3376         rdev->dev.class = &regulator_class;
3377         rdev->dev.of_node = config->of_node;
3378         rdev->dev.parent = dev;
3379         dev_set_name(&rdev->dev, "regulator.%d",
3380                      atomic_inc_return(&regulator_no) - 1);
3381         ret = device_register(&rdev->dev);
3382         if (ret != 0) {
3383                 put_device(&rdev->dev);
3384                 goto clean;
3385         }
3386
3387         dev_set_drvdata(&rdev->dev, rdev);
3388
3389         if (config->ena_gpio && gpio_is_valid(config->ena_gpio)) {
3390                 ret = regulator_ena_gpio_request(rdev, config);
3391                 if (ret != 0) {
3392                         rdev_err(rdev, "Failed to request enable GPIO%d: %d\n",
3393                                  config->ena_gpio, ret);
3394                         goto wash;
3395                 }
3396
3397                 if (config->ena_gpio_flags & GPIOF_OUT_INIT_HIGH)
3398                         rdev->ena_gpio_state = 1;
3399
3400                 if (config->ena_gpio_invert)
3401                         rdev->ena_gpio_state = !rdev->ena_gpio_state;
3402         }
3403
3404         /* set regulator constraints */
3405         if (init_data)
3406                 constraints = &init_data->constraints;
3407
3408         ret = set_machine_constraints(rdev, constraints);
3409         if (ret < 0)
3410                 goto scrub;
3411
3412         /* add attributes supported by this regulator */
3413         ret = add_regulator_attributes(rdev);
3414         if (ret < 0)
3415                 goto scrub;
3416
3417         if (init_data && init_data->supply_regulator)
3418                 supply = init_data->supply_regulator;
3419         else if (regulator_desc->supply_name)
3420                 supply = regulator_desc->supply_name;
3421
3422         if (supply) {
3423                 struct regulator_dev *r;
3424
3425                 r = regulator_dev_lookup(dev, supply, &ret);
3426
3427                 if (ret == -ENODEV) {
3428                         /*
3429                          * No supply was specified for this regulator and
3430                          * there will never be one.
3431                          */
3432                         ret = 0;
3433                         goto add_dev;
3434                 } else if (!r) {
3435                         dev_err(dev, "Failed to find supply %s\n", supply);
3436                         ret = -EPROBE_DEFER;
3437                         goto scrub;
3438                 }
3439
3440                 ret = set_supply(rdev, r);
3441                 if (ret < 0)
3442                         goto scrub;
3443
3444                 /* Enable supply if rail is enabled */
3445                 if (_regulator_is_enabled(rdev)) {
3446                         ret = regulator_enable(rdev->supply);
3447                         if (ret < 0)
3448                                 goto scrub;
3449                 }
3450         }
3451
3452 add_dev:
3453         /* add consumers devices */
3454         if (init_data) {
3455                 for (i = 0; i < init_data->num_consumer_supplies; i++) {
3456                         ret = set_consumer_device_supply(rdev,
3457                                 init_data->consumer_supplies[i].dev_name,
3458                                 init_data->consumer_supplies[i].supply);
3459                         if (ret < 0) {
3460                                 dev_err(dev, "Failed to set supply %s\n",
3461                                         init_data->consumer_supplies[i].supply);
3462                                 goto unset_supplies;
3463                         }
3464                 }
3465         }
3466
3467         list_add(&rdev->list, &regulator_list);
3468
3469         rdev_init_debugfs(rdev);
3470 out:
3471         mutex_unlock(&regulator_list_mutex);
3472         return rdev;
3473
3474 unset_supplies:
3475         unset_regulator_supplies(rdev);
3476
3477 scrub:
3478         if (rdev->supply)
3479                 _regulator_put(rdev->supply);
3480         regulator_ena_gpio_free(rdev);
3481         kfree(rdev->constraints);
3482 wash:
3483         device_unregister(&rdev->dev);
3484         /* device core frees rdev */
3485         rdev = ERR_PTR(ret);
3486         goto out;
3487
3488 clean:
3489         kfree(rdev);
3490         rdev = ERR_PTR(ret);
3491         goto out;
3492 }
3493 EXPORT_SYMBOL_GPL(regulator_register);
3494
3495 /**
3496  * regulator_unregister - unregister regulator
3497  * @rdev: regulator to unregister
3498  *
3499  * Called by regulator drivers to unregister a regulator.
3500  */
3501 void regulator_unregister(struct regulator_dev *rdev)
3502 {
3503         if (rdev == NULL)
3504                 return;
3505
3506         if (rdev->supply) {
3507                 while (rdev->use_count--)
3508                         regulator_disable(rdev->supply);
3509                 regulator_put(rdev->supply);
3510         }
3511         mutex_lock(&regulator_list_mutex);
3512         debugfs_remove_recursive(rdev->debugfs);
3513         flush_work(&rdev->disable_work.work);
3514         WARN_ON(rdev->open_count);
3515         unset_regulator_supplies(rdev);
3516         list_del(&rdev->list);
3517         kfree(rdev->constraints);
3518         regulator_ena_gpio_free(rdev);
3519         device_unregister(&rdev->dev);
3520         mutex_unlock(&regulator_list_mutex);
3521 }
3522 EXPORT_SYMBOL_GPL(regulator_unregister);
3523
3524 /**
3525  * regulator_suspend_prepare - prepare regulators for system wide suspend
3526  * @state: system suspend state
3527  *
3528  * Configure each regulator with it's suspend operating parameters for state.
3529  * This will usually be called by machine suspend code prior to supending.
3530  */
3531 int regulator_suspend_prepare(suspend_state_t state)
3532 {
3533         struct regulator_dev *rdev;
3534         int ret = 0;
3535
3536         /* ON is handled by regulator active state */
3537         if (state == PM_SUSPEND_ON)
3538                 return -EINVAL;
3539
3540         mutex_lock(&regulator_list_mutex);
3541         list_for_each_entry(rdev, &regulator_list, list) {
3542
3543                 mutex_lock(&rdev->mutex);
3544                 ret = suspend_prepare(rdev, state);
3545                 mutex_unlock(&rdev->mutex);
3546
3547                 if (ret < 0) {
3548                         rdev_err(rdev, "failed to prepare\n");
3549                         goto out;
3550                 }
3551         }
3552 out:
3553         mutex_unlock(&regulator_list_mutex);
3554         return ret;
3555 }
3556 EXPORT_SYMBOL_GPL(regulator_suspend_prepare);
3557
3558 /**
3559  * regulator_suspend_finish - resume regulators from system wide suspend
3560  *
3561  * Turn on regulators that might be turned off by regulator_suspend_prepare
3562  * and that should be turned on according to the regulators properties.
3563  */
3564 int regulator_suspend_finish(void)
3565 {
3566         struct regulator_dev *rdev;
3567         int ret = 0, error;
3568
3569         mutex_lock(&regulator_list_mutex);
3570         list_for_each_entry(rdev, &regulator_list, list) {
3571                 struct regulator_ops *ops = rdev->desc->ops;
3572
3573                 mutex_lock(&rdev->mutex);
3574                 if ((rdev->use_count > 0  || rdev->constraints->always_on) &&
3575                                 ops->enable) {
3576                         error = ops->enable(rdev);
3577                         if (error)
3578                                 ret = error;
3579                 } else {
3580                         if (!has_full_constraints)
3581                                 goto unlock;
3582                         if (!ops->disable)
3583                                 goto unlock;
3584                         if (!_regulator_is_enabled(rdev))
3585                                 goto unlock;
3586
3587                         error = ops->disable(rdev);
3588                         if (error)
3589                                 ret = error;
3590                 }
3591 unlock:
3592                 mutex_unlock(&rdev->mutex);
3593         }
3594         mutex_unlock(&regulator_list_mutex);
3595         return ret;
3596 }
3597 EXPORT_SYMBOL_GPL(regulator_suspend_finish);
3598
3599 /**
3600  * regulator_has_full_constraints - the system has fully specified constraints
3601  *
3602  * Calling this function will cause the regulator API to disable all
3603  * regulators which have a zero use count and don't have an always_on
3604  * constraint in a late_initcall.
3605  *
3606  * The intention is that this will become the default behaviour in a
3607  * future kernel release so users are encouraged to use this facility
3608  * now.
3609  */
3610 void regulator_has_full_constraints(void)
3611 {
3612         has_full_constraints = 1;
3613 }
3614 EXPORT_SYMBOL_GPL(regulator_has_full_constraints);
3615
3616 /**
3617  * regulator_use_dummy_regulator - Provide a dummy regulator when none is found
3618  *
3619  * Calling this function will cause the regulator API to provide a
3620  * dummy regulator to consumers if no physical regulator is found,
3621  * allowing most consumers to proceed as though a regulator were
3622  * configured.  This allows systems such as those with software
3623  * controllable regulators for the CPU core only to be brought up more
3624  * readily.
3625  */
3626 void regulator_use_dummy_regulator(void)
3627 {
3628         board_wants_dummy_regulator = true;
3629 }
3630 EXPORT_SYMBOL_GPL(regulator_use_dummy_regulator);
3631
3632 /**
3633  * rdev_get_drvdata - get rdev regulator driver data
3634  * @rdev: regulator
3635  *
3636  * Get rdev regulator driver private data. This call can be used in the
3637  * regulator driver context.
3638  */
3639 void *rdev_get_drvdata(struct regulator_dev *rdev)
3640 {
3641         return rdev->reg_data;
3642 }
3643 EXPORT_SYMBOL_GPL(rdev_get_drvdata);
3644
3645 /**
3646  * regulator_get_drvdata - get regulator driver data
3647  * @regulator: regulator
3648  *
3649  * Get regulator driver private data. This call can be used in the consumer
3650  * driver context when non API regulator specific functions need to be called.
3651  */
3652 void *regulator_get_drvdata(struct regulator *regulator)
3653 {
3654         return regulator->rdev->reg_data;
3655 }
3656 EXPORT_SYMBOL_GPL(regulator_get_drvdata);
3657
3658 /**
3659  * regulator_set_drvdata - set regulator driver data
3660  * @regulator: regulator
3661  * @data: data
3662  */
3663 void regulator_set_drvdata(struct regulator *regulator, void *data)
3664 {
3665         regulator->rdev->reg_data = data;
3666 }
3667 EXPORT_SYMBOL_GPL(regulator_set_drvdata);
3668
3669 /**
3670  * regulator_get_id - get regulator ID
3671  * @rdev: regulator
3672  */
3673 int rdev_get_id(struct regulator_dev *rdev)
3674 {
3675         return rdev->desc->id;
3676 }
3677 EXPORT_SYMBOL_GPL(rdev_get_id);
3678
3679 struct device *rdev_get_dev(struct regulator_dev *rdev)
3680 {
3681         return &rdev->dev;
3682 }
3683 EXPORT_SYMBOL_GPL(rdev_get_dev);
3684
3685 void *regulator_get_init_drvdata(struct regulator_init_data *reg_init_data)
3686 {
3687         return reg_init_data->driver_data;
3688 }
3689 EXPORT_SYMBOL_GPL(regulator_get_init_drvdata);
3690
3691 #ifdef CONFIG_DEBUG_FS
3692 static ssize_t supply_map_read_file(struct file *file, char __user *user_buf,
3693                                     size_t count, loff_t *ppos)
3694 {
3695         char *buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
3696         ssize_t len, ret = 0;
3697         struct regulator_map *map;
3698
3699         if (!buf)
3700                 return -ENOMEM;
3701
3702         list_for_each_entry(map, &regulator_map_list, list) {
3703                 len = snprintf(buf + ret, PAGE_SIZE - ret,
3704                                "%s -> %s.%s\n",
3705                                rdev_get_name(map->regulator), map->dev_name,
3706                                map->supply);
3707                 if (len >= 0)
3708                         ret += len;
3709                 if (ret > PAGE_SIZE) {
3710                         ret = PAGE_SIZE;
3711                         break;
3712                 }
3713         }
3714
3715         ret = simple_read_from_buffer(user_buf, count, ppos, buf, ret);
3716
3717         kfree(buf);
3718
3719         return ret;
3720 }
3721 #endif
3722
3723 static const struct file_operations supply_map_fops = {
3724 #ifdef CONFIG_DEBUG_FS
3725         .read = supply_map_read_file,
3726         .llseek = default_llseek,
3727 #endif
3728 };
3729
3730 static int __init regulator_init(void)
3731 {
3732         int ret;
3733
3734         ret = class_register(&regulator_class);
3735
3736         debugfs_root = debugfs_create_dir("regulator", NULL);
3737         if (!debugfs_root)
3738                 pr_warn("regulator: Failed to create debugfs directory\n");
3739
3740         debugfs_create_file("supply_map", 0444, debugfs_root, NULL,
3741                             &supply_map_fops);
3742
3743         regulator_dummy_init();
3744
3745         return ret;
3746 }
3747
3748 /* init early to allow our consumers to complete system booting */
3749 core_initcall(regulator_init);
3750
3751 static int __init regulator_init_complete(void)
3752 {
3753         struct regulator_dev *rdev;
3754         struct regulator_ops *ops;
3755         struct regulation_constraints *c;
3756         int enabled, ret;
3757
3758         /*
3759          * Since DT doesn't provide an idiomatic mechanism for
3760          * enabling full constraints and since it's much more natural
3761          * with DT to provide them just assume that a DT enabled
3762          * system has full constraints.
3763          */
3764         if (of_have_populated_dt())
3765                 has_full_constraints = true;
3766
3767         mutex_lock(&regulator_list_mutex);
3768
3769         /* If we have a full configuration then disable any regulators
3770          * which are not in use or always_on.  This will become the
3771          * default behaviour in the future.
3772          */
3773         list_for_each_entry(rdev, &regulator_list, list) {
3774                 ops = rdev->desc->ops;
3775                 c = rdev->constraints;
3776
3777                 if (!ops->disable || (c && c->always_on))
3778                         continue;
3779
3780                 mutex_lock(&rdev->mutex);
3781
3782                 if (rdev->use_count)
3783                         goto unlock;
3784
3785                 /* If we can't read the status assume it's on. */
3786                 if (ops->is_enabled)
3787                         enabled = ops->is_enabled(rdev);
3788                 else
3789                         enabled = 1;
3790
3791                 if (!enabled)
3792                         goto unlock;
3793
3794                 if (has_full_constraints) {
3795                         /* We log since this may kill the system if it
3796                          * goes wrong. */
3797                         rdev_info(rdev, "disabling\n");
3798                         ret = ops->disable(rdev);
3799                         if (ret != 0) {
3800                                 rdev_err(rdev, "couldn't disable: %d\n", ret);
3801                         }
3802                 } else {
3803                         /* The intention is that in future we will
3804                          * assume that full constraints are provided
3805                          * so warn even if we aren't going to do
3806                          * anything here.
3807                          */
3808                         rdev_warn(rdev, "incomplete constraints, leaving on\n");
3809                 }
3810
3811 unlock:
3812                 mutex_unlock(&rdev->mutex);
3813         }
3814
3815         mutex_unlock(&regulator_list_mutex);
3816
3817         return 0;
3818 }
3819 late_initcall(regulator_init_complete);