Merge remote-tracking branches 'regulator/topic/da9211', 'regulator/topic/getreg...
[cascardo/linux.git] / drivers / regulator / core.c
1 /*
2  * core.c  --  Voltage/Current Regulator framework.
3  *
4  * Copyright 2007, 2008 Wolfson Microelectronics PLC.
5  * Copyright 2008 SlimLogic Ltd.
6  *
7  * Author: Liam Girdwood <lrg@slimlogic.co.uk>
8  *
9  *  This program is free software; you can redistribute  it and/or modify it
10  *  under  the terms of  the GNU General  Public License as published by the
11  *  Free Software Foundation;  either version 2 of the  License, or (at your
12  *  option) any later version.
13  *
14  */
15
16 #include <linux/kernel.h>
17 #include <linux/init.h>
18 #include <linux/debugfs.h>
19 #include <linux/device.h>
20 #include <linux/slab.h>
21 #include <linux/async.h>
22 #include <linux/err.h>
23 #include <linux/mutex.h>
24 #include <linux/suspend.h>
25 #include <linux/delay.h>
26 #include <linux/gpio.h>
27 #include <linux/gpio/consumer.h>
28 #include <linux/of.h>
29 #include <linux/regmap.h>
30 #include <linux/regulator/of_regulator.h>
31 #include <linux/regulator/consumer.h>
32 #include <linux/regulator/driver.h>
33 #include <linux/regulator/machine.h>
34 #include <linux/module.h>
35
36 #define CREATE_TRACE_POINTS
37 #include <trace/events/regulator.h>
38
39 #include "dummy.h"
40 #include "internal.h"
41
42 #define rdev_crit(rdev, fmt, ...)                                       \
43         pr_crit("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
44 #define rdev_err(rdev, fmt, ...)                                        \
45         pr_err("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
46 #define rdev_warn(rdev, fmt, ...)                                       \
47         pr_warn("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
48 #define rdev_info(rdev, fmt, ...)                                       \
49         pr_info("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
50 #define rdev_dbg(rdev, fmt, ...)                                        \
51         pr_debug("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
52
53 static DEFINE_MUTEX(regulator_list_mutex);
54 static LIST_HEAD(regulator_list);
55 static LIST_HEAD(regulator_map_list);
56 static LIST_HEAD(regulator_ena_gpio_list);
57 static LIST_HEAD(regulator_supply_alias_list);
58 static bool has_full_constraints;
59
60 static struct dentry *debugfs_root;
61
62 /*
63  * struct regulator_map
64  *
65  * Used to provide symbolic supply names to devices.
66  */
67 struct regulator_map {
68         struct list_head list;
69         const char *dev_name;   /* The dev_name() for the consumer */
70         const char *supply;
71         struct regulator_dev *regulator;
72 };
73
74 /*
75  * struct regulator_enable_gpio
76  *
77  * Management for shared enable GPIO pin
78  */
79 struct regulator_enable_gpio {
80         struct list_head list;
81         struct gpio_desc *gpiod;
82         u32 enable_count;       /* a number of enabled shared GPIO */
83         u32 request_count;      /* a number of requested shared GPIO */
84         unsigned int ena_gpio_invert:1;
85 };
86
87 /*
88  * struct regulator_supply_alias
89  *
90  * Used to map lookups for a supply onto an alternative device.
91  */
92 struct regulator_supply_alias {
93         struct list_head list;
94         struct device *src_dev;
95         const char *src_supply;
96         struct device *alias_dev;
97         const char *alias_supply;
98 };
99
100 static int _regulator_is_enabled(struct regulator_dev *rdev);
101 static int _regulator_disable(struct regulator_dev *rdev);
102 static int _regulator_get_voltage(struct regulator_dev *rdev);
103 static int _regulator_get_current_limit(struct regulator_dev *rdev);
104 static unsigned int _regulator_get_mode(struct regulator_dev *rdev);
105 static void _notifier_call_chain(struct regulator_dev *rdev,
106                                   unsigned long event, void *data);
107 static int _regulator_do_set_voltage(struct regulator_dev *rdev,
108                                      int min_uV, int max_uV);
109 static struct regulator *create_regulator(struct regulator_dev *rdev,
110                                           struct device *dev,
111                                           const char *supply_name);
112
113 static const char *rdev_get_name(struct regulator_dev *rdev)
114 {
115         if (rdev->constraints && rdev->constraints->name)
116                 return rdev->constraints->name;
117         else if (rdev->desc->name)
118                 return rdev->desc->name;
119         else
120                 return "";
121 }
122
123 static bool have_full_constraints(void)
124 {
125         return has_full_constraints || of_have_populated_dt();
126 }
127
128 /**
129  * of_get_regulator - get a regulator device node based on supply name
130  * @dev: Device pointer for the consumer (of regulator) device
131  * @supply: regulator supply name
132  *
133  * Extract the regulator device node corresponding to the supply name.
134  * returns the device node corresponding to the regulator if found, else
135  * returns NULL.
136  */
137 static struct device_node *of_get_regulator(struct device *dev, const char *supply)
138 {
139         struct device_node *regnode = NULL;
140         char prop_name[32]; /* 32 is max size of property name */
141
142         dev_dbg(dev, "Looking up %s-supply from device tree\n", supply);
143
144         snprintf(prop_name, 32, "%s-supply", supply);
145         regnode = of_parse_phandle(dev->of_node, prop_name, 0);
146
147         if (!regnode) {
148                 dev_dbg(dev, "Looking up %s property in node %s failed",
149                                 prop_name, dev->of_node->full_name);
150                 return NULL;
151         }
152         return regnode;
153 }
154
155 static int _regulator_can_change_status(struct regulator_dev *rdev)
156 {
157         if (!rdev->constraints)
158                 return 0;
159
160         if (rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_STATUS)
161                 return 1;
162         else
163                 return 0;
164 }
165
166 /* Platform voltage constraint check */
167 static int regulator_check_voltage(struct regulator_dev *rdev,
168                                    int *min_uV, int *max_uV)
169 {
170         BUG_ON(*min_uV > *max_uV);
171
172         if (!rdev->constraints) {
173                 rdev_err(rdev, "no constraints\n");
174                 return -ENODEV;
175         }
176         if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE)) {
177                 rdev_err(rdev, "operation not allowed\n");
178                 return -EPERM;
179         }
180
181         if (*max_uV > rdev->constraints->max_uV)
182                 *max_uV = rdev->constraints->max_uV;
183         if (*min_uV < rdev->constraints->min_uV)
184                 *min_uV = rdev->constraints->min_uV;
185
186         if (*min_uV > *max_uV) {
187                 rdev_err(rdev, "unsupportable voltage range: %d-%duV\n",
188                          *min_uV, *max_uV);
189                 return -EINVAL;
190         }
191
192         return 0;
193 }
194
195 /* Make sure we select a voltage that suits the needs of all
196  * regulator consumers
197  */
198 static int regulator_check_consumers(struct regulator_dev *rdev,
199                                      int *min_uV, int *max_uV)
200 {
201         struct regulator *regulator;
202
203         list_for_each_entry(regulator, &rdev->consumer_list, list) {
204                 /*
205                  * Assume consumers that didn't say anything are OK
206                  * with anything in the constraint range.
207                  */
208                 if (!regulator->min_uV && !regulator->max_uV)
209                         continue;
210
211                 if (*max_uV > regulator->max_uV)
212                         *max_uV = regulator->max_uV;
213                 if (*min_uV < regulator->min_uV)
214                         *min_uV = regulator->min_uV;
215         }
216
217         if (*min_uV > *max_uV) {
218                 rdev_err(rdev, "Restricting voltage, %u-%uuV\n",
219                         *min_uV, *max_uV);
220                 return -EINVAL;
221         }
222
223         return 0;
224 }
225
226 /* current constraint check */
227 static int regulator_check_current_limit(struct regulator_dev *rdev,
228                                         int *min_uA, int *max_uA)
229 {
230         BUG_ON(*min_uA > *max_uA);
231
232         if (!rdev->constraints) {
233                 rdev_err(rdev, "no constraints\n");
234                 return -ENODEV;
235         }
236         if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_CURRENT)) {
237                 rdev_err(rdev, "operation not allowed\n");
238                 return -EPERM;
239         }
240
241         if (*max_uA > rdev->constraints->max_uA)
242                 *max_uA = rdev->constraints->max_uA;
243         if (*min_uA < rdev->constraints->min_uA)
244                 *min_uA = rdev->constraints->min_uA;
245
246         if (*min_uA > *max_uA) {
247                 rdev_err(rdev, "unsupportable current range: %d-%duA\n",
248                          *min_uA, *max_uA);
249                 return -EINVAL;
250         }
251
252         return 0;
253 }
254
255 /* operating mode constraint check */
256 static int regulator_mode_constrain(struct regulator_dev *rdev, int *mode)
257 {
258         switch (*mode) {
259         case REGULATOR_MODE_FAST:
260         case REGULATOR_MODE_NORMAL:
261         case REGULATOR_MODE_IDLE:
262         case REGULATOR_MODE_STANDBY:
263                 break;
264         default:
265                 rdev_err(rdev, "invalid mode %x specified\n", *mode);
266                 return -EINVAL;
267         }
268
269         if (!rdev->constraints) {
270                 rdev_err(rdev, "no constraints\n");
271                 return -ENODEV;
272         }
273         if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_MODE)) {
274                 rdev_err(rdev, "operation not allowed\n");
275                 return -EPERM;
276         }
277
278         /* The modes are bitmasks, the most power hungry modes having
279          * the lowest values. If the requested mode isn't supported
280          * try higher modes. */
281         while (*mode) {
282                 if (rdev->constraints->valid_modes_mask & *mode)
283                         return 0;
284                 *mode /= 2;
285         }
286
287         return -EINVAL;
288 }
289
290 /* dynamic regulator mode switching constraint check */
291 static int regulator_check_drms(struct regulator_dev *rdev)
292 {
293         if (!rdev->constraints) {
294                 rdev_err(rdev, "no constraints\n");
295                 return -ENODEV;
296         }
297         if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_DRMS)) {
298                 rdev_err(rdev, "operation not allowed\n");
299                 return -EPERM;
300         }
301         return 0;
302 }
303
304 static ssize_t regulator_uV_show(struct device *dev,
305                                 struct device_attribute *attr, char *buf)
306 {
307         struct regulator_dev *rdev = dev_get_drvdata(dev);
308         ssize_t ret;
309
310         mutex_lock(&rdev->mutex);
311         ret = sprintf(buf, "%d\n", _regulator_get_voltage(rdev));
312         mutex_unlock(&rdev->mutex);
313
314         return ret;
315 }
316 static DEVICE_ATTR(microvolts, 0444, regulator_uV_show, NULL);
317
318 static ssize_t regulator_uA_show(struct device *dev,
319                                 struct device_attribute *attr, char *buf)
320 {
321         struct regulator_dev *rdev = dev_get_drvdata(dev);
322
323         return sprintf(buf, "%d\n", _regulator_get_current_limit(rdev));
324 }
325 static DEVICE_ATTR(microamps, 0444, regulator_uA_show, NULL);
326
327 static ssize_t name_show(struct device *dev, struct device_attribute *attr,
328                          char *buf)
329 {
330         struct regulator_dev *rdev = dev_get_drvdata(dev);
331
332         return sprintf(buf, "%s\n", rdev_get_name(rdev));
333 }
334 static DEVICE_ATTR_RO(name);
335
336 static ssize_t regulator_print_opmode(char *buf, int mode)
337 {
338         switch (mode) {
339         case REGULATOR_MODE_FAST:
340                 return sprintf(buf, "fast\n");
341         case REGULATOR_MODE_NORMAL:
342                 return sprintf(buf, "normal\n");
343         case REGULATOR_MODE_IDLE:
344                 return sprintf(buf, "idle\n");
345         case REGULATOR_MODE_STANDBY:
346                 return sprintf(buf, "standby\n");
347         }
348         return sprintf(buf, "unknown\n");
349 }
350
351 static ssize_t regulator_opmode_show(struct device *dev,
352                                     struct device_attribute *attr, char *buf)
353 {
354         struct regulator_dev *rdev = dev_get_drvdata(dev);
355
356         return regulator_print_opmode(buf, _regulator_get_mode(rdev));
357 }
358 static DEVICE_ATTR(opmode, 0444, regulator_opmode_show, NULL);
359
360 static ssize_t regulator_print_state(char *buf, int state)
361 {
362         if (state > 0)
363                 return sprintf(buf, "enabled\n");
364         else if (state == 0)
365                 return sprintf(buf, "disabled\n");
366         else
367                 return sprintf(buf, "unknown\n");
368 }
369
370 static ssize_t regulator_state_show(struct device *dev,
371                                    struct device_attribute *attr, char *buf)
372 {
373         struct regulator_dev *rdev = dev_get_drvdata(dev);
374         ssize_t ret;
375
376         mutex_lock(&rdev->mutex);
377         ret = regulator_print_state(buf, _regulator_is_enabled(rdev));
378         mutex_unlock(&rdev->mutex);
379
380         return ret;
381 }
382 static DEVICE_ATTR(state, 0444, regulator_state_show, NULL);
383
384 static ssize_t regulator_status_show(struct device *dev,
385                                    struct device_attribute *attr, char *buf)
386 {
387         struct regulator_dev *rdev = dev_get_drvdata(dev);
388         int status;
389         char *label;
390
391         status = rdev->desc->ops->get_status(rdev);
392         if (status < 0)
393                 return status;
394
395         switch (status) {
396         case REGULATOR_STATUS_OFF:
397                 label = "off";
398                 break;
399         case REGULATOR_STATUS_ON:
400                 label = "on";
401                 break;
402         case REGULATOR_STATUS_ERROR:
403                 label = "error";
404                 break;
405         case REGULATOR_STATUS_FAST:
406                 label = "fast";
407                 break;
408         case REGULATOR_STATUS_NORMAL:
409                 label = "normal";
410                 break;
411         case REGULATOR_STATUS_IDLE:
412                 label = "idle";
413                 break;
414         case REGULATOR_STATUS_STANDBY:
415                 label = "standby";
416                 break;
417         case REGULATOR_STATUS_BYPASS:
418                 label = "bypass";
419                 break;
420         case REGULATOR_STATUS_UNDEFINED:
421                 label = "undefined";
422                 break;
423         default:
424                 return -ERANGE;
425         }
426
427         return sprintf(buf, "%s\n", label);
428 }
429 static DEVICE_ATTR(status, 0444, regulator_status_show, NULL);
430
431 static ssize_t regulator_min_uA_show(struct device *dev,
432                                     struct device_attribute *attr, char *buf)
433 {
434         struct regulator_dev *rdev = dev_get_drvdata(dev);
435
436         if (!rdev->constraints)
437                 return sprintf(buf, "constraint not defined\n");
438
439         return sprintf(buf, "%d\n", rdev->constraints->min_uA);
440 }
441 static DEVICE_ATTR(min_microamps, 0444, regulator_min_uA_show, NULL);
442
443 static ssize_t regulator_max_uA_show(struct device *dev,
444                                     struct device_attribute *attr, char *buf)
445 {
446         struct regulator_dev *rdev = dev_get_drvdata(dev);
447
448         if (!rdev->constraints)
449                 return sprintf(buf, "constraint not defined\n");
450
451         return sprintf(buf, "%d\n", rdev->constraints->max_uA);
452 }
453 static DEVICE_ATTR(max_microamps, 0444, regulator_max_uA_show, NULL);
454
455 static ssize_t regulator_min_uV_show(struct device *dev,
456                                     struct device_attribute *attr, char *buf)
457 {
458         struct regulator_dev *rdev = dev_get_drvdata(dev);
459
460         if (!rdev->constraints)
461                 return sprintf(buf, "constraint not defined\n");
462
463         return sprintf(buf, "%d\n", rdev->constraints->min_uV);
464 }
465 static DEVICE_ATTR(min_microvolts, 0444, regulator_min_uV_show, NULL);
466
467 static ssize_t regulator_max_uV_show(struct device *dev,
468                                     struct device_attribute *attr, char *buf)
469 {
470         struct regulator_dev *rdev = dev_get_drvdata(dev);
471
472         if (!rdev->constraints)
473                 return sprintf(buf, "constraint not defined\n");
474
475         return sprintf(buf, "%d\n", rdev->constraints->max_uV);
476 }
477 static DEVICE_ATTR(max_microvolts, 0444, regulator_max_uV_show, NULL);
478
479 static ssize_t regulator_total_uA_show(struct device *dev,
480                                       struct device_attribute *attr, char *buf)
481 {
482         struct regulator_dev *rdev = dev_get_drvdata(dev);
483         struct regulator *regulator;
484         int uA = 0;
485
486         mutex_lock(&rdev->mutex);
487         list_for_each_entry(regulator, &rdev->consumer_list, list)
488                 uA += regulator->uA_load;
489         mutex_unlock(&rdev->mutex);
490         return sprintf(buf, "%d\n", uA);
491 }
492 static DEVICE_ATTR(requested_microamps, 0444, regulator_total_uA_show, NULL);
493
494 static ssize_t num_users_show(struct device *dev, struct device_attribute *attr,
495                               char *buf)
496 {
497         struct regulator_dev *rdev = dev_get_drvdata(dev);
498         return sprintf(buf, "%d\n", rdev->use_count);
499 }
500 static DEVICE_ATTR_RO(num_users);
501
502 static ssize_t type_show(struct device *dev, struct device_attribute *attr,
503                          char *buf)
504 {
505         struct regulator_dev *rdev = dev_get_drvdata(dev);
506
507         switch (rdev->desc->type) {
508         case REGULATOR_VOLTAGE:
509                 return sprintf(buf, "voltage\n");
510         case REGULATOR_CURRENT:
511                 return sprintf(buf, "current\n");
512         }
513         return sprintf(buf, "unknown\n");
514 }
515 static DEVICE_ATTR_RO(type);
516
517 static ssize_t regulator_suspend_mem_uV_show(struct device *dev,
518                                 struct device_attribute *attr, char *buf)
519 {
520         struct regulator_dev *rdev = dev_get_drvdata(dev);
521
522         return sprintf(buf, "%d\n", rdev->constraints->state_mem.uV);
523 }
524 static DEVICE_ATTR(suspend_mem_microvolts, 0444,
525                 regulator_suspend_mem_uV_show, NULL);
526
527 static ssize_t regulator_suspend_disk_uV_show(struct device *dev,
528                                 struct device_attribute *attr, char *buf)
529 {
530         struct regulator_dev *rdev = dev_get_drvdata(dev);
531
532         return sprintf(buf, "%d\n", rdev->constraints->state_disk.uV);
533 }
534 static DEVICE_ATTR(suspend_disk_microvolts, 0444,
535                 regulator_suspend_disk_uV_show, NULL);
536
537 static ssize_t regulator_suspend_standby_uV_show(struct device *dev,
538                                 struct device_attribute *attr, char *buf)
539 {
540         struct regulator_dev *rdev = dev_get_drvdata(dev);
541
542         return sprintf(buf, "%d\n", rdev->constraints->state_standby.uV);
543 }
544 static DEVICE_ATTR(suspend_standby_microvolts, 0444,
545                 regulator_suspend_standby_uV_show, NULL);
546
547 static ssize_t regulator_suspend_mem_mode_show(struct device *dev,
548                                 struct device_attribute *attr, char *buf)
549 {
550         struct regulator_dev *rdev = dev_get_drvdata(dev);
551
552         return regulator_print_opmode(buf,
553                 rdev->constraints->state_mem.mode);
554 }
555 static DEVICE_ATTR(suspend_mem_mode, 0444,
556                 regulator_suspend_mem_mode_show, NULL);
557
558 static ssize_t regulator_suspend_disk_mode_show(struct device *dev,
559                                 struct device_attribute *attr, char *buf)
560 {
561         struct regulator_dev *rdev = dev_get_drvdata(dev);
562
563         return regulator_print_opmode(buf,
564                 rdev->constraints->state_disk.mode);
565 }
566 static DEVICE_ATTR(suspend_disk_mode, 0444,
567                 regulator_suspend_disk_mode_show, NULL);
568
569 static ssize_t regulator_suspend_standby_mode_show(struct device *dev,
570                                 struct device_attribute *attr, char *buf)
571 {
572         struct regulator_dev *rdev = dev_get_drvdata(dev);
573
574         return regulator_print_opmode(buf,
575                 rdev->constraints->state_standby.mode);
576 }
577 static DEVICE_ATTR(suspend_standby_mode, 0444,
578                 regulator_suspend_standby_mode_show, NULL);
579
580 static ssize_t regulator_suspend_mem_state_show(struct device *dev,
581                                    struct device_attribute *attr, char *buf)
582 {
583         struct regulator_dev *rdev = dev_get_drvdata(dev);
584
585         return regulator_print_state(buf,
586                         rdev->constraints->state_mem.enabled);
587 }
588 static DEVICE_ATTR(suspend_mem_state, 0444,
589                 regulator_suspend_mem_state_show, NULL);
590
591 static ssize_t regulator_suspend_disk_state_show(struct device *dev,
592                                    struct device_attribute *attr, char *buf)
593 {
594         struct regulator_dev *rdev = dev_get_drvdata(dev);
595
596         return regulator_print_state(buf,
597                         rdev->constraints->state_disk.enabled);
598 }
599 static DEVICE_ATTR(suspend_disk_state, 0444,
600                 regulator_suspend_disk_state_show, NULL);
601
602 static ssize_t regulator_suspend_standby_state_show(struct device *dev,
603                                    struct device_attribute *attr, char *buf)
604 {
605         struct regulator_dev *rdev = dev_get_drvdata(dev);
606
607         return regulator_print_state(buf,
608                         rdev->constraints->state_standby.enabled);
609 }
610 static DEVICE_ATTR(suspend_standby_state, 0444,
611                 regulator_suspend_standby_state_show, NULL);
612
613 static ssize_t regulator_bypass_show(struct device *dev,
614                                      struct device_attribute *attr, char *buf)
615 {
616         struct regulator_dev *rdev = dev_get_drvdata(dev);
617         const char *report;
618         bool bypass;
619         int ret;
620
621         ret = rdev->desc->ops->get_bypass(rdev, &bypass);
622
623         if (ret != 0)
624                 report = "unknown";
625         else if (bypass)
626                 report = "enabled";
627         else
628                 report = "disabled";
629
630         return sprintf(buf, "%s\n", report);
631 }
632 static DEVICE_ATTR(bypass, 0444,
633                    regulator_bypass_show, NULL);
634
635 /*
636  * These are the only attributes are present for all regulators.
637  * Other attributes are a function of regulator functionality.
638  */
639 static struct attribute *regulator_dev_attrs[] = {
640         &dev_attr_name.attr,
641         &dev_attr_num_users.attr,
642         &dev_attr_type.attr,
643         NULL,
644 };
645 ATTRIBUTE_GROUPS(regulator_dev);
646
647 static void regulator_dev_release(struct device *dev)
648 {
649         struct regulator_dev *rdev = dev_get_drvdata(dev);
650         kfree(rdev);
651 }
652
653 static struct class regulator_class = {
654         .name = "regulator",
655         .dev_release = regulator_dev_release,
656         .dev_groups = regulator_dev_groups,
657 };
658
659 /* Calculate the new optimum regulator operating mode based on the new total
660  * consumer load. All locks held by caller */
661 static void drms_uA_update(struct regulator_dev *rdev)
662 {
663         struct regulator *sibling;
664         int current_uA = 0, output_uV, input_uV, err;
665         unsigned int mode;
666
667         err = regulator_check_drms(rdev);
668         if (err < 0 || !rdev->desc->ops->get_optimum_mode ||
669             (!rdev->desc->ops->get_voltage &&
670              !rdev->desc->ops->get_voltage_sel) ||
671             !rdev->desc->ops->set_mode)
672                 return;
673
674         /* get output voltage */
675         output_uV = _regulator_get_voltage(rdev);
676         if (output_uV <= 0)
677                 return;
678
679         /* get input voltage */
680         input_uV = 0;
681         if (rdev->supply)
682                 input_uV = regulator_get_voltage(rdev->supply);
683         if (input_uV <= 0)
684                 input_uV = rdev->constraints->input_uV;
685         if (input_uV <= 0)
686                 return;
687
688         /* calc total requested load */
689         list_for_each_entry(sibling, &rdev->consumer_list, list)
690                 current_uA += sibling->uA_load;
691
692         /* now get the optimum mode for our new total regulator load */
693         mode = rdev->desc->ops->get_optimum_mode(rdev, input_uV,
694                                                   output_uV, current_uA);
695
696         /* check the new mode is allowed */
697         err = regulator_mode_constrain(rdev, &mode);
698         if (err == 0)
699                 rdev->desc->ops->set_mode(rdev, mode);
700 }
701
702 static int suspend_set_state(struct regulator_dev *rdev,
703         struct regulator_state *rstate)
704 {
705         int ret = 0;
706
707         /* If we have no suspend mode configration don't set anything;
708          * only warn if the driver implements set_suspend_voltage or
709          * set_suspend_mode callback.
710          */
711         if (!rstate->enabled && !rstate->disabled) {
712                 if (rdev->desc->ops->set_suspend_voltage ||
713                     rdev->desc->ops->set_suspend_mode)
714                         rdev_warn(rdev, "No configuration\n");
715                 return 0;
716         }
717
718         if (rstate->enabled && rstate->disabled) {
719                 rdev_err(rdev, "invalid configuration\n");
720                 return -EINVAL;
721         }
722
723         if (rstate->enabled && rdev->desc->ops->set_suspend_enable)
724                 ret = rdev->desc->ops->set_suspend_enable(rdev);
725         else if (rstate->disabled && rdev->desc->ops->set_suspend_disable)
726                 ret = rdev->desc->ops->set_suspend_disable(rdev);
727         else /* OK if set_suspend_enable or set_suspend_disable is NULL */
728                 ret = 0;
729
730         if (ret < 0) {
731                 rdev_err(rdev, "failed to enabled/disable\n");
732                 return ret;
733         }
734
735         if (rdev->desc->ops->set_suspend_voltage && rstate->uV > 0) {
736                 ret = rdev->desc->ops->set_suspend_voltage(rdev, rstate->uV);
737                 if (ret < 0) {
738                         rdev_err(rdev, "failed to set voltage\n");
739                         return ret;
740                 }
741         }
742
743         if (rdev->desc->ops->set_suspend_mode && rstate->mode > 0) {
744                 ret = rdev->desc->ops->set_suspend_mode(rdev, rstate->mode);
745                 if (ret < 0) {
746                         rdev_err(rdev, "failed to set mode\n");
747                         return ret;
748                 }
749         }
750         return ret;
751 }
752
753 /* locks held by caller */
754 static int suspend_prepare(struct regulator_dev *rdev, suspend_state_t state)
755 {
756         if (!rdev->constraints)
757                 return -EINVAL;
758
759         switch (state) {
760         case PM_SUSPEND_STANDBY:
761                 return suspend_set_state(rdev,
762                         &rdev->constraints->state_standby);
763         case PM_SUSPEND_MEM:
764                 return suspend_set_state(rdev,
765                         &rdev->constraints->state_mem);
766         case PM_SUSPEND_MAX:
767                 return suspend_set_state(rdev,
768                         &rdev->constraints->state_disk);
769         default:
770                 return -EINVAL;
771         }
772 }
773
774 static void print_constraints(struct regulator_dev *rdev)
775 {
776         struct regulation_constraints *constraints = rdev->constraints;
777         char buf[80] = "";
778         int count = 0;
779         int ret;
780
781         if (constraints->min_uV && constraints->max_uV) {
782                 if (constraints->min_uV == constraints->max_uV)
783                         count += sprintf(buf + count, "%d mV ",
784                                          constraints->min_uV / 1000);
785                 else
786                         count += sprintf(buf + count, "%d <--> %d mV ",
787                                          constraints->min_uV / 1000,
788                                          constraints->max_uV / 1000);
789         }
790
791         if (!constraints->min_uV ||
792             constraints->min_uV != constraints->max_uV) {
793                 ret = _regulator_get_voltage(rdev);
794                 if (ret > 0)
795                         count += sprintf(buf + count, "at %d mV ", ret / 1000);
796         }
797
798         if (constraints->uV_offset)
799                 count += sprintf(buf, "%dmV offset ",
800                                  constraints->uV_offset / 1000);
801
802         if (constraints->min_uA && constraints->max_uA) {
803                 if (constraints->min_uA == constraints->max_uA)
804                         count += sprintf(buf + count, "%d mA ",
805                                          constraints->min_uA / 1000);
806                 else
807                         count += sprintf(buf + count, "%d <--> %d mA ",
808                                          constraints->min_uA / 1000,
809                                          constraints->max_uA / 1000);
810         }
811
812         if (!constraints->min_uA ||
813             constraints->min_uA != constraints->max_uA) {
814                 ret = _regulator_get_current_limit(rdev);
815                 if (ret > 0)
816                         count += sprintf(buf + count, "at %d mA ", ret / 1000);
817         }
818
819         if (constraints->valid_modes_mask & REGULATOR_MODE_FAST)
820                 count += sprintf(buf + count, "fast ");
821         if (constraints->valid_modes_mask & REGULATOR_MODE_NORMAL)
822                 count += sprintf(buf + count, "normal ");
823         if (constraints->valid_modes_mask & REGULATOR_MODE_IDLE)
824                 count += sprintf(buf + count, "idle ");
825         if (constraints->valid_modes_mask & REGULATOR_MODE_STANDBY)
826                 count += sprintf(buf + count, "standby");
827
828         if (!count)
829                 sprintf(buf, "no parameters");
830
831         rdev_info(rdev, "%s\n", buf);
832
833         if ((constraints->min_uV != constraints->max_uV) &&
834             !(constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE))
835                 rdev_warn(rdev,
836                           "Voltage range but no REGULATOR_CHANGE_VOLTAGE\n");
837 }
838
839 static int machine_constraints_voltage(struct regulator_dev *rdev,
840         struct regulation_constraints *constraints)
841 {
842         struct regulator_ops *ops = rdev->desc->ops;
843         int ret;
844
845         /* do we need to apply the constraint voltage */
846         if (rdev->constraints->apply_uV &&
847             rdev->constraints->min_uV == rdev->constraints->max_uV) {
848                 int current_uV = _regulator_get_voltage(rdev);
849                 if (current_uV < 0) {
850                         rdev_err(rdev,
851                                  "failed to get the current voltage(%d)\n",
852                                  current_uV);
853                         return current_uV;
854                 }
855                 if (current_uV < rdev->constraints->min_uV ||
856                     current_uV > rdev->constraints->max_uV) {
857                         ret = _regulator_do_set_voltage(
858                                 rdev, rdev->constraints->min_uV,
859                                 rdev->constraints->max_uV);
860                         if (ret < 0) {
861                                 rdev_err(rdev,
862                                         "failed to apply %duV constraint(%d)\n",
863                                         rdev->constraints->min_uV, ret);
864                                 return ret;
865                         }
866                 }
867         }
868
869         /* constrain machine-level voltage specs to fit
870          * the actual range supported by this regulator.
871          */
872         if (ops->list_voltage && rdev->desc->n_voltages) {
873                 int     count = rdev->desc->n_voltages;
874                 int     i;
875                 int     min_uV = INT_MAX;
876                 int     max_uV = INT_MIN;
877                 int     cmin = constraints->min_uV;
878                 int     cmax = constraints->max_uV;
879
880                 /* it's safe to autoconfigure fixed-voltage supplies
881                    and the constraints are used by list_voltage. */
882                 if (count == 1 && !cmin) {
883                         cmin = 1;
884                         cmax = INT_MAX;
885                         constraints->min_uV = cmin;
886                         constraints->max_uV = cmax;
887                 }
888
889                 /* voltage constraints are optional */
890                 if ((cmin == 0) && (cmax == 0))
891                         return 0;
892
893                 /* else require explicit machine-level constraints */
894                 if (cmin <= 0 || cmax <= 0 || cmax < cmin) {
895                         rdev_err(rdev, "invalid voltage constraints\n");
896                         return -EINVAL;
897                 }
898
899                 /* initial: [cmin..cmax] valid, [min_uV..max_uV] not */
900                 for (i = 0; i < count; i++) {
901                         int     value;
902
903                         value = ops->list_voltage(rdev, i);
904                         if (value <= 0)
905                                 continue;
906
907                         /* maybe adjust [min_uV..max_uV] */
908                         if (value >= cmin && value < min_uV)
909                                 min_uV = value;
910                         if (value <= cmax && value > max_uV)
911                                 max_uV = value;
912                 }
913
914                 /* final: [min_uV..max_uV] valid iff constraints valid */
915                 if (max_uV < min_uV) {
916                         rdev_err(rdev,
917                                  "unsupportable voltage constraints %u-%uuV\n",
918                                  min_uV, max_uV);
919                         return -EINVAL;
920                 }
921
922                 /* use regulator's subset of machine constraints */
923                 if (constraints->min_uV < min_uV) {
924                         rdev_dbg(rdev, "override min_uV, %d -> %d\n",
925                                  constraints->min_uV, min_uV);
926                         constraints->min_uV = min_uV;
927                 }
928                 if (constraints->max_uV > max_uV) {
929                         rdev_dbg(rdev, "override max_uV, %d -> %d\n",
930                                  constraints->max_uV, max_uV);
931                         constraints->max_uV = max_uV;
932                 }
933         }
934
935         return 0;
936 }
937
938 static int machine_constraints_current(struct regulator_dev *rdev,
939         struct regulation_constraints *constraints)
940 {
941         struct regulator_ops *ops = rdev->desc->ops;
942         int ret;
943
944         if (!constraints->min_uA && !constraints->max_uA)
945                 return 0;
946
947         if (constraints->min_uA > constraints->max_uA) {
948                 rdev_err(rdev, "Invalid current constraints\n");
949                 return -EINVAL;
950         }
951
952         if (!ops->set_current_limit || !ops->get_current_limit) {
953                 rdev_warn(rdev, "Operation of current configuration missing\n");
954                 return 0;
955         }
956
957         /* Set regulator current in constraints range */
958         ret = ops->set_current_limit(rdev, constraints->min_uA,
959                         constraints->max_uA);
960         if (ret < 0) {
961                 rdev_err(rdev, "Failed to set current constraint, %d\n", ret);
962                 return ret;
963         }
964
965         return 0;
966 }
967
968 static int _regulator_do_enable(struct regulator_dev *rdev);
969
970 /**
971  * set_machine_constraints - sets regulator constraints
972  * @rdev: regulator source
973  * @constraints: constraints to apply
974  *
975  * Allows platform initialisation code to define and constrain
976  * regulator circuits e.g. valid voltage/current ranges, etc.  NOTE:
977  * Constraints *must* be set by platform code in order for some
978  * regulator operations to proceed i.e. set_voltage, set_current_limit,
979  * set_mode.
980  */
981 static int set_machine_constraints(struct regulator_dev *rdev,
982         const struct regulation_constraints *constraints)
983 {
984         int ret = 0;
985         struct regulator_ops *ops = rdev->desc->ops;
986
987         if (constraints)
988                 rdev->constraints = kmemdup(constraints, sizeof(*constraints),
989                                             GFP_KERNEL);
990         else
991                 rdev->constraints = kzalloc(sizeof(*constraints),
992                                             GFP_KERNEL);
993         if (!rdev->constraints)
994                 return -ENOMEM;
995
996         ret = machine_constraints_voltage(rdev, rdev->constraints);
997         if (ret != 0)
998                 goto out;
999
1000         ret = machine_constraints_current(rdev, rdev->constraints);
1001         if (ret != 0)
1002                 goto out;
1003
1004         /* do we need to setup our suspend state */
1005         if (rdev->constraints->initial_state) {
1006                 ret = suspend_prepare(rdev, rdev->constraints->initial_state);
1007                 if (ret < 0) {
1008                         rdev_err(rdev, "failed to set suspend state\n");
1009                         goto out;
1010                 }
1011         }
1012
1013         if (rdev->constraints->initial_mode) {
1014                 if (!ops->set_mode) {
1015                         rdev_err(rdev, "no set_mode operation\n");
1016                         ret = -EINVAL;
1017                         goto out;
1018                 }
1019
1020                 ret = ops->set_mode(rdev, rdev->constraints->initial_mode);
1021                 if (ret < 0) {
1022                         rdev_err(rdev, "failed to set initial mode: %d\n", ret);
1023                         goto out;
1024                 }
1025         }
1026
1027         /* If the constraints say the regulator should be on at this point
1028          * and we have control then make sure it is enabled.
1029          */
1030         if (rdev->constraints->always_on || rdev->constraints->boot_on) {
1031                 ret = _regulator_do_enable(rdev);
1032                 if (ret < 0 && ret != -EINVAL) {
1033                         rdev_err(rdev, "failed to enable\n");
1034                         goto out;
1035                 }
1036         }
1037
1038         if ((rdev->constraints->ramp_delay || rdev->constraints->ramp_disable)
1039                 && ops->set_ramp_delay) {
1040                 ret = ops->set_ramp_delay(rdev, rdev->constraints->ramp_delay);
1041                 if (ret < 0) {
1042                         rdev_err(rdev, "failed to set ramp_delay\n");
1043                         goto out;
1044                 }
1045         }
1046
1047         print_constraints(rdev);
1048         return 0;
1049 out:
1050         kfree(rdev->constraints);
1051         rdev->constraints = NULL;
1052         return ret;
1053 }
1054
1055 /**
1056  * set_supply - set regulator supply regulator
1057  * @rdev: regulator name
1058  * @supply_rdev: supply regulator name
1059  *
1060  * Called by platform initialisation code to set the supply regulator for this
1061  * regulator. This ensures that a regulators supply will also be enabled by the
1062  * core if it's child is enabled.
1063  */
1064 static int set_supply(struct regulator_dev *rdev,
1065                       struct regulator_dev *supply_rdev)
1066 {
1067         int err;
1068
1069         rdev_info(rdev, "supplied by %s\n", rdev_get_name(supply_rdev));
1070
1071         rdev->supply = create_regulator(supply_rdev, &rdev->dev, "SUPPLY");
1072         if (rdev->supply == NULL) {
1073                 err = -ENOMEM;
1074                 return err;
1075         }
1076         supply_rdev->open_count++;
1077
1078         return 0;
1079 }
1080
1081 /**
1082  * set_consumer_device_supply - Bind a regulator to a symbolic supply
1083  * @rdev:         regulator source
1084  * @consumer_dev_name: dev_name() string for device supply applies to
1085  * @supply:       symbolic name for supply
1086  *
1087  * Allows platform initialisation code to map physical regulator
1088  * sources to symbolic names for supplies for use by devices.  Devices
1089  * should use these symbolic names to request regulators, avoiding the
1090  * need to provide board-specific regulator names as platform data.
1091  */
1092 static int set_consumer_device_supply(struct regulator_dev *rdev,
1093                                       const char *consumer_dev_name,
1094                                       const char *supply)
1095 {
1096         struct regulator_map *node;
1097         int has_dev;
1098
1099         if (supply == NULL)
1100                 return -EINVAL;
1101
1102         if (consumer_dev_name != NULL)
1103                 has_dev = 1;
1104         else
1105                 has_dev = 0;
1106
1107         list_for_each_entry(node, &regulator_map_list, list) {
1108                 if (node->dev_name && consumer_dev_name) {
1109                         if (strcmp(node->dev_name, consumer_dev_name) != 0)
1110                                 continue;
1111                 } else if (node->dev_name || consumer_dev_name) {
1112                         continue;
1113                 }
1114
1115                 if (strcmp(node->supply, supply) != 0)
1116                         continue;
1117
1118                 pr_debug("%s: %s/%s is '%s' supply; fail %s/%s\n",
1119                          consumer_dev_name,
1120                          dev_name(&node->regulator->dev),
1121                          node->regulator->desc->name,
1122                          supply,
1123                          dev_name(&rdev->dev), rdev_get_name(rdev));
1124                 return -EBUSY;
1125         }
1126
1127         node = kzalloc(sizeof(struct regulator_map), GFP_KERNEL);
1128         if (node == NULL)
1129                 return -ENOMEM;
1130
1131         node->regulator = rdev;
1132         node->supply = supply;
1133
1134         if (has_dev) {
1135                 node->dev_name = kstrdup(consumer_dev_name, GFP_KERNEL);
1136                 if (node->dev_name == NULL) {
1137                         kfree(node);
1138                         return -ENOMEM;
1139                 }
1140         }
1141
1142         list_add(&node->list, &regulator_map_list);
1143         return 0;
1144 }
1145
1146 static void unset_regulator_supplies(struct regulator_dev *rdev)
1147 {
1148         struct regulator_map *node, *n;
1149
1150         list_for_each_entry_safe(node, n, &regulator_map_list, list) {
1151                 if (rdev == node->regulator) {
1152                         list_del(&node->list);
1153                         kfree(node->dev_name);
1154                         kfree(node);
1155                 }
1156         }
1157 }
1158
1159 #define REG_STR_SIZE    64
1160
1161 static struct regulator *create_regulator(struct regulator_dev *rdev,
1162                                           struct device *dev,
1163                                           const char *supply_name)
1164 {
1165         struct regulator *regulator;
1166         char buf[REG_STR_SIZE];
1167         int err, size;
1168
1169         regulator = kzalloc(sizeof(*regulator), GFP_KERNEL);
1170         if (regulator == NULL)
1171                 return NULL;
1172
1173         mutex_lock(&rdev->mutex);
1174         regulator->rdev = rdev;
1175         list_add(&regulator->list, &rdev->consumer_list);
1176
1177         if (dev) {
1178                 regulator->dev = dev;
1179
1180                 /* Add a link to the device sysfs entry */
1181                 size = scnprintf(buf, REG_STR_SIZE, "%s-%s",
1182                                  dev->kobj.name, supply_name);
1183                 if (size >= REG_STR_SIZE)
1184                         goto overflow_err;
1185
1186                 regulator->supply_name = kstrdup(buf, GFP_KERNEL);
1187                 if (regulator->supply_name == NULL)
1188                         goto overflow_err;
1189
1190                 err = sysfs_create_link(&rdev->dev.kobj, &dev->kobj,
1191                                         buf);
1192                 if (err) {
1193                         rdev_warn(rdev, "could not add device link %s err %d\n",
1194                                   dev->kobj.name, err);
1195                         /* non-fatal */
1196                 }
1197         } else {
1198                 regulator->supply_name = kstrdup(supply_name, GFP_KERNEL);
1199                 if (regulator->supply_name == NULL)
1200                         goto overflow_err;
1201         }
1202
1203         regulator->debugfs = debugfs_create_dir(regulator->supply_name,
1204                                                 rdev->debugfs);
1205         if (!regulator->debugfs) {
1206                 rdev_warn(rdev, "Failed to create debugfs directory\n");
1207         } else {
1208                 debugfs_create_u32("uA_load", 0444, regulator->debugfs,
1209                                    &regulator->uA_load);
1210                 debugfs_create_u32("min_uV", 0444, regulator->debugfs,
1211                                    &regulator->min_uV);
1212                 debugfs_create_u32("max_uV", 0444, regulator->debugfs,
1213                                    &regulator->max_uV);
1214         }
1215
1216         /*
1217          * Check now if the regulator is an always on regulator - if
1218          * it is then we don't need to do nearly so much work for
1219          * enable/disable calls.
1220          */
1221         if (!_regulator_can_change_status(rdev) &&
1222             _regulator_is_enabled(rdev))
1223                 regulator->always_on = true;
1224
1225         mutex_unlock(&rdev->mutex);
1226         return regulator;
1227 overflow_err:
1228         list_del(&regulator->list);
1229         kfree(regulator);
1230         mutex_unlock(&rdev->mutex);
1231         return NULL;
1232 }
1233
1234 static int _regulator_get_enable_time(struct regulator_dev *rdev)
1235 {
1236         if (rdev->constraints && rdev->constraints->enable_time)
1237                 return rdev->constraints->enable_time;
1238         if (!rdev->desc->ops->enable_time)
1239                 return rdev->desc->enable_time;
1240         return rdev->desc->ops->enable_time(rdev);
1241 }
1242
1243 static struct regulator_supply_alias *regulator_find_supply_alias(
1244                 struct device *dev, const char *supply)
1245 {
1246         struct regulator_supply_alias *map;
1247
1248         list_for_each_entry(map, &regulator_supply_alias_list, list)
1249                 if (map->src_dev == dev && strcmp(map->src_supply, supply) == 0)
1250                         return map;
1251
1252         return NULL;
1253 }
1254
1255 static void regulator_supply_alias(struct device **dev, const char **supply)
1256 {
1257         struct regulator_supply_alias *map;
1258
1259         map = regulator_find_supply_alias(*dev, *supply);
1260         if (map) {
1261                 dev_dbg(*dev, "Mapping supply %s to %s,%s\n",
1262                                 *supply, map->alias_supply,
1263                                 dev_name(map->alias_dev));
1264                 *dev = map->alias_dev;
1265                 *supply = map->alias_supply;
1266         }
1267 }
1268
1269 static struct regulator_dev *regulator_dev_lookup(struct device *dev,
1270                                                   const char *supply,
1271                                                   int *ret)
1272 {
1273         struct regulator_dev *r;
1274         struct device_node *node;
1275         struct regulator_map *map;
1276         const char *devname = NULL;
1277
1278         regulator_supply_alias(&dev, &supply);
1279
1280         /* first do a dt based lookup */
1281         if (dev && dev->of_node) {
1282                 node = of_get_regulator(dev, supply);
1283                 if (node) {
1284                         list_for_each_entry(r, &regulator_list, list)
1285                                 if (r->dev.parent &&
1286                                         node == r->dev.of_node)
1287                                         return r;
1288                         *ret = -EPROBE_DEFER;
1289                         return NULL;
1290                 } else {
1291                         /*
1292                          * If we couldn't even get the node then it's
1293                          * not just that the device didn't register
1294                          * yet, there's no node and we'll never
1295                          * succeed.
1296                          */
1297                         *ret = -ENODEV;
1298                 }
1299         }
1300
1301         /* if not found, try doing it non-dt way */
1302         if (dev)
1303                 devname = dev_name(dev);
1304
1305         list_for_each_entry(r, &regulator_list, list)
1306                 if (strcmp(rdev_get_name(r), supply) == 0)
1307                         return r;
1308
1309         list_for_each_entry(map, &regulator_map_list, list) {
1310                 /* If the mapping has a device set up it must match */
1311                 if (map->dev_name &&
1312                     (!devname || strcmp(map->dev_name, devname)))
1313                         continue;
1314
1315                 if (strcmp(map->supply, supply) == 0)
1316                         return map->regulator;
1317         }
1318
1319
1320         return NULL;
1321 }
1322
1323 /* Internal regulator request function */
1324 static struct regulator *_regulator_get(struct device *dev, const char *id,
1325                                         bool exclusive, bool allow_dummy)
1326 {
1327         struct regulator_dev *rdev;
1328         struct regulator *regulator = ERR_PTR(-EPROBE_DEFER);
1329         const char *devname = NULL;
1330         int ret;
1331
1332         if (id == NULL) {
1333                 pr_err("get() with no identifier\n");
1334                 return ERR_PTR(-EINVAL);
1335         }
1336
1337         if (dev)
1338                 devname = dev_name(dev);
1339
1340         if (have_full_constraints())
1341                 ret = -ENODEV;
1342         else
1343                 ret = -EPROBE_DEFER;
1344
1345         mutex_lock(&regulator_list_mutex);
1346
1347         rdev = regulator_dev_lookup(dev, id, &ret);
1348         if (rdev)
1349                 goto found;
1350
1351         regulator = ERR_PTR(ret);
1352
1353         /*
1354          * If we have return value from dev_lookup fail, we do not expect to
1355          * succeed, so, quit with appropriate error value
1356          */
1357         if (ret && ret != -ENODEV)
1358                 goto out;
1359
1360         if (!devname)
1361                 devname = "deviceless";
1362
1363         /*
1364          * Assume that a regulator is physically present and enabled
1365          * even if it isn't hooked up and just provide a dummy.
1366          */
1367         if (have_full_constraints() && allow_dummy) {
1368                 pr_warn("%s supply %s not found, using dummy regulator\n",
1369                         devname, id);
1370
1371                 rdev = dummy_regulator_rdev;
1372                 goto found;
1373         /* Don't log an error when called from regulator_get_optional() */
1374         } else if (!have_full_constraints() || exclusive) {
1375                 dev_warn(dev, "dummy supplies not allowed\n");
1376         }
1377
1378         mutex_unlock(&regulator_list_mutex);
1379         return regulator;
1380
1381 found:
1382         if (rdev->exclusive) {
1383                 regulator = ERR_PTR(-EPERM);
1384                 goto out;
1385         }
1386
1387         if (exclusive && rdev->open_count) {
1388                 regulator = ERR_PTR(-EBUSY);
1389                 goto out;
1390         }
1391
1392         if (!try_module_get(rdev->owner))
1393                 goto out;
1394
1395         regulator = create_regulator(rdev, dev, id);
1396         if (regulator == NULL) {
1397                 regulator = ERR_PTR(-ENOMEM);
1398                 module_put(rdev->owner);
1399                 goto out;
1400         }
1401
1402         rdev->open_count++;
1403         if (exclusive) {
1404                 rdev->exclusive = 1;
1405
1406                 ret = _regulator_is_enabled(rdev);
1407                 if (ret > 0)
1408                         rdev->use_count = 1;
1409                 else
1410                         rdev->use_count = 0;
1411         }
1412
1413 out:
1414         mutex_unlock(&regulator_list_mutex);
1415
1416         return regulator;
1417 }
1418
1419 /**
1420  * regulator_get - lookup and obtain a reference to a regulator.
1421  * @dev: device for regulator "consumer"
1422  * @id: Supply name or regulator ID.
1423  *
1424  * Returns a struct regulator corresponding to the regulator producer,
1425  * or IS_ERR() condition containing errno.
1426  *
1427  * Use of supply names configured via regulator_set_device_supply() is
1428  * strongly encouraged.  It is recommended that the supply name used
1429  * should match the name used for the supply and/or the relevant
1430  * device pins in the datasheet.
1431  */
1432 struct regulator *regulator_get(struct device *dev, const char *id)
1433 {
1434         return _regulator_get(dev, id, false, true);
1435 }
1436 EXPORT_SYMBOL_GPL(regulator_get);
1437
1438 /**
1439  * regulator_get_exclusive - obtain exclusive access to a regulator.
1440  * @dev: device for regulator "consumer"
1441  * @id: Supply name or regulator ID.
1442  *
1443  * Returns a struct regulator corresponding to the regulator producer,
1444  * or IS_ERR() condition containing errno.  Other consumers will be
1445  * unable to obtain this regulator while this reference is held and the
1446  * use count for the regulator will be initialised to reflect the current
1447  * state of the regulator.
1448  *
1449  * This is intended for use by consumers which cannot tolerate shared
1450  * use of the regulator such as those which need to force the
1451  * regulator off for correct operation of the hardware they are
1452  * controlling.
1453  *
1454  * Use of supply names configured via regulator_set_device_supply() is
1455  * strongly encouraged.  It is recommended that the supply name used
1456  * should match the name used for the supply and/or the relevant
1457  * device pins in the datasheet.
1458  */
1459 struct regulator *regulator_get_exclusive(struct device *dev, const char *id)
1460 {
1461         return _regulator_get(dev, id, true, false);
1462 }
1463 EXPORT_SYMBOL_GPL(regulator_get_exclusive);
1464
1465 /**
1466  * regulator_get_optional - obtain optional access to a regulator.
1467  * @dev: device for regulator "consumer"
1468  * @id: Supply name or regulator ID.
1469  *
1470  * Returns a struct regulator corresponding to the regulator producer,
1471  * or IS_ERR() condition containing errno.
1472  *
1473  * This is intended for use by consumers for devices which can have
1474  * some supplies unconnected in normal use, such as some MMC devices.
1475  * It can allow the regulator core to provide stub supplies for other
1476  * supplies requested using normal regulator_get() calls without
1477  * disrupting the operation of drivers that can handle absent
1478  * supplies.
1479  *
1480  * Use of supply names configured via regulator_set_device_supply() is
1481  * strongly encouraged.  It is recommended that the supply name used
1482  * should match the name used for the supply and/or the relevant
1483  * device pins in the datasheet.
1484  */
1485 struct regulator *regulator_get_optional(struct device *dev, const char *id)
1486 {
1487         return _regulator_get(dev, id, false, false);
1488 }
1489 EXPORT_SYMBOL_GPL(regulator_get_optional);
1490
1491 /* Locks held by regulator_put() */
1492 static void _regulator_put(struct regulator *regulator)
1493 {
1494         struct regulator_dev *rdev;
1495
1496         if (regulator == NULL || IS_ERR(regulator))
1497                 return;
1498
1499         rdev = regulator->rdev;
1500
1501         debugfs_remove_recursive(regulator->debugfs);
1502
1503         /* remove any sysfs entries */
1504         if (regulator->dev)
1505                 sysfs_remove_link(&rdev->dev.kobj, regulator->supply_name);
1506         kfree(regulator->supply_name);
1507         list_del(&regulator->list);
1508         kfree(regulator);
1509
1510         rdev->open_count--;
1511         rdev->exclusive = 0;
1512
1513         module_put(rdev->owner);
1514 }
1515
1516 /**
1517  * regulator_put - "free" the regulator source
1518  * @regulator: regulator source
1519  *
1520  * Note: drivers must ensure that all regulator_enable calls made on this
1521  * regulator source are balanced by regulator_disable calls prior to calling
1522  * this function.
1523  */
1524 void regulator_put(struct regulator *regulator)
1525 {
1526         mutex_lock(&regulator_list_mutex);
1527         _regulator_put(regulator);
1528         mutex_unlock(&regulator_list_mutex);
1529 }
1530 EXPORT_SYMBOL_GPL(regulator_put);
1531
1532 /**
1533  * regulator_register_supply_alias - Provide device alias for supply lookup
1534  *
1535  * @dev: device that will be given as the regulator "consumer"
1536  * @id: Supply name or regulator ID
1537  * @alias_dev: device that should be used to lookup the supply
1538  * @alias_id: Supply name or regulator ID that should be used to lookup the
1539  * supply
1540  *
1541  * All lookups for id on dev will instead be conducted for alias_id on
1542  * alias_dev.
1543  */
1544 int regulator_register_supply_alias(struct device *dev, const char *id,
1545                                     struct device *alias_dev,
1546                                     const char *alias_id)
1547 {
1548         struct regulator_supply_alias *map;
1549
1550         map = regulator_find_supply_alias(dev, id);
1551         if (map)
1552                 return -EEXIST;
1553
1554         map = kzalloc(sizeof(struct regulator_supply_alias), GFP_KERNEL);
1555         if (!map)
1556                 return -ENOMEM;
1557
1558         map->src_dev = dev;
1559         map->src_supply = id;
1560         map->alias_dev = alias_dev;
1561         map->alias_supply = alias_id;
1562
1563         list_add(&map->list, &regulator_supply_alias_list);
1564
1565         pr_info("Adding alias for supply %s,%s -> %s,%s\n",
1566                 id, dev_name(dev), alias_id, dev_name(alias_dev));
1567
1568         return 0;
1569 }
1570 EXPORT_SYMBOL_GPL(regulator_register_supply_alias);
1571
1572 /**
1573  * regulator_unregister_supply_alias - Remove device alias
1574  *
1575  * @dev: device that will be given as the regulator "consumer"
1576  * @id: Supply name or regulator ID
1577  *
1578  * Remove a lookup alias if one exists for id on dev.
1579  */
1580 void regulator_unregister_supply_alias(struct device *dev, const char *id)
1581 {
1582         struct regulator_supply_alias *map;
1583
1584         map = regulator_find_supply_alias(dev, id);
1585         if (map) {
1586                 list_del(&map->list);
1587                 kfree(map);
1588         }
1589 }
1590 EXPORT_SYMBOL_GPL(regulator_unregister_supply_alias);
1591
1592 /**
1593  * regulator_bulk_register_supply_alias - register multiple aliases
1594  *
1595  * @dev: device that will be given as the regulator "consumer"
1596  * @id: List of supply names or regulator IDs
1597  * @alias_dev: device that should be used to lookup the supply
1598  * @alias_id: List of supply names or regulator IDs that should be used to
1599  * lookup the supply
1600  * @num_id: Number of aliases to register
1601  *
1602  * @return 0 on success, an errno on failure.
1603  *
1604  * This helper function allows drivers to register several supply
1605  * aliases in one operation.  If any of the aliases cannot be
1606  * registered any aliases that were registered will be removed
1607  * before returning to the caller.
1608  */
1609 int regulator_bulk_register_supply_alias(struct device *dev,
1610                                          const char *const *id,
1611                                          struct device *alias_dev,
1612                                          const char *const *alias_id,
1613                                          int num_id)
1614 {
1615         int i;
1616         int ret;
1617
1618         for (i = 0; i < num_id; ++i) {
1619                 ret = regulator_register_supply_alias(dev, id[i], alias_dev,
1620                                                       alias_id[i]);
1621                 if (ret < 0)
1622                         goto err;
1623         }
1624
1625         return 0;
1626
1627 err:
1628         dev_err(dev,
1629                 "Failed to create supply alias %s,%s -> %s,%s\n",
1630                 id[i], dev_name(dev), alias_id[i], dev_name(alias_dev));
1631
1632         while (--i >= 0)
1633                 regulator_unregister_supply_alias(dev, id[i]);
1634
1635         return ret;
1636 }
1637 EXPORT_SYMBOL_GPL(regulator_bulk_register_supply_alias);
1638
1639 /**
1640  * regulator_bulk_unregister_supply_alias - unregister multiple aliases
1641  *
1642  * @dev: device that will be given as the regulator "consumer"
1643  * @id: List of supply names or regulator IDs
1644  * @num_id: Number of aliases to unregister
1645  *
1646  * This helper function allows drivers to unregister several supply
1647  * aliases in one operation.
1648  */
1649 void regulator_bulk_unregister_supply_alias(struct device *dev,
1650                                             const char *const *id,
1651                                             int num_id)
1652 {
1653         int i;
1654
1655         for (i = 0; i < num_id; ++i)
1656                 regulator_unregister_supply_alias(dev, id[i]);
1657 }
1658 EXPORT_SYMBOL_GPL(regulator_bulk_unregister_supply_alias);
1659
1660
1661 /* Manage enable GPIO list. Same GPIO pin can be shared among regulators */
1662 static int regulator_ena_gpio_request(struct regulator_dev *rdev,
1663                                 const struct regulator_config *config)
1664 {
1665         struct regulator_enable_gpio *pin;
1666         struct gpio_desc *gpiod;
1667         int ret;
1668
1669         gpiod = gpio_to_desc(config->ena_gpio);
1670
1671         list_for_each_entry(pin, &regulator_ena_gpio_list, list) {
1672                 if (pin->gpiod == gpiod) {
1673                         rdev_dbg(rdev, "GPIO %d is already used\n",
1674                                 config->ena_gpio);
1675                         goto update_ena_gpio_to_rdev;
1676                 }
1677         }
1678
1679         ret = gpio_request_one(config->ena_gpio,
1680                                 GPIOF_DIR_OUT | config->ena_gpio_flags,
1681                                 rdev_get_name(rdev));
1682         if (ret)
1683                 return ret;
1684
1685         pin = kzalloc(sizeof(struct regulator_enable_gpio), GFP_KERNEL);
1686         if (pin == NULL) {
1687                 gpio_free(config->ena_gpio);
1688                 return -ENOMEM;
1689         }
1690
1691         pin->gpiod = gpiod;
1692         pin->ena_gpio_invert = config->ena_gpio_invert;
1693         list_add(&pin->list, &regulator_ena_gpio_list);
1694
1695 update_ena_gpio_to_rdev:
1696         pin->request_count++;
1697         rdev->ena_pin = pin;
1698         return 0;
1699 }
1700
1701 static void regulator_ena_gpio_free(struct regulator_dev *rdev)
1702 {
1703         struct regulator_enable_gpio *pin, *n;
1704
1705         if (!rdev->ena_pin)
1706                 return;
1707
1708         /* Free the GPIO only in case of no use */
1709         list_for_each_entry_safe(pin, n, &regulator_ena_gpio_list, list) {
1710                 if (pin->gpiod == rdev->ena_pin->gpiod) {
1711                         if (pin->request_count <= 1) {
1712                                 pin->request_count = 0;
1713                                 gpiod_put(pin->gpiod);
1714                                 list_del(&pin->list);
1715                                 kfree(pin);
1716                         } else {
1717                                 pin->request_count--;
1718                         }
1719                 }
1720         }
1721 }
1722
1723 /**
1724  * regulator_ena_gpio_ctrl - balance enable_count of each GPIO and actual GPIO pin control
1725  * @rdev: regulator_dev structure
1726  * @enable: enable GPIO at initial use?
1727  *
1728  * GPIO is enabled in case of initial use. (enable_count is 0)
1729  * GPIO is disabled when it is not shared any more. (enable_count <= 1)
1730  */
1731 static int regulator_ena_gpio_ctrl(struct regulator_dev *rdev, bool enable)
1732 {
1733         struct regulator_enable_gpio *pin = rdev->ena_pin;
1734
1735         if (!pin)
1736                 return -EINVAL;
1737
1738         if (enable) {
1739                 /* Enable GPIO at initial use */
1740                 if (pin->enable_count == 0)
1741                         gpiod_set_value_cansleep(pin->gpiod,
1742                                                  !pin->ena_gpio_invert);
1743
1744                 pin->enable_count++;
1745         } else {
1746                 if (pin->enable_count > 1) {
1747                         pin->enable_count--;
1748                         return 0;
1749                 }
1750
1751                 /* Disable GPIO if not used */
1752                 if (pin->enable_count <= 1) {
1753                         gpiod_set_value_cansleep(pin->gpiod,
1754                                                  pin->ena_gpio_invert);
1755                         pin->enable_count = 0;
1756                 }
1757         }
1758
1759         return 0;
1760 }
1761
1762 static int _regulator_do_enable(struct regulator_dev *rdev)
1763 {
1764         int ret, delay;
1765
1766         /* Query before enabling in case configuration dependent.  */
1767         ret = _regulator_get_enable_time(rdev);
1768         if (ret >= 0) {
1769                 delay = ret;
1770         } else {
1771                 rdev_warn(rdev, "enable_time() failed: %d\n", ret);
1772                 delay = 0;
1773         }
1774
1775         trace_regulator_enable(rdev_get_name(rdev));
1776
1777         if (rdev->ena_pin) {
1778                 ret = regulator_ena_gpio_ctrl(rdev, true);
1779                 if (ret < 0)
1780                         return ret;
1781                 rdev->ena_gpio_state = 1;
1782         } else if (rdev->desc->ops->enable) {
1783                 ret = rdev->desc->ops->enable(rdev);
1784                 if (ret < 0)
1785                         return ret;
1786         } else {
1787                 return -EINVAL;
1788         }
1789
1790         /* Allow the regulator to ramp; it would be useful to extend
1791          * this for bulk operations so that the regulators can ramp
1792          * together.  */
1793         trace_regulator_enable_delay(rdev_get_name(rdev));
1794
1795         /*
1796          * Delay for the requested amount of time as per the guidelines in:
1797          *
1798          *     Documentation/timers/timers-howto.txt
1799          *
1800          * The assumption here is that regulators will never be enabled in
1801          * atomic context and therefore sleeping functions can be used.
1802          */
1803         if (delay) {
1804                 unsigned int ms = delay / 1000;
1805                 unsigned int us = delay % 1000;
1806
1807                 if (ms > 0) {
1808                         /*
1809                          * For small enough values, handle super-millisecond
1810                          * delays in the usleep_range() call below.
1811                          */
1812                         if (ms < 20)
1813                                 us += ms * 1000;
1814                         else
1815                                 msleep(ms);
1816                 }
1817
1818                 /*
1819                  * Give the scheduler some room to coalesce with any other
1820                  * wakeup sources. For delays shorter than 10 us, don't even
1821                  * bother setting up high-resolution timers and just busy-
1822                  * loop.
1823                  */
1824                 if (us >= 10)
1825                         usleep_range(us, us + 100);
1826                 else
1827                         udelay(us);
1828         }
1829
1830         trace_regulator_enable_complete(rdev_get_name(rdev));
1831
1832         return 0;
1833 }
1834
1835 /* locks held by regulator_enable() */
1836 static int _regulator_enable(struct regulator_dev *rdev)
1837 {
1838         int ret;
1839
1840         /* check voltage and requested load before enabling */
1841         if (rdev->constraints &&
1842             (rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_DRMS))
1843                 drms_uA_update(rdev);
1844
1845         if (rdev->use_count == 0) {
1846                 /* The regulator may on if it's not switchable or left on */
1847                 ret = _regulator_is_enabled(rdev);
1848                 if (ret == -EINVAL || ret == 0) {
1849                         if (!_regulator_can_change_status(rdev))
1850                                 return -EPERM;
1851
1852                         ret = _regulator_do_enable(rdev);
1853                         if (ret < 0)
1854                                 return ret;
1855
1856                 } else if (ret < 0) {
1857                         rdev_err(rdev, "is_enabled() failed: %d\n", ret);
1858                         return ret;
1859                 }
1860                 /* Fallthrough on positive return values - already enabled */
1861         }
1862
1863         rdev->use_count++;
1864
1865         return 0;
1866 }
1867
1868 /**
1869  * regulator_enable - enable regulator output
1870  * @regulator: regulator source
1871  *
1872  * Request that the regulator be enabled with the regulator output at
1873  * the predefined voltage or current value.  Calls to regulator_enable()
1874  * must be balanced with calls to regulator_disable().
1875  *
1876  * NOTE: the output value can be set by other drivers, boot loader or may be
1877  * hardwired in the regulator.
1878  */
1879 int regulator_enable(struct regulator *regulator)
1880 {
1881         struct regulator_dev *rdev = regulator->rdev;
1882         int ret = 0;
1883
1884         if (regulator->always_on)
1885                 return 0;
1886
1887         if (rdev->supply) {
1888                 ret = regulator_enable(rdev->supply);
1889                 if (ret != 0)
1890                         return ret;
1891         }
1892
1893         mutex_lock(&rdev->mutex);
1894         ret = _regulator_enable(rdev);
1895         mutex_unlock(&rdev->mutex);
1896
1897         if (ret != 0 && rdev->supply)
1898                 regulator_disable(rdev->supply);
1899
1900         return ret;
1901 }
1902 EXPORT_SYMBOL_GPL(regulator_enable);
1903
1904 static int _regulator_do_disable(struct regulator_dev *rdev)
1905 {
1906         int ret;
1907
1908         trace_regulator_disable(rdev_get_name(rdev));
1909
1910         if (rdev->ena_pin) {
1911                 ret = regulator_ena_gpio_ctrl(rdev, false);
1912                 if (ret < 0)
1913                         return ret;
1914                 rdev->ena_gpio_state = 0;
1915
1916         } else if (rdev->desc->ops->disable) {
1917                 ret = rdev->desc->ops->disable(rdev);
1918                 if (ret != 0)
1919                         return ret;
1920         }
1921
1922         trace_regulator_disable_complete(rdev_get_name(rdev));
1923
1924         return 0;
1925 }
1926
1927 /* locks held by regulator_disable() */
1928 static int _regulator_disable(struct regulator_dev *rdev)
1929 {
1930         int ret = 0;
1931
1932         if (WARN(rdev->use_count <= 0,
1933                  "unbalanced disables for %s\n", rdev_get_name(rdev)))
1934                 return -EIO;
1935
1936         /* are we the last user and permitted to disable ? */
1937         if (rdev->use_count == 1 &&
1938             (rdev->constraints && !rdev->constraints->always_on)) {
1939
1940                 /* we are last user */
1941                 if (_regulator_can_change_status(rdev)) {
1942                         ret = _regulator_do_disable(rdev);
1943                         if (ret < 0) {
1944                                 rdev_err(rdev, "failed to disable\n");
1945                                 return ret;
1946                         }
1947                         _notifier_call_chain(rdev, REGULATOR_EVENT_DISABLE,
1948                                         NULL);
1949                 }
1950
1951                 rdev->use_count = 0;
1952         } else if (rdev->use_count > 1) {
1953
1954                 if (rdev->constraints &&
1955                         (rdev->constraints->valid_ops_mask &
1956                         REGULATOR_CHANGE_DRMS))
1957                         drms_uA_update(rdev);
1958
1959                 rdev->use_count--;
1960         }
1961
1962         return ret;
1963 }
1964
1965 /**
1966  * regulator_disable - disable regulator output
1967  * @regulator: regulator source
1968  *
1969  * Disable the regulator output voltage or current.  Calls to
1970  * regulator_enable() must be balanced with calls to
1971  * regulator_disable().
1972  *
1973  * NOTE: this will only disable the regulator output if no other consumer
1974  * devices have it enabled, the regulator device supports disabling and
1975  * machine constraints permit this operation.
1976  */
1977 int regulator_disable(struct regulator *regulator)
1978 {
1979         struct regulator_dev *rdev = regulator->rdev;
1980         int ret = 0;
1981
1982         if (regulator->always_on)
1983                 return 0;
1984
1985         mutex_lock(&rdev->mutex);
1986         ret = _regulator_disable(rdev);
1987         mutex_unlock(&rdev->mutex);
1988
1989         if (ret == 0 && rdev->supply)
1990                 regulator_disable(rdev->supply);
1991
1992         return ret;
1993 }
1994 EXPORT_SYMBOL_GPL(regulator_disable);
1995
1996 /* locks held by regulator_force_disable() */
1997 static int _regulator_force_disable(struct regulator_dev *rdev)
1998 {
1999         int ret = 0;
2000
2001         ret = _regulator_do_disable(rdev);
2002         if (ret < 0) {
2003                 rdev_err(rdev, "failed to force disable\n");
2004                 return ret;
2005         }
2006
2007         _notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
2008                         REGULATOR_EVENT_DISABLE, NULL);
2009
2010         return 0;
2011 }
2012
2013 /**
2014  * regulator_force_disable - force disable regulator output
2015  * @regulator: regulator source
2016  *
2017  * Forcibly disable the regulator output voltage or current.
2018  * NOTE: this *will* disable the regulator output even if other consumer
2019  * devices have it enabled. This should be used for situations when device
2020  * damage will likely occur if the regulator is not disabled (e.g. over temp).
2021  */
2022 int regulator_force_disable(struct regulator *regulator)
2023 {
2024         struct regulator_dev *rdev = regulator->rdev;
2025         int ret;
2026
2027         mutex_lock(&rdev->mutex);
2028         regulator->uA_load = 0;
2029         ret = _regulator_force_disable(regulator->rdev);
2030         mutex_unlock(&rdev->mutex);
2031
2032         if (rdev->supply)
2033                 while (rdev->open_count--)
2034                         regulator_disable(rdev->supply);
2035
2036         return ret;
2037 }
2038 EXPORT_SYMBOL_GPL(regulator_force_disable);
2039
2040 static void regulator_disable_work(struct work_struct *work)
2041 {
2042         struct regulator_dev *rdev = container_of(work, struct regulator_dev,
2043                                                   disable_work.work);
2044         int count, i, ret;
2045
2046         mutex_lock(&rdev->mutex);
2047
2048         BUG_ON(!rdev->deferred_disables);
2049
2050         count = rdev->deferred_disables;
2051         rdev->deferred_disables = 0;
2052
2053         for (i = 0; i < count; i++) {
2054                 ret = _regulator_disable(rdev);
2055                 if (ret != 0)
2056                         rdev_err(rdev, "Deferred disable failed: %d\n", ret);
2057         }
2058
2059         mutex_unlock(&rdev->mutex);
2060
2061         if (rdev->supply) {
2062                 for (i = 0; i < count; i++) {
2063                         ret = regulator_disable(rdev->supply);
2064                         if (ret != 0) {
2065                                 rdev_err(rdev,
2066                                          "Supply disable failed: %d\n", ret);
2067                         }
2068                 }
2069         }
2070 }
2071
2072 /**
2073  * regulator_disable_deferred - disable regulator output with delay
2074  * @regulator: regulator source
2075  * @ms: miliseconds until the regulator is disabled
2076  *
2077  * Execute regulator_disable() on the regulator after a delay.  This
2078  * is intended for use with devices that require some time to quiesce.
2079  *
2080  * NOTE: this will only disable the regulator output if no other consumer
2081  * devices have it enabled, the regulator device supports disabling and
2082  * machine constraints permit this operation.
2083  */
2084 int regulator_disable_deferred(struct regulator *regulator, int ms)
2085 {
2086         struct regulator_dev *rdev = regulator->rdev;
2087         int ret;
2088
2089         if (regulator->always_on)
2090                 return 0;
2091
2092         if (!ms)
2093                 return regulator_disable(regulator);
2094
2095         mutex_lock(&rdev->mutex);
2096         rdev->deferred_disables++;
2097         mutex_unlock(&rdev->mutex);
2098
2099         ret = queue_delayed_work(system_power_efficient_wq,
2100                                  &rdev->disable_work,
2101                                  msecs_to_jiffies(ms));
2102         if (ret < 0)
2103                 return ret;
2104         else
2105                 return 0;
2106 }
2107 EXPORT_SYMBOL_GPL(regulator_disable_deferred);
2108
2109 static int _regulator_is_enabled(struct regulator_dev *rdev)
2110 {
2111         /* A GPIO control always takes precedence */
2112         if (rdev->ena_pin)
2113                 return rdev->ena_gpio_state;
2114
2115         /* If we don't know then assume that the regulator is always on */
2116         if (!rdev->desc->ops->is_enabled)
2117                 return 1;
2118
2119         return rdev->desc->ops->is_enabled(rdev);
2120 }
2121
2122 /**
2123  * regulator_is_enabled - is the regulator output enabled
2124  * @regulator: regulator source
2125  *
2126  * Returns positive if the regulator driver backing the source/client
2127  * has requested that the device be enabled, zero if it hasn't, else a
2128  * negative errno code.
2129  *
2130  * Note that the device backing this regulator handle can have multiple
2131  * users, so it might be enabled even if regulator_enable() was never
2132  * called for this particular source.
2133  */
2134 int regulator_is_enabled(struct regulator *regulator)
2135 {
2136         int ret;
2137
2138         if (regulator->always_on)
2139                 return 1;
2140
2141         mutex_lock(&regulator->rdev->mutex);
2142         ret = _regulator_is_enabled(regulator->rdev);
2143         mutex_unlock(&regulator->rdev->mutex);
2144
2145         return ret;
2146 }
2147 EXPORT_SYMBOL_GPL(regulator_is_enabled);
2148
2149 /**
2150  * regulator_can_change_voltage - check if regulator can change voltage
2151  * @regulator: regulator source
2152  *
2153  * Returns positive if the regulator driver backing the source/client
2154  * can change its voltage, false otherwise. Useful for detecting fixed
2155  * or dummy regulators and disabling voltage change logic in the client
2156  * driver.
2157  */
2158 int regulator_can_change_voltage(struct regulator *regulator)
2159 {
2160         struct regulator_dev    *rdev = regulator->rdev;
2161
2162         if (rdev->constraints &&
2163             (rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE)) {
2164                 if (rdev->desc->n_voltages - rdev->desc->linear_min_sel > 1)
2165                         return 1;
2166
2167                 if (rdev->desc->continuous_voltage_range &&
2168                     rdev->constraints->min_uV && rdev->constraints->max_uV &&
2169                     rdev->constraints->min_uV != rdev->constraints->max_uV)
2170                         return 1;
2171         }
2172
2173         return 0;
2174 }
2175 EXPORT_SYMBOL_GPL(regulator_can_change_voltage);
2176
2177 /**
2178  * regulator_count_voltages - count regulator_list_voltage() selectors
2179  * @regulator: regulator source
2180  *
2181  * Returns number of selectors, or negative errno.  Selectors are
2182  * numbered starting at zero, and typically correspond to bitfields
2183  * in hardware registers.
2184  */
2185 int regulator_count_voltages(struct regulator *regulator)
2186 {
2187         struct regulator_dev    *rdev = regulator->rdev;
2188
2189         if (rdev->desc->n_voltages)
2190                 return rdev->desc->n_voltages;
2191
2192         if (!rdev->supply)
2193                 return -EINVAL;
2194
2195         return regulator_count_voltages(rdev->supply);
2196 }
2197 EXPORT_SYMBOL_GPL(regulator_count_voltages);
2198
2199 /**
2200  * regulator_list_voltage - enumerate supported voltages
2201  * @regulator: regulator source
2202  * @selector: identify voltage to list
2203  * Context: can sleep
2204  *
2205  * Returns a voltage that can be passed to @regulator_set_voltage(),
2206  * zero if this selector code can't be used on this system, or a
2207  * negative errno.
2208  */
2209 int regulator_list_voltage(struct regulator *regulator, unsigned selector)
2210 {
2211         struct regulator_dev    *rdev = regulator->rdev;
2212         struct regulator_ops    *ops = rdev->desc->ops;
2213         int                     ret;
2214
2215         if (rdev->desc->fixed_uV && rdev->desc->n_voltages == 1 && !selector)
2216                 return rdev->desc->fixed_uV;
2217
2218         if (ops->list_voltage) {
2219                 if (selector >= rdev->desc->n_voltages)
2220                         return -EINVAL;
2221                 mutex_lock(&rdev->mutex);
2222                 ret = ops->list_voltage(rdev, selector);
2223                 mutex_unlock(&rdev->mutex);
2224         } else if (rdev->supply) {
2225                 ret = regulator_list_voltage(rdev->supply, selector);
2226         } else {
2227                 return -EINVAL;
2228         }
2229
2230         if (ret > 0) {
2231                 if (ret < rdev->constraints->min_uV)
2232                         ret = 0;
2233                 else if (ret > rdev->constraints->max_uV)
2234                         ret = 0;
2235         }
2236
2237         return ret;
2238 }
2239 EXPORT_SYMBOL_GPL(regulator_list_voltage);
2240
2241 /**
2242  * regulator_get_regmap - get the regulator's register map
2243  * @regulator: regulator source
2244  *
2245  * Returns the register map for the given regulator, or an ERR_PTR value
2246  * if the regulator doesn't use regmap.
2247  */
2248 struct regmap *regulator_get_regmap(struct regulator *regulator)
2249 {
2250         struct regmap *map = regulator->rdev->regmap;
2251
2252         return map ? map : ERR_PTR(-EOPNOTSUPP);
2253 }
2254
2255 /**
2256  * regulator_get_hardware_vsel_register - get the HW voltage selector register
2257  * @regulator: regulator source
2258  * @vsel_reg: voltage selector register, output parameter
2259  * @vsel_mask: mask for voltage selector bitfield, output parameter
2260  *
2261  * Returns the hardware register offset and bitmask used for setting the
2262  * regulator voltage. This might be useful when configuring voltage-scaling
2263  * hardware or firmware that can make I2C requests behind the kernel's back,
2264  * for example.
2265  *
2266  * On success, the output parameters @vsel_reg and @vsel_mask are filled in
2267  * and 0 is returned, otherwise a negative errno is returned.
2268  */
2269 int regulator_get_hardware_vsel_register(struct regulator *regulator,
2270                                          unsigned *vsel_reg,
2271                                          unsigned *vsel_mask)
2272 {
2273         struct regulator_dev    *rdev = regulator->rdev;
2274         struct regulator_ops    *ops = rdev->desc->ops;
2275
2276         if (ops->set_voltage_sel != regulator_set_voltage_sel_regmap)
2277                 return -EOPNOTSUPP;
2278
2279          *vsel_reg = rdev->desc->vsel_reg;
2280          *vsel_mask = rdev->desc->vsel_mask;
2281
2282          return 0;
2283 }
2284 EXPORT_SYMBOL_GPL(regulator_get_hardware_vsel_register);
2285
2286 /**
2287  * regulator_list_hardware_vsel - get the HW-specific register value for a selector
2288  * @regulator: regulator source
2289  * @selector: identify voltage to list
2290  *
2291  * Converts the selector to a hardware-specific voltage selector that can be
2292  * directly written to the regulator registers. The address of the voltage
2293  * register can be determined by calling @regulator_get_hardware_vsel_register.
2294  *
2295  * On error a negative errno is returned.
2296  */
2297 int regulator_list_hardware_vsel(struct regulator *regulator,
2298                                  unsigned selector)
2299 {
2300         struct regulator_dev    *rdev = regulator->rdev;
2301         struct regulator_ops    *ops = rdev->desc->ops;
2302
2303         if (selector >= rdev->desc->n_voltages)
2304                 return -EINVAL;
2305         if (ops->set_voltage_sel != regulator_set_voltage_sel_regmap)
2306                 return -EOPNOTSUPP;
2307
2308         return selector;
2309 }
2310 EXPORT_SYMBOL_GPL(regulator_list_hardware_vsel);
2311
2312 /**
2313  * regulator_get_linear_step - return the voltage step size between VSEL values
2314  * @regulator: regulator source
2315  *
2316  * Returns the voltage step size between VSEL values for linear
2317  * regulators, or return 0 if the regulator isn't a linear regulator.
2318  */
2319 unsigned int regulator_get_linear_step(struct regulator *regulator)
2320 {
2321         struct regulator_dev *rdev = regulator->rdev;
2322
2323         return rdev->desc->uV_step;
2324 }
2325 EXPORT_SYMBOL_GPL(regulator_get_linear_step);
2326
2327 /**
2328  * regulator_is_supported_voltage - check if a voltage range can be supported
2329  *
2330  * @regulator: Regulator to check.
2331  * @min_uV: Minimum required voltage in uV.
2332  * @max_uV: Maximum required voltage in uV.
2333  *
2334  * Returns a boolean or a negative error code.
2335  */
2336 int regulator_is_supported_voltage(struct regulator *regulator,
2337                                    int min_uV, int max_uV)
2338 {
2339         struct regulator_dev *rdev = regulator->rdev;
2340         int i, voltages, ret;
2341
2342         /* If we can't change voltage check the current voltage */
2343         if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE)) {
2344                 ret = regulator_get_voltage(regulator);
2345                 if (ret >= 0)
2346                         return min_uV <= ret && ret <= max_uV;
2347                 else
2348                         return ret;
2349         }
2350
2351         /* Any voltage within constrains range is fine? */
2352         if (rdev->desc->continuous_voltage_range)
2353                 return min_uV >= rdev->constraints->min_uV &&
2354                                 max_uV <= rdev->constraints->max_uV;
2355
2356         ret = regulator_count_voltages(regulator);
2357         if (ret < 0)
2358                 return ret;
2359         voltages = ret;
2360
2361         for (i = 0; i < voltages; i++) {
2362                 ret = regulator_list_voltage(regulator, i);
2363
2364                 if (ret >= min_uV && ret <= max_uV)
2365                         return 1;
2366         }
2367
2368         return 0;
2369 }
2370 EXPORT_SYMBOL_GPL(regulator_is_supported_voltage);
2371
2372 static int _regulator_do_set_voltage(struct regulator_dev *rdev,
2373                                      int min_uV, int max_uV)
2374 {
2375         int ret;
2376         int delay = 0;
2377         int best_val = 0;
2378         unsigned int selector;
2379         int old_selector = -1;
2380
2381         trace_regulator_set_voltage(rdev_get_name(rdev), min_uV, max_uV);
2382
2383         min_uV += rdev->constraints->uV_offset;
2384         max_uV += rdev->constraints->uV_offset;
2385
2386         /*
2387          * If we can't obtain the old selector there is not enough
2388          * info to call set_voltage_time_sel().
2389          */
2390         if (_regulator_is_enabled(rdev) &&
2391             rdev->desc->ops->set_voltage_time_sel &&
2392             rdev->desc->ops->get_voltage_sel) {
2393                 old_selector = rdev->desc->ops->get_voltage_sel(rdev);
2394                 if (old_selector < 0)
2395                         return old_selector;
2396         }
2397
2398         if (rdev->desc->ops->set_voltage) {
2399                 ret = rdev->desc->ops->set_voltage(rdev, min_uV, max_uV,
2400                                                    &selector);
2401
2402                 if (ret >= 0) {
2403                         if (rdev->desc->ops->list_voltage)
2404                                 best_val = rdev->desc->ops->list_voltage(rdev,
2405                                                                          selector);
2406                         else
2407                                 best_val = _regulator_get_voltage(rdev);
2408                 }
2409
2410         } else if (rdev->desc->ops->set_voltage_sel) {
2411                 if (rdev->desc->ops->map_voltage) {
2412                         ret = rdev->desc->ops->map_voltage(rdev, min_uV,
2413                                                            max_uV);
2414                 } else {
2415                         if (rdev->desc->ops->list_voltage ==
2416                             regulator_list_voltage_linear)
2417                                 ret = regulator_map_voltage_linear(rdev,
2418                                                                 min_uV, max_uV);
2419                         else if (rdev->desc->ops->list_voltage ==
2420                                  regulator_list_voltage_linear_range)
2421                                 ret = regulator_map_voltage_linear_range(rdev,
2422                                                                 min_uV, max_uV);
2423                         else
2424                                 ret = regulator_map_voltage_iterate(rdev,
2425                                                                 min_uV, max_uV);
2426                 }
2427
2428                 if (ret >= 0) {
2429                         best_val = rdev->desc->ops->list_voltage(rdev, ret);
2430                         if (min_uV <= best_val && max_uV >= best_val) {
2431                                 selector = ret;
2432                                 if (old_selector == selector)
2433                                         ret = 0;
2434                                 else
2435                                         ret = rdev->desc->ops->set_voltage_sel(
2436                                                                 rdev, ret);
2437                         } else {
2438                                 ret = -EINVAL;
2439                         }
2440                 }
2441         } else {
2442                 ret = -EINVAL;
2443         }
2444
2445         /* Call set_voltage_time_sel if successfully obtained old_selector */
2446         if (ret == 0 && !rdev->constraints->ramp_disable && old_selector >= 0
2447                 && old_selector != selector) {
2448
2449                 delay = rdev->desc->ops->set_voltage_time_sel(rdev,
2450                                                 old_selector, selector);
2451                 if (delay < 0) {
2452                         rdev_warn(rdev, "set_voltage_time_sel() failed: %d\n",
2453                                   delay);
2454                         delay = 0;
2455                 }
2456
2457                 /* Insert any necessary delays */
2458                 if (delay >= 1000) {
2459                         mdelay(delay / 1000);
2460                         udelay(delay % 1000);
2461                 } else if (delay) {
2462                         udelay(delay);
2463                 }
2464         }
2465
2466         if (ret == 0 && best_val >= 0) {
2467                 unsigned long data = best_val;
2468
2469                 _notifier_call_chain(rdev, REGULATOR_EVENT_VOLTAGE_CHANGE,
2470                                      (void *)data);
2471         }
2472
2473         trace_regulator_set_voltage_complete(rdev_get_name(rdev), best_val);
2474
2475         return ret;
2476 }
2477
2478 /**
2479  * regulator_set_voltage - set regulator output voltage
2480  * @regulator: regulator source
2481  * @min_uV: Minimum required voltage in uV
2482  * @max_uV: Maximum acceptable voltage in uV
2483  *
2484  * Sets a voltage regulator to the desired output voltage. This can be set
2485  * during any regulator state. IOW, regulator can be disabled or enabled.
2486  *
2487  * If the regulator is enabled then the voltage will change to the new value
2488  * immediately otherwise if the regulator is disabled the regulator will
2489  * output at the new voltage when enabled.
2490  *
2491  * NOTE: If the regulator is shared between several devices then the lowest
2492  * request voltage that meets the system constraints will be used.
2493  * Regulator system constraints must be set for this regulator before
2494  * calling this function otherwise this call will fail.
2495  */
2496 int regulator_set_voltage(struct regulator *regulator, int min_uV, int max_uV)
2497 {
2498         struct regulator_dev *rdev = regulator->rdev;
2499         int ret = 0;
2500         int old_min_uV, old_max_uV;
2501         int current_uV;
2502
2503         mutex_lock(&rdev->mutex);
2504
2505         /* If we're setting the same range as last time the change
2506          * should be a noop (some cpufreq implementations use the same
2507          * voltage for multiple frequencies, for example).
2508          */
2509         if (regulator->min_uV == min_uV && regulator->max_uV == max_uV)
2510                 goto out;
2511
2512         /* If we're trying to set a range that overlaps the current voltage,
2513          * return succesfully even though the regulator does not support
2514          * changing the voltage.
2515          */
2516         if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE)) {
2517                 current_uV = _regulator_get_voltage(rdev);
2518                 if (min_uV <= current_uV && current_uV <= max_uV) {
2519                         regulator->min_uV = min_uV;
2520                         regulator->max_uV = max_uV;
2521                         goto out;
2522                 }
2523         }
2524
2525         /* sanity check */
2526         if (!rdev->desc->ops->set_voltage &&
2527             !rdev->desc->ops->set_voltage_sel) {
2528                 ret = -EINVAL;
2529                 goto out;
2530         }
2531
2532         /* constraints check */
2533         ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
2534         if (ret < 0)
2535                 goto out;
2536
2537         /* restore original values in case of error */
2538         old_min_uV = regulator->min_uV;
2539         old_max_uV = regulator->max_uV;
2540         regulator->min_uV = min_uV;
2541         regulator->max_uV = max_uV;
2542
2543         ret = regulator_check_consumers(rdev, &min_uV, &max_uV);
2544         if (ret < 0)
2545                 goto out2;
2546
2547         ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);
2548         if (ret < 0)
2549                 goto out2;
2550
2551 out:
2552         mutex_unlock(&rdev->mutex);
2553         return ret;
2554 out2:
2555         regulator->min_uV = old_min_uV;
2556         regulator->max_uV = old_max_uV;
2557         mutex_unlock(&rdev->mutex);
2558         return ret;
2559 }
2560 EXPORT_SYMBOL_GPL(regulator_set_voltage);
2561
2562 /**
2563  * regulator_set_voltage_time - get raise/fall time
2564  * @regulator: regulator source
2565  * @old_uV: starting voltage in microvolts
2566  * @new_uV: target voltage in microvolts
2567  *
2568  * Provided with the starting and ending voltage, this function attempts to
2569  * calculate the time in microseconds required to rise or fall to this new
2570  * voltage.
2571  */
2572 int regulator_set_voltage_time(struct regulator *regulator,
2573                                int old_uV, int new_uV)
2574 {
2575         struct regulator_dev    *rdev = regulator->rdev;
2576         struct regulator_ops    *ops = rdev->desc->ops;
2577         int old_sel = -1;
2578         int new_sel = -1;
2579         int voltage;
2580         int i;
2581
2582         /* Currently requires operations to do this */
2583         if (!ops->list_voltage || !ops->set_voltage_time_sel
2584             || !rdev->desc->n_voltages)
2585                 return -EINVAL;
2586
2587         for (i = 0; i < rdev->desc->n_voltages; i++) {
2588                 /* We only look for exact voltage matches here */
2589                 voltage = regulator_list_voltage(regulator, i);
2590                 if (voltage < 0)
2591                         return -EINVAL;
2592                 if (voltage == 0)
2593                         continue;
2594                 if (voltage == old_uV)
2595                         old_sel = i;
2596                 if (voltage == new_uV)
2597                         new_sel = i;
2598         }
2599
2600         if (old_sel < 0 || new_sel < 0)
2601                 return -EINVAL;
2602
2603         return ops->set_voltage_time_sel(rdev, old_sel, new_sel);
2604 }
2605 EXPORT_SYMBOL_GPL(regulator_set_voltage_time);
2606
2607 /**
2608  * regulator_set_voltage_time_sel - get raise/fall time
2609  * @rdev: regulator source device
2610  * @old_selector: selector for starting voltage
2611  * @new_selector: selector for target voltage
2612  *
2613  * Provided with the starting and target voltage selectors, this function
2614  * returns time in microseconds required to rise or fall to this new voltage
2615  *
2616  * Drivers providing ramp_delay in regulation_constraints can use this as their
2617  * set_voltage_time_sel() operation.
2618  */
2619 int regulator_set_voltage_time_sel(struct regulator_dev *rdev,
2620                                    unsigned int old_selector,
2621                                    unsigned int new_selector)
2622 {
2623         unsigned int ramp_delay = 0;
2624         int old_volt, new_volt;
2625
2626         if (rdev->constraints->ramp_delay)
2627                 ramp_delay = rdev->constraints->ramp_delay;
2628         else if (rdev->desc->ramp_delay)
2629                 ramp_delay = rdev->desc->ramp_delay;
2630
2631         if (ramp_delay == 0) {
2632                 rdev_warn(rdev, "ramp_delay not set\n");
2633                 return 0;
2634         }
2635
2636         /* sanity check */
2637         if (!rdev->desc->ops->list_voltage)
2638                 return -EINVAL;
2639
2640         old_volt = rdev->desc->ops->list_voltage(rdev, old_selector);
2641         new_volt = rdev->desc->ops->list_voltage(rdev, new_selector);
2642
2643         return DIV_ROUND_UP(abs(new_volt - old_volt), ramp_delay);
2644 }
2645 EXPORT_SYMBOL_GPL(regulator_set_voltage_time_sel);
2646
2647 /**
2648  * regulator_sync_voltage - re-apply last regulator output voltage
2649  * @regulator: regulator source
2650  *
2651  * Re-apply the last configured voltage.  This is intended to be used
2652  * where some external control source the consumer is cooperating with
2653  * has caused the configured voltage to change.
2654  */
2655 int regulator_sync_voltage(struct regulator *regulator)
2656 {
2657         struct regulator_dev *rdev = regulator->rdev;
2658         int ret, min_uV, max_uV;
2659
2660         mutex_lock(&rdev->mutex);
2661
2662         if (!rdev->desc->ops->set_voltage &&
2663             !rdev->desc->ops->set_voltage_sel) {
2664                 ret = -EINVAL;
2665                 goto out;
2666         }
2667
2668         /* This is only going to work if we've had a voltage configured. */
2669         if (!regulator->min_uV && !regulator->max_uV) {
2670                 ret = -EINVAL;
2671                 goto out;
2672         }
2673
2674         min_uV = regulator->min_uV;
2675         max_uV = regulator->max_uV;
2676
2677         /* This should be a paranoia check... */
2678         ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
2679         if (ret < 0)
2680                 goto out;
2681
2682         ret = regulator_check_consumers(rdev, &min_uV, &max_uV);
2683         if (ret < 0)
2684                 goto out;
2685
2686         ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);
2687
2688 out:
2689         mutex_unlock(&rdev->mutex);
2690         return ret;
2691 }
2692 EXPORT_SYMBOL_GPL(regulator_sync_voltage);
2693
2694 static int _regulator_get_voltage(struct regulator_dev *rdev)
2695 {
2696         int sel, ret;
2697
2698         if (rdev->desc->ops->get_voltage_sel) {
2699                 sel = rdev->desc->ops->get_voltage_sel(rdev);
2700                 if (sel < 0)
2701                         return sel;
2702                 ret = rdev->desc->ops->list_voltage(rdev, sel);
2703         } else if (rdev->desc->ops->get_voltage) {
2704                 ret = rdev->desc->ops->get_voltage(rdev);
2705         } else if (rdev->desc->ops->list_voltage) {
2706                 ret = rdev->desc->ops->list_voltage(rdev, 0);
2707         } else if (rdev->desc->fixed_uV && (rdev->desc->n_voltages == 1)) {
2708                 ret = rdev->desc->fixed_uV;
2709         } else if (rdev->supply) {
2710                 ret = regulator_get_voltage(rdev->supply);
2711         } else {
2712                 return -EINVAL;
2713         }
2714
2715         if (ret < 0)
2716                 return ret;
2717         return ret - rdev->constraints->uV_offset;
2718 }
2719
2720 /**
2721  * regulator_get_voltage - get regulator output voltage
2722  * @regulator: regulator source
2723  *
2724  * This returns the current regulator voltage in uV.
2725  *
2726  * NOTE: If the regulator is disabled it will return the voltage value. This
2727  * function should not be used to determine regulator state.
2728  */
2729 int regulator_get_voltage(struct regulator *regulator)
2730 {
2731         int ret;
2732
2733         mutex_lock(&regulator->rdev->mutex);
2734
2735         ret = _regulator_get_voltage(regulator->rdev);
2736
2737         mutex_unlock(&regulator->rdev->mutex);
2738
2739         return ret;
2740 }
2741 EXPORT_SYMBOL_GPL(regulator_get_voltage);
2742
2743 /**
2744  * regulator_set_current_limit - set regulator output current limit
2745  * @regulator: regulator source
2746  * @min_uA: Minimum supported current in uA
2747  * @max_uA: Maximum supported current in uA
2748  *
2749  * Sets current sink to the desired output current. This can be set during
2750  * any regulator state. IOW, regulator can be disabled or enabled.
2751  *
2752  * If the regulator is enabled then the current will change to the new value
2753  * immediately otherwise if the regulator is disabled the regulator will
2754  * output at the new current when enabled.
2755  *
2756  * NOTE: Regulator system constraints must be set for this regulator before
2757  * calling this function otherwise this call will fail.
2758  */
2759 int regulator_set_current_limit(struct regulator *regulator,
2760                                int min_uA, int max_uA)
2761 {
2762         struct regulator_dev *rdev = regulator->rdev;
2763         int ret;
2764
2765         mutex_lock(&rdev->mutex);
2766
2767         /* sanity check */
2768         if (!rdev->desc->ops->set_current_limit) {
2769                 ret = -EINVAL;
2770                 goto out;
2771         }
2772
2773         /* constraints check */
2774         ret = regulator_check_current_limit(rdev, &min_uA, &max_uA);
2775         if (ret < 0)
2776                 goto out;
2777
2778         ret = rdev->desc->ops->set_current_limit(rdev, min_uA, max_uA);
2779 out:
2780         mutex_unlock(&rdev->mutex);
2781         return ret;
2782 }
2783 EXPORT_SYMBOL_GPL(regulator_set_current_limit);
2784
2785 static int _regulator_get_current_limit(struct regulator_dev *rdev)
2786 {
2787         int ret;
2788
2789         mutex_lock(&rdev->mutex);
2790
2791         /* sanity check */
2792         if (!rdev->desc->ops->get_current_limit) {
2793                 ret = -EINVAL;
2794                 goto out;
2795         }
2796
2797         ret = rdev->desc->ops->get_current_limit(rdev);
2798 out:
2799         mutex_unlock(&rdev->mutex);
2800         return ret;
2801 }
2802
2803 /**
2804  * regulator_get_current_limit - get regulator output current
2805  * @regulator: regulator source
2806  *
2807  * This returns the current supplied by the specified current sink in uA.
2808  *
2809  * NOTE: If the regulator is disabled it will return the current value. This
2810  * function should not be used to determine regulator state.
2811  */
2812 int regulator_get_current_limit(struct regulator *regulator)
2813 {
2814         return _regulator_get_current_limit(regulator->rdev);
2815 }
2816 EXPORT_SYMBOL_GPL(regulator_get_current_limit);
2817
2818 /**
2819  * regulator_set_mode - set regulator operating mode
2820  * @regulator: regulator source
2821  * @mode: operating mode - one of the REGULATOR_MODE constants
2822  *
2823  * Set regulator operating mode to increase regulator efficiency or improve
2824  * regulation performance.
2825  *
2826  * NOTE: Regulator system constraints must be set for this regulator before
2827  * calling this function otherwise this call will fail.
2828  */
2829 int regulator_set_mode(struct regulator *regulator, unsigned int mode)
2830 {
2831         struct regulator_dev *rdev = regulator->rdev;
2832         int ret;
2833         int regulator_curr_mode;
2834
2835         mutex_lock(&rdev->mutex);
2836
2837         /* sanity check */
2838         if (!rdev->desc->ops->set_mode) {
2839                 ret = -EINVAL;
2840                 goto out;
2841         }
2842
2843         /* return if the same mode is requested */
2844         if (rdev->desc->ops->get_mode) {
2845                 regulator_curr_mode = rdev->desc->ops->get_mode(rdev);
2846                 if (regulator_curr_mode == mode) {
2847                         ret = 0;
2848                         goto out;
2849                 }
2850         }
2851
2852         /* constraints check */
2853         ret = regulator_mode_constrain(rdev, &mode);
2854         if (ret < 0)
2855                 goto out;
2856
2857         ret = rdev->desc->ops->set_mode(rdev, mode);
2858 out:
2859         mutex_unlock(&rdev->mutex);
2860         return ret;
2861 }
2862 EXPORT_SYMBOL_GPL(regulator_set_mode);
2863
2864 static unsigned int _regulator_get_mode(struct regulator_dev *rdev)
2865 {
2866         int ret;
2867
2868         mutex_lock(&rdev->mutex);
2869
2870         /* sanity check */
2871         if (!rdev->desc->ops->get_mode) {
2872                 ret = -EINVAL;
2873                 goto out;
2874         }
2875
2876         ret = rdev->desc->ops->get_mode(rdev);
2877 out:
2878         mutex_unlock(&rdev->mutex);
2879         return ret;
2880 }
2881
2882 /**
2883  * regulator_get_mode - get regulator operating mode
2884  * @regulator: regulator source
2885  *
2886  * Get the current regulator operating mode.
2887  */
2888 unsigned int regulator_get_mode(struct regulator *regulator)
2889 {
2890         return _regulator_get_mode(regulator->rdev);
2891 }
2892 EXPORT_SYMBOL_GPL(regulator_get_mode);
2893
2894 /**
2895  * regulator_set_optimum_mode - set regulator optimum operating mode
2896  * @regulator: regulator source
2897  * @uA_load: load current
2898  *
2899  * Notifies the regulator core of a new device load. This is then used by
2900  * DRMS (if enabled by constraints) to set the most efficient regulator
2901  * operating mode for the new regulator loading.
2902  *
2903  * Consumer devices notify their supply regulator of the maximum power
2904  * they will require (can be taken from device datasheet in the power
2905  * consumption tables) when they change operational status and hence power
2906  * state. Examples of operational state changes that can affect power
2907  * consumption are :-
2908  *
2909  *    o Device is opened / closed.
2910  *    o Device I/O is about to begin or has just finished.
2911  *    o Device is idling in between work.
2912  *
2913  * This information is also exported via sysfs to userspace.
2914  *
2915  * DRMS will sum the total requested load on the regulator and change
2916  * to the most efficient operating mode if platform constraints allow.
2917  *
2918  * Returns the new regulator mode or error.
2919  */
2920 int regulator_set_optimum_mode(struct regulator *regulator, int uA_load)
2921 {
2922         struct regulator_dev *rdev = regulator->rdev;
2923         struct regulator *consumer;
2924         int ret, output_uV, input_uV = 0, total_uA_load = 0;
2925         unsigned int mode;
2926
2927         if (rdev->supply)
2928                 input_uV = regulator_get_voltage(rdev->supply);
2929
2930         mutex_lock(&rdev->mutex);
2931
2932         /*
2933          * first check to see if we can set modes at all, otherwise just
2934          * tell the consumer everything is OK.
2935          */
2936         regulator->uA_load = uA_load;
2937         ret = regulator_check_drms(rdev);
2938         if (ret < 0) {
2939                 ret = 0;
2940                 goto out;
2941         }
2942
2943         if (!rdev->desc->ops->get_optimum_mode)
2944                 goto out;
2945
2946         /*
2947          * we can actually do this so any errors are indicators of
2948          * potential real failure.
2949          */
2950         ret = -EINVAL;
2951
2952         if (!rdev->desc->ops->set_mode)
2953                 goto out;
2954
2955         /* get output voltage */
2956         output_uV = _regulator_get_voltage(rdev);
2957         if (output_uV <= 0) {
2958                 rdev_err(rdev, "invalid output voltage found\n");
2959                 goto out;
2960         }
2961
2962         /* No supply? Use constraint voltage */
2963         if (input_uV <= 0)
2964                 input_uV = rdev->constraints->input_uV;
2965         if (input_uV <= 0) {
2966                 rdev_err(rdev, "invalid input voltage found\n");
2967                 goto out;
2968         }
2969
2970         /* calc total requested load for this regulator */
2971         list_for_each_entry(consumer, &rdev->consumer_list, list)
2972                 total_uA_load += consumer->uA_load;
2973
2974         mode = rdev->desc->ops->get_optimum_mode(rdev,
2975                                                  input_uV, output_uV,
2976                                                  total_uA_load);
2977         ret = regulator_mode_constrain(rdev, &mode);
2978         if (ret < 0) {
2979                 rdev_err(rdev, "failed to get optimum mode @ %d uA %d -> %d uV\n",
2980                          total_uA_load, input_uV, output_uV);
2981                 goto out;
2982         }
2983
2984         ret = rdev->desc->ops->set_mode(rdev, mode);
2985         if (ret < 0) {
2986                 rdev_err(rdev, "failed to set optimum mode %x\n", mode);
2987                 goto out;
2988         }
2989         ret = mode;
2990 out:
2991         mutex_unlock(&rdev->mutex);
2992         return ret;
2993 }
2994 EXPORT_SYMBOL_GPL(regulator_set_optimum_mode);
2995
2996 /**
2997  * regulator_allow_bypass - allow the regulator to go into bypass mode
2998  *
2999  * @regulator: Regulator to configure
3000  * @enable: enable or disable bypass mode
3001  *
3002  * Allow the regulator to go into bypass mode if all other consumers
3003  * for the regulator also enable bypass mode and the machine
3004  * constraints allow this.  Bypass mode means that the regulator is
3005  * simply passing the input directly to the output with no regulation.
3006  */
3007 int regulator_allow_bypass(struct regulator *regulator, bool enable)
3008 {
3009         struct regulator_dev *rdev = regulator->rdev;
3010         int ret = 0;
3011
3012         if (!rdev->desc->ops->set_bypass)
3013                 return 0;
3014
3015         if (rdev->constraints &&
3016             !(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_BYPASS))
3017                 return 0;
3018
3019         mutex_lock(&rdev->mutex);
3020
3021         if (enable && !regulator->bypass) {
3022                 rdev->bypass_count++;
3023
3024                 if (rdev->bypass_count == rdev->open_count) {
3025                         ret = rdev->desc->ops->set_bypass(rdev, enable);
3026                         if (ret != 0)
3027                                 rdev->bypass_count--;
3028                 }
3029
3030         } else if (!enable && regulator->bypass) {
3031                 rdev->bypass_count--;
3032
3033                 if (rdev->bypass_count != rdev->open_count) {
3034                         ret = rdev->desc->ops->set_bypass(rdev, enable);
3035                         if (ret != 0)
3036                                 rdev->bypass_count++;
3037                 }
3038         }
3039
3040         if (ret == 0)
3041                 regulator->bypass = enable;
3042
3043         mutex_unlock(&rdev->mutex);
3044
3045         return ret;
3046 }
3047 EXPORT_SYMBOL_GPL(regulator_allow_bypass);
3048
3049 /**
3050  * regulator_register_notifier - register regulator event notifier
3051  * @regulator: regulator source
3052  * @nb: notifier block
3053  *
3054  * Register notifier block to receive regulator events.
3055  */
3056 int regulator_register_notifier(struct regulator *regulator,
3057                               struct notifier_block *nb)
3058 {
3059         return blocking_notifier_chain_register(&regulator->rdev->notifier,
3060                                                 nb);
3061 }
3062 EXPORT_SYMBOL_GPL(regulator_register_notifier);
3063
3064 /**
3065  * regulator_unregister_notifier - unregister regulator event notifier
3066  * @regulator: regulator source
3067  * @nb: notifier block
3068  *
3069  * Unregister regulator event notifier block.
3070  */
3071 int regulator_unregister_notifier(struct regulator *regulator,
3072                                 struct notifier_block *nb)
3073 {
3074         return blocking_notifier_chain_unregister(&regulator->rdev->notifier,
3075                                                   nb);
3076 }
3077 EXPORT_SYMBOL_GPL(regulator_unregister_notifier);
3078
3079 /* notify regulator consumers and downstream regulator consumers.
3080  * Note mutex must be held by caller.
3081  */
3082 static void _notifier_call_chain(struct regulator_dev *rdev,
3083                                   unsigned long event, void *data)
3084 {
3085         /* call rdev chain first */
3086         blocking_notifier_call_chain(&rdev->notifier, event, data);
3087 }
3088
3089 /**
3090  * regulator_bulk_get - get multiple regulator consumers
3091  *
3092  * @dev:           Device to supply
3093  * @num_consumers: Number of consumers to register
3094  * @consumers:     Configuration of consumers; clients are stored here.
3095  *
3096  * @return 0 on success, an errno on failure.
3097  *
3098  * This helper function allows drivers to get several regulator
3099  * consumers in one operation.  If any of the regulators cannot be
3100  * acquired then any regulators that were allocated will be freed
3101  * before returning to the caller.
3102  */
3103 int regulator_bulk_get(struct device *dev, int num_consumers,
3104                        struct regulator_bulk_data *consumers)
3105 {
3106         int i;
3107         int ret;
3108
3109         for (i = 0; i < num_consumers; i++)
3110                 consumers[i].consumer = NULL;
3111
3112         for (i = 0; i < num_consumers; i++) {
3113                 consumers[i].consumer = regulator_get(dev,
3114                                                       consumers[i].supply);
3115                 if (IS_ERR(consumers[i].consumer)) {
3116                         ret = PTR_ERR(consumers[i].consumer);
3117                         dev_err(dev, "Failed to get supply '%s': %d\n",
3118                                 consumers[i].supply, ret);
3119                         consumers[i].consumer = NULL;
3120                         goto err;
3121                 }
3122         }
3123
3124         return 0;
3125
3126 err:
3127         while (--i >= 0)
3128                 regulator_put(consumers[i].consumer);
3129
3130         return ret;
3131 }
3132 EXPORT_SYMBOL_GPL(regulator_bulk_get);
3133
3134 static void regulator_bulk_enable_async(void *data, async_cookie_t cookie)
3135 {
3136         struct regulator_bulk_data *bulk = data;
3137
3138         bulk->ret = regulator_enable(bulk->consumer);
3139 }
3140
3141 /**
3142  * regulator_bulk_enable - enable multiple regulator consumers
3143  *
3144  * @num_consumers: Number of consumers
3145  * @consumers:     Consumer data; clients are stored here.
3146  * @return         0 on success, an errno on failure
3147  *
3148  * This convenience API allows consumers to enable multiple regulator
3149  * clients in a single API call.  If any consumers cannot be enabled
3150  * then any others that were enabled will be disabled again prior to
3151  * return.
3152  */
3153 int regulator_bulk_enable(int num_consumers,
3154                           struct regulator_bulk_data *consumers)
3155 {
3156         ASYNC_DOMAIN_EXCLUSIVE(async_domain);
3157         int i;
3158         int ret = 0;
3159
3160         for (i = 0; i < num_consumers; i++) {
3161                 if (consumers[i].consumer->always_on)
3162                         consumers[i].ret = 0;
3163                 else
3164                         async_schedule_domain(regulator_bulk_enable_async,
3165                                               &consumers[i], &async_domain);
3166         }
3167
3168         async_synchronize_full_domain(&async_domain);
3169
3170         /* If any consumer failed we need to unwind any that succeeded */
3171         for (i = 0; i < num_consumers; i++) {
3172                 if (consumers[i].ret != 0) {
3173                         ret = consumers[i].ret;
3174                         goto err;
3175                 }
3176         }
3177
3178         return 0;
3179
3180 err:
3181         for (i = 0; i < num_consumers; i++) {
3182                 if (consumers[i].ret < 0)
3183                         pr_err("Failed to enable %s: %d\n", consumers[i].supply,
3184                                consumers[i].ret);
3185                 else
3186                         regulator_disable(consumers[i].consumer);
3187         }
3188
3189         return ret;
3190 }
3191 EXPORT_SYMBOL_GPL(regulator_bulk_enable);
3192
3193 /**
3194  * regulator_bulk_disable - disable multiple regulator consumers
3195  *
3196  * @num_consumers: Number of consumers
3197  * @consumers:     Consumer data; clients are stored here.
3198  * @return         0 on success, an errno on failure
3199  *
3200  * This convenience API allows consumers to disable multiple regulator
3201  * clients in a single API call.  If any consumers cannot be disabled
3202  * then any others that were disabled will be enabled again prior to
3203  * return.
3204  */
3205 int regulator_bulk_disable(int num_consumers,
3206                            struct regulator_bulk_data *consumers)
3207 {
3208         int i;
3209         int ret, r;
3210
3211         for (i = num_consumers - 1; i >= 0; --i) {
3212                 ret = regulator_disable(consumers[i].consumer);
3213                 if (ret != 0)
3214                         goto err;
3215         }
3216
3217         return 0;
3218
3219 err:
3220         pr_err("Failed to disable %s: %d\n", consumers[i].supply, ret);
3221         for (++i; i < num_consumers; ++i) {
3222                 r = regulator_enable(consumers[i].consumer);
3223                 if (r != 0)
3224                         pr_err("Failed to reename %s: %d\n",
3225                                consumers[i].supply, r);
3226         }
3227
3228         return ret;
3229 }
3230 EXPORT_SYMBOL_GPL(regulator_bulk_disable);
3231
3232 /**
3233  * regulator_bulk_force_disable - force disable multiple regulator consumers
3234  *
3235  * @num_consumers: Number of consumers
3236  * @consumers:     Consumer data; clients are stored here.
3237  * @return         0 on success, an errno on failure
3238  *
3239  * This convenience API allows consumers to forcibly disable multiple regulator
3240  * clients in a single API call.
3241  * NOTE: This should be used for situations when device damage will
3242  * likely occur if the regulators are not disabled (e.g. over temp).
3243  * Although regulator_force_disable function call for some consumers can
3244  * return error numbers, the function is called for all consumers.
3245  */
3246 int regulator_bulk_force_disable(int num_consumers,
3247                            struct regulator_bulk_data *consumers)
3248 {
3249         int i;
3250         int ret;
3251
3252         for (i = 0; i < num_consumers; i++)
3253                 consumers[i].ret =
3254                             regulator_force_disable(consumers[i].consumer);
3255
3256         for (i = 0; i < num_consumers; i++) {
3257                 if (consumers[i].ret != 0) {
3258                         ret = consumers[i].ret;
3259                         goto out;
3260                 }
3261         }
3262
3263         return 0;
3264 out:
3265         return ret;
3266 }
3267 EXPORT_SYMBOL_GPL(regulator_bulk_force_disable);
3268
3269 /**
3270  * regulator_bulk_free - free multiple regulator consumers
3271  *
3272  * @num_consumers: Number of consumers
3273  * @consumers:     Consumer data; clients are stored here.
3274  *
3275  * This convenience API allows consumers to free multiple regulator
3276  * clients in a single API call.
3277  */
3278 void regulator_bulk_free(int num_consumers,
3279                          struct regulator_bulk_data *consumers)
3280 {
3281         int i;
3282
3283         for (i = 0; i < num_consumers; i++) {
3284                 regulator_put(consumers[i].consumer);
3285                 consumers[i].consumer = NULL;
3286         }
3287 }
3288 EXPORT_SYMBOL_GPL(regulator_bulk_free);
3289
3290 /**
3291  * regulator_notifier_call_chain - call regulator event notifier
3292  * @rdev: regulator source
3293  * @event: notifier block
3294  * @data: callback-specific data.
3295  *
3296  * Called by regulator drivers to notify clients a regulator event has
3297  * occurred. We also notify regulator clients downstream.
3298  * Note lock must be held by caller.
3299  */
3300 int regulator_notifier_call_chain(struct regulator_dev *rdev,
3301                                   unsigned long event, void *data)
3302 {
3303         _notifier_call_chain(rdev, event, data);
3304         return NOTIFY_DONE;
3305
3306 }
3307 EXPORT_SYMBOL_GPL(regulator_notifier_call_chain);
3308
3309 /**
3310  * regulator_mode_to_status - convert a regulator mode into a status
3311  *
3312  * @mode: Mode to convert
3313  *
3314  * Convert a regulator mode into a status.
3315  */
3316 int regulator_mode_to_status(unsigned int mode)
3317 {
3318         switch (mode) {
3319         case REGULATOR_MODE_FAST:
3320                 return REGULATOR_STATUS_FAST;
3321         case REGULATOR_MODE_NORMAL:
3322                 return REGULATOR_STATUS_NORMAL;
3323         case REGULATOR_MODE_IDLE:
3324                 return REGULATOR_STATUS_IDLE;
3325         case REGULATOR_MODE_STANDBY:
3326                 return REGULATOR_STATUS_STANDBY;
3327         default:
3328                 return REGULATOR_STATUS_UNDEFINED;
3329         }
3330 }
3331 EXPORT_SYMBOL_GPL(regulator_mode_to_status);
3332
3333 /*
3334  * To avoid cluttering sysfs (and memory) with useless state, only
3335  * create attributes that can be meaningfully displayed.
3336  */
3337 static int add_regulator_attributes(struct regulator_dev *rdev)
3338 {
3339         struct device           *dev = &rdev->dev;
3340         struct regulator_ops    *ops = rdev->desc->ops;
3341         int                     status = 0;
3342
3343         /* some attributes need specific methods to be displayed */
3344         if ((ops->get_voltage && ops->get_voltage(rdev) >= 0) ||
3345             (ops->get_voltage_sel && ops->get_voltage_sel(rdev) >= 0) ||
3346             (ops->list_voltage && ops->list_voltage(rdev, 0) >= 0) ||
3347                 (rdev->desc->fixed_uV && (rdev->desc->n_voltages == 1))) {
3348                 status = device_create_file(dev, &dev_attr_microvolts);
3349                 if (status < 0)
3350                         return status;
3351         }
3352         if (ops->get_current_limit) {
3353                 status = device_create_file(dev, &dev_attr_microamps);
3354                 if (status < 0)
3355                         return status;
3356         }
3357         if (ops->get_mode) {
3358                 status = device_create_file(dev, &dev_attr_opmode);
3359                 if (status < 0)
3360                         return status;
3361         }
3362         if (rdev->ena_pin || ops->is_enabled) {
3363                 status = device_create_file(dev, &dev_attr_state);
3364                 if (status < 0)
3365                         return status;
3366         }
3367         if (ops->get_status) {
3368                 status = device_create_file(dev, &dev_attr_status);
3369                 if (status < 0)
3370                         return status;
3371         }
3372         if (ops->get_bypass) {
3373                 status = device_create_file(dev, &dev_attr_bypass);
3374                 if (status < 0)
3375                         return status;
3376         }
3377
3378         /* some attributes are type-specific */
3379         if (rdev->desc->type == REGULATOR_CURRENT) {
3380                 status = device_create_file(dev, &dev_attr_requested_microamps);
3381                 if (status < 0)
3382                         return status;
3383         }
3384
3385         /* all the other attributes exist to support constraints;
3386          * don't show them if there are no constraints, or if the
3387          * relevant supporting methods are missing.
3388          */
3389         if (!rdev->constraints)
3390                 return status;
3391
3392         /* constraints need specific supporting methods */
3393         if (ops->set_voltage || ops->set_voltage_sel) {
3394                 status = device_create_file(dev, &dev_attr_min_microvolts);
3395                 if (status < 0)
3396                         return status;
3397                 status = device_create_file(dev, &dev_attr_max_microvolts);
3398                 if (status < 0)
3399                         return status;
3400         }
3401         if (ops->set_current_limit) {
3402                 status = device_create_file(dev, &dev_attr_min_microamps);
3403                 if (status < 0)
3404                         return status;
3405                 status = device_create_file(dev, &dev_attr_max_microamps);
3406                 if (status < 0)
3407                         return status;
3408         }
3409
3410         status = device_create_file(dev, &dev_attr_suspend_standby_state);
3411         if (status < 0)
3412                 return status;
3413         status = device_create_file(dev, &dev_attr_suspend_mem_state);
3414         if (status < 0)
3415                 return status;
3416         status = device_create_file(dev, &dev_attr_suspend_disk_state);
3417         if (status < 0)
3418                 return status;
3419
3420         if (ops->set_suspend_voltage) {
3421                 status = device_create_file(dev,
3422                                 &dev_attr_suspend_standby_microvolts);
3423                 if (status < 0)
3424                         return status;
3425                 status = device_create_file(dev,
3426                                 &dev_attr_suspend_mem_microvolts);
3427                 if (status < 0)
3428                         return status;
3429                 status = device_create_file(dev,
3430                                 &dev_attr_suspend_disk_microvolts);
3431                 if (status < 0)
3432                         return status;
3433         }
3434
3435         if (ops->set_suspend_mode) {
3436                 status = device_create_file(dev,
3437                                 &dev_attr_suspend_standby_mode);
3438                 if (status < 0)
3439                         return status;
3440                 status = device_create_file(dev,
3441                                 &dev_attr_suspend_mem_mode);
3442                 if (status < 0)
3443                         return status;
3444                 status = device_create_file(dev,
3445                                 &dev_attr_suspend_disk_mode);
3446                 if (status < 0)
3447                         return status;
3448         }
3449
3450         return status;
3451 }
3452
3453 static void rdev_init_debugfs(struct regulator_dev *rdev)
3454 {
3455         rdev->debugfs = debugfs_create_dir(rdev_get_name(rdev), debugfs_root);
3456         if (!rdev->debugfs) {
3457                 rdev_warn(rdev, "Failed to create debugfs directory\n");
3458                 return;
3459         }
3460
3461         debugfs_create_u32("use_count", 0444, rdev->debugfs,
3462                            &rdev->use_count);
3463         debugfs_create_u32("open_count", 0444, rdev->debugfs,
3464                            &rdev->open_count);
3465         debugfs_create_u32("bypass_count", 0444, rdev->debugfs,
3466                            &rdev->bypass_count);
3467 }
3468
3469 /**
3470  * regulator_register - register regulator
3471  * @regulator_desc: regulator to register
3472  * @config: runtime configuration for regulator
3473  *
3474  * Called by regulator drivers to register a regulator.
3475  * Returns a valid pointer to struct regulator_dev on success
3476  * or an ERR_PTR() on error.
3477  */
3478 struct regulator_dev *
3479 regulator_register(const struct regulator_desc *regulator_desc,
3480                    const struct regulator_config *config)
3481 {
3482         const struct regulation_constraints *constraints = NULL;
3483         const struct regulator_init_data *init_data;
3484         static atomic_t regulator_no = ATOMIC_INIT(0);
3485         struct regulator_dev *rdev;
3486         struct device *dev;
3487         int ret, i;
3488         const char *supply = NULL;
3489
3490         if (regulator_desc == NULL || config == NULL)
3491                 return ERR_PTR(-EINVAL);
3492
3493         dev = config->dev;
3494         WARN_ON(!dev);
3495
3496         if (regulator_desc->name == NULL || regulator_desc->ops == NULL)
3497                 return ERR_PTR(-EINVAL);
3498
3499         if (regulator_desc->type != REGULATOR_VOLTAGE &&
3500             regulator_desc->type != REGULATOR_CURRENT)
3501                 return ERR_PTR(-EINVAL);
3502
3503         /* Only one of each should be implemented */
3504         WARN_ON(regulator_desc->ops->get_voltage &&
3505                 regulator_desc->ops->get_voltage_sel);
3506         WARN_ON(regulator_desc->ops->set_voltage &&
3507                 regulator_desc->ops->set_voltage_sel);
3508
3509         /* If we're using selectors we must implement list_voltage. */
3510         if (regulator_desc->ops->get_voltage_sel &&
3511             !regulator_desc->ops->list_voltage) {
3512                 return ERR_PTR(-EINVAL);
3513         }
3514         if (regulator_desc->ops->set_voltage_sel &&
3515             !regulator_desc->ops->list_voltage) {
3516                 return ERR_PTR(-EINVAL);
3517         }
3518
3519         init_data = config->init_data;
3520
3521         rdev = kzalloc(sizeof(struct regulator_dev), GFP_KERNEL);
3522         if (rdev == NULL)
3523                 return ERR_PTR(-ENOMEM);
3524
3525         mutex_lock(&regulator_list_mutex);
3526
3527         mutex_init(&rdev->mutex);
3528         rdev->reg_data = config->driver_data;
3529         rdev->owner = regulator_desc->owner;
3530         rdev->desc = regulator_desc;
3531         if (config->regmap)
3532                 rdev->regmap = config->regmap;
3533         else if (dev_get_regmap(dev, NULL))
3534                 rdev->regmap = dev_get_regmap(dev, NULL);
3535         else if (dev->parent)
3536                 rdev->regmap = dev_get_regmap(dev->parent, NULL);
3537         INIT_LIST_HEAD(&rdev->consumer_list);
3538         INIT_LIST_HEAD(&rdev->list);
3539         BLOCKING_INIT_NOTIFIER_HEAD(&rdev->notifier);
3540         INIT_DELAYED_WORK(&rdev->disable_work, regulator_disable_work);
3541
3542         /* preform any regulator specific init */
3543         if (init_data && init_data->regulator_init) {
3544                 ret = init_data->regulator_init(rdev->reg_data);
3545                 if (ret < 0)
3546                         goto clean;
3547         }
3548
3549         /* register with sysfs */
3550         rdev->dev.class = &regulator_class;
3551         rdev->dev.of_node = of_node_get(config->of_node);
3552         rdev->dev.parent = dev;
3553         dev_set_name(&rdev->dev, "regulator.%d",
3554                      atomic_inc_return(&regulator_no) - 1);
3555         ret = device_register(&rdev->dev);
3556         if (ret != 0) {
3557                 put_device(&rdev->dev);
3558                 goto clean;
3559         }
3560
3561         dev_set_drvdata(&rdev->dev, rdev);
3562
3563         if (config->ena_gpio && gpio_is_valid(config->ena_gpio)) {
3564                 ret = regulator_ena_gpio_request(rdev, config);
3565                 if (ret != 0) {
3566                         rdev_err(rdev, "Failed to request enable GPIO%d: %d\n",
3567                                  config->ena_gpio, ret);
3568                         goto wash;
3569                 }
3570
3571                 if (config->ena_gpio_flags & GPIOF_OUT_INIT_HIGH)
3572                         rdev->ena_gpio_state = 1;
3573
3574                 if (config->ena_gpio_invert)
3575                         rdev->ena_gpio_state = !rdev->ena_gpio_state;
3576         }
3577
3578         /* set regulator constraints */
3579         if (init_data)
3580                 constraints = &init_data->constraints;
3581
3582         ret = set_machine_constraints(rdev, constraints);
3583         if (ret < 0)
3584                 goto scrub;
3585
3586         /* add attributes supported by this regulator */
3587         ret = add_regulator_attributes(rdev);
3588         if (ret < 0)
3589                 goto scrub;
3590
3591         if (init_data && init_data->supply_regulator)
3592                 supply = init_data->supply_regulator;
3593         else if (regulator_desc->supply_name)
3594                 supply = regulator_desc->supply_name;
3595
3596         if (supply) {
3597                 struct regulator_dev *r;
3598
3599                 r = regulator_dev_lookup(dev, supply, &ret);
3600
3601                 if (ret == -ENODEV) {
3602                         /*
3603                          * No supply was specified for this regulator and
3604                          * there will never be one.
3605                          */
3606                         ret = 0;
3607                         goto add_dev;
3608                 } else if (!r) {
3609                         dev_err(dev, "Failed to find supply %s\n", supply);
3610                         ret = -EPROBE_DEFER;
3611                         goto scrub;
3612                 }
3613
3614                 ret = set_supply(rdev, r);
3615                 if (ret < 0)
3616                         goto scrub;
3617
3618                 /* Enable supply if rail is enabled */
3619                 if (_regulator_is_enabled(rdev)) {
3620                         ret = regulator_enable(rdev->supply);
3621                         if (ret < 0)
3622                                 goto scrub;
3623                 }
3624         }
3625
3626 add_dev:
3627         /* add consumers devices */
3628         if (init_data) {
3629                 for (i = 0; i < init_data->num_consumer_supplies; i++) {
3630                         ret = set_consumer_device_supply(rdev,
3631                                 init_data->consumer_supplies[i].dev_name,
3632                                 init_data->consumer_supplies[i].supply);
3633                         if (ret < 0) {
3634                                 dev_err(dev, "Failed to set supply %s\n",
3635                                         init_data->consumer_supplies[i].supply);
3636                                 goto unset_supplies;
3637                         }
3638                 }
3639         }
3640
3641         list_add(&rdev->list, &regulator_list);
3642
3643         rdev_init_debugfs(rdev);
3644 out:
3645         mutex_unlock(&regulator_list_mutex);
3646         return rdev;
3647
3648 unset_supplies:
3649         unset_regulator_supplies(rdev);
3650
3651 scrub:
3652         if (rdev->supply)
3653                 _regulator_put(rdev->supply);
3654         regulator_ena_gpio_free(rdev);
3655         kfree(rdev->constraints);
3656 wash:
3657         device_unregister(&rdev->dev);
3658         /* device core frees rdev */
3659         rdev = ERR_PTR(ret);
3660         goto out;
3661
3662 clean:
3663         kfree(rdev);
3664         rdev = ERR_PTR(ret);
3665         goto out;
3666 }
3667 EXPORT_SYMBOL_GPL(regulator_register);
3668
3669 /**
3670  * regulator_unregister - unregister regulator
3671  * @rdev: regulator to unregister
3672  *
3673  * Called by regulator drivers to unregister a regulator.
3674  */
3675 void regulator_unregister(struct regulator_dev *rdev)
3676 {
3677         if (rdev == NULL)
3678                 return;
3679
3680         if (rdev->supply) {
3681                 while (rdev->use_count--)
3682                         regulator_disable(rdev->supply);
3683                 regulator_put(rdev->supply);
3684         }
3685         mutex_lock(&regulator_list_mutex);
3686         debugfs_remove_recursive(rdev->debugfs);
3687         flush_work(&rdev->disable_work.work);
3688         WARN_ON(rdev->open_count);
3689         unset_regulator_supplies(rdev);
3690         list_del(&rdev->list);
3691         kfree(rdev->constraints);
3692         regulator_ena_gpio_free(rdev);
3693         of_node_put(rdev->dev.of_node);
3694         device_unregister(&rdev->dev);
3695         mutex_unlock(&regulator_list_mutex);
3696 }
3697 EXPORT_SYMBOL_GPL(regulator_unregister);
3698
3699 /**
3700  * regulator_suspend_prepare - prepare regulators for system wide suspend
3701  * @state: system suspend state
3702  *
3703  * Configure each regulator with it's suspend operating parameters for state.
3704  * This will usually be called by machine suspend code prior to supending.
3705  */
3706 int regulator_suspend_prepare(suspend_state_t state)
3707 {
3708         struct regulator_dev *rdev;
3709         int ret = 0;
3710
3711         /* ON is handled by regulator active state */
3712         if (state == PM_SUSPEND_ON)
3713                 return -EINVAL;
3714
3715         mutex_lock(&regulator_list_mutex);
3716         list_for_each_entry(rdev, &regulator_list, list) {
3717
3718                 mutex_lock(&rdev->mutex);
3719                 ret = suspend_prepare(rdev, state);
3720                 mutex_unlock(&rdev->mutex);
3721
3722                 if (ret < 0) {
3723                         rdev_err(rdev, "failed to prepare\n");
3724                         goto out;
3725                 }
3726         }
3727 out:
3728         mutex_unlock(&regulator_list_mutex);
3729         return ret;
3730 }
3731 EXPORT_SYMBOL_GPL(regulator_suspend_prepare);
3732
3733 /**
3734  * regulator_suspend_finish - resume regulators from system wide suspend
3735  *
3736  * Turn on regulators that might be turned off by regulator_suspend_prepare
3737  * and that should be turned on according to the regulators properties.
3738  */
3739 int regulator_suspend_finish(void)
3740 {
3741         struct regulator_dev *rdev;
3742         int ret = 0, error;
3743
3744         mutex_lock(&regulator_list_mutex);
3745         list_for_each_entry(rdev, &regulator_list, list) {
3746                 mutex_lock(&rdev->mutex);
3747                 if (rdev->use_count > 0  || rdev->constraints->always_on) {
3748                         error = _regulator_do_enable(rdev);
3749                         if (error)
3750                                 ret = error;
3751                 } else {
3752                         if (!have_full_constraints())
3753                                 goto unlock;
3754                         if (!_regulator_is_enabled(rdev))
3755                                 goto unlock;
3756
3757                         error = _regulator_do_disable(rdev);
3758                         if (error)
3759                                 ret = error;
3760                 }
3761 unlock:
3762                 mutex_unlock(&rdev->mutex);
3763         }
3764         mutex_unlock(&regulator_list_mutex);
3765         return ret;
3766 }
3767 EXPORT_SYMBOL_GPL(regulator_suspend_finish);
3768
3769 /**
3770  * regulator_has_full_constraints - the system has fully specified constraints
3771  *
3772  * Calling this function will cause the regulator API to disable all
3773  * regulators which have a zero use count and don't have an always_on
3774  * constraint in a late_initcall.
3775  *
3776  * The intention is that this will become the default behaviour in a
3777  * future kernel release so users are encouraged to use this facility
3778  * now.
3779  */
3780 void regulator_has_full_constraints(void)
3781 {
3782         has_full_constraints = 1;
3783 }
3784 EXPORT_SYMBOL_GPL(regulator_has_full_constraints);
3785
3786 /**
3787  * rdev_get_drvdata - get rdev regulator driver data
3788  * @rdev: regulator
3789  *
3790  * Get rdev regulator driver private data. This call can be used in the
3791  * regulator driver context.
3792  */
3793 void *rdev_get_drvdata(struct regulator_dev *rdev)
3794 {
3795         return rdev->reg_data;
3796 }
3797 EXPORT_SYMBOL_GPL(rdev_get_drvdata);
3798
3799 /**
3800  * regulator_get_drvdata - get regulator driver data
3801  * @regulator: regulator
3802  *
3803  * Get regulator driver private data. This call can be used in the consumer
3804  * driver context when non API regulator specific functions need to be called.
3805  */
3806 void *regulator_get_drvdata(struct regulator *regulator)
3807 {
3808         return regulator->rdev->reg_data;
3809 }
3810 EXPORT_SYMBOL_GPL(regulator_get_drvdata);
3811
3812 /**
3813  * regulator_set_drvdata - set regulator driver data
3814  * @regulator: regulator
3815  * @data: data
3816  */
3817 void regulator_set_drvdata(struct regulator *regulator, void *data)
3818 {
3819         regulator->rdev->reg_data = data;
3820 }
3821 EXPORT_SYMBOL_GPL(regulator_set_drvdata);
3822
3823 /**
3824  * regulator_get_id - get regulator ID
3825  * @rdev: regulator
3826  */
3827 int rdev_get_id(struct regulator_dev *rdev)
3828 {
3829         return rdev->desc->id;
3830 }
3831 EXPORT_SYMBOL_GPL(rdev_get_id);
3832
3833 struct device *rdev_get_dev(struct regulator_dev *rdev)
3834 {
3835         return &rdev->dev;
3836 }
3837 EXPORT_SYMBOL_GPL(rdev_get_dev);
3838
3839 void *regulator_get_init_drvdata(struct regulator_init_data *reg_init_data)
3840 {
3841         return reg_init_data->driver_data;
3842 }
3843 EXPORT_SYMBOL_GPL(regulator_get_init_drvdata);
3844
3845 #ifdef CONFIG_DEBUG_FS
3846 static ssize_t supply_map_read_file(struct file *file, char __user *user_buf,
3847                                     size_t count, loff_t *ppos)
3848 {
3849         char *buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
3850         ssize_t len, ret = 0;
3851         struct regulator_map *map;
3852
3853         if (!buf)
3854                 return -ENOMEM;
3855
3856         list_for_each_entry(map, &regulator_map_list, list) {
3857                 len = snprintf(buf + ret, PAGE_SIZE - ret,
3858                                "%s -> %s.%s\n",
3859                                rdev_get_name(map->regulator), map->dev_name,
3860                                map->supply);
3861                 if (len >= 0)
3862                         ret += len;
3863                 if (ret > PAGE_SIZE) {
3864                         ret = PAGE_SIZE;
3865                         break;
3866                 }
3867         }
3868
3869         ret = simple_read_from_buffer(user_buf, count, ppos, buf, ret);
3870
3871         kfree(buf);
3872
3873         return ret;
3874 }
3875 #endif
3876
3877 static const struct file_operations supply_map_fops = {
3878 #ifdef CONFIG_DEBUG_FS
3879         .read = supply_map_read_file,
3880         .llseek = default_llseek,
3881 #endif
3882 };
3883
3884 static int __init regulator_init(void)
3885 {
3886         int ret;
3887
3888         ret = class_register(&regulator_class);
3889
3890         debugfs_root = debugfs_create_dir("regulator", NULL);
3891         if (!debugfs_root)
3892                 pr_warn("regulator: Failed to create debugfs directory\n");
3893
3894         debugfs_create_file("supply_map", 0444, debugfs_root, NULL,
3895                             &supply_map_fops);
3896
3897         regulator_dummy_init();
3898
3899         return ret;
3900 }
3901
3902 /* init early to allow our consumers to complete system booting */
3903 core_initcall(regulator_init);
3904
3905 static int __init regulator_init_complete(void)
3906 {
3907         struct regulator_dev *rdev;
3908         struct regulator_ops *ops;
3909         struct regulation_constraints *c;
3910         int enabled, ret;
3911
3912         /*
3913          * Since DT doesn't provide an idiomatic mechanism for
3914          * enabling full constraints and since it's much more natural
3915          * with DT to provide them just assume that a DT enabled
3916          * system has full constraints.
3917          */
3918         if (of_have_populated_dt())
3919                 has_full_constraints = true;
3920
3921         mutex_lock(&regulator_list_mutex);
3922
3923         /* If we have a full configuration then disable any regulators
3924          * we have permission to change the status for and which are
3925          * not in use or always_on.  This is effectively the default
3926          * for DT and ACPI as they have full constraints.
3927          */
3928         list_for_each_entry(rdev, &regulator_list, list) {
3929                 ops = rdev->desc->ops;
3930                 c = rdev->constraints;
3931
3932                 if (c && c->always_on)
3933                         continue;
3934
3935                 if (c && !(c->valid_ops_mask & REGULATOR_CHANGE_STATUS))
3936                         continue;
3937
3938                 mutex_lock(&rdev->mutex);
3939
3940                 if (rdev->use_count)
3941                         goto unlock;
3942
3943                 /* If we can't read the status assume it's on. */
3944                 if (ops->is_enabled)
3945                         enabled = ops->is_enabled(rdev);
3946                 else
3947                         enabled = 1;
3948
3949                 if (!enabled)
3950                         goto unlock;
3951
3952                 if (have_full_constraints()) {
3953                         /* We log since this may kill the system if it
3954                          * goes wrong. */
3955                         rdev_info(rdev, "disabling\n");
3956                         ret = _regulator_do_disable(rdev);
3957                         if (ret != 0)
3958                                 rdev_err(rdev, "couldn't disable: %d\n", ret);
3959                 } else {
3960                         /* The intention is that in future we will
3961                          * assume that full constraints are provided
3962                          * so warn even if we aren't going to do
3963                          * anything here.
3964                          */
3965                         rdev_warn(rdev, "incomplete constraints, leaving on\n");
3966                 }
3967
3968 unlock:
3969                 mutex_unlock(&rdev->mutex);
3970         }
3971
3972         mutex_unlock(&regulator_list_mutex);
3973
3974         return 0;
3975 }
3976 late_initcall_sync(regulator_init_complete);