Merge branch 'timers-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel...
[cascardo/linux.git] / drivers / regulator / core.c
1 /*
2  * core.c  --  Voltage/Current Regulator framework.
3  *
4  * Copyright 2007, 2008 Wolfson Microelectronics PLC.
5  * Copyright 2008 SlimLogic Ltd.
6  *
7  * Author: Liam Girdwood <lrg@slimlogic.co.uk>
8  *
9  *  This program is free software; you can redistribute  it and/or modify it
10  *  under  the terms of  the GNU General  Public License as published by the
11  *  Free Software Foundation;  either version 2 of the  License, or (at your
12  *  option) any later version.
13  *
14  */
15
16 #include <linux/kernel.h>
17 #include <linux/init.h>
18 #include <linux/debugfs.h>
19 #include <linux/device.h>
20 #include <linux/slab.h>
21 #include <linux/async.h>
22 #include <linux/err.h>
23 #include <linux/mutex.h>
24 #include <linux/suspend.h>
25 #include <linux/delay.h>
26 #include <linux/gpio.h>
27 #include <linux/gpio/consumer.h>
28 #include <linux/of.h>
29 #include <linux/regmap.h>
30 #include <linux/regulator/of_regulator.h>
31 #include <linux/regulator/consumer.h>
32 #include <linux/regulator/driver.h>
33 #include <linux/regulator/machine.h>
34 #include <linux/module.h>
35
36 #define CREATE_TRACE_POINTS
37 #include <trace/events/regulator.h>
38
39 #include "dummy.h"
40 #include "internal.h"
41
42 #define rdev_crit(rdev, fmt, ...)                                       \
43         pr_crit("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
44 #define rdev_err(rdev, fmt, ...)                                        \
45         pr_err("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
46 #define rdev_warn(rdev, fmt, ...)                                       \
47         pr_warn("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
48 #define rdev_info(rdev, fmt, ...)                                       \
49         pr_info("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
50 #define rdev_dbg(rdev, fmt, ...)                                        \
51         pr_debug("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
52
53 static DEFINE_MUTEX(regulator_list_mutex);
54 static LIST_HEAD(regulator_map_list);
55 static LIST_HEAD(regulator_ena_gpio_list);
56 static LIST_HEAD(regulator_supply_alias_list);
57 static bool has_full_constraints;
58
59 static struct dentry *debugfs_root;
60
61 static struct class regulator_class;
62
63 /*
64  * struct regulator_map
65  *
66  * Used to provide symbolic supply names to devices.
67  */
68 struct regulator_map {
69         struct list_head list;
70         const char *dev_name;   /* The dev_name() for the consumer */
71         const char *supply;
72         struct regulator_dev *regulator;
73 };
74
75 /*
76  * struct regulator_enable_gpio
77  *
78  * Management for shared enable GPIO pin
79  */
80 struct regulator_enable_gpio {
81         struct list_head list;
82         struct gpio_desc *gpiod;
83         u32 enable_count;       /* a number of enabled shared GPIO */
84         u32 request_count;      /* a number of requested shared GPIO */
85         unsigned int ena_gpio_invert:1;
86 };
87
88 /*
89  * struct regulator_supply_alias
90  *
91  * Used to map lookups for a supply onto an alternative device.
92  */
93 struct regulator_supply_alias {
94         struct list_head list;
95         struct device *src_dev;
96         const char *src_supply;
97         struct device *alias_dev;
98         const char *alias_supply;
99 };
100
101 static int _regulator_is_enabled(struct regulator_dev *rdev);
102 static int _regulator_disable(struct regulator_dev *rdev);
103 static int _regulator_get_voltage(struct regulator_dev *rdev);
104 static int _regulator_get_current_limit(struct regulator_dev *rdev);
105 static unsigned int _regulator_get_mode(struct regulator_dev *rdev);
106 static int _notifier_call_chain(struct regulator_dev *rdev,
107                                   unsigned long event, void *data);
108 static int _regulator_do_set_voltage(struct regulator_dev *rdev,
109                                      int min_uV, int max_uV);
110 static struct regulator *create_regulator(struct regulator_dev *rdev,
111                                           struct device *dev,
112                                           const char *supply_name);
113 static void _regulator_put(struct regulator *regulator);
114
115 static struct regulator_dev *dev_to_rdev(struct device *dev)
116 {
117         return container_of(dev, struct regulator_dev, dev);
118 }
119
120 static const char *rdev_get_name(struct regulator_dev *rdev)
121 {
122         if (rdev->constraints && rdev->constraints->name)
123                 return rdev->constraints->name;
124         else if (rdev->desc->name)
125                 return rdev->desc->name;
126         else
127                 return "";
128 }
129
130 static bool have_full_constraints(void)
131 {
132         return has_full_constraints || of_have_populated_dt();
133 }
134
135 static inline struct regulator_dev *rdev_get_supply(struct regulator_dev *rdev)
136 {
137         if (rdev && rdev->supply)
138                 return rdev->supply->rdev;
139
140         return NULL;
141 }
142
143 /**
144  * regulator_lock_supply - lock a regulator and its supplies
145  * @rdev:         regulator source
146  */
147 static void regulator_lock_supply(struct regulator_dev *rdev)
148 {
149         int i;
150
151         for (i = 0; rdev; rdev = rdev_get_supply(rdev), i++)
152                 mutex_lock_nested(&rdev->mutex, i);
153 }
154
155 /**
156  * regulator_unlock_supply - unlock a regulator and its supplies
157  * @rdev:         regulator source
158  */
159 static void regulator_unlock_supply(struct regulator_dev *rdev)
160 {
161         struct regulator *supply;
162
163         while (1) {
164                 mutex_unlock(&rdev->mutex);
165                 supply = rdev->supply;
166
167                 if (!rdev->supply)
168                         return;
169
170                 rdev = supply->rdev;
171         }
172 }
173
174 /**
175  * of_get_regulator - get a regulator device node based on supply name
176  * @dev: Device pointer for the consumer (of regulator) device
177  * @supply: regulator supply name
178  *
179  * Extract the regulator device node corresponding to the supply name.
180  * returns the device node corresponding to the regulator if found, else
181  * returns NULL.
182  */
183 static struct device_node *of_get_regulator(struct device *dev, const char *supply)
184 {
185         struct device_node *regnode = NULL;
186         char prop_name[32]; /* 32 is max size of property name */
187
188         dev_dbg(dev, "Looking up %s-supply from device tree\n", supply);
189
190         snprintf(prop_name, 32, "%s-supply", supply);
191         regnode = of_parse_phandle(dev->of_node, prop_name, 0);
192
193         if (!regnode) {
194                 dev_dbg(dev, "Looking up %s property in node %s failed",
195                                 prop_name, dev->of_node->full_name);
196                 return NULL;
197         }
198         return regnode;
199 }
200
201 static int _regulator_can_change_status(struct regulator_dev *rdev)
202 {
203         if (!rdev->constraints)
204                 return 0;
205
206         if (rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_STATUS)
207                 return 1;
208         else
209                 return 0;
210 }
211
212 /* Platform voltage constraint check */
213 static int regulator_check_voltage(struct regulator_dev *rdev,
214                                    int *min_uV, int *max_uV)
215 {
216         BUG_ON(*min_uV > *max_uV);
217
218         if (!rdev->constraints) {
219                 rdev_err(rdev, "no constraints\n");
220                 return -ENODEV;
221         }
222         if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE)) {
223                 rdev_err(rdev, "voltage operation not allowed\n");
224                 return -EPERM;
225         }
226
227         if (*max_uV > rdev->constraints->max_uV)
228                 *max_uV = rdev->constraints->max_uV;
229         if (*min_uV < rdev->constraints->min_uV)
230                 *min_uV = rdev->constraints->min_uV;
231
232         if (*min_uV > *max_uV) {
233                 rdev_err(rdev, "unsupportable voltage range: %d-%duV\n",
234                          *min_uV, *max_uV);
235                 return -EINVAL;
236         }
237
238         return 0;
239 }
240
241 /* Make sure we select a voltage that suits the needs of all
242  * regulator consumers
243  */
244 static int regulator_check_consumers(struct regulator_dev *rdev,
245                                      int *min_uV, int *max_uV)
246 {
247         struct regulator *regulator;
248
249         list_for_each_entry(regulator, &rdev->consumer_list, list) {
250                 /*
251                  * Assume consumers that didn't say anything are OK
252                  * with anything in the constraint range.
253                  */
254                 if (!regulator->min_uV && !regulator->max_uV)
255                         continue;
256
257                 if (*max_uV > regulator->max_uV)
258                         *max_uV = regulator->max_uV;
259                 if (*min_uV < regulator->min_uV)
260                         *min_uV = regulator->min_uV;
261         }
262
263         if (*min_uV > *max_uV) {
264                 rdev_err(rdev, "Restricting voltage, %u-%uuV\n",
265                         *min_uV, *max_uV);
266                 return -EINVAL;
267         }
268
269         return 0;
270 }
271
272 /* current constraint check */
273 static int regulator_check_current_limit(struct regulator_dev *rdev,
274                                         int *min_uA, int *max_uA)
275 {
276         BUG_ON(*min_uA > *max_uA);
277
278         if (!rdev->constraints) {
279                 rdev_err(rdev, "no constraints\n");
280                 return -ENODEV;
281         }
282         if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_CURRENT)) {
283                 rdev_err(rdev, "current operation not allowed\n");
284                 return -EPERM;
285         }
286
287         if (*max_uA > rdev->constraints->max_uA)
288                 *max_uA = rdev->constraints->max_uA;
289         if (*min_uA < rdev->constraints->min_uA)
290                 *min_uA = rdev->constraints->min_uA;
291
292         if (*min_uA > *max_uA) {
293                 rdev_err(rdev, "unsupportable current range: %d-%duA\n",
294                          *min_uA, *max_uA);
295                 return -EINVAL;
296         }
297
298         return 0;
299 }
300
301 /* operating mode constraint check */
302 static int regulator_mode_constrain(struct regulator_dev *rdev, int *mode)
303 {
304         switch (*mode) {
305         case REGULATOR_MODE_FAST:
306         case REGULATOR_MODE_NORMAL:
307         case REGULATOR_MODE_IDLE:
308         case REGULATOR_MODE_STANDBY:
309                 break;
310         default:
311                 rdev_err(rdev, "invalid mode %x specified\n", *mode);
312                 return -EINVAL;
313         }
314
315         if (!rdev->constraints) {
316                 rdev_err(rdev, "no constraints\n");
317                 return -ENODEV;
318         }
319         if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_MODE)) {
320                 rdev_err(rdev, "mode operation not allowed\n");
321                 return -EPERM;
322         }
323
324         /* The modes are bitmasks, the most power hungry modes having
325          * the lowest values. If the requested mode isn't supported
326          * try higher modes. */
327         while (*mode) {
328                 if (rdev->constraints->valid_modes_mask & *mode)
329                         return 0;
330                 *mode /= 2;
331         }
332
333         return -EINVAL;
334 }
335
336 /* dynamic regulator mode switching constraint check */
337 static int regulator_check_drms(struct regulator_dev *rdev)
338 {
339         if (!rdev->constraints) {
340                 rdev_err(rdev, "no constraints\n");
341                 return -ENODEV;
342         }
343         if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_DRMS)) {
344                 rdev_dbg(rdev, "drms operation not allowed\n");
345                 return -EPERM;
346         }
347         return 0;
348 }
349
350 static ssize_t regulator_uV_show(struct device *dev,
351                                 struct device_attribute *attr, char *buf)
352 {
353         struct regulator_dev *rdev = dev_get_drvdata(dev);
354         ssize_t ret;
355
356         mutex_lock(&rdev->mutex);
357         ret = sprintf(buf, "%d\n", _regulator_get_voltage(rdev));
358         mutex_unlock(&rdev->mutex);
359
360         return ret;
361 }
362 static DEVICE_ATTR(microvolts, 0444, regulator_uV_show, NULL);
363
364 static ssize_t regulator_uA_show(struct device *dev,
365                                 struct device_attribute *attr, char *buf)
366 {
367         struct regulator_dev *rdev = dev_get_drvdata(dev);
368
369         return sprintf(buf, "%d\n", _regulator_get_current_limit(rdev));
370 }
371 static DEVICE_ATTR(microamps, 0444, regulator_uA_show, NULL);
372
373 static ssize_t name_show(struct device *dev, struct device_attribute *attr,
374                          char *buf)
375 {
376         struct regulator_dev *rdev = dev_get_drvdata(dev);
377
378         return sprintf(buf, "%s\n", rdev_get_name(rdev));
379 }
380 static DEVICE_ATTR_RO(name);
381
382 static ssize_t regulator_print_opmode(char *buf, int mode)
383 {
384         switch (mode) {
385         case REGULATOR_MODE_FAST:
386                 return sprintf(buf, "fast\n");
387         case REGULATOR_MODE_NORMAL:
388                 return sprintf(buf, "normal\n");
389         case REGULATOR_MODE_IDLE:
390                 return sprintf(buf, "idle\n");
391         case REGULATOR_MODE_STANDBY:
392                 return sprintf(buf, "standby\n");
393         }
394         return sprintf(buf, "unknown\n");
395 }
396
397 static ssize_t regulator_opmode_show(struct device *dev,
398                                     struct device_attribute *attr, char *buf)
399 {
400         struct regulator_dev *rdev = dev_get_drvdata(dev);
401
402         return regulator_print_opmode(buf, _regulator_get_mode(rdev));
403 }
404 static DEVICE_ATTR(opmode, 0444, regulator_opmode_show, NULL);
405
406 static ssize_t regulator_print_state(char *buf, int state)
407 {
408         if (state > 0)
409                 return sprintf(buf, "enabled\n");
410         else if (state == 0)
411                 return sprintf(buf, "disabled\n");
412         else
413                 return sprintf(buf, "unknown\n");
414 }
415
416 static ssize_t regulator_state_show(struct device *dev,
417                                    struct device_attribute *attr, char *buf)
418 {
419         struct regulator_dev *rdev = dev_get_drvdata(dev);
420         ssize_t ret;
421
422         mutex_lock(&rdev->mutex);
423         ret = regulator_print_state(buf, _regulator_is_enabled(rdev));
424         mutex_unlock(&rdev->mutex);
425
426         return ret;
427 }
428 static DEVICE_ATTR(state, 0444, regulator_state_show, NULL);
429
430 static ssize_t regulator_status_show(struct device *dev,
431                                    struct device_attribute *attr, char *buf)
432 {
433         struct regulator_dev *rdev = dev_get_drvdata(dev);
434         int status;
435         char *label;
436
437         status = rdev->desc->ops->get_status(rdev);
438         if (status < 0)
439                 return status;
440
441         switch (status) {
442         case REGULATOR_STATUS_OFF:
443                 label = "off";
444                 break;
445         case REGULATOR_STATUS_ON:
446                 label = "on";
447                 break;
448         case REGULATOR_STATUS_ERROR:
449                 label = "error";
450                 break;
451         case REGULATOR_STATUS_FAST:
452                 label = "fast";
453                 break;
454         case REGULATOR_STATUS_NORMAL:
455                 label = "normal";
456                 break;
457         case REGULATOR_STATUS_IDLE:
458                 label = "idle";
459                 break;
460         case REGULATOR_STATUS_STANDBY:
461                 label = "standby";
462                 break;
463         case REGULATOR_STATUS_BYPASS:
464                 label = "bypass";
465                 break;
466         case REGULATOR_STATUS_UNDEFINED:
467                 label = "undefined";
468                 break;
469         default:
470                 return -ERANGE;
471         }
472
473         return sprintf(buf, "%s\n", label);
474 }
475 static DEVICE_ATTR(status, 0444, regulator_status_show, NULL);
476
477 static ssize_t regulator_min_uA_show(struct device *dev,
478                                     struct device_attribute *attr, char *buf)
479 {
480         struct regulator_dev *rdev = dev_get_drvdata(dev);
481
482         if (!rdev->constraints)
483                 return sprintf(buf, "constraint not defined\n");
484
485         return sprintf(buf, "%d\n", rdev->constraints->min_uA);
486 }
487 static DEVICE_ATTR(min_microamps, 0444, regulator_min_uA_show, NULL);
488
489 static ssize_t regulator_max_uA_show(struct device *dev,
490                                     struct device_attribute *attr, char *buf)
491 {
492         struct regulator_dev *rdev = dev_get_drvdata(dev);
493
494         if (!rdev->constraints)
495                 return sprintf(buf, "constraint not defined\n");
496
497         return sprintf(buf, "%d\n", rdev->constraints->max_uA);
498 }
499 static DEVICE_ATTR(max_microamps, 0444, regulator_max_uA_show, NULL);
500
501 static ssize_t regulator_min_uV_show(struct device *dev,
502                                     struct device_attribute *attr, char *buf)
503 {
504         struct regulator_dev *rdev = dev_get_drvdata(dev);
505
506         if (!rdev->constraints)
507                 return sprintf(buf, "constraint not defined\n");
508
509         return sprintf(buf, "%d\n", rdev->constraints->min_uV);
510 }
511 static DEVICE_ATTR(min_microvolts, 0444, regulator_min_uV_show, NULL);
512
513 static ssize_t regulator_max_uV_show(struct device *dev,
514                                     struct device_attribute *attr, char *buf)
515 {
516         struct regulator_dev *rdev = dev_get_drvdata(dev);
517
518         if (!rdev->constraints)
519                 return sprintf(buf, "constraint not defined\n");
520
521         return sprintf(buf, "%d\n", rdev->constraints->max_uV);
522 }
523 static DEVICE_ATTR(max_microvolts, 0444, regulator_max_uV_show, NULL);
524
525 static ssize_t regulator_total_uA_show(struct device *dev,
526                                       struct device_attribute *attr, char *buf)
527 {
528         struct regulator_dev *rdev = dev_get_drvdata(dev);
529         struct regulator *regulator;
530         int uA = 0;
531
532         mutex_lock(&rdev->mutex);
533         list_for_each_entry(regulator, &rdev->consumer_list, list)
534                 uA += regulator->uA_load;
535         mutex_unlock(&rdev->mutex);
536         return sprintf(buf, "%d\n", uA);
537 }
538 static DEVICE_ATTR(requested_microamps, 0444, regulator_total_uA_show, NULL);
539
540 static ssize_t num_users_show(struct device *dev, struct device_attribute *attr,
541                               char *buf)
542 {
543         struct regulator_dev *rdev = dev_get_drvdata(dev);
544         return sprintf(buf, "%d\n", rdev->use_count);
545 }
546 static DEVICE_ATTR_RO(num_users);
547
548 static ssize_t type_show(struct device *dev, struct device_attribute *attr,
549                          char *buf)
550 {
551         struct regulator_dev *rdev = dev_get_drvdata(dev);
552
553         switch (rdev->desc->type) {
554         case REGULATOR_VOLTAGE:
555                 return sprintf(buf, "voltage\n");
556         case REGULATOR_CURRENT:
557                 return sprintf(buf, "current\n");
558         }
559         return sprintf(buf, "unknown\n");
560 }
561 static DEVICE_ATTR_RO(type);
562
563 static ssize_t regulator_suspend_mem_uV_show(struct device *dev,
564                                 struct device_attribute *attr, char *buf)
565 {
566         struct regulator_dev *rdev = dev_get_drvdata(dev);
567
568         return sprintf(buf, "%d\n", rdev->constraints->state_mem.uV);
569 }
570 static DEVICE_ATTR(suspend_mem_microvolts, 0444,
571                 regulator_suspend_mem_uV_show, NULL);
572
573 static ssize_t regulator_suspend_disk_uV_show(struct device *dev,
574                                 struct device_attribute *attr, char *buf)
575 {
576         struct regulator_dev *rdev = dev_get_drvdata(dev);
577
578         return sprintf(buf, "%d\n", rdev->constraints->state_disk.uV);
579 }
580 static DEVICE_ATTR(suspend_disk_microvolts, 0444,
581                 regulator_suspend_disk_uV_show, NULL);
582
583 static ssize_t regulator_suspend_standby_uV_show(struct device *dev,
584                                 struct device_attribute *attr, char *buf)
585 {
586         struct regulator_dev *rdev = dev_get_drvdata(dev);
587
588         return sprintf(buf, "%d\n", rdev->constraints->state_standby.uV);
589 }
590 static DEVICE_ATTR(suspend_standby_microvolts, 0444,
591                 regulator_suspend_standby_uV_show, NULL);
592
593 static ssize_t regulator_suspend_mem_mode_show(struct device *dev,
594                                 struct device_attribute *attr, char *buf)
595 {
596         struct regulator_dev *rdev = dev_get_drvdata(dev);
597
598         return regulator_print_opmode(buf,
599                 rdev->constraints->state_mem.mode);
600 }
601 static DEVICE_ATTR(suspend_mem_mode, 0444,
602                 regulator_suspend_mem_mode_show, NULL);
603
604 static ssize_t regulator_suspend_disk_mode_show(struct device *dev,
605                                 struct device_attribute *attr, char *buf)
606 {
607         struct regulator_dev *rdev = dev_get_drvdata(dev);
608
609         return regulator_print_opmode(buf,
610                 rdev->constraints->state_disk.mode);
611 }
612 static DEVICE_ATTR(suspend_disk_mode, 0444,
613                 regulator_suspend_disk_mode_show, NULL);
614
615 static ssize_t regulator_suspend_standby_mode_show(struct device *dev,
616                                 struct device_attribute *attr, char *buf)
617 {
618         struct regulator_dev *rdev = dev_get_drvdata(dev);
619
620         return regulator_print_opmode(buf,
621                 rdev->constraints->state_standby.mode);
622 }
623 static DEVICE_ATTR(suspend_standby_mode, 0444,
624                 regulator_suspend_standby_mode_show, NULL);
625
626 static ssize_t regulator_suspend_mem_state_show(struct device *dev,
627                                    struct device_attribute *attr, char *buf)
628 {
629         struct regulator_dev *rdev = dev_get_drvdata(dev);
630
631         return regulator_print_state(buf,
632                         rdev->constraints->state_mem.enabled);
633 }
634 static DEVICE_ATTR(suspend_mem_state, 0444,
635                 regulator_suspend_mem_state_show, NULL);
636
637 static ssize_t regulator_suspend_disk_state_show(struct device *dev,
638                                    struct device_attribute *attr, char *buf)
639 {
640         struct regulator_dev *rdev = dev_get_drvdata(dev);
641
642         return regulator_print_state(buf,
643                         rdev->constraints->state_disk.enabled);
644 }
645 static DEVICE_ATTR(suspend_disk_state, 0444,
646                 regulator_suspend_disk_state_show, NULL);
647
648 static ssize_t regulator_suspend_standby_state_show(struct device *dev,
649                                    struct device_attribute *attr, char *buf)
650 {
651         struct regulator_dev *rdev = dev_get_drvdata(dev);
652
653         return regulator_print_state(buf,
654                         rdev->constraints->state_standby.enabled);
655 }
656 static DEVICE_ATTR(suspend_standby_state, 0444,
657                 regulator_suspend_standby_state_show, NULL);
658
659 static ssize_t regulator_bypass_show(struct device *dev,
660                                      struct device_attribute *attr, char *buf)
661 {
662         struct regulator_dev *rdev = dev_get_drvdata(dev);
663         const char *report;
664         bool bypass;
665         int ret;
666
667         ret = rdev->desc->ops->get_bypass(rdev, &bypass);
668
669         if (ret != 0)
670                 report = "unknown";
671         else if (bypass)
672                 report = "enabled";
673         else
674                 report = "disabled";
675
676         return sprintf(buf, "%s\n", report);
677 }
678 static DEVICE_ATTR(bypass, 0444,
679                    regulator_bypass_show, NULL);
680
681 /* Calculate the new optimum regulator operating mode based on the new total
682  * consumer load. All locks held by caller */
683 static int drms_uA_update(struct regulator_dev *rdev)
684 {
685         struct regulator *sibling;
686         int current_uA = 0, output_uV, input_uV, err;
687         unsigned int mode;
688
689         lockdep_assert_held_once(&rdev->mutex);
690
691         /*
692          * first check to see if we can set modes at all, otherwise just
693          * tell the consumer everything is OK.
694          */
695         err = regulator_check_drms(rdev);
696         if (err < 0)
697                 return 0;
698
699         if (!rdev->desc->ops->get_optimum_mode &&
700             !rdev->desc->ops->set_load)
701                 return 0;
702
703         if (!rdev->desc->ops->set_mode &&
704             !rdev->desc->ops->set_load)
705                 return -EINVAL;
706
707         /* get output voltage */
708         output_uV = _regulator_get_voltage(rdev);
709         if (output_uV <= 0) {
710                 rdev_err(rdev, "invalid output voltage found\n");
711                 return -EINVAL;
712         }
713
714         /* get input voltage */
715         input_uV = 0;
716         if (rdev->supply)
717                 input_uV = regulator_get_voltage(rdev->supply);
718         if (input_uV <= 0)
719                 input_uV = rdev->constraints->input_uV;
720         if (input_uV <= 0) {
721                 rdev_err(rdev, "invalid input voltage found\n");
722                 return -EINVAL;
723         }
724
725         /* calc total requested load */
726         list_for_each_entry(sibling, &rdev->consumer_list, list)
727                 current_uA += sibling->uA_load;
728
729         current_uA += rdev->constraints->system_load;
730
731         if (rdev->desc->ops->set_load) {
732                 /* set the optimum mode for our new total regulator load */
733                 err = rdev->desc->ops->set_load(rdev, current_uA);
734                 if (err < 0)
735                         rdev_err(rdev, "failed to set load %d\n", current_uA);
736         } else {
737                 /* now get the optimum mode for our new total regulator load */
738                 mode = rdev->desc->ops->get_optimum_mode(rdev, input_uV,
739                                                          output_uV, current_uA);
740
741                 /* check the new mode is allowed */
742                 err = regulator_mode_constrain(rdev, &mode);
743                 if (err < 0) {
744                         rdev_err(rdev, "failed to get optimum mode @ %d uA %d -> %d uV\n",
745                                  current_uA, input_uV, output_uV);
746                         return err;
747                 }
748
749                 err = rdev->desc->ops->set_mode(rdev, mode);
750                 if (err < 0)
751                         rdev_err(rdev, "failed to set optimum mode %x\n", mode);
752         }
753
754         return err;
755 }
756
757 static int suspend_set_state(struct regulator_dev *rdev,
758         struct regulator_state *rstate)
759 {
760         int ret = 0;
761
762         /* If we have no suspend mode configration don't set anything;
763          * only warn if the driver implements set_suspend_voltage or
764          * set_suspend_mode callback.
765          */
766         if (!rstate->enabled && !rstate->disabled) {
767                 if (rdev->desc->ops->set_suspend_voltage ||
768                     rdev->desc->ops->set_suspend_mode)
769                         rdev_warn(rdev, "No configuration\n");
770                 return 0;
771         }
772
773         if (rstate->enabled && rstate->disabled) {
774                 rdev_err(rdev, "invalid configuration\n");
775                 return -EINVAL;
776         }
777
778         if (rstate->enabled && rdev->desc->ops->set_suspend_enable)
779                 ret = rdev->desc->ops->set_suspend_enable(rdev);
780         else if (rstate->disabled && rdev->desc->ops->set_suspend_disable)
781                 ret = rdev->desc->ops->set_suspend_disable(rdev);
782         else /* OK if set_suspend_enable or set_suspend_disable is NULL */
783                 ret = 0;
784
785         if (ret < 0) {
786                 rdev_err(rdev, "failed to enabled/disable\n");
787                 return ret;
788         }
789
790         if (rdev->desc->ops->set_suspend_voltage && rstate->uV > 0) {
791                 ret = rdev->desc->ops->set_suspend_voltage(rdev, rstate->uV);
792                 if (ret < 0) {
793                         rdev_err(rdev, "failed to set voltage\n");
794                         return ret;
795                 }
796         }
797
798         if (rdev->desc->ops->set_suspend_mode && rstate->mode > 0) {
799                 ret = rdev->desc->ops->set_suspend_mode(rdev, rstate->mode);
800                 if (ret < 0) {
801                         rdev_err(rdev, "failed to set mode\n");
802                         return ret;
803                 }
804         }
805         return ret;
806 }
807
808 /* locks held by caller */
809 static int suspend_prepare(struct regulator_dev *rdev, suspend_state_t state)
810 {
811         lockdep_assert_held_once(&rdev->mutex);
812
813         if (!rdev->constraints)
814                 return -EINVAL;
815
816         switch (state) {
817         case PM_SUSPEND_STANDBY:
818                 return suspend_set_state(rdev,
819                         &rdev->constraints->state_standby);
820         case PM_SUSPEND_MEM:
821                 return suspend_set_state(rdev,
822                         &rdev->constraints->state_mem);
823         case PM_SUSPEND_MAX:
824                 return suspend_set_state(rdev,
825                         &rdev->constraints->state_disk);
826         default:
827                 return -EINVAL;
828         }
829 }
830
831 static void print_constraints(struct regulator_dev *rdev)
832 {
833         struct regulation_constraints *constraints = rdev->constraints;
834         char buf[160] = "";
835         size_t len = sizeof(buf) - 1;
836         int count = 0;
837         int ret;
838
839         if (constraints->min_uV && constraints->max_uV) {
840                 if (constraints->min_uV == constraints->max_uV)
841                         count += scnprintf(buf + count, len - count, "%d mV ",
842                                            constraints->min_uV / 1000);
843                 else
844                         count += scnprintf(buf + count, len - count,
845                                            "%d <--> %d mV ",
846                                            constraints->min_uV / 1000,
847                                            constraints->max_uV / 1000);
848         }
849
850         if (!constraints->min_uV ||
851             constraints->min_uV != constraints->max_uV) {
852                 ret = _regulator_get_voltage(rdev);
853                 if (ret > 0)
854                         count += scnprintf(buf + count, len - count,
855                                            "at %d mV ", ret / 1000);
856         }
857
858         if (constraints->uV_offset)
859                 count += scnprintf(buf + count, len - count, "%dmV offset ",
860                                    constraints->uV_offset / 1000);
861
862         if (constraints->min_uA && constraints->max_uA) {
863                 if (constraints->min_uA == constraints->max_uA)
864                         count += scnprintf(buf + count, len - count, "%d mA ",
865                                            constraints->min_uA / 1000);
866                 else
867                         count += scnprintf(buf + count, len - count,
868                                            "%d <--> %d mA ",
869                                            constraints->min_uA / 1000,
870                                            constraints->max_uA / 1000);
871         }
872
873         if (!constraints->min_uA ||
874             constraints->min_uA != constraints->max_uA) {
875                 ret = _regulator_get_current_limit(rdev);
876                 if (ret > 0)
877                         count += scnprintf(buf + count, len - count,
878                                            "at %d mA ", ret / 1000);
879         }
880
881         if (constraints->valid_modes_mask & REGULATOR_MODE_FAST)
882                 count += scnprintf(buf + count, len - count, "fast ");
883         if (constraints->valid_modes_mask & REGULATOR_MODE_NORMAL)
884                 count += scnprintf(buf + count, len - count, "normal ");
885         if (constraints->valid_modes_mask & REGULATOR_MODE_IDLE)
886                 count += scnprintf(buf + count, len - count, "idle ");
887         if (constraints->valid_modes_mask & REGULATOR_MODE_STANDBY)
888                 count += scnprintf(buf + count, len - count, "standby");
889
890         if (!count)
891                 scnprintf(buf, len, "no parameters");
892
893         rdev_dbg(rdev, "%s\n", buf);
894
895         if ((constraints->min_uV != constraints->max_uV) &&
896             !(constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE))
897                 rdev_warn(rdev,
898                           "Voltage range but no REGULATOR_CHANGE_VOLTAGE\n");
899 }
900
901 static int machine_constraints_voltage(struct regulator_dev *rdev,
902         struct regulation_constraints *constraints)
903 {
904         const struct regulator_ops *ops = rdev->desc->ops;
905         int ret;
906
907         /* do we need to apply the constraint voltage */
908         if (rdev->constraints->apply_uV &&
909             rdev->constraints->min_uV == rdev->constraints->max_uV) {
910                 int current_uV = _regulator_get_voltage(rdev);
911                 if (current_uV < 0) {
912                         rdev_err(rdev,
913                                  "failed to get the current voltage(%d)\n",
914                                  current_uV);
915                         return current_uV;
916                 }
917                 if (current_uV < rdev->constraints->min_uV ||
918                     current_uV > rdev->constraints->max_uV) {
919                         ret = _regulator_do_set_voltage(
920                                 rdev, rdev->constraints->min_uV,
921                                 rdev->constraints->max_uV);
922                         if (ret < 0) {
923                                 rdev_err(rdev,
924                                         "failed to apply %duV constraint(%d)\n",
925                                         rdev->constraints->min_uV, ret);
926                                 return ret;
927                         }
928                 }
929         }
930
931         /* constrain machine-level voltage specs to fit
932          * the actual range supported by this regulator.
933          */
934         if (ops->list_voltage && rdev->desc->n_voltages) {
935                 int     count = rdev->desc->n_voltages;
936                 int     i;
937                 int     min_uV = INT_MAX;
938                 int     max_uV = INT_MIN;
939                 int     cmin = constraints->min_uV;
940                 int     cmax = constraints->max_uV;
941
942                 /* it's safe to autoconfigure fixed-voltage supplies
943                    and the constraints are used by list_voltage. */
944                 if (count == 1 && !cmin) {
945                         cmin = 1;
946                         cmax = INT_MAX;
947                         constraints->min_uV = cmin;
948                         constraints->max_uV = cmax;
949                 }
950
951                 /* voltage constraints are optional */
952                 if ((cmin == 0) && (cmax == 0))
953                         return 0;
954
955                 /* else require explicit machine-level constraints */
956                 if (cmin <= 0 || cmax <= 0 || cmax < cmin) {
957                         rdev_err(rdev, "invalid voltage constraints\n");
958                         return -EINVAL;
959                 }
960
961                 /* initial: [cmin..cmax] valid, [min_uV..max_uV] not */
962                 for (i = 0; i < count; i++) {
963                         int     value;
964
965                         value = ops->list_voltage(rdev, i);
966                         if (value <= 0)
967                                 continue;
968
969                         /* maybe adjust [min_uV..max_uV] */
970                         if (value >= cmin && value < min_uV)
971                                 min_uV = value;
972                         if (value <= cmax && value > max_uV)
973                                 max_uV = value;
974                 }
975
976                 /* final: [min_uV..max_uV] valid iff constraints valid */
977                 if (max_uV < min_uV) {
978                         rdev_err(rdev,
979                                  "unsupportable voltage constraints %u-%uuV\n",
980                                  min_uV, max_uV);
981                         return -EINVAL;
982                 }
983
984                 /* use regulator's subset of machine constraints */
985                 if (constraints->min_uV < min_uV) {
986                         rdev_dbg(rdev, "override min_uV, %d -> %d\n",
987                                  constraints->min_uV, min_uV);
988                         constraints->min_uV = min_uV;
989                 }
990                 if (constraints->max_uV > max_uV) {
991                         rdev_dbg(rdev, "override max_uV, %d -> %d\n",
992                                  constraints->max_uV, max_uV);
993                         constraints->max_uV = max_uV;
994                 }
995         }
996
997         return 0;
998 }
999
1000 static int machine_constraints_current(struct regulator_dev *rdev,
1001         struct regulation_constraints *constraints)
1002 {
1003         const struct regulator_ops *ops = rdev->desc->ops;
1004         int ret;
1005
1006         if (!constraints->min_uA && !constraints->max_uA)
1007                 return 0;
1008
1009         if (constraints->min_uA > constraints->max_uA) {
1010                 rdev_err(rdev, "Invalid current constraints\n");
1011                 return -EINVAL;
1012         }
1013
1014         if (!ops->set_current_limit || !ops->get_current_limit) {
1015                 rdev_warn(rdev, "Operation of current configuration missing\n");
1016                 return 0;
1017         }
1018
1019         /* Set regulator current in constraints range */
1020         ret = ops->set_current_limit(rdev, constraints->min_uA,
1021                         constraints->max_uA);
1022         if (ret < 0) {
1023                 rdev_err(rdev, "Failed to set current constraint, %d\n", ret);
1024                 return ret;
1025         }
1026
1027         return 0;
1028 }
1029
1030 static int _regulator_do_enable(struct regulator_dev *rdev);
1031
1032 /**
1033  * set_machine_constraints - sets regulator constraints
1034  * @rdev: regulator source
1035  * @constraints: constraints to apply
1036  *
1037  * Allows platform initialisation code to define and constrain
1038  * regulator circuits e.g. valid voltage/current ranges, etc.  NOTE:
1039  * Constraints *must* be set by platform code in order for some
1040  * regulator operations to proceed i.e. set_voltage, set_current_limit,
1041  * set_mode.
1042  */
1043 static int set_machine_constraints(struct regulator_dev *rdev,
1044         const struct regulation_constraints *constraints)
1045 {
1046         int ret = 0;
1047         const struct regulator_ops *ops = rdev->desc->ops;
1048
1049         if (constraints)
1050                 rdev->constraints = kmemdup(constraints, sizeof(*constraints),
1051                                             GFP_KERNEL);
1052         else
1053                 rdev->constraints = kzalloc(sizeof(*constraints),
1054                                             GFP_KERNEL);
1055         if (!rdev->constraints)
1056                 return -ENOMEM;
1057
1058         ret = machine_constraints_voltage(rdev, rdev->constraints);
1059         if (ret != 0)
1060                 return ret;
1061
1062         ret = machine_constraints_current(rdev, rdev->constraints);
1063         if (ret != 0)
1064                 return ret;
1065
1066         if (rdev->constraints->ilim_uA && ops->set_input_current_limit) {
1067                 ret = ops->set_input_current_limit(rdev,
1068                                                    rdev->constraints->ilim_uA);
1069                 if (ret < 0) {
1070                         rdev_err(rdev, "failed to set input limit\n");
1071                         return ret;
1072                 }
1073         }
1074
1075         /* do we need to setup our suspend state */
1076         if (rdev->constraints->initial_state) {
1077                 ret = suspend_prepare(rdev, rdev->constraints->initial_state);
1078                 if (ret < 0) {
1079                         rdev_err(rdev, "failed to set suspend state\n");
1080                         return ret;
1081                 }
1082         }
1083
1084         if (rdev->constraints->initial_mode) {
1085                 if (!ops->set_mode) {
1086                         rdev_err(rdev, "no set_mode operation\n");
1087                         return -EINVAL;
1088                 }
1089
1090                 ret = ops->set_mode(rdev, rdev->constraints->initial_mode);
1091                 if (ret < 0) {
1092                         rdev_err(rdev, "failed to set initial mode: %d\n", ret);
1093                         return ret;
1094                 }
1095         }
1096
1097         /* If the constraints say the regulator should be on at this point
1098          * and we have control then make sure it is enabled.
1099          */
1100         if (rdev->constraints->always_on || rdev->constraints->boot_on) {
1101                 ret = _regulator_do_enable(rdev);
1102                 if (ret < 0 && ret != -EINVAL) {
1103                         rdev_err(rdev, "failed to enable\n");
1104                         return ret;
1105                 }
1106         }
1107
1108         if ((rdev->constraints->ramp_delay || rdev->constraints->ramp_disable)
1109                 && ops->set_ramp_delay) {
1110                 ret = ops->set_ramp_delay(rdev, rdev->constraints->ramp_delay);
1111                 if (ret < 0) {
1112                         rdev_err(rdev, "failed to set ramp_delay\n");
1113                         return ret;
1114                 }
1115         }
1116
1117         if (rdev->constraints->pull_down && ops->set_pull_down) {
1118                 ret = ops->set_pull_down(rdev);
1119                 if (ret < 0) {
1120                         rdev_err(rdev, "failed to set pull down\n");
1121                         return ret;
1122                 }
1123         }
1124
1125         if (rdev->constraints->soft_start && ops->set_soft_start) {
1126                 ret = ops->set_soft_start(rdev);
1127                 if (ret < 0) {
1128                         rdev_err(rdev, "failed to set soft start\n");
1129                         return ret;
1130                 }
1131         }
1132
1133         if (rdev->constraints->over_current_protection
1134                 && ops->set_over_current_protection) {
1135                 ret = ops->set_over_current_protection(rdev);
1136                 if (ret < 0) {
1137                         rdev_err(rdev, "failed to set over current protection\n");
1138                         return ret;
1139                 }
1140         }
1141
1142         if (rdev->constraints->active_discharge && ops->set_active_discharge) {
1143                 bool ad_state = (rdev->constraints->active_discharge ==
1144                               REGULATOR_ACTIVE_DISCHARGE_ENABLE) ? true : false;
1145
1146                 ret = ops->set_active_discharge(rdev, ad_state);
1147                 if (ret < 0) {
1148                         rdev_err(rdev, "failed to set active discharge\n");
1149                         return ret;
1150                 }
1151         }
1152
1153         if (rdev->constraints->active_discharge && ops->set_active_discharge) {
1154                 bool ad_state = (rdev->constraints->active_discharge ==
1155                               REGULATOR_ACTIVE_DISCHARGE_ENABLE) ? true : false;
1156
1157                 ret = ops->set_active_discharge(rdev, ad_state);
1158                 if (ret < 0) {
1159                         rdev_err(rdev, "failed to set active discharge\n");
1160                         return ret;
1161                 }
1162         }
1163
1164         print_constraints(rdev);
1165         return 0;
1166 }
1167
1168 /**
1169  * set_supply - set regulator supply regulator
1170  * @rdev: regulator name
1171  * @supply_rdev: supply regulator name
1172  *
1173  * Called by platform initialisation code to set the supply regulator for this
1174  * regulator. This ensures that a regulators supply will also be enabled by the
1175  * core if it's child is enabled.
1176  */
1177 static int set_supply(struct regulator_dev *rdev,
1178                       struct regulator_dev *supply_rdev)
1179 {
1180         int err;
1181
1182         rdev_info(rdev, "supplied by %s\n", rdev_get_name(supply_rdev));
1183
1184         if (!try_module_get(supply_rdev->owner))
1185                 return -ENODEV;
1186
1187         rdev->supply = create_regulator(supply_rdev, &rdev->dev, "SUPPLY");
1188         if (rdev->supply == NULL) {
1189                 err = -ENOMEM;
1190                 return err;
1191         }
1192         supply_rdev->open_count++;
1193
1194         return 0;
1195 }
1196
1197 /**
1198  * set_consumer_device_supply - Bind a regulator to a symbolic supply
1199  * @rdev:         regulator source
1200  * @consumer_dev_name: dev_name() string for device supply applies to
1201  * @supply:       symbolic name for supply
1202  *
1203  * Allows platform initialisation code to map physical regulator
1204  * sources to symbolic names for supplies for use by devices.  Devices
1205  * should use these symbolic names to request regulators, avoiding the
1206  * need to provide board-specific regulator names as platform data.
1207  */
1208 static int set_consumer_device_supply(struct regulator_dev *rdev,
1209                                       const char *consumer_dev_name,
1210                                       const char *supply)
1211 {
1212         struct regulator_map *node;
1213         int has_dev;
1214
1215         if (supply == NULL)
1216                 return -EINVAL;
1217
1218         if (consumer_dev_name != NULL)
1219                 has_dev = 1;
1220         else
1221                 has_dev = 0;
1222
1223         list_for_each_entry(node, &regulator_map_list, list) {
1224                 if (node->dev_name && consumer_dev_name) {
1225                         if (strcmp(node->dev_name, consumer_dev_name) != 0)
1226                                 continue;
1227                 } else if (node->dev_name || consumer_dev_name) {
1228                         continue;
1229                 }
1230
1231                 if (strcmp(node->supply, supply) != 0)
1232                         continue;
1233
1234                 pr_debug("%s: %s/%s is '%s' supply; fail %s/%s\n",
1235                          consumer_dev_name,
1236                          dev_name(&node->regulator->dev),
1237                          node->regulator->desc->name,
1238                          supply,
1239                          dev_name(&rdev->dev), rdev_get_name(rdev));
1240                 return -EBUSY;
1241         }
1242
1243         node = kzalloc(sizeof(struct regulator_map), GFP_KERNEL);
1244         if (node == NULL)
1245                 return -ENOMEM;
1246
1247         node->regulator = rdev;
1248         node->supply = supply;
1249
1250         if (has_dev) {
1251                 node->dev_name = kstrdup(consumer_dev_name, GFP_KERNEL);
1252                 if (node->dev_name == NULL) {
1253                         kfree(node);
1254                         return -ENOMEM;
1255                 }
1256         }
1257
1258         list_add(&node->list, &regulator_map_list);
1259         return 0;
1260 }
1261
1262 static void unset_regulator_supplies(struct regulator_dev *rdev)
1263 {
1264         struct regulator_map *node, *n;
1265
1266         list_for_each_entry_safe(node, n, &regulator_map_list, list) {
1267                 if (rdev == node->regulator) {
1268                         list_del(&node->list);
1269                         kfree(node->dev_name);
1270                         kfree(node);
1271                 }
1272         }
1273 }
1274
1275 #define REG_STR_SIZE    64
1276
1277 static struct regulator *create_regulator(struct regulator_dev *rdev,
1278                                           struct device *dev,
1279                                           const char *supply_name)
1280 {
1281         struct regulator *regulator;
1282         char buf[REG_STR_SIZE];
1283         int err, size;
1284
1285         regulator = kzalloc(sizeof(*regulator), GFP_KERNEL);
1286         if (regulator == NULL)
1287                 return NULL;
1288
1289         mutex_lock(&rdev->mutex);
1290         regulator->rdev = rdev;
1291         list_add(&regulator->list, &rdev->consumer_list);
1292
1293         if (dev) {
1294                 regulator->dev = dev;
1295
1296                 /* Add a link to the device sysfs entry */
1297                 size = scnprintf(buf, REG_STR_SIZE, "%s-%s",
1298                                  dev->kobj.name, supply_name);
1299                 if (size >= REG_STR_SIZE)
1300                         goto overflow_err;
1301
1302                 regulator->supply_name = kstrdup(buf, GFP_KERNEL);
1303                 if (regulator->supply_name == NULL)
1304                         goto overflow_err;
1305
1306                 err = sysfs_create_link_nowarn(&rdev->dev.kobj, &dev->kobj,
1307                                         buf);
1308                 if (err) {
1309                         rdev_dbg(rdev, "could not add device link %s err %d\n",
1310                                   dev->kobj.name, err);
1311                         /* non-fatal */
1312                 }
1313         } else {
1314                 regulator->supply_name = kstrdup(supply_name, GFP_KERNEL);
1315                 if (regulator->supply_name == NULL)
1316                         goto overflow_err;
1317         }
1318
1319         regulator->debugfs = debugfs_create_dir(regulator->supply_name,
1320                                                 rdev->debugfs);
1321         if (!regulator->debugfs) {
1322                 rdev_dbg(rdev, "Failed to create debugfs directory\n");
1323         } else {
1324                 debugfs_create_u32("uA_load", 0444, regulator->debugfs,
1325                                    &regulator->uA_load);
1326                 debugfs_create_u32("min_uV", 0444, regulator->debugfs,
1327                                    &regulator->min_uV);
1328                 debugfs_create_u32("max_uV", 0444, regulator->debugfs,
1329                                    &regulator->max_uV);
1330         }
1331
1332         /*
1333          * Check now if the regulator is an always on regulator - if
1334          * it is then we don't need to do nearly so much work for
1335          * enable/disable calls.
1336          */
1337         if (!_regulator_can_change_status(rdev) &&
1338             _regulator_is_enabled(rdev))
1339                 regulator->always_on = true;
1340
1341         mutex_unlock(&rdev->mutex);
1342         return regulator;
1343 overflow_err:
1344         list_del(&regulator->list);
1345         kfree(regulator);
1346         mutex_unlock(&rdev->mutex);
1347         return NULL;
1348 }
1349
1350 static int _regulator_get_enable_time(struct regulator_dev *rdev)
1351 {
1352         if (rdev->constraints && rdev->constraints->enable_time)
1353                 return rdev->constraints->enable_time;
1354         if (!rdev->desc->ops->enable_time)
1355                 return rdev->desc->enable_time;
1356         return rdev->desc->ops->enable_time(rdev);
1357 }
1358
1359 static struct regulator_supply_alias *regulator_find_supply_alias(
1360                 struct device *dev, const char *supply)
1361 {
1362         struct regulator_supply_alias *map;
1363
1364         list_for_each_entry(map, &regulator_supply_alias_list, list)
1365                 if (map->src_dev == dev && strcmp(map->src_supply, supply) == 0)
1366                         return map;
1367
1368         return NULL;
1369 }
1370
1371 static void regulator_supply_alias(struct device **dev, const char **supply)
1372 {
1373         struct regulator_supply_alias *map;
1374
1375         map = regulator_find_supply_alias(*dev, *supply);
1376         if (map) {
1377                 dev_dbg(*dev, "Mapping supply %s to %s,%s\n",
1378                                 *supply, map->alias_supply,
1379                                 dev_name(map->alias_dev));
1380                 *dev = map->alias_dev;
1381                 *supply = map->alias_supply;
1382         }
1383 }
1384
1385 static int of_node_match(struct device *dev, const void *data)
1386 {
1387         return dev->of_node == data;
1388 }
1389
1390 static struct regulator_dev *of_find_regulator_by_node(struct device_node *np)
1391 {
1392         struct device *dev;
1393
1394         dev = class_find_device(&regulator_class, NULL, np, of_node_match);
1395
1396         return dev ? dev_to_rdev(dev) : NULL;
1397 }
1398
1399 static int regulator_match(struct device *dev, const void *data)
1400 {
1401         struct regulator_dev *r = dev_to_rdev(dev);
1402
1403         return strcmp(rdev_get_name(r), data) == 0;
1404 }
1405
1406 static struct regulator_dev *regulator_lookup_by_name(const char *name)
1407 {
1408         struct device *dev;
1409
1410         dev = class_find_device(&regulator_class, NULL, name, regulator_match);
1411
1412         return dev ? dev_to_rdev(dev) : NULL;
1413 }
1414
1415 /**
1416  * regulator_dev_lookup - lookup a regulator device.
1417  * @dev: device for regulator "consumer".
1418  * @supply: Supply name or regulator ID.
1419  * @ret: 0 on success, -ENODEV if lookup fails permanently, -EPROBE_DEFER if
1420  * lookup could succeed in the future.
1421  *
1422  * If successful, returns a struct regulator_dev that corresponds to the name
1423  * @supply and with the embedded struct device refcount incremented by one,
1424  * or NULL on failure. The refcount must be dropped by calling put_device().
1425  */
1426 static struct regulator_dev *regulator_dev_lookup(struct device *dev,
1427                                                   const char *supply,
1428                                                   int *ret)
1429 {
1430         struct regulator_dev *r;
1431         struct device_node *node;
1432         struct regulator_map *map;
1433         const char *devname = NULL;
1434
1435         regulator_supply_alias(&dev, &supply);
1436
1437         /* first do a dt based lookup */
1438         if (dev && dev->of_node) {
1439                 node = of_get_regulator(dev, supply);
1440                 if (node) {
1441                         r = of_find_regulator_by_node(node);
1442                         if (r)
1443                                 return r;
1444                         *ret = -EPROBE_DEFER;
1445                         return NULL;
1446                 } else {
1447                         /*
1448                          * If we couldn't even get the node then it's
1449                          * not just that the device didn't register
1450                          * yet, there's no node and we'll never
1451                          * succeed.
1452                          */
1453                         *ret = -ENODEV;
1454                 }
1455         }
1456
1457         /* if not found, try doing it non-dt way */
1458         if (dev)
1459                 devname = dev_name(dev);
1460
1461         r = regulator_lookup_by_name(supply);
1462         if (r)
1463                 return r;
1464
1465         mutex_lock(&regulator_list_mutex);
1466         list_for_each_entry(map, &regulator_map_list, list) {
1467                 /* If the mapping has a device set up it must match */
1468                 if (map->dev_name &&
1469                     (!devname || strcmp(map->dev_name, devname)))
1470                         continue;
1471
1472                 if (strcmp(map->supply, supply) == 0 &&
1473                     get_device(&map->regulator->dev)) {
1474                         mutex_unlock(&regulator_list_mutex);
1475                         return map->regulator;
1476                 }
1477         }
1478         mutex_unlock(&regulator_list_mutex);
1479
1480         return NULL;
1481 }
1482
1483 static int regulator_resolve_supply(struct regulator_dev *rdev)
1484 {
1485         struct regulator_dev *r;
1486         struct device *dev = rdev->dev.parent;
1487         int ret;
1488
1489         /* No supply to resovle? */
1490         if (!rdev->supply_name)
1491                 return 0;
1492
1493         /* Supply already resolved? */
1494         if (rdev->supply)
1495                 return 0;
1496
1497         r = regulator_dev_lookup(dev, rdev->supply_name, &ret);
1498         if (!r) {
1499                 if (ret == -ENODEV) {
1500                         /*
1501                          * No supply was specified for this regulator and
1502                          * there will never be one.
1503                          */
1504                         return 0;
1505                 }
1506
1507                 /* Did the lookup explicitly defer for us? */
1508                 if (ret == -EPROBE_DEFER)
1509                         return ret;
1510
1511                 if (have_full_constraints()) {
1512                         r = dummy_regulator_rdev;
1513                         get_device(&r->dev);
1514                 } else {
1515                         dev_err(dev, "Failed to resolve %s-supply for %s\n",
1516                                 rdev->supply_name, rdev->desc->name);
1517                         return -EPROBE_DEFER;
1518                 }
1519         }
1520
1521         /* Recursively resolve the supply of the supply */
1522         ret = regulator_resolve_supply(r);
1523         if (ret < 0) {
1524                 put_device(&r->dev);
1525                 return ret;
1526         }
1527
1528         ret = set_supply(rdev, r);
1529         if (ret < 0) {
1530                 put_device(&r->dev);
1531                 return ret;
1532         }
1533
1534         /* Cascade always-on state to supply */
1535         if (_regulator_is_enabled(rdev) && rdev->supply) {
1536                 ret = regulator_enable(rdev->supply);
1537                 if (ret < 0) {
1538                         _regulator_put(rdev->supply);
1539                         return ret;
1540                 }
1541         }
1542
1543         return 0;
1544 }
1545
1546 /* Internal regulator request function */
1547 static struct regulator *_regulator_get(struct device *dev, const char *id,
1548                                         bool exclusive, bool allow_dummy)
1549 {
1550         struct regulator_dev *rdev;
1551         struct regulator *regulator = ERR_PTR(-EPROBE_DEFER);
1552         const char *devname = NULL;
1553         int ret;
1554
1555         if (id == NULL) {
1556                 pr_err("get() with no identifier\n");
1557                 return ERR_PTR(-EINVAL);
1558         }
1559
1560         if (dev)
1561                 devname = dev_name(dev);
1562
1563         if (have_full_constraints())
1564                 ret = -ENODEV;
1565         else
1566                 ret = -EPROBE_DEFER;
1567
1568         rdev = regulator_dev_lookup(dev, id, &ret);
1569         if (rdev)
1570                 goto found;
1571
1572         regulator = ERR_PTR(ret);
1573
1574         /*
1575          * If we have return value from dev_lookup fail, we do not expect to
1576          * succeed, so, quit with appropriate error value
1577          */
1578         if (ret && ret != -ENODEV)
1579                 return regulator;
1580
1581         if (!devname)
1582                 devname = "deviceless";
1583
1584         /*
1585          * Assume that a regulator is physically present and enabled
1586          * even if it isn't hooked up and just provide a dummy.
1587          */
1588         if (have_full_constraints() && allow_dummy) {
1589                 pr_warn("%s supply %s not found, using dummy regulator\n",
1590                         devname, id);
1591
1592                 rdev = dummy_regulator_rdev;
1593                 get_device(&rdev->dev);
1594                 goto found;
1595         /* Don't log an error when called from regulator_get_optional() */
1596         } else if (!have_full_constraints() || exclusive) {
1597                 dev_warn(dev, "dummy supplies not allowed\n");
1598         }
1599
1600         return regulator;
1601
1602 found:
1603         if (rdev->exclusive) {
1604                 regulator = ERR_PTR(-EPERM);
1605                 put_device(&rdev->dev);
1606                 return regulator;
1607         }
1608
1609         if (exclusive && rdev->open_count) {
1610                 regulator = ERR_PTR(-EBUSY);
1611                 put_device(&rdev->dev);
1612                 return regulator;
1613         }
1614
1615         ret = regulator_resolve_supply(rdev);
1616         if (ret < 0) {
1617                 regulator = ERR_PTR(ret);
1618                 put_device(&rdev->dev);
1619                 return regulator;
1620         }
1621
1622         if (!try_module_get(rdev->owner)) {
1623                 put_device(&rdev->dev);
1624                 return regulator;
1625         }
1626
1627         regulator = create_regulator(rdev, dev, id);
1628         if (regulator == NULL) {
1629                 regulator = ERR_PTR(-ENOMEM);
1630                 put_device(&rdev->dev);
1631                 module_put(rdev->owner);
1632                 return regulator;
1633         }
1634
1635         rdev->open_count++;
1636         if (exclusive) {
1637                 rdev->exclusive = 1;
1638
1639                 ret = _regulator_is_enabled(rdev);
1640                 if (ret > 0)
1641                         rdev->use_count = 1;
1642                 else
1643                         rdev->use_count = 0;
1644         }
1645
1646         return regulator;
1647 }
1648
1649 /**
1650  * regulator_get - lookup and obtain a reference to a regulator.
1651  * @dev: device for regulator "consumer"
1652  * @id: Supply name or regulator ID.
1653  *
1654  * Returns a struct regulator corresponding to the regulator producer,
1655  * or IS_ERR() condition containing errno.
1656  *
1657  * Use of supply names configured via regulator_set_device_supply() is
1658  * strongly encouraged.  It is recommended that the supply name used
1659  * should match the name used for the supply and/or the relevant
1660  * device pins in the datasheet.
1661  */
1662 struct regulator *regulator_get(struct device *dev, const char *id)
1663 {
1664         return _regulator_get(dev, id, false, true);
1665 }
1666 EXPORT_SYMBOL_GPL(regulator_get);
1667
1668 /**
1669  * regulator_get_exclusive - obtain exclusive access to a regulator.
1670  * @dev: device for regulator "consumer"
1671  * @id: Supply name or regulator ID.
1672  *
1673  * Returns a struct regulator corresponding to the regulator producer,
1674  * or IS_ERR() condition containing errno.  Other consumers will be
1675  * unable to obtain this regulator while this reference is held and the
1676  * use count for the regulator will be initialised to reflect the current
1677  * state of the regulator.
1678  *
1679  * This is intended for use by consumers which cannot tolerate shared
1680  * use of the regulator such as those which need to force the
1681  * regulator off for correct operation of the hardware they are
1682  * controlling.
1683  *
1684  * Use of supply names configured via regulator_set_device_supply() is
1685  * strongly encouraged.  It is recommended that the supply name used
1686  * should match the name used for the supply and/or the relevant
1687  * device pins in the datasheet.
1688  */
1689 struct regulator *regulator_get_exclusive(struct device *dev, const char *id)
1690 {
1691         return _regulator_get(dev, id, true, false);
1692 }
1693 EXPORT_SYMBOL_GPL(regulator_get_exclusive);
1694
1695 /**
1696  * regulator_get_optional - obtain optional access to a regulator.
1697  * @dev: device for regulator "consumer"
1698  * @id: Supply name or regulator ID.
1699  *
1700  * Returns a struct regulator corresponding to the regulator producer,
1701  * or IS_ERR() condition containing errno.
1702  *
1703  * This is intended for use by consumers for devices which can have
1704  * some supplies unconnected in normal use, such as some MMC devices.
1705  * It can allow the regulator core to provide stub supplies for other
1706  * supplies requested using normal regulator_get() calls without
1707  * disrupting the operation of drivers that can handle absent
1708  * supplies.
1709  *
1710  * Use of supply names configured via regulator_set_device_supply() is
1711  * strongly encouraged.  It is recommended that the supply name used
1712  * should match the name used for the supply and/or the relevant
1713  * device pins in the datasheet.
1714  */
1715 struct regulator *regulator_get_optional(struct device *dev, const char *id)
1716 {
1717         return _regulator_get(dev, id, false, false);
1718 }
1719 EXPORT_SYMBOL_GPL(regulator_get_optional);
1720
1721 /* regulator_list_mutex lock held by regulator_put() */
1722 static void _regulator_put(struct regulator *regulator)
1723 {
1724         struct regulator_dev *rdev;
1725
1726         if (IS_ERR_OR_NULL(regulator))
1727                 return;
1728
1729         lockdep_assert_held_once(&regulator_list_mutex);
1730
1731         rdev = regulator->rdev;
1732
1733         debugfs_remove_recursive(regulator->debugfs);
1734
1735         /* remove any sysfs entries */
1736         if (regulator->dev)
1737                 sysfs_remove_link(&rdev->dev.kobj, regulator->supply_name);
1738         mutex_lock(&rdev->mutex);
1739         list_del(&regulator->list);
1740
1741         rdev->open_count--;
1742         rdev->exclusive = 0;
1743         put_device(&rdev->dev);
1744         mutex_unlock(&rdev->mutex);
1745
1746         kfree(regulator->supply_name);
1747         kfree(regulator);
1748
1749         module_put(rdev->owner);
1750 }
1751
1752 /**
1753  * regulator_put - "free" the regulator source
1754  * @regulator: regulator source
1755  *
1756  * Note: drivers must ensure that all regulator_enable calls made on this
1757  * regulator source are balanced by regulator_disable calls prior to calling
1758  * this function.
1759  */
1760 void regulator_put(struct regulator *regulator)
1761 {
1762         mutex_lock(&regulator_list_mutex);
1763         _regulator_put(regulator);
1764         mutex_unlock(&regulator_list_mutex);
1765 }
1766 EXPORT_SYMBOL_GPL(regulator_put);
1767
1768 /**
1769  * regulator_register_supply_alias - Provide device alias for supply lookup
1770  *
1771  * @dev: device that will be given as the regulator "consumer"
1772  * @id: Supply name or regulator ID
1773  * @alias_dev: device that should be used to lookup the supply
1774  * @alias_id: Supply name or regulator ID that should be used to lookup the
1775  * supply
1776  *
1777  * All lookups for id on dev will instead be conducted for alias_id on
1778  * alias_dev.
1779  */
1780 int regulator_register_supply_alias(struct device *dev, const char *id,
1781                                     struct device *alias_dev,
1782                                     const char *alias_id)
1783 {
1784         struct regulator_supply_alias *map;
1785
1786         map = regulator_find_supply_alias(dev, id);
1787         if (map)
1788                 return -EEXIST;
1789
1790         map = kzalloc(sizeof(struct regulator_supply_alias), GFP_KERNEL);
1791         if (!map)
1792                 return -ENOMEM;
1793
1794         map->src_dev = dev;
1795         map->src_supply = id;
1796         map->alias_dev = alias_dev;
1797         map->alias_supply = alias_id;
1798
1799         list_add(&map->list, &regulator_supply_alias_list);
1800
1801         pr_info("Adding alias for supply %s,%s -> %s,%s\n",
1802                 id, dev_name(dev), alias_id, dev_name(alias_dev));
1803
1804         return 0;
1805 }
1806 EXPORT_SYMBOL_GPL(regulator_register_supply_alias);
1807
1808 /**
1809  * regulator_unregister_supply_alias - Remove device alias
1810  *
1811  * @dev: device that will be given as the regulator "consumer"
1812  * @id: Supply name or regulator ID
1813  *
1814  * Remove a lookup alias if one exists for id on dev.
1815  */
1816 void regulator_unregister_supply_alias(struct device *dev, const char *id)
1817 {
1818         struct regulator_supply_alias *map;
1819
1820         map = regulator_find_supply_alias(dev, id);
1821         if (map) {
1822                 list_del(&map->list);
1823                 kfree(map);
1824         }
1825 }
1826 EXPORT_SYMBOL_GPL(regulator_unregister_supply_alias);
1827
1828 /**
1829  * regulator_bulk_register_supply_alias - register multiple aliases
1830  *
1831  * @dev: device that will be given as the regulator "consumer"
1832  * @id: List of supply names or regulator IDs
1833  * @alias_dev: device that should be used to lookup the supply
1834  * @alias_id: List of supply names or regulator IDs that should be used to
1835  * lookup the supply
1836  * @num_id: Number of aliases to register
1837  *
1838  * @return 0 on success, an errno on failure.
1839  *
1840  * This helper function allows drivers to register several supply
1841  * aliases in one operation.  If any of the aliases cannot be
1842  * registered any aliases that were registered will be removed
1843  * before returning to the caller.
1844  */
1845 int regulator_bulk_register_supply_alias(struct device *dev,
1846                                          const char *const *id,
1847                                          struct device *alias_dev,
1848                                          const char *const *alias_id,
1849                                          int num_id)
1850 {
1851         int i;
1852         int ret;
1853
1854         for (i = 0; i < num_id; ++i) {
1855                 ret = regulator_register_supply_alias(dev, id[i], alias_dev,
1856                                                       alias_id[i]);
1857                 if (ret < 0)
1858                         goto err;
1859         }
1860
1861         return 0;
1862
1863 err:
1864         dev_err(dev,
1865                 "Failed to create supply alias %s,%s -> %s,%s\n",
1866                 id[i], dev_name(dev), alias_id[i], dev_name(alias_dev));
1867
1868         while (--i >= 0)
1869                 regulator_unregister_supply_alias(dev, id[i]);
1870
1871         return ret;
1872 }
1873 EXPORT_SYMBOL_GPL(regulator_bulk_register_supply_alias);
1874
1875 /**
1876  * regulator_bulk_unregister_supply_alias - unregister multiple aliases
1877  *
1878  * @dev: device that will be given as the regulator "consumer"
1879  * @id: List of supply names or regulator IDs
1880  * @num_id: Number of aliases to unregister
1881  *
1882  * This helper function allows drivers to unregister several supply
1883  * aliases in one operation.
1884  */
1885 void regulator_bulk_unregister_supply_alias(struct device *dev,
1886                                             const char *const *id,
1887                                             int num_id)
1888 {
1889         int i;
1890
1891         for (i = 0; i < num_id; ++i)
1892                 regulator_unregister_supply_alias(dev, id[i]);
1893 }
1894 EXPORT_SYMBOL_GPL(regulator_bulk_unregister_supply_alias);
1895
1896
1897 /* Manage enable GPIO list. Same GPIO pin can be shared among regulators */
1898 static int regulator_ena_gpio_request(struct regulator_dev *rdev,
1899                                 const struct regulator_config *config)
1900 {
1901         struct regulator_enable_gpio *pin;
1902         struct gpio_desc *gpiod;
1903         int ret;
1904
1905         gpiod = gpio_to_desc(config->ena_gpio);
1906
1907         list_for_each_entry(pin, &regulator_ena_gpio_list, list) {
1908                 if (pin->gpiod == gpiod) {
1909                         rdev_dbg(rdev, "GPIO %d is already used\n",
1910                                 config->ena_gpio);
1911                         goto update_ena_gpio_to_rdev;
1912                 }
1913         }
1914
1915         ret = gpio_request_one(config->ena_gpio,
1916                                 GPIOF_DIR_OUT | config->ena_gpio_flags,
1917                                 rdev_get_name(rdev));
1918         if (ret)
1919                 return ret;
1920
1921         pin = kzalloc(sizeof(struct regulator_enable_gpio), GFP_KERNEL);
1922         if (pin == NULL) {
1923                 gpio_free(config->ena_gpio);
1924                 return -ENOMEM;
1925         }
1926
1927         pin->gpiod = gpiod;
1928         pin->ena_gpio_invert = config->ena_gpio_invert;
1929         list_add(&pin->list, &regulator_ena_gpio_list);
1930
1931 update_ena_gpio_to_rdev:
1932         pin->request_count++;
1933         rdev->ena_pin = pin;
1934         return 0;
1935 }
1936
1937 static void regulator_ena_gpio_free(struct regulator_dev *rdev)
1938 {
1939         struct regulator_enable_gpio *pin, *n;
1940
1941         if (!rdev->ena_pin)
1942                 return;
1943
1944         /* Free the GPIO only in case of no use */
1945         list_for_each_entry_safe(pin, n, &regulator_ena_gpio_list, list) {
1946                 if (pin->gpiod == rdev->ena_pin->gpiod) {
1947                         if (pin->request_count <= 1) {
1948                                 pin->request_count = 0;
1949                                 gpiod_put(pin->gpiod);
1950                                 list_del(&pin->list);
1951                                 kfree(pin);
1952                                 rdev->ena_pin = NULL;
1953                                 return;
1954                         } else {
1955                                 pin->request_count--;
1956                         }
1957                 }
1958         }
1959 }
1960
1961 /**
1962  * regulator_ena_gpio_ctrl - balance enable_count of each GPIO and actual GPIO pin control
1963  * @rdev: regulator_dev structure
1964  * @enable: enable GPIO at initial use?
1965  *
1966  * GPIO is enabled in case of initial use. (enable_count is 0)
1967  * GPIO is disabled when it is not shared any more. (enable_count <= 1)
1968  */
1969 static int regulator_ena_gpio_ctrl(struct regulator_dev *rdev, bool enable)
1970 {
1971         struct regulator_enable_gpio *pin = rdev->ena_pin;
1972
1973         if (!pin)
1974                 return -EINVAL;
1975
1976         if (enable) {
1977                 /* Enable GPIO at initial use */
1978                 if (pin->enable_count == 0)
1979                         gpiod_set_value_cansleep(pin->gpiod,
1980                                                  !pin->ena_gpio_invert);
1981
1982                 pin->enable_count++;
1983         } else {
1984                 if (pin->enable_count > 1) {
1985                         pin->enable_count--;
1986                         return 0;
1987                 }
1988
1989                 /* Disable GPIO if not used */
1990                 if (pin->enable_count <= 1) {
1991                         gpiod_set_value_cansleep(pin->gpiod,
1992                                                  pin->ena_gpio_invert);
1993                         pin->enable_count = 0;
1994                 }
1995         }
1996
1997         return 0;
1998 }
1999
2000 /**
2001  * _regulator_enable_delay - a delay helper function
2002  * @delay: time to delay in microseconds
2003  *
2004  * Delay for the requested amount of time as per the guidelines in:
2005  *
2006  *     Documentation/timers/timers-howto.txt
2007  *
2008  * The assumption here is that regulators will never be enabled in
2009  * atomic context and therefore sleeping functions can be used.
2010  */
2011 static void _regulator_enable_delay(unsigned int delay)
2012 {
2013         unsigned int ms = delay / 1000;
2014         unsigned int us = delay % 1000;
2015
2016         if (ms > 0) {
2017                 /*
2018                  * For small enough values, handle super-millisecond
2019                  * delays in the usleep_range() call below.
2020                  */
2021                 if (ms < 20)
2022                         us += ms * 1000;
2023                 else
2024                         msleep(ms);
2025         }
2026
2027         /*
2028          * Give the scheduler some room to coalesce with any other
2029          * wakeup sources. For delays shorter than 10 us, don't even
2030          * bother setting up high-resolution timers and just busy-
2031          * loop.
2032          */
2033         if (us >= 10)
2034                 usleep_range(us, us + 100);
2035         else
2036                 udelay(us);
2037 }
2038
2039 static int _regulator_do_enable(struct regulator_dev *rdev)
2040 {
2041         int ret, delay;
2042
2043         /* Query before enabling in case configuration dependent.  */
2044         ret = _regulator_get_enable_time(rdev);
2045         if (ret >= 0) {
2046                 delay = ret;
2047         } else {
2048                 rdev_warn(rdev, "enable_time() failed: %d\n", ret);
2049                 delay = 0;
2050         }
2051
2052         trace_regulator_enable(rdev_get_name(rdev));
2053
2054         if (rdev->desc->off_on_delay) {
2055                 /* if needed, keep a distance of off_on_delay from last time
2056                  * this regulator was disabled.
2057                  */
2058                 unsigned long start_jiffy = jiffies;
2059                 unsigned long intended, max_delay, remaining;
2060
2061                 max_delay = usecs_to_jiffies(rdev->desc->off_on_delay);
2062                 intended = rdev->last_off_jiffy + max_delay;
2063
2064                 if (time_before(start_jiffy, intended)) {
2065                         /* calc remaining jiffies to deal with one-time
2066                          * timer wrapping.
2067                          * in case of multiple timer wrapping, either it can be
2068                          * detected by out-of-range remaining, or it cannot be
2069                          * detected and we gets a panelty of
2070                          * _regulator_enable_delay().
2071                          */
2072                         remaining = intended - start_jiffy;
2073                         if (remaining <= max_delay)
2074                                 _regulator_enable_delay(
2075                                                 jiffies_to_usecs(remaining));
2076                 }
2077         }
2078
2079         if (rdev->ena_pin) {
2080                 if (!rdev->ena_gpio_state) {
2081                         ret = regulator_ena_gpio_ctrl(rdev, true);
2082                         if (ret < 0)
2083                                 return ret;
2084                         rdev->ena_gpio_state = 1;
2085                 }
2086         } else if (rdev->desc->ops->enable) {
2087                 ret = rdev->desc->ops->enable(rdev);
2088                 if (ret < 0)
2089                         return ret;
2090         } else {
2091                 return -EINVAL;
2092         }
2093
2094         /* Allow the regulator to ramp; it would be useful to extend
2095          * this for bulk operations so that the regulators can ramp
2096          * together.  */
2097         trace_regulator_enable_delay(rdev_get_name(rdev));
2098
2099         _regulator_enable_delay(delay);
2100
2101         trace_regulator_enable_complete(rdev_get_name(rdev));
2102
2103         return 0;
2104 }
2105
2106 /* locks held by regulator_enable() */
2107 static int _regulator_enable(struct regulator_dev *rdev)
2108 {
2109         int ret;
2110
2111         lockdep_assert_held_once(&rdev->mutex);
2112
2113         /* check voltage and requested load before enabling */
2114         if (rdev->constraints &&
2115             (rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_DRMS))
2116                 drms_uA_update(rdev);
2117
2118         if (rdev->use_count == 0) {
2119                 /* The regulator may on if it's not switchable or left on */
2120                 ret = _regulator_is_enabled(rdev);
2121                 if (ret == -EINVAL || ret == 0) {
2122                         if (!_regulator_can_change_status(rdev))
2123                                 return -EPERM;
2124
2125                         ret = _regulator_do_enable(rdev);
2126                         if (ret < 0)
2127                                 return ret;
2128
2129                 } else if (ret < 0) {
2130                         rdev_err(rdev, "is_enabled() failed: %d\n", ret);
2131                         return ret;
2132                 }
2133                 /* Fallthrough on positive return values - already enabled */
2134         }
2135
2136         rdev->use_count++;
2137
2138         return 0;
2139 }
2140
2141 /**
2142  * regulator_enable - enable regulator output
2143  * @regulator: regulator source
2144  *
2145  * Request that the regulator be enabled with the regulator output at
2146  * the predefined voltage or current value.  Calls to regulator_enable()
2147  * must be balanced with calls to regulator_disable().
2148  *
2149  * NOTE: the output value can be set by other drivers, boot loader or may be
2150  * hardwired in the regulator.
2151  */
2152 int regulator_enable(struct regulator *regulator)
2153 {
2154         struct regulator_dev *rdev = regulator->rdev;
2155         int ret = 0;
2156
2157         if (regulator->always_on)
2158                 return 0;
2159
2160         if (rdev->supply) {
2161                 ret = regulator_enable(rdev->supply);
2162                 if (ret != 0)
2163                         return ret;
2164         }
2165
2166         mutex_lock(&rdev->mutex);
2167         ret = _regulator_enable(rdev);
2168         mutex_unlock(&rdev->mutex);
2169
2170         if (ret != 0 && rdev->supply)
2171                 regulator_disable(rdev->supply);
2172
2173         return ret;
2174 }
2175 EXPORT_SYMBOL_GPL(regulator_enable);
2176
2177 static int _regulator_do_disable(struct regulator_dev *rdev)
2178 {
2179         int ret;
2180
2181         trace_regulator_disable(rdev_get_name(rdev));
2182
2183         if (rdev->ena_pin) {
2184                 if (rdev->ena_gpio_state) {
2185                         ret = regulator_ena_gpio_ctrl(rdev, false);
2186                         if (ret < 0)
2187                                 return ret;
2188                         rdev->ena_gpio_state = 0;
2189                 }
2190
2191         } else if (rdev->desc->ops->disable) {
2192                 ret = rdev->desc->ops->disable(rdev);
2193                 if (ret != 0)
2194                         return ret;
2195         }
2196
2197         /* cares about last_off_jiffy only if off_on_delay is required by
2198          * device.
2199          */
2200         if (rdev->desc->off_on_delay)
2201                 rdev->last_off_jiffy = jiffies;
2202
2203         trace_regulator_disable_complete(rdev_get_name(rdev));
2204
2205         return 0;
2206 }
2207
2208 /* locks held by regulator_disable() */
2209 static int _regulator_disable(struct regulator_dev *rdev)
2210 {
2211         int ret = 0;
2212
2213         lockdep_assert_held_once(&rdev->mutex);
2214
2215         if (WARN(rdev->use_count <= 0,
2216                  "unbalanced disables for %s\n", rdev_get_name(rdev)))
2217                 return -EIO;
2218
2219         /* are we the last user and permitted to disable ? */
2220         if (rdev->use_count == 1 &&
2221             (rdev->constraints && !rdev->constraints->always_on)) {
2222
2223                 /* we are last user */
2224                 if (_regulator_can_change_status(rdev)) {
2225                         ret = _notifier_call_chain(rdev,
2226                                                    REGULATOR_EVENT_PRE_DISABLE,
2227                                                    NULL);
2228                         if (ret & NOTIFY_STOP_MASK)
2229                                 return -EINVAL;
2230
2231                         ret = _regulator_do_disable(rdev);
2232                         if (ret < 0) {
2233                                 rdev_err(rdev, "failed to disable\n");
2234                                 _notifier_call_chain(rdev,
2235                                                 REGULATOR_EVENT_ABORT_DISABLE,
2236                                                 NULL);
2237                                 return ret;
2238                         }
2239                         _notifier_call_chain(rdev, REGULATOR_EVENT_DISABLE,
2240                                         NULL);
2241                 }
2242
2243                 rdev->use_count = 0;
2244         } else if (rdev->use_count > 1) {
2245
2246                 if (rdev->constraints &&
2247                         (rdev->constraints->valid_ops_mask &
2248                         REGULATOR_CHANGE_DRMS))
2249                         drms_uA_update(rdev);
2250
2251                 rdev->use_count--;
2252         }
2253
2254         return ret;
2255 }
2256
2257 /**
2258  * regulator_disable - disable regulator output
2259  * @regulator: regulator source
2260  *
2261  * Disable the regulator output voltage or current.  Calls to
2262  * regulator_enable() must be balanced with calls to
2263  * regulator_disable().
2264  *
2265  * NOTE: this will only disable the regulator output if no other consumer
2266  * devices have it enabled, the regulator device supports disabling and
2267  * machine constraints permit this operation.
2268  */
2269 int regulator_disable(struct regulator *regulator)
2270 {
2271         struct regulator_dev *rdev = regulator->rdev;
2272         int ret = 0;
2273
2274         if (regulator->always_on)
2275                 return 0;
2276
2277         mutex_lock(&rdev->mutex);
2278         ret = _regulator_disable(rdev);
2279         mutex_unlock(&rdev->mutex);
2280
2281         if (ret == 0 && rdev->supply)
2282                 regulator_disable(rdev->supply);
2283
2284         return ret;
2285 }
2286 EXPORT_SYMBOL_GPL(regulator_disable);
2287
2288 /* locks held by regulator_force_disable() */
2289 static int _regulator_force_disable(struct regulator_dev *rdev)
2290 {
2291         int ret = 0;
2292
2293         lockdep_assert_held_once(&rdev->mutex);
2294
2295         ret = _notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
2296                         REGULATOR_EVENT_PRE_DISABLE, NULL);
2297         if (ret & NOTIFY_STOP_MASK)
2298                 return -EINVAL;
2299
2300         ret = _regulator_do_disable(rdev);
2301         if (ret < 0) {
2302                 rdev_err(rdev, "failed to force disable\n");
2303                 _notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
2304                                 REGULATOR_EVENT_ABORT_DISABLE, NULL);
2305                 return ret;
2306         }
2307
2308         _notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
2309                         REGULATOR_EVENT_DISABLE, NULL);
2310
2311         return 0;
2312 }
2313
2314 /**
2315  * regulator_force_disable - force disable regulator output
2316  * @regulator: regulator source
2317  *
2318  * Forcibly disable the regulator output voltage or current.
2319  * NOTE: this *will* disable the regulator output even if other consumer
2320  * devices have it enabled. This should be used for situations when device
2321  * damage will likely occur if the regulator is not disabled (e.g. over temp).
2322  */
2323 int regulator_force_disable(struct regulator *regulator)
2324 {
2325         struct regulator_dev *rdev = regulator->rdev;
2326         int ret;
2327
2328         mutex_lock(&rdev->mutex);
2329         regulator->uA_load = 0;
2330         ret = _regulator_force_disable(regulator->rdev);
2331         mutex_unlock(&rdev->mutex);
2332
2333         if (rdev->supply)
2334                 while (rdev->open_count--)
2335                         regulator_disable(rdev->supply);
2336
2337         return ret;
2338 }
2339 EXPORT_SYMBOL_GPL(regulator_force_disable);
2340
2341 static void regulator_disable_work(struct work_struct *work)
2342 {
2343         struct regulator_dev *rdev = container_of(work, struct regulator_dev,
2344                                                   disable_work.work);
2345         int count, i, ret;
2346
2347         mutex_lock(&rdev->mutex);
2348
2349         BUG_ON(!rdev->deferred_disables);
2350
2351         count = rdev->deferred_disables;
2352         rdev->deferred_disables = 0;
2353
2354         for (i = 0; i < count; i++) {
2355                 ret = _regulator_disable(rdev);
2356                 if (ret != 0)
2357                         rdev_err(rdev, "Deferred disable failed: %d\n", ret);
2358         }
2359
2360         mutex_unlock(&rdev->mutex);
2361
2362         if (rdev->supply) {
2363                 for (i = 0; i < count; i++) {
2364                         ret = regulator_disable(rdev->supply);
2365                         if (ret != 0) {
2366                                 rdev_err(rdev,
2367                                          "Supply disable failed: %d\n", ret);
2368                         }
2369                 }
2370         }
2371 }
2372
2373 /**
2374  * regulator_disable_deferred - disable regulator output with delay
2375  * @regulator: regulator source
2376  * @ms: miliseconds until the regulator is disabled
2377  *
2378  * Execute regulator_disable() on the regulator after a delay.  This
2379  * is intended for use with devices that require some time to quiesce.
2380  *
2381  * NOTE: this will only disable the regulator output if no other consumer
2382  * devices have it enabled, the regulator device supports disabling and
2383  * machine constraints permit this operation.
2384  */
2385 int regulator_disable_deferred(struct regulator *regulator, int ms)
2386 {
2387         struct regulator_dev *rdev = regulator->rdev;
2388
2389         if (regulator->always_on)
2390                 return 0;
2391
2392         if (!ms)
2393                 return regulator_disable(regulator);
2394
2395         mutex_lock(&rdev->mutex);
2396         rdev->deferred_disables++;
2397         mutex_unlock(&rdev->mutex);
2398
2399         queue_delayed_work(system_power_efficient_wq, &rdev->disable_work,
2400                            msecs_to_jiffies(ms));
2401         return 0;
2402 }
2403 EXPORT_SYMBOL_GPL(regulator_disable_deferred);
2404
2405 static int _regulator_is_enabled(struct regulator_dev *rdev)
2406 {
2407         /* A GPIO control always takes precedence */
2408         if (rdev->ena_pin)
2409                 return rdev->ena_gpio_state;
2410
2411         /* If we don't know then assume that the regulator is always on */
2412         if (!rdev->desc->ops->is_enabled)
2413                 return 1;
2414
2415         return rdev->desc->ops->is_enabled(rdev);
2416 }
2417
2418 static int _regulator_list_voltage(struct regulator *regulator,
2419                                     unsigned selector, int lock)
2420 {
2421         struct regulator_dev *rdev = regulator->rdev;
2422         const struct regulator_ops *ops = rdev->desc->ops;
2423         int ret;
2424
2425         if (rdev->desc->fixed_uV && rdev->desc->n_voltages == 1 && !selector)
2426                 return rdev->desc->fixed_uV;
2427
2428         if (ops->list_voltage) {
2429                 if (selector >= rdev->desc->n_voltages)
2430                         return -EINVAL;
2431                 if (lock)
2432                         mutex_lock(&rdev->mutex);
2433                 ret = ops->list_voltage(rdev, selector);
2434                 if (lock)
2435                         mutex_unlock(&rdev->mutex);
2436         } else if (rdev->supply) {
2437                 ret = _regulator_list_voltage(rdev->supply, selector, lock);
2438         } else {
2439                 return -EINVAL;
2440         }
2441
2442         if (ret > 0) {
2443                 if (ret < rdev->constraints->min_uV)
2444                         ret = 0;
2445                 else if (ret > rdev->constraints->max_uV)
2446                         ret = 0;
2447         }
2448
2449         return ret;
2450 }
2451
2452 /**
2453  * regulator_is_enabled - is the regulator output enabled
2454  * @regulator: regulator source
2455  *
2456  * Returns positive if the regulator driver backing the source/client
2457  * has requested that the device be enabled, zero if it hasn't, else a
2458  * negative errno code.
2459  *
2460  * Note that the device backing this regulator handle can have multiple
2461  * users, so it might be enabled even if regulator_enable() was never
2462  * called for this particular source.
2463  */
2464 int regulator_is_enabled(struct regulator *regulator)
2465 {
2466         int ret;
2467
2468         if (regulator->always_on)
2469                 return 1;
2470
2471         mutex_lock(&regulator->rdev->mutex);
2472         ret = _regulator_is_enabled(regulator->rdev);
2473         mutex_unlock(&regulator->rdev->mutex);
2474
2475         return ret;
2476 }
2477 EXPORT_SYMBOL_GPL(regulator_is_enabled);
2478
2479 /**
2480  * regulator_can_change_voltage - check if regulator can change voltage
2481  * @regulator: regulator source
2482  *
2483  * Returns positive if the regulator driver backing the source/client
2484  * can change its voltage, false otherwise. Useful for detecting fixed
2485  * or dummy regulators and disabling voltage change logic in the client
2486  * driver.
2487  */
2488 int regulator_can_change_voltage(struct regulator *regulator)
2489 {
2490         struct regulator_dev    *rdev = regulator->rdev;
2491
2492         if (rdev->constraints &&
2493             (rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE)) {
2494                 if (rdev->desc->n_voltages - rdev->desc->linear_min_sel > 1)
2495                         return 1;
2496
2497                 if (rdev->desc->continuous_voltage_range &&
2498                     rdev->constraints->min_uV && rdev->constraints->max_uV &&
2499                     rdev->constraints->min_uV != rdev->constraints->max_uV)
2500                         return 1;
2501         }
2502
2503         return 0;
2504 }
2505 EXPORT_SYMBOL_GPL(regulator_can_change_voltage);
2506
2507 /**
2508  * regulator_count_voltages - count regulator_list_voltage() selectors
2509  * @regulator: regulator source
2510  *
2511  * Returns number of selectors, or negative errno.  Selectors are
2512  * numbered starting at zero, and typically correspond to bitfields
2513  * in hardware registers.
2514  */
2515 int regulator_count_voltages(struct regulator *regulator)
2516 {
2517         struct regulator_dev    *rdev = regulator->rdev;
2518
2519         if (rdev->desc->n_voltages)
2520                 return rdev->desc->n_voltages;
2521
2522         if (!rdev->supply)
2523                 return -EINVAL;
2524
2525         return regulator_count_voltages(rdev->supply);
2526 }
2527 EXPORT_SYMBOL_GPL(regulator_count_voltages);
2528
2529 /**
2530  * regulator_list_voltage - enumerate supported voltages
2531  * @regulator: regulator source
2532  * @selector: identify voltage to list
2533  * Context: can sleep
2534  *
2535  * Returns a voltage that can be passed to @regulator_set_voltage(),
2536  * zero if this selector code can't be used on this system, or a
2537  * negative errno.
2538  */
2539 int regulator_list_voltage(struct regulator *regulator, unsigned selector)
2540 {
2541         return _regulator_list_voltage(regulator, selector, 1);
2542 }
2543 EXPORT_SYMBOL_GPL(regulator_list_voltage);
2544
2545 /**
2546  * regulator_get_regmap - get the regulator's register map
2547  * @regulator: regulator source
2548  *
2549  * Returns the register map for the given regulator, or an ERR_PTR value
2550  * if the regulator doesn't use regmap.
2551  */
2552 struct regmap *regulator_get_regmap(struct regulator *regulator)
2553 {
2554         struct regmap *map = regulator->rdev->regmap;
2555
2556         return map ? map : ERR_PTR(-EOPNOTSUPP);
2557 }
2558
2559 /**
2560  * regulator_get_hardware_vsel_register - get the HW voltage selector register
2561  * @regulator: regulator source
2562  * @vsel_reg: voltage selector register, output parameter
2563  * @vsel_mask: mask for voltage selector bitfield, output parameter
2564  *
2565  * Returns the hardware register offset and bitmask used for setting the
2566  * regulator voltage. This might be useful when configuring voltage-scaling
2567  * hardware or firmware that can make I2C requests behind the kernel's back,
2568  * for example.
2569  *
2570  * On success, the output parameters @vsel_reg and @vsel_mask are filled in
2571  * and 0 is returned, otherwise a negative errno is returned.
2572  */
2573 int regulator_get_hardware_vsel_register(struct regulator *regulator,
2574                                          unsigned *vsel_reg,
2575                                          unsigned *vsel_mask)
2576 {
2577         struct regulator_dev *rdev = regulator->rdev;
2578         const struct regulator_ops *ops = rdev->desc->ops;
2579
2580         if (ops->set_voltage_sel != regulator_set_voltage_sel_regmap)
2581                 return -EOPNOTSUPP;
2582
2583          *vsel_reg = rdev->desc->vsel_reg;
2584          *vsel_mask = rdev->desc->vsel_mask;
2585
2586          return 0;
2587 }
2588 EXPORT_SYMBOL_GPL(regulator_get_hardware_vsel_register);
2589
2590 /**
2591  * regulator_list_hardware_vsel - get the HW-specific register value for a selector
2592  * @regulator: regulator source
2593  * @selector: identify voltage to list
2594  *
2595  * Converts the selector to a hardware-specific voltage selector that can be
2596  * directly written to the regulator registers. The address of the voltage
2597  * register can be determined by calling @regulator_get_hardware_vsel_register.
2598  *
2599  * On error a negative errno is returned.
2600  */
2601 int regulator_list_hardware_vsel(struct regulator *regulator,
2602                                  unsigned selector)
2603 {
2604         struct regulator_dev *rdev = regulator->rdev;
2605         const struct regulator_ops *ops = rdev->desc->ops;
2606
2607         if (selector >= rdev->desc->n_voltages)
2608                 return -EINVAL;
2609         if (ops->set_voltage_sel != regulator_set_voltage_sel_regmap)
2610                 return -EOPNOTSUPP;
2611
2612         return selector;
2613 }
2614 EXPORT_SYMBOL_GPL(regulator_list_hardware_vsel);
2615
2616 /**
2617  * regulator_get_linear_step - return the voltage step size between VSEL values
2618  * @regulator: regulator source
2619  *
2620  * Returns the voltage step size between VSEL values for linear
2621  * regulators, or return 0 if the regulator isn't a linear regulator.
2622  */
2623 unsigned int regulator_get_linear_step(struct regulator *regulator)
2624 {
2625         struct regulator_dev *rdev = regulator->rdev;
2626
2627         return rdev->desc->uV_step;
2628 }
2629 EXPORT_SYMBOL_GPL(regulator_get_linear_step);
2630
2631 /**
2632  * regulator_is_supported_voltage - check if a voltage range can be supported
2633  *
2634  * @regulator: Regulator to check.
2635  * @min_uV: Minimum required voltage in uV.
2636  * @max_uV: Maximum required voltage in uV.
2637  *
2638  * Returns a boolean or a negative error code.
2639  */
2640 int regulator_is_supported_voltage(struct regulator *regulator,
2641                                    int min_uV, int max_uV)
2642 {
2643         struct regulator_dev *rdev = regulator->rdev;
2644         int i, voltages, ret;
2645
2646         /* If we can't change voltage check the current voltage */
2647         if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE)) {
2648                 ret = regulator_get_voltage(regulator);
2649                 if (ret >= 0)
2650                         return min_uV <= ret && ret <= max_uV;
2651                 else
2652                         return ret;
2653         }
2654
2655         /* Any voltage within constrains range is fine? */
2656         if (rdev->desc->continuous_voltage_range)
2657                 return min_uV >= rdev->constraints->min_uV &&
2658                                 max_uV <= rdev->constraints->max_uV;
2659
2660         ret = regulator_count_voltages(regulator);
2661         if (ret < 0)
2662                 return ret;
2663         voltages = ret;
2664
2665         for (i = 0; i < voltages; i++) {
2666                 ret = regulator_list_voltage(regulator, i);
2667
2668                 if (ret >= min_uV && ret <= max_uV)
2669                         return 1;
2670         }
2671
2672         return 0;
2673 }
2674 EXPORT_SYMBOL_GPL(regulator_is_supported_voltage);
2675
2676 static int regulator_map_voltage(struct regulator_dev *rdev, int min_uV,
2677                                  int max_uV)
2678 {
2679         const struct regulator_desc *desc = rdev->desc;
2680
2681         if (desc->ops->map_voltage)
2682                 return desc->ops->map_voltage(rdev, min_uV, max_uV);
2683
2684         if (desc->ops->list_voltage == regulator_list_voltage_linear)
2685                 return regulator_map_voltage_linear(rdev, min_uV, max_uV);
2686
2687         if (desc->ops->list_voltage == regulator_list_voltage_linear_range)
2688                 return regulator_map_voltage_linear_range(rdev, min_uV, max_uV);
2689
2690         return regulator_map_voltage_iterate(rdev, min_uV, max_uV);
2691 }
2692
2693 static int _regulator_call_set_voltage(struct regulator_dev *rdev,
2694                                        int min_uV, int max_uV,
2695                                        unsigned *selector)
2696 {
2697         struct pre_voltage_change_data data;
2698         int ret;
2699
2700         data.old_uV = _regulator_get_voltage(rdev);
2701         data.min_uV = min_uV;
2702         data.max_uV = max_uV;
2703         ret = _notifier_call_chain(rdev, REGULATOR_EVENT_PRE_VOLTAGE_CHANGE,
2704                                    &data);
2705         if (ret & NOTIFY_STOP_MASK)
2706                 return -EINVAL;
2707
2708         ret = rdev->desc->ops->set_voltage(rdev, min_uV, max_uV, selector);
2709         if (ret >= 0)
2710                 return ret;
2711
2712         _notifier_call_chain(rdev, REGULATOR_EVENT_ABORT_VOLTAGE_CHANGE,
2713                              (void *)data.old_uV);
2714
2715         return ret;
2716 }
2717
2718 static int _regulator_call_set_voltage_sel(struct regulator_dev *rdev,
2719                                            int uV, unsigned selector)
2720 {
2721         struct pre_voltage_change_data data;
2722         int ret;
2723
2724         data.old_uV = _regulator_get_voltage(rdev);
2725         data.min_uV = uV;
2726         data.max_uV = uV;
2727         ret = _notifier_call_chain(rdev, REGULATOR_EVENT_PRE_VOLTAGE_CHANGE,
2728                                    &data);
2729         if (ret & NOTIFY_STOP_MASK)
2730                 return -EINVAL;
2731
2732         ret = rdev->desc->ops->set_voltage_sel(rdev, selector);
2733         if (ret >= 0)
2734                 return ret;
2735
2736         _notifier_call_chain(rdev, REGULATOR_EVENT_ABORT_VOLTAGE_CHANGE,
2737                              (void *)data.old_uV);
2738
2739         return ret;
2740 }
2741
2742 static int _regulator_do_set_voltage(struct regulator_dev *rdev,
2743                                      int min_uV, int max_uV)
2744 {
2745         int ret;
2746         int delay = 0;
2747         int best_val = 0;
2748         unsigned int selector;
2749         int old_selector = -1;
2750
2751         trace_regulator_set_voltage(rdev_get_name(rdev), min_uV, max_uV);
2752
2753         min_uV += rdev->constraints->uV_offset;
2754         max_uV += rdev->constraints->uV_offset;
2755
2756         /*
2757          * If we can't obtain the old selector there is not enough
2758          * info to call set_voltage_time_sel().
2759          */
2760         if (_regulator_is_enabled(rdev) &&
2761             rdev->desc->ops->set_voltage_time_sel &&
2762             rdev->desc->ops->get_voltage_sel) {
2763                 old_selector = rdev->desc->ops->get_voltage_sel(rdev);
2764                 if (old_selector < 0)
2765                         return old_selector;
2766         }
2767
2768         if (rdev->desc->ops->set_voltage) {
2769                 ret = _regulator_call_set_voltage(rdev, min_uV, max_uV,
2770                                                   &selector);
2771
2772                 if (ret >= 0) {
2773                         if (rdev->desc->ops->list_voltage)
2774                                 best_val = rdev->desc->ops->list_voltage(rdev,
2775                                                                          selector);
2776                         else
2777                                 best_val = _regulator_get_voltage(rdev);
2778                 }
2779
2780         } else if (rdev->desc->ops->set_voltage_sel) {
2781                 ret = regulator_map_voltage(rdev, min_uV, max_uV);
2782                 if (ret >= 0) {
2783                         best_val = rdev->desc->ops->list_voltage(rdev, ret);
2784                         if (min_uV <= best_val && max_uV >= best_val) {
2785                                 selector = ret;
2786                                 if (old_selector == selector)
2787                                         ret = 0;
2788                                 else
2789                                         ret = _regulator_call_set_voltage_sel(
2790                                                 rdev, best_val, selector);
2791                         } else {
2792                                 ret = -EINVAL;
2793                         }
2794                 }
2795         } else {
2796                 ret = -EINVAL;
2797         }
2798
2799         /* Call set_voltage_time_sel if successfully obtained old_selector */
2800         if (ret == 0 && !rdev->constraints->ramp_disable && old_selector >= 0
2801                 && old_selector != selector) {
2802
2803                 delay = rdev->desc->ops->set_voltage_time_sel(rdev,
2804                                                 old_selector, selector);
2805                 if (delay < 0) {
2806                         rdev_warn(rdev, "set_voltage_time_sel() failed: %d\n",
2807                                   delay);
2808                         delay = 0;
2809                 }
2810
2811                 /* Insert any necessary delays */
2812                 if (delay >= 1000) {
2813                         mdelay(delay / 1000);
2814                         udelay(delay % 1000);
2815                 } else if (delay) {
2816                         udelay(delay);
2817                 }
2818         }
2819
2820         if (ret == 0 && best_val >= 0) {
2821                 unsigned long data = best_val;
2822
2823                 _notifier_call_chain(rdev, REGULATOR_EVENT_VOLTAGE_CHANGE,
2824                                      (void *)data);
2825         }
2826
2827         trace_regulator_set_voltage_complete(rdev_get_name(rdev), best_val);
2828
2829         return ret;
2830 }
2831
2832 static int regulator_set_voltage_unlocked(struct regulator *regulator,
2833                                           int min_uV, int max_uV)
2834 {
2835         struct regulator_dev *rdev = regulator->rdev;
2836         int ret = 0;
2837         int old_min_uV, old_max_uV;
2838         int current_uV;
2839         int best_supply_uV = 0;
2840         int supply_change_uV = 0;
2841
2842         /* If we're setting the same range as last time the change
2843          * should be a noop (some cpufreq implementations use the same
2844          * voltage for multiple frequencies, for example).
2845          */
2846         if (regulator->min_uV == min_uV && regulator->max_uV == max_uV)
2847                 goto out;
2848
2849         /* If we're trying to set a range that overlaps the current voltage,
2850          * return successfully even though the regulator does not support
2851          * changing the voltage.
2852          */
2853         if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE)) {
2854                 current_uV = _regulator_get_voltage(rdev);
2855                 if (min_uV <= current_uV && current_uV <= max_uV) {
2856                         regulator->min_uV = min_uV;
2857                         regulator->max_uV = max_uV;
2858                         goto out;
2859                 }
2860         }
2861
2862         /* sanity check */
2863         if (!rdev->desc->ops->set_voltage &&
2864             !rdev->desc->ops->set_voltage_sel) {
2865                 ret = -EINVAL;
2866                 goto out;
2867         }
2868
2869         /* constraints check */
2870         ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
2871         if (ret < 0)
2872                 goto out;
2873
2874         /* restore original values in case of error */
2875         old_min_uV = regulator->min_uV;
2876         old_max_uV = regulator->max_uV;
2877         regulator->min_uV = min_uV;
2878         regulator->max_uV = max_uV;
2879
2880         ret = regulator_check_consumers(rdev, &min_uV, &max_uV);
2881         if (ret < 0)
2882                 goto out2;
2883
2884         if (rdev->supply && (rdev->desc->min_dropout_uV ||
2885                                 !rdev->desc->ops->get_voltage)) {
2886                 int current_supply_uV;
2887                 int selector;
2888
2889                 selector = regulator_map_voltage(rdev, min_uV, max_uV);
2890                 if (selector < 0) {
2891                         ret = selector;
2892                         goto out2;
2893                 }
2894
2895                 best_supply_uV = _regulator_list_voltage(regulator, selector, 0);
2896                 if (best_supply_uV < 0) {
2897                         ret = best_supply_uV;
2898                         goto out2;
2899                 }
2900
2901                 best_supply_uV += rdev->desc->min_dropout_uV;
2902
2903                 current_supply_uV = _regulator_get_voltage(rdev->supply->rdev);
2904                 if (current_supply_uV < 0) {
2905                         ret = current_supply_uV;
2906                         goto out2;
2907                 }
2908
2909                 supply_change_uV = best_supply_uV - current_supply_uV;
2910         }
2911
2912         if (supply_change_uV > 0) {
2913                 ret = regulator_set_voltage_unlocked(rdev->supply,
2914                                 best_supply_uV, INT_MAX);
2915                 if (ret) {
2916                         dev_err(&rdev->dev, "Failed to increase supply voltage: %d\n",
2917                                         ret);
2918                         goto out2;
2919                 }
2920         }
2921
2922         ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);
2923         if (ret < 0)
2924                 goto out2;
2925
2926         if (supply_change_uV < 0) {
2927                 ret = regulator_set_voltage_unlocked(rdev->supply,
2928                                 best_supply_uV, INT_MAX);
2929                 if (ret)
2930                         dev_warn(&rdev->dev, "Failed to decrease supply voltage: %d\n",
2931                                         ret);
2932                 /* No need to fail here */
2933                 ret = 0;
2934         }
2935
2936 out:
2937         return ret;
2938 out2:
2939         regulator->min_uV = old_min_uV;
2940         regulator->max_uV = old_max_uV;
2941
2942         return ret;
2943 }
2944
2945 /**
2946  * regulator_set_voltage - set regulator output voltage
2947  * @regulator: regulator source
2948  * @min_uV: Minimum required voltage in uV
2949  * @max_uV: Maximum acceptable voltage in uV
2950  *
2951  * Sets a voltage regulator to the desired output voltage. This can be set
2952  * during any regulator state. IOW, regulator can be disabled or enabled.
2953  *
2954  * If the regulator is enabled then the voltage will change to the new value
2955  * immediately otherwise if the regulator is disabled the regulator will
2956  * output at the new voltage when enabled.
2957  *
2958  * NOTE: If the regulator is shared between several devices then the lowest
2959  * request voltage that meets the system constraints will be used.
2960  * Regulator system constraints must be set for this regulator before
2961  * calling this function otherwise this call will fail.
2962  */
2963 int regulator_set_voltage(struct regulator *regulator, int min_uV, int max_uV)
2964 {
2965         int ret = 0;
2966
2967         regulator_lock_supply(regulator->rdev);
2968
2969         ret = regulator_set_voltage_unlocked(regulator, min_uV, max_uV);
2970
2971         regulator_unlock_supply(regulator->rdev);
2972
2973         return ret;
2974 }
2975 EXPORT_SYMBOL_GPL(regulator_set_voltage);
2976
2977 /**
2978  * regulator_set_voltage_time - get raise/fall time
2979  * @regulator: regulator source
2980  * @old_uV: starting voltage in microvolts
2981  * @new_uV: target voltage in microvolts
2982  *
2983  * Provided with the starting and ending voltage, this function attempts to
2984  * calculate the time in microseconds required to rise or fall to this new
2985  * voltage.
2986  */
2987 int regulator_set_voltage_time(struct regulator *regulator,
2988                                int old_uV, int new_uV)
2989 {
2990         struct regulator_dev *rdev = regulator->rdev;
2991         const struct regulator_ops *ops = rdev->desc->ops;
2992         int old_sel = -1;
2993         int new_sel = -1;
2994         int voltage;
2995         int i;
2996
2997         /* Currently requires operations to do this */
2998         if (!ops->list_voltage || !ops->set_voltage_time_sel
2999             || !rdev->desc->n_voltages)
3000                 return -EINVAL;
3001
3002         for (i = 0; i < rdev->desc->n_voltages; i++) {
3003                 /* We only look for exact voltage matches here */
3004                 voltage = regulator_list_voltage(regulator, i);
3005                 if (voltage < 0)
3006                         return -EINVAL;
3007                 if (voltage == 0)
3008                         continue;
3009                 if (voltage == old_uV)
3010                         old_sel = i;
3011                 if (voltage == new_uV)
3012                         new_sel = i;
3013         }
3014
3015         if (old_sel < 0 || new_sel < 0)
3016                 return -EINVAL;
3017
3018         return ops->set_voltage_time_sel(rdev, old_sel, new_sel);
3019 }
3020 EXPORT_SYMBOL_GPL(regulator_set_voltage_time);
3021
3022 /**
3023  * regulator_set_voltage_time_sel - get raise/fall time
3024  * @rdev: regulator source device
3025  * @old_selector: selector for starting voltage
3026  * @new_selector: selector for target voltage
3027  *
3028  * Provided with the starting and target voltage selectors, this function
3029  * returns time in microseconds required to rise or fall to this new voltage
3030  *
3031  * Drivers providing ramp_delay in regulation_constraints can use this as their
3032  * set_voltage_time_sel() operation.
3033  */
3034 int regulator_set_voltage_time_sel(struct regulator_dev *rdev,
3035                                    unsigned int old_selector,
3036                                    unsigned int new_selector)
3037 {
3038         unsigned int ramp_delay = 0;
3039         int old_volt, new_volt;
3040
3041         if (rdev->constraints->ramp_delay)
3042                 ramp_delay = rdev->constraints->ramp_delay;
3043         else if (rdev->desc->ramp_delay)
3044                 ramp_delay = rdev->desc->ramp_delay;
3045
3046         if (ramp_delay == 0) {
3047                 rdev_warn(rdev, "ramp_delay not set\n");
3048                 return 0;
3049         }
3050
3051         /* sanity check */
3052         if (!rdev->desc->ops->list_voltage)
3053                 return -EINVAL;
3054
3055         old_volt = rdev->desc->ops->list_voltage(rdev, old_selector);
3056         new_volt = rdev->desc->ops->list_voltage(rdev, new_selector);
3057
3058         return DIV_ROUND_UP(abs(new_volt - old_volt), ramp_delay);
3059 }
3060 EXPORT_SYMBOL_GPL(regulator_set_voltage_time_sel);
3061
3062 /**
3063  * regulator_sync_voltage - re-apply last regulator output voltage
3064  * @regulator: regulator source
3065  *
3066  * Re-apply the last configured voltage.  This is intended to be used
3067  * where some external control source the consumer is cooperating with
3068  * has caused the configured voltage to change.
3069  */
3070 int regulator_sync_voltage(struct regulator *regulator)
3071 {
3072         struct regulator_dev *rdev = regulator->rdev;
3073         int ret, min_uV, max_uV;
3074
3075         mutex_lock(&rdev->mutex);
3076
3077         if (!rdev->desc->ops->set_voltage &&
3078             !rdev->desc->ops->set_voltage_sel) {
3079                 ret = -EINVAL;
3080                 goto out;
3081         }
3082
3083         /* This is only going to work if we've had a voltage configured. */
3084         if (!regulator->min_uV && !regulator->max_uV) {
3085                 ret = -EINVAL;
3086                 goto out;
3087         }
3088
3089         min_uV = regulator->min_uV;
3090         max_uV = regulator->max_uV;
3091
3092         /* This should be a paranoia check... */
3093         ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
3094         if (ret < 0)
3095                 goto out;
3096
3097         ret = regulator_check_consumers(rdev, &min_uV, &max_uV);
3098         if (ret < 0)
3099                 goto out;
3100
3101         ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);
3102
3103 out:
3104         mutex_unlock(&rdev->mutex);
3105         return ret;
3106 }
3107 EXPORT_SYMBOL_GPL(regulator_sync_voltage);
3108
3109 static int _regulator_get_voltage(struct regulator_dev *rdev)
3110 {
3111         int sel, ret;
3112
3113         if (rdev->desc->ops->get_voltage_sel) {
3114                 sel = rdev->desc->ops->get_voltage_sel(rdev);
3115                 if (sel < 0)
3116                         return sel;
3117                 ret = rdev->desc->ops->list_voltage(rdev, sel);
3118         } else if (rdev->desc->ops->get_voltage) {
3119                 ret = rdev->desc->ops->get_voltage(rdev);
3120         } else if (rdev->desc->ops->list_voltage) {
3121                 ret = rdev->desc->ops->list_voltage(rdev, 0);
3122         } else if (rdev->desc->fixed_uV && (rdev->desc->n_voltages == 1)) {
3123                 ret = rdev->desc->fixed_uV;
3124         } else if (rdev->supply) {
3125                 ret = _regulator_get_voltage(rdev->supply->rdev);
3126         } else {
3127                 return -EINVAL;
3128         }
3129
3130         if (ret < 0)
3131                 return ret;
3132         return ret - rdev->constraints->uV_offset;
3133 }
3134
3135 /**
3136  * regulator_get_voltage - get regulator output voltage
3137  * @regulator: regulator source
3138  *
3139  * This returns the current regulator voltage in uV.
3140  *
3141  * NOTE: If the regulator is disabled it will return the voltage value. This
3142  * function should not be used to determine regulator state.
3143  */
3144 int regulator_get_voltage(struct regulator *regulator)
3145 {
3146         int ret;
3147
3148         regulator_lock_supply(regulator->rdev);
3149
3150         ret = _regulator_get_voltage(regulator->rdev);
3151
3152         regulator_unlock_supply(regulator->rdev);
3153
3154         return ret;
3155 }
3156 EXPORT_SYMBOL_GPL(regulator_get_voltage);
3157
3158 /**
3159  * regulator_set_current_limit - set regulator output current limit
3160  * @regulator: regulator source
3161  * @min_uA: Minimum supported current in uA
3162  * @max_uA: Maximum supported current in uA
3163  *
3164  * Sets current sink to the desired output current. This can be set during
3165  * any regulator state. IOW, regulator can be disabled or enabled.
3166  *
3167  * If the regulator is enabled then the current will change to the new value
3168  * immediately otherwise if the regulator is disabled the regulator will
3169  * output at the new current when enabled.
3170  *
3171  * NOTE: Regulator system constraints must be set for this regulator before
3172  * calling this function otherwise this call will fail.
3173  */
3174 int regulator_set_current_limit(struct regulator *regulator,
3175                                int min_uA, int max_uA)
3176 {
3177         struct regulator_dev *rdev = regulator->rdev;
3178         int ret;
3179
3180         mutex_lock(&rdev->mutex);
3181
3182         /* sanity check */
3183         if (!rdev->desc->ops->set_current_limit) {
3184                 ret = -EINVAL;
3185                 goto out;
3186         }
3187
3188         /* constraints check */
3189         ret = regulator_check_current_limit(rdev, &min_uA, &max_uA);
3190         if (ret < 0)
3191                 goto out;
3192
3193         ret = rdev->desc->ops->set_current_limit(rdev, min_uA, max_uA);
3194 out:
3195         mutex_unlock(&rdev->mutex);
3196         return ret;
3197 }
3198 EXPORT_SYMBOL_GPL(regulator_set_current_limit);
3199
3200 static int _regulator_get_current_limit(struct regulator_dev *rdev)
3201 {
3202         int ret;
3203
3204         mutex_lock(&rdev->mutex);
3205
3206         /* sanity check */
3207         if (!rdev->desc->ops->get_current_limit) {
3208                 ret = -EINVAL;
3209                 goto out;
3210         }
3211
3212         ret = rdev->desc->ops->get_current_limit(rdev);
3213 out:
3214         mutex_unlock(&rdev->mutex);
3215         return ret;
3216 }
3217
3218 /**
3219  * regulator_get_current_limit - get regulator output current
3220  * @regulator: regulator source
3221  *
3222  * This returns the current supplied by the specified current sink in uA.
3223  *
3224  * NOTE: If the regulator is disabled it will return the current value. This
3225  * function should not be used to determine regulator state.
3226  */
3227 int regulator_get_current_limit(struct regulator *regulator)
3228 {
3229         return _regulator_get_current_limit(regulator->rdev);
3230 }
3231 EXPORT_SYMBOL_GPL(regulator_get_current_limit);
3232
3233 /**
3234  * regulator_set_mode - set regulator operating mode
3235  * @regulator: regulator source
3236  * @mode: operating mode - one of the REGULATOR_MODE constants
3237  *
3238  * Set regulator operating mode to increase regulator efficiency or improve
3239  * regulation performance.
3240  *
3241  * NOTE: Regulator system constraints must be set for this regulator before
3242  * calling this function otherwise this call will fail.
3243  */
3244 int regulator_set_mode(struct regulator *regulator, unsigned int mode)
3245 {
3246         struct regulator_dev *rdev = regulator->rdev;
3247         int ret;
3248         int regulator_curr_mode;
3249
3250         mutex_lock(&rdev->mutex);
3251
3252         /* sanity check */
3253         if (!rdev->desc->ops->set_mode) {
3254                 ret = -EINVAL;
3255                 goto out;
3256         }
3257
3258         /* return if the same mode is requested */
3259         if (rdev->desc->ops->get_mode) {
3260                 regulator_curr_mode = rdev->desc->ops->get_mode(rdev);
3261                 if (regulator_curr_mode == mode) {
3262                         ret = 0;
3263                         goto out;
3264                 }
3265         }
3266
3267         /* constraints check */
3268         ret = regulator_mode_constrain(rdev, &mode);
3269         if (ret < 0)
3270                 goto out;
3271
3272         ret = rdev->desc->ops->set_mode(rdev, mode);
3273 out:
3274         mutex_unlock(&rdev->mutex);
3275         return ret;
3276 }
3277 EXPORT_SYMBOL_GPL(regulator_set_mode);
3278
3279 static unsigned int _regulator_get_mode(struct regulator_dev *rdev)
3280 {
3281         int ret;
3282
3283         mutex_lock(&rdev->mutex);
3284
3285         /* sanity check */
3286         if (!rdev->desc->ops->get_mode) {
3287                 ret = -EINVAL;
3288                 goto out;
3289         }
3290
3291         ret = rdev->desc->ops->get_mode(rdev);
3292 out:
3293         mutex_unlock(&rdev->mutex);
3294         return ret;
3295 }
3296
3297 /**
3298  * regulator_get_mode - get regulator operating mode
3299  * @regulator: regulator source
3300  *
3301  * Get the current regulator operating mode.
3302  */
3303 unsigned int regulator_get_mode(struct regulator *regulator)
3304 {
3305         return _regulator_get_mode(regulator->rdev);
3306 }
3307 EXPORT_SYMBOL_GPL(regulator_get_mode);
3308
3309 /**
3310  * regulator_set_load - set regulator load
3311  * @regulator: regulator source
3312  * @uA_load: load current
3313  *
3314  * Notifies the regulator core of a new device load. This is then used by
3315  * DRMS (if enabled by constraints) to set the most efficient regulator
3316  * operating mode for the new regulator loading.
3317  *
3318  * Consumer devices notify their supply regulator of the maximum power
3319  * they will require (can be taken from device datasheet in the power
3320  * consumption tables) when they change operational status and hence power
3321  * state. Examples of operational state changes that can affect power
3322  * consumption are :-
3323  *
3324  *    o Device is opened / closed.
3325  *    o Device I/O is about to begin or has just finished.
3326  *    o Device is idling in between work.
3327  *
3328  * This information is also exported via sysfs to userspace.
3329  *
3330  * DRMS will sum the total requested load on the regulator and change
3331  * to the most efficient operating mode if platform constraints allow.
3332  *
3333  * On error a negative errno is returned.
3334  */
3335 int regulator_set_load(struct regulator *regulator, int uA_load)
3336 {
3337         struct regulator_dev *rdev = regulator->rdev;
3338         int ret;
3339
3340         mutex_lock(&rdev->mutex);
3341         regulator->uA_load = uA_load;
3342         ret = drms_uA_update(rdev);
3343         mutex_unlock(&rdev->mutex);
3344
3345         return ret;
3346 }
3347 EXPORT_SYMBOL_GPL(regulator_set_load);
3348
3349 /**
3350  * regulator_allow_bypass - allow the regulator to go into bypass mode
3351  *
3352  * @regulator: Regulator to configure
3353  * @enable: enable or disable bypass mode
3354  *
3355  * Allow the regulator to go into bypass mode if all other consumers
3356  * for the regulator also enable bypass mode and the machine
3357  * constraints allow this.  Bypass mode means that the regulator is
3358  * simply passing the input directly to the output with no regulation.
3359  */
3360 int regulator_allow_bypass(struct regulator *regulator, bool enable)
3361 {
3362         struct regulator_dev *rdev = regulator->rdev;
3363         int ret = 0;
3364
3365         if (!rdev->desc->ops->set_bypass)
3366                 return 0;
3367
3368         if (rdev->constraints &&
3369             !(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_BYPASS))
3370                 return 0;
3371
3372         mutex_lock(&rdev->mutex);
3373
3374         if (enable && !regulator->bypass) {
3375                 rdev->bypass_count++;
3376
3377                 if (rdev->bypass_count == rdev->open_count) {
3378                         ret = rdev->desc->ops->set_bypass(rdev, enable);
3379                         if (ret != 0)
3380                                 rdev->bypass_count--;
3381                 }
3382
3383         } else if (!enable && regulator->bypass) {
3384                 rdev->bypass_count--;
3385
3386                 if (rdev->bypass_count != rdev->open_count) {
3387                         ret = rdev->desc->ops->set_bypass(rdev, enable);
3388                         if (ret != 0)
3389                                 rdev->bypass_count++;
3390                 }
3391         }
3392
3393         if (ret == 0)
3394                 regulator->bypass = enable;
3395
3396         mutex_unlock(&rdev->mutex);
3397
3398         return ret;
3399 }
3400 EXPORT_SYMBOL_GPL(regulator_allow_bypass);
3401
3402 /**
3403  * regulator_register_notifier - register regulator event notifier
3404  * @regulator: regulator source
3405  * @nb: notifier block
3406  *
3407  * Register notifier block to receive regulator events.
3408  */
3409 int regulator_register_notifier(struct regulator *regulator,
3410                               struct notifier_block *nb)
3411 {
3412         return blocking_notifier_chain_register(&regulator->rdev->notifier,
3413                                                 nb);
3414 }
3415 EXPORT_SYMBOL_GPL(regulator_register_notifier);
3416
3417 /**
3418  * regulator_unregister_notifier - unregister regulator event notifier
3419  * @regulator: regulator source
3420  * @nb: notifier block
3421  *
3422  * Unregister regulator event notifier block.
3423  */
3424 int regulator_unregister_notifier(struct regulator *regulator,
3425                                 struct notifier_block *nb)
3426 {
3427         return blocking_notifier_chain_unregister(&regulator->rdev->notifier,
3428                                                   nb);
3429 }
3430 EXPORT_SYMBOL_GPL(regulator_unregister_notifier);
3431
3432 /* notify regulator consumers and downstream regulator consumers.
3433  * Note mutex must be held by caller.
3434  */
3435 static int _notifier_call_chain(struct regulator_dev *rdev,
3436                                   unsigned long event, void *data)
3437 {
3438         /* call rdev chain first */
3439         return blocking_notifier_call_chain(&rdev->notifier, event, data);
3440 }
3441
3442 /**
3443  * regulator_bulk_get - get multiple regulator consumers
3444  *
3445  * @dev:           Device to supply
3446  * @num_consumers: Number of consumers to register
3447  * @consumers:     Configuration of consumers; clients are stored here.
3448  *
3449  * @return 0 on success, an errno on failure.
3450  *
3451  * This helper function allows drivers to get several regulator
3452  * consumers in one operation.  If any of the regulators cannot be
3453  * acquired then any regulators that were allocated will be freed
3454  * before returning to the caller.
3455  */
3456 int regulator_bulk_get(struct device *dev, int num_consumers,
3457                        struct regulator_bulk_data *consumers)
3458 {
3459         int i;
3460         int ret;
3461
3462         for (i = 0; i < num_consumers; i++)
3463                 consumers[i].consumer = NULL;
3464
3465         for (i = 0; i < num_consumers; i++) {
3466                 consumers[i].consumer = _regulator_get(dev,
3467                                                        consumers[i].supply,
3468                                                        false,
3469                                                        !consumers[i].optional);
3470                 if (IS_ERR(consumers[i].consumer)) {
3471                         ret = PTR_ERR(consumers[i].consumer);
3472                         dev_err(dev, "Failed to get supply '%s': %d\n",
3473                                 consumers[i].supply, ret);
3474                         consumers[i].consumer = NULL;
3475                         goto err;
3476                 }
3477         }
3478
3479         return 0;
3480
3481 err:
3482         while (--i >= 0)
3483                 regulator_put(consumers[i].consumer);
3484
3485         return ret;
3486 }
3487 EXPORT_SYMBOL_GPL(regulator_bulk_get);
3488
3489 static void regulator_bulk_enable_async(void *data, async_cookie_t cookie)
3490 {
3491         struct regulator_bulk_data *bulk = data;
3492
3493         bulk->ret = regulator_enable(bulk->consumer);
3494 }
3495
3496 /**
3497  * regulator_bulk_enable - enable multiple regulator consumers
3498  *
3499  * @num_consumers: Number of consumers
3500  * @consumers:     Consumer data; clients are stored here.
3501  * @return         0 on success, an errno on failure
3502  *
3503  * This convenience API allows consumers to enable multiple regulator
3504  * clients in a single API call.  If any consumers cannot be enabled
3505  * then any others that were enabled will be disabled again prior to
3506  * return.
3507  */
3508 int regulator_bulk_enable(int num_consumers,
3509                           struct regulator_bulk_data *consumers)
3510 {
3511         ASYNC_DOMAIN_EXCLUSIVE(async_domain);
3512         int i;
3513         int ret = 0;
3514
3515         for (i = 0; i < num_consumers; i++) {
3516                 if (consumers[i].consumer->always_on)
3517                         consumers[i].ret = 0;
3518                 else
3519                         async_schedule_domain(regulator_bulk_enable_async,
3520                                               &consumers[i], &async_domain);
3521         }
3522
3523         async_synchronize_full_domain(&async_domain);
3524
3525         /* If any consumer failed we need to unwind any that succeeded */
3526         for (i = 0; i < num_consumers; i++) {
3527                 if (consumers[i].ret != 0) {
3528                         ret = consumers[i].ret;
3529                         goto err;
3530                 }
3531         }
3532
3533         return 0;
3534
3535 err:
3536         for (i = 0; i < num_consumers; i++) {
3537                 if (consumers[i].ret < 0)
3538                         pr_err("Failed to enable %s: %d\n", consumers[i].supply,
3539                                consumers[i].ret);
3540                 else
3541                         regulator_disable(consumers[i].consumer);
3542         }
3543
3544         return ret;
3545 }
3546 EXPORT_SYMBOL_GPL(regulator_bulk_enable);
3547
3548 /**
3549  * regulator_bulk_disable - disable multiple regulator consumers
3550  *
3551  * @num_consumers: Number of consumers
3552  * @consumers:     Consumer data; clients are stored here.
3553  * @return         0 on success, an errno on failure
3554  *
3555  * This convenience API allows consumers to disable multiple regulator
3556  * clients in a single API call.  If any consumers cannot be disabled
3557  * then any others that were disabled will be enabled again prior to
3558  * return.
3559  */
3560 int regulator_bulk_disable(int num_consumers,
3561                            struct regulator_bulk_data *consumers)
3562 {
3563         int i;
3564         int ret, r;
3565
3566         for (i = num_consumers - 1; i >= 0; --i) {
3567                 ret = regulator_disable(consumers[i].consumer);
3568                 if (ret != 0)
3569                         goto err;
3570         }
3571
3572         return 0;
3573
3574 err:
3575         pr_err("Failed to disable %s: %d\n", consumers[i].supply, ret);
3576         for (++i; i < num_consumers; ++i) {
3577                 r = regulator_enable(consumers[i].consumer);
3578                 if (r != 0)
3579                         pr_err("Failed to reename %s: %d\n",
3580                                consumers[i].supply, r);
3581         }
3582
3583         return ret;
3584 }
3585 EXPORT_SYMBOL_GPL(regulator_bulk_disable);
3586
3587 /**
3588  * regulator_bulk_force_disable - force disable multiple regulator consumers
3589  *
3590  * @num_consumers: Number of consumers
3591  * @consumers:     Consumer data; clients are stored here.
3592  * @return         0 on success, an errno on failure
3593  *
3594  * This convenience API allows consumers to forcibly disable multiple regulator
3595  * clients in a single API call.
3596  * NOTE: This should be used for situations when device damage will
3597  * likely occur if the regulators are not disabled (e.g. over temp).
3598  * Although regulator_force_disable function call for some consumers can
3599  * return error numbers, the function is called for all consumers.
3600  */
3601 int regulator_bulk_force_disable(int num_consumers,
3602                            struct regulator_bulk_data *consumers)
3603 {
3604         int i;
3605         int ret;
3606
3607         for (i = 0; i < num_consumers; i++)
3608                 consumers[i].ret =
3609                             regulator_force_disable(consumers[i].consumer);
3610
3611         for (i = 0; i < num_consumers; i++) {
3612                 if (consumers[i].ret != 0) {
3613                         ret = consumers[i].ret;
3614                         goto out;
3615                 }
3616         }
3617
3618         return 0;
3619 out:
3620         return ret;
3621 }
3622 EXPORT_SYMBOL_GPL(regulator_bulk_force_disable);
3623
3624 /**
3625  * regulator_bulk_free - free multiple regulator consumers
3626  *
3627  * @num_consumers: Number of consumers
3628  * @consumers:     Consumer data; clients are stored here.
3629  *
3630  * This convenience API allows consumers to free multiple regulator
3631  * clients in a single API call.
3632  */
3633 void regulator_bulk_free(int num_consumers,
3634                          struct regulator_bulk_data *consumers)
3635 {
3636         int i;
3637
3638         for (i = 0; i < num_consumers; i++) {
3639                 regulator_put(consumers[i].consumer);
3640                 consumers[i].consumer = NULL;
3641         }
3642 }
3643 EXPORT_SYMBOL_GPL(regulator_bulk_free);
3644
3645 /**
3646  * regulator_notifier_call_chain - call regulator event notifier
3647  * @rdev: regulator source
3648  * @event: notifier block
3649  * @data: callback-specific data.
3650  *
3651  * Called by regulator drivers to notify clients a regulator event has
3652  * occurred. We also notify regulator clients downstream.
3653  * Note lock must be held by caller.
3654  */
3655 int regulator_notifier_call_chain(struct regulator_dev *rdev,
3656                                   unsigned long event, void *data)
3657 {
3658         lockdep_assert_held_once(&rdev->mutex);
3659
3660         _notifier_call_chain(rdev, event, data);
3661         return NOTIFY_DONE;
3662
3663 }
3664 EXPORT_SYMBOL_GPL(regulator_notifier_call_chain);
3665
3666 /**
3667  * regulator_mode_to_status - convert a regulator mode into a status
3668  *
3669  * @mode: Mode to convert
3670  *
3671  * Convert a regulator mode into a status.
3672  */
3673 int regulator_mode_to_status(unsigned int mode)
3674 {
3675         switch (mode) {
3676         case REGULATOR_MODE_FAST:
3677                 return REGULATOR_STATUS_FAST;
3678         case REGULATOR_MODE_NORMAL:
3679                 return REGULATOR_STATUS_NORMAL;
3680         case REGULATOR_MODE_IDLE:
3681                 return REGULATOR_STATUS_IDLE;
3682         case REGULATOR_MODE_STANDBY:
3683                 return REGULATOR_STATUS_STANDBY;
3684         default:
3685                 return REGULATOR_STATUS_UNDEFINED;
3686         }
3687 }
3688 EXPORT_SYMBOL_GPL(regulator_mode_to_status);
3689
3690 static struct attribute *regulator_dev_attrs[] = {
3691         &dev_attr_name.attr,
3692         &dev_attr_num_users.attr,
3693         &dev_attr_type.attr,
3694         &dev_attr_microvolts.attr,
3695         &dev_attr_microamps.attr,
3696         &dev_attr_opmode.attr,
3697         &dev_attr_state.attr,
3698         &dev_attr_status.attr,
3699         &dev_attr_bypass.attr,
3700         &dev_attr_requested_microamps.attr,
3701         &dev_attr_min_microvolts.attr,
3702         &dev_attr_max_microvolts.attr,
3703         &dev_attr_min_microamps.attr,
3704         &dev_attr_max_microamps.attr,
3705         &dev_attr_suspend_standby_state.attr,
3706         &dev_attr_suspend_mem_state.attr,
3707         &dev_attr_suspend_disk_state.attr,
3708         &dev_attr_suspend_standby_microvolts.attr,
3709         &dev_attr_suspend_mem_microvolts.attr,
3710         &dev_attr_suspend_disk_microvolts.attr,
3711         &dev_attr_suspend_standby_mode.attr,
3712         &dev_attr_suspend_mem_mode.attr,
3713         &dev_attr_suspend_disk_mode.attr,
3714         NULL
3715 };
3716
3717 /*
3718  * To avoid cluttering sysfs (and memory) with useless state, only
3719  * create attributes that can be meaningfully displayed.
3720  */
3721 static umode_t regulator_attr_is_visible(struct kobject *kobj,
3722                                          struct attribute *attr, int idx)
3723 {
3724         struct device *dev = kobj_to_dev(kobj);
3725         struct regulator_dev *rdev = dev_to_rdev(dev);
3726         const struct regulator_ops *ops = rdev->desc->ops;
3727         umode_t mode = attr->mode;
3728
3729         /* these three are always present */
3730         if (attr == &dev_attr_name.attr ||
3731             attr == &dev_attr_num_users.attr ||
3732             attr == &dev_attr_type.attr)
3733                 return mode;
3734
3735         /* some attributes need specific methods to be displayed */
3736         if (attr == &dev_attr_microvolts.attr) {
3737                 if ((ops->get_voltage && ops->get_voltage(rdev) >= 0) ||
3738                     (ops->get_voltage_sel && ops->get_voltage_sel(rdev) >= 0) ||
3739                     (ops->list_voltage && ops->list_voltage(rdev, 0) >= 0) ||
3740                     (rdev->desc->fixed_uV && rdev->desc->n_voltages == 1))
3741                         return mode;
3742                 return 0;
3743         }
3744
3745         if (attr == &dev_attr_microamps.attr)
3746                 return ops->get_current_limit ? mode : 0;
3747
3748         if (attr == &dev_attr_opmode.attr)
3749                 return ops->get_mode ? mode : 0;
3750
3751         if (attr == &dev_attr_state.attr)
3752                 return (rdev->ena_pin || ops->is_enabled) ? mode : 0;
3753
3754         if (attr == &dev_attr_status.attr)
3755                 return ops->get_status ? mode : 0;
3756
3757         if (attr == &dev_attr_bypass.attr)
3758                 return ops->get_bypass ? mode : 0;
3759
3760         /* some attributes are type-specific */
3761         if (attr == &dev_attr_requested_microamps.attr)
3762                 return rdev->desc->type == REGULATOR_CURRENT ? mode : 0;
3763
3764         /* constraints need specific supporting methods */
3765         if (attr == &dev_attr_min_microvolts.attr ||
3766             attr == &dev_attr_max_microvolts.attr)
3767                 return (ops->set_voltage || ops->set_voltage_sel) ? mode : 0;
3768
3769         if (attr == &dev_attr_min_microamps.attr ||
3770             attr == &dev_attr_max_microamps.attr)
3771                 return ops->set_current_limit ? mode : 0;
3772
3773         if (attr == &dev_attr_suspend_standby_state.attr ||
3774             attr == &dev_attr_suspend_mem_state.attr ||
3775             attr == &dev_attr_suspend_disk_state.attr)
3776                 return mode;
3777
3778         if (attr == &dev_attr_suspend_standby_microvolts.attr ||
3779             attr == &dev_attr_suspend_mem_microvolts.attr ||
3780             attr == &dev_attr_suspend_disk_microvolts.attr)
3781                 return ops->set_suspend_voltage ? mode : 0;
3782
3783         if (attr == &dev_attr_suspend_standby_mode.attr ||
3784             attr == &dev_attr_suspend_mem_mode.attr ||
3785             attr == &dev_attr_suspend_disk_mode.attr)
3786                 return ops->set_suspend_mode ? mode : 0;
3787
3788         return mode;
3789 }
3790
3791 static const struct attribute_group regulator_dev_group = {
3792         .attrs = regulator_dev_attrs,
3793         .is_visible = regulator_attr_is_visible,
3794 };
3795
3796 static const struct attribute_group *regulator_dev_groups[] = {
3797         &regulator_dev_group,
3798         NULL
3799 };
3800
3801 static void regulator_dev_release(struct device *dev)
3802 {
3803         struct regulator_dev *rdev = dev_get_drvdata(dev);
3804
3805         kfree(rdev->constraints);
3806         of_node_put(rdev->dev.of_node);
3807         kfree(rdev);
3808 }
3809
3810 static struct class regulator_class = {
3811         .name = "regulator",
3812         .dev_release = regulator_dev_release,
3813         .dev_groups = regulator_dev_groups,
3814 };
3815
3816 static void rdev_init_debugfs(struct regulator_dev *rdev)
3817 {
3818         struct device *parent = rdev->dev.parent;
3819         const char *rname = rdev_get_name(rdev);
3820         char name[NAME_MAX];
3821
3822         /* Avoid duplicate debugfs directory names */
3823         if (parent && rname == rdev->desc->name) {
3824                 snprintf(name, sizeof(name), "%s-%s", dev_name(parent),
3825                          rname);
3826                 rname = name;
3827         }
3828
3829         rdev->debugfs = debugfs_create_dir(rname, debugfs_root);
3830         if (!rdev->debugfs) {
3831                 rdev_warn(rdev, "Failed to create debugfs directory\n");
3832                 return;
3833         }
3834
3835         debugfs_create_u32("use_count", 0444, rdev->debugfs,
3836                            &rdev->use_count);
3837         debugfs_create_u32("open_count", 0444, rdev->debugfs,
3838                            &rdev->open_count);
3839         debugfs_create_u32("bypass_count", 0444, rdev->debugfs,
3840                            &rdev->bypass_count);
3841 }
3842
3843 /**
3844  * regulator_register - register regulator
3845  * @regulator_desc: regulator to register
3846  * @cfg: runtime configuration for regulator
3847  *
3848  * Called by regulator drivers to register a regulator.
3849  * Returns a valid pointer to struct regulator_dev on success
3850  * or an ERR_PTR() on error.
3851  */
3852 struct regulator_dev *
3853 regulator_register(const struct regulator_desc *regulator_desc,
3854                    const struct regulator_config *cfg)
3855 {
3856         const struct regulation_constraints *constraints = NULL;
3857         const struct regulator_init_data *init_data;
3858         struct regulator_config *config = NULL;
3859         static atomic_t regulator_no = ATOMIC_INIT(-1);
3860         struct regulator_dev *rdev;
3861         struct device *dev;
3862         int ret, i;
3863
3864         if (regulator_desc == NULL || cfg == NULL)
3865                 return ERR_PTR(-EINVAL);
3866
3867         dev = cfg->dev;
3868         WARN_ON(!dev);
3869
3870         if (regulator_desc->name == NULL || regulator_desc->ops == NULL)
3871                 return ERR_PTR(-EINVAL);
3872
3873         if (regulator_desc->type != REGULATOR_VOLTAGE &&
3874             regulator_desc->type != REGULATOR_CURRENT)
3875                 return ERR_PTR(-EINVAL);
3876
3877         /* Only one of each should be implemented */
3878         WARN_ON(regulator_desc->ops->get_voltage &&
3879                 regulator_desc->ops->get_voltage_sel);
3880         WARN_ON(regulator_desc->ops->set_voltage &&
3881                 regulator_desc->ops->set_voltage_sel);
3882
3883         /* If we're using selectors we must implement list_voltage. */
3884         if (regulator_desc->ops->get_voltage_sel &&
3885             !regulator_desc->ops->list_voltage) {
3886                 return ERR_PTR(-EINVAL);
3887         }
3888         if (regulator_desc->ops->set_voltage_sel &&
3889             !regulator_desc->ops->list_voltage) {
3890                 return ERR_PTR(-EINVAL);
3891         }
3892
3893         rdev = kzalloc(sizeof(struct regulator_dev), GFP_KERNEL);
3894         if (rdev == NULL)
3895                 return ERR_PTR(-ENOMEM);
3896
3897         /*
3898          * Duplicate the config so the driver could override it after
3899          * parsing init data.
3900          */
3901         config = kmemdup(cfg, sizeof(*cfg), GFP_KERNEL);
3902         if (config == NULL) {
3903                 kfree(rdev);
3904                 return ERR_PTR(-ENOMEM);
3905         }
3906
3907         init_data = regulator_of_get_init_data(dev, regulator_desc, config,
3908                                                &rdev->dev.of_node);
3909         if (!init_data) {
3910                 init_data = config->init_data;
3911                 rdev->dev.of_node = of_node_get(config->of_node);
3912         }
3913
3914         mutex_lock(&regulator_list_mutex);
3915
3916         mutex_init(&rdev->mutex);
3917         rdev->reg_data = config->driver_data;
3918         rdev->owner = regulator_desc->owner;
3919         rdev->desc = regulator_desc;
3920         if (config->regmap)
3921                 rdev->regmap = config->regmap;
3922         else if (dev_get_regmap(dev, NULL))
3923                 rdev->regmap = dev_get_regmap(dev, NULL);
3924         else if (dev->parent)
3925                 rdev->regmap = dev_get_regmap(dev->parent, NULL);
3926         INIT_LIST_HEAD(&rdev->consumer_list);
3927         INIT_LIST_HEAD(&rdev->list);
3928         BLOCKING_INIT_NOTIFIER_HEAD(&rdev->notifier);
3929         INIT_DELAYED_WORK(&rdev->disable_work, regulator_disable_work);
3930
3931         /* preform any regulator specific init */
3932         if (init_data && init_data->regulator_init) {
3933                 ret = init_data->regulator_init(rdev->reg_data);
3934                 if (ret < 0)
3935                         goto clean;
3936         }
3937
3938         if ((config->ena_gpio || config->ena_gpio_initialized) &&
3939             gpio_is_valid(config->ena_gpio)) {
3940                 ret = regulator_ena_gpio_request(rdev, config);
3941                 if (ret != 0) {
3942                         rdev_err(rdev, "Failed to request enable GPIO%d: %d\n",
3943                                  config->ena_gpio, ret);
3944                         goto clean;
3945                 }
3946         }
3947
3948         /* register with sysfs */
3949         rdev->dev.class = &regulator_class;
3950         rdev->dev.parent = dev;
3951         dev_set_name(&rdev->dev, "regulator.%lu",
3952                     (unsigned long) atomic_inc_return(&regulator_no));
3953         ret = device_register(&rdev->dev);
3954         if (ret != 0) {
3955                 put_device(&rdev->dev);
3956                 goto wash;
3957         }
3958
3959         dev_set_drvdata(&rdev->dev, rdev);
3960
3961         /* set regulator constraints */
3962         if (init_data)
3963                 constraints = &init_data->constraints;
3964
3965         ret = set_machine_constraints(rdev, constraints);
3966         if (ret < 0)
3967                 goto scrub;
3968
3969         if (init_data && init_data->supply_regulator)
3970                 rdev->supply_name = init_data->supply_regulator;
3971         else if (regulator_desc->supply_name)
3972                 rdev->supply_name = regulator_desc->supply_name;
3973
3974         /* add consumers devices */
3975         if (init_data) {
3976                 for (i = 0; i < init_data->num_consumer_supplies; i++) {
3977                         ret = set_consumer_device_supply(rdev,
3978                                 init_data->consumer_supplies[i].dev_name,
3979                                 init_data->consumer_supplies[i].supply);
3980                         if (ret < 0) {
3981                                 dev_err(dev, "Failed to set supply %s\n",
3982                                         init_data->consumer_supplies[i].supply);
3983                                 goto unset_supplies;
3984                         }
3985                 }
3986         }
3987
3988         rdev_init_debugfs(rdev);
3989 out:
3990         mutex_unlock(&regulator_list_mutex);
3991         kfree(config);
3992         return rdev;
3993
3994 unset_supplies:
3995         unset_regulator_supplies(rdev);
3996
3997 scrub:
3998         regulator_ena_gpio_free(rdev);
3999         device_unregister(&rdev->dev);
4000         /* device core frees rdev */
4001         rdev = ERR_PTR(ret);
4002         goto out;
4003
4004 wash:
4005         regulator_ena_gpio_free(rdev);
4006 clean:
4007         kfree(rdev);
4008         rdev = ERR_PTR(ret);
4009         goto out;
4010 }
4011 EXPORT_SYMBOL_GPL(regulator_register);
4012
4013 /**
4014  * regulator_unregister - unregister regulator
4015  * @rdev: regulator to unregister
4016  *
4017  * Called by regulator drivers to unregister a regulator.
4018  */
4019 void regulator_unregister(struct regulator_dev *rdev)
4020 {
4021         if (rdev == NULL)
4022                 return;
4023
4024         if (rdev->supply) {
4025                 while (rdev->use_count--)
4026                         regulator_disable(rdev->supply);
4027                 regulator_put(rdev->supply);
4028         }
4029         mutex_lock(&regulator_list_mutex);
4030         debugfs_remove_recursive(rdev->debugfs);
4031         flush_work(&rdev->disable_work.work);
4032         WARN_ON(rdev->open_count);
4033         unset_regulator_supplies(rdev);
4034         list_del(&rdev->list);
4035         mutex_unlock(&regulator_list_mutex);
4036         regulator_ena_gpio_free(rdev);
4037         device_unregister(&rdev->dev);
4038 }
4039 EXPORT_SYMBOL_GPL(regulator_unregister);
4040
4041 static int _regulator_suspend_prepare(struct device *dev, void *data)
4042 {
4043         struct regulator_dev *rdev = dev_to_rdev(dev);
4044         const suspend_state_t *state = data;
4045         int ret;
4046
4047         mutex_lock(&rdev->mutex);
4048         ret = suspend_prepare(rdev, *state);
4049         mutex_unlock(&rdev->mutex);
4050
4051         return ret;
4052 }
4053
4054 /**
4055  * regulator_suspend_prepare - prepare regulators for system wide suspend
4056  * @state: system suspend state
4057  *
4058  * Configure each regulator with it's suspend operating parameters for state.
4059  * This will usually be called by machine suspend code prior to supending.
4060  */
4061 int regulator_suspend_prepare(suspend_state_t state)
4062 {
4063         /* ON is handled by regulator active state */
4064         if (state == PM_SUSPEND_ON)
4065                 return -EINVAL;
4066
4067         return class_for_each_device(&regulator_class, NULL, &state,
4068                                      _regulator_suspend_prepare);
4069 }
4070 EXPORT_SYMBOL_GPL(regulator_suspend_prepare);
4071
4072 static int _regulator_suspend_finish(struct device *dev, void *data)
4073 {
4074         struct regulator_dev *rdev = dev_to_rdev(dev);
4075         int ret;
4076
4077         mutex_lock(&rdev->mutex);
4078         if (rdev->use_count > 0  || rdev->constraints->always_on) {
4079                 if (!_regulator_is_enabled(rdev)) {
4080                         ret = _regulator_do_enable(rdev);
4081                         if (ret)
4082                                 dev_err(dev,
4083                                         "Failed to resume regulator %d\n",
4084                                         ret);
4085                 }
4086         } else {
4087                 if (!have_full_constraints())
4088                         goto unlock;
4089                 if (!_regulator_is_enabled(rdev))
4090                         goto unlock;
4091
4092                 ret = _regulator_do_disable(rdev);
4093                 if (ret)
4094                         dev_err(dev, "Failed to suspend regulator %d\n", ret);
4095         }
4096 unlock:
4097         mutex_unlock(&rdev->mutex);
4098
4099         /* Keep processing regulators in spite of any errors */
4100         return 0;
4101 }
4102
4103 /**
4104  * regulator_suspend_finish - resume regulators from system wide suspend
4105  *
4106  * Turn on regulators that might be turned off by regulator_suspend_prepare
4107  * and that should be turned on according to the regulators properties.
4108  */
4109 int regulator_suspend_finish(void)
4110 {
4111         return class_for_each_device(&regulator_class, NULL, NULL,
4112                                      _regulator_suspend_finish);
4113 }
4114 EXPORT_SYMBOL_GPL(regulator_suspend_finish);
4115
4116 /**
4117  * regulator_has_full_constraints - the system has fully specified constraints
4118  *
4119  * Calling this function will cause the regulator API to disable all
4120  * regulators which have a zero use count and don't have an always_on
4121  * constraint in a late_initcall.
4122  *
4123  * The intention is that this will become the default behaviour in a
4124  * future kernel release so users are encouraged to use this facility
4125  * now.
4126  */
4127 void regulator_has_full_constraints(void)
4128 {
4129         has_full_constraints = 1;
4130 }
4131 EXPORT_SYMBOL_GPL(regulator_has_full_constraints);
4132
4133 /**
4134  * rdev_get_drvdata - get rdev regulator driver data
4135  * @rdev: regulator
4136  *
4137  * Get rdev regulator driver private data. This call can be used in the
4138  * regulator driver context.
4139  */
4140 void *rdev_get_drvdata(struct regulator_dev *rdev)
4141 {
4142         return rdev->reg_data;
4143 }
4144 EXPORT_SYMBOL_GPL(rdev_get_drvdata);
4145
4146 /**
4147  * regulator_get_drvdata - get regulator driver data
4148  * @regulator: regulator
4149  *
4150  * Get regulator driver private data. This call can be used in the consumer
4151  * driver context when non API regulator specific functions need to be called.
4152  */
4153 void *regulator_get_drvdata(struct regulator *regulator)
4154 {
4155         return regulator->rdev->reg_data;
4156 }
4157 EXPORT_SYMBOL_GPL(regulator_get_drvdata);
4158
4159 /**
4160  * regulator_set_drvdata - set regulator driver data
4161  * @regulator: regulator
4162  * @data: data
4163  */
4164 void regulator_set_drvdata(struct regulator *regulator, void *data)
4165 {
4166         regulator->rdev->reg_data = data;
4167 }
4168 EXPORT_SYMBOL_GPL(regulator_set_drvdata);
4169
4170 /**
4171  * regulator_get_id - get regulator ID
4172  * @rdev: regulator
4173  */
4174 int rdev_get_id(struct regulator_dev *rdev)
4175 {
4176         return rdev->desc->id;
4177 }
4178 EXPORT_SYMBOL_GPL(rdev_get_id);
4179
4180 struct device *rdev_get_dev(struct regulator_dev *rdev)
4181 {
4182         return &rdev->dev;
4183 }
4184 EXPORT_SYMBOL_GPL(rdev_get_dev);
4185
4186 void *regulator_get_init_drvdata(struct regulator_init_data *reg_init_data)
4187 {
4188         return reg_init_data->driver_data;
4189 }
4190 EXPORT_SYMBOL_GPL(regulator_get_init_drvdata);
4191
4192 #ifdef CONFIG_DEBUG_FS
4193 static ssize_t supply_map_read_file(struct file *file, char __user *user_buf,
4194                                     size_t count, loff_t *ppos)
4195 {
4196         char *buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
4197         ssize_t len, ret = 0;
4198         struct regulator_map *map;
4199
4200         if (!buf)
4201                 return -ENOMEM;
4202
4203         list_for_each_entry(map, &regulator_map_list, list) {
4204                 len = snprintf(buf + ret, PAGE_SIZE - ret,
4205                                "%s -> %s.%s\n",
4206                                rdev_get_name(map->regulator), map->dev_name,
4207                                map->supply);
4208                 if (len >= 0)
4209                         ret += len;
4210                 if (ret > PAGE_SIZE) {
4211                         ret = PAGE_SIZE;
4212                         break;
4213                 }
4214         }
4215
4216         ret = simple_read_from_buffer(user_buf, count, ppos, buf, ret);
4217
4218         kfree(buf);
4219
4220         return ret;
4221 }
4222 #endif
4223
4224 static const struct file_operations supply_map_fops = {
4225 #ifdef CONFIG_DEBUG_FS
4226         .read = supply_map_read_file,
4227         .llseek = default_llseek,
4228 #endif
4229 };
4230
4231 #ifdef CONFIG_DEBUG_FS
4232 struct summary_data {
4233         struct seq_file *s;
4234         struct regulator_dev *parent;
4235         int level;
4236 };
4237
4238 static void regulator_summary_show_subtree(struct seq_file *s,
4239                                            struct regulator_dev *rdev,
4240                                            int level);
4241
4242 static int regulator_summary_show_children(struct device *dev, void *data)
4243 {
4244         struct regulator_dev *rdev = dev_to_rdev(dev);
4245         struct summary_data *summary_data = data;
4246
4247         if (rdev->supply && rdev->supply->rdev == summary_data->parent)
4248                 regulator_summary_show_subtree(summary_data->s, rdev,
4249                                                summary_data->level + 1);
4250
4251         return 0;
4252 }
4253
4254 static void regulator_summary_show_subtree(struct seq_file *s,
4255                                            struct regulator_dev *rdev,
4256                                            int level)
4257 {
4258         struct regulation_constraints *c;
4259         struct regulator *consumer;
4260         struct summary_data summary_data;
4261
4262         if (!rdev)
4263                 return;
4264
4265         seq_printf(s, "%*s%-*s %3d %4d %6d ",
4266                    level * 3 + 1, "",
4267                    30 - level * 3, rdev_get_name(rdev),
4268                    rdev->use_count, rdev->open_count, rdev->bypass_count);
4269
4270         seq_printf(s, "%5dmV ", _regulator_get_voltage(rdev) / 1000);
4271         seq_printf(s, "%5dmA ", _regulator_get_current_limit(rdev) / 1000);
4272
4273         c = rdev->constraints;
4274         if (c) {
4275                 switch (rdev->desc->type) {
4276                 case REGULATOR_VOLTAGE:
4277                         seq_printf(s, "%5dmV %5dmV ",
4278                                    c->min_uV / 1000, c->max_uV / 1000);
4279                         break;
4280                 case REGULATOR_CURRENT:
4281                         seq_printf(s, "%5dmA %5dmA ",
4282                                    c->min_uA / 1000, c->max_uA / 1000);
4283                         break;
4284                 }
4285         }
4286
4287         seq_puts(s, "\n");
4288
4289         list_for_each_entry(consumer, &rdev->consumer_list, list) {
4290                 if (consumer->dev->class == &regulator_class)
4291                         continue;
4292
4293                 seq_printf(s, "%*s%-*s ",
4294                            (level + 1) * 3 + 1, "",
4295                            30 - (level + 1) * 3, dev_name(consumer->dev));
4296
4297                 switch (rdev->desc->type) {
4298                 case REGULATOR_VOLTAGE:
4299                         seq_printf(s, "%37dmV %5dmV",
4300                                    consumer->min_uV / 1000,
4301                                    consumer->max_uV / 1000);
4302                         break;
4303                 case REGULATOR_CURRENT:
4304                         break;
4305                 }
4306
4307                 seq_puts(s, "\n");
4308         }
4309
4310         summary_data.s = s;
4311         summary_data.level = level;
4312         summary_data.parent = rdev;
4313
4314         class_for_each_device(&regulator_class, NULL, &summary_data,
4315                               regulator_summary_show_children);
4316 }
4317
4318 static int regulator_summary_show_roots(struct device *dev, void *data)
4319 {
4320         struct regulator_dev *rdev = dev_to_rdev(dev);
4321         struct seq_file *s = data;
4322
4323         if (!rdev->supply)
4324                 regulator_summary_show_subtree(s, rdev, 0);
4325
4326         return 0;
4327 }
4328
4329 static int regulator_summary_show(struct seq_file *s, void *data)
4330 {
4331         seq_puts(s, " regulator                      use open bypass voltage current     min     max\n");
4332         seq_puts(s, "-------------------------------------------------------------------------------\n");
4333
4334         class_for_each_device(&regulator_class, NULL, s,
4335                               regulator_summary_show_roots);
4336
4337         return 0;
4338 }
4339
4340 static int regulator_summary_open(struct inode *inode, struct file *file)
4341 {
4342         return single_open(file, regulator_summary_show, inode->i_private);
4343 }
4344 #endif
4345
4346 static const struct file_operations regulator_summary_fops = {
4347 #ifdef CONFIG_DEBUG_FS
4348         .open           = regulator_summary_open,
4349         .read           = seq_read,
4350         .llseek         = seq_lseek,
4351         .release        = single_release,
4352 #endif
4353 };
4354
4355 static int __init regulator_init(void)
4356 {
4357         int ret;
4358
4359         ret = class_register(&regulator_class);
4360
4361         debugfs_root = debugfs_create_dir("regulator", NULL);
4362         if (!debugfs_root)
4363                 pr_warn("regulator: Failed to create debugfs directory\n");
4364
4365         debugfs_create_file("supply_map", 0444, debugfs_root, NULL,
4366                             &supply_map_fops);
4367
4368         debugfs_create_file("regulator_summary", 0444, debugfs_root,
4369                             NULL, &regulator_summary_fops);
4370
4371         regulator_dummy_init();
4372
4373         return ret;
4374 }
4375
4376 /* init early to allow our consumers to complete system booting */
4377 core_initcall(regulator_init);
4378
4379 static int __init regulator_late_cleanup(struct device *dev, void *data)
4380 {
4381         struct regulator_dev *rdev = dev_to_rdev(dev);
4382         const struct regulator_ops *ops = rdev->desc->ops;
4383         struct regulation_constraints *c = rdev->constraints;
4384         int enabled, ret;
4385
4386         if (c && c->always_on)
4387                 return 0;
4388
4389         if (c && !(c->valid_ops_mask & REGULATOR_CHANGE_STATUS))
4390                 return 0;
4391
4392         mutex_lock(&rdev->mutex);
4393
4394         if (rdev->use_count)
4395                 goto unlock;
4396
4397         /* If we can't read the status assume it's on. */
4398         if (ops->is_enabled)
4399                 enabled = ops->is_enabled(rdev);
4400         else
4401                 enabled = 1;
4402
4403         if (!enabled)
4404                 goto unlock;
4405
4406         if (have_full_constraints()) {
4407                 /* We log since this may kill the system if it goes
4408                  * wrong. */
4409                 rdev_info(rdev, "disabling\n");
4410                 ret = _regulator_do_disable(rdev);
4411                 if (ret != 0)
4412                         rdev_err(rdev, "couldn't disable: %d\n", ret);
4413         } else {
4414                 /* The intention is that in future we will
4415                  * assume that full constraints are provided
4416                  * so warn even if we aren't going to do
4417                  * anything here.
4418                  */
4419                 rdev_warn(rdev, "incomplete constraints, leaving on\n");
4420         }
4421
4422 unlock:
4423         mutex_unlock(&rdev->mutex);
4424
4425         return 0;
4426 }
4427
4428 static int __init regulator_init_complete(void)
4429 {
4430         /*
4431          * Since DT doesn't provide an idiomatic mechanism for
4432          * enabling full constraints and since it's much more natural
4433          * with DT to provide them just assume that a DT enabled
4434          * system has full constraints.
4435          */
4436         if (of_have_populated_dt())
4437                 has_full_constraints = true;
4438
4439         /* If we have a full configuration then disable any regulators
4440          * we have permission to change the status for and which are
4441          * not in use or always_on.  This is effectively the default
4442          * for DT and ACPI as they have full constraints.
4443          */
4444         class_for_each_device(&regulator_class, NULL, NULL,
4445                               regulator_late_cleanup);
4446
4447         return 0;
4448 }
4449 late_initcall_sync(regulator_init_complete);