regulator: core: Fix locking of GPIO list on free
[cascardo/linux.git] / drivers / regulator / core.c
1 /*
2  * core.c  --  Voltage/Current Regulator framework.
3  *
4  * Copyright 2007, 2008 Wolfson Microelectronics PLC.
5  * Copyright 2008 SlimLogic Ltd.
6  *
7  * Author: Liam Girdwood <lrg@slimlogic.co.uk>
8  *
9  *  This program is free software; you can redistribute  it and/or modify it
10  *  under  the terms of  the GNU General  Public License as published by the
11  *  Free Software Foundation;  either version 2 of the  License, or (at your
12  *  option) any later version.
13  *
14  */
15
16 #include <linux/kernel.h>
17 #include <linux/init.h>
18 #include <linux/debugfs.h>
19 #include <linux/device.h>
20 #include <linux/slab.h>
21 #include <linux/async.h>
22 #include <linux/err.h>
23 #include <linux/mutex.h>
24 #include <linux/suspend.h>
25 #include <linux/delay.h>
26 #include <linux/gpio.h>
27 #include <linux/gpio/consumer.h>
28 #include <linux/of.h>
29 #include <linux/regmap.h>
30 #include <linux/regulator/of_regulator.h>
31 #include <linux/regulator/consumer.h>
32 #include <linux/regulator/driver.h>
33 #include <linux/regulator/machine.h>
34 #include <linux/module.h>
35
36 #define CREATE_TRACE_POINTS
37 #include <trace/events/regulator.h>
38
39 #include "dummy.h"
40 #include "internal.h"
41
42 #define rdev_crit(rdev, fmt, ...)                                       \
43         pr_crit("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
44 #define rdev_err(rdev, fmt, ...)                                        \
45         pr_err("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
46 #define rdev_warn(rdev, fmt, ...)                                       \
47         pr_warn("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
48 #define rdev_info(rdev, fmt, ...)                                       \
49         pr_info("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
50 #define rdev_dbg(rdev, fmt, ...)                                        \
51         pr_debug("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
52
53 static DEFINE_MUTEX(regulator_list_mutex);
54 static LIST_HEAD(regulator_map_list);
55 static LIST_HEAD(regulator_ena_gpio_list);
56 static LIST_HEAD(regulator_supply_alias_list);
57 static bool has_full_constraints;
58
59 static struct dentry *debugfs_root;
60
61 static struct class regulator_class;
62
63 /*
64  * struct regulator_map
65  *
66  * Used to provide symbolic supply names to devices.
67  */
68 struct regulator_map {
69         struct list_head list;
70         const char *dev_name;   /* The dev_name() for the consumer */
71         const char *supply;
72         struct regulator_dev *regulator;
73 };
74
75 /*
76  * struct regulator_enable_gpio
77  *
78  * Management for shared enable GPIO pin
79  */
80 struct regulator_enable_gpio {
81         struct list_head list;
82         struct gpio_desc *gpiod;
83         u32 enable_count;       /* a number of enabled shared GPIO */
84         u32 request_count;      /* a number of requested shared GPIO */
85         unsigned int ena_gpio_invert:1;
86 };
87
88 /*
89  * struct regulator_supply_alias
90  *
91  * Used to map lookups for a supply onto an alternative device.
92  */
93 struct regulator_supply_alias {
94         struct list_head list;
95         struct device *src_dev;
96         const char *src_supply;
97         struct device *alias_dev;
98         const char *alias_supply;
99 };
100
101 static int _regulator_is_enabled(struct regulator_dev *rdev);
102 static int _regulator_disable(struct regulator_dev *rdev);
103 static int _regulator_get_voltage(struct regulator_dev *rdev);
104 static int _regulator_get_current_limit(struct regulator_dev *rdev);
105 static unsigned int _regulator_get_mode(struct regulator_dev *rdev);
106 static int _notifier_call_chain(struct regulator_dev *rdev,
107                                   unsigned long event, void *data);
108 static int _regulator_do_set_voltage(struct regulator_dev *rdev,
109                                      int min_uV, int max_uV);
110 static struct regulator *create_regulator(struct regulator_dev *rdev,
111                                           struct device *dev,
112                                           const char *supply_name);
113 static void _regulator_put(struct regulator *regulator);
114
115 static struct regulator_dev *dev_to_rdev(struct device *dev)
116 {
117         return container_of(dev, struct regulator_dev, dev);
118 }
119
120 static const char *rdev_get_name(struct regulator_dev *rdev)
121 {
122         if (rdev->constraints && rdev->constraints->name)
123                 return rdev->constraints->name;
124         else if (rdev->desc->name)
125                 return rdev->desc->name;
126         else
127                 return "";
128 }
129
130 static bool have_full_constraints(void)
131 {
132         return has_full_constraints || of_have_populated_dt();
133 }
134
135 static inline struct regulator_dev *rdev_get_supply(struct regulator_dev *rdev)
136 {
137         if (rdev && rdev->supply)
138                 return rdev->supply->rdev;
139
140         return NULL;
141 }
142
143 /**
144  * regulator_lock_supply - lock a regulator and its supplies
145  * @rdev:         regulator source
146  */
147 static void regulator_lock_supply(struct regulator_dev *rdev)
148 {
149         int i;
150
151         for (i = 0; rdev; rdev = rdev_get_supply(rdev), i++)
152                 mutex_lock_nested(&rdev->mutex, i);
153 }
154
155 /**
156  * regulator_unlock_supply - unlock a regulator and its supplies
157  * @rdev:         regulator source
158  */
159 static void regulator_unlock_supply(struct regulator_dev *rdev)
160 {
161         struct regulator *supply;
162
163         while (1) {
164                 mutex_unlock(&rdev->mutex);
165                 supply = rdev->supply;
166
167                 if (!rdev->supply)
168                         return;
169
170                 rdev = supply->rdev;
171         }
172 }
173
174 /**
175  * of_get_regulator - get a regulator device node based on supply name
176  * @dev: Device pointer for the consumer (of regulator) device
177  * @supply: regulator supply name
178  *
179  * Extract the regulator device node corresponding to the supply name.
180  * returns the device node corresponding to the regulator if found, else
181  * returns NULL.
182  */
183 static struct device_node *of_get_regulator(struct device *dev, const char *supply)
184 {
185         struct device_node *regnode = NULL;
186         char prop_name[32]; /* 32 is max size of property name */
187
188         dev_dbg(dev, "Looking up %s-supply from device tree\n", supply);
189
190         snprintf(prop_name, 32, "%s-supply", supply);
191         regnode = of_parse_phandle(dev->of_node, prop_name, 0);
192
193         if (!regnode) {
194                 dev_dbg(dev, "Looking up %s property in node %s failed",
195                                 prop_name, dev->of_node->full_name);
196                 return NULL;
197         }
198         return regnode;
199 }
200
201 static int _regulator_can_change_status(struct regulator_dev *rdev)
202 {
203         if (!rdev->constraints)
204                 return 0;
205
206         if (rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_STATUS)
207                 return 1;
208         else
209                 return 0;
210 }
211
212 /* Platform voltage constraint check */
213 static int regulator_check_voltage(struct regulator_dev *rdev,
214                                    int *min_uV, int *max_uV)
215 {
216         BUG_ON(*min_uV > *max_uV);
217
218         if (!rdev->constraints) {
219                 rdev_err(rdev, "no constraints\n");
220                 return -ENODEV;
221         }
222         if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE)) {
223                 rdev_err(rdev, "voltage operation not allowed\n");
224                 return -EPERM;
225         }
226
227         if (*max_uV > rdev->constraints->max_uV)
228                 *max_uV = rdev->constraints->max_uV;
229         if (*min_uV < rdev->constraints->min_uV)
230                 *min_uV = rdev->constraints->min_uV;
231
232         if (*min_uV > *max_uV) {
233                 rdev_err(rdev, "unsupportable voltage range: %d-%duV\n",
234                          *min_uV, *max_uV);
235                 return -EINVAL;
236         }
237
238         return 0;
239 }
240
241 /* Make sure we select a voltage that suits the needs of all
242  * regulator consumers
243  */
244 static int regulator_check_consumers(struct regulator_dev *rdev,
245                                      int *min_uV, int *max_uV)
246 {
247         struct regulator *regulator;
248
249         list_for_each_entry(regulator, &rdev->consumer_list, list) {
250                 /*
251                  * Assume consumers that didn't say anything are OK
252                  * with anything in the constraint range.
253                  */
254                 if (!regulator->min_uV && !regulator->max_uV)
255                         continue;
256
257                 if (*max_uV > regulator->max_uV)
258                         *max_uV = regulator->max_uV;
259                 if (*min_uV < regulator->min_uV)
260                         *min_uV = regulator->min_uV;
261         }
262
263         if (*min_uV > *max_uV) {
264                 rdev_err(rdev, "Restricting voltage, %u-%uuV\n",
265                         *min_uV, *max_uV);
266                 return -EINVAL;
267         }
268
269         return 0;
270 }
271
272 /* current constraint check */
273 static int regulator_check_current_limit(struct regulator_dev *rdev,
274                                         int *min_uA, int *max_uA)
275 {
276         BUG_ON(*min_uA > *max_uA);
277
278         if (!rdev->constraints) {
279                 rdev_err(rdev, "no constraints\n");
280                 return -ENODEV;
281         }
282         if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_CURRENT)) {
283                 rdev_err(rdev, "current operation not allowed\n");
284                 return -EPERM;
285         }
286
287         if (*max_uA > rdev->constraints->max_uA)
288                 *max_uA = rdev->constraints->max_uA;
289         if (*min_uA < rdev->constraints->min_uA)
290                 *min_uA = rdev->constraints->min_uA;
291
292         if (*min_uA > *max_uA) {
293                 rdev_err(rdev, "unsupportable current range: %d-%duA\n",
294                          *min_uA, *max_uA);
295                 return -EINVAL;
296         }
297
298         return 0;
299 }
300
301 /* operating mode constraint check */
302 static int regulator_mode_constrain(struct regulator_dev *rdev, int *mode)
303 {
304         switch (*mode) {
305         case REGULATOR_MODE_FAST:
306         case REGULATOR_MODE_NORMAL:
307         case REGULATOR_MODE_IDLE:
308         case REGULATOR_MODE_STANDBY:
309                 break;
310         default:
311                 rdev_err(rdev, "invalid mode %x specified\n", *mode);
312                 return -EINVAL;
313         }
314
315         if (!rdev->constraints) {
316                 rdev_err(rdev, "no constraints\n");
317                 return -ENODEV;
318         }
319         if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_MODE)) {
320                 rdev_err(rdev, "mode operation not allowed\n");
321                 return -EPERM;
322         }
323
324         /* The modes are bitmasks, the most power hungry modes having
325          * the lowest values. If the requested mode isn't supported
326          * try higher modes. */
327         while (*mode) {
328                 if (rdev->constraints->valid_modes_mask & *mode)
329                         return 0;
330                 *mode /= 2;
331         }
332
333         return -EINVAL;
334 }
335
336 /* dynamic regulator mode switching constraint check */
337 static int regulator_check_drms(struct regulator_dev *rdev)
338 {
339         if (!rdev->constraints) {
340                 rdev_err(rdev, "no constraints\n");
341                 return -ENODEV;
342         }
343         if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_DRMS)) {
344                 rdev_dbg(rdev, "drms operation not allowed\n");
345                 return -EPERM;
346         }
347         return 0;
348 }
349
350 static ssize_t regulator_uV_show(struct device *dev,
351                                 struct device_attribute *attr, char *buf)
352 {
353         struct regulator_dev *rdev = dev_get_drvdata(dev);
354         ssize_t ret;
355
356         mutex_lock(&rdev->mutex);
357         ret = sprintf(buf, "%d\n", _regulator_get_voltage(rdev));
358         mutex_unlock(&rdev->mutex);
359
360         return ret;
361 }
362 static DEVICE_ATTR(microvolts, 0444, regulator_uV_show, NULL);
363
364 static ssize_t regulator_uA_show(struct device *dev,
365                                 struct device_attribute *attr, char *buf)
366 {
367         struct regulator_dev *rdev = dev_get_drvdata(dev);
368
369         return sprintf(buf, "%d\n", _regulator_get_current_limit(rdev));
370 }
371 static DEVICE_ATTR(microamps, 0444, regulator_uA_show, NULL);
372
373 static ssize_t name_show(struct device *dev, struct device_attribute *attr,
374                          char *buf)
375 {
376         struct regulator_dev *rdev = dev_get_drvdata(dev);
377
378         return sprintf(buf, "%s\n", rdev_get_name(rdev));
379 }
380 static DEVICE_ATTR_RO(name);
381
382 static ssize_t regulator_print_opmode(char *buf, int mode)
383 {
384         switch (mode) {
385         case REGULATOR_MODE_FAST:
386                 return sprintf(buf, "fast\n");
387         case REGULATOR_MODE_NORMAL:
388                 return sprintf(buf, "normal\n");
389         case REGULATOR_MODE_IDLE:
390                 return sprintf(buf, "idle\n");
391         case REGULATOR_MODE_STANDBY:
392                 return sprintf(buf, "standby\n");
393         }
394         return sprintf(buf, "unknown\n");
395 }
396
397 static ssize_t regulator_opmode_show(struct device *dev,
398                                     struct device_attribute *attr, char *buf)
399 {
400         struct regulator_dev *rdev = dev_get_drvdata(dev);
401
402         return regulator_print_opmode(buf, _regulator_get_mode(rdev));
403 }
404 static DEVICE_ATTR(opmode, 0444, regulator_opmode_show, NULL);
405
406 static ssize_t regulator_print_state(char *buf, int state)
407 {
408         if (state > 0)
409                 return sprintf(buf, "enabled\n");
410         else if (state == 0)
411                 return sprintf(buf, "disabled\n");
412         else
413                 return sprintf(buf, "unknown\n");
414 }
415
416 static ssize_t regulator_state_show(struct device *dev,
417                                    struct device_attribute *attr, char *buf)
418 {
419         struct regulator_dev *rdev = dev_get_drvdata(dev);
420         ssize_t ret;
421
422         mutex_lock(&rdev->mutex);
423         ret = regulator_print_state(buf, _regulator_is_enabled(rdev));
424         mutex_unlock(&rdev->mutex);
425
426         return ret;
427 }
428 static DEVICE_ATTR(state, 0444, regulator_state_show, NULL);
429
430 static ssize_t regulator_status_show(struct device *dev,
431                                    struct device_attribute *attr, char *buf)
432 {
433         struct regulator_dev *rdev = dev_get_drvdata(dev);
434         int status;
435         char *label;
436
437         status = rdev->desc->ops->get_status(rdev);
438         if (status < 0)
439                 return status;
440
441         switch (status) {
442         case REGULATOR_STATUS_OFF:
443                 label = "off";
444                 break;
445         case REGULATOR_STATUS_ON:
446                 label = "on";
447                 break;
448         case REGULATOR_STATUS_ERROR:
449                 label = "error";
450                 break;
451         case REGULATOR_STATUS_FAST:
452                 label = "fast";
453                 break;
454         case REGULATOR_STATUS_NORMAL:
455                 label = "normal";
456                 break;
457         case REGULATOR_STATUS_IDLE:
458                 label = "idle";
459                 break;
460         case REGULATOR_STATUS_STANDBY:
461                 label = "standby";
462                 break;
463         case REGULATOR_STATUS_BYPASS:
464                 label = "bypass";
465                 break;
466         case REGULATOR_STATUS_UNDEFINED:
467                 label = "undefined";
468                 break;
469         default:
470                 return -ERANGE;
471         }
472
473         return sprintf(buf, "%s\n", label);
474 }
475 static DEVICE_ATTR(status, 0444, regulator_status_show, NULL);
476
477 static ssize_t regulator_min_uA_show(struct device *dev,
478                                     struct device_attribute *attr, char *buf)
479 {
480         struct regulator_dev *rdev = dev_get_drvdata(dev);
481
482         if (!rdev->constraints)
483                 return sprintf(buf, "constraint not defined\n");
484
485         return sprintf(buf, "%d\n", rdev->constraints->min_uA);
486 }
487 static DEVICE_ATTR(min_microamps, 0444, regulator_min_uA_show, NULL);
488
489 static ssize_t regulator_max_uA_show(struct device *dev,
490                                     struct device_attribute *attr, char *buf)
491 {
492         struct regulator_dev *rdev = dev_get_drvdata(dev);
493
494         if (!rdev->constraints)
495                 return sprintf(buf, "constraint not defined\n");
496
497         return sprintf(buf, "%d\n", rdev->constraints->max_uA);
498 }
499 static DEVICE_ATTR(max_microamps, 0444, regulator_max_uA_show, NULL);
500
501 static ssize_t regulator_min_uV_show(struct device *dev,
502                                     struct device_attribute *attr, char *buf)
503 {
504         struct regulator_dev *rdev = dev_get_drvdata(dev);
505
506         if (!rdev->constraints)
507                 return sprintf(buf, "constraint not defined\n");
508
509         return sprintf(buf, "%d\n", rdev->constraints->min_uV);
510 }
511 static DEVICE_ATTR(min_microvolts, 0444, regulator_min_uV_show, NULL);
512
513 static ssize_t regulator_max_uV_show(struct device *dev,
514                                     struct device_attribute *attr, char *buf)
515 {
516         struct regulator_dev *rdev = dev_get_drvdata(dev);
517
518         if (!rdev->constraints)
519                 return sprintf(buf, "constraint not defined\n");
520
521         return sprintf(buf, "%d\n", rdev->constraints->max_uV);
522 }
523 static DEVICE_ATTR(max_microvolts, 0444, regulator_max_uV_show, NULL);
524
525 static ssize_t regulator_total_uA_show(struct device *dev,
526                                       struct device_attribute *attr, char *buf)
527 {
528         struct regulator_dev *rdev = dev_get_drvdata(dev);
529         struct regulator *regulator;
530         int uA = 0;
531
532         mutex_lock(&rdev->mutex);
533         list_for_each_entry(regulator, &rdev->consumer_list, list)
534                 uA += regulator->uA_load;
535         mutex_unlock(&rdev->mutex);
536         return sprintf(buf, "%d\n", uA);
537 }
538 static DEVICE_ATTR(requested_microamps, 0444, regulator_total_uA_show, NULL);
539
540 static ssize_t num_users_show(struct device *dev, struct device_attribute *attr,
541                               char *buf)
542 {
543         struct regulator_dev *rdev = dev_get_drvdata(dev);
544         return sprintf(buf, "%d\n", rdev->use_count);
545 }
546 static DEVICE_ATTR_RO(num_users);
547
548 static ssize_t type_show(struct device *dev, struct device_attribute *attr,
549                          char *buf)
550 {
551         struct regulator_dev *rdev = dev_get_drvdata(dev);
552
553         switch (rdev->desc->type) {
554         case REGULATOR_VOLTAGE:
555                 return sprintf(buf, "voltage\n");
556         case REGULATOR_CURRENT:
557                 return sprintf(buf, "current\n");
558         }
559         return sprintf(buf, "unknown\n");
560 }
561 static DEVICE_ATTR_RO(type);
562
563 static ssize_t regulator_suspend_mem_uV_show(struct device *dev,
564                                 struct device_attribute *attr, char *buf)
565 {
566         struct regulator_dev *rdev = dev_get_drvdata(dev);
567
568         return sprintf(buf, "%d\n", rdev->constraints->state_mem.uV);
569 }
570 static DEVICE_ATTR(suspend_mem_microvolts, 0444,
571                 regulator_suspend_mem_uV_show, NULL);
572
573 static ssize_t regulator_suspend_disk_uV_show(struct device *dev,
574                                 struct device_attribute *attr, char *buf)
575 {
576         struct regulator_dev *rdev = dev_get_drvdata(dev);
577
578         return sprintf(buf, "%d\n", rdev->constraints->state_disk.uV);
579 }
580 static DEVICE_ATTR(suspend_disk_microvolts, 0444,
581                 regulator_suspend_disk_uV_show, NULL);
582
583 static ssize_t regulator_suspend_standby_uV_show(struct device *dev,
584                                 struct device_attribute *attr, char *buf)
585 {
586         struct regulator_dev *rdev = dev_get_drvdata(dev);
587
588         return sprintf(buf, "%d\n", rdev->constraints->state_standby.uV);
589 }
590 static DEVICE_ATTR(suspend_standby_microvolts, 0444,
591                 regulator_suspend_standby_uV_show, NULL);
592
593 static ssize_t regulator_suspend_mem_mode_show(struct device *dev,
594                                 struct device_attribute *attr, char *buf)
595 {
596         struct regulator_dev *rdev = dev_get_drvdata(dev);
597
598         return regulator_print_opmode(buf,
599                 rdev->constraints->state_mem.mode);
600 }
601 static DEVICE_ATTR(suspend_mem_mode, 0444,
602                 regulator_suspend_mem_mode_show, NULL);
603
604 static ssize_t regulator_suspend_disk_mode_show(struct device *dev,
605                                 struct device_attribute *attr, char *buf)
606 {
607         struct regulator_dev *rdev = dev_get_drvdata(dev);
608
609         return regulator_print_opmode(buf,
610                 rdev->constraints->state_disk.mode);
611 }
612 static DEVICE_ATTR(suspend_disk_mode, 0444,
613                 regulator_suspend_disk_mode_show, NULL);
614
615 static ssize_t regulator_suspend_standby_mode_show(struct device *dev,
616                                 struct device_attribute *attr, char *buf)
617 {
618         struct regulator_dev *rdev = dev_get_drvdata(dev);
619
620         return regulator_print_opmode(buf,
621                 rdev->constraints->state_standby.mode);
622 }
623 static DEVICE_ATTR(suspend_standby_mode, 0444,
624                 regulator_suspend_standby_mode_show, NULL);
625
626 static ssize_t regulator_suspend_mem_state_show(struct device *dev,
627                                    struct device_attribute *attr, char *buf)
628 {
629         struct regulator_dev *rdev = dev_get_drvdata(dev);
630
631         return regulator_print_state(buf,
632                         rdev->constraints->state_mem.enabled);
633 }
634 static DEVICE_ATTR(suspend_mem_state, 0444,
635                 regulator_suspend_mem_state_show, NULL);
636
637 static ssize_t regulator_suspend_disk_state_show(struct device *dev,
638                                    struct device_attribute *attr, char *buf)
639 {
640         struct regulator_dev *rdev = dev_get_drvdata(dev);
641
642         return regulator_print_state(buf,
643                         rdev->constraints->state_disk.enabled);
644 }
645 static DEVICE_ATTR(suspend_disk_state, 0444,
646                 regulator_suspend_disk_state_show, NULL);
647
648 static ssize_t regulator_suspend_standby_state_show(struct device *dev,
649                                    struct device_attribute *attr, char *buf)
650 {
651         struct regulator_dev *rdev = dev_get_drvdata(dev);
652
653         return regulator_print_state(buf,
654                         rdev->constraints->state_standby.enabled);
655 }
656 static DEVICE_ATTR(suspend_standby_state, 0444,
657                 regulator_suspend_standby_state_show, NULL);
658
659 static ssize_t regulator_bypass_show(struct device *dev,
660                                      struct device_attribute *attr, char *buf)
661 {
662         struct regulator_dev *rdev = dev_get_drvdata(dev);
663         const char *report;
664         bool bypass;
665         int ret;
666
667         ret = rdev->desc->ops->get_bypass(rdev, &bypass);
668
669         if (ret != 0)
670                 report = "unknown";
671         else if (bypass)
672                 report = "enabled";
673         else
674                 report = "disabled";
675
676         return sprintf(buf, "%s\n", report);
677 }
678 static DEVICE_ATTR(bypass, 0444,
679                    regulator_bypass_show, NULL);
680
681 /* Calculate the new optimum regulator operating mode based on the new total
682  * consumer load. All locks held by caller */
683 static int drms_uA_update(struct regulator_dev *rdev)
684 {
685         struct regulator *sibling;
686         int current_uA = 0, output_uV, input_uV, err;
687         unsigned int mode;
688
689         lockdep_assert_held_once(&rdev->mutex);
690
691         /*
692          * first check to see if we can set modes at all, otherwise just
693          * tell the consumer everything is OK.
694          */
695         err = regulator_check_drms(rdev);
696         if (err < 0)
697                 return 0;
698
699         if (!rdev->desc->ops->get_optimum_mode &&
700             !rdev->desc->ops->set_load)
701                 return 0;
702
703         if (!rdev->desc->ops->set_mode &&
704             !rdev->desc->ops->set_load)
705                 return -EINVAL;
706
707         /* get output voltage */
708         output_uV = _regulator_get_voltage(rdev);
709         if (output_uV <= 0) {
710                 rdev_err(rdev, "invalid output voltage found\n");
711                 return -EINVAL;
712         }
713
714         /* get input voltage */
715         input_uV = 0;
716         if (rdev->supply)
717                 input_uV = regulator_get_voltage(rdev->supply);
718         if (input_uV <= 0)
719                 input_uV = rdev->constraints->input_uV;
720         if (input_uV <= 0) {
721                 rdev_err(rdev, "invalid input voltage found\n");
722                 return -EINVAL;
723         }
724
725         /* calc total requested load */
726         list_for_each_entry(sibling, &rdev->consumer_list, list)
727                 current_uA += sibling->uA_load;
728
729         current_uA += rdev->constraints->system_load;
730
731         if (rdev->desc->ops->set_load) {
732                 /* set the optimum mode for our new total regulator load */
733                 err = rdev->desc->ops->set_load(rdev, current_uA);
734                 if (err < 0)
735                         rdev_err(rdev, "failed to set load %d\n", current_uA);
736         } else {
737                 /* now get the optimum mode for our new total regulator load */
738                 mode = rdev->desc->ops->get_optimum_mode(rdev, input_uV,
739                                                          output_uV, current_uA);
740
741                 /* check the new mode is allowed */
742                 err = regulator_mode_constrain(rdev, &mode);
743                 if (err < 0) {
744                         rdev_err(rdev, "failed to get optimum mode @ %d uA %d -> %d uV\n",
745                                  current_uA, input_uV, output_uV);
746                         return err;
747                 }
748
749                 err = rdev->desc->ops->set_mode(rdev, mode);
750                 if (err < 0)
751                         rdev_err(rdev, "failed to set optimum mode %x\n", mode);
752         }
753
754         return err;
755 }
756
757 static int suspend_set_state(struct regulator_dev *rdev,
758         struct regulator_state *rstate)
759 {
760         int ret = 0;
761
762         /* If we have no suspend mode configration don't set anything;
763          * only warn if the driver implements set_suspend_voltage or
764          * set_suspend_mode callback.
765          */
766         if (!rstate->enabled && !rstate->disabled) {
767                 if (rdev->desc->ops->set_suspend_voltage ||
768                     rdev->desc->ops->set_suspend_mode)
769                         rdev_warn(rdev, "No configuration\n");
770                 return 0;
771         }
772
773         if (rstate->enabled && rstate->disabled) {
774                 rdev_err(rdev, "invalid configuration\n");
775                 return -EINVAL;
776         }
777
778         if (rstate->enabled && rdev->desc->ops->set_suspend_enable)
779                 ret = rdev->desc->ops->set_suspend_enable(rdev);
780         else if (rstate->disabled && rdev->desc->ops->set_suspend_disable)
781                 ret = rdev->desc->ops->set_suspend_disable(rdev);
782         else /* OK if set_suspend_enable or set_suspend_disable is NULL */
783                 ret = 0;
784
785         if (ret < 0) {
786                 rdev_err(rdev, "failed to enabled/disable\n");
787                 return ret;
788         }
789
790         if (rdev->desc->ops->set_suspend_voltage && rstate->uV > 0) {
791                 ret = rdev->desc->ops->set_suspend_voltage(rdev, rstate->uV);
792                 if (ret < 0) {
793                         rdev_err(rdev, "failed to set voltage\n");
794                         return ret;
795                 }
796         }
797
798         if (rdev->desc->ops->set_suspend_mode && rstate->mode > 0) {
799                 ret = rdev->desc->ops->set_suspend_mode(rdev, rstate->mode);
800                 if (ret < 0) {
801                         rdev_err(rdev, "failed to set mode\n");
802                         return ret;
803                 }
804         }
805         return ret;
806 }
807
808 /* locks held by caller */
809 static int suspend_prepare(struct regulator_dev *rdev, suspend_state_t state)
810 {
811         lockdep_assert_held_once(&rdev->mutex);
812
813         if (!rdev->constraints)
814                 return -EINVAL;
815
816         switch (state) {
817         case PM_SUSPEND_STANDBY:
818                 return suspend_set_state(rdev,
819                         &rdev->constraints->state_standby);
820         case PM_SUSPEND_MEM:
821                 return suspend_set_state(rdev,
822                         &rdev->constraints->state_mem);
823         case PM_SUSPEND_MAX:
824                 return suspend_set_state(rdev,
825                         &rdev->constraints->state_disk);
826         default:
827                 return -EINVAL;
828         }
829 }
830
831 static void print_constraints(struct regulator_dev *rdev)
832 {
833         struct regulation_constraints *constraints = rdev->constraints;
834         char buf[160] = "";
835         size_t len = sizeof(buf) - 1;
836         int count = 0;
837         int ret;
838
839         if (constraints->min_uV && constraints->max_uV) {
840                 if (constraints->min_uV == constraints->max_uV)
841                         count += scnprintf(buf + count, len - count, "%d mV ",
842                                            constraints->min_uV / 1000);
843                 else
844                         count += scnprintf(buf + count, len - count,
845                                            "%d <--> %d mV ",
846                                            constraints->min_uV / 1000,
847                                            constraints->max_uV / 1000);
848         }
849
850         if (!constraints->min_uV ||
851             constraints->min_uV != constraints->max_uV) {
852                 ret = _regulator_get_voltage(rdev);
853                 if (ret > 0)
854                         count += scnprintf(buf + count, len - count,
855                                            "at %d mV ", ret / 1000);
856         }
857
858         if (constraints->uV_offset)
859                 count += scnprintf(buf + count, len - count, "%dmV offset ",
860                                    constraints->uV_offset / 1000);
861
862         if (constraints->min_uA && constraints->max_uA) {
863                 if (constraints->min_uA == constraints->max_uA)
864                         count += scnprintf(buf + count, len - count, "%d mA ",
865                                            constraints->min_uA / 1000);
866                 else
867                         count += scnprintf(buf + count, len - count,
868                                            "%d <--> %d mA ",
869                                            constraints->min_uA / 1000,
870                                            constraints->max_uA / 1000);
871         }
872
873         if (!constraints->min_uA ||
874             constraints->min_uA != constraints->max_uA) {
875                 ret = _regulator_get_current_limit(rdev);
876                 if (ret > 0)
877                         count += scnprintf(buf + count, len - count,
878                                            "at %d mA ", ret / 1000);
879         }
880
881         if (constraints->valid_modes_mask & REGULATOR_MODE_FAST)
882                 count += scnprintf(buf + count, len - count, "fast ");
883         if (constraints->valid_modes_mask & REGULATOR_MODE_NORMAL)
884                 count += scnprintf(buf + count, len - count, "normal ");
885         if (constraints->valid_modes_mask & REGULATOR_MODE_IDLE)
886                 count += scnprintf(buf + count, len - count, "idle ");
887         if (constraints->valid_modes_mask & REGULATOR_MODE_STANDBY)
888                 count += scnprintf(buf + count, len - count, "standby");
889
890         if (!count)
891                 scnprintf(buf, len, "no parameters");
892
893         rdev_dbg(rdev, "%s\n", buf);
894
895         if ((constraints->min_uV != constraints->max_uV) &&
896             !(constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE))
897                 rdev_warn(rdev,
898                           "Voltage range but no REGULATOR_CHANGE_VOLTAGE\n");
899 }
900
901 static int machine_constraints_voltage(struct regulator_dev *rdev,
902         struct regulation_constraints *constraints)
903 {
904         const struct regulator_ops *ops = rdev->desc->ops;
905         int ret;
906
907         /* do we need to apply the constraint voltage */
908         if (rdev->constraints->apply_uV &&
909             rdev->constraints->min_uV == rdev->constraints->max_uV) {
910                 int current_uV = _regulator_get_voltage(rdev);
911                 if (current_uV < 0) {
912                         rdev_err(rdev,
913                                  "failed to get the current voltage(%d)\n",
914                                  current_uV);
915                         return current_uV;
916                 }
917                 if (current_uV < rdev->constraints->min_uV ||
918                     current_uV > rdev->constraints->max_uV) {
919                         ret = _regulator_do_set_voltage(
920                                 rdev, rdev->constraints->min_uV,
921                                 rdev->constraints->max_uV);
922                         if (ret < 0) {
923                                 rdev_err(rdev,
924                                         "failed to apply %duV constraint(%d)\n",
925                                         rdev->constraints->min_uV, ret);
926                                 return ret;
927                         }
928                 }
929         }
930
931         /* constrain machine-level voltage specs to fit
932          * the actual range supported by this regulator.
933          */
934         if (ops->list_voltage && rdev->desc->n_voltages) {
935                 int     count = rdev->desc->n_voltages;
936                 int     i;
937                 int     min_uV = INT_MAX;
938                 int     max_uV = INT_MIN;
939                 int     cmin = constraints->min_uV;
940                 int     cmax = constraints->max_uV;
941
942                 /* it's safe to autoconfigure fixed-voltage supplies
943                    and the constraints are used by list_voltage. */
944                 if (count == 1 && !cmin) {
945                         cmin = 1;
946                         cmax = INT_MAX;
947                         constraints->min_uV = cmin;
948                         constraints->max_uV = cmax;
949                 }
950
951                 /* voltage constraints are optional */
952                 if ((cmin == 0) && (cmax == 0))
953                         return 0;
954
955                 /* else require explicit machine-level constraints */
956                 if (cmin <= 0 || cmax <= 0 || cmax < cmin) {
957                         rdev_err(rdev, "invalid voltage constraints\n");
958                         return -EINVAL;
959                 }
960
961                 /* initial: [cmin..cmax] valid, [min_uV..max_uV] not */
962                 for (i = 0; i < count; i++) {
963                         int     value;
964
965                         value = ops->list_voltage(rdev, i);
966                         if (value <= 0)
967                                 continue;
968
969                         /* maybe adjust [min_uV..max_uV] */
970                         if (value >= cmin && value < min_uV)
971                                 min_uV = value;
972                         if (value <= cmax && value > max_uV)
973                                 max_uV = value;
974                 }
975
976                 /* final: [min_uV..max_uV] valid iff constraints valid */
977                 if (max_uV < min_uV) {
978                         rdev_err(rdev,
979                                  "unsupportable voltage constraints %u-%uuV\n",
980                                  min_uV, max_uV);
981                         return -EINVAL;
982                 }
983
984                 /* use regulator's subset of machine constraints */
985                 if (constraints->min_uV < min_uV) {
986                         rdev_dbg(rdev, "override min_uV, %d -> %d\n",
987                                  constraints->min_uV, min_uV);
988                         constraints->min_uV = min_uV;
989                 }
990                 if (constraints->max_uV > max_uV) {
991                         rdev_dbg(rdev, "override max_uV, %d -> %d\n",
992                                  constraints->max_uV, max_uV);
993                         constraints->max_uV = max_uV;
994                 }
995         }
996
997         return 0;
998 }
999
1000 static int machine_constraints_current(struct regulator_dev *rdev,
1001         struct regulation_constraints *constraints)
1002 {
1003         const struct regulator_ops *ops = rdev->desc->ops;
1004         int ret;
1005
1006         if (!constraints->min_uA && !constraints->max_uA)
1007                 return 0;
1008
1009         if (constraints->min_uA > constraints->max_uA) {
1010                 rdev_err(rdev, "Invalid current constraints\n");
1011                 return -EINVAL;
1012         }
1013
1014         if (!ops->set_current_limit || !ops->get_current_limit) {
1015                 rdev_warn(rdev, "Operation of current configuration missing\n");
1016                 return 0;
1017         }
1018
1019         /* Set regulator current in constraints range */
1020         ret = ops->set_current_limit(rdev, constraints->min_uA,
1021                         constraints->max_uA);
1022         if (ret < 0) {
1023                 rdev_err(rdev, "Failed to set current constraint, %d\n", ret);
1024                 return ret;
1025         }
1026
1027         return 0;
1028 }
1029
1030 static int _regulator_do_enable(struct regulator_dev *rdev);
1031
1032 /**
1033  * set_machine_constraints - sets regulator constraints
1034  * @rdev: regulator source
1035  * @constraints: constraints to apply
1036  *
1037  * Allows platform initialisation code to define and constrain
1038  * regulator circuits e.g. valid voltage/current ranges, etc.  NOTE:
1039  * Constraints *must* be set by platform code in order for some
1040  * regulator operations to proceed i.e. set_voltage, set_current_limit,
1041  * set_mode.
1042  */
1043 static int set_machine_constraints(struct regulator_dev *rdev,
1044         const struct regulation_constraints *constraints)
1045 {
1046         int ret = 0;
1047         const struct regulator_ops *ops = rdev->desc->ops;
1048
1049         if (constraints)
1050                 rdev->constraints = kmemdup(constraints, sizeof(*constraints),
1051                                             GFP_KERNEL);
1052         else
1053                 rdev->constraints = kzalloc(sizeof(*constraints),
1054                                             GFP_KERNEL);
1055         if (!rdev->constraints)
1056                 return -ENOMEM;
1057
1058         ret = machine_constraints_voltage(rdev, rdev->constraints);
1059         if (ret != 0)
1060                 return ret;
1061
1062         ret = machine_constraints_current(rdev, rdev->constraints);
1063         if (ret != 0)
1064                 return ret;
1065
1066         if (rdev->constraints->ilim_uA && ops->set_input_current_limit) {
1067                 ret = ops->set_input_current_limit(rdev,
1068                                                    rdev->constraints->ilim_uA);
1069                 if (ret < 0) {
1070                         rdev_err(rdev, "failed to set input limit\n");
1071                         return ret;
1072                 }
1073         }
1074
1075         /* do we need to setup our suspend state */
1076         if (rdev->constraints->initial_state) {
1077                 ret = suspend_prepare(rdev, rdev->constraints->initial_state);
1078                 if (ret < 0) {
1079                         rdev_err(rdev, "failed to set suspend state\n");
1080                         return ret;
1081                 }
1082         }
1083
1084         if (rdev->constraints->initial_mode) {
1085                 if (!ops->set_mode) {
1086                         rdev_err(rdev, "no set_mode operation\n");
1087                         return -EINVAL;
1088                 }
1089
1090                 ret = ops->set_mode(rdev, rdev->constraints->initial_mode);
1091                 if (ret < 0) {
1092                         rdev_err(rdev, "failed to set initial mode: %d\n", ret);
1093                         return ret;
1094                 }
1095         }
1096
1097         /* If the constraints say the regulator should be on at this point
1098          * and we have control then make sure it is enabled.
1099          */
1100         if (rdev->constraints->always_on || rdev->constraints->boot_on) {
1101                 ret = _regulator_do_enable(rdev);
1102                 if (ret < 0 && ret != -EINVAL) {
1103                         rdev_err(rdev, "failed to enable\n");
1104                         return ret;
1105                 }
1106         }
1107
1108         if ((rdev->constraints->ramp_delay || rdev->constraints->ramp_disable)
1109                 && ops->set_ramp_delay) {
1110                 ret = ops->set_ramp_delay(rdev, rdev->constraints->ramp_delay);
1111                 if (ret < 0) {
1112                         rdev_err(rdev, "failed to set ramp_delay\n");
1113                         return ret;
1114                 }
1115         }
1116
1117         if (rdev->constraints->pull_down && ops->set_pull_down) {
1118                 ret = ops->set_pull_down(rdev);
1119                 if (ret < 0) {
1120                         rdev_err(rdev, "failed to set pull down\n");
1121                         return ret;
1122                 }
1123         }
1124
1125         if (rdev->constraints->soft_start && ops->set_soft_start) {
1126                 ret = ops->set_soft_start(rdev);
1127                 if (ret < 0) {
1128                         rdev_err(rdev, "failed to set soft start\n");
1129                         return ret;
1130                 }
1131         }
1132
1133         if (rdev->constraints->over_current_protection
1134                 && ops->set_over_current_protection) {
1135                 ret = ops->set_over_current_protection(rdev);
1136                 if (ret < 0) {
1137                         rdev_err(rdev, "failed to set over current protection\n");
1138                         return ret;
1139                 }
1140         }
1141
1142         if (rdev->constraints->active_discharge && ops->set_active_discharge) {
1143                 bool ad_state = (rdev->constraints->active_discharge ==
1144                               REGULATOR_ACTIVE_DISCHARGE_ENABLE) ? true : false;
1145
1146                 ret = ops->set_active_discharge(rdev, ad_state);
1147                 if (ret < 0) {
1148                         rdev_err(rdev, "failed to set active discharge\n");
1149                         return ret;
1150                 }
1151         }
1152
1153         print_constraints(rdev);
1154         return 0;
1155 }
1156
1157 /**
1158  * set_supply - set regulator supply regulator
1159  * @rdev: regulator name
1160  * @supply_rdev: supply regulator name
1161  *
1162  * Called by platform initialisation code to set the supply regulator for this
1163  * regulator. This ensures that a regulators supply will also be enabled by the
1164  * core if it's child is enabled.
1165  */
1166 static int set_supply(struct regulator_dev *rdev,
1167                       struct regulator_dev *supply_rdev)
1168 {
1169         int err;
1170
1171         rdev_info(rdev, "supplied by %s\n", rdev_get_name(supply_rdev));
1172
1173         if (!try_module_get(supply_rdev->owner))
1174                 return -ENODEV;
1175
1176         rdev->supply = create_regulator(supply_rdev, &rdev->dev, "SUPPLY");
1177         if (rdev->supply == NULL) {
1178                 err = -ENOMEM;
1179                 return err;
1180         }
1181         supply_rdev->open_count++;
1182
1183         return 0;
1184 }
1185
1186 /**
1187  * set_consumer_device_supply - Bind a regulator to a symbolic supply
1188  * @rdev:         regulator source
1189  * @consumer_dev_name: dev_name() string for device supply applies to
1190  * @supply:       symbolic name for supply
1191  *
1192  * Allows platform initialisation code to map physical regulator
1193  * sources to symbolic names for supplies for use by devices.  Devices
1194  * should use these symbolic names to request regulators, avoiding the
1195  * need to provide board-specific regulator names as platform data.
1196  */
1197 static int set_consumer_device_supply(struct regulator_dev *rdev,
1198                                       const char *consumer_dev_name,
1199                                       const char *supply)
1200 {
1201         struct regulator_map *node;
1202         int has_dev;
1203
1204         if (supply == NULL)
1205                 return -EINVAL;
1206
1207         if (consumer_dev_name != NULL)
1208                 has_dev = 1;
1209         else
1210                 has_dev = 0;
1211
1212         list_for_each_entry(node, &regulator_map_list, list) {
1213                 if (node->dev_name && consumer_dev_name) {
1214                         if (strcmp(node->dev_name, consumer_dev_name) != 0)
1215                                 continue;
1216                 } else if (node->dev_name || consumer_dev_name) {
1217                         continue;
1218                 }
1219
1220                 if (strcmp(node->supply, supply) != 0)
1221                         continue;
1222
1223                 pr_debug("%s: %s/%s is '%s' supply; fail %s/%s\n",
1224                          consumer_dev_name,
1225                          dev_name(&node->regulator->dev),
1226                          node->regulator->desc->name,
1227                          supply,
1228                          dev_name(&rdev->dev), rdev_get_name(rdev));
1229                 return -EBUSY;
1230         }
1231
1232         node = kzalloc(sizeof(struct regulator_map), GFP_KERNEL);
1233         if (node == NULL)
1234                 return -ENOMEM;
1235
1236         node->regulator = rdev;
1237         node->supply = supply;
1238
1239         if (has_dev) {
1240                 node->dev_name = kstrdup(consumer_dev_name, GFP_KERNEL);
1241                 if (node->dev_name == NULL) {
1242                         kfree(node);
1243                         return -ENOMEM;
1244                 }
1245         }
1246
1247         list_add(&node->list, &regulator_map_list);
1248         return 0;
1249 }
1250
1251 static void unset_regulator_supplies(struct regulator_dev *rdev)
1252 {
1253         struct regulator_map *node, *n;
1254
1255         list_for_each_entry_safe(node, n, &regulator_map_list, list) {
1256                 if (rdev == node->regulator) {
1257                         list_del(&node->list);
1258                         kfree(node->dev_name);
1259                         kfree(node);
1260                 }
1261         }
1262 }
1263
1264 #define REG_STR_SIZE    64
1265
1266 static struct regulator *create_regulator(struct regulator_dev *rdev,
1267                                           struct device *dev,
1268                                           const char *supply_name)
1269 {
1270         struct regulator *regulator;
1271         char buf[REG_STR_SIZE];
1272         int err, size;
1273
1274         regulator = kzalloc(sizeof(*regulator), GFP_KERNEL);
1275         if (regulator == NULL)
1276                 return NULL;
1277
1278         mutex_lock(&rdev->mutex);
1279         regulator->rdev = rdev;
1280         list_add(&regulator->list, &rdev->consumer_list);
1281
1282         if (dev) {
1283                 regulator->dev = dev;
1284
1285                 /* Add a link to the device sysfs entry */
1286                 size = scnprintf(buf, REG_STR_SIZE, "%s-%s",
1287                                  dev->kobj.name, supply_name);
1288                 if (size >= REG_STR_SIZE)
1289                         goto overflow_err;
1290
1291                 regulator->supply_name = kstrdup(buf, GFP_KERNEL);
1292                 if (regulator->supply_name == NULL)
1293                         goto overflow_err;
1294
1295                 err = sysfs_create_link_nowarn(&rdev->dev.kobj, &dev->kobj,
1296                                         buf);
1297                 if (err) {
1298                         rdev_dbg(rdev, "could not add device link %s err %d\n",
1299                                   dev->kobj.name, err);
1300                         /* non-fatal */
1301                 }
1302         } else {
1303                 regulator->supply_name = kstrdup(supply_name, GFP_KERNEL);
1304                 if (regulator->supply_name == NULL)
1305                         goto overflow_err;
1306         }
1307
1308         regulator->debugfs = debugfs_create_dir(regulator->supply_name,
1309                                                 rdev->debugfs);
1310         if (!regulator->debugfs) {
1311                 rdev_dbg(rdev, "Failed to create debugfs directory\n");
1312         } else {
1313                 debugfs_create_u32("uA_load", 0444, regulator->debugfs,
1314                                    &regulator->uA_load);
1315                 debugfs_create_u32("min_uV", 0444, regulator->debugfs,
1316                                    &regulator->min_uV);
1317                 debugfs_create_u32("max_uV", 0444, regulator->debugfs,
1318                                    &regulator->max_uV);
1319         }
1320
1321         /*
1322          * Check now if the regulator is an always on regulator - if
1323          * it is then we don't need to do nearly so much work for
1324          * enable/disable calls.
1325          */
1326         if (!_regulator_can_change_status(rdev) &&
1327             _regulator_is_enabled(rdev))
1328                 regulator->always_on = true;
1329
1330         mutex_unlock(&rdev->mutex);
1331         return regulator;
1332 overflow_err:
1333         list_del(&regulator->list);
1334         kfree(regulator);
1335         mutex_unlock(&rdev->mutex);
1336         return NULL;
1337 }
1338
1339 static int _regulator_get_enable_time(struct regulator_dev *rdev)
1340 {
1341         if (rdev->constraints && rdev->constraints->enable_time)
1342                 return rdev->constraints->enable_time;
1343         if (!rdev->desc->ops->enable_time)
1344                 return rdev->desc->enable_time;
1345         return rdev->desc->ops->enable_time(rdev);
1346 }
1347
1348 static struct regulator_supply_alias *regulator_find_supply_alias(
1349                 struct device *dev, const char *supply)
1350 {
1351         struct regulator_supply_alias *map;
1352
1353         list_for_each_entry(map, &regulator_supply_alias_list, list)
1354                 if (map->src_dev == dev && strcmp(map->src_supply, supply) == 0)
1355                         return map;
1356
1357         return NULL;
1358 }
1359
1360 static void regulator_supply_alias(struct device **dev, const char **supply)
1361 {
1362         struct regulator_supply_alias *map;
1363
1364         map = regulator_find_supply_alias(*dev, *supply);
1365         if (map) {
1366                 dev_dbg(*dev, "Mapping supply %s to %s,%s\n",
1367                                 *supply, map->alias_supply,
1368                                 dev_name(map->alias_dev));
1369                 *dev = map->alias_dev;
1370                 *supply = map->alias_supply;
1371         }
1372 }
1373
1374 static int of_node_match(struct device *dev, const void *data)
1375 {
1376         return dev->of_node == data;
1377 }
1378
1379 static struct regulator_dev *of_find_regulator_by_node(struct device_node *np)
1380 {
1381         struct device *dev;
1382
1383         dev = class_find_device(&regulator_class, NULL, np, of_node_match);
1384
1385         return dev ? dev_to_rdev(dev) : NULL;
1386 }
1387
1388 static int regulator_match(struct device *dev, const void *data)
1389 {
1390         struct regulator_dev *r = dev_to_rdev(dev);
1391
1392         return strcmp(rdev_get_name(r), data) == 0;
1393 }
1394
1395 static struct regulator_dev *regulator_lookup_by_name(const char *name)
1396 {
1397         struct device *dev;
1398
1399         dev = class_find_device(&regulator_class, NULL, name, regulator_match);
1400
1401         return dev ? dev_to_rdev(dev) : NULL;
1402 }
1403
1404 /**
1405  * regulator_dev_lookup - lookup a regulator device.
1406  * @dev: device for regulator "consumer".
1407  * @supply: Supply name or regulator ID.
1408  * @ret: 0 on success, -ENODEV if lookup fails permanently, -EPROBE_DEFER if
1409  * lookup could succeed in the future.
1410  *
1411  * If successful, returns a struct regulator_dev that corresponds to the name
1412  * @supply and with the embedded struct device refcount incremented by one,
1413  * or NULL on failure. The refcount must be dropped by calling put_device().
1414  */
1415 static struct regulator_dev *regulator_dev_lookup(struct device *dev,
1416                                                   const char *supply,
1417                                                   int *ret)
1418 {
1419         struct regulator_dev *r;
1420         struct device_node *node;
1421         struct regulator_map *map;
1422         const char *devname = NULL;
1423
1424         regulator_supply_alias(&dev, &supply);
1425
1426         /* first do a dt based lookup */
1427         if (dev && dev->of_node) {
1428                 node = of_get_regulator(dev, supply);
1429                 if (node) {
1430                         r = of_find_regulator_by_node(node);
1431                         if (r)
1432                                 return r;
1433                         *ret = -EPROBE_DEFER;
1434                         return NULL;
1435                 } else {
1436                         /*
1437                          * If we couldn't even get the node then it's
1438                          * not just that the device didn't register
1439                          * yet, there's no node and we'll never
1440                          * succeed.
1441                          */
1442                         *ret = -ENODEV;
1443                 }
1444         }
1445
1446         /* if not found, try doing it non-dt way */
1447         if (dev)
1448                 devname = dev_name(dev);
1449
1450         r = regulator_lookup_by_name(supply);
1451         if (r)
1452                 return r;
1453
1454         mutex_lock(&regulator_list_mutex);
1455         list_for_each_entry(map, &regulator_map_list, list) {
1456                 /* If the mapping has a device set up it must match */
1457                 if (map->dev_name &&
1458                     (!devname || strcmp(map->dev_name, devname)))
1459                         continue;
1460
1461                 if (strcmp(map->supply, supply) == 0 &&
1462                     get_device(&map->regulator->dev)) {
1463                         mutex_unlock(&regulator_list_mutex);
1464                         return map->regulator;
1465                 }
1466         }
1467         mutex_unlock(&regulator_list_mutex);
1468
1469         return NULL;
1470 }
1471
1472 static int regulator_resolve_supply(struct regulator_dev *rdev)
1473 {
1474         struct regulator_dev *r;
1475         struct device *dev = rdev->dev.parent;
1476         int ret;
1477
1478         /* No supply to resovle? */
1479         if (!rdev->supply_name)
1480                 return 0;
1481
1482         /* Supply already resolved? */
1483         if (rdev->supply)
1484                 return 0;
1485
1486         r = regulator_dev_lookup(dev, rdev->supply_name, &ret);
1487         if (!r) {
1488                 if (ret == -ENODEV) {
1489                         /*
1490                          * No supply was specified for this regulator and
1491                          * there will never be one.
1492                          */
1493                         return 0;
1494                 }
1495
1496                 /* Did the lookup explicitly defer for us? */
1497                 if (ret == -EPROBE_DEFER)
1498                         return ret;
1499
1500                 if (have_full_constraints()) {
1501                         r = dummy_regulator_rdev;
1502                         get_device(&r->dev);
1503                 } else {
1504                         dev_err(dev, "Failed to resolve %s-supply for %s\n",
1505                                 rdev->supply_name, rdev->desc->name);
1506                         return -EPROBE_DEFER;
1507                 }
1508         }
1509
1510         /* Recursively resolve the supply of the supply */
1511         ret = regulator_resolve_supply(r);
1512         if (ret < 0) {
1513                 put_device(&r->dev);
1514                 return ret;
1515         }
1516
1517         ret = set_supply(rdev, r);
1518         if (ret < 0) {
1519                 put_device(&r->dev);
1520                 return ret;
1521         }
1522
1523         /* Cascade always-on state to supply */
1524         if (_regulator_is_enabled(rdev) && rdev->supply) {
1525                 ret = regulator_enable(rdev->supply);
1526                 if (ret < 0) {
1527                         _regulator_put(rdev->supply);
1528                         return ret;
1529                 }
1530         }
1531
1532         return 0;
1533 }
1534
1535 /* Internal regulator request function */
1536 static struct regulator *_regulator_get(struct device *dev, const char *id,
1537                                         bool exclusive, bool allow_dummy)
1538 {
1539         struct regulator_dev *rdev;
1540         struct regulator *regulator = ERR_PTR(-EPROBE_DEFER);
1541         const char *devname = NULL;
1542         int ret;
1543
1544         if (id == NULL) {
1545                 pr_err("get() with no identifier\n");
1546                 return ERR_PTR(-EINVAL);
1547         }
1548
1549         if (dev)
1550                 devname = dev_name(dev);
1551
1552         if (have_full_constraints())
1553                 ret = -ENODEV;
1554         else
1555                 ret = -EPROBE_DEFER;
1556
1557         rdev = regulator_dev_lookup(dev, id, &ret);
1558         if (rdev)
1559                 goto found;
1560
1561         regulator = ERR_PTR(ret);
1562
1563         /*
1564          * If we have return value from dev_lookup fail, we do not expect to
1565          * succeed, so, quit with appropriate error value
1566          */
1567         if (ret && ret != -ENODEV)
1568                 return regulator;
1569
1570         if (!devname)
1571                 devname = "deviceless";
1572
1573         /*
1574          * Assume that a regulator is physically present and enabled
1575          * even if it isn't hooked up and just provide a dummy.
1576          */
1577         if (have_full_constraints() && allow_dummy) {
1578                 pr_warn("%s supply %s not found, using dummy regulator\n",
1579                         devname, id);
1580
1581                 rdev = dummy_regulator_rdev;
1582                 get_device(&rdev->dev);
1583                 goto found;
1584         /* Don't log an error when called from regulator_get_optional() */
1585         } else if (!have_full_constraints() || exclusive) {
1586                 dev_warn(dev, "dummy supplies not allowed\n");
1587         }
1588
1589         return regulator;
1590
1591 found:
1592         if (rdev->exclusive) {
1593                 regulator = ERR_PTR(-EPERM);
1594                 put_device(&rdev->dev);
1595                 return regulator;
1596         }
1597
1598         if (exclusive && rdev->open_count) {
1599                 regulator = ERR_PTR(-EBUSY);
1600                 put_device(&rdev->dev);
1601                 return regulator;
1602         }
1603
1604         ret = regulator_resolve_supply(rdev);
1605         if (ret < 0) {
1606                 regulator = ERR_PTR(ret);
1607                 put_device(&rdev->dev);
1608                 return regulator;
1609         }
1610
1611         if (!try_module_get(rdev->owner)) {
1612                 put_device(&rdev->dev);
1613                 return regulator;
1614         }
1615
1616         regulator = create_regulator(rdev, dev, id);
1617         if (regulator == NULL) {
1618                 regulator = ERR_PTR(-ENOMEM);
1619                 put_device(&rdev->dev);
1620                 module_put(rdev->owner);
1621                 return regulator;
1622         }
1623
1624         rdev->open_count++;
1625         if (exclusive) {
1626                 rdev->exclusive = 1;
1627
1628                 ret = _regulator_is_enabled(rdev);
1629                 if (ret > 0)
1630                         rdev->use_count = 1;
1631                 else
1632                         rdev->use_count = 0;
1633         }
1634
1635         return regulator;
1636 }
1637
1638 /**
1639  * regulator_get - lookup and obtain a reference to a regulator.
1640  * @dev: device for regulator "consumer"
1641  * @id: Supply name or regulator ID.
1642  *
1643  * Returns a struct regulator corresponding to the regulator producer,
1644  * or IS_ERR() condition containing errno.
1645  *
1646  * Use of supply names configured via regulator_set_device_supply() is
1647  * strongly encouraged.  It is recommended that the supply name used
1648  * should match the name used for the supply and/or the relevant
1649  * device pins in the datasheet.
1650  */
1651 struct regulator *regulator_get(struct device *dev, const char *id)
1652 {
1653         return _regulator_get(dev, id, false, true);
1654 }
1655 EXPORT_SYMBOL_GPL(regulator_get);
1656
1657 /**
1658  * regulator_get_exclusive - obtain exclusive access to a regulator.
1659  * @dev: device for regulator "consumer"
1660  * @id: Supply name or regulator ID.
1661  *
1662  * Returns a struct regulator corresponding to the regulator producer,
1663  * or IS_ERR() condition containing errno.  Other consumers will be
1664  * unable to obtain this regulator while this reference is held and the
1665  * use count for the regulator will be initialised to reflect the current
1666  * state of the regulator.
1667  *
1668  * This is intended for use by consumers which cannot tolerate shared
1669  * use of the regulator such as those which need to force the
1670  * regulator off for correct operation of the hardware they are
1671  * controlling.
1672  *
1673  * Use of supply names configured via regulator_set_device_supply() is
1674  * strongly encouraged.  It is recommended that the supply name used
1675  * should match the name used for the supply and/or the relevant
1676  * device pins in the datasheet.
1677  */
1678 struct regulator *regulator_get_exclusive(struct device *dev, const char *id)
1679 {
1680         return _regulator_get(dev, id, true, false);
1681 }
1682 EXPORT_SYMBOL_GPL(regulator_get_exclusive);
1683
1684 /**
1685  * regulator_get_optional - obtain optional access to a regulator.
1686  * @dev: device for regulator "consumer"
1687  * @id: Supply name or regulator ID.
1688  *
1689  * Returns a struct regulator corresponding to the regulator producer,
1690  * or IS_ERR() condition containing errno.
1691  *
1692  * This is intended for use by consumers for devices which can have
1693  * some supplies unconnected in normal use, such as some MMC devices.
1694  * It can allow the regulator core to provide stub supplies for other
1695  * supplies requested using normal regulator_get() calls without
1696  * disrupting the operation of drivers that can handle absent
1697  * supplies.
1698  *
1699  * Use of supply names configured via regulator_set_device_supply() is
1700  * strongly encouraged.  It is recommended that the supply name used
1701  * should match the name used for the supply and/or the relevant
1702  * device pins in the datasheet.
1703  */
1704 struct regulator *regulator_get_optional(struct device *dev, const char *id)
1705 {
1706         return _regulator_get(dev, id, false, false);
1707 }
1708 EXPORT_SYMBOL_GPL(regulator_get_optional);
1709
1710 /* regulator_list_mutex lock held by regulator_put() */
1711 static void _regulator_put(struct regulator *regulator)
1712 {
1713         struct regulator_dev *rdev;
1714
1715         if (IS_ERR_OR_NULL(regulator))
1716                 return;
1717
1718         lockdep_assert_held_once(&regulator_list_mutex);
1719
1720         rdev = regulator->rdev;
1721
1722         debugfs_remove_recursive(regulator->debugfs);
1723
1724         /* remove any sysfs entries */
1725         if (regulator->dev)
1726                 sysfs_remove_link(&rdev->dev.kobj, regulator->supply_name);
1727         mutex_lock(&rdev->mutex);
1728         list_del(&regulator->list);
1729
1730         rdev->open_count--;
1731         rdev->exclusive = 0;
1732         put_device(&rdev->dev);
1733         mutex_unlock(&rdev->mutex);
1734
1735         kfree(regulator->supply_name);
1736         kfree(regulator);
1737
1738         module_put(rdev->owner);
1739 }
1740
1741 /**
1742  * regulator_put - "free" the regulator source
1743  * @regulator: regulator source
1744  *
1745  * Note: drivers must ensure that all regulator_enable calls made on this
1746  * regulator source are balanced by regulator_disable calls prior to calling
1747  * this function.
1748  */
1749 void regulator_put(struct regulator *regulator)
1750 {
1751         mutex_lock(&regulator_list_mutex);
1752         _regulator_put(regulator);
1753         mutex_unlock(&regulator_list_mutex);
1754 }
1755 EXPORT_SYMBOL_GPL(regulator_put);
1756
1757 /**
1758  * regulator_register_supply_alias - Provide device alias for supply lookup
1759  *
1760  * @dev: device that will be given as the regulator "consumer"
1761  * @id: Supply name or regulator ID
1762  * @alias_dev: device that should be used to lookup the supply
1763  * @alias_id: Supply name or regulator ID that should be used to lookup the
1764  * supply
1765  *
1766  * All lookups for id on dev will instead be conducted for alias_id on
1767  * alias_dev.
1768  */
1769 int regulator_register_supply_alias(struct device *dev, const char *id,
1770                                     struct device *alias_dev,
1771                                     const char *alias_id)
1772 {
1773         struct regulator_supply_alias *map;
1774
1775         map = regulator_find_supply_alias(dev, id);
1776         if (map)
1777                 return -EEXIST;
1778
1779         map = kzalloc(sizeof(struct regulator_supply_alias), GFP_KERNEL);
1780         if (!map)
1781                 return -ENOMEM;
1782
1783         map->src_dev = dev;
1784         map->src_supply = id;
1785         map->alias_dev = alias_dev;
1786         map->alias_supply = alias_id;
1787
1788         list_add(&map->list, &regulator_supply_alias_list);
1789
1790         pr_info("Adding alias for supply %s,%s -> %s,%s\n",
1791                 id, dev_name(dev), alias_id, dev_name(alias_dev));
1792
1793         return 0;
1794 }
1795 EXPORT_SYMBOL_GPL(regulator_register_supply_alias);
1796
1797 /**
1798  * regulator_unregister_supply_alias - Remove device alias
1799  *
1800  * @dev: device that will be given as the regulator "consumer"
1801  * @id: Supply name or regulator ID
1802  *
1803  * Remove a lookup alias if one exists for id on dev.
1804  */
1805 void regulator_unregister_supply_alias(struct device *dev, const char *id)
1806 {
1807         struct regulator_supply_alias *map;
1808
1809         map = regulator_find_supply_alias(dev, id);
1810         if (map) {
1811                 list_del(&map->list);
1812                 kfree(map);
1813         }
1814 }
1815 EXPORT_SYMBOL_GPL(regulator_unregister_supply_alias);
1816
1817 /**
1818  * regulator_bulk_register_supply_alias - register multiple aliases
1819  *
1820  * @dev: device that will be given as the regulator "consumer"
1821  * @id: List of supply names or regulator IDs
1822  * @alias_dev: device that should be used to lookup the supply
1823  * @alias_id: List of supply names or regulator IDs that should be used to
1824  * lookup the supply
1825  * @num_id: Number of aliases to register
1826  *
1827  * @return 0 on success, an errno on failure.
1828  *
1829  * This helper function allows drivers to register several supply
1830  * aliases in one operation.  If any of the aliases cannot be
1831  * registered any aliases that were registered will be removed
1832  * before returning to the caller.
1833  */
1834 int regulator_bulk_register_supply_alias(struct device *dev,
1835                                          const char *const *id,
1836                                          struct device *alias_dev,
1837                                          const char *const *alias_id,
1838                                          int num_id)
1839 {
1840         int i;
1841         int ret;
1842
1843         for (i = 0; i < num_id; ++i) {
1844                 ret = regulator_register_supply_alias(dev, id[i], alias_dev,
1845                                                       alias_id[i]);
1846                 if (ret < 0)
1847                         goto err;
1848         }
1849
1850         return 0;
1851
1852 err:
1853         dev_err(dev,
1854                 "Failed to create supply alias %s,%s -> %s,%s\n",
1855                 id[i], dev_name(dev), alias_id[i], dev_name(alias_dev));
1856
1857         while (--i >= 0)
1858                 regulator_unregister_supply_alias(dev, id[i]);
1859
1860         return ret;
1861 }
1862 EXPORT_SYMBOL_GPL(regulator_bulk_register_supply_alias);
1863
1864 /**
1865  * regulator_bulk_unregister_supply_alias - unregister multiple aliases
1866  *
1867  * @dev: device that will be given as the regulator "consumer"
1868  * @id: List of supply names or regulator IDs
1869  * @num_id: Number of aliases to unregister
1870  *
1871  * This helper function allows drivers to unregister several supply
1872  * aliases in one operation.
1873  */
1874 void regulator_bulk_unregister_supply_alias(struct device *dev,
1875                                             const char *const *id,
1876                                             int num_id)
1877 {
1878         int i;
1879
1880         for (i = 0; i < num_id; ++i)
1881                 regulator_unregister_supply_alias(dev, id[i]);
1882 }
1883 EXPORT_SYMBOL_GPL(regulator_bulk_unregister_supply_alias);
1884
1885
1886 /* Manage enable GPIO list. Same GPIO pin can be shared among regulators */
1887 static int regulator_ena_gpio_request(struct regulator_dev *rdev,
1888                                 const struct regulator_config *config)
1889 {
1890         struct regulator_enable_gpio *pin;
1891         struct gpio_desc *gpiod;
1892         int ret;
1893
1894         gpiod = gpio_to_desc(config->ena_gpio);
1895
1896         list_for_each_entry(pin, &regulator_ena_gpio_list, list) {
1897                 if (pin->gpiod == gpiod) {
1898                         rdev_dbg(rdev, "GPIO %d is already used\n",
1899                                 config->ena_gpio);
1900                         goto update_ena_gpio_to_rdev;
1901                 }
1902         }
1903
1904         ret = gpio_request_one(config->ena_gpio,
1905                                 GPIOF_DIR_OUT | config->ena_gpio_flags,
1906                                 rdev_get_name(rdev));
1907         if (ret)
1908                 return ret;
1909
1910         pin = kzalloc(sizeof(struct regulator_enable_gpio), GFP_KERNEL);
1911         if (pin == NULL) {
1912                 gpio_free(config->ena_gpio);
1913                 return -ENOMEM;
1914         }
1915
1916         pin->gpiod = gpiod;
1917         pin->ena_gpio_invert = config->ena_gpio_invert;
1918         list_add(&pin->list, &regulator_ena_gpio_list);
1919
1920 update_ena_gpio_to_rdev:
1921         pin->request_count++;
1922         rdev->ena_pin = pin;
1923         return 0;
1924 }
1925
1926 static void regulator_ena_gpio_free(struct regulator_dev *rdev)
1927 {
1928         struct regulator_enable_gpio *pin, *n;
1929
1930         if (!rdev->ena_pin)
1931                 return;
1932
1933         /* Free the GPIO only in case of no use */
1934         list_for_each_entry_safe(pin, n, &regulator_ena_gpio_list, list) {
1935                 if (pin->gpiod == rdev->ena_pin->gpiod) {
1936                         if (pin->request_count <= 1) {
1937                                 pin->request_count = 0;
1938                                 gpiod_put(pin->gpiod);
1939                                 list_del(&pin->list);
1940                                 kfree(pin);
1941                                 rdev->ena_pin = NULL;
1942                                 return;
1943                         } else {
1944                                 pin->request_count--;
1945                         }
1946                 }
1947         }
1948 }
1949
1950 /**
1951  * regulator_ena_gpio_ctrl - balance enable_count of each GPIO and actual GPIO pin control
1952  * @rdev: regulator_dev structure
1953  * @enable: enable GPIO at initial use?
1954  *
1955  * GPIO is enabled in case of initial use. (enable_count is 0)
1956  * GPIO is disabled when it is not shared any more. (enable_count <= 1)
1957  */
1958 static int regulator_ena_gpio_ctrl(struct regulator_dev *rdev, bool enable)
1959 {
1960         struct regulator_enable_gpio *pin = rdev->ena_pin;
1961
1962         if (!pin)
1963                 return -EINVAL;
1964
1965         if (enable) {
1966                 /* Enable GPIO at initial use */
1967                 if (pin->enable_count == 0)
1968                         gpiod_set_value_cansleep(pin->gpiod,
1969                                                  !pin->ena_gpio_invert);
1970
1971                 pin->enable_count++;
1972         } else {
1973                 if (pin->enable_count > 1) {
1974                         pin->enable_count--;
1975                         return 0;
1976                 }
1977
1978                 /* Disable GPIO if not used */
1979                 if (pin->enable_count <= 1) {
1980                         gpiod_set_value_cansleep(pin->gpiod,
1981                                                  pin->ena_gpio_invert);
1982                         pin->enable_count = 0;
1983                 }
1984         }
1985
1986         return 0;
1987 }
1988
1989 /**
1990  * _regulator_enable_delay - a delay helper function
1991  * @delay: time to delay in microseconds
1992  *
1993  * Delay for the requested amount of time as per the guidelines in:
1994  *
1995  *     Documentation/timers/timers-howto.txt
1996  *
1997  * The assumption here is that regulators will never be enabled in
1998  * atomic context and therefore sleeping functions can be used.
1999  */
2000 static void _regulator_enable_delay(unsigned int delay)
2001 {
2002         unsigned int ms = delay / 1000;
2003         unsigned int us = delay % 1000;
2004
2005         if (ms > 0) {
2006                 /*
2007                  * For small enough values, handle super-millisecond
2008                  * delays in the usleep_range() call below.
2009                  */
2010                 if (ms < 20)
2011                         us += ms * 1000;
2012                 else
2013                         msleep(ms);
2014         }
2015
2016         /*
2017          * Give the scheduler some room to coalesce with any other
2018          * wakeup sources. For delays shorter than 10 us, don't even
2019          * bother setting up high-resolution timers and just busy-
2020          * loop.
2021          */
2022         if (us >= 10)
2023                 usleep_range(us, us + 100);
2024         else
2025                 udelay(us);
2026 }
2027
2028 static int _regulator_do_enable(struct regulator_dev *rdev)
2029 {
2030         int ret, delay;
2031
2032         /* Query before enabling in case configuration dependent.  */
2033         ret = _regulator_get_enable_time(rdev);
2034         if (ret >= 0) {
2035                 delay = ret;
2036         } else {
2037                 rdev_warn(rdev, "enable_time() failed: %d\n", ret);
2038                 delay = 0;
2039         }
2040
2041         trace_regulator_enable(rdev_get_name(rdev));
2042
2043         if (rdev->desc->off_on_delay) {
2044                 /* if needed, keep a distance of off_on_delay from last time
2045                  * this regulator was disabled.
2046                  */
2047                 unsigned long start_jiffy = jiffies;
2048                 unsigned long intended, max_delay, remaining;
2049
2050                 max_delay = usecs_to_jiffies(rdev->desc->off_on_delay);
2051                 intended = rdev->last_off_jiffy + max_delay;
2052
2053                 if (time_before(start_jiffy, intended)) {
2054                         /* calc remaining jiffies to deal with one-time
2055                          * timer wrapping.
2056                          * in case of multiple timer wrapping, either it can be
2057                          * detected by out-of-range remaining, or it cannot be
2058                          * detected and we gets a panelty of
2059                          * _regulator_enable_delay().
2060                          */
2061                         remaining = intended - start_jiffy;
2062                         if (remaining <= max_delay)
2063                                 _regulator_enable_delay(
2064                                                 jiffies_to_usecs(remaining));
2065                 }
2066         }
2067
2068         if (rdev->ena_pin) {
2069                 if (!rdev->ena_gpio_state) {
2070                         ret = regulator_ena_gpio_ctrl(rdev, true);
2071                         if (ret < 0)
2072                                 return ret;
2073                         rdev->ena_gpio_state = 1;
2074                 }
2075         } else if (rdev->desc->ops->enable) {
2076                 ret = rdev->desc->ops->enable(rdev);
2077                 if (ret < 0)
2078                         return ret;
2079         } else {
2080                 return -EINVAL;
2081         }
2082
2083         /* Allow the regulator to ramp; it would be useful to extend
2084          * this for bulk operations so that the regulators can ramp
2085          * together.  */
2086         trace_regulator_enable_delay(rdev_get_name(rdev));
2087
2088         _regulator_enable_delay(delay);
2089
2090         trace_regulator_enable_complete(rdev_get_name(rdev));
2091
2092         return 0;
2093 }
2094
2095 /* locks held by regulator_enable() */
2096 static int _regulator_enable(struct regulator_dev *rdev)
2097 {
2098         int ret;
2099
2100         lockdep_assert_held_once(&rdev->mutex);
2101
2102         /* check voltage and requested load before enabling */
2103         if (rdev->constraints &&
2104             (rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_DRMS))
2105                 drms_uA_update(rdev);
2106
2107         if (rdev->use_count == 0) {
2108                 /* The regulator may on if it's not switchable or left on */
2109                 ret = _regulator_is_enabled(rdev);
2110                 if (ret == -EINVAL || ret == 0) {
2111                         if (!_regulator_can_change_status(rdev))
2112                                 return -EPERM;
2113
2114                         ret = _regulator_do_enable(rdev);
2115                         if (ret < 0)
2116                                 return ret;
2117
2118                 } else if (ret < 0) {
2119                         rdev_err(rdev, "is_enabled() failed: %d\n", ret);
2120                         return ret;
2121                 }
2122                 /* Fallthrough on positive return values - already enabled */
2123         }
2124
2125         rdev->use_count++;
2126
2127         return 0;
2128 }
2129
2130 /**
2131  * regulator_enable - enable regulator output
2132  * @regulator: regulator source
2133  *
2134  * Request that the regulator be enabled with the regulator output at
2135  * the predefined voltage or current value.  Calls to regulator_enable()
2136  * must be balanced with calls to regulator_disable().
2137  *
2138  * NOTE: the output value can be set by other drivers, boot loader or may be
2139  * hardwired in the regulator.
2140  */
2141 int regulator_enable(struct regulator *regulator)
2142 {
2143         struct regulator_dev *rdev = regulator->rdev;
2144         int ret = 0;
2145
2146         if (regulator->always_on)
2147                 return 0;
2148
2149         if (rdev->supply) {
2150                 ret = regulator_enable(rdev->supply);
2151                 if (ret != 0)
2152                         return ret;
2153         }
2154
2155         mutex_lock(&rdev->mutex);
2156         ret = _regulator_enable(rdev);
2157         mutex_unlock(&rdev->mutex);
2158
2159         if (ret != 0 && rdev->supply)
2160                 regulator_disable(rdev->supply);
2161
2162         return ret;
2163 }
2164 EXPORT_SYMBOL_GPL(regulator_enable);
2165
2166 static int _regulator_do_disable(struct regulator_dev *rdev)
2167 {
2168         int ret;
2169
2170         trace_regulator_disable(rdev_get_name(rdev));
2171
2172         if (rdev->ena_pin) {
2173                 if (rdev->ena_gpio_state) {
2174                         ret = regulator_ena_gpio_ctrl(rdev, false);
2175                         if (ret < 0)
2176                                 return ret;
2177                         rdev->ena_gpio_state = 0;
2178                 }
2179
2180         } else if (rdev->desc->ops->disable) {
2181                 ret = rdev->desc->ops->disable(rdev);
2182                 if (ret != 0)
2183                         return ret;
2184         }
2185
2186         /* cares about last_off_jiffy only if off_on_delay is required by
2187          * device.
2188          */
2189         if (rdev->desc->off_on_delay)
2190                 rdev->last_off_jiffy = jiffies;
2191
2192         trace_regulator_disable_complete(rdev_get_name(rdev));
2193
2194         return 0;
2195 }
2196
2197 /* locks held by regulator_disable() */
2198 static int _regulator_disable(struct regulator_dev *rdev)
2199 {
2200         int ret = 0;
2201
2202         lockdep_assert_held_once(&rdev->mutex);
2203
2204         if (WARN(rdev->use_count <= 0,
2205                  "unbalanced disables for %s\n", rdev_get_name(rdev)))
2206                 return -EIO;
2207
2208         /* are we the last user and permitted to disable ? */
2209         if (rdev->use_count == 1 &&
2210             (rdev->constraints && !rdev->constraints->always_on)) {
2211
2212                 /* we are last user */
2213                 if (_regulator_can_change_status(rdev)) {
2214                         ret = _notifier_call_chain(rdev,
2215                                                    REGULATOR_EVENT_PRE_DISABLE,
2216                                                    NULL);
2217                         if (ret & NOTIFY_STOP_MASK)
2218                                 return -EINVAL;
2219
2220                         ret = _regulator_do_disable(rdev);
2221                         if (ret < 0) {
2222                                 rdev_err(rdev, "failed to disable\n");
2223                                 _notifier_call_chain(rdev,
2224                                                 REGULATOR_EVENT_ABORT_DISABLE,
2225                                                 NULL);
2226                                 return ret;
2227                         }
2228                         _notifier_call_chain(rdev, REGULATOR_EVENT_DISABLE,
2229                                         NULL);
2230                 }
2231
2232                 rdev->use_count = 0;
2233         } else if (rdev->use_count > 1) {
2234
2235                 if (rdev->constraints &&
2236                         (rdev->constraints->valid_ops_mask &
2237                         REGULATOR_CHANGE_DRMS))
2238                         drms_uA_update(rdev);
2239
2240                 rdev->use_count--;
2241         }
2242
2243         return ret;
2244 }
2245
2246 /**
2247  * regulator_disable - disable regulator output
2248  * @regulator: regulator source
2249  *
2250  * Disable the regulator output voltage or current.  Calls to
2251  * regulator_enable() must be balanced with calls to
2252  * regulator_disable().
2253  *
2254  * NOTE: this will only disable the regulator output if no other consumer
2255  * devices have it enabled, the regulator device supports disabling and
2256  * machine constraints permit this operation.
2257  */
2258 int regulator_disable(struct regulator *regulator)
2259 {
2260         struct regulator_dev *rdev = regulator->rdev;
2261         int ret = 0;
2262
2263         if (regulator->always_on)
2264                 return 0;
2265
2266         mutex_lock(&rdev->mutex);
2267         ret = _regulator_disable(rdev);
2268         mutex_unlock(&rdev->mutex);
2269
2270         if (ret == 0 && rdev->supply)
2271                 regulator_disable(rdev->supply);
2272
2273         return ret;
2274 }
2275 EXPORT_SYMBOL_GPL(regulator_disable);
2276
2277 /* locks held by regulator_force_disable() */
2278 static int _regulator_force_disable(struct regulator_dev *rdev)
2279 {
2280         int ret = 0;
2281
2282         lockdep_assert_held_once(&rdev->mutex);
2283
2284         ret = _notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
2285                         REGULATOR_EVENT_PRE_DISABLE, NULL);
2286         if (ret & NOTIFY_STOP_MASK)
2287                 return -EINVAL;
2288
2289         ret = _regulator_do_disable(rdev);
2290         if (ret < 0) {
2291                 rdev_err(rdev, "failed to force disable\n");
2292                 _notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
2293                                 REGULATOR_EVENT_ABORT_DISABLE, NULL);
2294                 return ret;
2295         }
2296
2297         _notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
2298                         REGULATOR_EVENT_DISABLE, NULL);
2299
2300         return 0;
2301 }
2302
2303 /**
2304  * regulator_force_disable - force disable regulator output
2305  * @regulator: regulator source
2306  *
2307  * Forcibly disable the regulator output voltage or current.
2308  * NOTE: this *will* disable the regulator output even if other consumer
2309  * devices have it enabled. This should be used for situations when device
2310  * damage will likely occur if the regulator is not disabled (e.g. over temp).
2311  */
2312 int regulator_force_disable(struct regulator *regulator)
2313 {
2314         struct regulator_dev *rdev = regulator->rdev;
2315         int ret;
2316
2317         mutex_lock(&rdev->mutex);
2318         regulator->uA_load = 0;
2319         ret = _regulator_force_disable(regulator->rdev);
2320         mutex_unlock(&rdev->mutex);
2321
2322         if (rdev->supply)
2323                 while (rdev->open_count--)
2324                         regulator_disable(rdev->supply);
2325
2326         return ret;
2327 }
2328 EXPORT_SYMBOL_GPL(regulator_force_disable);
2329
2330 static void regulator_disable_work(struct work_struct *work)
2331 {
2332         struct regulator_dev *rdev = container_of(work, struct regulator_dev,
2333                                                   disable_work.work);
2334         int count, i, ret;
2335
2336         mutex_lock(&rdev->mutex);
2337
2338         BUG_ON(!rdev->deferred_disables);
2339
2340         count = rdev->deferred_disables;
2341         rdev->deferred_disables = 0;
2342
2343         for (i = 0; i < count; i++) {
2344                 ret = _regulator_disable(rdev);
2345                 if (ret != 0)
2346                         rdev_err(rdev, "Deferred disable failed: %d\n", ret);
2347         }
2348
2349         mutex_unlock(&rdev->mutex);
2350
2351         if (rdev->supply) {
2352                 for (i = 0; i < count; i++) {
2353                         ret = regulator_disable(rdev->supply);
2354                         if (ret != 0) {
2355                                 rdev_err(rdev,
2356                                          "Supply disable failed: %d\n", ret);
2357                         }
2358                 }
2359         }
2360 }
2361
2362 /**
2363  * regulator_disable_deferred - disable regulator output with delay
2364  * @regulator: regulator source
2365  * @ms: miliseconds until the regulator is disabled
2366  *
2367  * Execute regulator_disable() on the regulator after a delay.  This
2368  * is intended for use with devices that require some time to quiesce.
2369  *
2370  * NOTE: this will only disable the regulator output if no other consumer
2371  * devices have it enabled, the regulator device supports disabling and
2372  * machine constraints permit this operation.
2373  */
2374 int regulator_disable_deferred(struct regulator *regulator, int ms)
2375 {
2376         struct regulator_dev *rdev = regulator->rdev;
2377
2378         if (regulator->always_on)
2379                 return 0;
2380
2381         if (!ms)
2382                 return regulator_disable(regulator);
2383
2384         mutex_lock(&rdev->mutex);
2385         rdev->deferred_disables++;
2386         mutex_unlock(&rdev->mutex);
2387
2388         queue_delayed_work(system_power_efficient_wq, &rdev->disable_work,
2389                            msecs_to_jiffies(ms));
2390         return 0;
2391 }
2392 EXPORT_SYMBOL_GPL(regulator_disable_deferred);
2393
2394 static int _regulator_is_enabled(struct regulator_dev *rdev)
2395 {
2396         /* A GPIO control always takes precedence */
2397         if (rdev->ena_pin)
2398                 return rdev->ena_gpio_state;
2399
2400         /* If we don't know then assume that the regulator is always on */
2401         if (!rdev->desc->ops->is_enabled)
2402                 return 1;
2403
2404         return rdev->desc->ops->is_enabled(rdev);
2405 }
2406
2407 static int _regulator_list_voltage(struct regulator *regulator,
2408                                     unsigned selector, int lock)
2409 {
2410         struct regulator_dev *rdev = regulator->rdev;
2411         const struct regulator_ops *ops = rdev->desc->ops;
2412         int ret;
2413
2414         if (rdev->desc->fixed_uV && rdev->desc->n_voltages == 1 && !selector)
2415                 return rdev->desc->fixed_uV;
2416
2417         if (ops->list_voltage) {
2418                 if (selector >= rdev->desc->n_voltages)
2419                         return -EINVAL;
2420                 if (lock)
2421                         mutex_lock(&rdev->mutex);
2422                 ret = ops->list_voltage(rdev, selector);
2423                 if (lock)
2424                         mutex_unlock(&rdev->mutex);
2425         } else if (rdev->supply) {
2426                 ret = _regulator_list_voltage(rdev->supply, selector, lock);
2427         } else {
2428                 return -EINVAL;
2429         }
2430
2431         if (ret > 0) {
2432                 if (ret < rdev->constraints->min_uV)
2433                         ret = 0;
2434                 else if (ret > rdev->constraints->max_uV)
2435                         ret = 0;
2436         }
2437
2438         return ret;
2439 }
2440
2441 /**
2442  * regulator_is_enabled - is the regulator output enabled
2443  * @regulator: regulator source
2444  *
2445  * Returns positive if the regulator driver backing the source/client
2446  * has requested that the device be enabled, zero if it hasn't, else a
2447  * negative errno code.
2448  *
2449  * Note that the device backing this regulator handle can have multiple
2450  * users, so it might be enabled even if regulator_enable() was never
2451  * called for this particular source.
2452  */
2453 int regulator_is_enabled(struct regulator *regulator)
2454 {
2455         int ret;
2456
2457         if (regulator->always_on)
2458                 return 1;
2459
2460         mutex_lock(&regulator->rdev->mutex);
2461         ret = _regulator_is_enabled(regulator->rdev);
2462         mutex_unlock(&regulator->rdev->mutex);
2463
2464         return ret;
2465 }
2466 EXPORT_SYMBOL_GPL(regulator_is_enabled);
2467
2468 /**
2469  * regulator_can_change_voltage - check if regulator can change voltage
2470  * @regulator: regulator source
2471  *
2472  * Returns positive if the regulator driver backing the source/client
2473  * can change its voltage, false otherwise. Useful for detecting fixed
2474  * or dummy regulators and disabling voltage change logic in the client
2475  * driver.
2476  */
2477 int regulator_can_change_voltage(struct regulator *regulator)
2478 {
2479         struct regulator_dev    *rdev = regulator->rdev;
2480
2481         if (rdev->constraints &&
2482             (rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE)) {
2483                 if (rdev->desc->n_voltages - rdev->desc->linear_min_sel > 1)
2484                         return 1;
2485
2486                 if (rdev->desc->continuous_voltage_range &&
2487                     rdev->constraints->min_uV && rdev->constraints->max_uV &&
2488                     rdev->constraints->min_uV != rdev->constraints->max_uV)
2489                         return 1;
2490         }
2491
2492         return 0;
2493 }
2494 EXPORT_SYMBOL_GPL(regulator_can_change_voltage);
2495
2496 /**
2497  * regulator_count_voltages - count regulator_list_voltage() selectors
2498  * @regulator: regulator source
2499  *
2500  * Returns number of selectors, or negative errno.  Selectors are
2501  * numbered starting at zero, and typically correspond to bitfields
2502  * in hardware registers.
2503  */
2504 int regulator_count_voltages(struct regulator *regulator)
2505 {
2506         struct regulator_dev    *rdev = regulator->rdev;
2507
2508         if (rdev->desc->n_voltages)
2509                 return rdev->desc->n_voltages;
2510
2511         if (!rdev->supply)
2512                 return -EINVAL;
2513
2514         return regulator_count_voltages(rdev->supply);
2515 }
2516 EXPORT_SYMBOL_GPL(regulator_count_voltages);
2517
2518 /**
2519  * regulator_list_voltage - enumerate supported voltages
2520  * @regulator: regulator source
2521  * @selector: identify voltage to list
2522  * Context: can sleep
2523  *
2524  * Returns a voltage that can be passed to @regulator_set_voltage(),
2525  * zero if this selector code can't be used on this system, or a
2526  * negative errno.
2527  */
2528 int regulator_list_voltage(struct regulator *regulator, unsigned selector)
2529 {
2530         return _regulator_list_voltage(regulator, selector, 1);
2531 }
2532 EXPORT_SYMBOL_GPL(regulator_list_voltage);
2533
2534 /**
2535  * regulator_get_regmap - get the regulator's register map
2536  * @regulator: regulator source
2537  *
2538  * Returns the register map for the given regulator, or an ERR_PTR value
2539  * if the regulator doesn't use regmap.
2540  */
2541 struct regmap *regulator_get_regmap(struct regulator *regulator)
2542 {
2543         struct regmap *map = regulator->rdev->regmap;
2544
2545         return map ? map : ERR_PTR(-EOPNOTSUPP);
2546 }
2547
2548 /**
2549  * regulator_get_hardware_vsel_register - get the HW voltage selector register
2550  * @regulator: regulator source
2551  * @vsel_reg: voltage selector register, output parameter
2552  * @vsel_mask: mask for voltage selector bitfield, output parameter
2553  *
2554  * Returns the hardware register offset and bitmask used for setting the
2555  * regulator voltage. This might be useful when configuring voltage-scaling
2556  * hardware or firmware that can make I2C requests behind the kernel's back,
2557  * for example.
2558  *
2559  * On success, the output parameters @vsel_reg and @vsel_mask are filled in
2560  * and 0 is returned, otherwise a negative errno is returned.
2561  */
2562 int regulator_get_hardware_vsel_register(struct regulator *regulator,
2563                                          unsigned *vsel_reg,
2564                                          unsigned *vsel_mask)
2565 {
2566         struct regulator_dev *rdev = regulator->rdev;
2567         const struct regulator_ops *ops = rdev->desc->ops;
2568
2569         if (ops->set_voltage_sel != regulator_set_voltage_sel_regmap)
2570                 return -EOPNOTSUPP;
2571
2572          *vsel_reg = rdev->desc->vsel_reg;
2573          *vsel_mask = rdev->desc->vsel_mask;
2574
2575          return 0;
2576 }
2577 EXPORT_SYMBOL_GPL(regulator_get_hardware_vsel_register);
2578
2579 /**
2580  * regulator_list_hardware_vsel - get the HW-specific register value for a selector
2581  * @regulator: regulator source
2582  * @selector: identify voltage to list
2583  *
2584  * Converts the selector to a hardware-specific voltage selector that can be
2585  * directly written to the regulator registers. The address of the voltage
2586  * register can be determined by calling @regulator_get_hardware_vsel_register.
2587  *
2588  * On error a negative errno is returned.
2589  */
2590 int regulator_list_hardware_vsel(struct regulator *regulator,
2591                                  unsigned selector)
2592 {
2593         struct regulator_dev *rdev = regulator->rdev;
2594         const struct regulator_ops *ops = rdev->desc->ops;
2595
2596         if (selector >= rdev->desc->n_voltages)
2597                 return -EINVAL;
2598         if (ops->set_voltage_sel != regulator_set_voltage_sel_regmap)
2599                 return -EOPNOTSUPP;
2600
2601         return selector;
2602 }
2603 EXPORT_SYMBOL_GPL(regulator_list_hardware_vsel);
2604
2605 /**
2606  * regulator_get_linear_step - return the voltage step size between VSEL values
2607  * @regulator: regulator source
2608  *
2609  * Returns the voltage step size between VSEL values for linear
2610  * regulators, or return 0 if the regulator isn't a linear regulator.
2611  */
2612 unsigned int regulator_get_linear_step(struct regulator *regulator)
2613 {
2614         struct regulator_dev *rdev = regulator->rdev;
2615
2616         return rdev->desc->uV_step;
2617 }
2618 EXPORT_SYMBOL_GPL(regulator_get_linear_step);
2619
2620 /**
2621  * regulator_is_supported_voltage - check if a voltage range can be supported
2622  *
2623  * @regulator: Regulator to check.
2624  * @min_uV: Minimum required voltage in uV.
2625  * @max_uV: Maximum required voltage in uV.
2626  *
2627  * Returns a boolean or a negative error code.
2628  */
2629 int regulator_is_supported_voltage(struct regulator *regulator,
2630                                    int min_uV, int max_uV)
2631 {
2632         struct regulator_dev *rdev = regulator->rdev;
2633         int i, voltages, ret;
2634
2635         /* If we can't change voltage check the current voltage */
2636         if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE)) {
2637                 ret = regulator_get_voltage(regulator);
2638                 if (ret >= 0)
2639                         return min_uV <= ret && ret <= max_uV;
2640                 else
2641                         return ret;
2642         }
2643
2644         /* Any voltage within constrains range is fine? */
2645         if (rdev->desc->continuous_voltage_range)
2646                 return min_uV >= rdev->constraints->min_uV &&
2647                                 max_uV <= rdev->constraints->max_uV;
2648
2649         ret = regulator_count_voltages(regulator);
2650         if (ret < 0)
2651                 return ret;
2652         voltages = ret;
2653
2654         for (i = 0; i < voltages; i++) {
2655                 ret = regulator_list_voltage(regulator, i);
2656
2657                 if (ret >= min_uV && ret <= max_uV)
2658                         return 1;
2659         }
2660
2661         return 0;
2662 }
2663 EXPORT_SYMBOL_GPL(regulator_is_supported_voltage);
2664
2665 static int regulator_map_voltage(struct regulator_dev *rdev, int min_uV,
2666                                  int max_uV)
2667 {
2668         const struct regulator_desc *desc = rdev->desc;
2669
2670         if (desc->ops->map_voltage)
2671                 return desc->ops->map_voltage(rdev, min_uV, max_uV);
2672
2673         if (desc->ops->list_voltage == regulator_list_voltage_linear)
2674                 return regulator_map_voltage_linear(rdev, min_uV, max_uV);
2675
2676         if (desc->ops->list_voltage == regulator_list_voltage_linear_range)
2677                 return regulator_map_voltage_linear_range(rdev, min_uV, max_uV);
2678
2679         return regulator_map_voltage_iterate(rdev, min_uV, max_uV);
2680 }
2681
2682 static int _regulator_call_set_voltage(struct regulator_dev *rdev,
2683                                        int min_uV, int max_uV,
2684                                        unsigned *selector)
2685 {
2686         struct pre_voltage_change_data data;
2687         int ret;
2688
2689         data.old_uV = _regulator_get_voltage(rdev);
2690         data.min_uV = min_uV;
2691         data.max_uV = max_uV;
2692         ret = _notifier_call_chain(rdev, REGULATOR_EVENT_PRE_VOLTAGE_CHANGE,
2693                                    &data);
2694         if (ret & NOTIFY_STOP_MASK)
2695                 return -EINVAL;
2696
2697         ret = rdev->desc->ops->set_voltage(rdev, min_uV, max_uV, selector);
2698         if (ret >= 0)
2699                 return ret;
2700
2701         _notifier_call_chain(rdev, REGULATOR_EVENT_ABORT_VOLTAGE_CHANGE,
2702                              (void *)data.old_uV);
2703
2704         return ret;
2705 }
2706
2707 static int _regulator_call_set_voltage_sel(struct regulator_dev *rdev,
2708                                            int uV, unsigned selector)
2709 {
2710         struct pre_voltage_change_data data;
2711         int ret;
2712
2713         data.old_uV = _regulator_get_voltage(rdev);
2714         data.min_uV = uV;
2715         data.max_uV = uV;
2716         ret = _notifier_call_chain(rdev, REGULATOR_EVENT_PRE_VOLTAGE_CHANGE,
2717                                    &data);
2718         if (ret & NOTIFY_STOP_MASK)
2719                 return -EINVAL;
2720
2721         ret = rdev->desc->ops->set_voltage_sel(rdev, selector);
2722         if (ret >= 0)
2723                 return ret;
2724
2725         _notifier_call_chain(rdev, REGULATOR_EVENT_ABORT_VOLTAGE_CHANGE,
2726                              (void *)data.old_uV);
2727
2728         return ret;
2729 }
2730
2731 static int _regulator_do_set_voltage(struct regulator_dev *rdev,
2732                                      int min_uV, int max_uV)
2733 {
2734         int ret;
2735         int delay = 0;
2736         int best_val = 0;
2737         unsigned int selector;
2738         int old_selector = -1;
2739
2740         trace_regulator_set_voltage(rdev_get_name(rdev), min_uV, max_uV);
2741
2742         min_uV += rdev->constraints->uV_offset;
2743         max_uV += rdev->constraints->uV_offset;
2744
2745         /*
2746          * If we can't obtain the old selector there is not enough
2747          * info to call set_voltage_time_sel().
2748          */
2749         if (_regulator_is_enabled(rdev) &&
2750             rdev->desc->ops->set_voltage_time_sel &&
2751             rdev->desc->ops->get_voltage_sel) {
2752                 old_selector = rdev->desc->ops->get_voltage_sel(rdev);
2753                 if (old_selector < 0)
2754                         return old_selector;
2755         }
2756
2757         if (rdev->desc->ops->set_voltage) {
2758                 ret = _regulator_call_set_voltage(rdev, min_uV, max_uV,
2759                                                   &selector);
2760
2761                 if (ret >= 0) {
2762                         if (rdev->desc->ops->list_voltage)
2763                                 best_val = rdev->desc->ops->list_voltage(rdev,
2764                                                                          selector);
2765                         else
2766                                 best_val = _regulator_get_voltage(rdev);
2767                 }
2768
2769         } else if (rdev->desc->ops->set_voltage_sel) {
2770                 ret = regulator_map_voltage(rdev, min_uV, max_uV);
2771                 if (ret >= 0) {
2772                         best_val = rdev->desc->ops->list_voltage(rdev, ret);
2773                         if (min_uV <= best_val && max_uV >= best_val) {
2774                                 selector = ret;
2775                                 if (old_selector == selector)
2776                                         ret = 0;
2777                                 else
2778                                         ret = _regulator_call_set_voltage_sel(
2779                                                 rdev, best_val, selector);
2780                         } else {
2781                                 ret = -EINVAL;
2782                         }
2783                 }
2784         } else {
2785                 ret = -EINVAL;
2786         }
2787
2788         /* Call set_voltage_time_sel if successfully obtained old_selector */
2789         if (ret == 0 && !rdev->constraints->ramp_disable && old_selector >= 0
2790                 && old_selector != selector) {
2791
2792                 delay = rdev->desc->ops->set_voltage_time_sel(rdev,
2793                                                 old_selector, selector);
2794                 if (delay < 0) {
2795                         rdev_warn(rdev, "set_voltage_time_sel() failed: %d\n",
2796                                   delay);
2797                         delay = 0;
2798                 }
2799
2800                 /* Insert any necessary delays */
2801                 if (delay >= 1000) {
2802                         mdelay(delay / 1000);
2803                         udelay(delay % 1000);
2804                 } else if (delay) {
2805                         udelay(delay);
2806                 }
2807         }
2808
2809         if (ret == 0 && best_val >= 0) {
2810                 unsigned long data = best_val;
2811
2812                 _notifier_call_chain(rdev, REGULATOR_EVENT_VOLTAGE_CHANGE,
2813                                      (void *)data);
2814         }
2815
2816         trace_regulator_set_voltage_complete(rdev_get_name(rdev), best_val);
2817
2818         return ret;
2819 }
2820
2821 static int regulator_set_voltage_unlocked(struct regulator *regulator,
2822                                           int min_uV, int max_uV)
2823 {
2824         struct regulator_dev *rdev = regulator->rdev;
2825         int ret = 0;
2826         int old_min_uV, old_max_uV;
2827         int current_uV;
2828         int best_supply_uV = 0;
2829         int supply_change_uV = 0;
2830
2831         /* If we're setting the same range as last time the change
2832          * should be a noop (some cpufreq implementations use the same
2833          * voltage for multiple frequencies, for example).
2834          */
2835         if (regulator->min_uV == min_uV && regulator->max_uV == max_uV)
2836                 goto out;
2837
2838         /* If we're trying to set a range that overlaps the current voltage,
2839          * return successfully even though the regulator does not support
2840          * changing the voltage.
2841          */
2842         if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE)) {
2843                 current_uV = _regulator_get_voltage(rdev);
2844                 if (min_uV <= current_uV && current_uV <= max_uV) {
2845                         regulator->min_uV = min_uV;
2846                         regulator->max_uV = max_uV;
2847                         goto out;
2848                 }
2849         }
2850
2851         /* sanity check */
2852         if (!rdev->desc->ops->set_voltage &&
2853             !rdev->desc->ops->set_voltage_sel) {
2854                 ret = -EINVAL;
2855                 goto out;
2856         }
2857
2858         /* constraints check */
2859         ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
2860         if (ret < 0)
2861                 goto out;
2862
2863         /* restore original values in case of error */
2864         old_min_uV = regulator->min_uV;
2865         old_max_uV = regulator->max_uV;
2866         regulator->min_uV = min_uV;
2867         regulator->max_uV = max_uV;
2868
2869         ret = regulator_check_consumers(rdev, &min_uV, &max_uV);
2870         if (ret < 0)
2871                 goto out2;
2872
2873         if (rdev->supply && (rdev->desc->min_dropout_uV ||
2874                                 !rdev->desc->ops->get_voltage)) {
2875                 int current_supply_uV;
2876                 int selector;
2877
2878                 selector = regulator_map_voltage(rdev, min_uV, max_uV);
2879                 if (selector < 0) {
2880                         ret = selector;
2881                         goto out2;
2882                 }
2883
2884                 best_supply_uV = _regulator_list_voltage(regulator, selector, 0);
2885                 if (best_supply_uV < 0) {
2886                         ret = best_supply_uV;
2887                         goto out2;
2888                 }
2889
2890                 best_supply_uV += rdev->desc->min_dropout_uV;
2891
2892                 current_supply_uV = _regulator_get_voltage(rdev->supply->rdev);
2893                 if (current_supply_uV < 0) {
2894                         ret = current_supply_uV;
2895                         goto out2;
2896                 }
2897
2898                 supply_change_uV = best_supply_uV - current_supply_uV;
2899         }
2900
2901         if (supply_change_uV > 0) {
2902                 ret = regulator_set_voltage_unlocked(rdev->supply,
2903                                 best_supply_uV, INT_MAX);
2904                 if (ret) {
2905                         dev_err(&rdev->dev, "Failed to increase supply voltage: %d\n",
2906                                         ret);
2907                         goto out2;
2908                 }
2909         }
2910
2911         ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);
2912         if (ret < 0)
2913                 goto out2;
2914
2915         if (supply_change_uV < 0) {
2916                 ret = regulator_set_voltage_unlocked(rdev->supply,
2917                                 best_supply_uV, INT_MAX);
2918                 if (ret)
2919                         dev_warn(&rdev->dev, "Failed to decrease supply voltage: %d\n",
2920                                         ret);
2921                 /* No need to fail here */
2922                 ret = 0;
2923         }
2924
2925 out:
2926         return ret;
2927 out2:
2928         regulator->min_uV = old_min_uV;
2929         regulator->max_uV = old_max_uV;
2930
2931         return ret;
2932 }
2933
2934 /**
2935  * regulator_set_voltage - set regulator output voltage
2936  * @regulator: regulator source
2937  * @min_uV: Minimum required voltage in uV
2938  * @max_uV: Maximum acceptable voltage in uV
2939  *
2940  * Sets a voltage regulator to the desired output voltage. This can be set
2941  * during any regulator state. IOW, regulator can be disabled or enabled.
2942  *
2943  * If the regulator is enabled then the voltage will change to the new value
2944  * immediately otherwise if the regulator is disabled the regulator will
2945  * output at the new voltage when enabled.
2946  *
2947  * NOTE: If the regulator is shared between several devices then the lowest
2948  * request voltage that meets the system constraints will be used.
2949  * Regulator system constraints must be set for this regulator before
2950  * calling this function otherwise this call will fail.
2951  */
2952 int regulator_set_voltage(struct regulator *regulator, int min_uV, int max_uV)
2953 {
2954         int ret = 0;
2955
2956         regulator_lock_supply(regulator->rdev);
2957
2958         ret = regulator_set_voltage_unlocked(regulator, min_uV, max_uV);
2959
2960         regulator_unlock_supply(regulator->rdev);
2961
2962         return ret;
2963 }
2964 EXPORT_SYMBOL_GPL(regulator_set_voltage);
2965
2966 /**
2967  * regulator_set_voltage_time - get raise/fall time
2968  * @regulator: regulator source
2969  * @old_uV: starting voltage in microvolts
2970  * @new_uV: target voltage in microvolts
2971  *
2972  * Provided with the starting and ending voltage, this function attempts to
2973  * calculate the time in microseconds required to rise or fall to this new
2974  * voltage.
2975  */
2976 int regulator_set_voltage_time(struct regulator *regulator,
2977                                int old_uV, int new_uV)
2978 {
2979         struct regulator_dev *rdev = regulator->rdev;
2980         const struct regulator_ops *ops = rdev->desc->ops;
2981         int old_sel = -1;
2982         int new_sel = -1;
2983         int voltage;
2984         int i;
2985
2986         /* Currently requires operations to do this */
2987         if (!ops->list_voltage || !ops->set_voltage_time_sel
2988             || !rdev->desc->n_voltages)
2989                 return -EINVAL;
2990
2991         for (i = 0; i < rdev->desc->n_voltages; i++) {
2992                 /* We only look for exact voltage matches here */
2993                 voltage = regulator_list_voltage(regulator, i);
2994                 if (voltage < 0)
2995                         return -EINVAL;
2996                 if (voltage == 0)
2997                         continue;
2998                 if (voltage == old_uV)
2999                         old_sel = i;
3000                 if (voltage == new_uV)
3001                         new_sel = i;
3002         }
3003
3004         if (old_sel < 0 || new_sel < 0)
3005                 return -EINVAL;
3006
3007         return ops->set_voltage_time_sel(rdev, old_sel, new_sel);
3008 }
3009 EXPORT_SYMBOL_GPL(regulator_set_voltage_time);
3010
3011 /**
3012  * regulator_set_voltage_time_sel - get raise/fall time
3013  * @rdev: regulator source device
3014  * @old_selector: selector for starting voltage
3015  * @new_selector: selector for target voltage
3016  *
3017  * Provided with the starting and target voltage selectors, this function
3018  * returns time in microseconds required to rise or fall to this new voltage
3019  *
3020  * Drivers providing ramp_delay in regulation_constraints can use this as their
3021  * set_voltage_time_sel() operation.
3022  */
3023 int regulator_set_voltage_time_sel(struct regulator_dev *rdev,
3024                                    unsigned int old_selector,
3025                                    unsigned int new_selector)
3026 {
3027         unsigned int ramp_delay = 0;
3028         int old_volt, new_volt;
3029
3030         if (rdev->constraints->ramp_delay)
3031                 ramp_delay = rdev->constraints->ramp_delay;
3032         else if (rdev->desc->ramp_delay)
3033                 ramp_delay = rdev->desc->ramp_delay;
3034
3035         if (ramp_delay == 0) {
3036                 rdev_warn(rdev, "ramp_delay not set\n");
3037                 return 0;
3038         }
3039
3040         /* sanity check */
3041         if (!rdev->desc->ops->list_voltage)
3042                 return -EINVAL;
3043
3044         old_volt = rdev->desc->ops->list_voltage(rdev, old_selector);
3045         new_volt = rdev->desc->ops->list_voltage(rdev, new_selector);
3046
3047         return DIV_ROUND_UP(abs(new_volt - old_volt), ramp_delay);
3048 }
3049 EXPORT_SYMBOL_GPL(regulator_set_voltage_time_sel);
3050
3051 /**
3052  * regulator_sync_voltage - re-apply last regulator output voltage
3053  * @regulator: regulator source
3054  *
3055  * Re-apply the last configured voltage.  This is intended to be used
3056  * where some external control source the consumer is cooperating with
3057  * has caused the configured voltage to change.
3058  */
3059 int regulator_sync_voltage(struct regulator *regulator)
3060 {
3061         struct regulator_dev *rdev = regulator->rdev;
3062         int ret, min_uV, max_uV;
3063
3064         mutex_lock(&rdev->mutex);
3065
3066         if (!rdev->desc->ops->set_voltage &&
3067             !rdev->desc->ops->set_voltage_sel) {
3068                 ret = -EINVAL;
3069                 goto out;
3070         }
3071
3072         /* This is only going to work if we've had a voltage configured. */
3073         if (!regulator->min_uV && !regulator->max_uV) {
3074                 ret = -EINVAL;
3075                 goto out;
3076         }
3077
3078         min_uV = regulator->min_uV;
3079         max_uV = regulator->max_uV;
3080
3081         /* This should be a paranoia check... */
3082         ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
3083         if (ret < 0)
3084                 goto out;
3085
3086         ret = regulator_check_consumers(rdev, &min_uV, &max_uV);
3087         if (ret < 0)
3088                 goto out;
3089
3090         ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);
3091
3092 out:
3093         mutex_unlock(&rdev->mutex);
3094         return ret;
3095 }
3096 EXPORT_SYMBOL_GPL(regulator_sync_voltage);
3097
3098 static int _regulator_get_voltage(struct regulator_dev *rdev)
3099 {
3100         int sel, ret;
3101
3102         if (rdev->desc->ops->get_voltage_sel) {
3103                 sel = rdev->desc->ops->get_voltage_sel(rdev);
3104                 if (sel < 0)
3105                         return sel;
3106                 ret = rdev->desc->ops->list_voltage(rdev, sel);
3107         } else if (rdev->desc->ops->get_voltage) {
3108                 ret = rdev->desc->ops->get_voltage(rdev);
3109         } else if (rdev->desc->ops->list_voltage) {
3110                 ret = rdev->desc->ops->list_voltage(rdev, 0);
3111         } else if (rdev->desc->fixed_uV && (rdev->desc->n_voltages == 1)) {
3112                 ret = rdev->desc->fixed_uV;
3113         } else if (rdev->supply) {
3114                 ret = _regulator_get_voltage(rdev->supply->rdev);
3115         } else {
3116                 return -EINVAL;
3117         }
3118
3119         if (ret < 0)
3120                 return ret;
3121         return ret - rdev->constraints->uV_offset;
3122 }
3123
3124 /**
3125  * regulator_get_voltage - get regulator output voltage
3126  * @regulator: regulator source
3127  *
3128  * This returns the current regulator voltage in uV.
3129  *
3130  * NOTE: If the regulator is disabled it will return the voltage value. This
3131  * function should not be used to determine regulator state.
3132  */
3133 int regulator_get_voltage(struct regulator *regulator)
3134 {
3135         int ret;
3136
3137         regulator_lock_supply(regulator->rdev);
3138
3139         ret = _regulator_get_voltage(regulator->rdev);
3140
3141         regulator_unlock_supply(regulator->rdev);
3142
3143         return ret;
3144 }
3145 EXPORT_SYMBOL_GPL(regulator_get_voltage);
3146
3147 /**
3148  * regulator_set_current_limit - set regulator output current limit
3149  * @regulator: regulator source
3150  * @min_uA: Minimum supported current in uA
3151  * @max_uA: Maximum supported current in uA
3152  *
3153  * Sets current sink to the desired output current. This can be set during
3154  * any regulator state. IOW, regulator can be disabled or enabled.
3155  *
3156  * If the regulator is enabled then the current will change to the new value
3157  * immediately otherwise if the regulator is disabled the regulator will
3158  * output at the new current when enabled.
3159  *
3160  * NOTE: Regulator system constraints must be set for this regulator before
3161  * calling this function otherwise this call will fail.
3162  */
3163 int regulator_set_current_limit(struct regulator *regulator,
3164                                int min_uA, int max_uA)
3165 {
3166         struct regulator_dev *rdev = regulator->rdev;
3167         int ret;
3168
3169         mutex_lock(&rdev->mutex);
3170
3171         /* sanity check */
3172         if (!rdev->desc->ops->set_current_limit) {
3173                 ret = -EINVAL;
3174                 goto out;
3175         }
3176
3177         /* constraints check */
3178         ret = regulator_check_current_limit(rdev, &min_uA, &max_uA);
3179         if (ret < 0)
3180                 goto out;
3181
3182         ret = rdev->desc->ops->set_current_limit(rdev, min_uA, max_uA);
3183 out:
3184         mutex_unlock(&rdev->mutex);
3185         return ret;
3186 }
3187 EXPORT_SYMBOL_GPL(regulator_set_current_limit);
3188
3189 static int _regulator_get_current_limit(struct regulator_dev *rdev)
3190 {
3191         int ret;
3192
3193         mutex_lock(&rdev->mutex);
3194
3195         /* sanity check */
3196         if (!rdev->desc->ops->get_current_limit) {
3197                 ret = -EINVAL;
3198                 goto out;
3199         }
3200
3201         ret = rdev->desc->ops->get_current_limit(rdev);
3202 out:
3203         mutex_unlock(&rdev->mutex);
3204         return ret;
3205 }
3206
3207 /**
3208  * regulator_get_current_limit - get regulator output current
3209  * @regulator: regulator source
3210  *
3211  * This returns the current supplied by the specified current sink in uA.
3212  *
3213  * NOTE: If the regulator is disabled it will return the current value. This
3214  * function should not be used to determine regulator state.
3215  */
3216 int regulator_get_current_limit(struct regulator *regulator)
3217 {
3218         return _regulator_get_current_limit(regulator->rdev);
3219 }
3220 EXPORT_SYMBOL_GPL(regulator_get_current_limit);
3221
3222 /**
3223  * regulator_set_mode - set regulator operating mode
3224  * @regulator: regulator source
3225  * @mode: operating mode - one of the REGULATOR_MODE constants
3226  *
3227  * Set regulator operating mode to increase regulator efficiency or improve
3228  * regulation performance.
3229  *
3230  * NOTE: Regulator system constraints must be set for this regulator before
3231  * calling this function otherwise this call will fail.
3232  */
3233 int regulator_set_mode(struct regulator *regulator, unsigned int mode)
3234 {
3235         struct regulator_dev *rdev = regulator->rdev;
3236         int ret;
3237         int regulator_curr_mode;
3238
3239         mutex_lock(&rdev->mutex);
3240
3241         /* sanity check */
3242         if (!rdev->desc->ops->set_mode) {
3243                 ret = -EINVAL;
3244                 goto out;
3245         }
3246
3247         /* return if the same mode is requested */
3248         if (rdev->desc->ops->get_mode) {
3249                 regulator_curr_mode = rdev->desc->ops->get_mode(rdev);
3250                 if (regulator_curr_mode == mode) {
3251                         ret = 0;
3252                         goto out;
3253                 }
3254         }
3255
3256         /* constraints check */
3257         ret = regulator_mode_constrain(rdev, &mode);
3258         if (ret < 0)
3259                 goto out;
3260
3261         ret = rdev->desc->ops->set_mode(rdev, mode);
3262 out:
3263         mutex_unlock(&rdev->mutex);
3264         return ret;
3265 }
3266 EXPORT_SYMBOL_GPL(regulator_set_mode);
3267
3268 static unsigned int _regulator_get_mode(struct regulator_dev *rdev)
3269 {
3270         int ret;
3271
3272         mutex_lock(&rdev->mutex);
3273
3274         /* sanity check */
3275         if (!rdev->desc->ops->get_mode) {
3276                 ret = -EINVAL;
3277                 goto out;
3278         }
3279
3280         ret = rdev->desc->ops->get_mode(rdev);
3281 out:
3282         mutex_unlock(&rdev->mutex);
3283         return ret;
3284 }
3285
3286 /**
3287  * regulator_get_mode - get regulator operating mode
3288  * @regulator: regulator source
3289  *
3290  * Get the current regulator operating mode.
3291  */
3292 unsigned int regulator_get_mode(struct regulator *regulator)
3293 {
3294         return _regulator_get_mode(regulator->rdev);
3295 }
3296 EXPORT_SYMBOL_GPL(regulator_get_mode);
3297
3298 /**
3299  * regulator_set_load - set regulator load
3300  * @regulator: regulator source
3301  * @uA_load: load current
3302  *
3303  * Notifies the regulator core of a new device load. This is then used by
3304  * DRMS (if enabled by constraints) to set the most efficient regulator
3305  * operating mode for the new regulator loading.
3306  *
3307  * Consumer devices notify their supply regulator of the maximum power
3308  * they will require (can be taken from device datasheet in the power
3309  * consumption tables) when they change operational status and hence power
3310  * state. Examples of operational state changes that can affect power
3311  * consumption are :-
3312  *
3313  *    o Device is opened / closed.
3314  *    o Device I/O is about to begin or has just finished.
3315  *    o Device is idling in between work.
3316  *
3317  * This information is also exported via sysfs to userspace.
3318  *
3319  * DRMS will sum the total requested load on the regulator and change
3320  * to the most efficient operating mode if platform constraints allow.
3321  *
3322  * On error a negative errno is returned.
3323  */
3324 int regulator_set_load(struct regulator *regulator, int uA_load)
3325 {
3326         struct regulator_dev *rdev = regulator->rdev;
3327         int ret;
3328
3329         mutex_lock(&rdev->mutex);
3330         regulator->uA_load = uA_load;
3331         ret = drms_uA_update(rdev);
3332         mutex_unlock(&rdev->mutex);
3333
3334         return ret;
3335 }
3336 EXPORT_SYMBOL_GPL(regulator_set_load);
3337
3338 /**
3339  * regulator_allow_bypass - allow the regulator to go into bypass mode
3340  *
3341  * @regulator: Regulator to configure
3342  * @enable: enable or disable bypass mode
3343  *
3344  * Allow the regulator to go into bypass mode if all other consumers
3345  * for the regulator also enable bypass mode and the machine
3346  * constraints allow this.  Bypass mode means that the regulator is
3347  * simply passing the input directly to the output with no regulation.
3348  */
3349 int regulator_allow_bypass(struct regulator *regulator, bool enable)
3350 {
3351         struct regulator_dev *rdev = regulator->rdev;
3352         int ret = 0;
3353
3354         if (!rdev->desc->ops->set_bypass)
3355                 return 0;
3356
3357         if (rdev->constraints &&
3358             !(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_BYPASS))
3359                 return 0;
3360
3361         mutex_lock(&rdev->mutex);
3362
3363         if (enable && !regulator->bypass) {
3364                 rdev->bypass_count++;
3365
3366                 if (rdev->bypass_count == rdev->open_count) {
3367                         ret = rdev->desc->ops->set_bypass(rdev, enable);
3368                         if (ret != 0)
3369                                 rdev->bypass_count--;
3370                 }
3371
3372         } else if (!enable && regulator->bypass) {
3373                 rdev->bypass_count--;
3374
3375                 if (rdev->bypass_count != rdev->open_count) {
3376                         ret = rdev->desc->ops->set_bypass(rdev, enable);
3377                         if (ret != 0)
3378                                 rdev->bypass_count++;
3379                 }
3380         }
3381
3382         if (ret == 0)
3383                 regulator->bypass = enable;
3384
3385         mutex_unlock(&rdev->mutex);
3386
3387         return ret;
3388 }
3389 EXPORT_SYMBOL_GPL(regulator_allow_bypass);
3390
3391 /**
3392  * regulator_register_notifier - register regulator event notifier
3393  * @regulator: regulator source
3394  * @nb: notifier block
3395  *
3396  * Register notifier block to receive regulator events.
3397  */
3398 int regulator_register_notifier(struct regulator *regulator,
3399                               struct notifier_block *nb)
3400 {
3401         return blocking_notifier_chain_register(&regulator->rdev->notifier,
3402                                                 nb);
3403 }
3404 EXPORT_SYMBOL_GPL(regulator_register_notifier);
3405
3406 /**
3407  * regulator_unregister_notifier - unregister regulator event notifier
3408  * @regulator: regulator source
3409  * @nb: notifier block
3410  *
3411  * Unregister regulator event notifier block.
3412  */
3413 int regulator_unregister_notifier(struct regulator *regulator,
3414                                 struct notifier_block *nb)
3415 {
3416         return blocking_notifier_chain_unregister(&regulator->rdev->notifier,
3417                                                   nb);
3418 }
3419 EXPORT_SYMBOL_GPL(regulator_unregister_notifier);
3420
3421 /* notify regulator consumers and downstream regulator consumers.
3422  * Note mutex must be held by caller.
3423  */
3424 static int _notifier_call_chain(struct regulator_dev *rdev,
3425                                   unsigned long event, void *data)
3426 {
3427         /* call rdev chain first */
3428         return blocking_notifier_call_chain(&rdev->notifier, event, data);
3429 }
3430
3431 /**
3432  * regulator_bulk_get - get multiple regulator consumers
3433  *
3434  * @dev:           Device to supply
3435  * @num_consumers: Number of consumers to register
3436  * @consumers:     Configuration of consumers; clients are stored here.
3437  *
3438  * @return 0 on success, an errno on failure.
3439  *
3440  * This helper function allows drivers to get several regulator
3441  * consumers in one operation.  If any of the regulators cannot be
3442  * acquired then any regulators that were allocated will be freed
3443  * before returning to the caller.
3444  */
3445 int regulator_bulk_get(struct device *dev, int num_consumers,
3446                        struct regulator_bulk_data *consumers)
3447 {
3448         int i;
3449         int ret;
3450
3451         for (i = 0; i < num_consumers; i++)
3452                 consumers[i].consumer = NULL;
3453
3454         for (i = 0; i < num_consumers; i++) {
3455                 consumers[i].consumer = _regulator_get(dev,
3456                                                        consumers[i].supply,
3457                                                        false,
3458                                                        !consumers[i].optional);
3459                 if (IS_ERR(consumers[i].consumer)) {
3460                         ret = PTR_ERR(consumers[i].consumer);
3461                         dev_err(dev, "Failed to get supply '%s': %d\n",
3462                                 consumers[i].supply, ret);
3463                         consumers[i].consumer = NULL;
3464                         goto err;
3465                 }
3466         }
3467
3468         return 0;
3469
3470 err:
3471         while (--i >= 0)
3472                 regulator_put(consumers[i].consumer);
3473
3474         return ret;
3475 }
3476 EXPORT_SYMBOL_GPL(regulator_bulk_get);
3477
3478 static void regulator_bulk_enable_async(void *data, async_cookie_t cookie)
3479 {
3480         struct regulator_bulk_data *bulk = data;
3481
3482         bulk->ret = regulator_enable(bulk->consumer);
3483 }
3484
3485 /**
3486  * regulator_bulk_enable - enable multiple regulator consumers
3487  *
3488  * @num_consumers: Number of consumers
3489  * @consumers:     Consumer data; clients are stored here.
3490  * @return         0 on success, an errno on failure
3491  *
3492  * This convenience API allows consumers to enable multiple regulator
3493  * clients in a single API call.  If any consumers cannot be enabled
3494  * then any others that were enabled will be disabled again prior to
3495  * return.
3496  */
3497 int regulator_bulk_enable(int num_consumers,
3498                           struct regulator_bulk_data *consumers)
3499 {
3500         ASYNC_DOMAIN_EXCLUSIVE(async_domain);
3501         int i;
3502         int ret = 0;
3503
3504         for (i = 0; i < num_consumers; i++) {
3505                 if (consumers[i].consumer->always_on)
3506                         consumers[i].ret = 0;
3507                 else
3508                         async_schedule_domain(regulator_bulk_enable_async,
3509                                               &consumers[i], &async_domain);
3510         }
3511
3512         async_synchronize_full_domain(&async_domain);
3513
3514         /* If any consumer failed we need to unwind any that succeeded */
3515         for (i = 0; i < num_consumers; i++) {
3516                 if (consumers[i].ret != 0) {
3517                         ret = consumers[i].ret;
3518                         goto err;
3519                 }
3520         }
3521
3522         return 0;
3523
3524 err:
3525         for (i = 0; i < num_consumers; i++) {
3526                 if (consumers[i].ret < 0)
3527                         pr_err("Failed to enable %s: %d\n", consumers[i].supply,
3528                                consumers[i].ret);
3529                 else
3530                         regulator_disable(consumers[i].consumer);
3531         }
3532
3533         return ret;
3534 }
3535 EXPORT_SYMBOL_GPL(regulator_bulk_enable);
3536
3537 /**
3538  * regulator_bulk_disable - disable multiple regulator consumers
3539  *
3540  * @num_consumers: Number of consumers
3541  * @consumers:     Consumer data; clients are stored here.
3542  * @return         0 on success, an errno on failure
3543  *
3544  * This convenience API allows consumers to disable multiple regulator
3545  * clients in a single API call.  If any consumers cannot be disabled
3546  * then any others that were disabled will be enabled again prior to
3547  * return.
3548  */
3549 int regulator_bulk_disable(int num_consumers,
3550                            struct regulator_bulk_data *consumers)
3551 {
3552         int i;
3553         int ret, r;
3554
3555         for (i = num_consumers - 1; i >= 0; --i) {
3556                 ret = regulator_disable(consumers[i].consumer);
3557                 if (ret != 0)
3558                         goto err;
3559         }
3560
3561         return 0;
3562
3563 err:
3564         pr_err("Failed to disable %s: %d\n", consumers[i].supply, ret);
3565         for (++i; i < num_consumers; ++i) {
3566                 r = regulator_enable(consumers[i].consumer);
3567                 if (r != 0)
3568                         pr_err("Failed to reename %s: %d\n",
3569                                consumers[i].supply, r);
3570         }
3571
3572         return ret;
3573 }
3574 EXPORT_SYMBOL_GPL(regulator_bulk_disable);
3575
3576 /**
3577  * regulator_bulk_force_disable - force disable multiple regulator consumers
3578  *
3579  * @num_consumers: Number of consumers
3580  * @consumers:     Consumer data; clients are stored here.
3581  * @return         0 on success, an errno on failure
3582  *
3583  * This convenience API allows consumers to forcibly disable multiple regulator
3584  * clients in a single API call.
3585  * NOTE: This should be used for situations when device damage will
3586  * likely occur if the regulators are not disabled (e.g. over temp).
3587  * Although regulator_force_disable function call for some consumers can
3588  * return error numbers, the function is called for all consumers.
3589  */
3590 int regulator_bulk_force_disable(int num_consumers,
3591                            struct regulator_bulk_data *consumers)
3592 {
3593         int i;
3594         int ret;
3595
3596         for (i = 0; i < num_consumers; i++)
3597                 consumers[i].ret =
3598                             regulator_force_disable(consumers[i].consumer);
3599
3600         for (i = 0; i < num_consumers; i++) {
3601                 if (consumers[i].ret != 0) {
3602                         ret = consumers[i].ret;
3603                         goto out;
3604                 }
3605         }
3606
3607         return 0;
3608 out:
3609         return ret;
3610 }
3611 EXPORT_SYMBOL_GPL(regulator_bulk_force_disable);
3612
3613 /**
3614  * regulator_bulk_free - free multiple regulator consumers
3615  *
3616  * @num_consumers: Number of consumers
3617  * @consumers:     Consumer data; clients are stored here.
3618  *
3619  * This convenience API allows consumers to free multiple regulator
3620  * clients in a single API call.
3621  */
3622 void regulator_bulk_free(int num_consumers,
3623                          struct regulator_bulk_data *consumers)
3624 {
3625         int i;
3626
3627         for (i = 0; i < num_consumers; i++) {
3628                 regulator_put(consumers[i].consumer);
3629                 consumers[i].consumer = NULL;
3630         }
3631 }
3632 EXPORT_SYMBOL_GPL(regulator_bulk_free);
3633
3634 /**
3635  * regulator_notifier_call_chain - call regulator event notifier
3636  * @rdev: regulator source
3637  * @event: notifier block
3638  * @data: callback-specific data.
3639  *
3640  * Called by regulator drivers to notify clients a regulator event has
3641  * occurred. We also notify regulator clients downstream.
3642  * Note lock must be held by caller.
3643  */
3644 int regulator_notifier_call_chain(struct regulator_dev *rdev,
3645                                   unsigned long event, void *data)
3646 {
3647         lockdep_assert_held_once(&rdev->mutex);
3648
3649         _notifier_call_chain(rdev, event, data);
3650         return NOTIFY_DONE;
3651
3652 }
3653 EXPORT_SYMBOL_GPL(regulator_notifier_call_chain);
3654
3655 /**
3656  * regulator_mode_to_status - convert a regulator mode into a status
3657  *
3658  * @mode: Mode to convert
3659  *
3660  * Convert a regulator mode into a status.
3661  */
3662 int regulator_mode_to_status(unsigned int mode)
3663 {
3664         switch (mode) {
3665         case REGULATOR_MODE_FAST:
3666                 return REGULATOR_STATUS_FAST;
3667         case REGULATOR_MODE_NORMAL:
3668                 return REGULATOR_STATUS_NORMAL;
3669         case REGULATOR_MODE_IDLE:
3670                 return REGULATOR_STATUS_IDLE;
3671         case REGULATOR_MODE_STANDBY:
3672                 return REGULATOR_STATUS_STANDBY;
3673         default:
3674                 return REGULATOR_STATUS_UNDEFINED;
3675         }
3676 }
3677 EXPORT_SYMBOL_GPL(regulator_mode_to_status);
3678
3679 static struct attribute *regulator_dev_attrs[] = {
3680         &dev_attr_name.attr,
3681         &dev_attr_num_users.attr,
3682         &dev_attr_type.attr,
3683         &dev_attr_microvolts.attr,
3684         &dev_attr_microamps.attr,
3685         &dev_attr_opmode.attr,
3686         &dev_attr_state.attr,
3687         &dev_attr_status.attr,
3688         &dev_attr_bypass.attr,
3689         &dev_attr_requested_microamps.attr,
3690         &dev_attr_min_microvolts.attr,
3691         &dev_attr_max_microvolts.attr,
3692         &dev_attr_min_microamps.attr,
3693         &dev_attr_max_microamps.attr,
3694         &dev_attr_suspend_standby_state.attr,
3695         &dev_attr_suspend_mem_state.attr,
3696         &dev_attr_suspend_disk_state.attr,
3697         &dev_attr_suspend_standby_microvolts.attr,
3698         &dev_attr_suspend_mem_microvolts.attr,
3699         &dev_attr_suspend_disk_microvolts.attr,
3700         &dev_attr_suspend_standby_mode.attr,
3701         &dev_attr_suspend_mem_mode.attr,
3702         &dev_attr_suspend_disk_mode.attr,
3703         NULL
3704 };
3705
3706 /*
3707  * To avoid cluttering sysfs (and memory) with useless state, only
3708  * create attributes that can be meaningfully displayed.
3709  */
3710 static umode_t regulator_attr_is_visible(struct kobject *kobj,
3711                                          struct attribute *attr, int idx)
3712 {
3713         struct device *dev = kobj_to_dev(kobj);
3714         struct regulator_dev *rdev = dev_to_rdev(dev);
3715         const struct regulator_ops *ops = rdev->desc->ops;
3716         umode_t mode = attr->mode;
3717
3718         /* these three are always present */
3719         if (attr == &dev_attr_name.attr ||
3720             attr == &dev_attr_num_users.attr ||
3721             attr == &dev_attr_type.attr)
3722                 return mode;
3723
3724         /* some attributes need specific methods to be displayed */
3725         if (attr == &dev_attr_microvolts.attr) {
3726                 if ((ops->get_voltage && ops->get_voltage(rdev) >= 0) ||
3727                     (ops->get_voltage_sel && ops->get_voltage_sel(rdev) >= 0) ||
3728                     (ops->list_voltage && ops->list_voltage(rdev, 0) >= 0) ||
3729                     (rdev->desc->fixed_uV && rdev->desc->n_voltages == 1))
3730                         return mode;
3731                 return 0;
3732         }
3733
3734         if (attr == &dev_attr_microamps.attr)
3735                 return ops->get_current_limit ? mode : 0;
3736
3737         if (attr == &dev_attr_opmode.attr)
3738                 return ops->get_mode ? mode : 0;
3739
3740         if (attr == &dev_attr_state.attr)
3741                 return (rdev->ena_pin || ops->is_enabled) ? mode : 0;
3742
3743         if (attr == &dev_attr_status.attr)
3744                 return ops->get_status ? mode : 0;
3745
3746         if (attr == &dev_attr_bypass.attr)
3747                 return ops->get_bypass ? mode : 0;
3748
3749         /* some attributes are type-specific */
3750         if (attr == &dev_attr_requested_microamps.attr)
3751                 return rdev->desc->type == REGULATOR_CURRENT ? mode : 0;
3752
3753         /* constraints need specific supporting methods */
3754         if (attr == &dev_attr_min_microvolts.attr ||
3755             attr == &dev_attr_max_microvolts.attr)
3756                 return (ops->set_voltage || ops->set_voltage_sel) ? mode : 0;
3757
3758         if (attr == &dev_attr_min_microamps.attr ||
3759             attr == &dev_attr_max_microamps.attr)
3760                 return ops->set_current_limit ? mode : 0;
3761
3762         if (attr == &dev_attr_suspend_standby_state.attr ||
3763             attr == &dev_attr_suspend_mem_state.attr ||
3764             attr == &dev_attr_suspend_disk_state.attr)
3765                 return mode;
3766
3767         if (attr == &dev_attr_suspend_standby_microvolts.attr ||
3768             attr == &dev_attr_suspend_mem_microvolts.attr ||
3769             attr == &dev_attr_suspend_disk_microvolts.attr)
3770                 return ops->set_suspend_voltage ? mode : 0;
3771
3772         if (attr == &dev_attr_suspend_standby_mode.attr ||
3773             attr == &dev_attr_suspend_mem_mode.attr ||
3774             attr == &dev_attr_suspend_disk_mode.attr)
3775                 return ops->set_suspend_mode ? mode : 0;
3776
3777         return mode;
3778 }
3779
3780 static const struct attribute_group regulator_dev_group = {
3781         .attrs = regulator_dev_attrs,
3782         .is_visible = regulator_attr_is_visible,
3783 };
3784
3785 static const struct attribute_group *regulator_dev_groups[] = {
3786         &regulator_dev_group,
3787         NULL
3788 };
3789
3790 static void regulator_dev_release(struct device *dev)
3791 {
3792         struct regulator_dev *rdev = dev_get_drvdata(dev);
3793
3794         kfree(rdev->constraints);
3795         of_node_put(rdev->dev.of_node);
3796         kfree(rdev);
3797 }
3798
3799 static struct class regulator_class = {
3800         .name = "regulator",
3801         .dev_release = regulator_dev_release,
3802         .dev_groups = regulator_dev_groups,
3803 };
3804
3805 static void rdev_init_debugfs(struct regulator_dev *rdev)
3806 {
3807         struct device *parent = rdev->dev.parent;
3808         const char *rname = rdev_get_name(rdev);
3809         char name[NAME_MAX];
3810
3811         /* Avoid duplicate debugfs directory names */
3812         if (parent && rname == rdev->desc->name) {
3813                 snprintf(name, sizeof(name), "%s-%s", dev_name(parent),
3814                          rname);
3815                 rname = name;
3816         }
3817
3818         rdev->debugfs = debugfs_create_dir(rname, debugfs_root);
3819         if (!rdev->debugfs) {
3820                 rdev_warn(rdev, "Failed to create debugfs directory\n");
3821                 return;
3822         }
3823
3824         debugfs_create_u32("use_count", 0444, rdev->debugfs,
3825                            &rdev->use_count);
3826         debugfs_create_u32("open_count", 0444, rdev->debugfs,
3827                            &rdev->open_count);
3828         debugfs_create_u32("bypass_count", 0444, rdev->debugfs,
3829                            &rdev->bypass_count);
3830 }
3831
3832 /**
3833  * regulator_register - register regulator
3834  * @regulator_desc: regulator to register
3835  * @cfg: runtime configuration for regulator
3836  *
3837  * Called by regulator drivers to register a regulator.
3838  * Returns a valid pointer to struct regulator_dev on success
3839  * or an ERR_PTR() on error.
3840  */
3841 struct regulator_dev *
3842 regulator_register(const struct regulator_desc *regulator_desc,
3843                    const struct regulator_config *cfg)
3844 {
3845         const struct regulation_constraints *constraints = NULL;
3846         const struct regulator_init_data *init_data;
3847         struct regulator_config *config = NULL;
3848         static atomic_t regulator_no = ATOMIC_INIT(-1);
3849         struct regulator_dev *rdev;
3850         struct device *dev;
3851         int ret, i;
3852
3853         if (regulator_desc == NULL || cfg == NULL)
3854                 return ERR_PTR(-EINVAL);
3855
3856         dev = cfg->dev;
3857         WARN_ON(!dev);
3858
3859         if (regulator_desc->name == NULL || regulator_desc->ops == NULL)
3860                 return ERR_PTR(-EINVAL);
3861
3862         if (regulator_desc->type != REGULATOR_VOLTAGE &&
3863             regulator_desc->type != REGULATOR_CURRENT)
3864                 return ERR_PTR(-EINVAL);
3865
3866         /* Only one of each should be implemented */
3867         WARN_ON(regulator_desc->ops->get_voltage &&
3868                 regulator_desc->ops->get_voltage_sel);
3869         WARN_ON(regulator_desc->ops->set_voltage &&
3870                 regulator_desc->ops->set_voltage_sel);
3871
3872         /* If we're using selectors we must implement list_voltage. */
3873         if (regulator_desc->ops->get_voltage_sel &&
3874             !regulator_desc->ops->list_voltage) {
3875                 return ERR_PTR(-EINVAL);
3876         }
3877         if (regulator_desc->ops->set_voltage_sel &&
3878             !regulator_desc->ops->list_voltage) {
3879                 return ERR_PTR(-EINVAL);
3880         }
3881
3882         rdev = kzalloc(sizeof(struct regulator_dev), GFP_KERNEL);
3883         if (rdev == NULL)
3884                 return ERR_PTR(-ENOMEM);
3885
3886         /*
3887          * Duplicate the config so the driver could override it after
3888          * parsing init data.
3889          */
3890         config = kmemdup(cfg, sizeof(*cfg), GFP_KERNEL);
3891         if (config == NULL) {
3892                 kfree(rdev);
3893                 return ERR_PTR(-ENOMEM);
3894         }
3895
3896         init_data = regulator_of_get_init_data(dev, regulator_desc, config,
3897                                                &rdev->dev.of_node);
3898         if (!init_data) {
3899                 init_data = config->init_data;
3900                 rdev->dev.of_node = of_node_get(config->of_node);
3901         }
3902
3903         mutex_lock(&regulator_list_mutex);
3904
3905         mutex_init(&rdev->mutex);
3906         rdev->reg_data = config->driver_data;
3907         rdev->owner = regulator_desc->owner;
3908         rdev->desc = regulator_desc;
3909         if (config->regmap)
3910                 rdev->regmap = config->regmap;
3911         else if (dev_get_regmap(dev, NULL))
3912                 rdev->regmap = dev_get_regmap(dev, NULL);
3913         else if (dev->parent)
3914                 rdev->regmap = dev_get_regmap(dev->parent, NULL);
3915         INIT_LIST_HEAD(&rdev->consumer_list);
3916         INIT_LIST_HEAD(&rdev->list);
3917         BLOCKING_INIT_NOTIFIER_HEAD(&rdev->notifier);
3918         INIT_DELAYED_WORK(&rdev->disable_work, regulator_disable_work);
3919
3920         /* preform any regulator specific init */
3921         if (init_data && init_data->regulator_init) {
3922                 ret = init_data->regulator_init(rdev->reg_data);
3923                 if (ret < 0)
3924                         goto clean;
3925         }
3926
3927         if ((config->ena_gpio || config->ena_gpio_initialized) &&
3928             gpio_is_valid(config->ena_gpio)) {
3929                 ret = regulator_ena_gpio_request(rdev, config);
3930                 if (ret != 0) {
3931                         rdev_err(rdev, "Failed to request enable GPIO%d: %d\n",
3932                                  config->ena_gpio, ret);
3933                         goto clean;
3934                 }
3935         }
3936
3937         /* register with sysfs */
3938         rdev->dev.class = &regulator_class;
3939         rdev->dev.parent = dev;
3940         dev_set_name(&rdev->dev, "regulator.%lu",
3941                     (unsigned long) atomic_inc_return(&regulator_no));
3942         ret = device_register(&rdev->dev);
3943         if (ret != 0) {
3944                 put_device(&rdev->dev);
3945                 goto wash;
3946         }
3947
3948         dev_set_drvdata(&rdev->dev, rdev);
3949
3950         /* set regulator constraints */
3951         if (init_data)
3952                 constraints = &init_data->constraints;
3953
3954         ret = set_machine_constraints(rdev, constraints);
3955         if (ret < 0)
3956                 goto scrub;
3957
3958         if (init_data && init_data->supply_regulator)
3959                 rdev->supply_name = init_data->supply_regulator;
3960         else if (regulator_desc->supply_name)
3961                 rdev->supply_name = regulator_desc->supply_name;
3962
3963         /* add consumers devices */
3964         if (init_data) {
3965                 for (i = 0; i < init_data->num_consumer_supplies; i++) {
3966                         ret = set_consumer_device_supply(rdev,
3967                                 init_data->consumer_supplies[i].dev_name,
3968                                 init_data->consumer_supplies[i].supply);
3969                         if (ret < 0) {
3970                                 dev_err(dev, "Failed to set supply %s\n",
3971                                         init_data->consumer_supplies[i].supply);
3972                                 goto unset_supplies;
3973                         }
3974                 }
3975         }
3976
3977         rdev_init_debugfs(rdev);
3978 out:
3979         mutex_unlock(&regulator_list_mutex);
3980         kfree(config);
3981         return rdev;
3982
3983 unset_supplies:
3984         unset_regulator_supplies(rdev);
3985
3986 scrub:
3987         regulator_ena_gpio_free(rdev);
3988         device_unregister(&rdev->dev);
3989         /* device core frees rdev */
3990         rdev = ERR_PTR(ret);
3991         goto out;
3992
3993 wash:
3994         regulator_ena_gpio_free(rdev);
3995 clean:
3996         kfree(rdev);
3997         rdev = ERR_PTR(ret);
3998         goto out;
3999 }
4000 EXPORT_SYMBOL_GPL(regulator_register);
4001
4002 /**
4003  * regulator_unregister - unregister regulator
4004  * @rdev: regulator to unregister
4005  *
4006  * Called by regulator drivers to unregister a regulator.
4007  */
4008 void regulator_unregister(struct regulator_dev *rdev)
4009 {
4010         if (rdev == NULL)
4011                 return;
4012
4013         if (rdev->supply) {
4014                 while (rdev->use_count--)
4015                         regulator_disable(rdev->supply);
4016                 regulator_put(rdev->supply);
4017         }
4018         mutex_lock(&regulator_list_mutex);
4019         debugfs_remove_recursive(rdev->debugfs);
4020         flush_work(&rdev->disable_work.work);
4021         WARN_ON(rdev->open_count);
4022         unset_regulator_supplies(rdev);
4023         list_del(&rdev->list);
4024         regulator_ena_gpio_free(rdev);
4025         mutex_unlock(&regulator_list_mutex);
4026         device_unregister(&rdev->dev);
4027 }
4028 EXPORT_SYMBOL_GPL(regulator_unregister);
4029
4030 static int _regulator_suspend_prepare(struct device *dev, void *data)
4031 {
4032         struct regulator_dev *rdev = dev_to_rdev(dev);
4033         const suspend_state_t *state = data;
4034         int ret;
4035
4036         mutex_lock(&rdev->mutex);
4037         ret = suspend_prepare(rdev, *state);
4038         mutex_unlock(&rdev->mutex);
4039
4040         return ret;
4041 }
4042
4043 /**
4044  * regulator_suspend_prepare - prepare regulators for system wide suspend
4045  * @state: system suspend state
4046  *
4047  * Configure each regulator with it's suspend operating parameters for state.
4048  * This will usually be called by machine suspend code prior to supending.
4049  */
4050 int regulator_suspend_prepare(suspend_state_t state)
4051 {
4052         /* ON is handled by regulator active state */
4053         if (state == PM_SUSPEND_ON)
4054                 return -EINVAL;
4055
4056         return class_for_each_device(&regulator_class, NULL, &state,
4057                                      _regulator_suspend_prepare);
4058 }
4059 EXPORT_SYMBOL_GPL(regulator_suspend_prepare);
4060
4061 static int _regulator_suspend_finish(struct device *dev, void *data)
4062 {
4063         struct regulator_dev *rdev = dev_to_rdev(dev);
4064         int ret;
4065
4066         mutex_lock(&rdev->mutex);
4067         if (rdev->use_count > 0  || rdev->constraints->always_on) {
4068                 if (!_regulator_is_enabled(rdev)) {
4069                         ret = _regulator_do_enable(rdev);
4070                         if (ret)
4071                                 dev_err(dev,
4072                                         "Failed to resume regulator %d\n",
4073                                         ret);
4074                 }
4075         } else {
4076                 if (!have_full_constraints())
4077                         goto unlock;
4078                 if (!_regulator_is_enabled(rdev))
4079                         goto unlock;
4080
4081                 ret = _regulator_do_disable(rdev);
4082                 if (ret)
4083                         dev_err(dev, "Failed to suspend regulator %d\n", ret);
4084         }
4085 unlock:
4086         mutex_unlock(&rdev->mutex);
4087
4088         /* Keep processing regulators in spite of any errors */
4089         return 0;
4090 }
4091
4092 /**
4093  * regulator_suspend_finish - resume regulators from system wide suspend
4094  *
4095  * Turn on regulators that might be turned off by regulator_suspend_prepare
4096  * and that should be turned on according to the regulators properties.
4097  */
4098 int regulator_suspend_finish(void)
4099 {
4100         return class_for_each_device(&regulator_class, NULL, NULL,
4101                                      _regulator_suspend_finish);
4102 }
4103 EXPORT_SYMBOL_GPL(regulator_suspend_finish);
4104
4105 /**
4106  * regulator_has_full_constraints - the system has fully specified constraints
4107  *
4108  * Calling this function will cause the regulator API to disable all
4109  * regulators which have a zero use count and don't have an always_on
4110  * constraint in a late_initcall.
4111  *
4112  * The intention is that this will become the default behaviour in a
4113  * future kernel release so users are encouraged to use this facility
4114  * now.
4115  */
4116 void regulator_has_full_constraints(void)
4117 {
4118         has_full_constraints = 1;
4119 }
4120 EXPORT_SYMBOL_GPL(regulator_has_full_constraints);
4121
4122 /**
4123  * rdev_get_drvdata - get rdev regulator driver data
4124  * @rdev: regulator
4125  *
4126  * Get rdev regulator driver private data. This call can be used in the
4127  * regulator driver context.
4128  */
4129 void *rdev_get_drvdata(struct regulator_dev *rdev)
4130 {
4131         return rdev->reg_data;
4132 }
4133 EXPORT_SYMBOL_GPL(rdev_get_drvdata);
4134
4135 /**
4136  * regulator_get_drvdata - get regulator driver data
4137  * @regulator: regulator
4138  *
4139  * Get regulator driver private data. This call can be used in the consumer
4140  * driver context when non API regulator specific functions need to be called.
4141  */
4142 void *regulator_get_drvdata(struct regulator *regulator)
4143 {
4144         return regulator->rdev->reg_data;
4145 }
4146 EXPORT_SYMBOL_GPL(regulator_get_drvdata);
4147
4148 /**
4149  * regulator_set_drvdata - set regulator driver data
4150  * @regulator: regulator
4151  * @data: data
4152  */
4153 void regulator_set_drvdata(struct regulator *regulator, void *data)
4154 {
4155         regulator->rdev->reg_data = data;
4156 }
4157 EXPORT_SYMBOL_GPL(regulator_set_drvdata);
4158
4159 /**
4160  * regulator_get_id - get regulator ID
4161  * @rdev: regulator
4162  */
4163 int rdev_get_id(struct regulator_dev *rdev)
4164 {
4165         return rdev->desc->id;
4166 }
4167 EXPORT_SYMBOL_GPL(rdev_get_id);
4168
4169 struct device *rdev_get_dev(struct regulator_dev *rdev)
4170 {
4171         return &rdev->dev;
4172 }
4173 EXPORT_SYMBOL_GPL(rdev_get_dev);
4174
4175 void *regulator_get_init_drvdata(struct regulator_init_data *reg_init_data)
4176 {
4177         return reg_init_data->driver_data;
4178 }
4179 EXPORT_SYMBOL_GPL(regulator_get_init_drvdata);
4180
4181 #ifdef CONFIG_DEBUG_FS
4182 static ssize_t supply_map_read_file(struct file *file, char __user *user_buf,
4183                                     size_t count, loff_t *ppos)
4184 {
4185         char *buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
4186         ssize_t len, ret = 0;
4187         struct regulator_map *map;
4188
4189         if (!buf)
4190                 return -ENOMEM;
4191
4192         list_for_each_entry(map, &regulator_map_list, list) {
4193                 len = snprintf(buf + ret, PAGE_SIZE - ret,
4194                                "%s -> %s.%s\n",
4195                                rdev_get_name(map->regulator), map->dev_name,
4196                                map->supply);
4197                 if (len >= 0)
4198                         ret += len;
4199                 if (ret > PAGE_SIZE) {
4200                         ret = PAGE_SIZE;
4201                         break;
4202                 }
4203         }
4204
4205         ret = simple_read_from_buffer(user_buf, count, ppos, buf, ret);
4206
4207         kfree(buf);
4208
4209         return ret;
4210 }
4211 #endif
4212
4213 static const struct file_operations supply_map_fops = {
4214 #ifdef CONFIG_DEBUG_FS
4215         .read = supply_map_read_file,
4216         .llseek = default_llseek,
4217 #endif
4218 };
4219
4220 #ifdef CONFIG_DEBUG_FS
4221 struct summary_data {
4222         struct seq_file *s;
4223         struct regulator_dev *parent;
4224         int level;
4225 };
4226
4227 static void regulator_summary_show_subtree(struct seq_file *s,
4228                                            struct regulator_dev *rdev,
4229                                            int level);
4230
4231 static int regulator_summary_show_children(struct device *dev, void *data)
4232 {
4233         struct regulator_dev *rdev = dev_to_rdev(dev);
4234         struct summary_data *summary_data = data;
4235
4236         if (rdev->supply && rdev->supply->rdev == summary_data->parent)
4237                 regulator_summary_show_subtree(summary_data->s, rdev,
4238                                                summary_data->level + 1);
4239
4240         return 0;
4241 }
4242
4243 static void regulator_summary_show_subtree(struct seq_file *s,
4244                                            struct regulator_dev *rdev,
4245                                            int level)
4246 {
4247         struct regulation_constraints *c;
4248         struct regulator *consumer;
4249         struct summary_data summary_data;
4250
4251         if (!rdev)
4252                 return;
4253
4254         seq_printf(s, "%*s%-*s %3d %4d %6d ",
4255                    level * 3 + 1, "",
4256                    30 - level * 3, rdev_get_name(rdev),
4257                    rdev->use_count, rdev->open_count, rdev->bypass_count);
4258
4259         seq_printf(s, "%5dmV ", _regulator_get_voltage(rdev) / 1000);
4260         seq_printf(s, "%5dmA ", _regulator_get_current_limit(rdev) / 1000);
4261
4262         c = rdev->constraints;
4263         if (c) {
4264                 switch (rdev->desc->type) {
4265                 case REGULATOR_VOLTAGE:
4266                         seq_printf(s, "%5dmV %5dmV ",
4267                                    c->min_uV / 1000, c->max_uV / 1000);
4268                         break;
4269                 case REGULATOR_CURRENT:
4270                         seq_printf(s, "%5dmA %5dmA ",
4271                                    c->min_uA / 1000, c->max_uA / 1000);
4272                         break;
4273                 }
4274         }
4275
4276         seq_puts(s, "\n");
4277
4278         list_for_each_entry(consumer, &rdev->consumer_list, list) {
4279                 if (consumer->dev->class == &regulator_class)
4280                         continue;
4281
4282                 seq_printf(s, "%*s%-*s ",
4283                            (level + 1) * 3 + 1, "",
4284                            30 - (level + 1) * 3, dev_name(consumer->dev));
4285
4286                 switch (rdev->desc->type) {
4287                 case REGULATOR_VOLTAGE:
4288                         seq_printf(s, "%37dmV %5dmV",
4289                                    consumer->min_uV / 1000,
4290                                    consumer->max_uV / 1000);
4291                         break;
4292                 case REGULATOR_CURRENT:
4293                         break;
4294                 }
4295
4296                 seq_puts(s, "\n");
4297         }
4298
4299         summary_data.s = s;
4300         summary_data.level = level;
4301         summary_data.parent = rdev;
4302
4303         class_for_each_device(&regulator_class, NULL, &summary_data,
4304                               regulator_summary_show_children);
4305 }
4306
4307 static int regulator_summary_show_roots(struct device *dev, void *data)
4308 {
4309         struct regulator_dev *rdev = dev_to_rdev(dev);
4310         struct seq_file *s = data;
4311
4312         if (!rdev->supply)
4313                 regulator_summary_show_subtree(s, rdev, 0);
4314
4315         return 0;
4316 }
4317
4318 static int regulator_summary_show(struct seq_file *s, void *data)
4319 {
4320         seq_puts(s, " regulator                      use open bypass voltage current     min     max\n");
4321         seq_puts(s, "-------------------------------------------------------------------------------\n");
4322
4323         class_for_each_device(&regulator_class, NULL, s,
4324                               regulator_summary_show_roots);
4325
4326         return 0;
4327 }
4328
4329 static int regulator_summary_open(struct inode *inode, struct file *file)
4330 {
4331         return single_open(file, regulator_summary_show, inode->i_private);
4332 }
4333 #endif
4334
4335 static const struct file_operations regulator_summary_fops = {
4336 #ifdef CONFIG_DEBUG_FS
4337         .open           = regulator_summary_open,
4338         .read           = seq_read,
4339         .llseek         = seq_lseek,
4340         .release        = single_release,
4341 #endif
4342 };
4343
4344 static int __init regulator_init(void)
4345 {
4346         int ret;
4347
4348         ret = class_register(&regulator_class);
4349
4350         debugfs_root = debugfs_create_dir("regulator", NULL);
4351         if (!debugfs_root)
4352                 pr_warn("regulator: Failed to create debugfs directory\n");
4353
4354         debugfs_create_file("supply_map", 0444, debugfs_root, NULL,
4355                             &supply_map_fops);
4356
4357         debugfs_create_file("regulator_summary", 0444, debugfs_root,
4358                             NULL, &regulator_summary_fops);
4359
4360         regulator_dummy_init();
4361
4362         return ret;
4363 }
4364
4365 /* init early to allow our consumers to complete system booting */
4366 core_initcall(regulator_init);
4367
4368 static int __init regulator_late_cleanup(struct device *dev, void *data)
4369 {
4370         struct regulator_dev *rdev = dev_to_rdev(dev);
4371         const struct regulator_ops *ops = rdev->desc->ops;
4372         struct regulation_constraints *c = rdev->constraints;
4373         int enabled, ret;
4374
4375         if (c && c->always_on)
4376                 return 0;
4377
4378         if (c && !(c->valid_ops_mask & REGULATOR_CHANGE_STATUS))
4379                 return 0;
4380
4381         mutex_lock(&rdev->mutex);
4382
4383         if (rdev->use_count)
4384                 goto unlock;
4385
4386         /* If we can't read the status assume it's on. */
4387         if (ops->is_enabled)
4388                 enabled = ops->is_enabled(rdev);
4389         else
4390                 enabled = 1;
4391
4392         if (!enabled)
4393                 goto unlock;
4394
4395         if (have_full_constraints()) {
4396                 /* We log since this may kill the system if it goes
4397                  * wrong. */
4398                 rdev_info(rdev, "disabling\n");
4399                 ret = _regulator_do_disable(rdev);
4400                 if (ret != 0)
4401                         rdev_err(rdev, "couldn't disable: %d\n", ret);
4402         } else {
4403                 /* The intention is that in future we will
4404                  * assume that full constraints are provided
4405                  * so warn even if we aren't going to do
4406                  * anything here.
4407                  */
4408                 rdev_warn(rdev, "incomplete constraints, leaving on\n");
4409         }
4410
4411 unlock:
4412         mutex_unlock(&rdev->mutex);
4413
4414         return 0;
4415 }
4416
4417 static int __init regulator_init_complete(void)
4418 {
4419         /*
4420          * Since DT doesn't provide an idiomatic mechanism for
4421          * enabling full constraints and since it's much more natural
4422          * with DT to provide them just assume that a DT enabled
4423          * system has full constraints.
4424          */
4425         if (of_have_populated_dt())
4426                 has_full_constraints = true;
4427
4428         /* If we have a full configuration then disable any regulators
4429          * we have permission to change the status for and which are
4430          * not in use or always_on.  This is effectively the default
4431          * for DT and ACPI as they have full constraints.
4432          */
4433         class_for_each_device(&regulator_class, NULL, NULL,
4434                               regulator_late_cleanup);
4435
4436         return 0;
4437 }
4438 late_initcall_sync(regulator_init_complete);