Merge branch 'parisc-4.9-1' of git://git.kernel.org/pub/scm/linux/kernel/git/deller...
[cascardo/linux.git] / drivers / scsi / hpsa.c
1 /*
2  *    Disk Array driver for HP Smart Array SAS controllers
3  *    Copyright 2016 Microsemi Corporation
4  *    Copyright 2014-2015 PMC-Sierra, Inc.
5  *    Copyright 2000,2009-2015 Hewlett-Packard Development Company, L.P.
6  *
7  *    This program is free software; you can redistribute it and/or modify
8  *    it under the terms of the GNU General Public License as published by
9  *    the Free Software Foundation; version 2 of the License.
10  *
11  *    This program is distributed in the hope that it will be useful,
12  *    but WITHOUT ANY WARRANTY; without even the implied warranty of
13  *    MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
14  *    NON INFRINGEMENT.  See the GNU General Public License for more details.
15  *
16  *    Questions/Comments/Bugfixes to esc.storagedev@microsemi.com
17  *
18  */
19
20 #include <linux/module.h>
21 #include <linux/interrupt.h>
22 #include <linux/types.h>
23 #include <linux/pci.h>
24 #include <linux/pci-aspm.h>
25 #include <linux/kernel.h>
26 #include <linux/slab.h>
27 #include <linux/delay.h>
28 #include <linux/fs.h>
29 #include <linux/timer.h>
30 #include <linux/init.h>
31 #include <linux/spinlock.h>
32 #include <linux/compat.h>
33 #include <linux/blktrace_api.h>
34 #include <linux/uaccess.h>
35 #include <linux/io.h>
36 #include <linux/dma-mapping.h>
37 #include <linux/completion.h>
38 #include <linux/moduleparam.h>
39 #include <scsi/scsi.h>
40 #include <scsi/scsi_cmnd.h>
41 #include <scsi/scsi_device.h>
42 #include <scsi/scsi_host.h>
43 #include <scsi/scsi_tcq.h>
44 #include <scsi/scsi_eh.h>
45 #include <scsi/scsi_transport_sas.h>
46 #include <scsi/scsi_dbg.h>
47 #include <linux/cciss_ioctl.h>
48 #include <linux/string.h>
49 #include <linux/bitmap.h>
50 #include <linux/atomic.h>
51 #include <linux/jiffies.h>
52 #include <linux/percpu-defs.h>
53 #include <linux/percpu.h>
54 #include <asm/unaligned.h>
55 #include <asm/div64.h>
56 #include "hpsa_cmd.h"
57 #include "hpsa.h"
58
59 /*
60  * HPSA_DRIVER_VERSION must be 3 byte values (0-255) separated by '.'
61  * with an optional trailing '-' followed by a byte value (0-255).
62  */
63 #define HPSA_DRIVER_VERSION "3.4.16-0"
64 #define DRIVER_NAME "HP HPSA Driver (v " HPSA_DRIVER_VERSION ")"
65 #define HPSA "hpsa"
66
67 /* How long to wait for CISS doorbell communication */
68 #define CLEAR_EVENT_WAIT_INTERVAL 20    /* ms for each msleep() call */
69 #define MODE_CHANGE_WAIT_INTERVAL 10    /* ms for each msleep() call */
70 #define MAX_CLEAR_EVENT_WAIT 30000      /* times 20 ms = 600 s */
71 #define MAX_MODE_CHANGE_WAIT 2000       /* times 10 ms = 20 s */
72 #define MAX_IOCTL_CONFIG_WAIT 1000
73
74 /*define how many times we will try a command because of bus resets */
75 #define MAX_CMD_RETRIES 3
76
77 /* Embedded module documentation macros - see modules.h */
78 MODULE_AUTHOR("Hewlett-Packard Company");
79 MODULE_DESCRIPTION("Driver for HP Smart Array Controller version " \
80         HPSA_DRIVER_VERSION);
81 MODULE_SUPPORTED_DEVICE("HP Smart Array Controllers");
82 MODULE_VERSION(HPSA_DRIVER_VERSION);
83 MODULE_LICENSE("GPL");
84
85 static int hpsa_allow_any;
86 module_param(hpsa_allow_any, int, S_IRUGO|S_IWUSR);
87 MODULE_PARM_DESC(hpsa_allow_any,
88                 "Allow hpsa driver to access unknown HP Smart Array hardware");
89 static int hpsa_simple_mode;
90 module_param(hpsa_simple_mode, int, S_IRUGO|S_IWUSR);
91 MODULE_PARM_DESC(hpsa_simple_mode,
92         "Use 'simple mode' rather than 'performant mode'");
93
94 /* define the PCI info for the cards we can control */
95 static const struct pci_device_id hpsa_pci_device_id[] = {
96         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3241},
97         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3243},
98         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3245},
99         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3247},
100         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3249},
101         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x324A},
102         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x324B},
103         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3233},
104         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3350},
105         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3351},
106         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3352},
107         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3353},
108         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3354},
109         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3355},
110         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3356},
111         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1921},
112         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1922},
113         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1923},
114         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1924},
115         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1926},
116         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1928},
117         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1929},
118         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21BD},
119         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21BE},
120         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21BF},
121         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C0},
122         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C1},
123         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C2},
124         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C3},
125         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C4},
126         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C5},
127         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C6},
128         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C7},
129         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C8},
130         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C9},
131         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21CA},
132         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21CB},
133         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21CC},
134         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21CD},
135         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21CE},
136         {PCI_VENDOR_ID_ADAPTEC2, 0x0290, 0x9005, 0x0580},
137         {PCI_VENDOR_ID_ADAPTEC2, 0x0290, 0x9005, 0x0581},
138         {PCI_VENDOR_ID_ADAPTEC2, 0x0290, 0x9005, 0x0582},
139         {PCI_VENDOR_ID_ADAPTEC2, 0x0290, 0x9005, 0x0583},
140         {PCI_VENDOR_ID_ADAPTEC2, 0x0290, 0x9005, 0x0584},
141         {PCI_VENDOR_ID_ADAPTEC2, 0x0290, 0x9005, 0x0585},
142         {PCI_VENDOR_ID_HP_3PAR, 0x0075, 0x1590, 0x0076},
143         {PCI_VENDOR_ID_HP_3PAR, 0x0075, 0x1590, 0x0087},
144         {PCI_VENDOR_ID_HP_3PAR, 0x0075, 0x1590, 0x007D},
145         {PCI_VENDOR_ID_HP_3PAR, 0x0075, 0x1590, 0x0088},
146         {PCI_VENDOR_ID_HP, 0x333f, 0x103c, 0x333f},
147         {PCI_VENDOR_ID_HP,     PCI_ANY_ID,      PCI_ANY_ID, PCI_ANY_ID,
148                 PCI_CLASS_STORAGE_RAID << 8, 0xffff << 8, 0},
149         {0,}
150 };
151
152 MODULE_DEVICE_TABLE(pci, hpsa_pci_device_id);
153
154 /*  board_id = Subsystem Device ID & Vendor ID
155  *  product = Marketing Name for the board
156  *  access = Address of the struct of function pointers
157  */
158 static struct board_type products[] = {
159         {0x3241103C, "Smart Array P212", &SA5_access},
160         {0x3243103C, "Smart Array P410", &SA5_access},
161         {0x3245103C, "Smart Array P410i", &SA5_access},
162         {0x3247103C, "Smart Array P411", &SA5_access},
163         {0x3249103C, "Smart Array P812", &SA5_access},
164         {0x324A103C, "Smart Array P712m", &SA5_access},
165         {0x324B103C, "Smart Array P711m", &SA5_access},
166         {0x3233103C, "HP StorageWorks 1210m", &SA5_access}, /* alias of 333f */
167         {0x3350103C, "Smart Array P222", &SA5_access},
168         {0x3351103C, "Smart Array P420", &SA5_access},
169         {0x3352103C, "Smart Array P421", &SA5_access},
170         {0x3353103C, "Smart Array P822", &SA5_access},
171         {0x3354103C, "Smart Array P420i", &SA5_access},
172         {0x3355103C, "Smart Array P220i", &SA5_access},
173         {0x3356103C, "Smart Array P721m", &SA5_access},
174         {0x1921103C, "Smart Array P830i", &SA5_access},
175         {0x1922103C, "Smart Array P430", &SA5_access},
176         {0x1923103C, "Smart Array P431", &SA5_access},
177         {0x1924103C, "Smart Array P830", &SA5_access},
178         {0x1926103C, "Smart Array P731m", &SA5_access},
179         {0x1928103C, "Smart Array P230i", &SA5_access},
180         {0x1929103C, "Smart Array P530", &SA5_access},
181         {0x21BD103C, "Smart Array P244br", &SA5_access},
182         {0x21BE103C, "Smart Array P741m", &SA5_access},
183         {0x21BF103C, "Smart HBA H240ar", &SA5_access},
184         {0x21C0103C, "Smart Array P440ar", &SA5_access},
185         {0x21C1103C, "Smart Array P840ar", &SA5_access},
186         {0x21C2103C, "Smart Array P440", &SA5_access},
187         {0x21C3103C, "Smart Array P441", &SA5_access},
188         {0x21C4103C, "Smart Array", &SA5_access},
189         {0x21C5103C, "Smart Array P841", &SA5_access},
190         {0x21C6103C, "Smart HBA H244br", &SA5_access},
191         {0x21C7103C, "Smart HBA H240", &SA5_access},
192         {0x21C8103C, "Smart HBA H241", &SA5_access},
193         {0x21C9103C, "Smart Array", &SA5_access},
194         {0x21CA103C, "Smart Array P246br", &SA5_access},
195         {0x21CB103C, "Smart Array P840", &SA5_access},
196         {0x21CC103C, "Smart Array", &SA5_access},
197         {0x21CD103C, "Smart Array", &SA5_access},
198         {0x21CE103C, "Smart HBA", &SA5_access},
199         {0x05809005, "SmartHBA-SA", &SA5_access},
200         {0x05819005, "SmartHBA-SA 8i", &SA5_access},
201         {0x05829005, "SmartHBA-SA 8i8e", &SA5_access},
202         {0x05839005, "SmartHBA-SA 8e", &SA5_access},
203         {0x05849005, "SmartHBA-SA 16i", &SA5_access},
204         {0x05859005, "SmartHBA-SA 4i4e", &SA5_access},
205         {0x00761590, "HP Storage P1224 Array Controller", &SA5_access},
206         {0x00871590, "HP Storage P1224e Array Controller", &SA5_access},
207         {0x007D1590, "HP Storage P1228 Array Controller", &SA5_access},
208         {0x00881590, "HP Storage P1228e Array Controller", &SA5_access},
209         {0x333f103c, "HP StorageWorks 1210m Array Controller", &SA5_access},
210         {0xFFFF103C, "Unknown Smart Array", &SA5_access},
211 };
212
213 static struct scsi_transport_template *hpsa_sas_transport_template;
214 static int hpsa_add_sas_host(struct ctlr_info *h);
215 static void hpsa_delete_sas_host(struct ctlr_info *h);
216 static int hpsa_add_sas_device(struct hpsa_sas_node *hpsa_sas_node,
217                         struct hpsa_scsi_dev_t *device);
218 static void hpsa_remove_sas_device(struct hpsa_scsi_dev_t *device);
219 static struct hpsa_scsi_dev_t
220         *hpsa_find_device_by_sas_rphy(struct ctlr_info *h,
221                 struct sas_rphy *rphy);
222
223 #define SCSI_CMD_BUSY ((struct scsi_cmnd *)&hpsa_cmd_busy)
224 static const struct scsi_cmnd hpsa_cmd_busy;
225 #define SCSI_CMD_IDLE ((struct scsi_cmnd *)&hpsa_cmd_idle)
226 static const struct scsi_cmnd hpsa_cmd_idle;
227 static int number_of_controllers;
228
229 static irqreturn_t do_hpsa_intr_intx(int irq, void *dev_id);
230 static irqreturn_t do_hpsa_intr_msi(int irq, void *dev_id);
231 static int hpsa_ioctl(struct scsi_device *dev, int cmd, void __user *arg);
232
233 #ifdef CONFIG_COMPAT
234 static int hpsa_compat_ioctl(struct scsi_device *dev, int cmd,
235         void __user *arg);
236 #endif
237
238 static void cmd_free(struct ctlr_info *h, struct CommandList *c);
239 static struct CommandList *cmd_alloc(struct ctlr_info *h);
240 static void cmd_tagged_free(struct ctlr_info *h, struct CommandList *c);
241 static struct CommandList *cmd_tagged_alloc(struct ctlr_info *h,
242                                             struct scsi_cmnd *scmd);
243 static int fill_cmd(struct CommandList *c, u8 cmd, struct ctlr_info *h,
244         void *buff, size_t size, u16 page_code, unsigned char *scsi3addr,
245         int cmd_type);
246 static void hpsa_free_cmd_pool(struct ctlr_info *h);
247 #define VPD_PAGE (1 << 8)
248 #define HPSA_SIMPLE_ERROR_BITS 0x03
249
250 static int hpsa_scsi_queue_command(struct Scsi_Host *h, struct scsi_cmnd *cmd);
251 static void hpsa_scan_start(struct Scsi_Host *);
252 static int hpsa_scan_finished(struct Scsi_Host *sh,
253         unsigned long elapsed_time);
254 static int hpsa_change_queue_depth(struct scsi_device *sdev, int qdepth);
255
256 static int hpsa_eh_device_reset_handler(struct scsi_cmnd *scsicmd);
257 static int hpsa_eh_abort_handler(struct scsi_cmnd *scsicmd);
258 static int hpsa_slave_alloc(struct scsi_device *sdev);
259 static int hpsa_slave_configure(struct scsi_device *sdev);
260 static void hpsa_slave_destroy(struct scsi_device *sdev);
261
262 static void hpsa_update_scsi_devices(struct ctlr_info *h);
263 static int check_for_unit_attention(struct ctlr_info *h,
264         struct CommandList *c);
265 static void check_ioctl_unit_attention(struct ctlr_info *h,
266         struct CommandList *c);
267 /* performant mode helper functions */
268 static void calc_bucket_map(int *bucket, int num_buckets,
269         int nsgs, int min_blocks, u32 *bucket_map);
270 static void hpsa_free_performant_mode(struct ctlr_info *h);
271 static int hpsa_put_ctlr_into_performant_mode(struct ctlr_info *h);
272 static inline u32 next_command(struct ctlr_info *h, u8 q);
273 static int hpsa_find_cfg_addrs(struct pci_dev *pdev, void __iomem *vaddr,
274                                u32 *cfg_base_addr, u64 *cfg_base_addr_index,
275                                u64 *cfg_offset);
276 static int hpsa_pci_find_memory_BAR(struct pci_dev *pdev,
277                                     unsigned long *memory_bar);
278 static int hpsa_lookup_board_id(struct pci_dev *pdev, u32 *board_id);
279 static int hpsa_wait_for_board_state(struct pci_dev *pdev, void __iomem *vaddr,
280                                      int wait_for_ready);
281 static inline void finish_cmd(struct CommandList *c);
282 static int hpsa_wait_for_mode_change_ack(struct ctlr_info *h);
283 #define BOARD_NOT_READY 0
284 #define BOARD_READY 1
285 static void hpsa_drain_accel_commands(struct ctlr_info *h);
286 static void hpsa_flush_cache(struct ctlr_info *h);
287 static int hpsa_scsi_ioaccel_queue_command(struct ctlr_info *h,
288         struct CommandList *c, u32 ioaccel_handle, u8 *cdb, int cdb_len,
289         u8 *scsi3addr, struct hpsa_scsi_dev_t *phys_disk);
290 static void hpsa_command_resubmit_worker(struct work_struct *work);
291 static u32 lockup_detected(struct ctlr_info *h);
292 static int detect_controller_lockup(struct ctlr_info *h);
293 static void hpsa_disable_rld_caching(struct ctlr_info *h);
294 static inline int hpsa_scsi_do_report_phys_luns(struct ctlr_info *h,
295         struct ReportExtendedLUNdata *buf, int bufsize);
296 static bool hpsa_vpd_page_supported(struct ctlr_info *h,
297         unsigned char scsi3addr[], u8 page);
298 static int hpsa_luns_changed(struct ctlr_info *h);
299 static bool hpsa_cmd_dev_match(struct ctlr_info *h, struct CommandList *c,
300                                struct hpsa_scsi_dev_t *dev,
301                                unsigned char *scsi3addr);
302
303 static inline struct ctlr_info *sdev_to_hba(struct scsi_device *sdev)
304 {
305         unsigned long *priv = shost_priv(sdev->host);
306         return (struct ctlr_info *) *priv;
307 }
308
309 static inline struct ctlr_info *shost_to_hba(struct Scsi_Host *sh)
310 {
311         unsigned long *priv = shost_priv(sh);
312         return (struct ctlr_info *) *priv;
313 }
314
315 static inline bool hpsa_is_cmd_idle(struct CommandList *c)
316 {
317         return c->scsi_cmd == SCSI_CMD_IDLE;
318 }
319
320 static inline bool hpsa_is_pending_event(struct CommandList *c)
321 {
322         return c->abort_pending || c->reset_pending;
323 }
324
325 /* extract sense key, asc, and ascq from sense data.  -1 means invalid. */
326 static void decode_sense_data(const u8 *sense_data, int sense_data_len,
327                         u8 *sense_key, u8 *asc, u8 *ascq)
328 {
329         struct scsi_sense_hdr sshdr;
330         bool rc;
331
332         *sense_key = -1;
333         *asc = -1;
334         *ascq = -1;
335
336         if (sense_data_len < 1)
337                 return;
338
339         rc = scsi_normalize_sense(sense_data, sense_data_len, &sshdr);
340         if (rc) {
341                 *sense_key = sshdr.sense_key;
342                 *asc = sshdr.asc;
343                 *ascq = sshdr.ascq;
344         }
345 }
346
347 static int check_for_unit_attention(struct ctlr_info *h,
348         struct CommandList *c)
349 {
350         u8 sense_key, asc, ascq;
351         int sense_len;
352
353         if (c->err_info->SenseLen > sizeof(c->err_info->SenseInfo))
354                 sense_len = sizeof(c->err_info->SenseInfo);
355         else
356                 sense_len = c->err_info->SenseLen;
357
358         decode_sense_data(c->err_info->SenseInfo, sense_len,
359                                 &sense_key, &asc, &ascq);
360         if (sense_key != UNIT_ATTENTION || asc == 0xff)
361                 return 0;
362
363         switch (asc) {
364         case STATE_CHANGED:
365                 dev_warn(&h->pdev->dev,
366                         "%s: a state change detected, command retried\n",
367                         h->devname);
368                 break;
369         case LUN_FAILED:
370                 dev_warn(&h->pdev->dev,
371                         "%s: LUN failure detected\n", h->devname);
372                 break;
373         case REPORT_LUNS_CHANGED:
374                 dev_warn(&h->pdev->dev,
375                         "%s: report LUN data changed\n", h->devname);
376         /*
377          * Note: this REPORT_LUNS_CHANGED condition only occurs on the external
378          * target (array) devices.
379          */
380                 break;
381         case POWER_OR_RESET:
382                 dev_warn(&h->pdev->dev,
383                         "%s: a power on or device reset detected\n",
384                         h->devname);
385                 break;
386         case UNIT_ATTENTION_CLEARED:
387                 dev_warn(&h->pdev->dev,
388                         "%s: unit attention cleared by another initiator\n",
389                         h->devname);
390                 break;
391         default:
392                 dev_warn(&h->pdev->dev,
393                         "%s: unknown unit attention detected\n",
394                         h->devname);
395                 break;
396         }
397         return 1;
398 }
399
400 static int check_for_busy(struct ctlr_info *h, struct CommandList *c)
401 {
402         if (c->err_info->CommandStatus != CMD_TARGET_STATUS ||
403                 (c->err_info->ScsiStatus != SAM_STAT_BUSY &&
404                  c->err_info->ScsiStatus != SAM_STAT_TASK_SET_FULL))
405                 return 0;
406         dev_warn(&h->pdev->dev, HPSA "device busy");
407         return 1;
408 }
409
410 static u32 lockup_detected(struct ctlr_info *h);
411 static ssize_t host_show_lockup_detected(struct device *dev,
412                 struct device_attribute *attr, char *buf)
413 {
414         int ld;
415         struct ctlr_info *h;
416         struct Scsi_Host *shost = class_to_shost(dev);
417
418         h = shost_to_hba(shost);
419         ld = lockup_detected(h);
420
421         return sprintf(buf, "ld=%d\n", ld);
422 }
423
424 static ssize_t host_store_hp_ssd_smart_path_status(struct device *dev,
425                                          struct device_attribute *attr,
426                                          const char *buf, size_t count)
427 {
428         int status, len;
429         struct ctlr_info *h;
430         struct Scsi_Host *shost = class_to_shost(dev);
431         char tmpbuf[10];
432
433         if (!capable(CAP_SYS_ADMIN) || !capable(CAP_SYS_RAWIO))
434                 return -EACCES;
435         len = count > sizeof(tmpbuf) - 1 ? sizeof(tmpbuf) - 1 : count;
436         strncpy(tmpbuf, buf, len);
437         tmpbuf[len] = '\0';
438         if (sscanf(tmpbuf, "%d", &status) != 1)
439                 return -EINVAL;
440         h = shost_to_hba(shost);
441         h->acciopath_status = !!status;
442         dev_warn(&h->pdev->dev,
443                 "hpsa: HP SSD Smart Path %s via sysfs update.\n",
444                 h->acciopath_status ? "enabled" : "disabled");
445         return count;
446 }
447
448 static ssize_t host_store_raid_offload_debug(struct device *dev,
449                                          struct device_attribute *attr,
450                                          const char *buf, size_t count)
451 {
452         int debug_level, len;
453         struct ctlr_info *h;
454         struct Scsi_Host *shost = class_to_shost(dev);
455         char tmpbuf[10];
456
457         if (!capable(CAP_SYS_ADMIN) || !capable(CAP_SYS_RAWIO))
458                 return -EACCES;
459         len = count > sizeof(tmpbuf) - 1 ? sizeof(tmpbuf) - 1 : count;
460         strncpy(tmpbuf, buf, len);
461         tmpbuf[len] = '\0';
462         if (sscanf(tmpbuf, "%d", &debug_level) != 1)
463                 return -EINVAL;
464         if (debug_level < 0)
465                 debug_level = 0;
466         h = shost_to_hba(shost);
467         h->raid_offload_debug = debug_level;
468         dev_warn(&h->pdev->dev, "hpsa: Set raid_offload_debug level = %d\n",
469                 h->raid_offload_debug);
470         return count;
471 }
472
473 static ssize_t host_store_rescan(struct device *dev,
474                                  struct device_attribute *attr,
475                                  const char *buf, size_t count)
476 {
477         struct ctlr_info *h;
478         struct Scsi_Host *shost = class_to_shost(dev);
479         h = shost_to_hba(shost);
480         hpsa_scan_start(h->scsi_host);
481         return count;
482 }
483
484 static ssize_t host_show_firmware_revision(struct device *dev,
485              struct device_attribute *attr, char *buf)
486 {
487         struct ctlr_info *h;
488         struct Scsi_Host *shost = class_to_shost(dev);
489         unsigned char *fwrev;
490
491         h = shost_to_hba(shost);
492         if (!h->hba_inquiry_data)
493                 return 0;
494         fwrev = &h->hba_inquiry_data[32];
495         return snprintf(buf, 20, "%c%c%c%c\n",
496                 fwrev[0], fwrev[1], fwrev[2], fwrev[3]);
497 }
498
499 static ssize_t host_show_commands_outstanding(struct device *dev,
500              struct device_attribute *attr, char *buf)
501 {
502         struct Scsi_Host *shost = class_to_shost(dev);
503         struct ctlr_info *h = shost_to_hba(shost);
504
505         return snprintf(buf, 20, "%d\n",
506                         atomic_read(&h->commands_outstanding));
507 }
508
509 static ssize_t host_show_transport_mode(struct device *dev,
510         struct device_attribute *attr, char *buf)
511 {
512         struct ctlr_info *h;
513         struct Scsi_Host *shost = class_to_shost(dev);
514
515         h = shost_to_hba(shost);
516         return snprintf(buf, 20, "%s\n",
517                 h->transMethod & CFGTBL_Trans_Performant ?
518                         "performant" : "simple");
519 }
520
521 static ssize_t host_show_hp_ssd_smart_path_status(struct device *dev,
522         struct device_attribute *attr, char *buf)
523 {
524         struct ctlr_info *h;
525         struct Scsi_Host *shost = class_to_shost(dev);
526
527         h = shost_to_hba(shost);
528         return snprintf(buf, 30, "HP SSD Smart Path %s\n",
529                 (h->acciopath_status == 1) ?  "enabled" : "disabled");
530 }
531
532 /* List of controllers which cannot be hard reset on kexec with reset_devices */
533 static u32 unresettable_controller[] = {
534         0x324a103C, /* Smart Array P712m */
535         0x324b103C, /* Smart Array P711m */
536         0x3223103C, /* Smart Array P800 */
537         0x3234103C, /* Smart Array P400 */
538         0x3235103C, /* Smart Array P400i */
539         0x3211103C, /* Smart Array E200i */
540         0x3212103C, /* Smart Array E200 */
541         0x3213103C, /* Smart Array E200i */
542         0x3214103C, /* Smart Array E200i */
543         0x3215103C, /* Smart Array E200i */
544         0x3237103C, /* Smart Array E500 */
545         0x323D103C, /* Smart Array P700m */
546         0x40800E11, /* Smart Array 5i */
547         0x409C0E11, /* Smart Array 6400 */
548         0x409D0E11, /* Smart Array 6400 EM */
549         0x40700E11, /* Smart Array 5300 */
550         0x40820E11, /* Smart Array 532 */
551         0x40830E11, /* Smart Array 5312 */
552         0x409A0E11, /* Smart Array 641 */
553         0x409B0E11, /* Smart Array 642 */
554         0x40910E11, /* Smart Array 6i */
555 };
556
557 /* List of controllers which cannot even be soft reset */
558 static u32 soft_unresettable_controller[] = {
559         0x40800E11, /* Smart Array 5i */
560         0x40700E11, /* Smart Array 5300 */
561         0x40820E11, /* Smart Array 532 */
562         0x40830E11, /* Smart Array 5312 */
563         0x409A0E11, /* Smart Array 641 */
564         0x409B0E11, /* Smart Array 642 */
565         0x40910E11, /* Smart Array 6i */
566         /* Exclude 640x boards.  These are two pci devices in one slot
567          * which share a battery backed cache module.  One controls the
568          * cache, the other accesses the cache through the one that controls
569          * it.  If we reset the one controlling the cache, the other will
570          * likely not be happy.  Just forbid resetting this conjoined mess.
571          * The 640x isn't really supported by hpsa anyway.
572          */
573         0x409C0E11, /* Smart Array 6400 */
574         0x409D0E11, /* Smart Array 6400 EM */
575 };
576
577 static u32 needs_abort_tags_swizzled[] = {
578         0x323D103C, /* Smart Array P700m */
579         0x324a103C, /* Smart Array P712m */
580         0x324b103C, /* SmartArray P711m */
581 };
582
583 static int board_id_in_array(u32 a[], int nelems, u32 board_id)
584 {
585         int i;
586
587         for (i = 0; i < nelems; i++)
588                 if (a[i] == board_id)
589                         return 1;
590         return 0;
591 }
592
593 static int ctlr_is_hard_resettable(u32 board_id)
594 {
595         return !board_id_in_array(unresettable_controller,
596                         ARRAY_SIZE(unresettable_controller), board_id);
597 }
598
599 static int ctlr_is_soft_resettable(u32 board_id)
600 {
601         return !board_id_in_array(soft_unresettable_controller,
602                         ARRAY_SIZE(soft_unresettable_controller), board_id);
603 }
604
605 static int ctlr_is_resettable(u32 board_id)
606 {
607         return ctlr_is_hard_resettable(board_id) ||
608                 ctlr_is_soft_resettable(board_id);
609 }
610
611 static int ctlr_needs_abort_tags_swizzled(u32 board_id)
612 {
613         return board_id_in_array(needs_abort_tags_swizzled,
614                         ARRAY_SIZE(needs_abort_tags_swizzled), board_id);
615 }
616
617 static ssize_t host_show_resettable(struct device *dev,
618         struct device_attribute *attr, char *buf)
619 {
620         struct ctlr_info *h;
621         struct Scsi_Host *shost = class_to_shost(dev);
622
623         h = shost_to_hba(shost);
624         return snprintf(buf, 20, "%d\n", ctlr_is_resettable(h->board_id));
625 }
626
627 static inline int is_logical_dev_addr_mode(unsigned char scsi3addr[])
628 {
629         return (scsi3addr[3] & 0xC0) == 0x40;
630 }
631
632 static const char * const raid_label[] = { "0", "4", "1(+0)", "5", "5+1", "6",
633         "1(+0)ADM", "UNKNOWN", "PHYS DRV"
634 };
635 #define HPSA_RAID_0     0
636 #define HPSA_RAID_4     1
637 #define HPSA_RAID_1     2       /* also used for RAID 10 */
638 #define HPSA_RAID_5     3       /* also used for RAID 50 */
639 #define HPSA_RAID_51    4
640 #define HPSA_RAID_6     5       /* also used for RAID 60 */
641 #define HPSA_RAID_ADM   6       /* also used for RAID 1+0 ADM */
642 #define RAID_UNKNOWN (ARRAY_SIZE(raid_label) - 2)
643 #define PHYSICAL_DRIVE (ARRAY_SIZE(raid_label) - 1)
644
645 static inline bool is_logical_device(struct hpsa_scsi_dev_t *device)
646 {
647         return !device->physical_device;
648 }
649
650 static ssize_t raid_level_show(struct device *dev,
651              struct device_attribute *attr, char *buf)
652 {
653         ssize_t l = 0;
654         unsigned char rlevel;
655         struct ctlr_info *h;
656         struct scsi_device *sdev;
657         struct hpsa_scsi_dev_t *hdev;
658         unsigned long flags;
659
660         sdev = to_scsi_device(dev);
661         h = sdev_to_hba(sdev);
662         spin_lock_irqsave(&h->lock, flags);
663         hdev = sdev->hostdata;
664         if (!hdev) {
665                 spin_unlock_irqrestore(&h->lock, flags);
666                 return -ENODEV;
667         }
668
669         /* Is this even a logical drive? */
670         if (!is_logical_device(hdev)) {
671                 spin_unlock_irqrestore(&h->lock, flags);
672                 l = snprintf(buf, PAGE_SIZE, "N/A\n");
673                 return l;
674         }
675
676         rlevel = hdev->raid_level;
677         spin_unlock_irqrestore(&h->lock, flags);
678         if (rlevel > RAID_UNKNOWN)
679                 rlevel = RAID_UNKNOWN;
680         l = snprintf(buf, PAGE_SIZE, "RAID %s\n", raid_label[rlevel]);
681         return l;
682 }
683
684 static ssize_t lunid_show(struct device *dev,
685              struct device_attribute *attr, char *buf)
686 {
687         struct ctlr_info *h;
688         struct scsi_device *sdev;
689         struct hpsa_scsi_dev_t *hdev;
690         unsigned long flags;
691         unsigned char lunid[8];
692
693         sdev = to_scsi_device(dev);
694         h = sdev_to_hba(sdev);
695         spin_lock_irqsave(&h->lock, flags);
696         hdev = sdev->hostdata;
697         if (!hdev) {
698                 spin_unlock_irqrestore(&h->lock, flags);
699                 return -ENODEV;
700         }
701         memcpy(lunid, hdev->scsi3addr, sizeof(lunid));
702         spin_unlock_irqrestore(&h->lock, flags);
703         return snprintf(buf, 20, "0x%02x%02x%02x%02x%02x%02x%02x%02x\n",
704                 lunid[0], lunid[1], lunid[2], lunid[3],
705                 lunid[4], lunid[5], lunid[6], lunid[7]);
706 }
707
708 static ssize_t unique_id_show(struct device *dev,
709              struct device_attribute *attr, char *buf)
710 {
711         struct ctlr_info *h;
712         struct scsi_device *sdev;
713         struct hpsa_scsi_dev_t *hdev;
714         unsigned long flags;
715         unsigned char sn[16];
716
717         sdev = to_scsi_device(dev);
718         h = sdev_to_hba(sdev);
719         spin_lock_irqsave(&h->lock, flags);
720         hdev = sdev->hostdata;
721         if (!hdev) {
722                 spin_unlock_irqrestore(&h->lock, flags);
723                 return -ENODEV;
724         }
725         memcpy(sn, hdev->device_id, sizeof(sn));
726         spin_unlock_irqrestore(&h->lock, flags);
727         return snprintf(buf, 16 * 2 + 2,
728                         "%02X%02X%02X%02X%02X%02X%02X%02X"
729                         "%02X%02X%02X%02X%02X%02X%02X%02X\n",
730                         sn[0], sn[1], sn[2], sn[3],
731                         sn[4], sn[5], sn[6], sn[7],
732                         sn[8], sn[9], sn[10], sn[11],
733                         sn[12], sn[13], sn[14], sn[15]);
734 }
735
736 static ssize_t sas_address_show(struct device *dev,
737               struct device_attribute *attr, char *buf)
738 {
739         struct ctlr_info *h;
740         struct scsi_device *sdev;
741         struct hpsa_scsi_dev_t *hdev;
742         unsigned long flags;
743         u64 sas_address;
744
745         sdev = to_scsi_device(dev);
746         h = sdev_to_hba(sdev);
747         spin_lock_irqsave(&h->lock, flags);
748         hdev = sdev->hostdata;
749         if (!hdev || is_logical_device(hdev) || !hdev->expose_device) {
750                 spin_unlock_irqrestore(&h->lock, flags);
751                 return -ENODEV;
752         }
753         sas_address = hdev->sas_address;
754         spin_unlock_irqrestore(&h->lock, flags);
755
756         return snprintf(buf, PAGE_SIZE, "0x%016llx\n", sas_address);
757 }
758
759 static ssize_t host_show_hp_ssd_smart_path_enabled(struct device *dev,
760              struct device_attribute *attr, char *buf)
761 {
762         struct ctlr_info *h;
763         struct scsi_device *sdev;
764         struct hpsa_scsi_dev_t *hdev;
765         unsigned long flags;
766         int offload_enabled;
767
768         sdev = to_scsi_device(dev);
769         h = sdev_to_hba(sdev);
770         spin_lock_irqsave(&h->lock, flags);
771         hdev = sdev->hostdata;
772         if (!hdev) {
773                 spin_unlock_irqrestore(&h->lock, flags);
774                 return -ENODEV;
775         }
776         offload_enabled = hdev->offload_enabled;
777         spin_unlock_irqrestore(&h->lock, flags);
778         return snprintf(buf, 20, "%d\n", offload_enabled);
779 }
780
781 #define MAX_PATHS 8
782 static ssize_t path_info_show(struct device *dev,
783              struct device_attribute *attr, char *buf)
784 {
785         struct ctlr_info *h;
786         struct scsi_device *sdev;
787         struct hpsa_scsi_dev_t *hdev;
788         unsigned long flags;
789         int i;
790         int output_len = 0;
791         u8 box;
792         u8 bay;
793         u8 path_map_index = 0;
794         char *active;
795         unsigned char phys_connector[2];
796
797         sdev = to_scsi_device(dev);
798         h = sdev_to_hba(sdev);
799         spin_lock_irqsave(&h->devlock, flags);
800         hdev = sdev->hostdata;
801         if (!hdev) {
802                 spin_unlock_irqrestore(&h->devlock, flags);
803                 return -ENODEV;
804         }
805
806         bay = hdev->bay;
807         for (i = 0; i < MAX_PATHS; i++) {
808                 path_map_index = 1<<i;
809                 if (i == hdev->active_path_index)
810                         active = "Active";
811                 else if (hdev->path_map & path_map_index)
812                         active = "Inactive";
813                 else
814                         continue;
815
816                 output_len += scnprintf(buf + output_len,
817                                 PAGE_SIZE - output_len,
818                                 "[%d:%d:%d:%d] %20.20s ",
819                                 h->scsi_host->host_no,
820                                 hdev->bus, hdev->target, hdev->lun,
821                                 scsi_device_type(hdev->devtype));
822
823                 if (hdev->devtype == TYPE_RAID || is_logical_device(hdev)) {
824                         output_len += scnprintf(buf + output_len,
825                                                 PAGE_SIZE - output_len,
826                                                 "%s\n", active);
827                         continue;
828                 }
829
830                 box = hdev->box[i];
831                 memcpy(&phys_connector, &hdev->phys_connector[i],
832                         sizeof(phys_connector));
833                 if (phys_connector[0] < '0')
834                         phys_connector[0] = '0';
835                 if (phys_connector[1] < '0')
836                         phys_connector[1] = '0';
837                 output_len += scnprintf(buf + output_len,
838                                 PAGE_SIZE - output_len,
839                                 "PORT: %.2s ",
840                                 phys_connector);
841                 if ((hdev->devtype == TYPE_DISK || hdev->devtype == TYPE_ZBC) &&
842                         hdev->expose_device) {
843                         if (box == 0 || box == 0xFF) {
844                                 output_len += scnprintf(buf + output_len,
845                                         PAGE_SIZE - output_len,
846                                         "BAY: %hhu %s\n",
847                                         bay, active);
848                         } else {
849                                 output_len += scnprintf(buf + output_len,
850                                         PAGE_SIZE - output_len,
851                                         "BOX: %hhu BAY: %hhu %s\n",
852                                         box, bay, active);
853                         }
854                 } else if (box != 0 && box != 0xFF) {
855                         output_len += scnprintf(buf + output_len,
856                                 PAGE_SIZE - output_len, "BOX: %hhu %s\n",
857                                 box, active);
858                 } else
859                         output_len += scnprintf(buf + output_len,
860                                 PAGE_SIZE - output_len, "%s\n", active);
861         }
862
863         spin_unlock_irqrestore(&h->devlock, flags);
864         return output_len;
865 }
866
867 static DEVICE_ATTR(raid_level, S_IRUGO, raid_level_show, NULL);
868 static DEVICE_ATTR(lunid, S_IRUGO, lunid_show, NULL);
869 static DEVICE_ATTR(unique_id, S_IRUGO, unique_id_show, NULL);
870 static DEVICE_ATTR(rescan, S_IWUSR, NULL, host_store_rescan);
871 static DEVICE_ATTR(sas_address, S_IRUGO, sas_address_show, NULL);
872 static DEVICE_ATTR(hp_ssd_smart_path_enabled, S_IRUGO,
873                         host_show_hp_ssd_smart_path_enabled, NULL);
874 static DEVICE_ATTR(path_info, S_IRUGO, path_info_show, NULL);
875 static DEVICE_ATTR(hp_ssd_smart_path_status, S_IWUSR|S_IRUGO|S_IROTH,
876                 host_show_hp_ssd_smart_path_status,
877                 host_store_hp_ssd_smart_path_status);
878 static DEVICE_ATTR(raid_offload_debug, S_IWUSR, NULL,
879                         host_store_raid_offload_debug);
880 static DEVICE_ATTR(firmware_revision, S_IRUGO,
881         host_show_firmware_revision, NULL);
882 static DEVICE_ATTR(commands_outstanding, S_IRUGO,
883         host_show_commands_outstanding, NULL);
884 static DEVICE_ATTR(transport_mode, S_IRUGO,
885         host_show_transport_mode, NULL);
886 static DEVICE_ATTR(resettable, S_IRUGO,
887         host_show_resettable, NULL);
888 static DEVICE_ATTR(lockup_detected, S_IRUGO,
889         host_show_lockup_detected, NULL);
890
891 static struct device_attribute *hpsa_sdev_attrs[] = {
892         &dev_attr_raid_level,
893         &dev_attr_lunid,
894         &dev_attr_unique_id,
895         &dev_attr_hp_ssd_smart_path_enabled,
896         &dev_attr_path_info,
897         &dev_attr_sas_address,
898         NULL,
899 };
900
901 static struct device_attribute *hpsa_shost_attrs[] = {
902         &dev_attr_rescan,
903         &dev_attr_firmware_revision,
904         &dev_attr_commands_outstanding,
905         &dev_attr_transport_mode,
906         &dev_attr_resettable,
907         &dev_attr_hp_ssd_smart_path_status,
908         &dev_attr_raid_offload_debug,
909         &dev_attr_lockup_detected,
910         NULL,
911 };
912
913 #define HPSA_NRESERVED_CMDS     (HPSA_CMDS_RESERVED_FOR_ABORTS + \
914                 HPSA_CMDS_RESERVED_FOR_DRIVER + HPSA_MAX_CONCURRENT_PASSTHRUS)
915
916 static struct scsi_host_template hpsa_driver_template = {
917         .module                 = THIS_MODULE,
918         .name                   = HPSA,
919         .proc_name              = HPSA,
920         .queuecommand           = hpsa_scsi_queue_command,
921         .scan_start             = hpsa_scan_start,
922         .scan_finished          = hpsa_scan_finished,
923         .change_queue_depth     = hpsa_change_queue_depth,
924         .this_id                = -1,
925         .use_clustering         = ENABLE_CLUSTERING,
926         .eh_abort_handler       = hpsa_eh_abort_handler,
927         .eh_device_reset_handler = hpsa_eh_device_reset_handler,
928         .ioctl                  = hpsa_ioctl,
929         .slave_alloc            = hpsa_slave_alloc,
930         .slave_configure        = hpsa_slave_configure,
931         .slave_destroy          = hpsa_slave_destroy,
932 #ifdef CONFIG_COMPAT
933         .compat_ioctl           = hpsa_compat_ioctl,
934 #endif
935         .sdev_attrs = hpsa_sdev_attrs,
936         .shost_attrs = hpsa_shost_attrs,
937         .max_sectors = 8192,
938         .no_write_same = 1,
939 };
940
941 static inline u32 next_command(struct ctlr_info *h, u8 q)
942 {
943         u32 a;
944         struct reply_queue_buffer *rq = &h->reply_queue[q];
945
946         if (h->transMethod & CFGTBL_Trans_io_accel1)
947                 return h->access.command_completed(h, q);
948
949         if (unlikely(!(h->transMethod & CFGTBL_Trans_Performant)))
950                 return h->access.command_completed(h, q);
951
952         if ((rq->head[rq->current_entry] & 1) == rq->wraparound) {
953                 a = rq->head[rq->current_entry];
954                 rq->current_entry++;
955                 atomic_dec(&h->commands_outstanding);
956         } else {
957                 a = FIFO_EMPTY;
958         }
959         /* Check for wraparound */
960         if (rq->current_entry == h->max_commands) {
961                 rq->current_entry = 0;
962                 rq->wraparound ^= 1;
963         }
964         return a;
965 }
966
967 /*
968  * There are some special bits in the bus address of the
969  * command that we have to set for the controller to know
970  * how to process the command:
971  *
972  * Normal performant mode:
973  * bit 0: 1 means performant mode, 0 means simple mode.
974  * bits 1-3 = block fetch table entry
975  * bits 4-6 = command type (== 0)
976  *
977  * ioaccel1 mode:
978  * bit 0 = "performant mode" bit.
979  * bits 1-3 = block fetch table entry
980  * bits 4-6 = command type (== 110)
981  * (command type is needed because ioaccel1 mode
982  * commands are submitted through the same register as normal
983  * mode commands, so this is how the controller knows whether
984  * the command is normal mode or ioaccel1 mode.)
985  *
986  * ioaccel2 mode:
987  * bit 0 = "performant mode" bit.
988  * bits 1-4 = block fetch table entry (note extra bit)
989  * bits 4-6 = not needed, because ioaccel2 mode has
990  * a separate special register for submitting commands.
991  */
992
993 /*
994  * set_performant_mode: Modify the tag for cciss performant
995  * set bit 0 for pull model, bits 3-1 for block fetch
996  * register number
997  */
998 #define DEFAULT_REPLY_QUEUE (-1)
999 static void set_performant_mode(struct ctlr_info *h, struct CommandList *c,
1000                                         int reply_queue)
1001 {
1002         if (likely(h->transMethod & CFGTBL_Trans_Performant)) {
1003                 c->busaddr |= 1 | (h->blockFetchTable[c->Header.SGList] << 1);
1004                 if (unlikely(!h->msix_vector))
1005                         return;
1006                 if (likely(reply_queue == DEFAULT_REPLY_QUEUE))
1007                         c->Header.ReplyQueue =
1008                                 raw_smp_processor_id() % h->nreply_queues;
1009                 else
1010                         c->Header.ReplyQueue = reply_queue % h->nreply_queues;
1011         }
1012 }
1013
1014 static void set_ioaccel1_performant_mode(struct ctlr_info *h,
1015                                                 struct CommandList *c,
1016                                                 int reply_queue)
1017 {
1018         struct io_accel1_cmd *cp = &h->ioaccel_cmd_pool[c->cmdindex];
1019
1020         /*
1021          * Tell the controller to post the reply to the queue for this
1022          * processor.  This seems to give the best I/O throughput.
1023          */
1024         if (likely(reply_queue == DEFAULT_REPLY_QUEUE))
1025                 cp->ReplyQueue = smp_processor_id() % h->nreply_queues;
1026         else
1027                 cp->ReplyQueue = reply_queue % h->nreply_queues;
1028         /*
1029          * Set the bits in the address sent down to include:
1030          *  - performant mode bit (bit 0)
1031          *  - pull count (bits 1-3)
1032          *  - command type (bits 4-6)
1033          */
1034         c->busaddr |= 1 | (h->ioaccel1_blockFetchTable[c->Header.SGList] << 1) |
1035                                         IOACCEL1_BUSADDR_CMDTYPE;
1036 }
1037
1038 static void set_ioaccel2_tmf_performant_mode(struct ctlr_info *h,
1039                                                 struct CommandList *c,
1040                                                 int reply_queue)
1041 {
1042         struct hpsa_tmf_struct *cp = (struct hpsa_tmf_struct *)
1043                 &h->ioaccel2_cmd_pool[c->cmdindex];
1044
1045         /* Tell the controller to post the reply to the queue for this
1046          * processor.  This seems to give the best I/O throughput.
1047          */
1048         if (likely(reply_queue == DEFAULT_REPLY_QUEUE))
1049                 cp->reply_queue = smp_processor_id() % h->nreply_queues;
1050         else
1051                 cp->reply_queue = reply_queue % h->nreply_queues;
1052         /* Set the bits in the address sent down to include:
1053          *  - performant mode bit not used in ioaccel mode 2
1054          *  - pull count (bits 0-3)
1055          *  - command type isn't needed for ioaccel2
1056          */
1057         c->busaddr |= h->ioaccel2_blockFetchTable[0];
1058 }
1059
1060 static void set_ioaccel2_performant_mode(struct ctlr_info *h,
1061                                                 struct CommandList *c,
1062                                                 int reply_queue)
1063 {
1064         struct io_accel2_cmd *cp = &h->ioaccel2_cmd_pool[c->cmdindex];
1065
1066         /*
1067          * Tell the controller to post the reply to the queue for this
1068          * processor.  This seems to give the best I/O throughput.
1069          */
1070         if (likely(reply_queue == DEFAULT_REPLY_QUEUE))
1071                 cp->reply_queue = smp_processor_id() % h->nreply_queues;
1072         else
1073                 cp->reply_queue = reply_queue % h->nreply_queues;
1074         /*
1075          * Set the bits in the address sent down to include:
1076          *  - performant mode bit not used in ioaccel mode 2
1077          *  - pull count (bits 0-3)
1078          *  - command type isn't needed for ioaccel2
1079          */
1080         c->busaddr |= (h->ioaccel2_blockFetchTable[cp->sg_count]);
1081 }
1082
1083 static int is_firmware_flash_cmd(u8 *cdb)
1084 {
1085         return cdb[0] == BMIC_WRITE && cdb[6] == BMIC_FLASH_FIRMWARE;
1086 }
1087
1088 /*
1089  * During firmware flash, the heartbeat register may not update as frequently
1090  * as it should.  So we dial down lockup detection during firmware flash. and
1091  * dial it back up when firmware flash completes.
1092  */
1093 #define HEARTBEAT_SAMPLE_INTERVAL_DURING_FLASH (240 * HZ)
1094 #define HEARTBEAT_SAMPLE_INTERVAL (30 * HZ)
1095 static void dial_down_lockup_detection_during_fw_flash(struct ctlr_info *h,
1096                 struct CommandList *c)
1097 {
1098         if (!is_firmware_flash_cmd(c->Request.CDB))
1099                 return;
1100         atomic_inc(&h->firmware_flash_in_progress);
1101         h->heartbeat_sample_interval = HEARTBEAT_SAMPLE_INTERVAL_DURING_FLASH;
1102 }
1103
1104 static void dial_up_lockup_detection_on_fw_flash_complete(struct ctlr_info *h,
1105                 struct CommandList *c)
1106 {
1107         if (is_firmware_flash_cmd(c->Request.CDB) &&
1108                 atomic_dec_and_test(&h->firmware_flash_in_progress))
1109                 h->heartbeat_sample_interval = HEARTBEAT_SAMPLE_INTERVAL;
1110 }
1111
1112 static void __enqueue_cmd_and_start_io(struct ctlr_info *h,
1113         struct CommandList *c, int reply_queue)
1114 {
1115         dial_down_lockup_detection_during_fw_flash(h, c);
1116         atomic_inc(&h->commands_outstanding);
1117         switch (c->cmd_type) {
1118         case CMD_IOACCEL1:
1119                 set_ioaccel1_performant_mode(h, c, reply_queue);
1120                 writel(c->busaddr, h->vaddr + SA5_REQUEST_PORT_OFFSET);
1121                 break;
1122         case CMD_IOACCEL2:
1123                 set_ioaccel2_performant_mode(h, c, reply_queue);
1124                 writel(c->busaddr, h->vaddr + IOACCEL2_INBOUND_POSTQ_32);
1125                 break;
1126         case IOACCEL2_TMF:
1127                 set_ioaccel2_tmf_performant_mode(h, c, reply_queue);
1128                 writel(c->busaddr, h->vaddr + IOACCEL2_INBOUND_POSTQ_32);
1129                 break;
1130         default:
1131                 set_performant_mode(h, c, reply_queue);
1132                 h->access.submit_command(h, c);
1133         }
1134 }
1135
1136 static void enqueue_cmd_and_start_io(struct ctlr_info *h, struct CommandList *c)
1137 {
1138         if (unlikely(hpsa_is_pending_event(c)))
1139                 return finish_cmd(c);
1140
1141         __enqueue_cmd_and_start_io(h, c, DEFAULT_REPLY_QUEUE);
1142 }
1143
1144 static inline int is_hba_lunid(unsigned char scsi3addr[])
1145 {
1146         return memcmp(scsi3addr, RAID_CTLR_LUNID, 8) == 0;
1147 }
1148
1149 static inline int is_scsi_rev_5(struct ctlr_info *h)
1150 {
1151         if (!h->hba_inquiry_data)
1152                 return 0;
1153         if ((h->hba_inquiry_data[2] & 0x07) == 5)
1154                 return 1;
1155         return 0;
1156 }
1157
1158 static int hpsa_find_target_lun(struct ctlr_info *h,
1159         unsigned char scsi3addr[], int bus, int *target, int *lun)
1160 {
1161         /* finds an unused bus, target, lun for a new physical device
1162          * assumes h->devlock is held
1163          */
1164         int i, found = 0;
1165         DECLARE_BITMAP(lun_taken, HPSA_MAX_DEVICES);
1166
1167         bitmap_zero(lun_taken, HPSA_MAX_DEVICES);
1168
1169         for (i = 0; i < h->ndevices; i++) {
1170                 if (h->dev[i]->bus == bus && h->dev[i]->target != -1)
1171                         __set_bit(h->dev[i]->target, lun_taken);
1172         }
1173
1174         i = find_first_zero_bit(lun_taken, HPSA_MAX_DEVICES);
1175         if (i < HPSA_MAX_DEVICES) {
1176                 /* *bus = 1; */
1177                 *target = i;
1178                 *lun = 0;
1179                 found = 1;
1180         }
1181         return !found;
1182 }
1183
1184 static void hpsa_show_dev_msg(const char *level, struct ctlr_info *h,
1185         struct hpsa_scsi_dev_t *dev, char *description)
1186 {
1187 #define LABEL_SIZE 25
1188         char label[LABEL_SIZE];
1189
1190         if (h == NULL || h->pdev == NULL || h->scsi_host == NULL)
1191                 return;
1192
1193         switch (dev->devtype) {
1194         case TYPE_RAID:
1195                 snprintf(label, LABEL_SIZE, "controller");
1196                 break;
1197         case TYPE_ENCLOSURE:
1198                 snprintf(label, LABEL_SIZE, "enclosure");
1199                 break;
1200         case TYPE_DISK:
1201         case TYPE_ZBC:
1202                 if (dev->external)
1203                         snprintf(label, LABEL_SIZE, "external");
1204                 else if (!is_logical_dev_addr_mode(dev->scsi3addr))
1205                         snprintf(label, LABEL_SIZE, "%s",
1206                                 raid_label[PHYSICAL_DRIVE]);
1207                 else
1208                         snprintf(label, LABEL_SIZE, "RAID-%s",
1209                                 dev->raid_level > RAID_UNKNOWN ? "?" :
1210                                 raid_label[dev->raid_level]);
1211                 break;
1212         case TYPE_ROM:
1213                 snprintf(label, LABEL_SIZE, "rom");
1214                 break;
1215         case TYPE_TAPE:
1216                 snprintf(label, LABEL_SIZE, "tape");
1217                 break;
1218         case TYPE_MEDIUM_CHANGER:
1219                 snprintf(label, LABEL_SIZE, "changer");
1220                 break;
1221         default:
1222                 snprintf(label, LABEL_SIZE, "UNKNOWN");
1223                 break;
1224         }
1225
1226         dev_printk(level, &h->pdev->dev,
1227                         "scsi %d:%d:%d:%d: %s %s %.8s %.16s %s SSDSmartPathCap%c En%c Exp=%d\n",
1228                         h->scsi_host->host_no, dev->bus, dev->target, dev->lun,
1229                         description,
1230                         scsi_device_type(dev->devtype),
1231                         dev->vendor,
1232                         dev->model,
1233                         label,
1234                         dev->offload_config ? '+' : '-',
1235                         dev->offload_enabled ? '+' : '-',
1236                         dev->expose_device);
1237 }
1238
1239 /* Add an entry into h->dev[] array. */
1240 static int hpsa_scsi_add_entry(struct ctlr_info *h,
1241                 struct hpsa_scsi_dev_t *device,
1242                 struct hpsa_scsi_dev_t *added[], int *nadded)
1243 {
1244         /* assumes h->devlock is held */
1245         int n = h->ndevices;
1246         int i;
1247         unsigned char addr1[8], addr2[8];
1248         struct hpsa_scsi_dev_t *sd;
1249
1250         if (n >= HPSA_MAX_DEVICES) {
1251                 dev_err(&h->pdev->dev, "too many devices, some will be "
1252                         "inaccessible.\n");
1253                 return -1;
1254         }
1255
1256         /* physical devices do not have lun or target assigned until now. */
1257         if (device->lun != -1)
1258                 /* Logical device, lun is already assigned. */
1259                 goto lun_assigned;
1260
1261         /* If this device a non-zero lun of a multi-lun device
1262          * byte 4 of the 8-byte LUN addr will contain the logical
1263          * unit no, zero otherwise.
1264          */
1265         if (device->scsi3addr[4] == 0) {
1266                 /* This is not a non-zero lun of a multi-lun device */
1267                 if (hpsa_find_target_lun(h, device->scsi3addr,
1268                         device->bus, &device->target, &device->lun) != 0)
1269                         return -1;
1270                 goto lun_assigned;
1271         }
1272
1273         /* This is a non-zero lun of a multi-lun device.
1274          * Search through our list and find the device which
1275          * has the same 8 byte LUN address, excepting byte 4 and 5.
1276          * Assign the same bus and target for this new LUN.
1277          * Use the logical unit number from the firmware.
1278          */
1279         memcpy(addr1, device->scsi3addr, 8);
1280         addr1[4] = 0;
1281         addr1[5] = 0;
1282         for (i = 0; i < n; i++) {
1283                 sd = h->dev[i];
1284                 memcpy(addr2, sd->scsi3addr, 8);
1285                 addr2[4] = 0;
1286                 addr2[5] = 0;
1287                 /* differ only in byte 4 and 5? */
1288                 if (memcmp(addr1, addr2, 8) == 0) {
1289                         device->bus = sd->bus;
1290                         device->target = sd->target;
1291                         device->lun = device->scsi3addr[4];
1292                         break;
1293                 }
1294         }
1295         if (device->lun == -1) {
1296                 dev_warn(&h->pdev->dev, "physical device with no LUN=0,"
1297                         " suspect firmware bug or unsupported hardware "
1298                         "configuration.\n");
1299                         return -1;
1300         }
1301
1302 lun_assigned:
1303
1304         h->dev[n] = device;
1305         h->ndevices++;
1306         added[*nadded] = device;
1307         (*nadded)++;
1308         hpsa_show_dev_msg(KERN_INFO, h, device,
1309                 device->expose_device ? "added" : "masked");
1310         device->offload_to_be_enabled = device->offload_enabled;
1311         device->offload_enabled = 0;
1312         return 0;
1313 }
1314
1315 /* Update an entry in h->dev[] array. */
1316 static void hpsa_scsi_update_entry(struct ctlr_info *h,
1317         int entry, struct hpsa_scsi_dev_t *new_entry)
1318 {
1319         int offload_enabled;
1320         /* assumes h->devlock is held */
1321         BUG_ON(entry < 0 || entry >= HPSA_MAX_DEVICES);
1322
1323         /* Raid level changed. */
1324         h->dev[entry]->raid_level = new_entry->raid_level;
1325
1326         /* Raid offload parameters changed.  Careful about the ordering. */
1327         if (new_entry->offload_config && new_entry->offload_enabled) {
1328                 /*
1329                  * if drive is newly offload_enabled, we want to copy the
1330                  * raid map data first.  If previously offload_enabled and
1331                  * offload_config were set, raid map data had better be
1332                  * the same as it was before.  if raid map data is changed
1333                  * then it had better be the case that
1334                  * h->dev[entry]->offload_enabled is currently 0.
1335                  */
1336                 h->dev[entry]->raid_map = new_entry->raid_map;
1337                 h->dev[entry]->ioaccel_handle = new_entry->ioaccel_handle;
1338         }
1339         if (new_entry->hba_ioaccel_enabled) {
1340                 h->dev[entry]->ioaccel_handle = new_entry->ioaccel_handle;
1341                 wmb(); /* set ioaccel_handle *before* hba_ioaccel_enabled */
1342         }
1343         h->dev[entry]->hba_ioaccel_enabled = new_entry->hba_ioaccel_enabled;
1344         h->dev[entry]->offload_config = new_entry->offload_config;
1345         h->dev[entry]->offload_to_mirror = new_entry->offload_to_mirror;
1346         h->dev[entry]->queue_depth = new_entry->queue_depth;
1347
1348         /*
1349          * We can turn off ioaccel offload now, but need to delay turning
1350          * it on until we can update h->dev[entry]->phys_disk[], but we
1351          * can't do that until all the devices are updated.
1352          */
1353         h->dev[entry]->offload_to_be_enabled = new_entry->offload_enabled;
1354         if (!new_entry->offload_enabled)
1355                 h->dev[entry]->offload_enabled = 0;
1356
1357         offload_enabled = h->dev[entry]->offload_enabled;
1358         h->dev[entry]->offload_enabled = h->dev[entry]->offload_to_be_enabled;
1359         hpsa_show_dev_msg(KERN_INFO, h, h->dev[entry], "updated");
1360         h->dev[entry]->offload_enabled = offload_enabled;
1361 }
1362
1363 /* Replace an entry from h->dev[] array. */
1364 static void hpsa_scsi_replace_entry(struct ctlr_info *h,
1365         int entry, struct hpsa_scsi_dev_t *new_entry,
1366         struct hpsa_scsi_dev_t *added[], int *nadded,
1367         struct hpsa_scsi_dev_t *removed[], int *nremoved)
1368 {
1369         /* assumes h->devlock is held */
1370         BUG_ON(entry < 0 || entry >= HPSA_MAX_DEVICES);
1371         removed[*nremoved] = h->dev[entry];
1372         (*nremoved)++;
1373
1374         /*
1375          * New physical devices won't have target/lun assigned yet
1376          * so we need to preserve the values in the slot we are replacing.
1377          */
1378         if (new_entry->target == -1) {
1379                 new_entry->target = h->dev[entry]->target;
1380                 new_entry->lun = h->dev[entry]->lun;
1381         }
1382
1383         h->dev[entry] = new_entry;
1384         added[*nadded] = new_entry;
1385         (*nadded)++;
1386         hpsa_show_dev_msg(KERN_INFO, h, new_entry, "replaced");
1387         new_entry->offload_to_be_enabled = new_entry->offload_enabled;
1388         new_entry->offload_enabled = 0;
1389 }
1390
1391 /* Remove an entry from h->dev[] array. */
1392 static void hpsa_scsi_remove_entry(struct ctlr_info *h, int entry,
1393         struct hpsa_scsi_dev_t *removed[], int *nremoved)
1394 {
1395         /* assumes h->devlock is held */
1396         int i;
1397         struct hpsa_scsi_dev_t *sd;
1398
1399         BUG_ON(entry < 0 || entry >= HPSA_MAX_DEVICES);
1400
1401         sd = h->dev[entry];
1402         removed[*nremoved] = h->dev[entry];
1403         (*nremoved)++;
1404
1405         for (i = entry; i < h->ndevices-1; i++)
1406                 h->dev[i] = h->dev[i+1];
1407         h->ndevices--;
1408         hpsa_show_dev_msg(KERN_INFO, h, sd, "removed");
1409 }
1410
1411 #define SCSI3ADDR_EQ(a, b) ( \
1412         (a)[7] == (b)[7] && \
1413         (a)[6] == (b)[6] && \
1414         (a)[5] == (b)[5] && \
1415         (a)[4] == (b)[4] && \
1416         (a)[3] == (b)[3] && \
1417         (a)[2] == (b)[2] && \
1418         (a)[1] == (b)[1] && \
1419         (a)[0] == (b)[0])
1420
1421 static void fixup_botched_add(struct ctlr_info *h,
1422         struct hpsa_scsi_dev_t *added)
1423 {
1424         /* called when scsi_add_device fails in order to re-adjust
1425          * h->dev[] to match the mid layer's view.
1426          */
1427         unsigned long flags;
1428         int i, j;
1429
1430         spin_lock_irqsave(&h->lock, flags);
1431         for (i = 0; i < h->ndevices; i++) {
1432                 if (h->dev[i] == added) {
1433                         for (j = i; j < h->ndevices-1; j++)
1434                                 h->dev[j] = h->dev[j+1];
1435                         h->ndevices--;
1436                         break;
1437                 }
1438         }
1439         spin_unlock_irqrestore(&h->lock, flags);
1440         kfree(added);
1441 }
1442
1443 static inline int device_is_the_same(struct hpsa_scsi_dev_t *dev1,
1444         struct hpsa_scsi_dev_t *dev2)
1445 {
1446         /* we compare everything except lun and target as these
1447          * are not yet assigned.  Compare parts likely
1448          * to differ first
1449          */
1450         if (memcmp(dev1->scsi3addr, dev2->scsi3addr,
1451                 sizeof(dev1->scsi3addr)) != 0)
1452                 return 0;
1453         if (memcmp(dev1->device_id, dev2->device_id,
1454                 sizeof(dev1->device_id)) != 0)
1455                 return 0;
1456         if (memcmp(dev1->model, dev2->model, sizeof(dev1->model)) != 0)
1457                 return 0;
1458         if (memcmp(dev1->vendor, dev2->vendor, sizeof(dev1->vendor)) != 0)
1459                 return 0;
1460         if (dev1->devtype != dev2->devtype)
1461                 return 0;
1462         if (dev1->bus != dev2->bus)
1463                 return 0;
1464         return 1;
1465 }
1466
1467 static inline int device_updated(struct hpsa_scsi_dev_t *dev1,
1468         struct hpsa_scsi_dev_t *dev2)
1469 {
1470         /* Device attributes that can change, but don't mean
1471          * that the device is a different device, nor that the OS
1472          * needs to be told anything about the change.
1473          */
1474         if (dev1->raid_level != dev2->raid_level)
1475                 return 1;
1476         if (dev1->offload_config != dev2->offload_config)
1477                 return 1;
1478         if (dev1->offload_enabled != dev2->offload_enabled)
1479                 return 1;
1480         if (!is_logical_dev_addr_mode(dev1->scsi3addr))
1481                 if (dev1->queue_depth != dev2->queue_depth)
1482                         return 1;
1483         return 0;
1484 }
1485
1486 /* Find needle in haystack.  If exact match found, return DEVICE_SAME,
1487  * and return needle location in *index.  If scsi3addr matches, but not
1488  * vendor, model, serial num, etc. return DEVICE_CHANGED, and return needle
1489  * location in *index.
1490  * In the case of a minor device attribute change, such as RAID level, just
1491  * return DEVICE_UPDATED, along with the updated device's location in index.
1492  * If needle not found, return DEVICE_NOT_FOUND.
1493  */
1494 static int hpsa_scsi_find_entry(struct hpsa_scsi_dev_t *needle,
1495         struct hpsa_scsi_dev_t *haystack[], int haystack_size,
1496         int *index)
1497 {
1498         int i;
1499 #define DEVICE_NOT_FOUND 0
1500 #define DEVICE_CHANGED 1
1501 #define DEVICE_SAME 2
1502 #define DEVICE_UPDATED 3
1503         if (needle == NULL)
1504                 return DEVICE_NOT_FOUND;
1505
1506         for (i = 0; i < haystack_size; i++) {
1507                 if (haystack[i] == NULL) /* previously removed. */
1508                         continue;
1509                 if (SCSI3ADDR_EQ(needle->scsi3addr, haystack[i]->scsi3addr)) {
1510                         *index = i;
1511                         if (device_is_the_same(needle, haystack[i])) {
1512                                 if (device_updated(needle, haystack[i]))
1513                                         return DEVICE_UPDATED;
1514                                 return DEVICE_SAME;
1515                         } else {
1516                                 /* Keep offline devices offline */
1517                                 if (needle->volume_offline)
1518                                         return DEVICE_NOT_FOUND;
1519                                 return DEVICE_CHANGED;
1520                         }
1521                 }
1522         }
1523         *index = -1;
1524         return DEVICE_NOT_FOUND;
1525 }
1526
1527 static void hpsa_monitor_offline_device(struct ctlr_info *h,
1528                                         unsigned char scsi3addr[])
1529 {
1530         struct offline_device_entry *device;
1531         unsigned long flags;
1532
1533         /* Check to see if device is already on the list */
1534         spin_lock_irqsave(&h->offline_device_lock, flags);
1535         list_for_each_entry(device, &h->offline_device_list, offline_list) {
1536                 if (memcmp(device->scsi3addr, scsi3addr,
1537                         sizeof(device->scsi3addr)) == 0) {
1538                         spin_unlock_irqrestore(&h->offline_device_lock, flags);
1539                         return;
1540                 }
1541         }
1542         spin_unlock_irqrestore(&h->offline_device_lock, flags);
1543
1544         /* Device is not on the list, add it. */
1545         device = kmalloc(sizeof(*device), GFP_KERNEL);
1546         if (!device) {
1547                 dev_warn(&h->pdev->dev, "out of memory in %s\n", __func__);
1548                 return;
1549         }
1550         memcpy(device->scsi3addr, scsi3addr, sizeof(device->scsi3addr));
1551         spin_lock_irqsave(&h->offline_device_lock, flags);
1552         list_add_tail(&device->offline_list, &h->offline_device_list);
1553         spin_unlock_irqrestore(&h->offline_device_lock, flags);
1554 }
1555
1556 /* Print a message explaining various offline volume states */
1557 static void hpsa_show_volume_status(struct ctlr_info *h,
1558         struct hpsa_scsi_dev_t *sd)
1559 {
1560         if (sd->volume_offline == HPSA_VPD_LV_STATUS_UNSUPPORTED)
1561                 dev_info(&h->pdev->dev,
1562                         "C%d:B%d:T%d:L%d Volume status is not available through vital product data pages.\n",
1563                         h->scsi_host->host_no,
1564                         sd->bus, sd->target, sd->lun);
1565         switch (sd->volume_offline) {
1566         case HPSA_LV_OK:
1567                 break;
1568         case HPSA_LV_UNDERGOING_ERASE:
1569                 dev_info(&h->pdev->dev,
1570                         "C%d:B%d:T%d:L%d Volume is undergoing background erase process.\n",
1571                         h->scsi_host->host_no,
1572                         sd->bus, sd->target, sd->lun);
1573                 break;
1574         case HPSA_LV_NOT_AVAILABLE:
1575                 dev_info(&h->pdev->dev,
1576                         "C%d:B%d:T%d:L%d Volume is waiting for transforming volume.\n",
1577                         h->scsi_host->host_no,
1578                         sd->bus, sd->target, sd->lun);
1579                 break;
1580         case HPSA_LV_UNDERGOING_RPI:
1581                 dev_info(&h->pdev->dev,
1582                         "C%d:B%d:T%d:L%d Volume is undergoing rapid parity init.\n",
1583                         h->scsi_host->host_no,
1584                         sd->bus, sd->target, sd->lun);
1585                 break;
1586         case HPSA_LV_PENDING_RPI:
1587                 dev_info(&h->pdev->dev,
1588                         "C%d:B%d:T%d:L%d Volume is queued for rapid parity initialization process.\n",
1589                         h->scsi_host->host_no,
1590                         sd->bus, sd->target, sd->lun);
1591                 break;
1592         case HPSA_LV_ENCRYPTED_NO_KEY:
1593                 dev_info(&h->pdev->dev,
1594                         "C%d:B%d:T%d:L%d Volume is encrypted and cannot be accessed because key is not present.\n",
1595                         h->scsi_host->host_no,
1596                         sd->bus, sd->target, sd->lun);
1597                 break;
1598         case HPSA_LV_PLAINTEXT_IN_ENCRYPT_ONLY_CONTROLLER:
1599                 dev_info(&h->pdev->dev,
1600                         "C%d:B%d:T%d:L%d Volume is not encrypted and cannot be accessed because controller is in encryption-only mode.\n",
1601                         h->scsi_host->host_no,
1602                         sd->bus, sd->target, sd->lun);
1603                 break;
1604         case HPSA_LV_UNDERGOING_ENCRYPTION:
1605                 dev_info(&h->pdev->dev,
1606                         "C%d:B%d:T%d:L%d Volume is undergoing encryption process.\n",
1607                         h->scsi_host->host_no,
1608                         sd->bus, sd->target, sd->lun);
1609                 break;
1610         case HPSA_LV_UNDERGOING_ENCRYPTION_REKEYING:
1611                 dev_info(&h->pdev->dev,
1612                         "C%d:B%d:T%d:L%d Volume is undergoing encryption re-keying process.\n",
1613                         h->scsi_host->host_no,
1614                         sd->bus, sd->target, sd->lun);
1615                 break;
1616         case HPSA_LV_ENCRYPTED_IN_NON_ENCRYPTED_CONTROLLER:
1617                 dev_info(&h->pdev->dev,
1618                         "C%d:B%d:T%d:L%d Volume is encrypted and cannot be accessed because controller does not have encryption enabled.\n",
1619                         h->scsi_host->host_no,
1620                         sd->bus, sd->target, sd->lun);
1621                 break;
1622         case HPSA_LV_PENDING_ENCRYPTION:
1623                 dev_info(&h->pdev->dev,
1624                         "C%d:B%d:T%d:L%d Volume is pending migration to encrypted state, but process has not started.\n",
1625                         h->scsi_host->host_no,
1626                         sd->bus, sd->target, sd->lun);
1627                 break;
1628         case HPSA_LV_PENDING_ENCRYPTION_REKEYING:
1629                 dev_info(&h->pdev->dev,
1630                         "C%d:B%d:T%d:L%d Volume is encrypted and is pending encryption rekeying.\n",
1631                         h->scsi_host->host_no,
1632                         sd->bus, sd->target, sd->lun);
1633                 break;
1634         }
1635 }
1636
1637 /*
1638  * Figure the list of physical drive pointers for a logical drive with
1639  * raid offload configured.
1640  */
1641 static void hpsa_figure_phys_disk_ptrs(struct ctlr_info *h,
1642                                 struct hpsa_scsi_dev_t *dev[], int ndevices,
1643                                 struct hpsa_scsi_dev_t *logical_drive)
1644 {
1645         struct raid_map_data *map = &logical_drive->raid_map;
1646         struct raid_map_disk_data *dd = &map->data[0];
1647         int i, j;
1648         int total_disks_per_row = le16_to_cpu(map->data_disks_per_row) +
1649                                 le16_to_cpu(map->metadata_disks_per_row);
1650         int nraid_map_entries = le16_to_cpu(map->row_cnt) *
1651                                 le16_to_cpu(map->layout_map_count) *
1652                                 total_disks_per_row;
1653         int nphys_disk = le16_to_cpu(map->layout_map_count) *
1654                                 total_disks_per_row;
1655         int qdepth;
1656
1657         if (nraid_map_entries > RAID_MAP_MAX_ENTRIES)
1658                 nraid_map_entries = RAID_MAP_MAX_ENTRIES;
1659
1660         logical_drive->nphysical_disks = nraid_map_entries;
1661
1662         qdepth = 0;
1663         for (i = 0; i < nraid_map_entries; i++) {
1664                 logical_drive->phys_disk[i] = NULL;
1665                 if (!logical_drive->offload_config)
1666                         continue;
1667                 for (j = 0; j < ndevices; j++) {
1668                         if (dev[j] == NULL)
1669                                 continue;
1670                         if (dev[j]->devtype != TYPE_DISK &&
1671                             dev[j]->devtype != TYPE_ZBC)
1672                                 continue;
1673                         if (is_logical_device(dev[j]))
1674                                 continue;
1675                         if (dev[j]->ioaccel_handle != dd[i].ioaccel_handle)
1676                                 continue;
1677
1678                         logical_drive->phys_disk[i] = dev[j];
1679                         if (i < nphys_disk)
1680                                 qdepth = min(h->nr_cmds, qdepth +
1681                                     logical_drive->phys_disk[i]->queue_depth);
1682                         break;
1683                 }
1684
1685                 /*
1686                  * This can happen if a physical drive is removed and
1687                  * the logical drive is degraded.  In that case, the RAID
1688                  * map data will refer to a physical disk which isn't actually
1689                  * present.  And in that case offload_enabled should already
1690                  * be 0, but we'll turn it off here just in case
1691                  */
1692                 if (!logical_drive->phys_disk[i]) {
1693                         logical_drive->offload_enabled = 0;
1694                         logical_drive->offload_to_be_enabled = 0;
1695                         logical_drive->queue_depth = 8;
1696                 }
1697         }
1698         if (nraid_map_entries)
1699                 /*
1700                  * This is correct for reads, too high for full stripe writes,
1701                  * way too high for partial stripe writes
1702                  */
1703                 logical_drive->queue_depth = qdepth;
1704         else
1705                 logical_drive->queue_depth = h->nr_cmds;
1706 }
1707
1708 static void hpsa_update_log_drive_phys_drive_ptrs(struct ctlr_info *h,
1709                                 struct hpsa_scsi_dev_t *dev[], int ndevices)
1710 {
1711         int i;
1712
1713         for (i = 0; i < ndevices; i++) {
1714                 if (dev[i] == NULL)
1715                         continue;
1716                 if (dev[i]->devtype != TYPE_DISK &&
1717                     dev[i]->devtype != TYPE_ZBC)
1718                         continue;
1719                 if (!is_logical_device(dev[i]))
1720                         continue;
1721
1722                 /*
1723                  * If offload is currently enabled, the RAID map and
1724                  * phys_disk[] assignment *better* not be changing
1725                  * and since it isn't changing, we do not need to
1726                  * update it.
1727                  */
1728                 if (dev[i]->offload_enabled)
1729                         continue;
1730
1731                 hpsa_figure_phys_disk_ptrs(h, dev, ndevices, dev[i]);
1732         }
1733 }
1734
1735 static int hpsa_add_device(struct ctlr_info *h, struct hpsa_scsi_dev_t *device)
1736 {
1737         int rc = 0;
1738
1739         if (!h->scsi_host)
1740                 return 1;
1741
1742         if (is_logical_device(device)) /* RAID */
1743                 rc = scsi_add_device(h->scsi_host, device->bus,
1744                                         device->target, device->lun);
1745         else /* HBA */
1746                 rc = hpsa_add_sas_device(h->sas_host, device);
1747
1748         return rc;
1749 }
1750
1751 static int hpsa_find_outstanding_commands_for_dev(struct ctlr_info *h,
1752                                                 struct hpsa_scsi_dev_t *dev)
1753 {
1754         int i;
1755         int count = 0;
1756
1757         for (i = 0; i < h->nr_cmds; i++) {
1758                 struct CommandList *c = h->cmd_pool + i;
1759                 int refcount = atomic_inc_return(&c->refcount);
1760
1761                 if (refcount > 1 && hpsa_cmd_dev_match(h, c, dev,
1762                                 dev->scsi3addr)) {
1763                         unsigned long flags;
1764
1765                         spin_lock_irqsave(&h->lock, flags);     /* Implied MB */
1766                         if (!hpsa_is_cmd_idle(c))
1767                                 ++count;
1768                         spin_unlock_irqrestore(&h->lock, flags);
1769                 }
1770
1771                 cmd_free(h, c);
1772         }
1773
1774         return count;
1775 }
1776
1777 static void hpsa_wait_for_outstanding_commands_for_dev(struct ctlr_info *h,
1778                                                 struct hpsa_scsi_dev_t *device)
1779 {
1780         int cmds = 0;
1781         int waits = 0;
1782
1783         while (1) {
1784                 cmds = hpsa_find_outstanding_commands_for_dev(h, device);
1785                 if (cmds == 0)
1786                         break;
1787                 if (++waits > 20)
1788                         break;
1789                 dev_warn(&h->pdev->dev,
1790                         "%s: removing device with %d outstanding commands!\n",
1791                         __func__, cmds);
1792                 msleep(1000);
1793         }
1794 }
1795
1796 static void hpsa_remove_device(struct ctlr_info *h,
1797                         struct hpsa_scsi_dev_t *device)
1798 {
1799         struct scsi_device *sdev = NULL;
1800
1801         if (!h->scsi_host)
1802                 return;
1803
1804         if (is_logical_device(device)) { /* RAID */
1805                 sdev = scsi_device_lookup(h->scsi_host, device->bus,
1806                                                 device->target, device->lun);
1807                 if (sdev) {
1808                         scsi_remove_device(sdev);
1809                         scsi_device_put(sdev);
1810                 } else {
1811                         /*
1812                          * We don't expect to get here.  Future commands
1813                          * to this device will get a selection timeout as
1814                          * if the device were gone.
1815                          */
1816                         hpsa_show_dev_msg(KERN_WARNING, h, device,
1817                                         "didn't find device for removal.");
1818                 }
1819         } else { /* HBA */
1820
1821                 device->removed = 1;
1822                 hpsa_wait_for_outstanding_commands_for_dev(h, device);
1823
1824                 hpsa_remove_sas_device(device);
1825         }
1826 }
1827
1828 static void adjust_hpsa_scsi_table(struct ctlr_info *h,
1829         struct hpsa_scsi_dev_t *sd[], int nsds)
1830 {
1831         /* sd contains scsi3 addresses and devtypes, and inquiry
1832          * data.  This function takes what's in sd to be the current
1833          * reality and updates h->dev[] to reflect that reality.
1834          */
1835         int i, entry, device_change, changes = 0;
1836         struct hpsa_scsi_dev_t *csd;
1837         unsigned long flags;
1838         struct hpsa_scsi_dev_t **added, **removed;
1839         int nadded, nremoved;
1840
1841         /*
1842          * A reset can cause a device status to change
1843          * re-schedule the scan to see what happened.
1844          */
1845         if (h->reset_in_progress) {
1846                 h->drv_req_rescan = 1;
1847                 return;
1848         }
1849
1850         added = kzalloc(sizeof(*added) * HPSA_MAX_DEVICES, GFP_KERNEL);
1851         removed = kzalloc(sizeof(*removed) * HPSA_MAX_DEVICES, GFP_KERNEL);
1852
1853         if (!added || !removed) {
1854                 dev_warn(&h->pdev->dev, "out of memory in "
1855                         "adjust_hpsa_scsi_table\n");
1856                 goto free_and_out;
1857         }
1858
1859         spin_lock_irqsave(&h->devlock, flags);
1860
1861         /* find any devices in h->dev[] that are not in
1862          * sd[] and remove them from h->dev[], and for any
1863          * devices which have changed, remove the old device
1864          * info and add the new device info.
1865          * If minor device attributes change, just update
1866          * the existing device structure.
1867          */
1868         i = 0;
1869         nremoved = 0;
1870         nadded = 0;
1871         while (i < h->ndevices) {
1872                 csd = h->dev[i];
1873                 device_change = hpsa_scsi_find_entry(csd, sd, nsds, &entry);
1874                 if (device_change == DEVICE_NOT_FOUND) {
1875                         changes++;
1876                         hpsa_scsi_remove_entry(h, i, removed, &nremoved);
1877                         continue; /* remove ^^^, hence i not incremented */
1878                 } else if (device_change == DEVICE_CHANGED) {
1879                         changes++;
1880                         hpsa_scsi_replace_entry(h, i, sd[entry],
1881                                 added, &nadded, removed, &nremoved);
1882                         /* Set it to NULL to prevent it from being freed
1883                          * at the bottom of hpsa_update_scsi_devices()
1884                          */
1885                         sd[entry] = NULL;
1886                 } else if (device_change == DEVICE_UPDATED) {
1887                         hpsa_scsi_update_entry(h, i, sd[entry]);
1888                 }
1889                 i++;
1890         }
1891
1892         /* Now, make sure every device listed in sd[] is also
1893          * listed in h->dev[], adding them if they aren't found
1894          */
1895
1896         for (i = 0; i < nsds; i++) {
1897                 if (!sd[i]) /* if already added above. */
1898                         continue;
1899
1900                 /* Don't add devices which are NOT READY, FORMAT IN PROGRESS
1901                  * as the SCSI mid-layer does not handle such devices well.
1902                  * It relentlessly loops sending TUR at 3Hz, then READ(10)
1903                  * at 160Hz, and prevents the system from coming up.
1904                  */
1905                 if (sd[i]->volume_offline) {
1906                         hpsa_show_volume_status(h, sd[i]);
1907                         hpsa_show_dev_msg(KERN_INFO, h, sd[i], "offline");
1908                         continue;
1909                 }
1910
1911                 device_change = hpsa_scsi_find_entry(sd[i], h->dev,
1912                                         h->ndevices, &entry);
1913                 if (device_change == DEVICE_NOT_FOUND) {
1914                         changes++;
1915                         if (hpsa_scsi_add_entry(h, sd[i], added, &nadded) != 0)
1916                                 break;
1917                         sd[i] = NULL; /* prevent from being freed later. */
1918                 } else if (device_change == DEVICE_CHANGED) {
1919                         /* should never happen... */
1920                         changes++;
1921                         dev_warn(&h->pdev->dev,
1922                                 "device unexpectedly changed.\n");
1923                         /* but if it does happen, we just ignore that device */
1924                 }
1925         }
1926         hpsa_update_log_drive_phys_drive_ptrs(h, h->dev, h->ndevices);
1927
1928         /* Now that h->dev[]->phys_disk[] is coherent, we can enable
1929          * any logical drives that need it enabled.
1930          */
1931         for (i = 0; i < h->ndevices; i++) {
1932                 if (h->dev[i] == NULL)
1933                         continue;
1934                 h->dev[i]->offload_enabled = h->dev[i]->offload_to_be_enabled;
1935         }
1936
1937         spin_unlock_irqrestore(&h->devlock, flags);
1938
1939         /* Monitor devices which are in one of several NOT READY states to be
1940          * brought online later. This must be done without holding h->devlock,
1941          * so don't touch h->dev[]
1942          */
1943         for (i = 0; i < nsds; i++) {
1944                 if (!sd[i]) /* if already added above. */
1945                         continue;
1946                 if (sd[i]->volume_offline)
1947                         hpsa_monitor_offline_device(h, sd[i]->scsi3addr);
1948         }
1949
1950         /* Don't notify scsi mid layer of any changes the first time through
1951          * (or if there are no changes) scsi_scan_host will do it later the
1952          * first time through.
1953          */
1954         if (!changes)
1955                 goto free_and_out;
1956
1957         /* Notify scsi mid layer of any removed devices */
1958         for (i = 0; i < nremoved; i++) {
1959                 if (removed[i] == NULL)
1960                         continue;
1961                 if (removed[i]->expose_device)
1962                         hpsa_remove_device(h, removed[i]);
1963                 kfree(removed[i]);
1964                 removed[i] = NULL;
1965         }
1966
1967         /* Notify scsi mid layer of any added devices */
1968         for (i = 0; i < nadded; i++) {
1969                 int rc = 0;
1970
1971                 if (added[i] == NULL)
1972                         continue;
1973                 if (!(added[i]->expose_device))
1974                         continue;
1975                 rc = hpsa_add_device(h, added[i]);
1976                 if (!rc)
1977                         continue;
1978                 dev_warn(&h->pdev->dev,
1979                         "addition failed %d, device not added.", rc);
1980                 /* now we have to remove it from h->dev,
1981                  * since it didn't get added to scsi mid layer
1982                  */
1983                 fixup_botched_add(h, added[i]);
1984                 h->drv_req_rescan = 1;
1985         }
1986
1987 free_and_out:
1988         kfree(added);
1989         kfree(removed);
1990 }
1991
1992 /*
1993  * Lookup bus/target/lun and return corresponding struct hpsa_scsi_dev_t *
1994  * Assume's h->devlock is held.
1995  */
1996 static struct hpsa_scsi_dev_t *lookup_hpsa_scsi_dev(struct ctlr_info *h,
1997         int bus, int target, int lun)
1998 {
1999         int i;
2000         struct hpsa_scsi_dev_t *sd;
2001
2002         for (i = 0; i < h->ndevices; i++) {
2003                 sd = h->dev[i];
2004                 if (sd->bus == bus && sd->target == target && sd->lun == lun)
2005                         return sd;
2006         }
2007         return NULL;
2008 }
2009
2010 static int hpsa_slave_alloc(struct scsi_device *sdev)
2011 {
2012         struct hpsa_scsi_dev_t *sd;
2013         unsigned long flags;
2014         struct ctlr_info *h;
2015
2016         h = sdev_to_hba(sdev);
2017         spin_lock_irqsave(&h->devlock, flags);
2018         if (sdev_channel(sdev) == HPSA_PHYSICAL_DEVICE_BUS) {
2019                 struct scsi_target *starget;
2020                 struct sas_rphy *rphy;
2021
2022                 starget = scsi_target(sdev);
2023                 rphy = target_to_rphy(starget);
2024                 sd = hpsa_find_device_by_sas_rphy(h, rphy);
2025                 if (sd) {
2026                         sd->target = sdev_id(sdev);
2027                         sd->lun = sdev->lun;
2028                 }
2029         } else
2030                 sd = lookup_hpsa_scsi_dev(h, sdev_channel(sdev),
2031                                         sdev_id(sdev), sdev->lun);
2032
2033         if (sd && sd->expose_device) {
2034                 atomic_set(&sd->ioaccel_cmds_out, 0);
2035                 sdev->hostdata = sd;
2036         } else
2037                 sdev->hostdata = NULL;
2038         spin_unlock_irqrestore(&h->devlock, flags);
2039         return 0;
2040 }
2041
2042 /* configure scsi device based on internal per-device structure */
2043 static int hpsa_slave_configure(struct scsi_device *sdev)
2044 {
2045         struct hpsa_scsi_dev_t *sd;
2046         int queue_depth;
2047
2048         sd = sdev->hostdata;
2049         sdev->no_uld_attach = !sd || !sd->expose_device;
2050
2051         if (sd)
2052                 queue_depth = sd->queue_depth != 0 ?
2053                         sd->queue_depth : sdev->host->can_queue;
2054         else
2055                 queue_depth = sdev->host->can_queue;
2056
2057         scsi_change_queue_depth(sdev, queue_depth);
2058
2059         return 0;
2060 }
2061
2062 static void hpsa_slave_destroy(struct scsi_device *sdev)
2063 {
2064         /* nothing to do. */
2065 }
2066
2067 static void hpsa_free_ioaccel2_sg_chain_blocks(struct ctlr_info *h)
2068 {
2069         int i;
2070
2071         if (!h->ioaccel2_cmd_sg_list)
2072                 return;
2073         for (i = 0; i < h->nr_cmds; i++) {
2074                 kfree(h->ioaccel2_cmd_sg_list[i]);
2075                 h->ioaccel2_cmd_sg_list[i] = NULL;
2076         }
2077         kfree(h->ioaccel2_cmd_sg_list);
2078         h->ioaccel2_cmd_sg_list = NULL;
2079 }
2080
2081 static int hpsa_allocate_ioaccel2_sg_chain_blocks(struct ctlr_info *h)
2082 {
2083         int i;
2084
2085         if (h->chainsize <= 0)
2086                 return 0;
2087
2088         h->ioaccel2_cmd_sg_list =
2089                 kzalloc(sizeof(*h->ioaccel2_cmd_sg_list) * h->nr_cmds,
2090                                         GFP_KERNEL);
2091         if (!h->ioaccel2_cmd_sg_list)
2092                 return -ENOMEM;
2093         for (i = 0; i < h->nr_cmds; i++) {
2094                 h->ioaccel2_cmd_sg_list[i] =
2095                         kmalloc(sizeof(*h->ioaccel2_cmd_sg_list[i]) *
2096                                         h->maxsgentries, GFP_KERNEL);
2097                 if (!h->ioaccel2_cmd_sg_list[i])
2098                         goto clean;
2099         }
2100         return 0;
2101
2102 clean:
2103         hpsa_free_ioaccel2_sg_chain_blocks(h);
2104         return -ENOMEM;
2105 }
2106
2107 static void hpsa_free_sg_chain_blocks(struct ctlr_info *h)
2108 {
2109         int i;
2110
2111         if (!h->cmd_sg_list)
2112                 return;
2113         for (i = 0; i < h->nr_cmds; i++) {
2114                 kfree(h->cmd_sg_list[i]);
2115                 h->cmd_sg_list[i] = NULL;
2116         }
2117         kfree(h->cmd_sg_list);
2118         h->cmd_sg_list = NULL;
2119 }
2120
2121 static int hpsa_alloc_sg_chain_blocks(struct ctlr_info *h)
2122 {
2123         int i;
2124
2125         if (h->chainsize <= 0)
2126                 return 0;
2127
2128         h->cmd_sg_list = kzalloc(sizeof(*h->cmd_sg_list) * h->nr_cmds,
2129                                 GFP_KERNEL);
2130         if (!h->cmd_sg_list) {
2131                 dev_err(&h->pdev->dev, "Failed to allocate SG list\n");
2132                 return -ENOMEM;
2133         }
2134         for (i = 0; i < h->nr_cmds; i++) {
2135                 h->cmd_sg_list[i] = kmalloc(sizeof(*h->cmd_sg_list[i]) *
2136                                                 h->chainsize, GFP_KERNEL);
2137                 if (!h->cmd_sg_list[i]) {
2138                         dev_err(&h->pdev->dev, "Failed to allocate cmd SG\n");
2139                         goto clean;
2140                 }
2141         }
2142         return 0;
2143
2144 clean:
2145         hpsa_free_sg_chain_blocks(h);
2146         return -ENOMEM;
2147 }
2148
2149 static int hpsa_map_ioaccel2_sg_chain_block(struct ctlr_info *h,
2150         struct io_accel2_cmd *cp, struct CommandList *c)
2151 {
2152         struct ioaccel2_sg_element *chain_block;
2153         u64 temp64;
2154         u32 chain_size;
2155
2156         chain_block = h->ioaccel2_cmd_sg_list[c->cmdindex];
2157         chain_size = le32_to_cpu(cp->sg[0].length);
2158         temp64 = pci_map_single(h->pdev, chain_block, chain_size,
2159                                 PCI_DMA_TODEVICE);
2160         if (dma_mapping_error(&h->pdev->dev, temp64)) {
2161                 /* prevent subsequent unmapping */
2162                 cp->sg->address = 0;
2163                 return -1;
2164         }
2165         cp->sg->address = cpu_to_le64(temp64);
2166         return 0;
2167 }
2168
2169 static void hpsa_unmap_ioaccel2_sg_chain_block(struct ctlr_info *h,
2170         struct io_accel2_cmd *cp)
2171 {
2172         struct ioaccel2_sg_element *chain_sg;
2173         u64 temp64;
2174         u32 chain_size;
2175
2176         chain_sg = cp->sg;
2177         temp64 = le64_to_cpu(chain_sg->address);
2178         chain_size = le32_to_cpu(cp->sg[0].length);
2179         pci_unmap_single(h->pdev, temp64, chain_size, PCI_DMA_TODEVICE);
2180 }
2181
2182 static int hpsa_map_sg_chain_block(struct ctlr_info *h,
2183         struct CommandList *c)
2184 {
2185         struct SGDescriptor *chain_sg, *chain_block;
2186         u64 temp64;
2187         u32 chain_len;
2188
2189         chain_sg = &c->SG[h->max_cmd_sg_entries - 1];
2190         chain_block = h->cmd_sg_list[c->cmdindex];
2191         chain_sg->Ext = cpu_to_le32(HPSA_SG_CHAIN);
2192         chain_len = sizeof(*chain_sg) *
2193                 (le16_to_cpu(c->Header.SGTotal) - h->max_cmd_sg_entries);
2194         chain_sg->Len = cpu_to_le32(chain_len);
2195         temp64 = pci_map_single(h->pdev, chain_block, chain_len,
2196                                 PCI_DMA_TODEVICE);
2197         if (dma_mapping_error(&h->pdev->dev, temp64)) {
2198                 /* prevent subsequent unmapping */
2199                 chain_sg->Addr = cpu_to_le64(0);
2200                 return -1;
2201         }
2202         chain_sg->Addr = cpu_to_le64(temp64);
2203         return 0;
2204 }
2205
2206 static void hpsa_unmap_sg_chain_block(struct ctlr_info *h,
2207         struct CommandList *c)
2208 {
2209         struct SGDescriptor *chain_sg;
2210
2211         if (le16_to_cpu(c->Header.SGTotal) <= h->max_cmd_sg_entries)
2212                 return;
2213
2214         chain_sg = &c->SG[h->max_cmd_sg_entries - 1];
2215         pci_unmap_single(h->pdev, le64_to_cpu(chain_sg->Addr),
2216                         le32_to_cpu(chain_sg->Len), PCI_DMA_TODEVICE);
2217 }
2218
2219
2220 /* Decode the various types of errors on ioaccel2 path.
2221  * Return 1 for any error that should generate a RAID path retry.
2222  * Return 0 for errors that don't require a RAID path retry.
2223  */
2224 static int handle_ioaccel_mode2_error(struct ctlr_info *h,
2225                                         struct CommandList *c,
2226                                         struct scsi_cmnd *cmd,
2227                                         struct io_accel2_cmd *c2,
2228                                         struct hpsa_scsi_dev_t *dev)
2229 {
2230         int data_len;
2231         int retry = 0;
2232         u32 ioaccel2_resid = 0;
2233
2234         switch (c2->error_data.serv_response) {
2235         case IOACCEL2_SERV_RESPONSE_COMPLETE:
2236                 switch (c2->error_data.status) {
2237                 case IOACCEL2_STATUS_SR_TASK_COMP_GOOD:
2238                         break;
2239                 case IOACCEL2_STATUS_SR_TASK_COMP_CHK_COND:
2240                         cmd->result |= SAM_STAT_CHECK_CONDITION;
2241                         if (c2->error_data.data_present !=
2242                                         IOACCEL2_SENSE_DATA_PRESENT) {
2243                                 memset(cmd->sense_buffer, 0,
2244                                         SCSI_SENSE_BUFFERSIZE);
2245                                 break;
2246                         }
2247                         /* copy the sense data */
2248                         data_len = c2->error_data.sense_data_len;
2249                         if (data_len > SCSI_SENSE_BUFFERSIZE)
2250                                 data_len = SCSI_SENSE_BUFFERSIZE;
2251                         if (data_len > sizeof(c2->error_data.sense_data_buff))
2252                                 data_len =
2253                                         sizeof(c2->error_data.sense_data_buff);
2254                         memcpy(cmd->sense_buffer,
2255                                 c2->error_data.sense_data_buff, data_len);
2256                         retry = 1;
2257                         break;
2258                 case IOACCEL2_STATUS_SR_TASK_COMP_BUSY:
2259                         retry = 1;
2260                         break;
2261                 case IOACCEL2_STATUS_SR_TASK_COMP_RES_CON:
2262                         retry = 1;
2263                         break;
2264                 case IOACCEL2_STATUS_SR_TASK_COMP_SET_FULL:
2265                         retry = 1;
2266                         break;
2267                 case IOACCEL2_STATUS_SR_TASK_COMP_ABORTED:
2268                         retry = 1;
2269                         break;
2270                 default:
2271                         retry = 1;
2272                         break;
2273                 }
2274                 break;
2275         case IOACCEL2_SERV_RESPONSE_FAILURE:
2276                 switch (c2->error_data.status) {
2277                 case IOACCEL2_STATUS_SR_IO_ERROR:
2278                 case IOACCEL2_STATUS_SR_IO_ABORTED:
2279                 case IOACCEL2_STATUS_SR_OVERRUN:
2280                         retry = 1;
2281                         break;
2282                 case IOACCEL2_STATUS_SR_UNDERRUN:
2283                         cmd->result = (DID_OK << 16);           /* host byte */
2284                         cmd->result |= (COMMAND_COMPLETE << 8); /* msg byte */
2285                         ioaccel2_resid = get_unaligned_le32(
2286                                                 &c2->error_data.resid_cnt[0]);
2287                         scsi_set_resid(cmd, ioaccel2_resid);
2288                         break;
2289                 case IOACCEL2_STATUS_SR_NO_PATH_TO_DEVICE:
2290                 case IOACCEL2_STATUS_SR_INVALID_DEVICE:
2291                 case IOACCEL2_STATUS_SR_IOACCEL_DISABLED:
2292                         /*
2293                          * Did an HBA disk disappear? We will eventually
2294                          * get a state change event from the controller but
2295                          * in the meantime, we need to tell the OS that the
2296                          * HBA disk is no longer there and stop I/O
2297                          * from going down. This allows the potential re-insert
2298                          * of the disk to get the same device node.
2299                          */
2300                         if (dev->physical_device && dev->expose_device) {
2301                                 cmd->result = DID_NO_CONNECT << 16;
2302                                 dev->removed = 1;
2303                                 h->drv_req_rescan = 1;
2304                                 dev_warn(&h->pdev->dev,
2305                                         "%s: device is gone!\n", __func__);
2306                         } else
2307                                 /*
2308                                  * Retry by sending down the RAID path.
2309                                  * We will get an event from ctlr to
2310                                  * trigger rescan regardless.
2311                                  */
2312                                 retry = 1;
2313                         break;
2314                 default:
2315                         retry = 1;
2316                 }
2317                 break;
2318         case IOACCEL2_SERV_RESPONSE_TMF_COMPLETE:
2319                 break;
2320         case IOACCEL2_SERV_RESPONSE_TMF_SUCCESS:
2321                 break;
2322         case IOACCEL2_SERV_RESPONSE_TMF_REJECTED:
2323                 retry = 1;
2324                 break;
2325         case IOACCEL2_SERV_RESPONSE_TMF_WRONG_LUN:
2326                 break;
2327         default:
2328                 retry = 1;
2329                 break;
2330         }
2331
2332         return retry;   /* retry on raid path? */
2333 }
2334
2335 static void hpsa_cmd_resolve_events(struct ctlr_info *h,
2336                 struct CommandList *c)
2337 {
2338         bool do_wake = false;
2339
2340         /*
2341          * Prevent the following race in the abort handler:
2342          *
2343          * 1. LLD is requested to abort a SCSI command
2344          * 2. The SCSI command completes
2345          * 3. The struct CommandList associated with step 2 is made available
2346          * 4. New I/O request to LLD to another LUN re-uses struct CommandList
2347          * 5. Abort handler follows scsi_cmnd->host_scribble and
2348          *    finds struct CommandList and tries to aborts it
2349          * Now we have aborted the wrong command.
2350          *
2351          * Reset c->scsi_cmd here so that the abort or reset handler will know
2352          * this command has completed.  Then, check to see if the handler is
2353          * waiting for this command, and, if so, wake it.
2354          */
2355         c->scsi_cmd = SCSI_CMD_IDLE;
2356         mb();   /* Declare command idle before checking for pending events. */
2357         if (c->abort_pending) {
2358                 do_wake = true;
2359                 c->abort_pending = false;
2360         }
2361         if (c->reset_pending) {
2362                 unsigned long flags;
2363                 struct hpsa_scsi_dev_t *dev;
2364
2365                 /*
2366                  * There appears to be a reset pending; lock the lock and
2367                  * reconfirm.  If so, then decrement the count of outstanding
2368                  * commands and wake the reset command if this is the last one.
2369                  */
2370                 spin_lock_irqsave(&h->lock, flags);
2371                 dev = c->reset_pending;         /* Re-fetch under the lock. */
2372                 if (dev && atomic_dec_and_test(&dev->reset_cmds_out))
2373                         do_wake = true;
2374                 c->reset_pending = NULL;
2375                 spin_unlock_irqrestore(&h->lock, flags);
2376         }
2377
2378         if (do_wake)
2379                 wake_up_all(&h->event_sync_wait_queue);
2380 }
2381
2382 static void hpsa_cmd_resolve_and_free(struct ctlr_info *h,
2383                                       struct CommandList *c)
2384 {
2385         hpsa_cmd_resolve_events(h, c);
2386         cmd_tagged_free(h, c);
2387 }
2388
2389 static void hpsa_cmd_free_and_done(struct ctlr_info *h,
2390                 struct CommandList *c, struct scsi_cmnd *cmd)
2391 {
2392         hpsa_cmd_resolve_and_free(h, c);
2393         if (cmd && cmd->scsi_done)
2394                 cmd->scsi_done(cmd);
2395 }
2396
2397 static void hpsa_retry_cmd(struct ctlr_info *h, struct CommandList *c)
2398 {
2399         INIT_WORK(&c->work, hpsa_command_resubmit_worker);
2400         queue_work_on(raw_smp_processor_id(), h->resubmit_wq, &c->work);
2401 }
2402
2403 static void hpsa_set_scsi_cmd_aborted(struct scsi_cmnd *cmd)
2404 {
2405         cmd->result = DID_ABORT << 16;
2406 }
2407
2408 static void hpsa_cmd_abort_and_free(struct ctlr_info *h, struct CommandList *c,
2409                                     struct scsi_cmnd *cmd)
2410 {
2411         hpsa_set_scsi_cmd_aborted(cmd);
2412         dev_warn(&h->pdev->dev, "CDB %16phN was aborted with status 0x%x\n",
2413                          c->Request.CDB, c->err_info->ScsiStatus);
2414         hpsa_cmd_resolve_and_free(h, c);
2415 }
2416
2417 static void process_ioaccel2_completion(struct ctlr_info *h,
2418                 struct CommandList *c, struct scsi_cmnd *cmd,
2419                 struct hpsa_scsi_dev_t *dev)
2420 {
2421         struct io_accel2_cmd *c2 = &h->ioaccel2_cmd_pool[c->cmdindex];
2422
2423         /* check for good status */
2424         if (likely(c2->error_data.serv_response == 0 &&
2425                         c2->error_data.status == 0))
2426                 return hpsa_cmd_free_and_done(h, c, cmd);
2427
2428         /*
2429          * Any RAID offload error results in retry which will use
2430          * the normal I/O path so the controller can handle whatever's
2431          * wrong.
2432          */
2433         if (is_logical_device(dev) &&
2434                 c2->error_data.serv_response ==
2435                         IOACCEL2_SERV_RESPONSE_FAILURE) {
2436                 if (c2->error_data.status ==
2437                         IOACCEL2_STATUS_SR_IOACCEL_DISABLED) {
2438                         dev->offload_enabled = 0;
2439                         dev->offload_to_be_enabled = 0;
2440                 }
2441
2442                 return hpsa_retry_cmd(h, c);
2443         }
2444
2445         if (handle_ioaccel_mode2_error(h, c, cmd, c2, dev))
2446                 return hpsa_retry_cmd(h, c);
2447
2448         return hpsa_cmd_free_and_done(h, c, cmd);
2449 }
2450
2451 /* Returns 0 on success, < 0 otherwise. */
2452 static int hpsa_evaluate_tmf_status(struct ctlr_info *h,
2453                                         struct CommandList *cp)
2454 {
2455         u8 tmf_status = cp->err_info->ScsiStatus;
2456
2457         switch (tmf_status) {
2458         case CISS_TMF_COMPLETE:
2459                 /*
2460                  * CISS_TMF_COMPLETE never happens, instead,
2461                  * ei->CommandStatus == 0 for this case.
2462                  */
2463         case CISS_TMF_SUCCESS:
2464                 return 0;
2465         case CISS_TMF_INVALID_FRAME:
2466         case CISS_TMF_NOT_SUPPORTED:
2467         case CISS_TMF_FAILED:
2468         case CISS_TMF_WRONG_LUN:
2469         case CISS_TMF_OVERLAPPED_TAG:
2470                 break;
2471         default:
2472                 dev_warn(&h->pdev->dev, "Unknown TMF status: 0x%02x\n",
2473                                 tmf_status);
2474                 break;
2475         }
2476         return -tmf_status;
2477 }
2478
2479 static void complete_scsi_command(struct CommandList *cp)
2480 {
2481         struct scsi_cmnd *cmd;
2482         struct ctlr_info *h;
2483         struct ErrorInfo *ei;
2484         struct hpsa_scsi_dev_t *dev;
2485         struct io_accel2_cmd *c2;
2486
2487         u8 sense_key;
2488         u8 asc;      /* additional sense code */
2489         u8 ascq;     /* additional sense code qualifier */
2490         unsigned long sense_data_size;
2491
2492         ei = cp->err_info;
2493         cmd = cp->scsi_cmd;
2494         h = cp->h;
2495
2496         if (!cmd->device) {
2497                 cmd->result = DID_NO_CONNECT << 16;
2498                 return hpsa_cmd_free_and_done(h, cp, cmd);
2499         }
2500
2501         dev = cmd->device->hostdata;
2502         if (!dev) {
2503                 cmd->result = DID_NO_CONNECT << 16;
2504                 return hpsa_cmd_free_and_done(h, cp, cmd);
2505         }
2506         c2 = &h->ioaccel2_cmd_pool[cp->cmdindex];
2507
2508         scsi_dma_unmap(cmd); /* undo the DMA mappings */
2509         if ((cp->cmd_type == CMD_SCSI) &&
2510                 (le16_to_cpu(cp->Header.SGTotal) > h->max_cmd_sg_entries))
2511                 hpsa_unmap_sg_chain_block(h, cp);
2512
2513         if ((cp->cmd_type == CMD_IOACCEL2) &&
2514                 (c2->sg[0].chain_indicator == IOACCEL2_CHAIN))
2515                 hpsa_unmap_ioaccel2_sg_chain_block(h, c2);
2516
2517         cmd->result = (DID_OK << 16);           /* host byte */
2518         cmd->result |= (COMMAND_COMPLETE << 8); /* msg byte */
2519
2520         if (cp->cmd_type == CMD_IOACCEL2 || cp->cmd_type == CMD_IOACCEL1) {
2521                 if (dev->physical_device && dev->expose_device &&
2522                         dev->removed) {
2523                         cmd->result = DID_NO_CONNECT << 16;
2524                         return hpsa_cmd_free_and_done(h, cp, cmd);
2525                 }
2526                 if (likely(cp->phys_disk != NULL))
2527                         atomic_dec(&cp->phys_disk->ioaccel_cmds_out);
2528         }
2529
2530         /*
2531          * We check for lockup status here as it may be set for
2532          * CMD_SCSI, CMD_IOACCEL1 and CMD_IOACCEL2 commands by
2533          * fail_all_oustanding_cmds()
2534          */
2535         if (unlikely(ei->CommandStatus == CMD_CTLR_LOCKUP)) {
2536                 /* DID_NO_CONNECT will prevent a retry */
2537                 cmd->result = DID_NO_CONNECT << 16;
2538                 return hpsa_cmd_free_and_done(h, cp, cmd);
2539         }
2540
2541         if ((unlikely(hpsa_is_pending_event(cp)))) {
2542                 if (cp->reset_pending)
2543                         return hpsa_cmd_resolve_and_free(h, cp);
2544                 if (cp->abort_pending)
2545                         return hpsa_cmd_abort_and_free(h, cp, cmd);
2546         }
2547
2548         if (cp->cmd_type == CMD_IOACCEL2)
2549                 return process_ioaccel2_completion(h, cp, cmd, dev);
2550
2551         scsi_set_resid(cmd, ei->ResidualCnt);
2552         if (ei->CommandStatus == 0)
2553                 return hpsa_cmd_free_and_done(h, cp, cmd);
2554
2555         /* For I/O accelerator commands, copy over some fields to the normal
2556          * CISS header used below for error handling.
2557          */
2558         if (cp->cmd_type == CMD_IOACCEL1) {
2559                 struct io_accel1_cmd *c = &h->ioaccel_cmd_pool[cp->cmdindex];
2560                 cp->Header.SGList = scsi_sg_count(cmd);
2561                 cp->Header.SGTotal = cpu_to_le16(cp->Header.SGList);
2562                 cp->Request.CDBLen = le16_to_cpu(c->io_flags) &
2563                         IOACCEL1_IOFLAGS_CDBLEN_MASK;
2564                 cp->Header.tag = c->tag;
2565                 memcpy(cp->Header.LUN.LunAddrBytes, c->CISS_LUN, 8);
2566                 memcpy(cp->Request.CDB, c->CDB, cp->Request.CDBLen);
2567
2568                 /* Any RAID offload error results in retry which will use
2569                  * the normal I/O path so the controller can handle whatever's
2570                  * wrong.
2571                  */
2572                 if (is_logical_device(dev)) {
2573                         if (ei->CommandStatus == CMD_IOACCEL_DISABLED)
2574                                 dev->offload_enabled = 0;
2575                         return hpsa_retry_cmd(h, cp);
2576                 }
2577         }
2578
2579         /* an error has occurred */
2580         switch (ei->CommandStatus) {
2581
2582         case CMD_TARGET_STATUS:
2583                 cmd->result |= ei->ScsiStatus;
2584                 /* copy the sense data */
2585                 if (SCSI_SENSE_BUFFERSIZE < sizeof(ei->SenseInfo))
2586                         sense_data_size = SCSI_SENSE_BUFFERSIZE;
2587                 else
2588                         sense_data_size = sizeof(ei->SenseInfo);
2589                 if (ei->SenseLen < sense_data_size)
2590                         sense_data_size = ei->SenseLen;
2591                 memcpy(cmd->sense_buffer, ei->SenseInfo, sense_data_size);
2592                 if (ei->ScsiStatus)
2593                         decode_sense_data(ei->SenseInfo, sense_data_size,
2594                                 &sense_key, &asc, &ascq);
2595                 if (ei->ScsiStatus == SAM_STAT_CHECK_CONDITION) {
2596                         if (sense_key == ABORTED_COMMAND) {
2597                                 cmd->result |= DID_SOFT_ERROR << 16;
2598                                 break;
2599                         }
2600                         break;
2601                 }
2602                 /* Problem was not a check condition
2603                  * Pass it up to the upper layers...
2604                  */
2605                 if (ei->ScsiStatus) {
2606                         dev_warn(&h->pdev->dev, "cp %p has status 0x%x "
2607                                 "Sense: 0x%x, ASC: 0x%x, ASCQ: 0x%x, "
2608                                 "Returning result: 0x%x\n",
2609                                 cp, ei->ScsiStatus,
2610                                 sense_key, asc, ascq,
2611                                 cmd->result);
2612                 } else {  /* scsi status is zero??? How??? */
2613                         dev_warn(&h->pdev->dev, "cp %p SCSI status was 0. "
2614                                 "Returning no connection.\n", cp),
2615
2616                         /* Ordinarily, this case should never happen,
2617                          * but there is a bug in some released firmware
2618                          * revisions that allows it to happen if, for
2619                          * example, a 4100 backplane loses power and
2620                          * the tape drive is in it.  We assume that
2621                          * it's a fatal error of some kind because we
2622                          * can't show that it wasn't. We will make it
2623                          * look like selection timeout since that is
2624                          * the most common reason for this to occur,
2625                          * and it's severe enough.
2626                          */
2627
2628                         cmd->result = DID_NO_CONNECT << 16;
2629                 }
2630                 break;
2631
2632         case CMD_DATA_UNDERRUN: /* let mid layer handle it. */
2633                 break;
2634         case CMD_DATA_OVERRUN:
2635                 dev_warn(&h->pdev->dev,
2636                         "CDB %16phN data overrun\n", cp->Request.CDB);
2637                 break;
2638         case CMD_INVALID: {
2639                 /* print_bytes(cp, sizeof(*cp), 1, 0);
2640                 print_cmd(cp); */
2641                 /* We get CMD_INVALID if you address a non-existent device
2642                  * instead of a selection timeout (no response).  You will
2643                  * see this if you yank out a drive, then try to access it.
2644                  * This is kind of a shame because it means that any other
2645                  * CMD_INVALID (e.g. driver bug) will get interpreted as a
2646                  * missing target. */
2647                 cmd->result = DID_NO_CONNECT << 16;
2648         }
2649                 break;
2650         case CMD_PROTOCOL_ERR:
2651                 cmd->result = DID_ERROR << 16;
2652                 dev_warn(&h->pdev->dev, "CDB %16phN : protocol error\n",
2653                                 cp->Request.CDB);
2654                 break;
2655         case CMD_HARDWARE_ERR:
2656                 cmd->result = DID_ERROR << 16;
2657                 dev_warn(&h->pdev->dev, "CDB %16phN : hardware error\n",
2658                         cp->Request.CDB);
2659                 break;
2660         case CMD_CONNECTION_LOST:
2661                 cmd->result = DID_ERROR << 16;
2662                 dev_warn(&h->pdev->dev, "CDB %16phN : connection lost\n",
2663                         cp->Request.CDB);
2664                 break;
2665         case CMD_ABORTED:
2666                 /* Return now to avoid calling scsi_done(). */
2667                 return hpsa_cmd_abort_and_free(h, cp, cmd);
2668         case CMD_ABORT_FAILED:
2669                 cmd->result = DID_ERROR << 16;
2670                 dev_warn(&h->pdev->dev, "CDB %16phN : abort failed\n",
2671                         cp->Request.CDB);
2672                 break;
2673         case CMD_UNSOLICITED_ABORT:
2674                 cmd->result = DID_SOFT_ERROR << 16; /* retry the command */
2675                 dev_warn(&h->pdev->dev, "CDB %16phN : unsolicited abort\n",
2676                         cp->Request.CDB);
2677                 break;
2678         case CMD_TIMEOUT:
2679                 cmd->result = DID_TIME_OUT << 16;
2680                 dev_warn(&h->pdev->dev, "CDB %16phN timed out\n",
2681                         cp->Request.CDB);
2682                 break;
2683         case CMD_UNABORTABLE:
2684                 cmd->result = DID_ERROR << 16;
2685                 dev_warn(&h->pdev->dev, "Command unabortable\n");
2686                 break;
2687         case CMD_TMF_STATUS:
2688                 if (hpsa_evaluate_tmf_status(h, cp)) /* TMF failed? */
2689                         cmd->result = DID_ERROR << 16;
2690                 break;
2691         case CMD_IOACCEL_DISABLED:
2692                 /* This only handles the direct pass-through case since RAID
2693                  * offload is handled above.  Just attempt a retry.
2694                  */
2695                 cmd->result = DID_SOFT_ERROR << 16;
2696                 dev_warn(&h->pdev->dev,
2697                                 "cp %p had HP SSD Smart Path error\n", cp);
2698                 break;
2699         default:
2700                 cmd->result = DID_ERROR << 16;
2701                 dev_warn(&h->pdev->dev, "cp %p returned unknown status %x\n",
2702                                 cp, ei->CommandStatus);
2703         }
2704
2705         return hpsa_cmd_free_and_done(h, cp, cmd);
2706 }
2707
2708 static void hpsa_pci_unmap(struct pci_dev *pdev,
2709         struct CommandList *c, int sg_used, int data_direction)
2710 {
2711         int i;
2712
2713         for (i = 0; i < sg_used; i++)
2714                 pci_unmap_single(pdev, (dma_addr_t) le64_to_cpu(c->SG[i].Addr),
2715                                 le32_to_cpu(c->SG[i].Len),
2716                                 data_direction);
2717 }
2718
2719 static int hpsa_map_one(struct pci_dev *pdev,
2720                 struct CommandList *cp,
2721                 unsigned char *buf,
2722                 size_t buflen,
2723                 int data_direction)
2724 {
2725         u64 addr64;
2726
2727         if (buflen == 0 || data_direction == PCI_DMA_NONE) {
2728                 cp->Header.SGList = 0;
2729                 cp->Header.SGTotal = cpu_to_le16(0);
2730                 return 0;
2731         }
2732
2733         addr64 = pci_map_single(pdev, buf, buflen, data_direction);
2734         if (dma_mapping_error(&pdev->dev, addr64)) {
2735                 /* Prevent subsequent unmap of something never mapped */
2736                 cp->Header.SGList = 0;
2737                 cp->Header.SGTotal = cpu_to_le16(0);
2738                 return -1;
2739         }
2740         cp->SG[0].Addr = cpu_to_le64(addr64);
2741         cp->SG[0].Len = cpu_to_le32(buflen);
2742         cp->SG[0].Ext = cpu_to_le32(HPSA_SG_LAST); /* we are not chaining */
2743         cp->Header.SGList = 1;   /* no. SGs contig in this cmd */
2744         cp->Header.SGTotal = cpu_to_le16(1); /* total sgs in cmd list */
2745         return 0;
2746 }
2747
2748 #define NO_TIMEOUT ((unsigned long) -1)
2749 #define DEFAULT_TIMEOUT 30000 /* milliseconds */
2750 static int hpsa_scsi_do_simple_cmd_core(struct ctlr_info *h,
2751         struct CommandList *c, int reply_queue, unsigned long timeout_msecs)
2752 {
2753         DECLARE_COMPLETION_ONSTACK(wait);
2754
2755         c->waiting = &wait;
2756         __enqueue_cmd_and_start_io(h, c, reply_queue);
2757         if (timeout_msecs == NO_TIMEOUT) {
2758                 /* TODO: get rid of this no-timeout thing */
2759                 wait_for_completion_io(&wait);
2760                 return IO_OK;
2761         }
2762         if (!wait_for_completion_io_timeout(&wait,
2763                                         msecs_to_jiffies(timeout_msecs))) {
2764                 dev_warn(&h->pdev->dev, "Command timed out.\n");
2765                 return -ETIMEDOUT;
2766         }
2767         return IO_OK;
2768 }
2769
2770 static int hpsa_scsi_do_simple_cmd(struct ctlr_info *h, struct CommandList *c,
2771                                    int reply_queue, unsigned long timeout_msecs)
2772 {
2773         if (unlikely(lockup_detected(h))) {
2774                 c->err_info->CommandStatus = CMD_CTLR_LOCKUP;
2775                 return IO_OK;
2776         }
2777         return hpsa_scsi_do_simple_cmd_core(h, c, reply_queue, timeout_msecs);
2778 }
2779
2780 static u32 lockup_detected(struct ctlr_info *h)
2781 {
2782         int cpu;
2783         u32 rc, *lockup_detected;
2784
2785         cpu = get_cpu();
2786         lockup_detected = per_cpu_ptr(h->lockup_detected, cpu);
2787         rc = *lockup_detected;
2788         put_cpu();
2789         return rc;
2790 }
2791
2792 #define MAX_DRIVER_CMD_RETRIES 25
2793 static int hpsa_scsi_do_simple_cmd_with_retry(struct ctlr_info *h,
2794         struct CommandList *c, int data_direction, unsigned long timeout_msecs)
2795 {
2796         int backoff_time = 10, retry_count = 0;
2797         int rc;
2798
2799         do {
2800                 memset(c->err_info, 0, sizeof(*c->err_info));
2801                 rc = hpsa_scsi_do_simple_cmd(h, c, DEFAULT_REPLY_QUEUE,
2802                                                   timeout_msecs);
2803                 if (rc)
2804                         break;
2805                 retry_count++;
2806                 if (retry_count > 3) {
2807                         msleep(backoff_time);
2808                         if (backoff_time < 1000)
2809                                 backoff_time *= 2;
2810                 }
2811         } while ((check_for_unit_attention(h, c) ||
2812                         check_for_busy(h, c)) &&
2813                         retry_count <= MAX_DRIVER_CMD_RETRIES);
2814         hpsa_pci_unmap(h->pdev, c, 1, data_direction);
2815         if (retry_count > MAX_DRIVER_CMD_RETRIES)
2816                 rc = -EIO;
2817         return rc;
2818 }
2819
2820 static void hpsa_print_cmd(struct ctlr_info *h, char *txt,
2821                                 struct CommandList *c)
2822 {
2823         const u8 *cdb = c->Request.CDB;
2824         const u8 *lun = c->Header.LUN.LunAddrBytes;
2825
2826         dev_warn(&h->pdev->dev, "%s: LUN:%02x%02x%02x%02x%02x%02x%02x%02x"
2827         " CDB:%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x\n",
2828                 txt, lun[0], lun[1], lun[2], lun[3],
2829                 lun[4], lun[5], lun[6], lun[7],
2830                 cdb[0], cdb[1], cdb[2], cdb[3],
2831                 cdb[4], cdb[5], cdb[6], cdb[7],
2832                 cdb[8], cdb[9], cdb[10], cdb[11],
2833                 cdb[12], cdb[13], cdb[14], cdb[15]);
2834 }
2835
2836 static void hpsa_scsi_interpret_error(struct ctlr_info *h,
2837                         struct CommandList *cp)
2838 {
2839         const struct ErrorInfo *ei = cp->err_info;
2840         struct device *d = &cp->h->pdev->dev;
2841         u8 sense_key, asc, ascq;
2842         int sense_len;
2843
2844         switch (ei->CommandStatus) {
2845         case CMD_TARGET_STATUS:
2846                 if (ei->SenseLen > sizeof(ei->SenseInfo))
2847                         sense_len = sizeof(ei->SenseInfo);
2848                 else
2849                         sense_len = ei->SenseLen;
2850                 decode_sense_data(ei->SenseInfo, sense_len,
2851                                         &sense_key, &asc, &ascq);
2852                 hpsa_print_cmd(h, "SCSI status", cp);
2853                 if (ei->ScsiStatus == SAM_STAT_CHECK_CONDITION)
2854                         dev_warn(d, "SCSI Status = 02, Sense key = 0x%02x, ASC = 0x%02x, ASCQ = 0x%02x\n",
2855                                 sense_key, asc, ascq);
2856                 else
2857                         dev_warn(d, "SCSI Status = 0x%02x\n", ei->ScsiStatus);
2858                 if (ei->ScsiStatus == 0)
2859                         dev_warn(d, "SCSI status is abnormally zero.  "
2860                         "(probably indicates selection timeout "
2861                         "reported incorrectly due to a known "
2862                         "firmware bug, circa July, 2001.)\n");
2863                 break;
2864         case CMD_DATA_UNDERRUN: /* let mid layer handle it. */
2865                 break;
2866         case CMD_DATA_OVERRUN:
2867                 hpsa_print_cmd(h, "overrun condition", cp);
2868                 break;
2869         case CMD_INVALID: {
2870                 /* controller unfortunately reports SCSI passthru's
2871                  * to non-existent targets as invalid commands.
2872                  */
2873                 hpsa_print_cmd(h, "invalid command", cp);
2874                 dev_warn(d, "probably means device no longer present\n");
2875                 }
2876                 break;
2877         case CMD_PROTOCOL_ERR:
2878                 hpsa_print_cmd(h, "protocol error", cp);
2879                 break;
2880         case CMD_HARDWARE_ERR:
2881                 hpsa_print_cmd(h, "hardware error", cp);
2882                 break;
2883         case CMD_CONNECTION_LOST:
2884                 hpsa_print_cmd(h, "connection lost", cp);
2885                 break;
2886         case CMD_ABORTED:
2887                 hpsa_print_cmd(h, "aborted", cp);
2888                 break;
2889         case CMD_ABORT_FAILED:
2890                 hpsa_print_cmd(h, "abort failed", cp);
2891                 break;
2892         case CMD_UNSOLICITED_ABORT:
2893                 hpsa_print_cmd(h, "unsolicited abort", cp);
2894                 break;
2895         case CMD_TIMEOUT:
2896                 hpsa_print_cmd(h, "timed out", cp);
2897                 break;
2898         case CMD_UNABORTABLE:
2899                 hpsa_print_cmd(h, "unabortable", cp);
2900                 break;
2901         case CMD_CTLR_LOCKUP:
2902                 hpsa_print_cmd(h, "controller lockup detected", cp);
2903                 break;
2904         default:
2905                 hpsa_print_cmd(h, "unknown status", cp);
2906                 dev_warn(d, "Unknown command status %x\n",
2907                                 ei->CommandStatus);
2908         }
2909 }
2910
2911 static int hpsa_scsi_do_inquiry(struct ctlr_info *h, unsigned char *scsi3addr,
2912                         u16 page, unsigned char *buf,
2913                         unsigned char bufsize)
2914 {
2915         int rc = IO_OK;
2916         struct CommandList *c;
2917         struct ErrorInfo *ei;
2918
2919         c = cmd_alloc(h);
2920
2921         if (fill_cmd(c, HPSA_INQUIRY, h, buf, bufsize,
2922                         page, scsi3addr, TYPE_CMD)) {
2923                 rc = -1;
2924                 goto out;
2925         }
2926         rc = hpsa_scsi_do_simple_cmd_with_retry(h, c,
2927                                         PCI_DMA_FROMDEVICE, DEFAULT_TIMEOUT);
2928         if (rc)
2929                 goto out;
2930         ei = c->err_info;
2931         if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
2932                 hpsa_scsi_interpret_error(h, c);
2933                 rc = -1;
2934         }
2935 out:
2936         cmd_free(h, c);
2937         return rc;
2938 }
2939
2940 static int hpsa_send_reset(struct ctlr_info *h, unsigned char *scsi3addr,
2941         u8 reset_type, int reply_queue)
2942 {
2943         int rc = IO_OK;
2944         struct CommandList *c;
2945         struct ErrorInfo *ei;
2946
2947         c = cmd_alloc(h);
2948
2949
2950         /* fill_cmd can't fail here, no data buffer to map. */
2951         (void) fill_cmd(c, reset_type, h, NULL, 0, 0,
2952                         scsi3addr, TYPE_MSG);
2953         rc = hpsa_scsi_do_simple_cmd(h, c, reply_queue, DEFAULT_TIMEOUT);
2954         if (rc) {
2955                 dev_warn(&h->pdev->dev, "Failed to send reset command\n");
2956                 goto out;
2957         }
2958         /* no unmap needed here because no data xfer. */
2959
2960         ei = c->err_info;
2961         if (ei->CommandStatus != 0) {
2962                 hpsa_scsi_interpret_error(h, c);
2963                 rc = -1;
2964         }
2965 out:
2966         cmd_free(h, c);
2967         return rc;
2968 }
2969
2970 static bool hpsa_cmd_dev_match(struct ctlr_info *h, struct CommandList *c,
2971                                struct hpsa_scsi_dev_t *dev,
2972                                unsigned char *scsi3addr)
2973 {
2974         int i;
2975         bool match = false;
2976         struct io_accel2_cmd *c2 = &h->ioaccel2_cmd_pool[c->cmdindex];
2977         struct hpsa_tmf_struct *ac = (struct hpsa_tmf_struct *) c2;
2978
2979         if (hpsa_is_cmd_idle(c))
2980                 return false;
2981
2982         switch (c->cmd_type) {
2983         case CMD_SCSI:
2984         case CMD_IOCTL_PEND:
2985                 match = !memcmp(scsi3addr, &c->Header.LUN.LunAddrBytes,
2986                                 sizeof(c->Header.LUN.LunAddrBytes));
2987                 break;
2988
2989         case CMD_IOACCEL1:
2990         case CMD_IOACCEL2:
2991                 if (c->phys_disk == dev) {
2992                         /* HBA mode match */
2993                         match = true;
2994                 } else {
2995                         /* Possible RAID mode -- check each phys dev. */
2996                         /* FIXME:  Do we need to take out a lock here?  If
2997                          * so, we could just call hpsa_get_pdisk_of_ioaccel2()
2998                          * instead. */
2999                         for (i = 0; i < dev->nphysical_disks && !match; i++) {
3000                                 /* FIXME: an alternate test might be
3001                                  *
3002                                  * match = dev->phys_disk[i]->ioaccel_handle
3003                                  *              == c2->scsi_nexus;      */
3004                                 match = dev->phys_disk[i] == c->phys_disk;
3005                         }
3006                 }
3007                 break;
3008
3009         case IOACCEL2_TMF:
3010                 for (i = 0; i < dev->nphysical_disks && !match; i++) {
3011                         match = dev->phys_disk[i]->ioaccel_handle ==
3012                                         le32_to_cpu(ac->it_nexus);
3013                 }
3014                 break;
3015
3016         case 0:         /* The command is in the middle of being initialized. */
3017                 match = false;
3018                 break;
3019
3020         default:
3021                 dev_err(&h->pdev->dev, "unexpected cmd_type: %d\n",
3022                         c->cmd_type);
3023                 BUG();
3024         }
3025
3026         return match;
3027 }
3028
3029 static int hpsa_do_reset(struct ctlr_info *h, struct hpsa_scsi_dev_t *dev,
3030         unsigned char *scsi3addr, u8 reset_type, int reply_queue)
3031 {
3032         int i;
3033         int rc = 0;
3034
3035         /* We can really only handle one reset at a time */
3036         if (mutex_lock_interruptible(&h->reset_mutex) == -EINTR) {
3037                 dev_warn(&h->pdev->dev, "concurrent reset wait interrupted.\n");
3038                 return -EINTR;
3039         }
3040
3041         BUG_ON(atomic_read(&dev->reset_cmds_out) != 0);
3042
3043         for (i = 0; i < h->nr_cmds; i++) {
3044                 struct CommandList *c = h->cmd_pool + i;
3045                 int refcount = atomic_inc_return(&c->refcount);
3046
3047                 if (refcount > 1 && hpsa_cmd_dev_match(h, c, dev, scsi3addr)) {
3048                         unsigned long flags;
3049
3050                         /*
3051                          * Mark the target command as having a reset pending,
3052                          * then lock a lock so that the command cannot complete
3053                          * while we're considering it.  If the command is not
3054                          * idle then count it; otherwise revoke the event.
3055                          */
3056                         c->reset_pending = dev;
3057                         spin_lock_irqsave(&h->lock, flags);     /* Implied MB */
3058                         if (!hpsa_is_cmd_idle(c))
3059                                 atomic_inc(&dev->reset_cmds_out);
3060                         else
3061                                 c->reset_pending = NULL;
3062                         spin_unlock_irqrestore(&h->lock, flags);
3063                 }
3064
3065                 cmd_free(h, c);
3066         }
3067
3068         rc = hpsa_send_reset(h, scsi3addr, reset_type, reply_queue);
3069         if (!rc)
3070                 wait_event(h->event_sync_wait_queue,
3071                         atomic_read(&dev->reset_cmds_out) == 0 ||
3072                         lockup_detected(h));
3073
3074         if (unlikely(lockup_detected(h))) {
3075                 dev_warn(&h->pdev->dev,
3076                          "Controller lockup detected during reset wait\n");
3077                 rc = -ENODEV;
3078         }
3079
3080         if (unlikely(rc))
3081                 atomic_set(&dev->reset_cmds_out, 0);
3082
3083         mutex_unlock(&h->reset_mutex);
3084         return rc;
3085 }
3086
3087 static void hpsa_get_raid_level(struct ctlr_info *h,
3088         unsigned char *scsi3addr, unsigned char *raid_level)
3089 {
3090         int rc;
3091         unsigned char *buf;
3092
3093         *raid_level = RAID_UNKNOWN;
3094         buf = kzalloc(64, GFP_KERNEL);
3095         if (!buf)
3096                 return;
3097
3098         if (!hpsa_vpd_page_supported(h, scsi3addr,
3099                 HPSA_VPD_LV_DEVICE_GEOMETRY))
3100                 goto exit;
3101
3102         rc = hpsa_scsi_do_inquiry(h, scsi3addr, VPD_PAGE |
3103                 HPSA_VPD_LV_DEVICE_GEOMETRY, buf, 64);
3104
3105         if (rc == 0)
3106                 *raid_level = buf[8];
3107         if (*raid_level > RAID_UNKNOWN)
3108                 *raid_level = RAID_UNKNOWN;
3109 exit:
3110         kfree(buf);
3111         return;
3112 }
3113
3114 #define HPSA_MAP_DEBUG
3115 #ifdef HPSA_MAP_DEBUG
3116 static void hpsa_debug_map_buff(struct ctlr_info *h, int rc,
3117                                 struct raid_map_data *map_buff)
3118 {
3119         struct raid_map_disk_data *dd = &map_buff->data[0];
3120         int map, row, col;
3121         u16 map_cnt, row_cnt, disks_per_row;
3122
3123         if (rc != 0)
3124                 return;
3125
3126         /* Show details only if debugging has been activated. */
3127         if (h->raid_offload_debug < 2)
3128                 return;
3129
3130         dev_info(&h->pdev->dev, "structure_size = %u\n",
3131                                 le32_to_cpu(map_buff->structure_size));
3132         dev_info(&h->pdev->dev, "volume_blk_size = %u\n",
3133                         le32_to_cpu(map_buff->volume_blk_size));
3134         dev_info(&h->pdev->dev, "volume_blk_cnt = 0x%llx\n",
3135                         le64_to_cpu(map_buff->volume_blk_cnt));
3136         dev_info(&h->pdev->dev, "physicalBlockShift = %u\n",
3137                         map_buff->phys_blk_shift);
3138         dev_info(&h->pdev->dev, "parity_rotation_shift = %u\n",
3139                         map_buff->parity_rotation_shift);
3140         dev_info(&h->pdev->dev, "strip_size = %u\n",
3141                         le16_to_cpu(map_buff->strip_size));
3142         dev_info(&h->pdev->dev, "disk_starting_blk = 0x%llx\n",
3143                         le64_to_cpu(map_buff->disk_starting_blk));
3144         dev_info(&h->pdev->dev, "disk_blk_cnt = 0x%llx\n",
3145                         le64_to_cpu(map_buff->disk_blk_cnt));
3146         dev_info(&h->pdev->dev, "data_disks_per_row = %u\n",
3147                         le16_to_cpu(map_buff->data_disks_per_row));
3148         dev_info(&h->pdev->dev, "metadata_disks_per_row = %u\n",
3149                         le16_to_cpu(map_buff->metadata_disks_per_row));
3150         dev_info(&h->pdev->dev, "row_cnt = %u\n",
3151                         le16_to_cpu(map_buff->row_cnt));
3152         dev_info(&h->pdev->dev, "layout_map_count = %u\n",
3153                         le16_to_cpu(map_buff->layout_map_count));
3154         dev_info(&h->pdev->dev, "flags = 0x%x\n",
3155                         le16_to_cpu(map_buff->flags));
3156         dev_info(&h->pdev->dev, "encrypytion = %s\n",
3157                         le16_to_cpu(map_buff->flags) &
3158                         RAID_MAP_FLAG_ENCRYPT_ON ?  "ON" : "OFF");
3159         dev_info(&h->pdev->dev, "dekindex = %u\n",
3160                         le16_to_cpu(map_buff->dekindex));
3161         map_cnt = le16_to_cpu(map_buff->layout_map_count);
3162         for (map = 0; map < map_cnt; map++) {
3163                 dev_info(&h->pdev->dev, "Map%u:\n", map);
3164                 row_cnt = le16_to_cpu(map_buff->row_cnt);
3165                 for (row = 0; row < row_cnt; row++) {
3166                         dev_info(&h->pdev->dev, "  Row%u:\n", row);
3167                         disks_per_row =
3168                                 le16_to_cpu(map_buff->data_disks_per_row);
3169                         for (col = 0; col < disks_per_row; col++, dd++)
3170                                 dev_info(&h->pdev->dev,
3171                                         "    D%02u: h=0x%04x xor=%u,%u\n",
3172                                         col, dd->ioaccel_handle,
3173                                         dd->xor_mult[0], dd->xor_mult[1]);
3174                         disks_per_row =
3175                                 le16_to_cpu(map_buff->metadata_disks_per_row);
3176                         for (col = 0; col < disks_per_row; col++, dd++)
3177                                 dev_info(&h->pdev->dev,
3178                                         "    M%02u: h=0x%04x xor=%u,%u\n",
3179                                         col, dd->ioaccel_handle,
3180                                         dd->xor_mult[0], dd->xor_mult[1]);
3181                 }
3182         }
3183 }
3184 #else
3185 static void hpsa_debug_map_buff(__attribute__((unused)) struct ctlr_info *h,
3186                         __attribute__((unused)) int rc,
3187                         __attribute__((unused)) struct raid_map_data *map_buff)
3188 {
3189 }
3190 #endif
3191
3192 static int hpsa_get_raid_map(struct ctlr_info *h,
3193         unsigned char *scsi3addr, struct hpsa_scsi_dev_t *this_device)
3194 {
3195         int rc = 0;
3196         struct CommandList *c;
3197         struct ErrorInfo *ei;
3198
3199         c = cmd_alloc(h);
3200
3201         if (fill_cmd(c, HPSA_GET_RAID_MAP, h, &this_device->raid_map,
3202                         sizeof(this_device->raid_map), 0,
3203                         scsi3addr, TYPE_CMD)) {
3204                 dev_warn(&h->pdev->dev, "hpsa_get_raid_map fill_cmd failed\n");
3205                 cmd_free(h, c);
3206                 return -1;
3207         }
3208         rc = hpsa_scsi_do_simple_cmd_with_retry(h, c,
3209                                         PCI_DMA_FROMDEVICE, DEFAULT_TIMEOUT);
3210         if (rc)
3211                 goto out;
3212         ei = c->err_info;
3213         if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
3214                 hpsa_scsi_interpret_error(h, c);
3215                 rc = -1;
3216                 goto out;
3217         }
3218         cmd_free(h, c);
3219
3220         /* @todo in the future, dynamically allocate RAID map memory */
3221         if (le32_to_cpu(this_device->raid_map.structure_size) >
3222                                 sizeof(this_device->raid_map)) {
3223                 dev_warn(&h->pdev->dev, "RAID map size is too large!\n");
3224                 rc = -1;
3225         }
3226         hpsa_debug_map_buff(h, rc, &this_device->raid_map);
3227         return rc;
3228 out:
3229         cmd_free(h, c);
3230         return rc;
3231 }
3232
3233 static int hpsa_bmic_sense_subsystem_information(struct ctlr_info *h,
3234                 unsigned char scsi3addr[], u16 bmic_device_index,
3235                 struct bmic_sense_subsystem_info *buf, size_t bufsize)
3236 {
3237         int rc = IO_OK;
3238         struct CommandList *c;
3239         struct ErrorInfo *ei;
3240
3241         c = cmd_alloc(h);
3242
3243         rc = fill_cmd(c, BMIC_SENSE_SUBSYSTEM_INFORMATION, h, buf, bufsize,
3244                 0, RAID_CTLR_LUNID, TYPE_CMD);
3245         if (rc)
3246                 goto out;
3247
3248         c->Request.CDB[2] = bmic_device_index & 0xff;
3249         c->Request.CDB[9] = (bmic_device_index >> 8) & 0xff;
3250
3251         rc = hpsa_scsi_do_simple_cmd_with_retry(h, c,
3252                                 PCI_DMA_FROMDEVICE, DEFAULT_TIMEOUT);
3253         if (rc)
3254                 goto out;
3255         ei = c->err_info;
3256         if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
3257                 hpsa_scsi_interpret_error(h, c);
3258                 rc = -1;
3259         }
3260 out:
3261         cmd_free(h, c);
3262         return rc;
3263 }
3264
3265 static int hpsa_bmic_id_controller(struct ctlr_info *h,
3266         struct bmic_identify_controller *buf, size_t bufsize)
3267 {
3268         int rc = IO_OK;
3269         struct CommandList *c;
3270         struct ErrorInfo *ei;
3271
3272         c = cmd_alloc(h);
3273
3274         rc = fill_cmd(c, BMIC_IDENTIFY_CONTROLLER, h, buf, bufsize,
3275                 0, RAID_CTLR_LUNID, TYPE_CMD);
3276         if (rc)
3277                 goto out;
3278
3279         rc = hpsa_scsi_do_simple_cmd_with_retry(h, c,
3280                 PCI_DMA_FROMDEVICE, DEFAULT_TIMEOUT);
3281         if (rc)
3282                 goto out;
3283         ei = c->err_info;
3284         if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
3285                 hpsa_scsi_interpret_error(h, c);
3286                 rc = -1;
3287         }
3288 out:
3289         cmd_free(h, c);
3290         return rc;
3291 }
3292
3293 static int hpsa_bmic_id_physical_device(struct ctlr_info *h,
3294                 unsigned char scsi3addr[], u16 bmic_device_index,
3295                 struct bmic_identify_physical_device *buf, size_t bufsize)
3296 {
3297         int rc = IO_OK;
3298         struct CommandList *c;
3299         struct ErrorInfo *ei;
3300
3301         c = cmd_alloc(h);
3302         rc = fill_cmd(c, BMIC_IDENTIFY_PHYSICAL_DEVICE, h, buf, bufsize,
3303                 0, RAID_CTLR_LUNID, TYPE_CMD);
3304         if (rc)
3305                 goto out;
3306
3307         c->Request.CDB[2] = bmic_device_index & 0xff;
3308         c->Request.CDB[9] = (bmic_device_index >> 8) & 0xff;
3309
3310         hpsa_scsi_do_simple_cmd_with_retry(h, c, PCI_DMA_FROMDEVICE,
3311                                                 DEFAULT_TIMEOUT);
3312         ei = c->err_info;
3313         if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
3314                 hpsa_scsi_interpret_error(h, c);
3315                 rc = -1;
3316         }
3317 out:
3318         cmd_free(h, c);
3319
3320         return rc;
3321 }
3322
3323 /*
3324  * get enclosure information
3325  * struct ReportExtendedLUNdata *rlep - Used for BMIC drive number
3326  * struct hpsa_scsi_dev_t *encl_dev - device entry for enclosure
3327  * Uses id_physical_device to determine the box_index.
3328  */
3329 static void hpsa_get_enclosure_info(struct ctlr_info *h,
3330                         unsigned char *scsi3addr,
3331                         struct ReportExtendedLUNdata *rlep, int rle_index,
3332                         struct hpsa_scsi_dev_t *encl_dev)
3333 {
3334         int rc = -1;
3335         struct CommandList *c = NULL;
3336         struct ErrorInfo *ei = NULL;
3337         struct bmic_sense_storage_box_params *bssbp = NULL;
3338         struct bmic_identify_physical_device *id_phys = NULL;
3339         struct ext_report_lun_entry *rle = &rlep->LUN[rle_index];
3340         u16 bmic_device_index = 0;
3341
3342         bmic_device_index = GET_BMIC_DRIVE_NUMBER(&rle->lunid[0]);
3343
3344         if (bmic_device_index == 0xFF00 || MASKED_DEVICE(&rle->lunid[0])) {
3345                 rc = IO_OK;
3346                 goto out;
3347         }
3348
3349         bssbp = kzalloc(sizeof(*bssbp), GFP_KERNEL);
3350         if (!bssbp)
3351                 goto out;
3352
3353         id_phys = kzalloc(sizeof(*id_phys), GFP_KERNEL);
3354         if (!id_phys)
3355                 goto out;
3356
3357         rc = hpsa_bmic_id_physical_device(h, scsi3addr, bmic_device_index,
3358                                                 id_phys, sizeof(*id_phys));
3359         if (rc) {
3360                 dev_warn(&h->pdev->dev, "%s: id_phys failed %d bdi[0x%x]\n",
3361                         __func__, encl_dev->external, bmic_device_index);
3362                 goto out;
3363         }
3364
3365         c = cmd_alloc(h);
3366
3367         rc = fill_cmd(c, BMIC_SENSE_STORAGE_BOX_PARAMS, h, bssbp,
3368                         sizeof(*bssbp), 0, RAID_CTLR_LUNID, TYPE_CMD);
3369
3370         if (rc)
3371                 goto out;
3372
3373         if (id_phys->phys_connector[1] == 'E')
3374                 c->Request.CDB[5] = id_phys->box_index;
3375         else
3376                 c->Request.CDB[5] = 0;
3377
3378         rc = hpsa_scsi_do_simple_cmd_with_retry(h, c, PCI_DMA_FROMDEVICE,
3379                                                 DEFAULT_TIMEOUT);
3380         if (rc)
3381                 goto out;
3382
3383         ei = c->err_info;
3384         if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
3385                 rc = -1;
3386                 goto out;
3387         }
3388
3389         encl_dev->box[id_phys->active_path_number] = bssbp->phys_box_on_port;
3390         memcpy(&encl_dev->phys_connector[id_phys->active_path_number],
3391                 bssbp->phys_connector, sizeof(bssbp->phys_connector));
3392
3393         rc = IO_OK;
3394 out:
3395         kfree(bssbp);
3396         kfree(id_phys);
3397
3398         if (c)
3399                 cmd_free(h, c);
3400
3401         if (rc != IO_OK)
3402                 hpsa_show_dev_msg(KERN_INFO, h, encl_dev,
3403                         "Error, could not get enclosure information\n");
3404 }
3405
3406 static u64 hpsa_get_sas_address_from_report_physical(struct ctlr_info *h,
3407                                                 unsigned char *scsi3addr)
3408 {
3409         struct ReportExtendedLUNdata *physdev;
3410         u32 nphysicals;
3411         u64 sa = 0;
3412         int i;
3413
3414         physdev = kzalloc(sizeof(*physdev), GFP_KERNEL);
3415         if (!physdev)
3416                 return 0;
3417
3418         if (hpsa_scsi_do_report_phys_luns(h, physdev, sizeof(*physdev))) {
3419                 dev_err(&h->pdev->dev, "report physical LUNs failed.\n");
3420                 kfree(physdev);
3421                 return 0;
3422         }
3423         nphysicals = get_unaligned_be32(physdev->LUNListLength) / 24;
3424
3425         for (i = 0; i < nphysicals; i++)
3426                 if (!memcmp(&physdev->LUN[i].lunid[0], scsi3addr, 8)) {
3427                         sa = get_unaligned_be64(&physdev->LUN[i].wwid[0]);
3428                         break;
3429                 }
3430
3431         kfree(physdev);
3432
3433         return sa;
3434 }
3435
3436 static void hpsa_get_sas_address(struct ctlr_info *h, unsigned char *scsi3addr,
3437                                         struct hpsa_scsi_dev_t *dev)
3438 {
3439         int rc;
3440         u64 sa = 0;
3441
3442         if (is_hba_lunid(scsi3addr)) {
3443                 struct bmic_sense_subsystem_info *ssi;
3444
3445                 ssi = kzalloc(sizeof(*ssi), GFP_KERNEL);
3446                 if (ssi == NULL) {
3447                         dev_warn(&h->pdev->dev,
3448                                 "%s: out of memory\n", __func__);
3449                         return;
3450                 }
3451
3452                 rc = hpsa_bmic_sense_subsystem_information(h,
3453                                         scsi3addr, 0, ssi, sizeof(*ssi));
3454                 if (rc == 0) {
3455                         sa = get_unaligned_be64(ssi->primary_world_wide_id);
3456                         h->sas_address = sa;
3457                 }
3458
3459                 kfree(ssi);
3460         } else
3461                 sa = hpsa_get_sas_address_from_report_physical(h, scsi3addr);
3462
3463         dev->sas_address = sa;
3464 }
3465
3466 /* Get a device id from inquiry page 0x83 */
3467 static bool hpsa_vpd_page_supported(struct ctlr_info *h,
3468         unsigned char scsi3addr[], u8 page)
3469 {
3470         int rc;
3471         int i;
3472         int pages;
3473         unsigned char *buf, bufsize;
3474
3475         buf = kzalloc(256, GFP_KERNEL);
3476         if (!buf)
3477                 return false;
3478
3479         /* Get the size of the page list first */
3480         rc = hpsa_scsi_do_inquiry(h, scsi3addr,
3481                                 VPD_PAGE | HPSA_VPD_SUPPORTED_PAGES,
3482                                 buf, HPSA_VPD_HEADER_SZ);
3483         if (rc != 0)
3484                 goto exit_unsupported;
3485         pages = buf[3];
3486         if ((pages + HPSA_VPD_HEADER_SZ) <= 255)
3487                 bufsize = pages + HPSA_VPD_HEADER_SZ;
3488         else
3489                 bufsize = 255;
3490
3491         /* Get the whole VPD page list */
3492         rc = hpsa_scsi_do_inquiry(h, scsi3addr,
3493                                 VPD_PAGE | HPSA_VPD_SUPPORTED_PAGES,
3494                                 buf, bufsize);
3495         if (rc != 0)
3496                 goto exit_unsupported;
3497
3498         pages = buf[3];
3499         for (i = 1; i <= pages; i++)
3500                 if (buf[3 + i] == page)
3501                         goto exit_supported;
3502 exit_unsupported:
3503         kfree(buf);
3504         return false;
3505 exit_supported:
3506         kfree(buf);
3507         return true;
3508 }
3509
3510 static void hpsa_get_ioaccel_status(struct ctlr_info *h,
3511         unsigned char *scsi3addr, struct hpsa_scsi_dev_t *this_device)
3512 {
3513         int rc;
3514         unsigned char *buf;
3515         u8 ioaccel_status;
3516
3517         this_device->offload_config = 0;
3518         this_device->offload_enabled = 0;
3519         this_device->offload_to_be_enabled = 0;
3520
3521         buf = kzalloc(64, GFP_KERNEL);
3522         if (!buf)
3523                 return;
3524         if (!hpsa_vpd_page_supported(h, scsi3addr, HPSA_VPD_LV_IOACCEL_STATUS))
3525                 goto out;
3526         rc = hpsa_scsi_do_inquiry(h, scsi3addr,
3527                         VPD_PAGE | HPSA_VPD_LV_IOACCEL_STATUS, buf, 64);
3528         if (rc != 0)
3529                 goto out;
3530
3531 #define IOACCEL_STATUS_BYTE 4
3532 #define OFFLOAD_CONFIGURED_BIT 0x01
3533 #define OFFLOAD_ENABLED_BIT 0x02
3534         ioaccel_status = buf[IOACCEL_STATUS_BYTE];
3535         this_device->offload_config =
3536                 !!(ioaccel_status & OFFLOAD_CONFIGURED_BIT);
3537         if (this_device->offload_config) {
3538                 this_device->offload_enabled =
3539                         !!(ioaccel_status & OFFLOAD_ENABLED_BIT);
3540                 if (hpsa_get_raid_map(h, scsi3addr, this_device))
3541                         this_device->offload_enabled = 0;
3542         }
3543         this_device->offload_to_be_enabled = this_device->offload_enabled;
3544 out:
3545         kfree(buf);
3546         return;
3547 }
3548
3549 /* Get the device id from inquiry page 0x83 */
3550 static int hpsa_get_device_id(struct ctlr_info *h, unsigned char *scsi3addr,
3551         unsigned char *device_id, int index, int buflen)
3552 {
3553         int rc;
3554         unsigned char *buf;
3555
3556         /* Does controller have VPD for device id? */
3557         if (!hpsa_vpd_page_supported(h, scsi3addr, HPSA_VPD_LV_DEVICE_ID))
3558                 return 1; /* not supported */
3559
3560         buf = kzalloc(64, GFP_KERNEL);
3561         if (!buf)
3562                 return -ENOMEM;
3563
3564         rc = hpsa_scsi_do_inquiry(h, scsi3addr, VPD_PAGE |
3565                                         HPSA_VPD_LV_DEVICE_ID, buf, 64);
3566         if (rc == 0) {
3567                 if (buflen > 16)
3568                         buflen = 16;
3569                 memcpy(device_id, &buf[8], buflen);
3570         }
3571
3572         kfree(buf);
3573
3574         return rc; /*0 - got id,  otherwise, didn't */
3575 }
3576
3577 static int hpsa_scsi_do_report_luns(struct ctlr_info *h, int logical,
3578                 void *buf, int bufsize,
3579                 int extended_response)
3580 {
3581         int rc = IO_OK;
3582         struct CommandList *c;
3583         unsigned char scsi3addr[8];
3584         struct ErrorInfo *ei;
3585
3586         c = cmd_alloc(h);
3587
3588         /* address the controller */
3589         memset(scsi3addr, 0, sizeof(scsi3addr));
3590         if (fill_cmd(c, logical ? HPSA_REPORT_LOG : HPSA_REPORT_PHYS, h,
3591                 buf, bufsize, 0, scsi3addr, TYPE_CMD)) {
3592                 rc = -1;
3593                 goto out;
3594         }
3595         if (extended_response)
3596                 c->Request.CDB[1] = extended_response;
3597         rc = hpsa_scsi_do_simple_cmd_with_retry(h, c,
3598                                         PCI_DMA_FROMDEVICE, DEFAULT_TIMEOUT);
3599         if (rc)
3600                 goto out;
3601         ei = c->err_info;
3602         if (ei->CommandStatus != 0 &&
3603             ei->CommandStatus != CMD_DATA_UNDERRUN) {
3604                 hpsa_scsi_interpret_error(h, c);
3605                 rc = -1;
3606         } else {
3607                 struct ReportLUNdata *rld = buf;
3608
3609                 if (rld->extended_response_flag != extended_response) {
3610                         dev_err(&h->pdev->dev,
3611                                 "report luns requested format %u, got %u\n",
3612                                 extended_response,
3613                                 rld->extended_response_flag);
3614                         rc = -1;
3615                 }
3616         }
3617 out:
3618         cmd_free(h, c);
3619         return rc;
3620 }
3621
3622 static inline int hpsa_scsi_do_report_phys_luns(struct ctlr_info *h,
3623                 struct ReportExtendedLUNdata *buf, int bufsize)
3624 {
3625         return hpsa_scsi_do_report_luns(h, 0, buf, bufsize,
3626                                                 HPSA_REPORT_PHYS_EXTENDED);
3627 }
3628
3629 static inline int hpsa_scsi_do_report_log_luns(struct ctlr_info *h,
3630                 struct ReportLUNdata *buf, int bufsize)
3631 {
3632         return hpsa_scsi_do_report_luns(h, 1, buf, bufsize, 0);
3633 }
3634
3635 static inline void hpsa_set_bus_target_lun(struct hpsa_scsi_dev_t *device,
3636         int bus, int target, int lun)
3637 {
3638         device->bus = bus;
3639         device->target = target;
3640         device->lun = lun;
3641 }
3642
3643 /* Use VPD inquiry to get details of volume status */
3644 static int hpsa_get_volume_status(struct ctlr_info *h,
3645                                         unsigned char scsi3addr[])
3646 {
3647         int rc;
3648         int status;
3649         int size;
3650         unsigned char *buf;
3651
3652         buf = kzalloc(64, GFP_KERNEL);
3653         if (!buf)
3654                 return HPSA_VPD_LV_STATUS_UNSUPPORTED;
3655
3656         /* Does controller have VPD for logical volume status? */
3657         if (!hpsa_vpd_page_supported(h, scsi3addr, HPSA_VPD_LV_STATUS))
3658                 goto exit_failed;
3659
3660         /* Get the size of the VPD return buffer */
3661         rc = hpsa_scsi_do_inquiry(h, scsi3addr, VPD_PAGE | HPSA_VPD_LV_STATUS,
3662                                         buf, HPSA_VPD_HEADER_SZ);
3663         if (rc != 0)
3664                 goto exit_failed;
3665         size = buf[3];
3666
3667         /* Now get the whole VPD buffer */
3668         rc = hpsa_scsi_do_inquiry(h, scsi3addr, VPD_PAGE | HPSA_VPD_LV_STATUS,
3669                                         buf, size + HPSA_VPD_HEADER_SZ);
3670         if (rc != 0)
3671                 goto exit_failed;
3672         status = buf[4]; /* status byte */
3673
3674         kfree(buf);
3675         return status;
3676 exit_failed:
3677         kfree(buf);
3678         return HPSA_VPD_LV_STATUS_UNSUPPORTED;
3679 }
3680
3681 /* Determine offline status of a volume.
3682  * Return either:
3683  *  0 (not offline)
3684  *  0xff (offline for unknown reasons)
3685  *  # (integer code indicating one of several NOT READY states
3686  *     describing why a volume is to be kept offline)
3687  */
3688 static int hpsa_volume_offline(struct ctlr_info *h,
3689                                         unsigned char scsi3addr[])
3690 {
3691         struct CommandList *c;
3692         unsigned char *sense;
3693         u8 sense_key, asc, ascq;
3694         int sense_len;
3695         int rc, ldstat = 0;
3696         u16 cmd_status;
3697         u8 scsi_status;
3698 #define ASC_LUN_NOT_READY 0x04
3699 #define ASCQ_LUN_NOT_READY_FORMAT_IN_PROGRESS 0x04
3700 #define ASCQ_LUN_NOT_READY_INITIALIZING_CMD_REQ 0x02
3701
3702         c = cmd_alloc(h);
3703
3704         (void) fill_cmd(c, TEST_UNIT_READY, h, NULL, 0, 0, scsi3addr, TYPE_CMD);
3705         rc = hpsa_scsi_do_simple_cmd(h, c, DEFAULT_REPLY_QUEUE,
3706                                         DEFAULT_TIMEOUT);
3707         if (rc) {
3708                 cmd_free(h, c);
3709                 return 0;
3710         }
3711         sense = c->err_info->SenseInfo;
3712         if (c->err_info->SenseLen > sizeof(c->err_info->SenseInfo))
3713                 sense_len = sizeof(c->err_info->SenseInfo);
3714         else
3715                 sense_len = c->err_info->SenseLen;
3716         decode_sense_data(sense, sense_len, &sense_key, &asc, &ascq);
3717         cmd_status = c->err_info->CommandStatus;
3718         scsi_status = c->err_info->ScsiStatus;
3719         cmd_free(h, c);
3720         /* Is the volume 'not ready'? */
3721         if (cmd_status != CMD_TARGET_STATUS ||
3722                 scsi_status != SAM_STAT_CHECK_CONDITION ||
3723                 sense_key != NOT_READY ||
3724                 asc != ASC_LUN_NOT_READY)  {
3725                 return 0;
3726         }
3727
3728         /* Determine the reason for not ready state */
3729         ldstat = hpsa_get_volume_status(h, scsi3addr);
3730
3731         /* Keep volume offline in certain cases: */
3732         switch (ldstat) {
3733         case HPSA_LV_UNDERGOING_ERASE:
3734         case HPSA_LV_NOT_AVAILABLE:
3735         case HPSA_LV_UNDERGOING_RPI:
3736         case HPSA_LV_PENDING_RPI:
3737         case HPSA_LV_ENCRYPTED_NO_KEY:
3738         case HPSA_LV_PLAINTEXT_IN_ENCRYPT_ONLY_CONTROLLER:
3739         case HPSA_LV_UNDERGOING_ENCRYPTION:
3740         case HPSA_LV_UNDERGOING_ENCRYPTION_REKEYING:
3741         case HPSA_LV_ENCRYPTED_IN_NON_ENCRYPTED_CONTROLLER:
3742                 return ldstat;
3743         case HPSA_VPD_LV_STATUS_UNSUPPORTED:
3744                 /* If VPD status page isn't available,
3745                  * use ASC/ASCQ to determine state
3746                  */
3747                 if ((ascq == ASCQ_LUN_NOT_READY_FORMAT_IN_PROGRESS) ||
3748                         (ascq == ASCQ_LUN_NOT_READY_INITIALIZING_CMD_REQ))
3749                         return ldstat;
3750                 break;
3751         default:
3752                 break;
3753         }
3754         return 0;
3755 }
3756
3757 /*
3758  * Find out if a logical device supports aborts by simply trying one.
3759  * Smart Array may claim not to support aborts on logical drives, but
3760  * if a MSA2000 * is connected, the drives on that will be presented
3761  * by the Smart Array as logical drives, and aborts may be sent to
3762  * those devices successfully.  So the simplest way to find out is
3763  * to simply try an abort and see how the device responds.
3764  */
3765 static int hpsa_device_supports_aborts(struct ctlr_info *h,
3766                                         unsigned char *scsi3addr)
3767 {
3768         struct CommandList *c;
3769         struct ErrorInfo *ei;
3770         int rc = 0;
3771
3772         u64 tag = (u64) -1; /* bogus tag */
3773
3774         /* Assume that physical devices support aborts */
3775         if (!is_logical_dev_addr_mode(scsi3addr))
3776                 return 1;
3777
3778         c = cmd_alloc(h);
3779
3780         (void) fill_cmd(c, HPSA_ABORT_MSG, h, &tag, 0, 0, scsi3addr, TYPE_MSG);
3781         (void) hpsa_scsi_do_simple_cmd(h, c, DEFAULT_REPLY_QUEUE,
3782                                         DEFAULT_TIMEOUT);
3783         /* no unmap needed here because no data xfer. */
3784         ei = c->err_info;
3785         switch (ei->CommandStatus) {
3786         case CMD_INVALID:
3787                 rc = 0;
3788                 break;
3789         case CMD_UNABORTABLE:
3790         case CMD_ABORT_FAILED:
3791                 rc = 1;
3792                 break;
3793         case CMD_TMF_STATUS:
3794                 rc = hpsa_evaluate_tmf_status(h, c);
3795                 break;
3796         default:
3797                 rc = 0;
3798                 break;
3799         }
3800         cmd_free(h, c);
3801         return rc;
3802 }
3803
3804 static int hpsa_update_device_info(struct ctlr_info *h,
3805         unsigned char scsi3addr[], struct hpsa_scsi_dev_t *this_device,
3806         unsigned char *is_OBDR_device)
3807 {
3808
3809 #define OBDR_SIG_OFFSET 43
3810 #define OBDR_TAPE_SIG "$DR-10"
3811 #define OBDR_SIG_LEN (sizeof(OBDR_TAPE_SIG) - 1)
3812 #define OBDR_TAPE_INQ_SIZE (OBDR_SIG_OFFSET + OBDR_SIG_LEN)
3813
3814         unsigned char *inq_buff;
3815         unsigned char *obdr_sig;
3816         int rc = 0;
3817
3818         inq_buff = kzalloc(OBDR_TAPE_INQ_SIZE, GFP_KERNEL);
3819         if (!inq_buff) {
3820                 rc = -ENOMEM;
3821                 goto bail_out;
3822         }
3823
3824         /* Do an inquiry to the device to see what it is. */
3825         if (hpsa_scsi_do_inquiry(h, scsi3addr, 0, inq_buff,
3826                 (unsigned char) OBDR_TAPE_INQ_SIZE) != 0) {
3827                 /* Inquiry failed (msg printed already) */
3828                 dev_err(&h->pdev->dev,
3829                         "hpsa_update_device_info: inquiry failed\n");
3830                 rc = -EIO;
3831                 goto bail_out;
3832         }
3833
3834         scsi_sanitize_inquiry_string(&inq_buff[8], 8);
3835         scsi_sanitize_inquiry_string(&inq_buff[16], 16);
3836
3837         this_device->devtype = (inq_buff[0] & 0x1f);
3838         memcpy(this_device->scsi3addr, scsi3addr, 8);
3839         memcpy(this_device->vendor, &inq_buff[8],
3840                 sizeof(this_device->vendor));
3841         memcpy(this_device->model, &inq_buff[16],
3842                 sizeof(this_device->model));
3843         memset(this_device->device_id, 0,
3844                 sizeof(this_device->device_id));
3845         if (hpsa_get_device_id(h, scsi3addr, this_device->device_id, 8,
3846                 sizeof(this_device->device_id)))
3847                 dev_err(&h->pdev->dev,
3848                         "hpsa%d: %s: can't get device id for host %d:C0:T%d:L%d\t%s\t%.16s\n",
3849                         h->ctlr, __func__,
3850                         h->scsi_host->host_no,
3851                         this_device->target, this_device->lun,
3852                         scsi_device_type(this_device->devtype),
3853                         this_device->model);
3854
3855         if ((this_device->devtype == TYPE_DISK ||
3856                 this_device->devtype == TYPE_ZBC) &&
3857                 is_logical_dev_addr_mode(scsi3addr)) {
3858                 int volume_offline;
3859
3860                 hpsa_get_raid_level(h, scsi3addr, &this_device->raid_level);
3861                 if (h->fw_support & MISC_FW_RAID_OFFLOAD_BASIC)
3862                         hpsa_get_ioaccel_status(h, scsi3addr, this_device);
3863                 volume_offline = hpsa_volume_offline(h, scsi3addr);
3864                 if (volume_offline < 0 || volume_offline > 0xff)
3865                         volume_offline = HPSA_VPD_LV_STATUS_UNSUPPORTED;
3866                 this_device->volume_offline = volume_offline & 0xff;
3867         } else {
3868                 this_device->raid_level = RAID_UNKNOWN;
3869                 this_device->offload_config = 0;
3870                 this_device->offload_enabled = 0;
3871                 this_device->offload_to_be_enabled = 0;
3872                 this_device->hba_ioaccel_enabled = 0;
3873                 this_device->volume_offline = 0;
3874                 this_device->queue_depth = h->nr_cmds;
3875         }
3876
3877         if (is_OBDR_device) {
3878                 /* See if this is a One-Button-Disaster-Recovery device
3879                  * by looking for "$DR-10" at offset 43 in inquiry data.
3880                  */
3881                 obdr_sig = &inq_buff[OBDR_SIG_OFFSET];
3882                 *is_OBDR_device = (this_device->devtype == TYPE_ROM &&
3883                                         strncmp(obdr_sig, OBDR_TAPE_SIG,
3884                                                 OBDR_SIG_LEN) == 0);
3885         }
3886         kfree(inq_buff);
3887         return 0;
3888
3889 bail_out:
3890         kfree(inq_buff);
3891         return rc;
3892 }
3893
3894 static void hpsa_update_device_supports_aborts(struct ctlr_info *h,
3895                         struct hpsa_scsi_dev_t *dev, u8 *scsi3addr)
3896 {
3897         unsigned long flags;
3898         int rc, entry;
3899         /*
3900          * See if this device supports aborts.  If we already know
3901          * the device, we already know if it supports aborts, otherwise
3902          * we have to find out if it supports aborts by trying one.
3903          */
3904         spin_lock_irqsave(&h->devlock, flags);
3905         rc = hpsa_scsi_find_entry(dev, h->dev, h->ndevices, &entry);
3906         if ((rc == DEVICE_SAME || rc == DEVICE_UPDATED) &&
3907                 entry >= 0 && entry < h->ndevices) {
3908                 dev->supports_aborts = h->dev[entry]->supports_aborts;
3909                 spin_unlock_irqrestore(&h->devlock, flags);
3910         } else {
3911                 spin_unlock_irqrestore(&h->devlock, flags);
3912                 dev->supports_aborts =
3913                                 hpsa_device_supports_aborts(h, scsi3addr);
3914                 if (dev->supports_aborts < 0)
3915                         dev->supports_aborts = 0;
3916         }
3917 }
3918
3919 /*
3920  * Helper function to assign bus, target, lun mapping of devices.
3921  * Logical drive target and lun are assigned at this time, but
3922  * physical device lun and target assignment are deferred (assigned
3923  * in hpsa_find_target_lun, called by hpsa_scsi_add_entry.)
3924 */
3925 static void figure_bus_target_lun(struct ctlr_info *h,
3926         u8 *lunaddrbytes, struct hpsa_scsi_dev_t *device)
3927 {
3928         u32 lunid = get_unaligned_le32(lunaddrbytes);
3929
3930         if (!is_logical_dev_addr_mode(lunaddrbytes)) {
3931                 /* physical device, target and lun filled in later */
3932                 if (is_hba_lunid(lunaddrbytes))
3933                         hpsa_set_bus_target_lun(device,
3934                                         HPSA_HBA_BUS, 0, lunid & 0x3fff);
3935                 else
3936                         /* defer target, lun assignment for physical devices */
3937                         hpsa_set_bus_target_lun(device,
3938                                         HPSA_PHYSICAL_DEVICE_BUS, -1, -1);
3939                 return;
3940         }
3941         /* It's a logical device */
3942         if (device->external) {
3943                 hpsa_set_bus_target_lun(device,
3944                         HPSA_EXTERNAL_RAID_VOLUME_BUS, (lunid >> 16) & 0x3fff,
3945                         lunid & 0x00ff);
3946                 return;
3947         }
3948         hpsa_set_bus_target_lun(device, HPSA_RAID_VOLUME_BUS,
3949                                 0, lunid & 0x3fff);
3950 }
3951
3952
3953 /*
3954  * Get address of physical disk used for an ioaccel2 mode command:
3955  *      1. Extract ioaccel2 handle from the command.
3956  *      2. Find a matching ioaccel2 handle from list of physical disks.
3957  *      3. Return:
3958  *              1 and set scsi3addr to address of matching physical
3959  *              0 if no matching physical disk was found.
3960  */
3961 static int hpsa_get_pdisk_of_ioaccel2(struct ctlr_info *h,
3962         struct CommandList *ioaccel2_cmd_to_abort, unsigned char *scsi3addr)
3963 {
3964         struct io_accel2_cmd *c2 =
3965                         &h->ioaccel2_cmd_pool[ioaccel2_cmd_to_abort->cmdindex];
3966         unsigned long flags;
3967         int i;
3968
3969         spin_lock_irqsave(&h->devlock, flags);
3970         for (i = 0; i < h->ndevices; i++)
3971                 if (h->dev[i]->ioaccel_handle == le32_to_cpu(c2->scsi_nexus)) {
3972                         memcpy(scsi3addr, h->dev[i]->scsi3addr,
3973                                 sizeof(h->dev[i]->scsi3addr));
3974                         spin_unlock_irqrestore(&h->devlock, flags);
3975                         return 1;
3976                 }
3977         spin_unlock_irqrestore(&h->devlock, flags);
3978         return 0;
3979 }
3980
3981 static int  figure_external_status(struct ctlr_info *h, int raid_ctlr_position,
3982         int i, int nphysicals, int nlocal_logicals)
3983 {
3984         /* In report logicals, local logicals are listed first,
3985         * then any externals.
3986         */
3987         int logicals_start = nphysicals + (raid_ctlr_position == 0);
3988
3989         if (i == raid_ctlr_position)
3990                 return 0;
3991
3992         if (i < logicals_start)
3993                 return 0;
3994
3995         /* i is in logicals range, but still within local logicals */
3996         if ((i - nphysicals - (raid_ctlr_position == 0)) < nlocal_logicals)
3997                 return 0;
3998
3999         return 1; /* it's an external lun */
4000 }
4001
4002 /*
4003  * Do CISS_REPORT_PHYS and CISS_REPORT_LOG.  Data is returned in physdev,
4004  * logdev.  The number of luns in physdev and logdev are returned in
4005  * *nphysicals and *nlogicals, respectively.
4006  * Returns 0 on success, -1 otherwise.
4007  */
4008 static int hpsa_gather_lun_info(struct ctlr_info *h,
4009         struct ReportExtendedLUNdata *physdev, u32 *nphysicals,
4010         struct ReportLUNdata *logdev, u32 *nlogicals)
4011 {
4012         if (hpsa_scsi_do_report_phys_luns(h, physdev, sizeof(*physdev))) {
4013                 dev_err(&h->pdev->dev, "report physical LUNs failed.\n");
4014                 return -1;
4015         }
4016         *nphysicals = be32_to_cpu(*((__be32 *)physdev->LUNListLength)) / 24;
4017         if (*nphysicals > HPSA_MAX_PHYS_LUN) {
4018                 dev_warn(&h->pdev->dev, "maximum physical LUNs (%d) exceeded. %d LUNs ignored.\n",
4019                         HPSA_MAX_PHYS_LUN, *nphysicals - HPSA_MAX_PHYS_LUN);
4020                 *nphysicals = HPSA_MAX_PHYS_LUN;
4021         }
4022         if (hpsa_scsi_do_report_log_luns(h, logdev, sizeof(*logdev))) {
4023                 dev_err(&h->pdev->dev, "report logical LUNs failed.\n");
4024                 return -1;
4025         }
4026         *nlogicals = be32_to_cpu(*((__be32 *) logdev->LUNListLength)) / 8;
4027         /* Reject Logicals in excess of our max capability. */
4028         if (*nlogicals > HPSA_MAX_LUN) {
4029                 dev_warn(&h->pdev->dev,
4030                         "maximum logical LUNs (%d) exceeded.  "
4031                         "%d LUNs ignored.\n", HPSA_MAX_LUN,
4032                         *nlogicals - HPSA_MAX_LUN);
4033                         *nlogicals = HPSA_MAX_LUN;
4034         }
4035         if (*nlogicals + *nphysicals > HPSA_MAX_PHYS_LUN) {
4036                 dev_warn(&h->pdev->dev,
4037                         "maximum logical + physical LUNs (%d) exceeded. "
4038                         "%d LUNs ignored.\n", HPSA_MAX_PHYS_LUN,
4039                         *nphysicals + *nlogicals - HPSA_MAX_PHYS_LUN);
4040                 *nlogicals = HPSA_MAX_PHYS_LUN - *nphysicals;
4041         }
4042         return 0;
4043 }
4044
4045 static u8 *figure_lunaddrbytes(struct ctlr_info *h, int raid_ctlr_position,
4046         int i, int nphysicals, int nlogicals,
4047         struct ReportExtendedLUNdata *physdev_list,
4048         struct ReportLUNdata *logdev_list)
4049 {
4050         /* Helper function, figure out where the LUN ID info is coming from
4051          * given index i, lists of physical and logical devices, where in
4052          * the list the raid controller is supposed to appear (first or last)
4053          */
4054
4055         int logicals_start = nphysicals + (raid_ctlr_position == 0);
4056         int last_device = nphysicals + nlogicals + (raid_ctlr_position == 0);
4057
4058         if (i == raid_ctlr_position)
4059                 return RAID_CTLR_LUNID;
4060
4061         if (i < logicals_start)
4062                 return &physdev_list->LUN[i -
4063                                 (raid_ctlr_position == 0)].lunid[0];
4064
4065         if (i < last_device)
4066                 return &logdev_list->LUN[i - nphysicals -
4067                         (raid_ctlr_position == 0)][0];
4068         BUG();
4069         return NULL;
4070 }
4071
4072 /* get physical drive ioaccel handle and queue depth */
4073 static void hpsa_get_ioaccel_drive_info(struct ctlr_info *h,
4074                 struct hpsa_scsi_dev_t *dev,
4075                 struct ReportExtendedLUNdata *rlep, int rle_index,
4076                 struct bmic_identify_physical_device *id_phys)
4077 {
4078         int rc;
4079         struct ext_report_lun_entry *rle;
4080
4081         /*
4082          * external targets don't support BMIC
4083          */
4084         if (dev->external) {
4085                 dev->queue_depth = 7;
4086                 return;
4087         }
4088
4089         rle = &rlep->LUN[rle_index];
4090
4091         dev->ioaccel_handle = rle->ioaccel_handle;
4092         if ((rle->device_flags & 0x08) && dev->ioaccel_handle)
4093                 dev->hba_ioaccel_enabled = 1;
4094         memset(id_phys, 0, sizeof(*id_phys));
4095         rc = hpsa_bmic_id_physical_device(h, &rle->lunid[0],
4096                         GET_BMIC_DRIVE_NUMBER(&rle->lunid[0]), id_phys,
4097                         sizeof(*id_phys));
4098         if (!rc)
4099                 /* Reserve space for FW operations */
4100 #define DRIVE_CMDS_RESERVED_FOR_FW 2
4101 #define DRIVE_QUEUE_DEPTH 7
4102                 dev->queue_depth =
4103                         le16_to_cpu(id_phys->current_queue_depth_limit) -
4104                                 DRIVE_CMDS_RESERVED_FOR_FW;
4105         else
4106                 dev->queue_depth = DRIVE_QUEUE_DEPTH; /* conservative */
4107 }
4108
4109 static void hpsa_get_path_info(struct hpsa_scsi_dev_t *this_device,
4110         struct ReportExtendedLUNdata *rlep, int rle_index,
4111         struct bmic_identify_physical_device *id_phys)
4112 {
4113         struct ext_report_lun_entry *rle = &rlep->LUN[rle_index];
4114
4115         if ((rle->device_flags & 0x08) && this_device->ioaccel_handle)
4116                 this_device->hba_ioaccel_enabled = 1;
4117
4118         memcpy(&this_device->active_path_index,
4119                 &id_phys->active_path_number,
4120                 sizeof(this_device->active_path_index));
4121         memcpy(&this_device->path_map,
4122                 &id_phys->redundant_path_present_map,
4123                 sizeof(this_device->path_map));
4124         memcpy(&this_device->box,
4125                 &id_phys->alternate_paths_phys_box_on_port,
4126                 sizeof(this_device->box));
4127         memcpy(&this_device->phys_connector,
4128                 &id_phys->alternate_paths_phys_connector,
4129                 sizeof(this_device->phys_connector));
4130         memcpy(&this_device->bay,
4131                 &id_phys->phys_bay_in_box,
4132                 sizeof(this_device->bay));
4133 }
4134
4135 /* get number of local logical disks. */
4136 static int hpsa_set_local_logical_count(struct ctlr_info *h,
4137         struct bmic_identify_controller *id_ctlr,
4138         u32 *nlocals)
4139 {
4140         int rc;
4141
4142         if (!id_ctlr) {
4143                 dev_warn(&h->pdev->dev, "%s: id_ctlr buffer is NULL.\n",
4144                         __func__);
4145                 return -ENOMEM;
4146         }
4147         memset(id_ctlr, 0, sizeof(*id_ctlr));
4148         rc = hpsa_bmic_id_controller(h, id_ctlr, sizeof(*id_ctlr));
4149         if (!rc)
4150                 if (id_ctlr->configured_logical_drive_count < 256)
4151                         *nlocals = id_ctlr->configured_logical_drive_count;
4152                 else
4153                         *nlocals = le16_to_cpu(
4154                                         id_ctlr->extended_logical_unit_count);
4155         else
4156                 *nlocals = -1;
4157         return rc;
4158 }
4159
4160 static bool hpsa_is_disk_spare(struct ctlr_info *h, u8 *lunaddrbytes)
4161 {
4162         struct bmic_identify_physical_device *id_phys;
4163         bool is_spare = false;
4164         int rc;
4165
4166         id_phys = kzalloc(sizeof(*id_phys), GFP_KERNEL);
4167         if (!id_phys)
4168                 return false;
4169
4170         rc = hpsa_bmic_id_physical_device(h,
4171                                         lunaddrbytes,
4172                                         GET_BMIC_DRIVE_NUMBER(lunaddrbytes),
4173                                         id_phys, sizeof(*id_phys));
4174         if (rc == 0)
4175                 is_spare = (id_phys->more_flags >> 6) & 0x01;
4176
4177         kfree(id_phys);
4178         return is_spare;
4179 }
4180
4181 #define RPL_DEV_FLAG_NON_DISK                           0x1
4182 #define RPL_DEV_FLAG_UNCONFIG_DISK_REPORTING_SUPPORTED  0x2
4183 #define RPL_DEV_FLAG_UNCONFIG_DISK                      0x4
4184
4185 #define BMIC_DEVICE_TYPE_ENCLOSURE  6
4186
4187 static bool hpsa_skip_device(struct ctlr_info *h, u8 *lunaddrbytes,
4188                                 struct ext_report_lun_entry *rle)
4189 {
4190         u8 device_flags;
4191         u8 device_type;
4192
4193         if (!MASKED_DEVICE(lunaddrbytes))
4194                 return false;
4195
4196         device_flags = rle->device_flags;
4197         device_type = rle->device_type;
4198
4199         if (device_flags & RPL_DEV_FLAG_NON_DISK) {
4200                 if (device_type == BMIC_DEVICE_TYPE_ENCLOSURE)
4201                         return false;
4202                 return true;
4203         }
4204
4205         if (!(device_flags & RPL_DEV_FLAG_UNCONFIG_DISK_REPORTING_SUPPORTED))
4206                 return false;
4207
4208         if (device_flags & RPL_DEV_FLAG_UNCONFIG_DISK)
4209                 return false;
4210
4211         /*
4212          * Spares may be spun down, we do not want to
4213          * do an Inquiry to a RAID set spare drive as
4214          * that would have them spun up, that is a
4215          * performance hit because I/O to the RAID device
4216          * stops while the spin up occurs which can take
4217          * over 50 seconds.
4218          */
4219         if (hpsa_is_disk_spare(h, lunaddrbytes))
4220                 return true;
4221
4222         return false;
4223 }
4224
4225 static void hpsa_update_scsi_devices(struct ctlr_info *h)
4226 {
4227         /* the idea here is we could get notified
4228          * that some devices have changed, so we do a report
4229          * physical luns and report logical luns cmd, and adjust
4230          * our list of devices accordingly.
4231          *
4232          * The scsi3addr's of devices won't change so long as the
4233          * adapter is not reset.  That means we can rescan and
4234          * tell which devices we already know about, vs. new
4235          * devices, vs.  disappearing devices.
4236          */
4237         struct ReportExtendedLUNdata *physdev_list = NULL;
4238         struct ReportLUNdata *logdev_list = NULL;
4239         struct bmic_identify_physical_device *id_phys = NULL;
4240         struct bmic_identify_controller *id_ctlr = NULL;
4241         u32 nphysicals = 0;
4242         u32 nlogicals = 0;
4243         u32 nlocal_logicals = 0;
4244         u32 ndev_allocated = 0;
4245         struct hpsa_scsi_dev_t **currentsd, *this_device, *tmpdevice;
4246         int ncurrent = 0;
4247         int i, n_ext_target_devs, ndevs_to_allocate;
4248         int raid_ctlr_position;
4249         bool physical_device;
4250         DECLARE_BITMAP(lunzerobits, MAX_EXT_TARGETS);
4251
4252         currentsd = kzalloc(sizeof(*currentsd) * HPSA_MAX_DEVICES, GFP_KERNEL);
4253         physdev_list = kzalloc(sizeof(*physdev_list), GFP_KERNEL);
4254         logdev_list = kzalloc(sizeof(*logdev_list), GFP_KERNEL);
4255         tmpdevice = kzalloc(sizeof(*tmpdevice), GFP_KERNEL);
4256         id_phys = kzalloc(sizeof(*id_phys), GFP_KERNEL);
4257         id_ctlr = kzalloc(sizeof(*id_ctlr), GFP_KERNEL);
4258
4259         if (!currentsd || !physdev_list || !logdev_list ||
4260                 !tmpdevice || !id_phys || !id_ctlr) {
4261                 dev_err(&h->pdev->dev, "out of memory\n");
4262                 goto out;
4263         }
4264         memset(lunzerobits, 0, sizeof(lunzerobits));
4265
4266         h->drv_req_rescan = 0; /* cancel scheduled rescan - we're doing it. */
4267
4268         if (hpsa_gather_lun_info(h, physdev_list, &nphysicals,
4269                         logdev_list, &nlogicals)) {
4270                 h->drv_req_rescan = 1;
4271                 goto out;
4272         }
4273
4274         /* Set number of local logicals (non PTRAID) */
4275         if (hpsa_set_local_logical_count(h, id_ctlr, &nlocal_logicals)) {
4276                 dev_warn(&h->pdev->dev,
4277                         "%s: Can't determine number of local logical devices.\n",
4278                         __func__);
4279         }
4280
4281         /* We might see up to the maximum number of logical and physical disks
4282          * plus external target devices, and a device for the local RAID
4283          * controller.
4284          */
4285         ndevs_to_allocate = nphysicals + nlogicals + MAX_EXT_TARGETS + 1;
4286
4287         /* Allocate the per device structures */
4288         for (i = 0; i < ndevs_to_allocate; i++) {
4289                 if (i >= HPSA_MAX_DEVICES) {
4290                         dev_warn(&h->pdev->dev, "maximum devices (%d) exceeded."
4291                                 "  %d devices ignored.\n", HPSA_MAX_DEVICES,
4292                                 ndevs_to_allocate - HPSA_MAX_DEVICES);
4293                         break;
4294                 }
4295
4296                 currentsd[i] = kzalloc(sizeof(*currentsd[i]), GFP_KERNEL);
4297                 if (!currentsd[i]) {
4298                         dev_warn(&h->pdev->dev, "out of memory at %s:%d\n",
4299                                 __FILE__, __LINE__);
4300                         h->drv_req_rescan = 1;
4301                         goto out;
4302                 }
4303                 ndev_allocated++;
4304         }
4305
4306         if (is_scsi_rev_5(h))
4307                 raid_ctlr_position = 0;
4308         else
4309                 raid_ctlr_position = nphysicals + nlogicals;
4310
4311         /* adjust our table of devices */
4312         n_ext_target_devs = 0;
4313         for (i = 0; i < nphysicals + nlogicals + 1; i++) {
4314                 u8 *lunaddrbytes, is_OBDR = 0;
4315                 int rc = 0;
4316                 int phys_dev_index = i - (raid_ctlr_position == 0);
4317                 bool skip_device = false;
4318
4319                 physical_device = i < nphysicals + (raid_ctlr_position == 0);
4320
4321                 /* Figure out where the LUN ID info is coming from */
4322                 lunaddrbytes = figure_lunaddrbytes(h, raid_ctlr_position,
4323                         i, nphysicals, nlogicals, physdev_list, logdev_list);
4324
4325                 /* Determine if this is a lun from an external target array */
4326                 tmpdevice->external =
4327                         figure_external_status(h, raid_ctlr_position, i,
4328                                                 nphysicals, nlocal_logicals);
4329
4330                 /*
4331                  * Skip over some devices such as a spare.
4332                  */
4333                 if (!tmpdevice->external && physical_device) {
4334                         skip_device = hpsa_skip_device(h, lunaddrbytes,
4335                                         &physdev_list->LUN[phys_dev_index]);
4336                         if (skip_device)
4337                                 continue;
4338                 }
4339
4340                 /* Get device type, vendor, model, device id */
4341                 rc = hpsa_update_device_info(h, lunaddrbytes, tmpdevice,
4342                                                         &is_OBDR);
4343                 if (rc == -ENOMEM) {
4344                         dev_warn(&h->pdev->dev,
4345                                 "Out of memory, rescan deferred.\n");
4346                         h->drv_req_rescan = 1;
4347                         goto out;
4348                 }
4349                 if (rc) {
4350                         dev_warn(&h->pdev->dev,
4351                                 "Inquiry failed, skipping device.\n");
4352                         continue;
4353                 }
4354
4355                 figure_bus_target_lun(h, lunaddrbytes, tmpdevice);
4356                 hpsa_update_device_supports_aborts(h, tmpdevice, lunaddrbytes);
4357                 this_device = currentsd[ncurrent];
4358
4359                 /* Turn on discovery_polling if there are ext target devices.
4360                  * Event-based change notification is unreliable for those.
4361                  */
4362                 if (!h->discovery_polling) {
4363                         if (tmpdevice->external) {
4364                                 h->discovery_polling = 1;
4365                                 dev_info(&h->pdev->dev,
4366                                         "External target, activate discovery polling.\n");
4367                         }
4368                 }
4369
4370
4371                 *this_device = *tmpdevice;
4372                 this_device->physical_device = physical_device;
4373
4374                 /*
4375                  * Expose all devices except for physical devices that
4376                  * are masked.
4377                  */
4378                 if (MASKED_DEVICE(lunaddrbytes) && this_device->physical_device)
4379                         this_device->expose_device = 0;
4380                 else
4381                         this_device->expose_device = 1;
4382
4383
4384                 /*
4385                  * Get the SAS address for physical devices that are exposed.
4386                  */
4387                 if (this_device->physical_device && this_device->expose_device)
4388                         hpsa_get_sas_address(h, lunaddrbytes, this_device);
4389
4390                 switch (this_device->devtype) {
4391                 case TYPE_ROM:
4392                         /* We don't *really* support actual CD-ROM devices,
4393                          * just "One Button Disaster Recovery" tape drive
4394                          * which temporarily pretends to be a CD-ROM drive.
4395                          * So we check that the device is really an OBDR tape
4396                          * device by checking for "$DR-10" in bytes 43-48 of
4397                          * the inquiry data.
4398                          */
4399                         if (is_OBDR)
4400                                 ncurrent++;
4401                         break;
4402                 case TYPE_DISK:
4403                 case TYPE_ZBC:
4404                         if (this_device->physical_device) {
4405                                 /* The disk is in HBA mode. */
4406                                 /* Never use RAID mapper in HBA mode. */
4407                                 this_device->offload_enabled = 0;
4408                                 hpsa_get_ioaccel_drive_info(h, this_device,
4409                                         physdev_list, phys_dev_index, id_phys);
4410                                 hpsa_get_path_info(this_device,
4411                                         physdev_list, phys_dev_index, id_phys);
4412                         }
4413                         ncurrent++;
4414                         break;
4415                 case TYPE_TAPE:
4416                 case TYPE_MEDIUM_CHANGER:
4417                         ncurrent++;
4418                         break;
4419                 case TYPE_ENCLOSURE:
4420                         if (!this_device->external)
4421                                 hpsa_get_enclosure_info(h, lunaddrbytes,
4422                                                 physdev_list, phys_dev_index,
4423                                                 this_device);
4424                         ncurrent++;
4425                         break;
4426                 case TYPE_RAID:
4427                         /* Only present the Smartarray HBA as a RAID controller.
4428                          * If it's a RAID controller other than the HBA itself
4429                          * (an external RAID controller, MSA500 or similar)
4430                          * don't present it.
4431                          */
4432                         if (!is_hba_lunid(lunaddrbytes))
4433                                 break;
4434                         ncurrent++;
4435                         break;
4436                 default:
4437                         break;
4438                 }
4439                 if (ncurrent >= HPSA_MAX_DEVICES)
4440                         break;
4441         }
4442
4443         if (h->sas_host == NULL) {
4444                 int rc = 0;
4445
4446                 rc = hpsa_add_sas_host(h);
4447                 if (rc) {
4448                         dev_warn(&h->pdev->dev,
4449                                 "Could not add sas host %d\n", rc);
4450                         goto out;
4451                 }
4452         }
4453
4454         adjust_hpsa_scsi_table(h, currentsd, ncurrent);
4455 out:
4456         kfree(tmpdevice);
4457         for (i = 0; i < ndev_allocated; i++)
4458                 kfree(currentsd[i]);
4459         kfree(currentsd);
4460         kfree(physdev_list);
4461         kfree(logdev_list);
4462         kfree(id_ctlr);
4463         kfree(id_phys);
4464 }
4465
4466 static void hpsa_set_sg_descriptor(struct SGDescriptor *desc,
4467                                    struct scatterlist *sg)
4468 {
4469         u64 addr64 = (u64) sg_dma_address(sg);
4470         unsigned int len = sg_dma_len(sg);
4471
4472         desc->Addr = cpu_to_le64(addr64);
4473         desc->Len = cpu_to_le32(len);
4474         desc->Ext = 0;
4475 }
4476
4477 /*
4478  * hpsa_scatter_gather takes a struct scsi_cmnd, (cmd), and does the pci
4479  * dma mapping  and fills in the scatter gather entries of the
4480  * hpsa command, cp.
4481  */
4482 static int hpsa_scatter_gather(struct ctlr_info *h,
4483                 struct CommandList *cp,
4484                 struct scsi_cmnd *cmd)
4485 {
4486         struct scatterlist *sg;
4487         int use_sg, i, sg_limit, chained, last_sg;
4488         struct SGDescriptor *curr_sg;
4489
4490         BUG_ON(scsi_sg_count(cmd) > h->maxsgentries);
4491
4492         use_sg = scsi_dma_map(cmd);
4493         if (use_sg < 0)
4494                 return use_sg;
4495
4496         if (!use_sg)
4497                 goto sglist_finished;
4498
4499         /*
4500          * If the number of entries is greater than the max for a single list,
4501          * then we have a chained list; we will set up all but one entry in the
4502          * first list (the last entry is saved for link information);
4503          * otherwise, we don't have a chained list and we'll set up at each of
4504          * the entries in the one list.
4505          */
4506         curr_sg = cp->SG;
4507         chained = use_sg > h->max_cmd_sg_entries;
4508         sg_limit = chained ? h->max_cmd_sg_entries - 1 : use_sg;
4509         last_sg = scsi_sg_count(cmd) - 1;
4510         scsi_for_each_sg(cmd, sg, sg_limit, i) {
4511                 hpsa_set_sg_descriptor(curr_sg, sg);
4512                 curr_sg++;
4513         }
4514
4515         if (chained) {
4516                 /*
4517                  * Continue with the chained list.  Set curr_sg to the chained
4518                  * list.  Modify the limit to the total count less the entries
4519                  * we've already set up.  Resume the scan at the list entry
4520                  * where the previous loop left off.
4521                  */
4522                 curr_sg = h->cmd_sg_list[cp->cmdindex];
4523                 sg_limit = use_sg - sg_limit;
4524                 for_each_sg(sg, sg, sg_limit, i) {
4525                         hpsa_set_sg_descriptor(curr_sg, sg);
4526                         curr_sg++;
4527                 }
4528         }
4529
4530         /* Back the pointer up to the last entry and mark it as "last". */
4531         (curr_sg - 1)->Ext = cpu_to_le32(HPSA_SG_LAST);
4532
4533         if (use_sg + chained > h->maxSG)
4534                 h->maxSG = use_sg + chained;
4535
4536         if (chained) {
4537                 cp->Header.SGList = h->max_cmd_sg_entries;
4538                 cp->Header.SGTotal = cpu_to_le16(use_sg + 1);
4539                 if (hpsa_map_sg_chain_block(h, cp)) {
4540                         scsi_dma_unmap(cmd);
4541                         return -1;
4542                 }
4543                 return 0;
4544         }
4545
4546 sglist_finished:
4547
4548         cp->Header.SGList = (u8) use_sg;   /* no. SGs contig in this cmd */
4549         cp->Header.SGTotal = cpu_to_le16(use_sg); /* total sgs in cmd list */
4550         return 0;
4551 }
4552
4553 #define IO_ACCEL_INELIGIBLE (1)
4554 static int fixup_ioaccel_cdb(u8 *cdb, int *cdb_len)
4555 {
4556         int is_write = 0;
4557         u32 block;
4558         u32 block_cnt;
4559
4560         /* Perform some CDB fixups if needed using 10 byte reads/writes only */
4561         switch (cdb[0]) {
4562         case WRITE_6:
4563         case WRITE_12:
4564                 is_write = 1;
4565         case READ_6:
4566         case READ_12:
4567                 if (*cdb_len == 6) {
4568                         block = (((cdb[1] & 0x1F) << 16) |
4569                                 (cdb[2] << 8) |
4570                                 cdb[3]);
4571                         block_cnt = cdb[4];
4572                         if (block_cnt == 0)
4573                                 block_cnt = 256;
4574                 } else {
4575                         BUG_ON(*cdb_len != 12);
4576                         block = get_unaligned_be32(&cdb[2]);
4577                         block_cnt = get_unaligned_be32(&cdb[6]);
4578                 }
4579                 if (block_cnt > 0xffff)
4580                         return IO_ACCEL_INELIGIBLE;
4581
4582                 cdb[0] = is_write ? WRITE_10 : READ_10;
4583                 cdb[1] = 0;
4584                 cdb[2] = (u8) (block >> 24);
4585                 cdb[3] = (u8) (block >> 16);
4586                 cdb[4] = (u8) (block >> 8);
4587                 cdb[5] = (u8) (block);
4588                 cdb[6] = 0;
4589                 cdb[7] = (u8) (block_cnt >> 8);
4590                 cdb[8] = (u8) (block_cnt);
4591                 cdb[9] = 0;
4592                 *cdb_len = 10;
4593                 break;
4594         }
4595         return 0;
4596 }
4597
4598 static int hpsa_scsi_ioaccel1_queue_command(struct ctlr_info *h,
4599         struct CommandList *c, u32 ioaccel_handle, u8 *cdb, int cdb_len,
4600         u8 *scsi3addr, struct hpsa_scsi_dev_t *phys_disk)
4601 {
4602         struct scsi_cmnd *cmd = c->scsi_cmd;
4603         struct io_accel1_cmd *cp = &h->ioaccel_cmd_pool[c->cmdindex];
4604         unsigned int len;
4605         unsigned int total_len = 0;
4606         struct scatterlist *sg;
4607         u64 addr64;
4608         int use_sg, i;
4609         struct SGDescriptor *curr_sg;
4610         u32 control = IOACCEL1_CONTROL_SIMPLEQUEUE;
4611
4612         /* TODO: implement chaining support */
4613         if (scsi_sg_count(cmd) > h->ioaccel_maxsg) {
4614                 atomic_dec(&phys_disk->ioaccel_cmds_out);
4615                 return IO_ACCEL_INELIGIBLE;
4616         }
4617
4618         BUG_ON(cmd->cmd_len > IOACCEL1_IOFLAGS_CDBLEN_MAX);
4619
4620         if (fixup_ioaccel_cdb(cdb, &cdb_len)) {
4621                 atomic_dec(&phys_disk->ioaccel_cmds_out);
4622                 return IO_ACCEL_INELIGIBLE;
4623         }
4624
4625         c->cmd_type = CMD_IOACCEL1;
4626
4627         /* Adjust the DMA address to point to the accelerated command buffer */
4628         c->busaddr = (u32) h->ioaccel_cmd_pool_dhandle +
4629                                 (c->cmdindex * sizeof(*cp));
4630         BUG_ON(c->busaddr & 0x0000007F);
4631
4632         use_sg = scsi_dma_map(cmd);
4633         if (use_sg < 0) {
4634                 atomic_dec(&phys_disk->ioaccel_cmds_out);
4635                 return use_sg;
4636         }
4637
4638         if (use_sg) {
4639                 curr_sg = cp->SG;
4640                 scsi_for_each_sg(cmd, sg, use_sg, i) {
4641                         addr64 = (u64) sg_dma_address(sg);
4642                         len  = sg_dma_len(sg);
4643                         total_len += len;
4644                         curr_sg->Addr = cpu_to_le64(addr64);
4645                         curr_sg->Len = cpu_to_le32(len);
4646                         curr_sg->Ext = cpu_to_le32(0);
4647                         curr_sg++;
4648                 }
4649                 (--curr_sg)->Ext = cpu_to_le32(HPSA_SG_LAST);
4650
4651                 switch (cmd->sc_data_direction) {
4652                 case DMA_TO_DEVICE:
4653                         control |= IOACCEL1_CONTROL_DATA_OUT;
4654                         break;
4655                 case DMA_FROM_DEVICE:
4656                         control |= IOACCEL1_CONTROL_DATA_IN;
4657                         break;
4658                 case DMA_NONE:
4659                         control |= IOACCEL1_CONTROL_NODATAXFER;
4660                         break;
4661                 default:
4662                         dev_err(&h->pdev->dev, "unknown data direction: %d\n",
4663                         cmd->sc_data_direction);
4664                         BUG();
4665                         break;
4666                 }
4667         } else {
4668                 control |= IOACCEL1_CONTROL_NODATAXFER;
4669         }
4670
4671         c->Header.SGList = use_sg;
4672         /* Fill out the command structure to submit */
4673         cp->dev_handle = cpu_to_le16(ioaccel_handle & 0xFFFF);
4674         cp->transfer_len = cpu_to_le32(total_len);
4675         cp->io_flags = cpu_to_le16(IOACCEL1_IOFLAGS_IO_REQ |
4676                         (cdb_len & IOACCEL1_IOFLAGS_CDBLEN_MASK));
4677         cp->control = cpu_to_le32(control);
4678         memcpy(cp->CDB, cdb, cdb_len);
4679         memcpy(cp->CISS_LUN, scsi3addr, 8);
4680         /* Tag was already set at init time. */
4681         enqueue_cmd_and_start_io(h, c);
4682         return 0;
4683 }
4684
4685 /*
4686  * Queue a command directly to a device behind the controller using the
4687  * I/O accelerator path.
4688  */
4689 static int hpsa_scsi_ioaccel_direct_map(struct ctlr_info *h,
4690         struct CommandList *c)
4691 {
4692         struct scsi_cmnd *cmd = c->scsi_cmd;
4693         struct hpsa_scsi_dev_t *dev = cmd->device->hostdata;
4694
4695         if (!dev)
4696                 return -1;
4697
4698         c->phys_disk = dev;
4699
4700         return hpsa_scsi_ioaccel_queue_command(h, c, dev->ioaccel_handle,
4701                 cmd->cmnd, cmd->cmd_len, dev->scsi3addr, dev);
4702 }
4703
4704 /*
4705  * Set encryption parameters for the ioaccel2 request
4706  */
4707 static void set_encrypt_ioaccel2(struct ctlr_info *h,
4708         struct CommandList *c, struct io_accel2_cmd *cp)
4709 {
4710         struct scsi_cmnd *cmd = c->scsi_cmd;
4711         struct hpsa_scsi_dev_t *dev = cmd->device->hostdata;
4712         struct raid_map_data *map = &dev->raid_map;
4713         u64 first_block;
4714
4715         /* Are we doing encryption on this device */
4716         if (!(le16_to_cpu(map->flags) & RAID_MAP_FLAG_ENCRYPT_ON))
4717                 return;
4718         /* Set the data encryption key index. */
4719         cp->dekindex = map->dekindex;
4720
4721         /* Set the encryption enable flag, encoded into direction field. */
4722         cp->direction |= IOACCEL2_DIRECTION_ENCRYPT_MASK;
4723
4724         /* Set encryption tweak values based on logical block address
4725          * If block size is 512, tweak value is LBA.
4726          * For other block sizes, tweak is (LBA * block size)/ 512)
4727          */
4728         switch (cmd->cmnd[0]) {
4729         /* Required? 6-byte cdbs eliminated by fixup_ioaccel_cdb */
4730         case READ_6:
4731         case WRITE_6:
4732                 first_block = (((cmd->cmnd[1] & 0x1F) << 16) |
4733                                 (cmd->cmnd[2] << 8) |
4734                                 cmd->cmnd[3]);
4735                 break;
4736         case WRITE_10:
4737         case READ_10:
4738         /* Required? 12-byte cdbs eliminated by fixup_ioaccel_cdb */
4739         case WRITE_12:
4740         case READ_12:
4741                 first_block = get_unaligned_be32(&cmd->cmnd[2]);
4742                 break;
4743         case WRITE_16:
4744         case READ_16:
4745                 first_block = get_unaligned_be64(&cmd->cmnd[2]);
4746                 break;
4747         default:
4748                 dev_err(&h->pdev->dev,
4749                         "ERROR: %s: size (0x%x) not supported for encryption\n",
4750                         __func__, cmd->cmnd[0]);
4751                 BUG();
4752                 break;
4753         }
4754
4755         if (le32_to_cpu(map->volume_blk_size) != 512)
4756                 first_block = first_block *
4757                                 le32_to_cpu(map->volume_blk_size)/512;
4758
4759         cp->tweak_lower = cpu_to_le32(first_block);
4760         cp->tweak_upper = cpu_to_le32(first_block >> 32);
4761 }
4762
4763 static int hpsa_scsi_ioaccel2_queue_command(struct ctlr_info *h,
4764         struct CommandList *c, u32 ioaccel_handle, u8 *cdb, int cdb_len,
4765         u8 *scsi3addr, struct hpsa_scsi_dev_t *phys_disk)
4766 {
4767         struct scsi_cmnd *cmd = c->scsi_cmd;
4768         struct io_accel2_cmd *cp = &h->ioaccel2_cmd_pool[c->cmdindex];
4769         struct ioaccel2_sg_element *curr_sg;
4770         int use_sg, i;
4771         struct scatterlist *sg;
4772         u64 addr64;
4773         u32 len;
4774         u32 total_len = 0;
4775
4776         if (!cmd->device)
4777                 return -1;
4778
4779         if (!cmd->device->hostdata)
4780                 return -1;
4781
4782         BUG_ON(scsi_sg_count(cmd) > h->maxsgentries);
4783
4784         if (fixup_ioaccel_cdb(cdb, &cdb_len)) {
4785                 atomic_dec(&phys_disk->ioaccel_cmds_out);
4786                 return IO_ACCEL_INELIGIBLE;
4787         }
4788
4789         c->cmd_type = CMD_IOACCEL2;
4790         /* Adjust the DMA address to point to the accelerated command buffer */
4791         c->busaddr = (u32) h->ioaccel2_cmd_pool_dhandle +
4792                                 (c->cmdindex * sizeof(*cp));
4793         BUG_ON(c->busaddr & 0x0000007F);
4794
4795         memset(cp, 0, sizeof(*cp));
4796         cp->IU_type = IOACCEL2_IU_TYPE;
4797
4798         use_sg = scsi_dma_map(cmd);
4799         if (use_sg < 0) {
4800                 atomic_dec(&phys_disk->ioaccel_cmds_out);
4801                 return use_sg;
4802         }
4803
4804         if (use_sg) {
4805                 curr_sg = cp->sg;
4806                 if (use_sg > h->ioaccel_maxsg) {
4807                         addr64 = le64_to_cpu(
4808                                 h->ioaccel2_cmd_sg_list[c->cmdindex]->address);
4809                         curr_sg->address = cpu_to_le64(addr64);
4810                         curr_sg->length = 0;
4811                         curr_sg->reserved[0] = 0;
4812                         curr_sg->reserved[1] = 0;
4813                         curr_sg->reserved[2] = 0;
4814                         curr_sg->chain_indicator = 0x80;
4815
4816                         curr_sg = h->ioaccel2_cmd_sg_list[c->cmdindex];
4817                 }
4818                 scsi_for_each_sg(cmd, sg, use_sg, i) {
4819                         addr64 = (u64) sg_dma_address(sg);
4820                         len  = sg_dma_len(sg);
4821                         total_len += len;
4822                         curr_sg->address = cpu_to_le64(addr64);
4823                         curr_sg->length = cpu_to_le32(len);
4824                         curr_sg->reserved[0] = 0;
4825                         curr_sg->reserved[1] = 0;
4826                         curr_sg->reserved[2] = 0;
4827                         curr_sg->chain_indicator = 0;
4828                         curr_sg++;
4829                 }
4830
4831                 switch (cmd->sc_data_direction) {
4832                 case DMA_TO_DEVICE:
4833                         cp->direction &= ~IOACCEL2_DIRECTION_MASK;
4834                         cp->direction |= IOACCEL2_DIR_DATA_OUT;
4835                         break;
4836                 case DMA_FROM_DEVICE:
4837                         cp->direction &= ~IOACCEL2_DIRECTION_MASK;
4838                         cp->direction |= IOACCEL2_DIR_DATA_IN;
4839                         break;
4840                 case DMA_NONE:
4841                         cp->direction &= ~IOACCEL2_DIRECTION_MASK;
4842                         cp->direction |= IOACCEL2_DIR_NO_DATA;
4843                         break;
4844                 default:
4845                         dev_err(&h->pdev->dev, "unknown data direction: %d\n",
4846                                 cmd->sc_data_direction);
4847                         BUG();
4848                         break;
4849                 }
4850         } else {
4851                 cp->direction &= ~IOACCEL2_DIRECTION_MASK;
4852                 cp->direction |= IOACCEL2_DIR_NO_DATA;
4853         }
4854
4855         /* Set encryption parameters, if necessary */
4856         set_encrypt_ioaccel2(h, c, cp);
4857
4858         cp->scsi_nexus = cpu_to_le32(ioaccel_handle);
4859         cp->Tag = cpu_to_le32(c->cmdindex << DIRECT_LOOKUP_SHIFT);
4860         memcpy(cp->cdb, cdb, sizeof(cp->cdb));
4861
4862         cp->data_len = cpu_to_le32(total_len);
4863         cp->err_ptr = cpu_to_le64(c->busaddr +
4864                         offsetof(struct io_accel2_cmd, error_data));
4865         cp->err_len = cpu_to_le32(sizeof(cp->error_data));
4866
4867         /* fill in sg elements */
4868         if (use_sg > h->ioaccel_maxsg) {
4869                 cp->sg_count = 1;
4870                 cp->sg[0].length = cpu_to_le32(use_sg * sizeof(cp->sg[0]));
4871                 if (hpsa_map_ioaccel2_sg_chain_block(h, cp, c)) {
4872                         atomic_dec(&phys_disk->ioaccel_cmds_out);
4873                         scsi_dma_unmap(cmd);
4874                         return -1;
4875                 }
4876         } else
4877                 cp->sg_count = (u8) use_sg;
4878
4879         enqueue_cmd_and_start_io(h, c);
4880         return 0;
4881 }
4882
4883 /*
4884  * Queue a command to the correct I/O accelerator path.
4885  */
4886 static int hpsa_scsi_ioaccel_queue_command(struct ctlr_info *h,
4887         struct CommandList *c, u32 ioaccel_handle, u8 *cdb, int cdb_len,
4888         u8 *scsi3addr, struct hpsa_scsi_dev_t *phys_disk)
4889 {
4890         if (!c->scsi_cmd->device)
4891                 return -1;
4892
4893         if (!c->scsi_cmd->device->hostdata)
4894                 return -1;
4895
4896         /* Try to honor the device's queue depth */
4897         if (atomic_inc_return(&phys_disk->ioaccel_cmds_out) >
4898                                         phys_disk->queue_depth) {
4899                 atomic_dec(&phys_disk->ioaccel_cmds_out);
4900                 return IO_ACCEL_INELIGIBLE;
4901         }
4902         if (h->transMethod & CFGTBL_Trans_io_accel1)
4903                 return hpsa_scsi_ioaccel1_queue_command(h, c, ioaccel_handle,
4904                                                 cdb, cdb_len, scsi3addr,
4905                                                 phys_disk);
4906         else
4907                 return hpsa_scsi_ioaccel2_queue_command(h, c, ioaccel_handle,
4908                                                 cdb, cdb_len, scsi3addr,
4909                                                 phys_disk);
4910 }
4911
4912 static void raid_map_helper(struct raid_map_data *map,
4913                 int offload_to_mirror, u32 *map_index, u32 *current_group)
4914 {
4915         if (offload_to_mirror == 0)  {
4916                 /* use physical disk in the first mirrored group. */
4917                 *map_index %= le16_to_cpu(map->data_disks_per_row);
4918                 return;
4919         }
4920         do {
4921                 /* determine mirror group that *map_index indicates */
4922                 *current_group = *map_index /
4923                         le16_to_cpu(map->data_disks_per_row);
4924                 if (offload_to_mirror == *current_group)
4925                         continue;
4926                 if (*current_group < le16_to_cpu(map->layout_map_count) - 1) {
4927                         /* select map index from next group */
4928                         *map_index += le16_to_cpu(map->data_disks_per_row);
4929                         (*current_group)++;
4930                 } else {
4931                         /* select map index from first group */
4932                         *map_index %= le16_to_cpu(map->data_disks_per_row);
4933                         *current_group = 0;
4934                 }
4935         } while (offload_to_mirror != *current_group);
4936 }
4937
4938 /*
4939  * Attempt to perform offload RAID mapping for a logical volume I/O.
4940  */
4941 static int hpsa_scsi_ioaccel_raid_map(struct ctlr_info *h,
4942         struct CommandList *c)
4943 {
4944         struct scsi_cmnd *cmd = c->scsi_cmd;
4945         struct hpsa_scsi_dev_t *dev = cmd->device->hostdata;
4946         struct raid_map_data *map = &dev->raid_map;
4947         struct raid_map_disk_data *dd = &map->data[0];
4948         int is_write = 0;
4949         u32 map_index;
4950         u64 first_block, last_block;
4951         u32 block_cnt;
4952         u32 blocks_per_row;
4953         u64 first_row, last_row;
4954         u32 first_row_offset, last_row_offset;
4955         u32 first_column, last_column;
4956         u64 r0_first_row, r0_last_row;
4957         u32 r5or6_blocks_per_row;
4958         u64 r5or6_first_row, r5or6_last_row;
4959         u32 r5or6_first_row_offset, r5or6_last_row_offset;
4960         u32 r5or6_first_column, r5or6_last_column;
4961         u32 total_disks_per_row;
4962         u32 stripesize;
4963         u32 first_group, last_group, current_group;
4964         u32 map_row;
4965         u32 disk_handle;
4966         u64 disk_block;
4967         u32 disk_block_cnt;
4968         u8 cdb[16];
4969         u8 cdb_len;
4970         u16 strip_size;
4971 #if BITS_PER_LONG == 32
4972         u64 tmpdiv;
4973 #endif
4974         int offload_to_mirror;
4975
4976         if (!dev)
4977                 return -1;
4978
4979         /* check for valid opcode, get LBA and block count */
4980         switch (cmd->cmnd[0]) {
4981         case WRITE_6:
4982                 is_write = 1;
4983         case READ_6:
4984                 first_block = (((cmd->cmnd[1] & 0x1F) << 16) |
4985                                 (cmd->cmnd[2] << 8) |
4986                                 cmd->cmnd[3]);
4987                 block_cnt = cmd->cmnd[4];
4988                 if (block_cnt == 0)
4989                         block_cnt = 256;
4990                 break;
4991         case WRITE_10:
4992                 is_write = 1;
4993         case READ_10:
4994                 first_block =
4995                         (((u64) cmd->cmnd[2]) << 24) |
4996                         (((u64) cmd->cmnd[3]) << 16) |
4997                         (((u64) cmd->cmnd[4]) << 8) |
4998                         cmd->cmnd[5];
4999                 block_cnt =
5000                         (((u32) cmd->cmnd[7]) << 8) |
5001                         cmd->cmnd[8];
5002                 break;
5003         case WRITE_12:
5004                 is_write = 1;
5005         case READ_12:
5006                 first_block =
5007                         (((u64) cmd->cmnd[2]) << 24) |
5008                         (((u64) cmd->cmnd[3]) << 16) |
5009                         (((u64) cmd->cmnd[4]) << 8) |
5010                         cmd->cmnd[5];
5011                 block_cnt =
5012                         (((u32) cmd->cmnd[6]) << 24) |
5013                         (((u32) cmd->cmnd[7]) << 16) |
5014                         (((u32) cmd->cmnd[8]) << 8) |
5015                 cmd->cmnd[9];
5016                 break;
5017         case WRITE_16:
5018                 is_write = 1;
5019         case READ_16:
5020                 first_block =
5021                         (((u64) cmd->cmnd[2]) << 56) |
5022                         (((u64) cmd->cmnd[3]) << 48) |
5023                         (((u64) cmd->cmnd[4]) << 40) |
5024                         (((u64) cmd->cmnd[5]) << 32) |
5025                         (((u64) cmd->cmnd[6]) << 24) |
5026                         (((u64) cmd->cmnd[7]) << 16) |
5027                         (((u64) cmd->cmnd[8]) << 8) |
5028                         cmd->cmnd[9];
5029                 block_cnt =
5030                         (((u32) cmd->cmnd[10]) << 24) |
5031                         (((u32) cmd->cmnd[11]) << 16) |
5032                         (((u32) cmd->cmnd[12]) << 8) |
5033                         cmd->cmnd[13];
5034                 break;
5035         default:
5036                 return IO_ACCEL_INELIGIBLE; /* process via normal I/O path */
5037         }
5038         last_block = first_block + block_cnt - 1;
5039
5040         /* check for write to non-RAID-0 */
5041         if (is_write && dev->raid_level != 0)
5042                 return IO_ACCEL_INELIGIBLE;
5043
5044         /* check for invalid block or wraparound */
5045         if (last_block >= le64_to_cpu(map->volume_blk_cnt) ||
5046                 last_block < first_block)
5047                 return IO_ACCEL_INELIGIBLE;
5048
5049         /* calculate stripe information for the request */
5050         blocks_per_row = le16_to_cpu(map->data_disks_per_row) *
5051                                 le16_to_cpu(map->strip_size);
5052         strip_size = le16_to_cpu(map->strip_size);
5053 #if BITS_PER_LONG == 32
5054         tmpdiv = first_block;
5055         (void) do_div(tmpdiv, blocks_per_row);
5056         first_row = tmpdiv;
5057         tmpdiv = last_block;
5058         (void) do_div(tmpdiv, blocks_per_row);
5059         last_row = tmpdiv;
5060         first_row_offset = (u32) (first_block - (first_row * blocks_per_row));
5061         last_row_offset = (u32) (last_block - (last_row * blocks_per_row));
5062         tmpdiv = first_row_offset;
5063         (void) do_div(tmpdiv, strip_size);
5064         first_column = tmpdiv;
5065         tmpdiv = last_row_offset;
5066         (void) do_div(tmpdiv, strip_size);
5067         last_column = tmpdiv;
5068 #else
5069         first_row = first_block / blocks_per_row;
5070         last_row = last_block / blocks_per_row;
5071         first_row_offset = (u32) (first_block - (first_row * blocks_per_row));
5072         last_row_offset = (u32) (last_block - (last_row * blocks_per_row));
5073         first_column = first_row_offset / strip_size;
5074         last_column = last_row_offset / strip_size;
5075 #endif
5076
5077         /* if this isn't a single row/column then give to the controller */
5078         if ((first_row != last_row) || (first_column != last_column))
5079                 return IO_ACCEL_INELIGIBLE;
5080
5081         /* proceeding with driver mapping */
5082         total_disks_per_row = le16_to_cpu(map->data_disks_per_row) +
5083                                 le16_to_cpu(map->metadata_disks_per_row);
5084         map_row = ((u32)(first_row >> map->parity_rotation_shift)) %
5085                                 le16_to_cpu(map->row_cnt);
5086         map_index = (map_row * total_disks_per_row) + first_column;
5087
5088         switch (dev->raid_level) {
5089         case HPSA_RAID_0:
5090                 break; /* nothing special to do */
5091         case HPSA_RAID_1:
5092                 /* Handles load balance across RAID 1 members.
5093                  * (2-drive R1 and R10 with even # of drives.)
5094                  * Appropriate for SSDs, not optimal for HDDs
5095                  */
5096                 BUG_ON(le16_to_cpu(map->layout_map_count) != 2);
5097                 if (dev->offload_to_mirror)
5098                         map_index += le16_to_cpu(map->data_disks_per_row);
5099                 dev->offload_to_mirror = !dev->offload_to_mirror;
5100                 break;
5101         case HPSA_RAID_ADM:
5102                 /* Handles N-way mirrors  (R1-ADM)
5103                  * and R10 with # of drives divisible by 3.)
5104                  */
5105                 BUG_ON(le16_to_cpu(map->layout_map_count) != 3);
5106
5107                 offload_to_mirror = dev->offload_to_mirror;
5108                 raid_map_helper(map, offload_to_mirror,
5109                                 &map_index, &current_group);
5110                 /* set mirror group to use next time */
5111                 offload_to_mirror =
5112                         (offload_to_mirror >=
5113                         le16_to_cpu(map->layout_map_count) - 1)
5114                         ? 0 : offload_to_mirror + 1;
5115                 dev->offload_to_mirror = offload_to_mirror;
5116                 /* Avoid direct use of dev->offload_to_mirror within this
5117                  * function since multiple threads might simultaneously
5118                  * increment it beyond the range of dev->layout_map_count -1.
5119                  */
5120                 break;
5121         case HPSA_RAID_5:
5122         case HPSA_RAID_6:
5123                 if (le16_to_cpu(map->layout_map_count) <= 1)
5124                         break;
5125
5126                 /* Verify first and last block are in same RAID group */
5127                 r5or6_blocks_per_row =
5128                         le16_to_cpu(map->strip_size) *
5129                         le16_to_cpu(map->data_disks_per_row);
5130                 BUG_ON(r5or6_blocks_per_row == 0);
5131                 stripesize = r5or6_blocks_per_row *
5132                         le16_to_cpu(map->layout_map_count);
5133 #if BITS_PER_LONG == 32
5134                 tmpdiv = first_block;
5135                 first_group = do_div(tmpdiv, stripesize);
5136                 tmpdiv = first_group;
5137                 (void) do_div(tmpdiv, r5or6_blocks_per_row);
5138                 first_group = tmpdiv;
5139                 tmpdiv = last_block;
5140                 last_group = do_div(tmpdiv, stripesize);
5141                 tmpdiv = last_group;
5142                 (void) do_div(tmpdiv, r5or6_blocks_per_row);
5143                 last_group = tmpdiv;
5144 #else
5145                 first_group = (first_block % stripesize) / r5or6_blocks_per_row;
5146                 last_group = (last_block % stripesize) / r5or6_blocks_per_row;
5147 #endif
5148                 if (first_group != last_group)
5149                         return IO_ACCEL_INELIGIBLE;
5150
5151                 /* Verify request is in a single row of RAID 5/6 */
5152 #if BITS_PER_LONG == 32
5153                 tmpdiv = first_block;
5154                 (void) do_div(tmpdiv, stripesize);
5155                 first_row = r5or6_first_row = r0_first_row = tmpdiv;
5156                 tmpdiv = last_block;
5157                 (void) do_div(tmpdiv, stripesize);
5158                 r5or6_last_row = r0_last_row = tmpdiv;
5159 #else
5160                 first_row = r5or6_first_row = r0_first_row =
5161                                                 first_block / stripesize;
5162                 r5or6_last_row = r0_last_row = last_block / stripesize;
5163 #endif
5164                 if (r5or6_first_row != r5or6_last_row)
5165                         return IO_ACCEL_INELIGIBLE;
5166
5167
5168                 /* Verify request is in a single column */
5169 #if BITS_PER_LONG == 32
5170                 tmpdiv = first_block;
5171                 first_row_offset = do_div(tmpdiv, stripesize);
5172                 tmpdiv = first_row_offset;
5173                 first_row_offset = (u32) do_div(tmpdiv, r5or6_blocks_per_row);
5174                 r5or6_first_row_offset = first_row_offset;
5175                 tmpdiv = last_block;
5176                 r5or6_last_row_offset = do_div(tmpdiv, stripesize);
5177                 tmpdiv = r5or6_last_row_offset;
5178                 r5or6_last_row_offset = do_div(tmpdiv, r5or6_blocks_per_row);
5179                 tmpdiv = r5or6_first_row_offset;
5180                 (void) do_div(tmpdiv, map->strip_size);
5181                 first_column = r5or6_first_column = tmpdiv;
5182                 tmpdiv = r5or6_last_row_offset;
5183                 (void) do_div(tmpdiv, map->strip_size);
5184                 r5or6_last_column = tmpdiv;
5185 #else
5186                 first_row_offset = r5or6_first_row_offset =
5187                         (u32)((first_block % stripesize) %
5188                                                 r5or6_blocks_per_row);
5189
5190                 r5or6_last_row_offset =
5191                         (u32)((last_block % stripesize) %
5192                                                 r5or6_blocks_per_row);
5193
5194                 first_column = r5or6_first_column =
5195                         r5or6_first_row_offset / le16_to_cpu(map->strip_size);
5196                 r5or6_last_column =
5197                         r5or6_last_row_offset / le16_to_cpu(map->strip_size);
5198 #endif
5199                 if (r5or6_first_column != r5or6_last_column)
5200                         return IO_ACCEL_INELIGIBLE;
5201
5202                 /* Request is eligible */
5203                 map_row = ((u32)(first_row >> map->parity_rotation_shift)) %
5204                         le16_to_cpu(map->row_cnt);
5205
5206                 map_index = (first_group *
5207                         (le16_to_cpu(map->row_cnt) * total_disks_per_row)) +
5208                         (map_row * total_disks_per_row) + first_column;
5209                 break;
5210         default:
5211                 return IO_ACCEL_INELIGIBLE;
5212         }
5213
5214         if (unlikely(map_index >= RAID_MAP_MAX_ENTRIES))
5215                 return IO_ACCEL_INELIGIBLE;
5216
5217         c->phys_disk = dev->phys_disk[map_index];
5218         if (!c->phys_disk)
5219                 return IO_ACCEL_INELIGIBLE;
5220
5221         disk_handle = dd[map_index].ioaccel_handle;
5222         disk_block = le64_to_cpu(map->disk_starting_blk) +
5223                         first_row * le16_to_cpu(map->strip_size) +
5224                         (first_row_offset - first_column *
5225                         le16_to_cpu(map->strip_size));
5226         disk_block_cnt = block_cnt;
5227
5228         /* handle differing logical/physical block sizes */
5229         if (map->phys_blk_shift) {
5230                 disk_block <<= map->phys_blk_shift;
5231                 disk_block_cnt <<= map->phys_blk_shift;
5232         }
5233         BUG_ON(disk_block_cnt > 0xffff);
5234
5235         /* build the new CDB for the physical disk I/O */
5236         if (disk_block > 0xffffffff) {
5237                 cdb[0] = is_write ? WRITE_16 : READ_16;
5238                 cdb[1] = 0;
5239                 cdb[2] = (u8) (disk_block >> 56);
5240                 cdb[3] = (u8) (disk_block >> 48);
5241                 cdb[4] = (u8) (disk_block >> 40);
5242                 cdb[5] = (u8) (disk_block >> 32);
5243                 cdb[6] = (u8) (disk_block >> 24);
5244                 cdb[7] = (u8) (disk_block >> 16);
5245                 cdb[8] = (u8) (disk_block >> 8);
5246                 cdb[9] = (u8) (disk_block);
5247                 cdb[10] = (u8) (disk_block_cnt >> 24);
5248                 cdb[11] = (u8) (disk_block_cnt >> 16);
5249                 cdb[12] = (u8) (disk_block_cnt >> 8);
5250                 cdb[13] = (u8) (disk_block_cnt);
5251                 cdb[14] = 0;
5252                 cdb[15] = 0;
5253                 cdb_len = 16;
5254         } else {
5255                 cdb[0] = is_write ? WRITE_10 : READ_10;
5256                 cdb[1] = 0;
5257                 cdb[2] = (u8) (disk_block >> 24);
5258                 cdb[3] = (u8) (disk_block >> 16);
5259                 cdb[4] = (u8) (disk_block >> 8);
5260                 cdb[5] = (u8) (disk_block);
5261                 cdb[6] = 0;
5262                 cdb[7] = (u8) (disk_block_cnt >> 8);
5263                 cdb[8] = (u8) (disk_block_cnt);
5264                 cdb[9] = 0;
5265                 cdb_len = 10;
5266         }
5267         return hpsa_scsi_ioaccel_queue_command(h, c, disk_handle, cdb, cdb_len,
5268                                                 dev->scsi3addr,
5269                                                 dev->phys_disk[map_index]);
5270 }
5271
5272 /*
5273  * Submit commands down the "normal" RAID stack path
5274  * All callers to hpsa_ciss_submit must check lockup_detected
5275  * beforehand, before (opt.) and after calling cmd_alloc
5276  */
5277 static int hpsa_ciss_submit(struct ctlr_info *h,
5278         struct CommandList *c, struct scsi_cmnd *cmd,
5279         unsigned char scsi3addr[])
5280 {
5281         cmd->host_scribble = (unsigned char *) c;
5282         c->cmd_type = CMD_SCSI;
5283         c->scsi_cmd = cmd;
5284         c->Header.ReplyQueue = 0;  /* unused in simple mode */
5285         memcpy(&c->Header.LUN.LunAddrBytes[0], &scsi3addr[0], 8);
5286         c->Header.tag = cpu_to_le64((c->cmdindex << DIRECT_LOOKUP_SHIFT));
5287
5288         /* Fill in the request block... */
5289
5290         c->Request.Timeout = 0;
5291         BUG_ON(cmd->cmd_len > sizeof(c->Request.CDB));
5292         c->Request.CDBLen = cmd->cmd_len;
5293         memcpy(c->Request.CDB, cmd->cmnd, cmd->cmd_len);
5294         switch (cmd->sc_data_direction) {
5295         case DMA_TO_DEVICE:
5296                 c->Request.type_attr_dir =
5297                         TYPE_ATTR_DIR(TYPE_CMD, ATTR_SIMPLE, XFER_WRITE);
5298                 break;
5299         case DMA_FROM_DEVICE:
5300                 c->Request.type_attr_dir =
5301                         TYPE_ATTR_DIR(TYPE_CMD, ATTR_SIMPLE, XFER_READ);
5302                 break;
5303         case DMA_NONE:
5304                 c->Request.type_attr_dir =
5305                         TYPE_ATTR_DIR(TYPE_CMD, ATTR_SIMPLE, XFER_NONE);
5306                 break;
5307         case DMA_BIDIRECTIONAL:
5308                 /* This can happen if a buggy application does a scsi passthru
5309                  * and sets both inlen and outlen to non-zero. ( see
5310                  * ../scsi/scsi_ioctl.c:scsi_ioctl_send_command() )
5311                  */
5312
5313                 c->Request.type_attr_dir =
5314                         TYPE_ATTR_DIR(TYPE_CMD, ATTR_SIMPLE, XFER_RSVD);
5315                 /* This is technically wrong, and hpsa controllers should
5316                  * reject it with CMD_INVALID, which is the most correct
5317                  * response, but non-fibre backends appear to let it
5318                  * slide by, and give the same results as if this field
5319                  * were set correctly.  Either way is acceptable for
5320                  * our purposes here.
5321                  */
5322
5323                 break;
5324
5325         default:
5326                 dev_err(&h->pdev->dev, "unknown data direction: %d\n",
5327                         cmd->sc_data_direction);
5328                 BUG();
5329                 break;
5330         }
5331
5332         if (hpsa_scatter_gather(h, c, cmd) < 0) { /* Fill SG list */
5333                 hpsa_cmd_resolve_and_free(h, c);
5334                 return SCSI_MLQUEUE_HOST_BUSY;
5335         }
5336         enqueue_cmd_and_start_io(h, c);
5337         /* the cmd'll come back via intr handler in complete_scsi_command()  */
5338         return 0;
5339 }
5340
5341 static void hpsa_cmd_init(struct ctlr_info *h, int index,
5342                                 struct CommandList *c)
5343 {
5344         dma_addr_t cmd_dma_handle, err_dma_handle;
5345
5346         /* Zero out all of commandlist except the last field, refcount */
5347         memset(c, 0, offsetof(struct CommandList, refcount));
5348         c->Header.tag = cpu_to_le64((u64) (index << DIRECT_LOOKUP_SHIFT));
5349         cmd_dma_handle = h->cmd_pool_dhandle + index * sizeof(*c);
5350         c->err_info = h->errinfo_pool + index;
5351         memset(c->err_info, 0, sizeof(*c->err_info));
5352         err_dma_handle = h->errinfo_pool_dhandle
5353             + index * sizeof(*c->err_info);
5354         c->cmdindex = index;
5355         c->busaddr = (u32) cmd_dma_handle;
5356         c->ErrDesc.Addr = cpu_to_le64((u64) err_dma_handle);
5357         c->ErrDesc.Len = cpu_to_le32((u32) sizeof(*c->err_info));
5358         c->h = h;
5359         c->scsi_cmd = SCSI_CMD_IDLE;
5360 }
5361
5362 static void hpsa_preinitialize_commands(struct ctlr_info *h)
5363 {
5364         int i;
5365
5366         for (i = 0; i < h->nr_cmds; i++) {
5367                 struct CommandList *c = h->cmd_pool + i;
5368
5369                 hpsa_cmd_init(h, i, c);
5370                 atomic_set(&c->refcount, 0);
5371         }
5372 }
5373
5374 static inline void hpsa_cmd_partial_init(struct ctlr_info *h, int index,
5375                                 struct CommandList *c)
5376 {
5377         dma_addr_t cmd_dma_handle = h->cmd_pool_dhandle + index * sizeof(*c);
5378
5379         BUG_ON(c->cmdindex != index);
5380
5381         memset(c->Request.CDB, 0, sizeof(c->Request.CDB));
5382         memset(c->err_info, 0, sizeof(*c->err_info));
5383         c->busaddr = (u32) cmd_dma_handle;
5384 }
5385
5386 static int hpsa_ioaccel_submit(struct ctlr_info *h,
5387                 struct CommandList *c, struct scsi_cmnd *cmd,
5388                 unsigned char *scsi3addr)
5389 {
5390         struct hpsa_scsi_dev_t *dev = cmd->device->hostdata;
5391         int rc = IO_ACCEL_INELIGIBLE;
5392
5393         if (!dev)
5394                 return SCSI_MLQUEUE_HOST_BUSY;
5395
5396         cmd->host_scribble = (unsigned char *) c;
5397
5398         if (dev->offload_enabled) {
5399                 hpsa_cmd_init(h, c->cmdindex, c);
5400                 c->cmd_type = CMD_SCSI;
5401                 c->scsi_cmd = cmd;
5402                 rc = hpsa_scsi_ioaccel_raid_map(h, c);
5403                 if (rc < 0)     /* scsi_dma_map failed. */
5404                         rc = SCSI_MLQUEUE_HOST_BUSY;
5405         } else if (dev->hba_ioaccel_enabled) {
5406                 hpsa_cmd_init(h, c->cmdindex, c);
5407                 c->cmd_type = CMD_SCSI;
5408                 c->scsi_cmd = cmd;
5409                 rc = hpsa_scsi_ioaccel_direct_map(h, c);
5410                 if (rc < 0)     /* scsi_dma_map failed. */
5411                         rc = SCSI_MLQUEUE_HOST_BUSY;
5412         }
5413         return rc;
5414 }
5415
5416 static void hpsa_command_resubmit_worker(struct work_struct *work)
5417 {
5418         struct scsi_cmnd *cmd;
5419         struct hpsa_scsi_dev_t *dev;
5420         struct CommandList *c = container_of(work, struct CommandList, work);
5421
5422         cmd = c->scsi_cmd;
5423         dev = cmd->device->hostdata;
5424         if (!dev) {
5425                 cmd->result = DID_NO_CONNECT << 16;
5426                 return hpsa_cmd_free_and_done(c->h, c, cmd);
5427         }
5428         if (c->reset_pending)
5429                 return hpsa_cmd_resolve_and_free(c->h, c);
5430         if (c->abort_pending)
5431                 return hpsa_cmd_abort_and_free(c->h, c, cmd);
5432         if (c->cmd_type == CMD_IOACCEL2) {
5433                 struct ctlr_info *h = c->h;
5434                 struct io_accel2_cmd *c2 = &h->ioaccel2_cmd_pool[c->cmdindex];
5435                 int rc;
5436
5437                 if (c2->error_data.serv_response ==
5438                                 IOACCEL2_STATUS_SR_TASK_COMP_SET_FULL) {
5439                         rc = hpsa_ioaccel_submit(h, c, cmd, dev->scsi3addr);
5440                         if (rc == 0)
5441                                 return;
5442                         if (rc == SCSI_MLQUEUE_HOST_BUSY) {
5443                                 /*
5444                                  * If we get here, it means dma mapping failed.
5445                                  * Try again via scsi mid layer, which will
5446                                  * then get SCSI_MLQUEUE_HOST_BUSY.
5447                                  */
5448                                 cmd->result = DID_IMM_RETRY << 16;
5449                                 return hpsa_cmd_free_and_done(h, c, cmd);
5450                         }
5451                         /* else, fall thru and resubmit down CISS path */
5452                 }
5453         }
5454         hpsa_cmd_partial_init(c->h, c->cmdindex, c);
5455         if (hpsa_ciss_submit(c->h, c, cmd, dev->scsi3addr)) {
5456                 /*
5457                  * If we get here, it means dma mapping failed. Try
5458                  * again via scsi mid layer, which will then get
5459                  * SCSI_MLQUEUE_HOST_BUSY.
5460                  *
5461                  * hpsa_ciss_submit will have already freed c
5462                  * if it encountered a dma mapping failure.
5463                  */
5464                 cmd->result = DID_IMM_RETRY << 16;
5465                 cmd->scsi_done(cmd);
5466         }
5467 }
5468
5469 /* Running in struct Scsi_Host->host_lock less mode */
5470 static int hpsa_scsi_queue_command(struct Scsi_Host *sh, struct scsi_cmnd *cmd)
5471 {
5472         struct ctlr_info *h;
5473         struct hpsa_scsi_dev_t *dev;
5474         unsigned char scsi3addr[8];
5475         struct CommandList *c;
5476         int rc = 0;
5477
5478         /* Get the ptr to our adapter structure out of cmd->host. */
5479         h = sdev_to_hba(cmd->device);
5480
5481         BUG_ON(cmd->request->tag < 0);
5482
5483         dev = cmd->device->hostdata;
5484         if (!dev) {
5485                 cmd->result = NOT_READY << 16; /* host byte */
5486                 cmd->scsi_done(cmd);
5487                 return 0;
5488         }
5489
5490         if (dev->removed) {
5491                 cmd->result = DID_NO_CONNECT << 16;
5492                 cmd->scsi_done(cmd);
5493                 return 0;
5494         }
5495
5496         memcpy(scsi3addr, dev->scsi3addr, sizeof(scsi3addr));
5497
5498         if (unlikely(lockup_detected(h))) {
5499                 cmd->result = DID_NO_CONNECT << 16;
5500                 cmd->scsi_done(cmd);
5501                 return 0;
5502         }
5503         c = cmd_tagged_alloc(h, cmd);
5504
5505         /*
5506          * Call alternate submit routine for I/O accelerated commands.
5507          * Retries always go down the normal I/O path.
5508          */
5509         if (likely(cmd->retries == 0 &&
5510                 cmd->request->cmd_type == REQ_TYPE_FS &&
5511                 h->acciopath_status)) {
5512                 rc = hpsa_ioaccel_submit(h, c, cmd, scsi3addr);
5513                 if (rc == 0)
5514                         return 0;
5515                 if (rc == SCSI_MLQUEUE_HOST_BUSY) {
5516                         hpsa_cmd_resolve_and_free(h, c);
5517                         return SCSI_MLQUEUE_HOST_BUSY;
5518                 }
5519         }
5520         return hpsa_ciss_submit(h, c, cmd, scsi3addr);
5521 }
5522
5523 static void hpsa_scan_complete(struct ctlr_info *h)
5524 {
5525         unsigned long flags;
5526
5527         spin_lock_irqsave(&h->scan_lock, flags);
5528         h->scan_finished = 1;
5529         wake_up_all(&h->scan_wait_queue);
5530         spin_unlock_irqrestore(&h->scan_lock, flags);
5531 }
5532
5533 static void hpsa_scan_start(struct Scsi_Host *sh)
5534 {
5535         struct ctlr_info *h = shost_to_hba(sh);
5536         unsigned long flags;
5537
5538         /*
5539          * Don't let rescans be initiated on a controller known to be locked
5540          * up.  If the controller locks up *during* a rescan, that thread is
5541          * probably hosed, but at least we can prevent new rescan threads from
5542          * piling up on a locked up controller.
5543          */
5544         if (unlikely(lockup_detected(h)))
5545                 return hpsa_scan_complete(h);
5546
5547         /* wait until any scan already in progress is finished. */
5548         while (1) {
5549                 spin_lock_irqsave(&h->scan_lock, flags);
5550                 if (h->scan_finished)
5551                         break;
5552                 spin_unlock_irqrestore(&h->scan_lock, flags);
5553                 wait_event(h->scan_wait_queue, h->scan_finished);
5554                 /* Note: We don't need to worry about a race between this
5555                  * thread and driver unload because the midlayer will
5556                  * have incremented the reference count, so unload won't
5557                  * happen if we're in here.
5558                  */
5559         }
5560         h->scan_finished = 0; /* mark scan as in progress */
5561         spin_unlock_irqrestore(&h->scan_lock, flags);
5562
5563         if (unlikely(lockup_detected(h)))
5564                 return hpsa_scan_complete(h);
5565
5566         hpsa_update_scsi_devices(h);
5567
5568         hpsa_scan_complete(h);
5569 }
5570
5571 static int hpsa_change_queue_depth(struct scsi_device *sdev, int qdepth)
5572 {
5573         struct hpsa_scsi_dev_t *logical_drive = sdev->hostdata;
5574
5575         if (!logical_drive)
5576                 return -ENODEV;
5577
5578         if (qdepth < 1)
5579                 qdepth = 1;
5580         else if (qdepth > logical_drive->queue_depth)
5581                 qdepth = logical_drive->queue_depth;
5582
5583         return scsi_change_queue_depth(sdev, qdepth);
5584 }
5585
5586 static int hpsa_scan_finished(struct Scsi_Host *sh,
5587         unsigned long elapsed_time)
5588 {
5589         struct ctlr_info *h = shost_to_hba(sh);
5590         unsigned long flags;
5591         int finished;
5592
5593         spin_lock_irqsave(&h->scan_lock, flags);
5594         finished = h->scan_finished;
5595         spin_unlock_irqrestore(&h->scan_lock, flags);
5596         return finished;
5597 }
5598
5599 static int hpsa_scsi_host_alloc(struct ctlr_info *h)
5600 {
5601         struct Scsi_Host *sh;
5602
5603         sh = scsi_host_alloc(&hpsa_driver_template, sizeof(h));
5604         if (sh == NULL) {
5605                 dev_err(&h->pdev->dev, "scsi_host_alloc failed\n");
5606                 return -ENOMEM;
5607         }
5608
5609         sh->io_port = 0;
5610         sh->n_io_port = 0;
5611         sh->this_id = -1;
5612         sh->max_channel = 3;
5613         sh->max_cmd_len = MAX_COMMAND_SIZE;
5614         sh->max_lun = HPSA_MAX_LUN;
5615         sh->max_id = HPSA_MAX_LUN;
5616         sh->can_queue = h->nr_cmds - HPSA_NRESERVED_CMDS;
5617         sh->cmd_per_lun = sh->can_queue;
5618         sh->sg_tablesize = h->maxsgentries;
5619         sh->transportt = hpsa_sas_transport_template;
5620         sh->hostdata[0] = (unsigned long) h;
5621         sh->irq = h->intr[h->intr_mode];
5622         sh->unique_id = sh->irq;
5623
5624         h->scsi_host = sh;
5625         return 0;
5626 }
5627
5628 static int hpsa_scsi_add_host(struct ctlr_info *h)
5629 {
5630         int rv;
5631
5632         rv = scsi_add_host(h->scsi_host, &h->pdev->dev);
5633         if (rv) {
5634                 dev_err(&h->pdev->dev, "scsi_add_host failed\n");
5635                 return rv;
5636         }
5637         scsi_scan_host(h->scsi_host);
5638         return 0;
5639 }
5640
5641 /*
5642  * The block layer has already gone to the trouble of picking out a unique,
5643  * small-integer tag for this request.  We use an offset from that value as
5644  * an index to select our command block.  (The offset allows us to reserve the
5645  * low-numbered entries for our own uses.)
5646  */
5647 static int hpsa_get_cmd_index(struct scsi_cmnd *scmd)
5648 {
5649         int idx = scmd->request->tag;
5650
5651         if (idx < 0)
5652                 return idx;
5653
5654         /* Offset to leave space for internal cmds. */
5655         return idx += HPSA_NRESERVED_CMDS;
5656 }
5657
5658 /*
5659  * Send a TEST_UNIT_READY command to the specified LUN using the specified
5660  * reply queue; returns zero if the unit is ready, and non-zero otherwise.
5661  */
5662 static int hpsa_send_test_unit_ready(struct ctlr_info *h,
5663                                 struct CommandList *c, unsigned char lunaddr[],
5664                                 int reply_queue)
5665 {
5666         int rc;
5667
5668         /* Send the Test Unit Ready, fill_cmd can't fail, no mapping */
5669         (void) fill_cmd(c, TEST_UNIT_READY, h,
5670                         NULL, 0, 0, lunaddr, TYPE_CMD);
5671         rc = hpsa_scsi_do_simple_cmd(h, c, reply_queue, DEFAULT_TIMEOUT);
5672         if (rc)
5673                 return rc;
5674         /* no unmap needed here because no data xfer. */
5675
5676         /* Check if the unit is already ready. */
5677         if (c->err_info->CommandStatus == CMD_SUCCESS)
5678                 return 0;
5679
5680         /*
5681          * The first command sent after reset will receive "unit attention" to
5682          * indicate that the LUN has been reset...this is actually what we're
5683          * looking for (but, success is good too).
5684          */
5685         if (c->err_info->CommandStatus == CMD_TARGET_STATUS &&
5686                 c->err_info->ScsiStatus == SAM_STAT_CHECK_CONDITION &&
5687                         (c->err_info->SenseInfo[2] == NO_SENSE ||
5688                          c->err_info->SenseInfo[2] == UNIT_ATTENTION))
5689                 return 0;
5690
5691         return 1;
5692 }
5693
5694 /*
5695  * Wait for a TEST_UNIT_READY command to complete, retrying as necessary;
5696  * returns zero when the unit is ready, and non-zero when giving up.
5697  */
5698 static int hpsa_wait_for_test_unit_ready(struct ctlr_info *h,
5699                                 struct CommandList *c,
5700                                 unsigned char lunaddr[], int reply_queue)
5701 {
5702         int rc;
5703         int count = 0;
5704         int waittime = 1; /* seconds */
5705
5706         /* Send test unit ready until device ready, or give up. */
5707         for (count = 0; count < HPSA_TUR_RETRY_LIMIT; count++) {
5708
5709                 /*
5710                  * Wait for a bit.  do this first, because if we send
5711                  * the TUR right away, the reset will just abort it.
5712                  */
5713                 msleep(1000 * waittime);
5714
5715                 rc = hpsa_send_test_unit_ready(h, c, lunaddr, reply_queue);
5716                 if (!rc)
5717                         break;
5718
5719                 /* Increase wait time with each try, up to a point. */
5720                 if (waittime < HPSA_MAX_WAIT_INTERVAL_SECS)
5721                         waittime *= 2;
5722
5723                 dev_warn(&h->pdev->dev,
5724                          "waiting %d secs for device to become ready.\n",
5725                          waittime);
5726         }
5727
5728         return rc;
5729 }
5730
5731 static int wait_for_device_to_become_ready(struct ctlr_info *h,
5732                                            unsigned char lunaddr[],
5733                                            int reply_queue)
5734 {
5735         int first_queue;
5736         int last_queue;
5737         int rq;
5738         int rc = 0;
5739         struct CommandList *c;
5740
5741         c = cmd_alloc(h);
5742
5743         /*
5744          * If no specific reply queue was requested, then send the TUR
5745          * repeatedly, requesting a reply on each reply queue; otherwise execute
5746          * the loop exactly once using only the specified queue.
5747          */
5748         if (reply_queue == DEFAULT_REPLY_QUEUE) {
5749                 first_queue = 0;
5750                 last_queue = h->nreply_queues - 1;
5751         } else {
5752                 first_queue = reply_queue;
5753                 last_queue = reply_queue;
5754         }
5755
5756         for (rq = first_queue; rq <= last_queue; rq++) {
5757                 rc = hpsa_wait_for_test_unit_ready(h, c, lunaddr, rq);
5758                 if (rc)
5759                         break;
5760         }
5761
5762         if (rc)
5763                 dev_warn(&h->pdev->dev, "giving up on device.\n");
5764         else
5765                 dev_warn(&h->pdev->dev, "device is ready.\n");
5766
5767         cmd_free(h, c);
5768         return rc;
5769 }
5770
5771 /* Need at least one of these error handlers to keep ../scsi/hosts.c from
5772  * complaining.  Doing a host- or bus-reset can't do anything good here.
5773  */
5774 static int hpsa_eh_device_reset_handler(struct scsi_cmnd *scsicmd)
5775 {
5776         int rc;
5777         struct ctlr_info *h;
5778         struct hpsa_scsi_dev_t *dev;
5779         u8 reset_type;
5780         char msg[48];
5781
5782         /* find the controller to which the command to be aborted was sent */
5783         h = sdev_to_hba(scsicmd->device);
5784         if (h == NULL) /* paranoia */
5785                 return FAILED;
5786
5787         if (lockup_detected(h))
5788                 return FAILED;
5789
5790         dev = scsicmd->device->hostdata;
5791         if (!dev) {
5792                 dev_err(&h->pdev->dev, "%s: device lookup failed\n", __func__);
5793                 return FAILED;
5794         }
5795
5796         /* if controller locked up, we can guarantee command won't complete */
5797         if (lockup_detected(h)) {
5798                 snprintf(msg, sizeof(msg),
5799                          "cmd %d RESET FAILED, lockup detected",
5800                          hpsa_get_cmd_index(scsicmd));
5801                 hpsa_show_dev_msg(KERN_WARNING, h, dev, msg);
5802                 return FAILED;
5803         }
5804
5805         /* this reset request might be the result of a lockup; check */
5806         if (detect_controller_lockup(h)) {
5807                 snprintf(msg, sizeof(msg),
5808                          "cmd %d RESET FAILED, new lockup detected",
5809                          hpsa_get_cmd_index(scsicmd));
5810                 hpsa_show_dev_msg(KERN_WARNING, h, dev, msg);
5811                 return FAILED;
5812         }
5813
5814         /* Do not attempt on controller */
5815         if (is_hba_lunid(dev->scsi3addr))
5816                 return SUCCESS;
5817
5818         if (is_logical_dev_addr_mode(dev->scsi3addr))
5819                 reset_type = HPSA_DEVICE_RESET_MSG;
5820         else
5821                 reset_type = HPSA_PHYS_TARGET_RESET;
5822
5823         sprintf(msg, "resetting %s",
5824                 reset_type == HPSA_DEVICE_RESET_MSG ? "logical " : "physical ");
5825         hpsa_show_dev_msg(KERN_WARNING, h, dev, msg);
5826
5827         h->reset_in_progress = 1;
5828
5829         /* send a reset to the SCSI LUN which the command was sent to */
5830         rc = hpsa_do_reset(h, dev, dev->scsi3addr, reset_type,
5831                            DEFAULT_REPLY_QUEUE);
5832         sprintf(msg, "reset %s %s",
5833                 reset_type == HPSA_DEVICE_RESET_MSG ? "logical " : "physical ",
5834                 rc == 0 ? "completed successfully" : "failed");
5835         hpsa_show_dev_msg(KERN_WARNING, h, dev, msg);
5836         h->reset_in_progress = 0;
5837         return rc == 0 ? SUCCESS : FAILED;
5838 }
5839
5840 static void swizzle_abort_tag(u8 *tag)
5841 {
5842         u8 original_tag[8];
5843
5844         memcpy(original_tag, tag, 8);
5845         tag[0] = original_tag[3];
5846         tag[1] = original_tag[2];
5847         tag[2] = original_tag[1];
5848         tag[3] = original_tag[0];
5849         tag[4] = original_tag[7];
5850         tag[5] = original_tag[6];
5851         tag[6] = original_tag[5];
5852         tag[7] = original_tag[4];
5853 }
5854
5855 static void hpsa_get_tag(struct ctlr_info *h,
5856         struct CommandList *c, __le32 *taglower, __le32 *tagupper)
5857 {
5858         u64 tag;
5859         if (c->cmd_type == CMD_IOACCEL1) {
5860                 struct io_accel1_cmd *cm1 = (struct io_accel1_cmd *)
5861                         &h->ioaccel_cmd_pool[c->cmdindex];
5862                 tag = le64_to_cpu(cm1->tag);
5863                 *tagupper = cpu_to_le32(tag >> 32);
5864                 *taglower = cpu_to_le32(tag);
5865                 return;
5866         }
5867         if (c->cmd_type == CMD_IOACCEL2) {
5868                 struct io_accel2_cmd *cm2 = (struct io_accel2_cmd *)
5869                         &h->ioaccel2_cmd_pool[c->cmdindex];
5870                 /* upper tag not used in ioaccel2 mode */
5871                 memset(tagupper, 0, sizeof(*tagupper));
5872                 *taglower = cm2->Tag;
5873                 return;
5874         }
5875         tag = le64_to_cpu(c->Header.tag);
5876         *tagupper = cpu_to_le32(tag >> 32);
5877         *taglower = cpu_to_le32(tag);
5878 }
5879
5880 static int hpsa_send_abort(struct ctlr_info *h, unsigned char *scsi3addr,
5881         struct CommandList *abort, int reply_queue)
5882 {
5883         int rc = IO_OK;
5884         struct CommandList *c;
5885         struct ErrorInfo *ei;
5886         __le32 tagupper, taglower;
5887
5888         c = cmd_alloc(h);
5889
5890         /* fill_cmd can't fail here, no buffer to map */
5891         (void) fill_cmd(c, HPSA_ABORT_MSG, h, &abort->Header.tag,
5892                 0, 0, scsi3addr, TYPE_MSG);
5893         if (h->needs_abort_tags_swizzled)
5894                 swizzle_abort_tag(&c->Request.CDB[4]);
5895         (void) hpsa_scsi_do_simple_cmd(h, c, reply_queue, DEFAULT_TIMEOUT);
5896         hpsa_get_tag(h, abort, &taglower, &tagupper);
5897         dev_dbg(&h->pdev->dev, "%s: Tag:0x%08x:%08x: do_simple_cmd(abort) completed.\n",
5898                 __func__, tagupper, taglower);
5899         /* no unmap needed here because no data xfer. */
5900
5901         ei = c->err_info;
5902         switch (ei->CommandStatus) {
5903         case CMD_SUCCESS:
5904                 break;
5905         case CMD_TMF_STATUS:
5906                 rc = hpsa_evaluate_tmf_status(h, c);
5907                 break;
5908         case CMD_UNABORTABLE: /* Very common, don't make noise. */
5909                 rc = -1;
5910                 break;
5911         default:
5912                 dev_dbg(&h->pdev->dev, "%s: Tag:0x%08x:%08x: interpreting error.\n",
5913                         __func__, tagupper, taglower);
5914                 hpsa_scsi_interpret_error(h, c);
5915                 rc = -1;
5916                 break;
5917         }
5918         cmd_free(h, c);
5919         dev_dbg(&h->pdev->dev, "%s: Tag:0x%08x:%08x: Finished.\n",
5920                 __func__, tagupper, taglower);
5921         return rc;
5922 }
5923
5924 static void setup_ioaccel2_abort_cmd(struct CommandList *c, struct ctlr_info *h,
5925         struct CommandList *command_to_abort, int reply_queue)
5926 {
5927         struct io_accel2_cmd *c2 = &h->ioaccel2_cmd_pool[c->cmdindex];
5928         struct hpsa_tmf_struct *ac = (struct hpsa_tmf_struct *) c2;
5929         struct io_accel2_cmd *c2a =
5930                 &h->ioaccel2_cmd_pool[command_to_abort->cmdindex];
5931         struct scsi_cmnd *scmd = command_to_abort->scsi_cmd;
5932         struct hpsa_scsi_dev_t *dev = scmd->device->hostdata;
5933
5934         if (!dev)
5935                 return;
5936
5937         /*
5938          * We're overlaying struct hpsa_tmf_struct on top of something which
5939          * was allocated as a struct io_accel2_cmd, so we better be sure it
5940          * actually fits, and doesn't overrun the error info space.
5941          */
5942         BUILD_BUG_ON(sizeof(struct hpsa_tmf_struct) >
5943                         sizeof(struct io_accel2_cmd));
5944         BUG_ON(offsetof(struct io_accel2_cmd, error_data) <
5945                         offsetof(struct hpsa_tmf_struct, error_len) +
5946                                 sizeof(ac->error_len));
5947
5948         c->cmd_type = IOACCEL2_TMF;
5949         c->scsi_cmd = SCSI_CMD_BUSY;
5950
5951         /* Adjust the DMA address to point to the accelerated command buffer */
5952         c->busaddr = (u32) h->ioaccel2_cmd_pool_dhandle +
5953                                 (c->cmdindex * sizeof(struct io_accel2_cmd));
5954         BUG_ON(c->busaddr & 0x0000007F);
5955
5956         memset(ac, 0, sizeof(*c2)); /* yes this is correct */
5957         ac->iu_type = IOACCEL2_IU_TMF_TYPE;
5958         ac->reply_queue = reply_queue;
5959         ac->tmf = IOACCEL2_TMF_ABORT;
5960         ac->it_nexus = cpu_to_le32(dev->ioaccel_handle);
5961         memset(ac->lun_id, 0, sizeof(ac->lun_id));
5962         ac->tag = cpu_to_le64(c->cmdindex << DIRECT_LOOKUP_SHIFT);
5963         ac->abort_tag = cpu_to_le64(le32_to_cpu(c2a->Tag));
5964         ac->error_ptr = cpu_to_le64(c->busaddr +
5965                         offsetof(struct io_accel2_cmd, error_data));
5966         ac->error_len = cpu_to_le32(sizeof(c2->error_data));
5967 }
5968
5969 /* ioaccel2 path firmware cannot handle abort task requests.
5970  * Change abort requests to physical target reset, and send to the
5971  * address of the physical disk used for the ioaccel 2 command.
5972  * Return 0 on success (IO_OK)
5973  *       -1 on failure
5974  */
5975
5976 static int hpsa_send_reset_as_abort_ioaccel2(struct ctlr_info *h,
5977         unsigned char *scsi3addr, struct CommandList *abort, int reply_queue)
5978 {
5979         int rc = IO_OK;
5980         struct scsi_cmnd *scmd; /* scsi command within request being aborted */
5981         struct hpsa_scsi_dev_t *dev; /* device to which scsi cmd was sent */
5982         unsigned char phys_scsi3addr[8]; /* addr of phys disk with volume */
5983         unsigned char *psa = &phys_scsi3addr[0];
5984
5985         /* Get a pointer to the hpsa logical device. */
5986         scmd = abort->scsi_cmd;
5987         dev = (struct hpsa_scsi_dev_t *)(scmd->device->hostdata);
5988         if (dev == NULL) {
5989                 dev_warn(&h->pdev->dev,
5990                         "Cannot abort: no device pointer for command.\n");
5991                         return -1; /* not abortable */
5992         }
5993
5994         if (h->raid_offload_debug > 0)
5995                 dev_info(&h->pdev->dev,
5996                         "scsi %d:%d:%d:%d %s scsi3addr 0x%02x%02x%02x%02x%02x%02x%02x%02x\n",
5997                         h->scsi_host->host_no, dev->bus, dev->target, dev->lun,
5998                         "Reset as abort",
5999                         scsi3addr[0], scsi3addr[1], scsi3addr[2], scsi3addr[3],
6000                         scsi3addr[4], scsi3addr[5], scsi3addr[6], scsi3addr[7]);
6001
6002         if (!dev->offload_enabled) {
6003                 dev_warn(&h->pdev->dev,
6004                         "Can't abort: device is not operating in HP SSD Smart Path mode.\n");
6005                 return -1; /* not abortable */
6006         }
6007
6008         /* Incoming scsi3addr is logical addr. We need physical disk addr. */
6009         if (!hpsa_get_pdisk_of_ioaccel2(h, abort, psa)) {
6010                 dev_warn(&h->pdev->dev, "Can't abort: Failed lookup of physical address.\n");
6011                 return -1; /* not abortable */
6012         }
6013
6014         /* send the reset */
6015         if (h->raid_offload_debug > 0)
6016                 dev_info(&h->pdev->dev,
6017                         "Reset as abort: Resetting physical device at scsi3addr 0x%02x%02x%02x%02x%02x%02x%02x%02x\n",
6018                         psa[0], psa[1], psa[2], psa[3],
6019                         psa[4], psa[5], psa[6], psa[7]);
6020         rc = hpsa_do_reset(h, dev, psa, HPSA_PHYS_TARGET_RESET, reply_queue);
6021         if (rc != 0) {
6022                 dev_warn(&h->pdev->dev,
6023                         "Reset as abort: Failed on physical device at scsi3addr 0x%02x%02x%02x%02x%02x%02x%02x%02x\n",
6024                         psa[0], psa[1], psa[2], psa[3],
6025                         psa[4], psa[5], psa[6], psa[7]);
6026                 return rc; /* failed to reset */
6027         }
6028
6029         /* wait for device to recover */
6030         if (wait_for_device_to_become_ready(h, psa, reply_queue) != 0) {
6031                 dev_warn(&h->pdev->dev,
6032                         "Reset as abort: Failed: Device never recovered from reset: 0x%02x%02x%02x%02x%02x%02x%02x%02x\n",
6033                         psa[0], psa[1], psa[2], psa[3],
6034                         psa[4], psa[5], psa[6], psa[7]);
6035                 return -1;  /* failed to recover */
6036         }
6037
6038         /* device recovered */
6039         dev_info(&h->pdev->dev,
6040                 "Reset as abort: Device recovered from reset: scsi3addr 0x%02x%02x%02x%02x%02x%02x%02x%02x\n",
6041                 psa[0], psa[1], psa[2], psa[3],
6042                 psa[4], psa[5], psa[6], psa[7]);
6043
6044         return rc; /* success */
6045 }
6046
6047 static int hpsa_send_abort_ioaccel2(struct ctlr_info *h,
6048         struct CommandList *abort, int reply_queue)
6049 {
6050         int rc = IO_OK;
6051         struct CommandList *c;
6052         __le32 taglower, tagupper;
6053         struct hpsa_scsi_dev_t *dev;
6054         struct io_accel2_cmd *c2;
6055
6056         dev = abort->scsi_cmd->device->hostdata;
6057         if (!dev)
6058                 return -1;
6059
6060         if (!dev->offload_enabled && !dev->hba_ioaccel_enabled)
6061                 return -1;
6062
6063         c = cmd_alloc(h);
6064         setup_ioaccel2_abort_cmd(c, h, abort, reply_queue);
6065         c2 = &h->ioaccel2_cmd_pool[c->cmdindex];
6066         (void) hpsa_scsi_do_simple_cmd(h, c, reply_queue, DEFAULT_TIMEOUT);
6067         hpsa_get_tag(h, abort, &taglower, &tagupper);
6068         dev_dbg(&h->pdev->dev,
6069                 "%s: Tag:0x%08x:%08x: do_simple_cmd(ioaccel2 abort) completed.\n",
6070                 __func__, tagupper, taglower);
6071         /* no unmap needed here because no data xfer. */
6072
6073         dev_dbg(&h->pdev->dev,
6074                 "%s: Tag:0x%08x:%08x: abort service response = 0x%02x.\n",
6075                 __func__, tagupper, taglower, c2->error_data.serv_response);
6076         switch (c2->error_data.serv_response) {
6077         case IOACCEL2_SERV_RESPONSE_TMF_COMPLETE:
6078         case IOACCEL2_SERV_RESPONSE_TMF_SUCCESS:
6079                 rc = 0;
6080                 break;
6081         case IOACCEL2_SERV_RESPONSE_TMF_REJECTED:
6082         case IOACCEL2_SERV_RESPONSE_FAILURE:
6083         case IOACCEL2_SERV_RESPONSE_TMF_WRONG_LUN:
6084                 rc = -1;
6085                 break;
6086         default:
6087                 dev_warn(&h->pdev->dev,
6088                         "%s: Tag:0x%08x:%08x: unknown abort service response 0x%02x\n",
6089                         __func__, tagupper, taglower,
6090                         c2->error_data.serv_response);
6091                 rc = -1;
6092         }
6093         cmd_free(h, c);
6094         dev_dbg(&h->pdev->dev, "%s: Tag:0x%08x:%08x: Finished.\n", __func__,
6095                 tagupper, taglower);
6096         return rc;
6097 }
6098
6099 static int hpsa_send_abort_both_ways(struct ctlr_info *h,
6100         struct hpsa_scsi_dev_t *dev, struct CommandList *abort, int reply_queue)
6101 {
6102         /*
6103          * ioccelerator mode 2 commands should be aborted via the
6104          * accelerated path, since RAID path is unaware of these commands,
6105          * but not all underlying firmware can handle abort TMF.
6106          * Change abort to physical device reset when abort TMF is unsupported.
6107          */
6108         if (abort->cmd_type == CMD_IOACCEL2) {
6109                 if ((HPSATMF_IOACCEL_ENABLED & h->TMFSupportFlags) ||
6110                         dev->physical_device)
6111                         return hpsa_send_abort_ioaccel2(h, abort,
6112                                                 reply_queue);
6113                 else
6114                         return hpsa_send_reset_as_abort_ioaccel2(h,
6115                                                         dev->scsi3addr,
6116                                                         abort, reply_queue);
6117         }
6118         return hpsa_send_abort(h, dev->scsi3addr, abort, reply_queue);
6119 }
6120
6121 /* Find out which reply queue a command was meant to return on */
6122 static int hpsa_extract_reply_queue(struct ctlr_info *h,
6123                                         struct CommandList *c)
6124 {
6125         if (c->cmd_type == CMD_IOACCEL2)
6126                 return h->ioaccel2_cmd_pool[c->cmdindex].reply_queue;
6127         return c->Header.ReplyQueue;
6128 }
6129
6130 /*
6131  * Limit concurrency of abort commands to prevent
6132  * over-subscription of commands
6133  */
6134 static inline int wait_for_available_abort_cmd(struct ctlr_info *h)
6135 {
6136 #define ABORT_CMD_WAIT_MSECS 5000
6137         return !wait_event_timeout(h->abort_cmd_wait_queue,
6138                         atomic_dec_if_positive(&h->abort_cmds_available) >= 0,
6139                         msecs_to_jiffies(ABORT_CMD_WAIT_MSECS));
6140 }
6141
6142 /* Send an abort for the specified command.
6143  *      If the device and controller support it,
6144  *              send a task abort request.
6145  */
6146 static int hpsa_eh_abort_handler(struct scsi_cmnd *sc)
6147 {
6148
6149         int rc;
6150         struct ctlr_info *h;
6151         struct hpsa_scsi_dev_t *dev;
6152         struct CommandList *abort; /* pointer to command to be aborted */
6153         struct scsi_cmnd *as;   /* ptr to scsi cmd inside aborted command. */
6154         char msg[256];          /* For debug messaging. */
6155         int ml = 0;
6156         __le32 tagupper, taglower;
6157         int refcount, reply_queue;
6158
6159         if (sc == NULL)
6160                 return FAILED;
6161
6162         if (sc->device == NULL)
6163                 return FAILED;
6164
6165         /* Find the controller of the command to be aborted */
6166         h = sdev_to_hba(sc->device);
6167         if (h == NULL)
6168                 return FAILED;
6169
6170         /* Find the device of the command to be aborted */
6171         dev = sc->device->hostdata;
6172         if (!dev) {
6173                 dev_err(&h->pdev->dev, "%s FAILED, Device lookup failed.\n",
6174                                 msg);
6175                 return FAILED;
6176         }
6177
6178         /* If controller locked up, we can guarantee command won't complete */
6179         if (lockup_detected(h)) {
6180                 hpsa_show_dev_msg(KERN_WARNING, h, dev,
6181                                         "ABORT FAILED, lockup detected");
6182                 return FAILED;
6183         }
6184
6185         /* This is a good time to check if controller lockup has occurred */
6186         if (detect_controller_lockup(h)) {
6187                 hpsa_show_dev_msg(KERN_WARNING, h, dev,
6188                                         "ABORT FAILED, new lockup detected");
6189                 return FAILED;
6190         }
6191
6192         /* Check that controller supports some kind of task abort */
6193         if (!(HPSATMF_PHYS_TASK_ABORT & h->TMFSupportFlags) &&
6194                 !(HPSATMF_LOG_TASK_ABORT & h->TMFSupportFlags))
6195                 return FAILED;
6196
6197         memset(msg, 0, sizeof(msg));
6198         ml += sprintf(msg+ml, "scsi %d:%d:%d:%llu %s %p",
6199                 h->scsi_host->host_no, sc->device->channel,
6200                 sc->device->id, sc->device->lun,
6201                 "Aborting command", sc);
6202
6203         /* Get SCSI command to be aborted */
6204         abort = (struct CommandList *) sc->host_scribble;
6205         if (abort == NULL) {
6206                 /* This can happen if the command already completed. */
6207                 return SUCCESS;
6208         }
6209         refcount = atomic_inc_return(&abort->refcount);
6210         if (refcount == 1) { /* Command is done already. */
6211                 cmd_free(h, abort);
6212                 return SUCCESS;
6213         }
6214
6215         /* Don't bother trying the abort if we know it won't work. */
6216         if (abort->cmd_type != CMD_IOACCEL2 &&
6217                 abort->cmd_type != CMD_IOACCEL1 && !dev->supports_aborts) {
6218                 cmd_free(h, abort);
6219                 return FAILED;
6220         }
6221
6222         /*
6223          * Check that we're aborting the right command.
6224          * It's possible the CommandList already completed and got re-used.
6225          */
6226         if (abort->scsi_cmd != sc) {
6227                 cmd_free(h, abort);
6228                 return SUCCESS;
6229         }
6230
6231         abort->abort_pending = true;
6232         hpsa_get_tag(h, abort, &taglower, &tagupper);
6233         reply_queue = hpsa_extract_reply_queue(h, abort);
6234         ml += sprintf(msg+ml, "Tag:0x%08x:%08x ", tagupper, taglower);
6235         as  = abort->scsi_cmd;
6236         if (as != NULL)
6237                 ml += sprintf(msg+ml,
6238                         "CDBLen: %d CDB: 0x%02x%02x... SN: 0x%lx ",
6239                         as->cmd_len, as->cmnd[0], as->cmnd[1],
6240                         as->serial_number);
6241         dev_warn(&h->pdev->dev, "%s BEING SENT\n", msg);
6242         hpsa_show_dev_msg(KERN_WARNING, h, dev, "Aborting command");
6243
6244         /*
6245          * Command is in flight, or possibly already completed
6246          * by the firmware (but not to the scsi mid layer) but we can't
6247          * distinguish which.  Send the abort down.
6248          */
6249         if (wait_for_available_abort_cmd(h)) {
6250                 dev_warn(&h->pdev->dev,
6251                         "%s FAILED, timeout waiting for an abort command to become available.\n",
6252                         msg);
6253                 cmd_free(h, abort);
6254                 return FAILED;
6255         }
6256         rc = hpsa_send_abort_both_ways(h, dev, abort, reply_queue);
6257         atomic_inc(&h->abort_cmds_available);
6258         wake_up_all(&h->abort_cmd_wait_queue);
6259         if (rc != 0) {
6260                 dev_warn(&h->pdev->dev, "%s SENT, FAILED\n", msg);
6261                 hpsa_show_dev_msg(KERN_WARNING, h, dev,
6262                                 "FAILED to abort command");
6263                 cmd_free(h, abort);
6264                 return FAILED;
6265         }
6266         dev_info(&h->pdev->dev, "%s SENT, SUCCESS\n", msg);
6267         wait_event(h->event_sync_wait_queue,
6268                    abort->scsi_cmd != sc || lockup_detected(h));
6269         cmd_free(h, abort);
6270         return !lockup_detected(h) ? SUCCESS : FAILED;
6271 }
6272
6273 /*
6274  * For operations with an associated SCSI command, a command block is allocated
6275  * at init, and managed by cmd_tagged_alloc() and cmd_tagged_free() using the
6276  * block request tag as an index into a table of entries.  cmd_tagged_free() is
6277  * the complement, although cmd_free() may be called instead.
6278  */
6279 static struct CommandList *cmd_tagged_alloc(struct ctlr_info *h,
6280                                             struct scsi_cmnd *scmd)
6281 {
6282         int idx = hpsa_get_cmd_index(scmd);
6283         struct CommandList *c = h->cmd_pool + idx;
6284
6285         if (idx < HPSA_NRESERVED_CMDS || idx >= h->nr_cmds) {
6286                 dev_err(&h->pdev->dev, "Bad block tag: %d not in [%d..%d]\n",
6287                         idx, HPSA_NRESERVED_CMDS, h->nr_cmds - 1);
6288                 /* The index value comes from the block layer, so if it's out of
6289                  * bounds, it's probably not our bug.
6290                  */
6291                 BUG();
6292         }
6293
6294         atomic_inc(&c->refcount);
6295         if (unlikely(!hpsa_is_cmd_idle(c))) {
6296                 /*
6297                  * We expect that the SCSI layer will hand us a unique tag
6298                  * value.  Thus, there should never be a collision here between
6299                  * two requests...because if the selected command isn't idle
6300                  * then someone is going to be very disappointed.
6301                  */
6302                 dev_err(&h->pdev->dev,
6303                         "tag collision (tag=%d) in cmd_tagged_alloc().\n",
6304                         idx);
6305                 if (c->scsi_cmd != NULL)
6306                         scsi_print_command(c->scsi_cmd);
6307                 scsi_print_command(scmd);
6308         }
6309
6310         hpsa_cmd_partial_init(h, idx, c);
6311         return c;
6312 }
6313
6314 static void cmd_tagged_free(struct ctlr_info *h, struct CommandList *c)
6315 {
6316         /*
6317          * Release our reference to the block.  We don't need to do anything
6318          * else to free it, because it is accessed by index.  (There's no point
6319          * in checking the result of the decrement, since we cannot guarantee
6320          * that there isn't a concurrent abort which is also accessing it.)
6321          */
6322         (void)atomic_dec(&c->refcount);
6323 }
6324
6325 /*
6326  * For operations that cannot sleep, a command block is allocated at init,
6327  * and managed by cmd_alloc() and cmd_free() using a simple bitmap to track
6328  * which ones are free or in use.  Lock must be held when calling this.
6329  * cmd_free() is the complement.
6330  * This function never gives up and returns NULL.  If it hangs,
6331  * another thread must call cmd_free() to free some tags.
6332  */
6333
6334 static struct CommandList *cmd_alloc(struct ctlr_info *h)
6335 {
6336         struct CommandList *c;
6337         int refcount, i;
6338         int offset = 0;
6339
6340         /*
6341          * There is some *extremely* small but non-zero chance that that
6342          * multiple threads could get in here, and one thread could
6343          * be scanning through the list of bits looking for a free
6344          * one, but the free ones are always behind him, and other
6345          * threads sneak in behind him and eat them before he can
6346          * get to them, so that while there is always a free one, a
6347          * very unlucky thread might be starved anyway, never able to
6348          * beat the other threads.  In reality, this happens so
6349          * infrequently as to be indistinguishable from never.
6350          *
6351          * Note that we start allocating commands before the SCSI host structure
6352          * is initialized.  Since the search starts at bit zero, this
6353          * all works, since we have at least one command structure available;
6354          * however, it means that the structures with the low indexes have to be
6355          * reserved for driver-initiated requests, while requests from the block
6356          * layer will use the higher indexes.
6357          */
6358
6359         for (;;) {
6360                 i = find_next_zero_bit(h->cmd_pool_bits,
6361                                         HPSA_NRESERVED_CMDS,
6362                                         offset);
6363                 if (unlikely(i >= HPSA_NRESERVED_CMDS)) {
6364                         offset = 0;
6365                         continue;
6366                 }
6367                 c = h->cmd_pool + i;
6368                 refcount = atomic_inc_return(&c->refcount);
6369                 if (unlikely(refcount > 1)) {
6370                         cmd_free(h, c); /* already in use */
6371                         offset = (i + 1) % HPSA_NRESERVED_CMDS;
6372                         continue;
6373                 }
6374                 set_bit(i & (BITS_PER_LONG - 1),
6375                         h->cmd_pool_bits + (i / BITS_PER_LONG));
6376                 break; /* it's ours now. */
6377         }
6378         hpsa_cmd_partial_init(h, i, c);
6379         return c;
6380 }
6381
6382 /*
6383  * This is the complementary operation to cmd_alloc().  Note, however, in some
6384  * corner cases it may also be used to free blocks allocated by
6385  * cmd_tagged_alloc() in which case the ref-count decrement does the trick and
6386  * the clear-bit is harmless.
6387  */
6388 static void cmd_free(struct ctlr_info *h, struct CommandList *c)
6389 {
6390         if (atomic_dec_and_test(&c->refcount)) {
6391                 int i;
6392
6393                 i = c - h->cmd_pool;
6394                 clear_bit(i & (BITS_PER_LONG - 1),
6395                           h->cmd_pool_bits + (i / BITS_PER_LONG));
6396         }
6397 }
6398
6399 #ifdef CONFIG_COMPAT
6400
6401 static int hpsa_ioctl32_passthru(struct scsi_device *dev, int cmd,
6402         void __user *arg)
6403 {
6404         IOCTL32_Command_struct __user *arg32 =
6405             (IOCTL32_Command_struct __user *) arg;
6406         IOCTL_Command_struct arg64;
6407         IOCTL_Command_struct __user *p = compat_alloc_user_space(sizeof(arg64));
6408         int err;
6409         u32 cp;
6410
6411         memset(&arg64, 0, sizeof(arg64));
6412         err = 0;
6413         err |= copy_from_user(&arg64.LUN_info, &arg32->LUN_info,
6414                            sizeof(arg64.LUN_info));
6415         err |= copy_from_user(&arg64.Request, &arg32->Request,
6416                            sizeof(arg64.Request));
6417         err |= copy_from_user(&arg64.error_info, &arg32->error_info,
6418                            sizeof(arg64.error_info));
6419         err |= get_user(arg64.buf_size, &arg32->buf_size);
6420         err |= get_user(cp, &arg32->buf);
6421         arg64.buf = compat_ptr(cp);
6422         err |= copy_to_user(p, &arg64, sizeof(arg64));
6423
6424         if (err)
6425                 return -EFAULT;
6426
6427         err = hpsa_ioctl(dev, CCISS_PASSTHRU, p);
6428         if (err)
6429                 return err;
6430         err |= copy_in_user(&arg32->error_info, &p->error_info,
6431                          sizeof(arg32->error_info));
6432         if (err)
6433                 return -EFAULT;
6434         return err;
6435 }
6436
6437 static int hpsa_ioctl32_big_passthru(struct scsi_device *dev,
6438         int cmd, void __user *arg)
6439 {
6440         BIG_IOCTL32_Command_struct __user *arg32 =
6441             (BIG_IOCTL32_Command_struct __user *) arg;
6442         BIG_IOCTL_Command_struct arg64;
6443         BIG_IOCTL_Command_struct __user *p =
6444             compat_alloc_user_space(sizeof(arg64));
6445         int err;
6446         u32 cp;
6447
6448         memset(&arg64, 0, sizeof(arg64));
6449         err = 0;
6450         err |= copy_from_user(&arg64.LUN_info, &arg32->LUN_info,
6451                            sizeof(arg64.LUN_info));
6452         err |= copy_from_user(&arg64.Request, &arg32->Request,
6453                            sizeof(arg64.Request));
6454         err |= copy_from_user(&arg64.error_info, &arg32->error_info,
6455                            sizeof(arg64.error_info));
6456         err |= get_user(arg64.buf_size, &arg32->buf_size);
6457         err |= get_user(arg64.malloc_size, &arg32->malloc_size);
6458         err |= get_user(cp, &arg32->buf);
6459         arg64.buf = compat_ptr(cp);
6460         err |= copy_to_user(p, &arg64, sizeof(arg64));
6461
6462         if (err)
6463                 return -EFAULT;
6464
6465         err = hpsa_ioctl(dev, CCISS_BIG_PASSTHRU, p);
6466         if (err)
6467                 return err;
6468         err |= copy_in_user(&arg32->error_info, &p->error_info,
6469                          sizeof(arg32->error_info));
6470         if (err)
6471                 return -EFAULT;
6472         return err;
6473 }
6474
6475 static int hpsa_compat_ioctl(struct scsi_device *dev, int cmd, void __user *arg)
6476 {
6477         switch (cmd) {
6478         case CCISS_GETPCIINFO:
6479         case CCISS_GETINTINFO:
6480         case CCISS_SETINTINFO:
6481         case CCISS_GETNODENAME:
6482         case CCISS_SETNODENAME:
6483         case CCISS_GETHEARTBEAT:
6484         case CCISS_GETBUSTYPES:
6485         case CCISS_GETFIRMVER:
6486         case CCISS_GETDRIVVER:
6487         case CCISS_REVALIDVOLS:
6488         case CCISS_DEREGDISK:
6489         case CCISS_REGNEWDISK:
6490         case CCISS_REGNEWD:
6491         case CCISS_RESCANDISK:
6492         case CCISS_GETLUNINFO:
6493                 return hpsa_ioctl(dev, cmd, arg);
6494
6495         case CCISS_PASSTHRU32:
6496                 return hpsa_ioctl32_passthru(dev, cmd, arg);
6497         case CCISS_BIG_PASSTHRU32:
6498                 return hpsa_ioctl32_big_passthru(dev, cmd, arg);
6499
6500         default:
6501                 return -ENOIOCTLCMD;
6502         }
6503 }
6504 #endif
6505
6506 static int hpsa_getpciinfo_ioctl(struct ctlr_info *h, void __user *argp)
6507 {
6508         struct hpsa_pci_info pciinfo;
6509
6510         if (!argp)
6511                 return -EINVAL;
6512         pciinfo.domain = pci_domain_nr(h->pdev->bus);
6513         pciinfo.bus = h->pdev->bus->number;
6514         pciinfo.dev_fn = h->pdev->devfn;
6515         pciinfo.board_id = h->board_id;
6516         if (copy_to_user(argp, &pciinfo, sizeof(pciinfo)))
6517                 return -EFAULT;
6518         return 0;
6519 }
6520
6521 static int hpsa_getdrivver_ioctl(struct ctlr_info *h, void __user *argp)
6522 {
6523         DriverVer_type DriverVer;
6524         unsigned char vmaj, vmin, vsubmin;
6525         int rc;
6526
6527         rc = sscanf(HPSA_DRIVER_VERSION, "%hhu.%hhu.%hhu",
6528                 &vmaj, &vmin, &vsubmin);
6529         if (rc != 3) {
6530                 dev_info(&h->pdev->dev, "driver version string '%s' "
6531                         "unrecognized.", HPSA_DRIVER_VERSION);
6532                 vmaj = 0;
6533                 vmin = 0;
6534                 vsubmin = 0;
6535         }
6536         DriverVer = (vmaj << 16) | (vmin << 8) | vsubmin;
6537         if (!argp)
6538                 return -EINVAL;
6539         if (copy_to_user(argp, &DriverVer, sizeof(DriverVer_type)))
6540                 return -EFAULT;
6541         return 0;
6542 }
6543
6544 static int hpsa_passthru_ioctl(struct ctlr_info *h, void __user *argp)
6545 {
6546         IOCTL_Command_struct iocommand;
6547         struct CommandList *c;
6548         char *buff = NULL;
6549         u64 temp64;
6550         int rc = 0;
6551
6552         if (!argp)
6553                 return -EINVAL;
6554         if (!capable(CAP_SYS_RAWIO))
6555                 return -EPERM;
6556         if (copy_from_user(&iocommand, argp, sizeof(iocommand)))
6557                 return -EFAULT;
6558         if ((iocommand.buf_size < 1) &&
6559             (iocommand.Request.Type.Direction != XFER_NONE)) {
6560                 return -EINVAL;
6561         }
6562         if (iocommand.buf_size > 0) {
6563                 buff = kmalloc(iocommand.buf_size, GFP_KERNEL);
6564                 if (buff == NULL)
6565                         return -ENOMEM;
6566                 if (iocommand.Request.Type.Direction & XFER_WRITE) {
6567                         /* Copy the data into the buffer we created */
6568                         if (copy_from_user(buff, iocommand.buf,
6569                                 iocommand.buf_size)) {
6570                                 rc = -EFAULT;
6571                                 goto out_kfree;
6572                         }
6573                 } else {
6574                         memset(buff, 0, iocommand.buf_size);
6575                 }
6576         }
6577         c = cmd_alloc(h);
6578
6579         /* Fill in the command type */
6580         c->cmd_type = CMD_IOCTL_PEND;
6581         c->scsi_cmd = SCSI_CMD_BUSY;
6582         /* Fill in Command Header */
6583         c->Header.ReplyQueue = 0; /* unused in simple mode */
6584         if (iocommand.buf_size > 0) {   /* buffer to fill */
6585                 c->Header.SGList = 1;
6586                 c->Header.SGTotal = cpu_to_le16(1);
6587         } else  { /* no buffers to fill */
6588                 c->Header.SGList = 0;
6589                 c->Header.SGTotal = cpu_to_le16(0);
6590         }
6591         memcpy(&c->Header.LUN, &iocommand.LUN_info, sizeof(c->Header.LUN));
6592
6593         /* Fill in Request block */
6594         memcpy(&c->Request, &iocommand.Request,
6595                 sizeof(c->Request));
6596
6597         /* Fill in the scatter gather information */
6598         if (iocommand.buf_size > 0) {
6599                 temp64 = pci_map_single(h->pdev, buff,
6600                         iocommand.buf_size, PCI_DMA_BIDIRECTIONAL);
6601                 if (dma_mapping_error(&h->pdev->dev, (dma_addr_t) temp64)) {
6602                         c->SG[0].Addr = cpu_to_le64(0);
6603                         c->SG[0].Len = cpu_to_le32(0);
6604                         rc = -ENOMEM;
6605                         goto out;
6606                 }
6607                 c->SG[0].Addr = cpu_to_le64(temp64);
6608                 c->SG[0].Len = cpu_to_le32(iocommand.buf_size);
6609                 c->SG[0].Ext = cpu_to_le32(HPSA_SG_LAST); /* not chaining */
6610         }
6611         rc = hpsa_scsi_do_simple_cmd(h, c, DEFAULT_REPLY_QUEUE,
6612                                         NO_TIMEOUT);
6613         if (iocommand.buf_size > 0)
6614                 hpsa_pci_unmap(h->pdev, c, 1, PCI_DMA_BIDIRECTIONAL);
6615         check_ioctl_unit_attention(h, c);
6616         if (rc) {
6617                 rc = -EIO;
6618                 goto out;
6619         }
6620
6621         /* Copy the error information out */
6622         memcpy(&iocommand.error_info, c->err_info,
6623                 sizeof(iocommand.error_info));
6624         if (copy_to_user(argp, &iocommand, sizeof(iocommand))) {
6625                 rc = -EFAULT;
6626                 goto out;
6627         }
6628         if ((iocommand.Request.Type.Direction & XFER_READ) &&
6629                 iocommand.buf_size > 0) {
6630                 /* Copy the data out of the buffer we created */
6631                 if (copy_to_user(iocommand.buf, buff, iocommand.buf_size)) {
6632                         rc = -EFAULT;
6633                         goto out;
6634                 }
6635         }
6636 out:
6637         cmd_free(h, c);
6638 out_kfree:
6639         kfree(buff);
6640         return rc;
6641 }
6642
6643 static int hpsa_big_passthru_ioctl(struct ctlr_info *h, void __user *argp)
6644 {
6645         BIG_IOCTL_Command_struct *ioc;
6646         struct CommandList *c;
6647         unsigned char **buff = NULL;
6648         int *buff_size = NULL;
6649         u64 temp64;
6650         BYTE sg_used = 0;
6651         int status = 0;
6652         u32 left;
6653         u32 sz;
6654         BYTE __user *data_ptr;
6655
6656         if (!argp)
6657                 return -EINVAL;
6658         if (!capable(CAP_SYS_RAWIO))
6659                 return -EPERM;
6660         ioc = (BIG_IOCTL_Command_struct *)
6661             kmalloc(sizeof(*ioc), GFP_KERNEL);
6662         if (!ioc) {
6663                 status = -ENOMEM;
6664                 goto cleanup1;
6665         }
6666         if (copy_from_user(ioc, argp, sizeof(*ioc))) {
6667                 status = -EFAULT;
6668                 goto cleanup1;
6669         }
6670         if ((ioc->buf_size < 1) &&
6671             (ioc->Request.Type.Direction != XFER_NONE)) {
6672                 status = -EINVAL;
6673                 goto cleanup1;
6674         }
6675         /* Check kmalloc limits  using all SGs */
6676         if (ioc->malloc_size > MAX_KMALLOC_SIZE) {
6677                 status = -EINVAL;
6678                 goto cleanup1;
6679         }
6680         if (ioc->buf_size > ioc->malloc_size * SG_ENTRIES_IN_CMD) {
6681                 status = -EINVAL;
6682                 goto cleanup1;
6683         }
6684         buff = kzalloc(SG_ENTRIES_IN_CMD * sizeof(char *), GFP_KERNEL);
6685         if (!buff) {
6686                 status = -ENOMEM;
6687                 goto cleanup1;
6688         }
6689         buff_size = kmalloc(SG_ENTRIES_IN_CMD * sizeof(int), GFP_KERNEL);
6690         if (!buff_size) {
6691                 status = -ENOMEM;
6692                 goto cleanup1;
6693         }
6694         left = ioc->buf_size;
6695         data_ptr = ioc->buf;
6696         while (left) {
6697                 sz = (left > ioc->malloc_size) ? ioc->malloc_size : left;
6698                 buff_size[sg_used] = sz;
6699                 buff[sg_used] = kmalloc(sz, GFP_KERNEL);
6700                 if (buff[sg_used] == NULL) {
6701                         status = -ENOMEM;
6702                         goto cleanup1;
6703                 }
6704                 if (ioc->Request.Type.Direction & XFER_WRITE) {
6705                         if (copy_from_user(buff[sg_used], data_ptr, sz)) {
6706                                 status = -EFAULT;
6707                                 goto cleanup1;
6708                         }
6709                 } else
6710                         memset(buff[sg_used], 0, sz);
6711                 left -= sz;
6712                 data_ptr += sz;
6713                 sg_used++;
6714         }
6715         c = cmd_alloc(h);
6716
6717         c->cmd_type = CMD_IOCTL_PEND;
6718         c->scsi_cmd = SCSI_CMD_BUSY;
6719         c->Header.ReplyQueue = 0;
6720         c->Header.SGList = (u8) sg_used;
6721         c->Header.SGTotal = cpu_to_le16(sg_used);
6722         memcpy(&c->Header.LUN, &ioc->LUN_info, sizeof(c->Header.LUN));
6723         memcpy(&c->Request, &ioc->Request, sizeof(c->Request));
6724         if (ioc->buf_size > 0) {
6725                 int i;
6726                 for (i = 0; i < sg_used; i++) {
6727                         temp64 = pci_map_single(h->pdev, buff[i],
6728                                     buff_size[i], PCI_DMA_BIDIRECTIONAL);
6729                         if (dma_mapping_error(&h->pdev->dev,
6730                                                         (dma_addr_t) temp64)) {
6731                                 c->SG[i].Addr = cpu_to_le64(0);
6732                                 c->SG[i].Len = cpu_to_le32(0);
6733                                 hpsa_pci_unmap(h->pdev, c, i,
6734                                         PCI_DMA_BIDIRECTIONAL);
6735                                 status = -ENOMEM;
6736                                 goto cleanup0;
6737                         }
6738                         c->SG[i].Addr = cpu_to_le64(temp64);
6739                         c->SG[i].Len = cpu_to_le32(buff_size[i]);
6740                         c->SG[i].Ext = cpu_to_le32(0);
6741                 }
6742                 c->SG[--i].Ext = cpu_to_le32(HPSA_SG_LAST);
6743         }
6744         status = hpsa_scsi_do_simple_cmd(h, c, DEFAULT_REPLY_QUEUE,
6745                                                 NO_TIMEOUT);
6746         if (sg_used)
6747                 hpsa_pci_unmap(h->pdev, c, sg_used, PCI_DMA_BIDIRECTIONAL);
6748         check_ioctl_unit_attention(h, c);
6749         if (status) {
6750                 status = -EIO;
6751                 goto cleanup0;
6752         }
6753
6754         /* Copy the error information out */
6755         memcpy(&ioc->error_info, c->err_info, sizeof(ioc->error_info));
6756         if (copy_to_user(argp, ioc, sizeof(*ioc))) {
6757                 status = -EFAULT;
6758                 goto cleanup0;
6759         }
6760         if ((ioc->Request.Type.Direction & XFER_READ) && ioc->buf_size > 0) {
6761                 int i;
6762
6763                 /* Copy the data out of the buffer we created */
6764                 BYTE __user *ptr = ioc->buf;
6765                 for (i = 0; i < sg_used; i++) {
6766                         if (copy_to_user(ptr, buff[i], buff_size[i])) {
6767                                 status = -EFAULT;
6768                                 goto cleanup0;
6769                         }
6770                         ptr += buff_size[i];
6771                 }
6772         }
6773         status = 0;
6774 cleanup0:
6775         cmd_free(h, c);
6776 cleanup1:
6777         if (buff) {
6778                 int i;
6779
6780                 for (i = 0; i < sg_used; i++)
6781                         kfree(buff[i]);
6782                 kfree(buff);
6783         }
6784         kfree(buff_size);
6785         kfree(ioc);
6786         return status;
6787 }
6788
6789 static void check_ioctl_unit_attention(struct ctlr_info *h,
6790         struct CommandList *c)
6791 {
6792         if (c->err_info->CommandStatus == CMD_TARGET_STATUS &&
6793                         c->err_info->ScsiStatus != SAM_STAT_CHECK_CONDITION)
6794                 (void) check_for_unit_attention(h, c);
6795 }
6796
6797 /*
6798  * ioctl
6799  */
6800 static int hpsa_ioctl(struct scsi_device *dev, int cmd, void __user *arg)
6801 {
6802         struct ctlr_info *h;
6803         void __user *argp = (void __user *)arg;
6804         int rc;
6805
6806         h = sdev_to_hba(dev);
6807
6808         switch (cmd) {
6809         case CCISS_DEREGDISK:
6810         case CCISS_REGNEWDISK:
6811         case CCISS_REGNEWD:
6812                 hpsa_scan_start(h->scsi_host);
6813                 return 0;
6814         case CCISS_GETPCIINFO:
6815                 return hpsa_getpciinfo_ioctl(h, argp);
6816         case CCISS_GETDRIVVER:
6817                 return hpsa_getdrivver_ioctl(h, argp);
6818         case CCISS_PASSTHRU:
6819                 if (atomic_dec_if_positive(&h->passthru_cmds_avail) < 0)
6820                         return -EAGAIN;
6821                 rc = hpsa_passthru_ioctl(h, argp);
6822                 atomic_inc(&h->passthru_cmds_avail);
6823                 return rc;
6824         case CCISS_BIG_PASSTHRU:
6825                 if (atomic_dec_if_positive(&h->passthru_cmds_avail) < 0)
6826                         return -EAGAIN;
6827                 rc = hpsa_big_passthru_ioctl(h, argp);
6828                 atomic_inc(&h->passthru_cmds_avail);
6829                 return rc;
6830         default:
6831                 return -ENOTTY;
6832         }
6833 }
6834
6835 static void hpsa_send_host_reset(struct ctlr_info *h, unsigned char *scsi3addr,
6836                                 u8 reset_type)
6837 {
6838         struct CommandList *c;
6839
6840         c = cmd_alloc(h);
6841
6842         /* fill_cmd can't fail here, no data buffer to map */
6843         (void) fill_cmd(c, HPSA_DEVICE_RESET_MSG, h, NULL, 0, 0,
6844                 RAID_CTLR_LUNID, TYPE_MSG);
6845         c->Request.CDB[1] = reset_type; /* fill_cmd defaults to target reset */
6846         c->waiting = NULL;
6847         enqueue_cmd_and_start_io(h, c);
6848         /* Don't wait for completion, the reset won't complete.  Don't free
6849          * the command either.  This is the last command we will send before
6850          * re-initializing everything, so it doesn't matter and won't leak.
6851          */
6852         return;
6853 }
6854
6855 static int fill_cmd(struct CommandList *c, u8 cmd, struct ctlr_info *h,
6856         void *buff, size_t size, u16 page_code, unsigned char *scsi3addr,
6857         int cmd_type)
6858 {
6859         int pci_dir = XFER_NONE;
6860         u64 tag; /* for commands to be aborted */
6861
6862         c->cmd_type = CMD_IOCTL_PEND;
6863         c->scsi_cmd = SCSI_CMD_BUSY;
6864         c->Header.ReplyQueue = 0;
6865         if (buff != NULL && size > 0) {
6866                 c->Header.SGList = 1;
6867                 c->Header.SGTotal = cpu_to_le16(1);
6868         } else {
6869                 c->Header.SGList = 0;
6870                 c->Header.SGTotal = cpu_to_le16(0);
6871         }
6872         memcpy(c->Header.LUN.LunAddrBytes, scsi3addr, 8);
6873
6874         if (cmd_type == TYPE_CMD) {
6875                 switch (cmd) {
6876                 case HPSA_INQUIRY:
6877                         /* are we trying to read a vital product page */
6878                         if (page_code & VPD_PAGE) {
6879                                 c->Request.CDB[1] = 0x01;
6880                                 c->Request.CDB[2] = (page_code & 0xff);
6881                         }
6882                         c->Request.CDBLen = 6;
6883                         c->Request.type_attr_dir =
6884                                 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6885                         c->Request.Timeout = 0;
6886                         c->Request.CDB[0] = HPSA_INQUIRY;
6887                         c->Request.CDB[4] = size & 0xFF;
6888                         break;
6889                 case HPSA_REPORT_LOG:
6890                 case HPSA_REPORT_PHYS:
6891                         /* Talking to controller so It's a physical command
6892                            mode = 00 target = 0.  Nothing to write.
6893                          */
6894                         c->Request.CDBLen = 12;
6895                         c->Request.type_attr_dir =
6896                                 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6897                         c->Request.Timeout = 0;
6898                         c->Request.CDB[0] = cmd;
6899                         c->Request.CDB[6] = (size >> 24) & 0xFF; /* MSB */
6900                         c->Request.CDB[7] = (size >> 16) & 0xFF;
6901                         c->Request.CDB[8] = (size >> 8) & 0xFF;
6902                         c->Request.CDB[9] = size & 0xFF;
6903                         break;
6904                 case BMIC_SENSE_DIAG_OPTIONS:
6905                         c->Request.CDBLen = 16;
6906                         c->Request.type_attr_dir =
6907                                 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6908                         c->Request.Timeout = 0;
6909                         /* Spec says this should be BMIC_WRITE */
6910                         c->Request.CDB[0] = BMIC_READ;
6911                         c->Request.CDB[6] = BMIC_SENSE_DIAG_OPTIONS;
6912                         break;
6913                 case BMIC_SET_DIAG_OPTIONS:
6914                         c->Request.CDBLen = 16;
6915                         c->Request.type_attr_dir =
6916                                         TYPE_ATTR_DIR(cmd_type,
6917                                                 ATTR_SIMPLE, XFER_WRITE);
6918                         c->Request.Timeout = 0;
6919                         c->Request.CDB[0] = BMIC_WRITE;
6920                         c->Request.CDB[6] = BMIC_SET_DIAG_OPTIONS;
6921                         break;
6922                 case HPSA_CACHE_FLUSH:
6923                         c->Request.CDBLen = 12;
6924                         c->Request.type_attr_dir =
6925                                         TYPE_ATTR_DIR(cmd_type,
6926                                                 ATTR_SIMPLE, XFER_WRITE);
6927                         c->Request.Timeout = 0;
6928                         c->Request.CDB[0] = BMIC_WRITE;
6929                         c->Request.CDB[6] = BMIC_CACHE_FLUSH;
6930                         c->Request.CDB[7] = (size >> 8) & 0xFF;
6931                         c->Request.CDB[8] = size & 0xFF;
6932                         break;
6933                 case TEST_UNIT_READY:
6934                         c->Request.CDBLen = 6;
6935                         c->Request.type_attr_dir =
6936                                 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_NONE);
6937                         c->Request.Timeout = 0;
6938                         break;
6939                 case HPSA_GET_RAID_MAP:
6940                         c->Request.CDBLen = 12;
6941                         c->Request.type_attr_dir =
6942                                 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6943                         c->Request.Timeout = 0;
6944                         c->Request.CDB[0] = HPSA_CISS_READ;
6945                         c->Request.CDB[1] = cmd;
6946                         c->Request.CDB[6] = (size >> 24) & 0xFF; /* MSB */
6947                         c->Request.CDB[7] = (size >> 16) & 0xFF;
6948                         c->Request.CDB[8] = (size >> 8) & 0xFF;
6949                         c->Request.CDB[9] = size & 0xFF;
6950                         break;
6951                 case BMIC_SENSE_CONTROLLER_PARAMETERS:
6952                         c->Request.CDBLen = 10;
6953                         c->Request.type_attr_dir =
6954                                 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6955                         c->Request.Timeout = 0;
6956                         c->Request.CDB[0] = BMIC_READ;
6957                         c->Request.CDB[6] = BMIC_SENSE_CONTROLLER_PARAMETERS;
6958                         c->Request.CDB[7] = (size >> 16) & 0xFF;
6959                         c->Request.CDB[8] = (size >> 8) & 0xFF;
6960                         break;
6961                 case BMIC_IDENTIFY_PHYSICAL_DEVICE:
6962                         c->Request.CDBLen = 10;
6963                         c->Request.type_attr_dir =
6964                                 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6965                         c->Request.Timeout = 0;
6966                         c->Request.CDB[0] = BMIC_READ;
6967                         c->Request.CDB[6] = BMIC_IDENTIFY_PHYSICAL_DEVICE;
6968                         c->Request.CDB[7] = (size >> 16) & 0xFF;
6969                         c->Request.CDB[8] = (size >> 8) & 0XFF;
6970                         break;
6971                 case BMIC_SENSE_SUBSYSTEM_INFORMATION:
6972                         c->Request.CDBLen = 10;
6973                         c->Request.type_attr_dir =
6974                                 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6975                         c->Request.Timeout = 0;
6976                         c->Request.CDB[0] = BMIC_READ;
6977                         c->Request.CDB[6] = BMIC_SENSE_SUBSYSTEM_INFORMATION;
6978                         c->Request.CDB[7] = (size >> 16) & 0xFF;
6979                         c->Request.CDB[8] = (size >> 8) & 0XFF;
6980                         break;
6981                 case BMIC_SENSE_STORAGE_BOX_PARAMS:
6982                         c->Request.CDBLen = 10;
6983                         c->Request.type_attr_dir =
6984                                 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6985                         c->Request.Timeout = 0;
6986                         c->Request.CDB[0] = BMIC_READ;
6987                         c->Request.CDB[6] = BMIC_SENSE_STORAGE_BOX_PARAMS;
6988                         c->Request.CDB[7] = (size >> 16) & 0xFF;
6989                         c->Request.CDB[8] = (size >> 8) & 0XFF;
6990                         break;
6991                 case BMIC_IDENTIFY_CONTROLLER:
6992                         c->Request.CDBLen = 10;
6993                         c->Request.type_attr_dir =
6994                                 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6995                         c->Request.Timeout = 0;
6996                         c->Request.CDB[0] = BMIC_READ;
6997                         c->Request.CDB[1] = 0;
6998                         c->Request.CDB[2] = 0;
6999                         c->Request.CDB[3] = 0;
7000                         c->Request.CDB[4] = 0;
7001                         c->Request.CDB[5] = 0;
7002                         c->Request.CDB[6] = BMIC_IDENTIFY_CONTROLLER;
7003                         c->Request.CDB[7] = (size >> 16) & 0xFF;
7004                         c->Request.CDB[8] = (size >> 8) & 0XFF;
7005                         c->Request.CDB[9] = 0;
7006                         break;
7007                 default:
7008                         dev_warn(&h->pdev->dev, "unknown command 0x%c\n", cmd);
7009                         BUG();
7010                         return -1;
7011                 }
7012         } else if (cmd_type == TYPE_MSG) {
7013                 switch (cmd) {
7014
7015                 case  HPSA_PHYS_TARGET_RESET:
7016                         c->Request.CDBLen = 16;
7017                         c->Request.type_attr_dir =
7018                                 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_NONE);
7019                         c->Request.Timeout = 0; /* Don't time out */
7020                         memset(&c->Request.CDB[0], 0, sizeof(c->Request.CDB));
7021                         c->Request.CDB[0] = HPSA_RESET;
7022                         c->Request.CDB[1] = HPSA_TARGET_RESET_TYPE;
7023                         /* Physical target reset needs no control bytes 4-7*/
7024                         c->Request.CDB[4] = 0x00;
7025                         c->Request.CDB[5] = 0x00;
7026                         c->Request.CDB[6] = 0x00;
7027                         c->Request.CDB[7] = 0x00;
7028                         break;
7029                 case  HPSA_DEVICE_RESET_MSG:
7030                         c->Request.CDBLen = 16;
7031                         c->Request.type_attr_dir =
7032                                 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_NONE);
7033                         c->Request.Timeout = 0; /* Don't time out */
7034                         memset(&c->Request.CDB[0], 0, sizeof(c->Request.CDB));
7035                         c->Request.CDB[0] =  cmd;
7036                         c->Request.CDB[1] = HPSA_RESET_TYPE_LUN;
7037                         /* If bytes 4-7 are zero, it means reset the */
7038                         /* LunID device */
7039                         c->Request.CDB[4] = 0x00;
7040                         c->Request.CDB[5] = 0x00;
7041                         c->Request.CDB[6] = 0x00;
7042                         c->Request.CDB[7] = 0x00;
7043                         break;
7044                 case  HPSA_ABORT_MSG:
7045                         memcpy(&tag, buff, sizeof(tag));
7046                         dev_dbg(&h->pdev->dev,
7047                                 "Abort Tag:0x%016llx using rqst Tag:0x%016llx",
7048                                 tag, c->Header.tag);
7049                         c->Request.CDBLen = 16;
7050                         c->Request.type_attr_dir =
7051                                         TYPE_ATTR_DIR(cmd_type,
7052                                                 ATTR_SIMPLE, XFER_WRITE);
7053                         c->Request.Timeout = 0; /* Don't time out */
7054                         c->Request.CDB[0] = HPSA_TASK_MANAGEMENT;
7055                         c->Request.CDB[1] = HPSA_TMF_ABORT_TASK;
7056                         c->Request.CDB[2] = 0x00; /* reserved */
7057                         c->Request.CDB[3] = 0x00; /* reserved */
7058                         /* Tag to abort goes in CDB[4]-CDB[11] */
7059                         memcpy(&c->Request.CDB[4], &tag, sizeof(tag));
7060                         c->Request.CDB[12] = 0x00; /* reserved */
7061                         c->Request.CDB[13] = 0x00; /* reserved */
7062                         c->Request.CDB[14] = 0x00; /* reserved */
7063                         c->Request.CDB[15] = 0x00; /* reserved */
7064                 break;
7065                 default:
7066                         dev_warn(&h->pdev->dev, "unknown message type %d\n",
7067                                 cmd);
7068                         BUG();
7069                 }
7070         } else {
7071                 dev_warn(&h->pdev->dev, "unknown command type %d\n", cmd_type);
7072                 BUG();
7073         }
7074
7075         switch (GET_DIR(c->Request.type_attr_dir)) {
7076         case XFER_READ:
7077                 pci_dir = PCI_DMA_FROMDEVICE;
7078                 break;
7079         case XFER_WRITE:
7080                 pci_dir = PCI_DMA_TODEVICE;
7081                 break;
7082         case XFER_NONE:
7083                 pci_dir = PCI_DMA_NONE;
7084                 break;
7085         default:
7086                 pci_dir = PCI_DMA_BIDIRECTIONAL;
7087         }
7088         if (hpsa_map_one(h->pdev, c, buff, size, pci_dir))
7089                 return -1;
7090         return 0;
7091 }
7092
7093 /*
7094  * Map (physical) PCI mem into (virtual) kernel space
7095  */
7096 static void __iomem *remap_pci_mem(ulong base, ulong size)
7097 {
7098         ulong page_base = ((ulong) base) & PAGE_MASK;
7099         ulong page_offs = ((ulong) base) - page_base;
7100         void __iomem *page_remapped = ioremap_nocache(page_base,
7101                 page_offs + size);
7102
7103         return page_remapped ? (page_remapped + page_offs) : NULL;
7104 }
7105
7106 static inline unsigned long get_next_completion(struct ctlr_info *h, u8 q)
7107 {
7108         return h->access.command_completed(h, q);
7109 }
7110
7111 static inline bool interrupt_pending(struct ctlr_info *h)
7112 {
7113         return h->access.intr_pending(h);
7114 }
7115
7116 static inline long interrupt_not_for_us(struct ctlr_info *h)
7117 {
7118         return (h->access.intr_pending(h) == 0) ||
7119                 (h->interrupts_enabled == 0);
7120 }
7121
7122 static inline int bad_tag(struct ctlr_info *h, u32 tag_index,
7123         u32 raw_tag)
7124 {
7125         if (unlikely(tag_index >= h->nr_cmds)) {
7126                 dev_warn(&h->pdev->dev, "bad tag 0x%08x ignored.\n", raw_tag);
7127                 return 1;
7128         }
7129         return 0;
7130 }
7131
7132 static inline void finish_cmd(struct CommandList *c)
7133 {
7134         dial_up_lockup_detection_on_fw_flash_complete(c->h, c);
7135         if (likely(c->cmd_type == CMD_IOACCEL1 || c->cmd_type == CMD_SCSI
7136                         || c->cmd_type == CMD_IOACCEL2))
7137                 complete_scsi_command(c);
7138         else if (c->cmd_type == CMD_IOCTL_PEND || c->cmd_type == IOACCEL2_TMF)
7139                 complete(c->waiting);
7140 }
7141
7142 /* process completion of an indexed ("direct lookup") command */
7143 static inline void process_indexed_cmd(struct ctlr_info *h,
7144         u32 raw_tag)
7145 {
7146         u32 tag_index;
7147         struct CommandList *c;
7148
7149         tag_index = raw_tag >> DIRECT_LOOKUP_SHIFT;
7150         if (!bad_tag(h, tag_index, raw_tag)) {
7151                 c = h->cmd_pool + tag_index;
7152                 finish_cmd(c);
7153         }
7154 }
7155
7156 /* Some controllers, like p400, will give us one interrupt
7157  * after a soft reset, even if we turned interrupts off.
7158  * Only need to check for this in the hpsa_xxx_discard_completions
7159  * functions.
7160  */
7161 static int ignore_bogus_interrupt(struct ctlr_info *h)
7162 {
7163         if (likely(!reset_devices))
7164                 return 0;
7165
7166         if (likely(h->interrupts_enabled))
7167                 return 0;
7168
7169         dev_info(&h->pdev->dev, "Received interrupt while interrupts disabled "
7170                 "(known firmware bug.)  Ignoring.\n");
7171
7172         return 1;
7173 }
7174
7175 /*
7176  * Convert &h->q[x] (passed to interrupt handlers) back to h.
7177  * Relies on (h-q[x] == x) being true for x such that
7178  * 0 <= x < MAX_REPLY_QUEUES.
7179  */
7180 static struct ctlr_info *queue_to_hba(u8 *queue)
7181 {
7182         return container_of((queue - *queue), struct ctlr_info, q[0]);
7183 }
7184
7185 static irqreturn_t hpsa_intx_discard_completions(int irq, void *queue)
7186 {
7187         struct ctlr_info *h = queue_to_hba(queue);
7188         u8 q = *(u8 *) queue;
7189         u32 raw_tag;
7190
7191         if (ignore_bogus_interrupt(h))
7192                 return IRQ_NONE;
7193
7194         if (interrupt_not_for_us(h))
7195                 return IRQ_NONE;
7196         h->last_intr_timestamp = get_jiffies_64();
7197         while (interrupt_pending(h)) {
7198                 raw_tag = get_next_completion(h, q);
7199                 while (raw_tag != FIFO_EMPTY)
7200                         raw_tag = next_command(h, q);
7201         }
7202         return IRQ_HANDLED;
7203 }
7204
7205 static irqreturn_t hpsa_msix_discard_completions(int irq, void *queue)
7206 {
7207         struct ctlr_info *h = queue_to_hba(queue);
7208         u32 raw_tag;
7209         u8 q = *(u8 *) queue;
7210
7211         if (ignore_bogus_interrupt(h))
7212                 return IRQ_NONE;
7213
7214         h->last_intr_timestamp = get_jiffies_64();
7215         raw_tag = get_next_completion(h, q);
7216         while (raw_tag != FIFO_EMPTY)
7217                 raw_tag = next_command(h, q);
7218         return IRQ_HANDLED;
7219 }
7220
7221 static irqreturn_t do_hpsa_intr_intx(int irq, void *queue)
7222 {
7223         struct ctlr_info *h = queue_to_hba((u8 *) queue);
7224         u32 raw_tag;
7225         u8 q = *(u8 *) queue;
7226
7227         if (interrupt_not_for_us(h))
7228                 return IRQ_NONE;
7229         h->last_intr_timestamp = get_jiffies_64();
7230         while (interrupt_pending(h)) {
7231                 raw_tag = get_next_completion(h, q);
7232                 while (raw_tag != FIFO_EMPTY) {
7233                         process_indexed_cmd(h, raw_tag);
7234                         raw_tag = next_command(h, q);
7235                 }
7236         }
7237         return IRQ_HANDLED;
7238 }
7239
7240 static irqreturn_t do_hpsa_intr_msi(int irq, void *queue)
7241 {
7242         struct ctlr_info *h = queue_to_hba(queue);
7243         u32 raw_tag;
7244         u8 q = *(u8 *) queue;
7245
7246         h->last_intr_timestamp = get_jiffies_64();
7247         raw_tag = get_next_completion(h, q);
7248         while (raw_tag != FIFO_EMPTY) {
7249                 process_indexed_cmd(h, raw_tag);
7250                 raw_tag = next_command(h, q);
7251         }
7252         return IRQ_HANDLED;
7253 }
7254
7255 /* Send a message CDB to the firmware. Careful, this only works
7256  * in simple mode, not performant mode due to the tag lookup.
7257  * We only ever use this immediately after a controller reset.
7258  */
7259 static int hpsa_message(struct pci_dev *pdev, unsigned char opcode,
7260                         unsigned char type)
7261 {
7262         struct Command {
7263                 struct CommandListHeader CommandHeader;
7264                 struct RequestBlock Request;
7265                 struct ErrDescriptor ErrorDescriptor;
7266         };
7267         struct Command *cmd;
7268         static const size_t cmd_sz = sizeof(*cmd) +
7269                                         sizeof(cmd->ErrorDescriptor);
7270         dma_addr_t paddr64;
7271         __le32 paddr32;
7272         u32 tag;
7273         void __iomem *vaddr;
7274         int i, err;
7275
7276         vaddr = pci_ioremap_bar(pdev, 0);
7277         if (vaddr == NULL)
7278                 return -ENOMEM;
7279
7280         /* The Inbound Post Queue only accepts 32-bit physical addresses for the
7281          * CCISS commands, so they must be allocated from the lower 4GiB of
7282          * memory.
7283          */
7284         err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32));
7285         if (err) {
7286                 iounmap(vaddr);
7287                 return err;
7288         }
7289
7290         cmd = pci_alloc_consistent(pdev, cmd_sz, &paddr64);
7291         if (cmd == NULL) {
7292                 iounmap(vaddr);
7293                 return -ENOMEM;
7294         }
7295
7296         /* This must fit, because of the 32-bit consistent DMA mask.  Also,
7297          * although there's no guarantee, we assume that the address is at
7298          * least 4-byte aligned (most likely, it's page-aligned).
7299          */
7300         paddr32 = cpu_to_le32(paddr64);
7301
7302         cmd->CommandHeader.ReplyQueue = 0;
7303         cmd->CommandHeader.SGList = 0;
7304         cmd->CommandHeader.SGTotal = cpu_to_le16(0);
7305         cmd->CommandHeader.tag = cpu_to_le64(paddr64);
7306         memset(&cmd->CommandHeader.LUN.LunAddrBytes, 0, 8);
7307
7308         cmd->Request.CDBLen = 16;
7309         cmd->Request.type_attr_dir =
7310                         TYPE_ATTR_DIR(TYPE_MSG, ATTR_HEADOFQUEUE, XFER_NONE);
7311         cmd->Request.Timeout = 0; /* Don't time out */
7312         cmd->Request.CDB[0] = opcode;
7313         cmd->Request.CDB[1] = type;
7314         memset(&cmd->Request.CDB[2], 0, 14); /* rest of the CDB is reserved */
7315         cmd->ErrorDescriptor.Addr =
7316                         cpu_to_le64((le32_to_cpu(paddr32) + sizeof(*cmd)));
7317         cmd->ErrorDescriptor.Len = cpu_to_le32(sizeof(struct ErrorInfo));
7318
7319         writel(le32_to_cpu(paddr32), vaddr + SA5_REQUEST_PORT_OFFSET);
7320
7321         for (i = 0; i < HPSA_MSG_SEND_RETRY_LIMIT; i++) {
7322                 tag = readl(vaddr + SA5_REPLY_PORT_OFFSET);
7323                 if ((tag & ~HPSA_SIMPLE_ERROR_BITS) == paddr64)
7324                         break;
7325                 msleep(HPSA_MSG_SEND_RETRY_INTERVAL_MSECS);
7326         }
7327
7328         iounmap(vaddr);
7329
7330         /* we leak the DMA buffer here ... no choice since the controller could
7331          *  still complete the command.
7332          */
7333         if (i == HPSA_MSG_SEND_RETRY_LIMIT) {
7334                 dev_err(&pdev->dev, "controller message %02x:%02x timed out\n",
7335                         opcode, type);
7336                 return -ETIMEDOUT;
7337         }
7338
7339         pci_free_consistent(pdev, cmd_sz, cmd, paddr64);
7340
7341         if (tag & HPSA_ERROR_BIT) {
7342                 dev_err(&pdev->dev, "controller message %02x:%02x failed\n",
7343                         opcode, type);
7344                 return -EIO;
7345         }
7346
7347         dev_info(&pdev->dev, "controller message %02x:%02x succeeded\n",
7348                 opcode, type);
7349         return 0;
7350 }
7351
7352 #define hpsa_noop(p) hpsa_message(p, 3, 0)
7353
7354 static int hpsa_controller_hard_reset(struct pci_dev *pdev,
7355         void __iomem *vaddr, u32 use_doorbell)
7356 {
7357
7358         if (use_doorbell) {
7359                 /* For everything after the P600, the PCI power state method
7360                  * of resetting the controller doesn't work, so we have this
7361                  * other way using the doorbell register.
7362                  */
7363                 dev_info(&pdev->dev, "using doorbell to reset controller\n");
7364                 writel(use_doorbell, vaddr + SA5_DOORBELL);
7365
7366                 /* PMC hardware guys tell us we need a 10 second delay after
7367                  * doorbell reset and before any attempt to talk to the board
7368                  * at all to ensure that this actually works and doesn't fall
7369                  * over in some weird corner cases.
7370                  */
7371                 msleep(10000);
7372         } else { /* Try to do it the PCI power state way */
7373
7374                 /* Quoting from the Open CISS Specification: "The Power
7375                  * Management Control/Status Register (CSR) controls the power
7376                  * state of the device.  The normal operating state is D0,
7377                  * CSR=00h.  The software off state is D3, CSR=03h.  To reset
7378                  * the controller, place the interface device in D3 then to D0,
7379                  * this causes a secondary PCI reset which will reset the
7380                  * controller." */
7381
7382                 int rc = 0;
7383
7384                 dev_info(&pdev->dev, "using PCI PM to reset controller\n");
7385
7386                 /* enter the D3hot power management state */
7387                 rc = pci_set_power_state(pdev, PCI_D3hot);
7388                 if (rc)
7389                         return rc;
7390
7391                 msleep(500);
7392
7393                 /* enter the D0 power management state */
7394                 rc = pci_set_power_state(pdev, PCI_D0);
7395                 if (rc)
7396                         return rc;
7397
7398                 /*
7399                  * The P600 requires a small delay when changing states.
7400                  * Otherwise we may think the board did not reset and we bail.
7401                  * This for kdump only and is particular to the P600.
7402                  */
7403                 msleep(500);
7404         }
7405         return 0;
7406 }
7407
7408 static void init_driver_version(char *driver_version, int len)
7409 {
7410         memset(driver_version, 0, len);
7411         strncpy(driver_version, HPSA " " HPSA_DRIVER_VERSION, len - 1);
7412 }
7413
7414 static int write_driver_ver_to_cfgtable(struct CfgTable __iomem *cfgtable)
7415 {
7416         char *driver_version;
7417         int i, size = sizeof(cfgtable->driver_version);
7418
7419         driver_version = kmalloc(size, GFP_KERNEL);
7420         if (!driver_version)
7421                 return -ENOMEM;
7422
7423         init_driver_version(driver_version, size);
7424         for (i = 0; i < size; i++)
7425                 writeb(driver_version[i], &cfgtable->driver_version[i]);
7426         kfree(driver_version);
7427         return 0;
7428 }
7429
7430 static void read_driver_ver_from_cfgtable(struct CfgTable __iomem *cfgtable,
7431                                           unsigned char *driver_ver)
7432 {
7433         int i;
7434
7435         for (i = 0; i < sizeof(cfgtable->driver_version); i++)
7436                 driver_ver[i] = readb(&cfgtable->driver_version[i]);
7437 }
7438
7439 static int controller_reset_failed(struct CfgTable __iomem *cfgtable)
7440 {
7441
7442         char *driver_ver, *old_driver_ver;
7443         int rc, size = sizeof(cfgtable->driver_version);
7444
7445         old_driver_ver = kmalloc(2 * size, GFP_KERNEL);
7446         if (!old_driver_ver)
7447                 return -ENOMEM;
7448         driver_ver = old_driver_ver + size;
7449
7450         /* After a reset, the 32 bytes of "driver version" in the cfgtable
7451          * should have been changed, otherwise we know the reset failed.
7452          */
7453         init_driver_version(old_driver_ver, size);
7454         read_driver_ver_from_cfgtable(cfgtable, driver_ver);
7455         rc = !memcmp(driver_ver, old_driver_ver, size);
7456         kfree(old_driver_ver);
7457         return rc;
7458 }
7459 /* This does a hard reset of the controller using PCI power management
7460  * states or the using the doorbell register.
7461  */
7462 static int hpsa_kdump_hard_reset_controller(struct pci_dev *pdev, u32 board_id)
7463 {
7464         u64 cfg_offset;
7465         u32 cfg_base_addr;
7466         u64 cfg_base_addr_index;
7467         void __iomem *vaddr;
7468         unsigned long paddr;
7469         u32 misc_fw_support;
7470         int rc;
7471         struct CfgTable __iomem *cfgtable;
7472         u32 use_doorbell;
7473         u16 command_register;
7474
7475         /* For controllers as old as the P600, this is very nearly
7476          * the same thing as
7477          *
7478          * pci_save_state(pci_dev);
7479          * pci_set_power_state(pci_dev, PCI_D3hot);
7480          * pci_set_power_state(pci_dev, PCI_D0);
7481          * pci_restore_state(pci_dev);
7482          *
7483          * For controllers newer than the P600, the pci power state
7484          * method of resetting doesn't work so we have another way
7485          * using the doorbell register.
7486          */
7487
7488         if (!ctlr_is_resettable(board_id)) {
7489                 dev_warn(&pdev->dev, "Controller not resettable\n");
7490                 return -ENODEV;
7491         }
7492
7493         /* if controller is soft- but not hard resettable... */
7494         if (!ctlr_is_hard_resettable(board_id))
7495                 return -ENOTSUPP; /* try soft reset later. */
7496
7497         /* Save the PCI command register */
7498         pci_read_config_word(pdev, 4, &command_register);
7499         pci_save_state(pdev);
7500
7501         /* find the first memory BAR, so we can find the cfg table */
7502         rc = hpsa_pci_find_memory_BAR(pdev, &paddr);
7503         if (rc)
7504                 return rc;
7505         vaddr = remap_pci_mem(paddr, 0x250);
7506         if (!vaddr)
7507                 return -ENOMEM;
7508
7509         /* find cfgtable in order to check if reset via doorbell is supported */
7510         rc = hpsa_find_cfg_addrs(pdev, vaddr, &cfg_base_addr,
7511                                         &cfg_base_addr_index, &cfg_offset);
7512         if (rc)
7513                 goto unmap_vaddr;
7514         cfgtable = remap_pci_mem(pci_resource_start(pdev,
7515                        cfg_base_addr_index) + cfg_offset, sizeof(*cfgtable));
7516         if (!cfgtable) {
7517                 rc = -ENOMEM;
7518                 goto unmap_vaddr;
7519         }
7520         rc = write_driver_ver_to_cfgtable(cfgtable);
7521         if (rc)
7522                 goto unmap_cfgtable;
7523
7524         /* If reset via doorbell register is supported, use that.
7525          * There are two such methods.  Favor the newest method.
7526          */
7527         misc_fw_support = readl(&cfgtable->misc_fw_support);
7528         use_doorbell = misc_fw_support & MISC_FW_DOORBELL_RESET2;
7529         if (use_doorbell) {
7530                 use_doorbell = DOORBELL_CTLR_RESET2;
7531         } else {
7532                 use_doorbell = misc_fw_support & MISC_FW_DOORBELL_RESET;
7533                 if (use_doorbell) {
7534                         dev_warn(&pdev->dev,
7535                                 "Soft reset not supported. Firmware update is required.\n");
7536                         rc = -ENOTSUPP; /* try soft reset */
7537                         goto unmap_cfgtable;
7538                 }
7539         }
7540
7541         rc = hpsa_controller_hard_reset(pdev, vaddr, use_doorbell);
7542         if (rc)
7543                 goto unmap_cfgtable;
7544
7545         pci_restore_state(pdev);
7546         pci_write_config_word(pdev, 4, command_register);
7547
7548         /* Some devices (notably the HP Smart Array 5i Controller)
7549            need a little pause here */
7550         msleep(HPSA_POST_RESET_PAUSE_MSECS);
7551
7552         rc = hpsa_wait_for_board_state(pdev, vaddr, BOARD_READY);
7553         if (rc) {
7554                 dev_warn(&pdev->dev,
7555                         "Failed waiting for board to become ready after hard reset\n");
7556                 goto unmap_cfgtable;
7557         }
7558
7559         rc = controller_reset_failed(vaddr);
7560         if (rc < 0)
7561                 goto unmap_cfgtable;
7562         if (rc) {
7563                 dev_warn(&pdev->dev, "Unable to successfully reset "
7564                         "controller. Will try soft reset.\n");
7565                 rc = -ENOTSUPP;
7566         } else {
7567                 dev_info(&pdev->dev, "board ready after hard reset.\n");
7568         }
7569
7570 unmap_cfgtable:
7571         iounmap(cfgtable);
7572
7573 unmap_vaddr:
7574         iounmap(vaddr);
7575         return rc;
7576 }
7577
7578 /*
7579  *  We cannot read the structure directly, for portability we must use
7580  *   the io functions.
7581  *   This is for debug only.
7582  */
7583 static void print_cfg_table(struct device *dev, struct CfgTable __iomem *tb)
7584 {
7585 #ifdef HPSA_DEBUG
7586         int i;
7587         char temp_name[17];
7588
7589         dev_info(dev, "Controller Configuration information\n");
7590         dev_info(dev, "------------------------------------\n");
7591         for (i = 0; i < 4; i++)
7592                 temp_name[i] = readb(&(tb->Signature[i]));
7593         temp_name[4] = '\0';
7594         dev_info(dev, "   Signature = %s\n", temp_name);
7595         dev_info(dev, "   Spec Number = %d\n", readl(&(tb->SpecValence)));
7596         dev_info(dev, "   Transport methods supported = 0x%x\n",
7597                readl(&(tb->TransportSupport)));
7598         dev_info(dev, "   Transport methods active = 0x%x\n",
7599                readl(&(tb->TransportActive)));
7600         dev_info(dev, "   Requested transport Method = 0x%x\n",
7601                readl(&(tb->HostWrite.TransportRequest)));
7602         dev_info(dev, "   Coalesce Interrupt Delay = 0x%x\n",
7603                readl(&(tb->HostWrite.CoalIntDelay)));
7604         dev_info(dev, "   Coalesce Interrupt Count = 0x%x\n",
7605                readl(&(tb->HostWrite.CoalIntCount)));
7606         dev_info(dev, "   Max outstanding commands = %d\n",
7607                readl(&(tb->CmdsOutMax)));
7608         dev_info(dev, "   Bus Types = 0x%x\n", readl(&(tb->BusTypes)));
7609         for (i = 0; i < 16; i++)
7610                 temp_name[i] = readb(&(tb->ServerName[i]));
7611         temp_name[16] = '\0';
7612         dev_info(dev, "   Server Name = %s\n", temp_name);
7613         dev_info(dev, "   Heartbeat Counter = 0x%x\n\n\n",
7614                 readl(&(tb->HeartBeat)));
7615 #endif                          /* HPSA_DEBUG */
7616 }
7617
7618 static int find_PCI_BAR_index(struct pci_dev *pdev, unsigned long pci_bar_addr)
7619 {
7620         int i, offset, mem_type, bar_type;
7621
7622         if (pci_bar_addr == PCI_BASE_ADDRESS_0) /* looking for BAR zero? */
7623                 return 0;
7624         offset = 0;
7625         for (i = 0; i < DEVICE_COUNT_RESOURCE; i++) {
7626                 bar_type = pci_resource_flags(pdev, i) & PCI_BASE_ADDRESS_SPACE;
7627                 if (bar_type == PCI_BASE_ADDRESS_SPACE_IO)
7628                         offset += 4;
7629                 else {
7630                         mem_type = pci_resource_flags(pdev, i) &
7631                             PCI_BASE_ADDRESS_MEM_TYPE_MASK;
7632                         switch (mem_type) {
7633                         case PCI_BASE_ADDRESS_MEM_TYPE_32:
7634                         case PCI_BASE_ADDRESS_MEM_TYPE_1M:
7635                                 offset += 4;    /* 32 bit */
7636                                 break;
7637                         case PCI_BASE_ADDRESS_MEM_TYPE_64:
7638                                 offset += 8;
7639                                 break;
7640                         default:        /* reserved in PCI 2.2 */
7641                                 dev_warn(&pdev->dev,
7642                                        "base address is invalid\n");
7643                                 return -1;
7644                                 break;
7645                         }
7646                 }
7647                 if (offset == pci_bar_addr - PCI_BASE_ADDRESS_0)
7648                         return i + 1;
7649         }
7650         return -1;
7651 }
7652
7653 static void hpsa_disable_interrupt_mode(struct ctlr_info *h)
7654 {
7655         if (h->msix_vector) {
7656                 if (h->pdev->msix_enabled)
7657                         pci_disable_msix(h->pdev);
7658                 h->msix_vector = 0;
7659         } else if (h->msi_vector) {
7660                 if (h->pdev->msi_enabled)
7661                         pci_disable_msi(h->pdev);
7662                 h->msi_vector = 0;
7663         }
7664 }
7665
7666 /* If MSI/MSI-X is supported by the kernel we will try to enable it on
7667  * controllers that are capable. If not, we use legacy INTx mode.
7668  */
7669 static void hpsa_interrupt_mode(struct ctlr_info *h)
7670 {
7671 #ifdef CONFIG_PCI_MSI
7672         int err, i;
7673         struct msix_entry hpsa_msix_entries[MAX_REPLY_QUEUES];
7674
7675         for (i = 0; i < MAX_REPLY_QUEUES; i++) {
7676                 hpsa_msix_entries[i].vector = 0;
7677                 hpsa_msix_entries[i].entry = i;
7678         }
7679
7680         /* Some boards advertise MSI but don't really support it */
7681         if ((h->board_id == 0x40700E11) || (h->board_id == 0x40800E11) ||
7682             (h->board_id == 0x40820E11) || (h->board_id == 0x40830E11))
7683                 goto default_int_mode;
7684         if (pci_find_capability(h->pdev, PCI_CAP_ID_MSIX)) {
7685                 dev_info(&h->pdev->dev, "MSI-X capable controller\n");
7686                 h->msix_vector = MAX_REPLY_QUEUES;
7687                 if (h->msix_vector > num_online_cpus())
7688                         h->msix_vector = num_online_cpus();
7689                 err = pci_enable_msix_range(h->pdev, hpsa_msix_entries,
7690                                             1, h->msix_vector);
7691                 if (err < 0) {
7692                         dev_warn(&h->pdev->dev, "MSI-X init failed %d\n", err);
7693                         h->msix_vector = 0;
7694                         goto single_msi_mode;
7695                 } else if (err < h->msix_vector) {
7696                         dev_warn(&h->pdev->dev, "only %d MSI-X vectors "
7697                                "available\n", err);
7698                 }
7699                 h->msix_vector = err;
7700                 for (i = 0; i < h->msix_vector; i++)
7701                         h->intr[i] = hpsa_msix_entries[i].vector;
7702                 return;
7703         }
7704 single_msi_mode:
7705         if (pci_find_capability(h->pdev, PCI_CAP_ID_MSI)) {
7706                 dev_info(&h->pdev->dev, "MSI capable controller\n");
7707                 if (!pci_enable_msi(h->pdev))
7708                         h->msi_vector = 1;
7709                 else
7710                         dev_warn(&h->pdev->dev, "MSI init failed\n");
7711         }
7712 default_int_mode:
7713 #endif                          /* CONFIG_PCI_MSI */
7714         /* if we get here we're going to use the default interrupt mode */
7715         h->intr[h->intr_mode] = h->pdev->irq;
7716 }
7717
7718 static int hpsa_lookup_board_id(struct pci_dev *pdev, u32 *board_id)
7719 {
7720         int i;
7721         u32 subsystem_vendor_id, subsystem_device_id;
7722
7723         subsystem_vendor_id = pdev->subsystem_vendor;
7724         subsystem_device_id = pdev->subsystem_device;
7725         *board_id = ((subsystem_device_id << 16) & 0xffff0000) |
7726                     subsystem_vendor_id;
7727
7728         for (i = 0; i < ARRAY_SIZE(products); i++)
7729                 if (*board_id == products[i].board_id)
7730                         return i;
7731
7732         if ((subsystem_vendor_id != PCI_VENDOR_ID_HP &&
7733                 subsystem_vendor_id != PCI_VENDOR_ID_COMPAQ) ||
7734                 !hpsa_allow_any) {
7735                 dev_warn(&pdev->dev, "unrecognized board ID: "
7736                         "0x%08x, ignoring.\n", *board_id);
7737                         return -ENODEV;
7738         }
7739         return ARRAY_SIZE(products) - 1; /* generic unknown smart array */
7740 }
7741
7742 static int hpsa_pci_find_memory_BAR(struct pci_dev *pdev,
7743                                     unsigned long *memory_bar)
7744 {
7745         int i;
7746
7747         for (i = 0; i < DEVICE_COUNT_RESOURCE; i++)
7748                 if (pci_resource_flags(pdev, i) & IORESOURCE_MEM) {
7749                         /* addressing mode bits already removed */
7750                         *memory_bar = pci_resource_start(pdev, i);
7751                         dev_dbg(&pdev->dev, "memory BAR = %lx\n",
7752                                 *memory_bar);
7753                         return 0;
7754                 }
7755         dev_warn(&pdev->dev, "no memory BAR found\n");
7756         return -ENODEV;
7757 }
7758
7759 static int hpsa_wait_for_board_state(struct pci_dev *pdev, void __iomem *vaddr,
7760                                      int wait_for_ready)
7761 {
7762         int i, iterations;
7763         u32 scratchpad;
7764         if (wait_for_ready)
7765                 iterations = HPSA_BOARD_READY_ITERATIONS;
7766         else
7767                 iterations = HPSA_BOARD_NOT_READY_ITERATIONS;
7768
7769         for (i = 0; i < iterations; i++) {
7770                 scratchpad = readl(vaddr + SA5_SCRATCHPAD_OFFSET);
7771                 if (wait_for_ready) {
7772                         if (scratchpad == HPSA_FIRMWARE_READY)
7773                                 return 0;
7774                 } else {
7775                         if (scratchpad != HPSA_FIRMWARE_READY)
7776                                 return 0;
7777                 }
7778                 msleep(HPSA_BOARD_READY_POLL_INTERVAL_MSECS);
7779         }
7780         dev_warn(&pdev->dev, "board not ready, timed out.\n");
7781         return -ENODEV;
7782 }
7783
7784 static int hpsa_find_cfg_addrs(struct pci_dev *pdev, void __iomem *vaddr,
7785                                u32 *cfg_base_addr, u64 *cfg_base_addr_index,
7786                                u64 *cfg_offset)
7787 {
7788         *cfg_base_addr = readl(vaddr + SA5_CTCFG_OFFSET);
7789         *cfg_offset = readl(vaddr + SA5_CTMEM_OFFSET);
7790         *cfg_base_addr &= (u32) 0x0000ffff;
7791         *cfg_base_addr_index = find_PCI_BAR_index(pdev, *cfg_base_addr);
7792         if (*cfg_base_addr_index == -1) {
7793                 dev_warn(&pdev->dev, "cannot find cfg_base_addr_index\n");
7794                 return -ENODEV;
7795         }
7796         return 0;
7797 }
7798
7799 static void hpsa_free_cfgtables(struct ctlr_info *h)
7800 {
7801         if (h->transtable) {
7802                 iounmap(h->transtable);
7803                 h->transtable = NULL;
7804         }
7805         if (h->cfgtable) {
7806                 iounmap(h->cfgtable);
7807                 h->cfgtable = NULL;
7808         }
7809 }
7810
7811 /* Find and map CISS config table and transfer table
7812 + * several items must be unmapped (freed) later
7813 + * */
7814 static int hpsa_find_cfgtables(struct ctlr_info *h)
7815 {
7816         u64 cfg_offset;
7817         u32 cfg_base_addr;
7818         u64 cfg_base_addr_index;
7819         u32 trans_offset;
7820         int rc;
7821
7822         rc = hpsa_find_cfg_addrs(h->pdev, h->vaddr, &cfg_base_addr,
7823                 &cfg_base_addr_index, &cfg_offset);
7824         if (rc)
7825                 return rc;
7826         h->cfgtable = remap_pci_mem(pci_resource_start(h->pdev,
7827                        cfg_base_addr_index) + cfg_offset, sizeof(*h->cfgtable));
7828         if (!h->cfgtable) {
7829                 dev_err(&h->pdev->dev, "Failed mapping cfgtable\n");
7830                 return -ENOMEM;
7831         }
7832         rc = write_driver_ver_to_cfgtable(h->cfgtable);
7833         if (rc)
7834                 return rc;
7835         /* Find performant mode table. */
7836         trans_offset = readl(&h->cfgtable->TransMethodOffset);
7837         h->transtable = remap_pci_mem(pci_resource_start(h->pdev,
7838                                 cfg_base_addr_index)+cfg_offset+trans_offset,
7839                                 sizeof(*h->transtable));
7840         if (!h->transtable) {
7841                 dev_err(&h->pdev->dev, "Failed mapping transfer table\n");
7842                 hpsa_free_cfgtables(h);
7843                 return -ENOMEM;
7844         }
7845         return 0;
7846 }
7847
7848 static void hpsa_get_max_perf_mode_cmds(struct ctlr_info *h)
7849 {
7850 #define MIN_MAX_COMMANDS 16
7851         BUILD_BUG_ON(MIN_MAX_COMMANDS <= HPSA_NRESERVED_CMDS);
7852
7853         h->max_commands = readl(&h->cfgtable->MaxPerformantModeCommands);
7854
7855         /* Limit commands in memory limited kdump scenario. */
7856         if (reset_devices && h->max_commands > 32)
7857                 h->max_commands = 32;
7858
7859         if (h->max_commands < MIN_MAX_COMMANDS) {
7860                 dev_warn(&h->pdev->dev,
7861                         "Controller reports max supported commands of %d Using %d instead. Ensure that firmware is up to date.\n",
7862                         h->max_commands,
7863                         MIN_MAX_COMMANDS);
7864                 h->max_commands = MIN_MAX_COMMANDS;
7865         }
7866 }
7867
7868 /* If the controller reports that the total max sg entries is greater than 512,
7869  * then we know that chained SG blocks work.  (Original smart arrays did not
7870  * support chained SG blocks and would return zero for max sg entries.)
7871  */
7872 static int hpsa_supports_chained_sg_blocks(struct ctlr_info *h)
7873 {
7874         return h->maxsgentries > 512;
7875 }
7876
7877 /* Interrogate the hardware for some limits:
7878  * max commands, max SG elements without chaining, and with chaining,
7879  * SG chain block size, etc.
7880  */
7881 static void hpsa_find_board_params(struct ctlr_info *h)
7882 {
7883         hpsa_get_max_perf_mode_cmds(h);
7884         h->nr_cmds = h->max_commands;
7885         h->maxsgentries = readl(&(h->cfgtable->MaxScatterGatherElements));
7886         h->fw_support = readl(&(h->cfgtable->misc_fw_support));
7887         if (hpsa_supports_chained_sg_blocks(h)) {
7888                 /* Limit in-command s/g elements to 32 save dma'able memory. */
7889                 h->max_cmd_sg_entries = 32;
7890                 h->chainsize = h->maxsgentries - h->max_cmd_sg_entries;
7891                 h->maxsgentries--; /* save one for chain pointer */
7892         } else {
7893                 /*
7894                  * Original smart arrays supported at most 31 s/g entries
7895                  * embedded inline in the command (trying to use more
7896                  * would lock up the controller)
7897                  */
7898                 h->max_cmd_sg_entries = 31;
7899                 h->maxsgentries = 31; /* default to traditional values */
7900                 h->chainsize = 0;
7901         }
7902
7903         /* Find out what task management functions are supported and cache */
7904         h->TMFSupportFlags = readl(&(h->cfgtable->TMFSupportFlags));
7905         if (!(HPSATMF_PHYS_TASK_ABORT & h->TMFSupportFlags))
7906                 dev_warn(&h->pdev->dev, "Physical aborts not supported\n");
7907         if (!(HPSATMF_LOG_TASK_ABORT & h->TMFSupportFlags))
7908                 dev_warn(&h->pdev->dev, "Logical aborts not supported\n");
7909         if (!(HPSATMF_IOACCEL_ENABLED & h->TMFSupportFlags))
7910                 dev_warn(&h->pdev->dev, "HP SSD Smart Path aborts not supported\n");
7911 }
7912
7913 static inline bool hpsa_CISS_signature_present(struct ctlr_info *h)
7914 {
7915         if (!check_signature(h->cfgtable->Signature, "CISS", 4)) {
7916                 dev_err(&h->pdev->dev, "not a valid CISS config table\n");
7917                 return false;
7918         }
7919         return true;
7920 }
7921
7922 static inline void hpsa_set_driver_support_bits(struct ctlr_info *h)
7923 {
7924         u32 driver_support;
7925
7926         driver_support = readl(&(h->cfgtable->driver_support));
7927         /* Need to enable prefetch in the SCSI core for 6400 in x86 */
7928 #ifdef CONFIG_X86
7929         driver_support |= ENABLE_SCSI_PREFETCH;
7930 #endif
7931         driver_support |= ENABLE_UNIT_ATTN;
7932         writel(driver_support, &(h->cfgtable->driver_support));
7933 }
7934
7935 /* Disable DMA prefetch for the P600.  Otherwise an ASIC bug may result
7936  * in a prefetch beyond physical memory.
7937  */
7938 static inline void hpsa_p600_dma_prefetch_quirk(struct ctlr_info *h)
7939 {
7940         u32 dma_prefetch;
7941
7942         if (h->board_id != 0x3225103C)
7943                 return;
7944         dma_prefetch = readl(h->vaddr + I2O_DMA1_CFG);
7945         dma_prefetch |= 0x8000;
7946         writel(dma_prefetch, h->vaddr + I2O_DMA1_CFG);
7947 }
7948
7949 static int hpsa_wait_for_clear_event_notify_ack(struct ctlr_info *h)
7950 {
7951         int i;
7952         u32 doorbell_value;
7953         unsigned long flags;
7954         /* wait until the clear_event_notify bit 6 is cleared by controller. */
7955         for (i = 0; i < MAX_CLEAR_EVENT_WAIT; i++) {
7956                 spin_lock_irqsave(&h->lock, flags);
7957                 doorbell_value = readl(h->vaddr + SA5_DOORBELL);
7958                 spin_unlock_irqrestore(&h->lock, flags);
7959                 if (!(doorbell_value & DOORBELL_CLEAR_EVENTS))
7960                         goto done;
7961                 /* delay and try again */
7962                 msleep(CLEAR_EVENT_WAIT_INTERVAL);
7963         }
7964         return -ENODEV;
7965 done:
7966         return 0;
7967 }
7968
7969 static int hpsa_wait_for_mode_change_ack(struct ctlr_info *h)
7970 {
7971         int i;
7972         u32 doorbell_value;
7973         unsigned long flags;
7974
7975         /* under certain very rare conditions, this can take awhile.
7976          * (e.g.: hot replace a failed 144GB drive in a RAID 5 set right
7977          * as we enter this code.)
7978          */
7979         for (i = 0; i < MAX_MODE_CHANGE_WAIT; i++) {
7980                 if (h->remove_in_progress)
7981                         goto done;
7982                 spin_lock_irqsave(&h->lock, flags);
7983                 doorbell_value = readl(h->vaddr + SA5_DOORBELL);
7984                 spin_unlock_irqrestore(&h->lock, flags);
7985                 if (!(doorbell_value & CFGTBL_ChangeReq))
7986                         goto done;
7987                 /* delay and try again */
7988                 msleep(MODE_CHANGE_WAIT_INTERVAL);
7989         }
7990         return -ENODEV;
7991 done:
7992         return 0;
7993 }
7994
7995 /* return -ENODEV or other reason on error, 0 on success */
7996 static int hpsa_enter_simple_mode(struct ctlr_info *h)
7997 {
7998         u32 trans_support;
7999
8000         trans_support = readl(&(h->cfgtable->TransportSupport));
8001         if (!(trans_support & SIMPLE_MODE))
8002                 return -ENOTSUPP;
8003
8004         h->max_commands = readl(&(h->cfgtable->CmdsOutMax));
8005
8006         /* Update the field, and then ring the doorbell */
8007         writel(CFGTBL_Trans_Simple, &(h->cfgtable->HostWrite.TransportRequest));
8008         writel(0, &h->cfgtable->HostWrite.command_pool_addr_hi);
8009         writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL);
8010         if (hpsa_wait_for_mode_change_ack(h))
8011                 goto error;
8012         print_cfg_table(&h->pdev->dev, h->cfgtable);
8013         if (!(readl(&(h->cfgtable->TransportActive)) & CFGTBL_Trans_Simple))
8014                 goto error;
8015         h->transMethod = CFGTBL_Trans_Simple;
8016         return 0;
8017 error:
8018         dev_err(&h->pdev->dev, "failed to enter simple mode\n");
8019         return -ENODEV;
8020 }
8021
8022 /* free items allocated or mapped by hpsa_pci_init */
8023 static void hpsa_free_pci_init(struct ctlr_info *h)
8024 {
8025         hpsa_free_cfgtables(h);                 /* pci_init 4 */
8026         iounmap(h->vaddr);                      /* pci_init 3 */
8027         h->vaddr = NULL;
8028         hpsa_disable_interrupt_mode(h);         /* pci_init 2 */
8029         /*
8030          * call pci_disable_device before pci_release_regions per
8031          * Documentation/PCI/pci.txt
8032          */
8033         pci_disable_device(h->pdev);            /* pci_init 1 */
8034         pci_release_regions(h->pdev);           /* pci_init 2 */
8035 }
8036
8037 /* several items must be freed later */
8038 static int hpsa_pci_init(struct ctlr_info *h)
8039 {
8040         int prod_index, err;
8041
8042         prod_index = hpsa_lookup_board_id(h->pdev, &h->board_id);
8043         if (prod_index < 0)
8044                 return prod_index;
8045         h->product_name = products[prod_index].product_name;
8046         h->access = *(products[prod_index].access);
8047
8048         h->needs_abort_tags_swizzled =
8049                 ctlr_needs_abort_tags_swizzled(h->board_id);
8050
8051         pci_disable_link_state(h->pdev, PCIE_LINK_STATE_L0S |
8052                                PCIE_LINK_STATE_L1 | PCIE_LINK_STATE_CLKPM);
8053
8054         err = pci_enable_device(h->pdev);
8055         if (err) {
8056                 dev_err(&h->pdev->dev, "failed to enable PCI device\n");
8057                 pci_disable_device(h->pdev);
8058                 return err;
8059         }
8060
8061         err = pci_request_regions(h->pdev, HPSA);
8062         if (err) {
8063                 dev_err(&h->pdev->dev,
8064                         "failed to obtain PCI resources\n");
8065                 pci_disable_device(h->pdev);
8066                 return err;
8067         }
8068
8069         pci_set_master(h->pdev);
8070
8071         hpsa_interrupt_mode(h);
8072         err = hpsa_pci_find_memory_BAR(h->pdev, &h->paddr);
8073         if (err)
8074                 goto clean2;    /* intmode+region, pci */
8075         h->vaddr = remap_pci_mem(h->paddr, 0x250);
8076         if (!h->vaddr) {
8077                 dev_err(&h->pdev->dev, "failed to remap PCI mem\n");
8078                 err = -ENOMEM;
8079                 goto clean2;    /* intmode+region, pci */
8080         }
8081         err = hpsa_wait_for_board_state(h->pdev, h->vaddr, BOARD_READY);
8082         if (err)
8083                 goto clean3;    /* vaddr, intmode+region, pci */
8084         err = hpsa_find_cfgtables(h);
8085         if (err)
8086                 goto clean3;    /* vaddr, intmode+region, pci */
8087         hpsa_find_board_params(h);
8088
8089         if (!hpsa_CISS_signature_present(h)) {
8090                 err = -ENODEV;
8091                 goto clean4;    /* cfgtables, vaddr, intmode+region, pci */
8092         }
8093         hpsa_set_driver_support_bits(h);
8094         hpsa_p600_dma_prefetch_quirk(h);
8095         err = hpsa_enter_simple_mode(h);
8096         if (err)
8097                 goto clean4;    /* cfgtables, vaddr, intmode+region, pci */
8098         return 0;
8099
8100 clean4: /* cfgtables, vaddr, intmode+region, pci */
8101         hpsa_free_cfgtables(h);
8102 clean3: /* vaddr, intmode+region, pci */
8103         iounmap(h->vaddr);
8104         h->vaddr = NULL;
8105 clean2: /* intmode+region, pci */
8106         hpsa_disable_interrupt_mode(h);
8107         /*
8108          * call pci_disable_device before pci_release_regions per
8109          * Documentation/PCI/pci.txt
8110          */
8111         pci_disable_device(h->pdev);
8112         pci_release_regions(h->pdev);
8113         return err;
8114 }
8115
8116 static void hpsa_hba_inquiry(struct ctlr_info *h)
8117 {
8118         int rc;
8119
8120 #define HBA_INQUIRY_BYTE_COUNT 64
8121         h->hba_inquiry_data = kmalloc(HBA_INQUIRY_BYTE_COUNT, GFP_KERNEL);
8122         if (!h->hba_inquiry_data)
8123                 return;
8124         rc = hpsa_scsi_do_inquiry(h, RAID_CTLR_LUNID, 0,
8125                 h->hba_inquiry_data, HBA_INQUIRY_BYTE_COUNT);
8126         if (rc != 0) {
8127                 kfree(h->hba_inquiry_data);
8128                 h->hba_inquiry_data = NULL;
8129         }
8130 }
8131
8132 static int hpsa_init_reset_devices(struct pci_dev *pdev, u32 board_id)
8133 {
8134         int rc, i;
8135         void __iomem *vaddr;
8136
8137         if (!reset_devices)
8138                 return 0;
8139
8140         /* kdump kernel is loading, we don't know in which state is
8141          * the pci interface. The dev->enable_cnt is equal zero
8142          * so we call enable+disable, wait a while and switch it on.
8143          */
8144         rc = pci_enable_device(pdev);
8145         if (rc) {
8146                 dev_warn(&pdev->dev, "Failed to enable PCI device\n");
8147                 return -ENODEV;
8148         }
8149         pci_disable_device(pdev);
8150         msleep(260);                    /* a randomly chosen number */
8151         rc = pci_enable_device(pdev);
8152         if (rc) {
8153                 dev_warn(&pdev->dev, "failed to enable device.\n");
8154                 return -ENODEV;
8155         }
8156
8157         pci_set_master(pdev);
8158
8159         vaddr = pci_ioremap_bar(pdev, 0);
8160         if (vaddr == NULL) {
8161                 rc = -ENOMEM;
8162                 goto out_disable;
8163         }
8164         writel(SA5_INTR_OFF, vaddr + SA5_REPLY_INTR_MASK_OFFSET);
8165         iounmap(vaddr);
8166
8167         /* Reset the controller with a PCI power-cycle or via doorbell */
8168         rc = hpsa_kdump_hard_reset_controller(pdev, board_id);
8169
8170         /* -ENOTSUPP here means we cannot reset the controller
8171          * but it's already (and still) up and running in
8172          * "performant mode".  Or, it might be 640x, which can't reset
8173          * due to concerns about shared bbwc between 6402/6404 pair.
8174          */
8175         if (rc)
8176                 goto out_disable;
8177
8178         /* Now try to get the controller to respond to a no-op */
8179         dev_info(&pdev->dev, "Waiting for controller to respond to no-op\n");
8180         for (i = 0; i < HPSA_POST_RESET_NOOP_RETRIES; i++) {
8181                 if (hpsa_noop(pdev) == 0)
8182                         break;
8183                 else
8184                         dev_warn(&pdev->dev, "no-op failed%s\n",
8185                                         (i < 11 ? "; re-trying" : ""));
8186         }
8187
8188 out_disable:
8189
8190         pci_disable_device(pdev);
8191         return rc;
8192 }
8193
8194 static void hpsa_free_cmd_pool(struct ctlr_info *h)
8195 {
8196         kfree(h->cmd_pool_bits);
8197         h->cmd_pool_bits = NULL;
8198         if (h->cmd_pool) {
8199                 pci_free_consistent(h->pdev,
8200                                 h->nr_cmds * sizeof(struct CommandList),
8201                                 h->cmd_pool,
8202                                 h->cmd_pool_dhandle);
8203                 h->cmd_pool = NULL;
8204                 h->cmd_pool_dhandle = 0;
8205         }
8206         if (h->errinfo_pool) {
8207                 pci_free_consistent(h->pdev,
8208                                 h->nr_cmds * sizeof(struct ErrorInfo),
8209                                 h->errinfo_pool,
8210                                 h->errinfo_pool_dhandle);
8211                 h->errinfo_pool = NULL;
8212                 h->errinfo_pool_dhandle = 0;
8213         }
8214 }
8215
8216 static int hpsa_alloc_cmd_pool(struct ctlr_info *h)
8217 {
8218         h->cmd_pool_bits = kzalloc(
8219                 DIV_ROUND_UP(h->nr_cmds, BITS_PER_LONG) *
8220                 sizeof(unsigned long), GFP_KERNEL);
8221         h->cmd_pool = pci_alloc_consistent(h->pdev,
8222                     h->nr_cmds * sizeof(*h->cmd_pool),
8223                     &(h->cmd_pool_dhandle));
8224         h->errinfo_pool = pci_alloc_consistent(h->pdev,
8225                     h->nr_cmds * sizeof(*h->errinfo_pool),
8226                     &(h->errinfo_pool_dhandle));
8227         if ((h->cmd_pool_bits == NULL)
8228             || (h->cmd_pool == NULL)
8229             || (h->errinfo_pool == NULL)) {
8230                 dev_err(&h->pdev->dev, "out of memory in %s", __func__);
8231                 goto clean_up;
8232         }
8233         hpsa_preinitialize_commands(h);
8234         return 0;
8235 clean_up:
8236         hpsa_free_cmd_pool(h);
8237         return -ENOMEM;
8238 }
8239
8240 static void hpsa_irq_affinity_hints(struct ctlr_info *h)
8241 {
8242         int i, cpu;
8243
8244         cpu = cpumask_first(cpu_online_mask);
8245         for (i = 0; i < h->msix_vector; i++) {
8246                 irq_set_affinity_hint(h->intr[i], get_cpu_mask(cpu));
8247                 cpu = cpumask_next(cpu, cpu_online_mask);
8248         }
8249 }
8250
8251 /* clear affinity hints and free MSI-X, MSI, or legacy INTx vectors */
8252 static void hpsa_free_irqs(struct ctlr_info *h)
8253 {
8254         int i;
8255
8256         if (!h->msix_vector || h->intr_mode != PERF_MODE_INT) {
8257                 /* Single reply queue, only one irq to free */
8258                 i = h->intr_mode;
8259                 irq_set_affinity_hint(h->intr[i], NULL);
8260                 free_irq(h->intr[i], &h->q[i]);
8261                 h->q[i] = 0;
8262                 return;
8263         }
8264
8265         for (i = 0; i < h->msix_vector; i++) {
8266                 irq_set_affinity_hint(h->intr[i], NULL);
8267                 free_irq(h->intr[i], &h->q[i]);
8268                 h->q[i] = 0;
8269         }
8270         for (; i < MAX_REPLY_QUEUES; i++)
8271                 h->q[i] = 0;
8272 }
8273
8274 /* returns 0 on success; cleans up and returns -Enn on error */
8275 static int hpsa_request_irqs(struct ctlr_info *h,
8276         irqreturn_t (*msixhandler)(int, void *),
8277         irqreturn_t (*intxhandler)(int, void *))
8278 {
8279         int rc, i;
8280
8281         /*
8282          * initialize h->q[x] = x so that interrupt handlers know which
8283          * queue to process.
8284          */
8285         for (i = 0; i < MAX_REPLY_QUEUES; i++)
8286                 h->q[i] = (u8) i;
8287
8288         if (h->intr_mode == PERF_MODE_INT && h->msix_vector > 0) {
8289                 /* If performant mode and MSI-X, use multiple reply queues */
8290                 for (i = 0; i < h->msix_vector; i++) {
8291                         sprintf(h->intrname[i], "%s-msix%d", h->devname, i);
8292                         rc = request_irq(h->intr[i], msixhandler,
8293                                         0, h->intrname[i],
8294                                         &h->q[i]);
8295                         if (rc) {
8296                                 int j;
8297
8298                                 dev_err(&h->pdev->dev,
8299                                         "failed to get irq %d for %s\n",
8300                                        h->intr[i], h->devname);
8301                                 for (j = 0; j < i; j++) {
8302                                         free_irq(h->intr[j], &h->q[j]);
8303                                         h->q[j] = 0;
8304                                 }
8305                                 for (; j < MAX_REPLY_QUEUES; j++)
8306                                         h->q[j] = 0;
8307                                 return rc;
8308                         }
8309                 }
8310                 hpsa_irq_affinity_hints(h);
8311         } else {
8312                 /* Use single reply pool */
8313                 if (h->msix_vector > 0 || h->msi_vector) {
8314                         if (h->msix_vector)
8315                                 sprintf(h->intrname[h->intr_mode],
8316                                         "%s-msix", h->devname);
8317                         else
8318                                 sprintf(h->intrname[h->intr_mode],
8319                                         "%s-msi", h->devname);
8320                         rc = request_irq(h->intr[h->intr_mode],
8321                                 msixhandler, 0,
8322                                 h->intrname[h->intr_mode],
8323                                 &h->q[h->intr_mode]);
8324                 } else {
8325                         sprintf(h->intrname[h->intr_mode],
8326                                 "%s-intx", h->devname);
8327                         rc = request_irq(h->intr[h->intr_mode],
8328                                 intxhandler, IRQF_SHARED,
8329                                 h->intrname[h->intr_mode],
8330                                 &h->q[h->intr_mode]);
8331                 }
8332                 irq_set_affinity_hint(h->intr[h->intr_mode], NULL);
8333         }
8334         if (rc) {
8335                 dev_err(&h->pdev->dev, "failed to get irq %d for %s\n",
8336                        h->intr[h->intr_mode], h->devname);
8337                 hpsa_free_irqs(h);
8338                 return -ENODEV;
8339         }
8340         return 0;
8341 }
8342
8343 static int hpsa_kdump_soft_reset(struct ctlr_info *h)
8344 {
8345         int rc;
8346         hpsa_send_host_reset(h, RAID_CTLR_LUNID, HPSA_RESET_TYPE_CONTROLLER);
8347
8348         dev_info(&h->pdev->dev, "Waiting for board to soft reset.\n");
8349         rc = hpsa_wait_for_board_state(h->pdev, h->vaddr, BOARD_NOT_READY);
8350         if (rc) {
8351                 dev_warn(&h->pdev->dev, "Soft reset had no effect.\n");
8352                 return rc;
8353         }
8354
8355         dev_info(&h->pdev->dev, "Board reset, awaiting READY status.\n");
8356         rc = hpsa_wait_for_board_state(h->pdev, h->vaddr, BOARD_READY);
8357         if (rc) {
8358                 dev_warn(&h->pdev->dev, "Board failed to become ready "
8359                         "after soft reset.\n");
8360                 return rc;
8361         }
8362
8363         return 0;
8364 }
8365
8366 static void hpsa_free_reply_queues(struct ctlr_info *h)
8367 {
8368         int i;
8369
8370         for (i = 0; i < h->nreply_queues; i++) {
8371                 if (!h->reply_queue[i].head)
8372                         continue;
8373                 pci_free_consistent(h->pdev,
8374                                         h->reply_queue_size,
8375                                         h->reply_queue[i].head,
8376                                         h->reply_queue[i].busaddr);
8377                 h->reply_queue[i].head = NULL;
8378                 h->reply_queue[i].busaddr = 0;
8379         }
8380         h->reply_queue_size = 0;
8381 }
8382
8383 static void hpsa_undo_allocations_after_kdump_soft_reset(struct ctlr_info *h)
8384 {
8385         hpsa_free_performant_mode(h);           /* init_one 7 */
8386         hpsa_free_sg_chain_blocks(h);           /* init_one 6 */
8387         hpsa_free_cmd_pool(h);                  /* init_one 5 */
8388         hpsa_free_irqs(h);                      /* init_one 4 */
8389         scsi_host_put(h->scsi_host);            /* init_one 3 */
8390         h->scsi_host = NULL;                    /* init_one 3 */
8391         hpsa_free_pci_init(h);                  /* init_one 2_5 */
8392         free_percpu(h->lockup_detected);        /* init_one 2 */
8393         h->lockup_detected = NULL;              /* init_one 2 */
8394         if (h->resubmit_wq) {
8395                 destroy_workqueue(h->resubmit_wq);      /* init_one 1 */
8396                 h->resubmit_wq = NULL;
8397         }
8398         if (h->rescan_ctlr_wq) {
8399                 destroy_workqueue(h->rescan_ctlr_wq);
8400                 h->rescan_ctlr_wq = NULL;
8401         }
8402         kfree(h);                               /* init_one 1 */
8403 }
8404
8405 /* Called when controller lockup detected. */
8406 static void fail_all_outstanding_cmds(struct ctlr_info *h)
8407 {
8408         int i, refcount;
8409         struct CommandList *c;
8410         int failcount = 0;
8411
8412         flush_workqueue(h->resubmit_wq); /* ensure all cmds are fully built */
8413         for (i = 0; i < h->nr_cmds; i++) {
8414                 c = h->cmd_pool + i;
8415                 refcount = atomic_inc_return(&c->refcount);
8416                 if (refcount > 1) {
8417                         c->err_info->CommandStatus = CMD_CTLR_LOCKUP;
8418                         finish_cmd(c);
8419                         atomic_dec(&h->commands_outstanding);
8420                         failcount++;
8421                 }
8422                 cmd_free(h, c);
8423         }
8424         dev_warn(&h->pdev->dev,
8425                 "failed %d commands in fail_all\n", failcount);
8426 }
8427
8428 static void set_lockup_detected_for_all_cpus(struct ctlr_info *h, u32 value)
8429 {
8430         int cpu;
8431
8432         for_each_online_cpu(cpu) {
8433                 u32 *lockup_detected;
8434                 lockup_detected = per_cpu_ptr(h->lockup_detected, cpu);
8435                 *lockup_detected = value;
8436         }
8437         wmb(); /* be sure the per-cpu variables are out to memory */
8438 }
8439
8440 static void controller_lockup_detected(struct ctlr_info *h)
8441 {
8442         unsigned long flags;
8443         u32 lockup_detected;
8444
8445         h->access.set_intr_mask(h, HPSA_INTR_OFF);
8446         spin_lock_irqsave(&h->lock, flags);
8447         lockup_detected = readl(h->vaddr + SA5_SCRATCHPAD_OFFSET);
8448         if (!lockup_detected) {
8449                 /* no heartbeat, but controller gave us a zero. */
8450                 dev_warn(&h->pdev->dev,
8451                         "lockup detected after %d but scratchpad register is zero\n",
8452                         h->heartbeat_sample_interval / HZ);
8453                 lockup_detected = 0xffffffff;
8454         }
8455         set_lockup_detected_for_all_cpus(h, lockup_detected);
8456         spin_unlock_irqrestore(&h->lock, flags);
8457         dev_warn(&h->pdev->dev, "Controller lockup detected: 0x%08x after %d\n",
8458                         lockup_detected, h->heartbeat_sample_interval / HZ);
8459         pci_disable_device(h->pdev);
8460         fail_all_outstanding_cmds(h);
8461 }
8462
8463 static int detect_controller_lockup(struct ctlr_info *h)
8464 {
8465         u64 now;
8466         u32 heartbeat;
8467         unsigned long flags;
8468
8469         now = get_jiffies_64();
8470         /* If we've received an interrupt recently, we're ok. */
8471         if (time_after64(h->last_intr_timestamp +
8472                                 (h->heartbeat_sample_interval), now))
8473                 return false;
8474
8475         /*
8476          * If we've already checked the heartbeat recently, we're ok.
8477          * This could happen if someone sends us a signal. We
8478          * otherwise don't care about signals in this thread.
8479          */
8480         if (time_after64(h->last_heartbeat_timestamp +
8481                                 (h->heartbeat_sample_interval), now))
8482                 return false;
8483
8484         /* If heartbeat has not changed since we last looked, we're not ok. */
8485         spin_lock_irqsave(&h->lock, flags);
8486         heartbeat = readl(&h->cfgtable->HeartBeat);
8487         spin_unlock_irqrestore(&h->lock, flags);
8488         if (h->last_heartbeat == heartbeat) {
8489                 controller_lockup_detected(h);
8490                 return true;
8491         }
8492
8493         /* We're ok. */
8494         h->last_heartbeat = heartbeat;
8495         h->last_heartbeat_timestamp = now;
8496         return false;
8497 }
8498
8499 static void hpsa_ack_ctlr_events(struct ctlr_info *h)
8500 {
8501         int i;
8502         char *event_type;
8503
8504         if (!(h->fw_support & MISC_FW_EVENT_NOTIFY))
8505                 return;
8506
8507         /* Ask the controller to clear the events we're handling. */
8508         if ((h->transMethod & (CFGTBL_Trans_io_accel1
8509                         | CFGTBL_Trans_io_accel2)) &&
8510                 (h->events & HPSA_EVENT_NOTIFY_ACCEL_IO_PATH_STATE_CHANGE ||
8511                  h->events & HPSA_EVENT_NOTIFY_ACCEL_IO_PATH_CONFIG_CHANGE)) {
8512
8513                 if (h->events & HPSA_EVENT_NOTIFY_ACCEL_IO_PATH_STATE_CHANGE)
8514                         event_type = "state change";
8515                 if (h->events & HPSA_EVENT_NOTIFY_ACCEL_IO_PATH_CONFIG_CHANGE)
8516                         event_type = "configuration change";
8517                 /* Stop sending new RAID offload reqs via the IO accelerator */
8518                 scsi_block_requests(h->scsi_host);
8519                 for (i = 0; i < h->ndevices; i++) {
8520                         h->dev[i]->offload_enabled = 0;
8521                         h->dev[i]->offload_to_be_enabled = 0;
8522                 }
8523                 hpsa_drain_accel_commands(h);
8524                 /* Set 'accelerator path config change' bit */
8525                 dev_warn(&h->pdev->dev,
8526                         "Acknowledging event: 0x%08x (HP SSD Smart Path %s)\n",
8527                         h->events, event_type);
8528                 writel(h->events, &(h->cfgtable->clear_event_notify));
8529                 /* Set the "clear event notify field update" bit 6 */
8530                 writel(DOORBELL_CLEAR_EVENTS, h->vaddr + SA5_DOORBELL);
8531                 /* Wait until ctlr clears 'clear event notify field', bit 6 */
8532                 hpsa_wait_for_clear_event_notify_ack(h);
8533                 scsi_unblock_requests(h->scsi_host);
8534         } else {
8535                 /* Acknowledge controller notification events. */
8536                 writel(h->events, &(h->cfgtable->clear_event_notify));
8537                 writel(DOORBELL_CLEAR_EVENTS, h->vaddr + SA5_DOORBELL);
8538                 hpsa_wait_for_clear_event_notify_ack(h);
8539 #if 0
8540                 writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL);
8541                 hpsa_wait_for_mode_change_ack(h);
8542 #endif
8543         }
8544         return;
8545 }
8546
8547 /* Check a register on the controller to see if there are configuration
8548  * changes (added/changed/removed logical drives, etc.) which mean that
8549  * we should rescan the controller for devices.
8550  * Also check flag for driver-initiated rescan.
8551  */
8552 static int hpsa_ctlr_needs_rescan(struct ctlr_info *h)
8553 {
8554         if (h->drv_req_rescan) {
8555                 h->drv_req_rescan = 0;
8556                 return 1;
8557         }
8558
8559         if (!(h->fw_support & MISC_FW_EVENT_NOTIFY))
8560                 return 0;
8561
8562         h->events = readl(&(h->cfgtable->event_notify));
8563         return h->events & RESCAN_REQUIRED_EVENT_BITS;
8564 }
8565
8566 /*
8567  * Check if any of the offline devices have become ready
8568  */
8569 static int hpsa_offline_devices_ready(struct ctlr_info *h)
8570 {
8571         unsigned long flags;
8572         struct offline_device_entry *d;
8573         struct list_head *this, *tmp;
8574
8575         spin_lock_irqsave(&h->offline_device_lock, flags);
8576         list_for_each_safe(this, tmp, &h->offline_device_list) {
8577                 d = list_entry(this, struct offline_device_entry,
8578                                 offline_list);
8579                 spin_unlock_irqrestore(&h->offline_device_lock, flags);
8580                 if (!hpsa_volume_offline(h, d->scsi3addr)) {
8581                         spin_lock_irqsave(&h->offline_device_lock, flags);
8582                         list_del(&d->offline_list);
8583                         spin_unlock_irqrestore(&h->offline_device_lock, flags);
8584                         return 1;
8585                 }
8586                 spin_lock_irqsave(&h->offline_device_lock, flags);
8587         }
8588         spin_unlock_irqrestore(&h->offline_device_lock, flags);
8589         return 0;
8590 }
8591
8592 static int hpsa_luns_changed(struct ctlr_info *h)
8593 {
8594         int rc = 1; /* assume there are changes */
8595         struct ReportLUNdata *logdev = NULL;
8596
8597         /* if we can't find out if lun data has changed,
8598          * assume that it has.
8599          */
8600
8601         if (!h->lastlogicals)
8602                 goto out;
8603
8604         logdev = kzalloc(sizeof(*logdev), GFP_KERNEL);
8605         if (!logdev) {
8606                 dev_warn(&h->pdev->dev,
8607                         "Out of memory, can't track lun changes.\n");
8608                 goto out;
8609         }
8610         if (hpsa_scsi_do_report_luns(h, 1, logdev, sizeof(*logdev), 0)) {
8611                 dev_warn(&h->pdev->dev,
8612                         "report luns failed, can't track lun changes.\n");
8613                 goto out;
8614         }
8615         if (memcmp(logdev, h->lastlogicals, sizeof(*logdev))) {
8616                 dev_info(&h->pdev->dev,
8617                         "Lun changes detected.\n");
8618                 memcpy(h->lastlogicals, logdev, sizeof(*logdev));
8619                 goto out;
8620         } else
8621                 rc = 0; /* no changes detected. */
8622 out:
8623         kfree(logdev);
8624         return rc;
8625 }
8626
8627 static void hpsa_rescan_ctlr_worker(struct work_struct *work)
8628 {
8629         unsigned long flags;
8630         struct ctlr_info *h = container_of(to_delayed_work(work),
8631                                         struct ctlr_info, rescan_ctlr_work);
8632
8633
8634         if (h->remove_in_progress)
8635                 return;
8636
8637         if (hpsa_ctlr_needs_rescan(h) || hpsa_offline_devices_ready(h)) {
8638                 scsi_host_get(h->scsi_host);
8639                 hpsa_ack_ctlr_events(h);
8640                 hpsa_scan_start(h->scsi_host);
8641                 scsi_host_put(h->scsi_host);
8642         } else if (h->discovery_polling) {
8643                 hpsa_disable_rld_caching(h);
8644                 if (hpsa_luns_changed(h)) {
8645                         struct Scsi_Host *sh = NULL;
8646
8647                         dev_info(&h->pdev->dev,
8648                                 "driver discovery polling rescan.\n");
8649                         sh = scsi_host_get(h->scsi_host);
8650                         if (sh != NULL) {
8651                                 hpsa_scan_start(sh);
8652                                 scsi_host_put(sh);
8653                         }
8654                 }
8655         }
8656         spin_lock_irqsave(&h->lock, flags);
8657         if (!h->remove_in_progress)
8658                 queue_delayed_work(h->rescan_ctlr_wq, &h->rescan_ctlr_work,
8659                                 h->heartbeat_sample_interval);
8660         spin_unlock_irqrestore(&h->lock, flags);
8661 }
8662
8663 static void hpsa_monitor_ctlr_worker(struct work_struct *work)
8664 {
8665         unsigned long flags;
8666         struct ctlr_info *h = container_of(to_delayed_work(work),
8667                                         struct ctlr_info, monitor_ctlr_work);
8668
8669         detect_controller_lockup(h);
8670         if (lockup_detected(h))
8671                 return;
8672
8673         spin_lock_irqsave(&h->lock, flags);
8674         if (!h->remove_in_progress)
8675                 schedule_delayed_work(&h->monitor_ctlr_work,
8676                                 h->heartbeat_sample_interval);
8677         spin_unlock_irqrestore(&h->lock, flags);
8678 }
8679
8680 static struct workqueue_struct *hpsa_create_controller_wq(struct ctlr_info *h,
8681                                                 char *name)
8682 {
8683         struct workqueue_struct *wq = NULL;
8684
8685         wq = alloc_ordered_workqueue("%s_%d_hpsa", 0, name, h->ctlr);
8686         if (!wq)
8687                 dev_err(&h->pdev->dev, "failed to create %s workqueue\n", name);
8688
8689         return wq;
8690 }
8691
8692 static int hpsa_init_one(struct pci_dev *pdev, const struct pci_device_id *ent)
8693 {
8694         int dac, rc;
8695         struct ctlr_info *h;
8696         int try_soft_reset = 0;
8697         unsigned long flags;
8698         u32 board_id;
8699
8700         if (number_of_controllers == 0)
8701                 printk(KERN_INFO DRIVER_NAME "\n");
8702
8703         rc = hpsa_lookup_board_id(pdev, &board_id);
8704         if (rc < 0) {
8705                 dev_warn(&pdev->dev, "Board ID not found\n");
8706                 return rc;
8707         }
8708
8709         rc = hpsa_init_reset_devices(pdev, board_id);
8710         if (rc) {
8711                 if (rc != -ENOTSUPP)
8712                         return rc;
8713                 /* If the reset fails in a particular way (it has no way to do
8714                  * a proper hard reset, so returns -ENOTSUPP) we can try to do
8715                  * a soft reset once we get the controller configured up to the
8716                  * point that it can accept a command.
8717                  */
8718                 try_soft_reset = 1;
8719                 rc = 0;
8720         }
8721
8722 reinit_after_soft_reset:
8723
8724         /* Command structures must be aligned on a 32-byte boundary because
8725          * the 5 lower bits of the address are used by the hardware. and by
8726          * the driver.  See comments in hpsa.h for more info.
8727          */
8728         BUILD_BUG_ON(sizeof(struct CommandList) % COMMANDLIST_ALIGNMENT);
8729         h = kzalloc(sizeof(*h), GFP_KERNEL);
8730         if (!h) {
8731                 dev_err(&pdev->dev, "Failed to allocate controller head\n");
8732                 return -ENOMEM;
8733         }
8734
8735         h->pdev = pdev;
8736
8737         h->intr_mode = hpsa_simple_mode ? SIMPLE_MODE_INT : PERF_MODE_INT;
8738         INIT_LIST_HEAD(&h->offline_device_list);
8739         spin_lock_init(&h->lock);
8740         spin_lock_init(&h->offline_device_lock);
8741         spin_lock_init(&h->scan_lock);
8742         atomic_set(&h->passthru_cmds_avail, HPSA_MAX_CONCURRENT_PASSTHRUS);
8743         atomic_set(&h->abort_cmds_available, HPSA_CMDS_RESERVED_FOR_ABORTS);
8744
8745         /* Allocate and clear per-cpu variable lockup_detected */
8746         h->lockup_detected = alloc_percpu(u32);
8747         if (!h->lockup_detected) {
8748                 dev_err(&h->pdev->dev, "Failed to allocate lockup detector\n");
8749                 rc = -ENOMEM;
8750                 goto clean1;    /* aer/h */
8751         }
8752         set_lockup_detected_for_all_cpus(h, 0);
8753
8754         rc = hpsa_pci_init(h);
8755         if (rc)
8756                 goto clean2;    /* lu, aer/h */
8757
8758         /* relies on h-> settings made by hpsa_pci_init, including
8759          * interrupt_mode h->intr */
8760         rc = hpsa_scsi_host_alloc(h);
8761         if (rc)
8762                 goto clean2_5;  /* pci, lu, aer/h */
8763
8764         sprintf(h->devname, HPSA "%d", h->scsi_host->host_no);
8765         h->ctlr = number_of_controllers;
8766         number_of_controllers++;
8767
8768         /* configure PCI DMA stuff */
8769         rc = pci_set_dma_mask(pdev, DMA_BIT_MASK(64));
8770         if (rc == 0) {
8771                 dac = 1;
8772         } else {
8773                 rc = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
8774                 if (rc == 0) {
8775                         dac = 0;
8776                 } else {
8777                         dev_err(&pdev->dev, "no suitable DMA available\n");
8778                         goto clean3;    /* shost, pci, lu, aer/h */
8779                 }
8780         }
8781
8782         /* make sure the board interrupts are off */
8783         h->access.set_intr_mask(h, HPSA_INTR_OFF);
8784
8785         rc = hpsa_request_irqs(h, do_hpsa_intr_msi, do_hpsa_intr_intx);
8786         if (rc)
8787                 goto clean3;    /* shost, pci, lu, aer/h */
8788         rc = hpsa_alloc_cmd_pool(h);
8789         if (rc)
8790                 goto clean4;    /* irq, shost, pci, lu, aer/h */
8791         rc = hpsa_alloc_sg_chain_blocks(h);
8792         if (rc)
8793                 goto clean5;    /* cmd, irq, shost, pci, lu, aer/h */
8794         init_waitqueue_head(&h->scan_wait_queue);
8795         init_waitqueue_head(&h->abort_cmd_wait_queue);
8796         init_waitqueue_head(&h->event_sync_wait_queue);
8797         mutex_init(&h->reset_mutex);
8798         h->scan_finished = 1; /* no scan currently in progress */
8799
8800         pci_set_drvdata(pdev, h);
8801         h->ndevices = 0;
8802
8803         spin_lock_init(&h->devlock);
8804         rc = hpsa_put_ctlr_into_performant_mode(h);
8805         if (rc)
8806                 goto clean6; /* sg, cmd, irq, shost, pci, lu, aer/h */
8807
8808         /* create the resubmit workqueue */
8809         h->rescan_ctlr_wq = hpsa_create_controller_wq(h, "rescan");
8810         if (!h->rescan_ctlr_wq) {
8811                 rc = -ENOMEM;
8812                 goto clean7;
8813         }
8814
8815         h->resubmit_wq = hpsa_create_controller_wq(h, "resubmit");
8816         if (!h->resubmit_wq) {
8817                 rc = -ENOMEM;
8818                 goto clean7;    /* aer/h */
8819         }
8820
8821         /*
8822          * At this point, the controller is ready to take commands.
8823          * Now, if reset_devices and the hard reset didn't work, try
8824          * the soft reset and see if that works.
8825          */
8826         if (try_soft_reset) {
8827
8828                 /* This is kind of gross.  We may or may not get a completion
8829                  * from the soft reset command, and if we do, then the value
8830                  * from the fifo may or may not be valid.  So, we wait 10 secs
8831                  * after the reset throwing away any completions we get during
8832                  * that time.  Unregister the interrupt handler and register
8833                  * fake ones to scoop up any residual completions.
8834                  */
8835                 spin_lock_irqsave(&h->lock, flags);
8836                 h->access.set_intr_mask(h, HPSA_INTR_OFF);
8837                 spin_unlock_irqrestore(&h->lock, flags);
8838                 hpsa_free_irqs(h);
8839                 rc = hpsa_request_irqs(h, hpsa_msix_discard_completions,
8840                                         hpsa_intx_discard_completions);
8841                 if (rc) {
8842                         dev_warn(&h->pdev->dev,
8843                                 "Failed to request_irq after soft reset.\n");
8844                         /*
8845                          * cannot goto clean7 or free_irqs will be called
8846                          * again. Instead, do its work
8847                          */
8848                         hpsa_free_performant_mode(h);   /* clean7 */
8849                         hpsa_free_sg_chain_blocks(h);   /* clean6 */
8850                         hpsa_free_cmd_pool(h);          /* clean5 */
8851                         /*
8852                          * skip hpsa_free_irqs(h) clean4 since that
8853                          * was just called before request_irqs failed
8854                          */
8855                         goto clean3;
8856                 }
8857
8858                 rc = hpsa_kdump_soft_reset(h);
8859                 if (rc)
8860                         /* Neither hard nor soft reset worked, we're hosed. */
8861                         goto clean7;
8862
8863                 dev_info(&h->pdev->dev, "Board READY.\n");
8864                 dev_info(&h->pdev->dev,
8865                         "Waiting for stale completions to drain.\n");
8866                 h->access.set_intr_mask(h, HPSA_INTR_ON);
8867                 msleep(10000);
8868                 h->access.set_intr_mask(h, HPSA_INTR_OFF);
8869
8870                 rc = controller_reset_failed(h->cfgtable);
8871                 if (rc)
8872                         dev_info(&h->pdev->dev,
8873                                 "Soft reset appears to have failed.\n");
8874
8875                 /* since the controller's reset, we have to go back and re-init
8876                  * everything.  Easiest to just forget what we've done and do it
8877                  * all over again.
8878                  */
8879                 hpsa_undo_allocations_after_kdump_soft_reset(h);
8880                 try_soft_reset = 0;
8881                 if (rc)
8882                         /* don't goto clean, we already unallocated */
8883                         return -ENODEV;
8884
8885                 goto reinit_after_soft_reset;
8886         }
8887
8888         /* Enable Accelerated IO path at driver layer */
8889         h->acciopath_status = 1;
8890         /* Disable discovery polling.*/
8891         h->discovery_polling = 0;
8892
8893
8894         /* Turn the interrupts on so we can service requests */
8895         h->access.set_intr_mask(h, HPSA_INTR_ON);
8896
8897         hpsa_hba_inquiry(h);
8898
8899         h->lastlogicals = kzalloc(sizeof(*(h->lastlogicals)), GFP_KERNEL);
8900         if (!h->lastlogicals)
8901                 dev_info(&h->pdev->dev,
8902                         "Can't track change to report lun data\n");
8903
8904         /* hook into SCSI subsystem */
8905         rc = hpsa_scsi_add_host(h);
8906         if (rc)
8907                 goto clean7; /* perf, sg, cmd, irq, shost, pci, lu, aer/h */
8908
8909         /* Monitor the controller for firmware lockups */
8910         h->heartbeat_sample_interval = HEARTBEAT_SAMPLE_INTERVAL;
8911         INIT_DELAYED_WORK(&h->monitor_ctlr_work, hpsa_monitor_ctlr_worker);
8912         schedule_delayed_work(&h->monitor_ctlr_work,
8913                                 h->heartbeat_sample_interval);
8914         INIT_DELAYED_WORK(&h->rescan_ctlr_work, hpsa_rescan_ctlr_worker);
8915         queue_delayed_work(h->rescan_ctlr_wq, &h->rescan_ctlr_work,
8916                                 h->heartbeat_sample_interval);
8917         return 0;
8918
8919 clean7: /* perf, sg, cmd, irq, shost, pci, lu, aer/h */
8920         hpsa_free_performant_mode(h);
8921         h->access.set_intr_mask(h, HPSA_INTR_OFF);
8922 clean6: /* sg, cmd, irq, pci, lockup, wq/aer/h */
8923         hpsa_free_sg_chain_blocks(h);
8924 clean5: /* cmd, irq, shost, pci, lu, aer/h */
8925         hpsa_free_cmd_pool(h);
8926 clean4: /* irq, shost, pci, lu, aer/h */
8927         hpsa_free_irqs(h);
8928 clean3: /* shost, pci, lu, aer/h */
8929         scsi_host_put(h->scsi_host);
8930         h->scsi_host = NULL;
8931 clean2_5: /* pci, lu, aer/h */
8932         hpsa_free_pci_init(h);
8933 clean2: /* lu, aer/h */
8934         if (h->lockup_detected) {
8935                 free_percpu(h->lockup_detected);
8936                 h->lockup_detected = NULL;
8937         }
8938 clean1: /* wq/aer/h */
8939         if (h->resubmit_wq) {
8940                 destroy_workqueue(h->resubmit_wq);
8941                 h->resubmit_wq = NULL;
8942         }
8943         if (h->rescan_ctlr_wq) {
8944                 destroy_workqueue(h->rescan_ctlr_wq);
8945                 h->rescan_ctlr_wq = NULL;
8946         }
8947         kfree(h);
8948         return rc;
8949 }
8950
8951 static void hpsa_flush_cache(struct ctlr_info *h)
8952 {
8953         char *flush_buf;
8954         struct CommandList *c;
8955         int rc;
8956
8957         if (unlikely(lockup_detected(h)))
8958                 return;
8959         flush_buf = kzalloc(4, GFP_KERNEL);
8960         if (!flush_buf)
8961                 return;
8962
8963         c = cmd_alloc(h);
8964
8965         if (fill_cmd(c, HPSA_CACHE_FLUSH, h, flush_buf, 4, 0,
8966                 RAID_CTLR_LUNID, TYPE_CMD)) {
8967                 goto out;
8968         }
8969         rc = hpsa_scsi_do_simple_cmd_with_retry(h, c,
8970                                         PCI_DMA_TODEVICE, DEFAULT_TIMEOUT);
8971         if (rc)
8972                 goto out;
8973         if (c->err_info->CommandStatus != 0)
8974 out:
8975                 dev_warn(&h->pdev->dev,
8976                         "error flushing cache on controller\n");
8977         cmd_free(h, c);
8978         kfree(flush_buf);
8979 }
8980
8981 /* Make controller gather fresh report lun data each time we
8982  * send down a report luns request
8983  */
8984 static void hpsa_disable_rld_caching(struct ctlr_info *h)
8985 {
8986         u32 *options;
8987         struct CommandList *c;
8988         int rc;
8989
8990         /* Don't bother trying to set diag options if locked up */
8991         if (unlikely(h->lockup_detected))
8992                 return;
8993
8994         options = kzalloc(sizeof(*options), GFP_KERNEL);
8995         if (!options) {
8996                 dev_err(&h->pdev->dev,
8997                         "Error: failed to disable rld caching, during alloc.\n");
8998                 return;
8999         }
9000
9001         c = cmd_alloc(h);
9002
9003         /* first, get the current diag options settings */
9004         if (fill_cmd(c, BMIC_SENSE_DIAG_OPTIONS, h, options, 4, 0,
9005                 RAID_CTLR_LUNID, TYPE_CMD))
9006                 goto errout;
9007
9008         rc = hpsa_scsi_do_simple_cmd_with_retry(h, c,
9009                 PCI_DMA_FROMDEVICE, DEFAULT_TIMEOUT);
9010         if ((rc != 0) || (c->err_info->CommandStatus != 0))
9011                 goto errout;
9012
9013         /* Now, set the bit for disabling the RLD caching */
9014         *options |= HPSA_DIAG_OPTS_DISABLE_RLD_CACHING;
9015
9016         if (fill_cmd(c, BMIC_SET_DIAG_OPTIONS, h, options, 4, 0,
9017                 RAID_CTLR_LUNID, TYPE_CMD))
9018                 goto errout;
9019
9020         rc = hpsa_scsi_do_simple_cmd_with_retry(h, c,
9021                 PCI_DMA_TODEVICE, DEFAULT_TIMEOUT);
9022         if ((rc != 0)  || (c->err_info->CommandStatus != 0))
9023                 goto errout;
9024
9025         /* Now verify that it got set: */
9026         if (fill_cmd(c, BMIC_SENSE_DIAG_OPTIONS, h, options, 4, 0,
9027                 RAID_CTLR_LUNID, TYPE_CMD))
9028                 goto errout;
9029
9030         rc = hpsa_scsi_do_simple_cmd_with_retry(h, c,
9031                 PCI_DMA_FROMDEVICE, DEFAULT_TIMEOUT);
9032         if ((rc != 0)  || (c->err_info->CommandStatus != 0))
9033                 goto errout;
9034
9035         if (*options & HPSA_DIAG_OPTS_DISABLE_RLD_CACHING)
9036                 goto out;
9037
9038 errout:
9039         dev_err(&h->pdev->dev,
9040                         "Error: failed to disable report lun data caching.\n");
9041 out:
9042         cmd_free(h, c);
9043         kfree(options);
9044 }
9045
9046 static void hpsa_shutdown(struct pci_dev *pdev)
9047 {
9048         struct ctlr_info *h;
9049
9050         h = pci_get_drvdata(pdev);
9051         /* Turn board interrupts off  and send the flush cache command
9052          * sendcmd will turn off interrupt, and send the flush...
9053          * To write all data in the battery backed cache to disks
9054          */
9055         hpsa_flush_cache(h);
9056         h->access.set_intr_mask(h, HPSA_INTR_OFF);
9057         hpsa_free_irqs(h);                      /* init_one 4 */
9058         hpsa_disable_interrupt_mode(h);         /* pci_init 2 */
9059 }
9060
9061 static void hpsa_free_device_info(struct ctlr_info *h)
9062 {
9063         int i;
9064
9065         for (i = 0; i < h->ndevices; i++) {
9066                 kfree(h->dev[i]);
9067                 h->dev[i] = NULL;
9068         }
9069 }
9070
9071 static void hpsa_remove_one(struct pci_dev *pdev)
9072 {
9073         struct ctlr_info *h;
9074         unsigned long flags;
9075
9076         if (pci_get_drvdata(pdev) == NULL) {
9077                 dev_err(&pdev->dev, "unable to remove device\n");
9078                 return;
9079         }
9080         h = pci_get_drvdata(pdev);
9081
9082         /* Get rid of any controller monitoring work items */
9083         spin_lock_irqsave(&h->lock, flags);
9084         h->remove_in_progress = 1;
9085         spin_unlock_irqrestore(&h->lock, flags);
9086         cancel_delayed_work_sync(&h->monitor_ctlr_work);
9087         cancel_delayed_work_sync(&h->rescan_ctlr_work);
9088         destroy_workqueue(h->rescan_ctlr_wq);
9089         destroy_workqueue(h->resubmit_wq);
9090
9091         /*
9092          * Call before disabling interrupts.
9093          * scsi_remove_host can trigger I/O operations especially
9094          * when multipath is enabled. There can be SYNCHRONIZE CACHE
9095          * operations which cannot complete and will hang the system.
9096          */
9097         if (h->scsi_host)
9098                 scsi_remove_host(h->scsi_host);         /* init_one 8 */
9099         /* includes hpsa_free_irqs - init_one 4 */
9100         /* includes hpsa_disable_interrupt_mode - pci_init 2 */
9101         hpsa_shutdown(pdev);
9102
9103         hpsa_free_device_info(h);               /* scan */
9104
9105         kfree(h->hba_inquiry_data);                     /* init_one 10 */
9106         h->hba_inquiry_data = NULL;                     /* init_one 10 */
9107         hpsa_free_ioaccel2_sg_chain_blocks(h);
9108         hpsa_free_performant_mode(h);                   /* init_one 7 */
9109         hpsa_free_sg_chain_blocks(h);                   /* init_one 6 */
9110         hpsa_free_cmd_pool(h);                          /* init_one 5 */
9111         kfree(h->lastlogicals);
9112
9113         /* hpsa_free_irqs already called via hpsa_shutdown init_one 4 */
9114
9115         scsi_host_put(h->scsi_host);                    /* init_one 3 */
9116         h->scsi_host = NULL;                            /* init_one 3 */
9117
9118         /* includes hpsa_disable_interrupt_mode - pci_init 2 */
9119         hpsa_free_pci_init(h);                          /* init_one 2.5 */
9120
9121         free_percpu(h->lockup_detected);                /* init_one 2 */
9122         h->lockup_detected = NULL;                      /* init_one 2 */
9123         /* (void) pci_disable_pcie_error_reporting(pdev); */    /* init_one 1 */
9124
9125         hpsa_delete_sas_host(h);
9126
9127         kfree(h);                                       /* init_one 1 */
9128 }
9129
9130 static int hpsa_suspend(__attribute__((unused)) struct pci_dev *pdev,
9131         __attribute__((unused)) pm_message_t state)
9132 {
9133         return -ENOSYS;
9134 }
9135
9136 static int hpsa_resume(__attribute__((unused)) struct pci_dev *pdev)
9137 {
9138         return -ENOSYS;
9139 }
9140
9141 static struct pci_driver hpsa_pci_driver = {
9142         .name = HPSA,
9143         .probe = hpsa_init_one,
9144         .remove = hpsa_remove_one,
9145         .id_table = hpsa_pci_device_id, /* id_table */
9146         .shutdown = hpsa_shutdown,
9147         .suspend = hpsa_suspend,
9148         .resume = hpsa_resume,
9149 };
9150
9151 /* Fill in bucket_map[], given nsgs (the max number of
9152  * scatter gather elements supported) and bucket[],
9153  * which is an array of 8 integers.  The bucket[] array
9154  * contains 8 different DMA transfer sizes (in 16
9155  * byte increments) which the controller uses to fetch
9156  * commands.  This function fills in bucket_map[], which
9157  * maps a given number of scatter gather elements to one of
9158  * the 8 DMA transfer sizes.  The point of it is to allow the
9159  * controller to only do as much DMA as needed to fetch the
9160  * command, with the DMA transfer size encoded in the lower
9161  * bits of the command address.
9162  */
9163 static void  calc_bucket_map(int bucket[], int num_buckets,
9164         int nsgs, int min_blocks, u32 *bucket_map)
9165 {
9166         int i, j, b, size;
9167
9168         /* Note, bucket_map must have nsgs+1 entries. */
9169         for (i = 0; i <= nsgs; i++) {
9170                 /* Compute size of a command with i SG entries */
9171                 size = i + min_blocks;
9172                 b = num_buckets; /* Assume the biggest bucket */
9173                 /* Find the bucket that is just big enough */
9174                 for (j = 0; j < num_buckets; j++) {
9175                         if (bucket[j] >= size) {
9176                                 b = j;
9177                                 break;
9178                         }
9179                 }
9180                 /* for a command with i SG entries, use bucket b. */
9181                 bucket_map[i] = b;
9182         }
9183 }
9184
9185 /*
9186  * return -ENODEV on err, 0 on success (or no action)
9187  * allocates numerous items that must be freed later
9188  */
9189 static int hpsa_enter_performant_mode(struct ctlr_info *h, u32 trans_support)
9190 {
9191         int i;
9192         unsigned long register_value;
9193         unsigned long transMethod = CFGTBL_Trans_Performant |
9194                         (trans_support & CFGTBL_Trans_use_short_tags) |
9195                                 CFGTBL_Trans_enable_directed_msix |
9196                         (trans_support & (CFGTBL_Trans_io_accel1 |
9197                                 CFGTBL_Trans_io_accel2));
9198         struct access_method access = SA5_performant_access;
9199
9200         /* This is a bit complicated.  There are 8 registers on
9201          * the controller which we write to to tell it 8 different
9202          * sizes of commands which there may be.  It's a way of
9203          * reducing the DMA done to fetch each command.  Encoded into
9204          * each command's tag are 3 bits which communicate to the controller
9205          * which of the eight sizes that command fits within.  The size of
9206          * each command depends on how many scatter gather entries there are.
9207          * Each SG entry requires 16 bytes.  The eight registers are programmed
9208          * with the number of 16-byte blocks a command of that size requires.
9209          * The smallest command possible requires 5 such 16 byte blocks.
9210          * the largest command possible requires SG_ENTRIES_IN_CMD + 4 16-byte
9211          * blocks.  Note, this only extends to the SG entries contained
9212          * within the command block, and does not extend to chained blocks
9213          * of SG elements.   bft[] contains the eight values we write to
9214          * the registers.  They are not evenly distributed, but have more
9215          * sizes for small commands, and fewer sizes for larger commands.
9216          */
9217         int bft[8] = {5, 6, 8, 10, 12, 20, 28, SG_ENTRIES_IN_CMD + 4};
9218 #define MIN_IOACCEL2_BFT_ENTRY 5
9219 #define HPSA_IOACCEL2_HEADER_SZ 4
9220         int bft2[16] = {MIN_IOACCEL2_BFT_ENTRY, 6, 7, 8, 9, 10, 11, 12,
9221                         13, 14, 15, 16, 17, 18, 19,
9222                         HPSA_IOACCEL2_HEADER_SZ + IOACCEL2_MAXSGENTRIES};
9223         BUILD_BUG_ON(ARRAY_SIZE(bft2) != 16);
9224         BUILD_BUG_ON(ARRAY_SIZE(bft) != 8);
9225         BUILD_BUG_ON(offsetof(struct io_accel2_cmd, sg) >
9226                                  16 * MIN_IOACCEL2_BFT_ENTRY);
9227         BUILD_BUG_ON(sizeof(struct ioaccel2_sg_element) != 16);
9228         BUILD_BUG_ON(28 > SG_ENTRIES_IN_CMD + 4);
9229         /*  5 = 1 s/g entry or 4k
9230          *  6 = 2 s/g entry or 8k
9231          *  8 = 4 s/g entry or 16k
9232          * 10 = 6 s/g entry or 24k
9233          */
9234
9235         /* If the controller supports either ioaccel method then
9236          * we can also use the RAID stack submit path that does not
9237          * perform the superfluous readl() after each command submission.
9238          */
9239         if (trans_support & (CFGTBL_Trans_io_accel1 | CFGTBL_Trans_io_accel2))
9240                 access = SA5_performant_access_no_read;
9241
9242         /* Controller spec: zero out this buffer. */
9243         for (i = 0; i < h->nreply_queues; i++)
9244                 memset(h->reply_queue[i].head, 0, h->reply_queue_size);
9245
9246         bft[7] = SG_ENTRIES_IN_CMD + 4;
9247         calc_bucket_map(bft, ARRAY_SIZE(bft),
9248                                 SG_ENTRIES_IN_CMD, 4, h->blockFetchTable);
9249         for (i = 0; i < 8; i++)
9250                 writel(bft[i], &h->transtable->BlockFetch[i]);
9251
9252         /* size of controller ring buffer */
9253         writel(h->max_commands, &h->transtable->RepQSize);
9254         writel(h->nreply_queues, &h->transtable->RepQCount);
9255         writel(0, &h->transtable->RepQCtrAddrLow32);
9256         writel(0, &h->transtable->RepQCtrAddrHigh32);
9257
9258         for (i = 0; i < h->nreply_queues; i++) {
9259                 writel(0, &h->transtable->RepQAddr[i].upper);
9260                 writel(h->reply_queue[i].busaddr,
9261                         &h->transtable->RepQAddr[i].lower);
9262         }
9263
9264         writel(0, &h->cfgtable->HostWrite.command_pool_addr_hi);
9265         writel(transMethod, &(h->cfgtable->HostWrite.TransportRequest));
9266         /*
9267          * enable outbound interrupt coalescing in accelerator mode;
9268          */
9269         if (trans_support & CFGTBL_Trans_io_accel1) {
9270                 access = SA5_ioaccel_mode1_access;
9271                 writel(10, &h->cfgtable->HostWrite.CoalIntDelay);
9272                 writel(4, &h->cfgtable->HostWrite.CoalIntCount);
9273         } else {
9274                 if (trans_support & CFGTBL_Trans_io_accel2) {
9275                         access = SA5_ioaccel_mode2_access;
9276                         writel(10, &h->cfgtable->HostWrite.CoalIntDelay);
9277                         writel(4, &h->cfgtable->HostWrite.CoalIntCount);
9278                 }
9279         }
9280         writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL);
9281         if (hpsa_wait_for_mode_change_ack(h)) {
9282                 dev_err(&h->pdev->dev,
9283                         "performant mode problem - doorbell timeout\n");
9284                 return -ENODEV;
9285         }
9286         register_value = readl(&(h->cfgtable->TransportActive));
9287         if (!(register_value & CFGTBL_Trans_Performant)) {
9288                 dev_err(&h->pdev->dev,
9289                         "performant mode problem - transport not active\n");
9290                 return -ENODEV;
9291         }
9292         /* Change the access methods to the performant access methods */
9293         h->access = access;
9294         h->transMethod = transMethod;
9295
9296         if (!((trans_support & CFGTBL_Trans_io_accel1) ||
9297                 (trans_support & CFGTBL_Trans_io_accel2)))
9298                 return 0;
9299
9300         if (trans_support & CFGTBL_Trans_io_accel1) {
9301                 /* Set up I/O accelerator mode */
9302                 for (i = 0; i < h->nreply_queues; i++) {
9303                         writel(i, h->vaddr + IOACCEL_MODE1_REPLY_QUEUE_INDEX);
9304                         h->reply_queue[i].current_entry =
9305                                 readl(h->vaddr + IOACCEL_MODE1_PRODUCER_INDEX);
9306                 }
9307                 bft[7] = h->ioaccel_maxsg + 8;
9308                 calc_bucket_map(bft, ARRAY_SIZE(bft), h->ioaccel_maxsg, 8,
9309                                 h->ioaccel1_blockFetchTable);
9310
9311                 /* initialize all reply queue entries to unused */
9312                 for (i = 0; i < h->nreply_queues; i++)
9313                         memset(h->reply_queue[i].head,
9314                                 (u8) IOACCEL_MODE1_REPLY_UNUSED,
9315                                 h->reply_queue_size);
9316
9317                 /* set all the constant fields in the accelerator command
9318                  * frames once at init time to save CPU cycles later.
9319                  */
9320                 for (i = 0; i < h->nr_cmds; i++) {
9321                         struct io_accel1_cmd *cp = &h->ioaccel_cmd_pool[i];
9322
9323                         cp->function = IOACCEL1_FUNCTION_SCSIIO;
9324                         cp->err_info = (u32) (h->errinfo_pool_dhandle +
9325                                         (i * sizeof(struct ErrorInfo)));
9326                         cp->err_info_len = sizeof(struct ErrorInfo);
9327                         cp->sgl_offset = IOACCEL1_SGLOFFSET;
9328                         cp->host_context_flags =
9329                                 cpu_to_le16(IOACCEL1_HCFLAGS_CISS_FORMAT);
9330                         cp->timeout_sec = 0;
9331                         cp->ReplyQueue = 0;
9332                         cp->tag =
9333                                 cpu_to_le64((i << DIRECT_LOOKUP_SHIFT));
9334                         cp->host_addr =
9335                                 cpu_to_le64(h->ioaccel_cmd_pool_dhandle +
9336                                         (i * sizeof(struct io_accel1_cmd)));
9337                 }
9338         } else if (trans_support & CFGTBL_Trans_io_accel2) {
9339                 u64 cfg_offset, cfg_base_addr_index;
9340                 u32 bft2_offset, cfg_base_addr;
9341                 int rc;
9342
9343                 rc = hpsa_find_cfg_addrs(h->pdev, h->vaddr, &cfg_base_addr,
9344                         &cfg_base_addr_index, &cfg_offset);
9345                 BUILD_BUG_ON(offsetof(struct io_accel2_cmd, sg) != 64);
9346                 bft2[15] = h->ioaccel_maxsg + HPSA_IOACCEL2_HEADER_SZ;
9347                 calc_bucket_map(bft2, ARRAY_SIZE(bft2), h->ioaccel_maxsg,
9348                                 4, h->ioaccel2_blockFetchTable);
9349                 bft2_offset = readl(&h->cfgtable->io_accel_request_size_offset);
9350                 BUILD_BUG_ON(offsetof(struct CfgTable,
9351                                 io_accel_request_size_offset) != 0xb8);
9352                 h->ioaccel2_bft2_regs =
9353                         remap_pci_mem(pci_resource_start(h->pdev,
9354                                         cfg_base_addr_index) +
9355                                         cfg_offset + bft2_offset,
9356                                         ARRAY_SIZE(bft2) *
9357                                         sizeof(*h->ioaccel2_bft2_regs));
9358                 for (i = 0; i < ARRAY_SIZE(bft2); i++)
9359                         writel(bft2[i], &h->ioaccel2_bft2_regs[i]);
9360         }
9361         writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL);
9362         if (hpsa_wait_for_mode_change_ack(h)) {
9363                 dev_err(&h->pdev->dev,
9364                         "performant mode problem - enabling ioaccel mode\n");
9365                 return -ENODEV;
9366         }
9367         return 0;
9368 }
9369
9370 /* Free ioaccel1 mode command blocks and block fetch table */
9371 static void hpsa_free_ioaccel1_cmd_and_bft(struct ctlr_info *h)
9372 {
9373         if (h->ioaccel_cmd_pool) {
9374                 pci_free_consistent(h->pdev,
9375                         h->nr_cmds * sizeof(*h->ioaccel_cmd_pool),
9376                         h->ioaccel_cmd_pool,
9377                         h->ioaccel_cmd_pool_dhandle);
9378                 h->ioaccel_cmd_pool = NULL;
9379                 h->ioaccel_cmd_pool_dhandle = 0;
9380         }
9381         kfree(h->ioaccel1_blockFetchTable);
9382         h->ioaccel1_blockFetchTable = NULL;
9383 }
9384
9385 /* Allocate ioaccel1 mode command blocks and block fetch table */
9386 static int hpsa_alloc_ioaccel1_cmd_and_bft(struct ctlr_info *h)
9387 {
9388         h->ioaccel_maxsg =
9389                 readl(&(h->cfgtable->io_accel_max_embedded_sg_count));
9390         if (h->ioaccel_maxsg > IOACCEL1_MAXSGENTRIES)
9391                 h->ioaccel_maxsg = IOACCEL1_MAXSGENTRIES;
9392
9393         /* Command structures must be aligned on a 128-byte boundary
9394          * because the 7 lower bits of the address are used by the
9395          * hardware.
9396          */
9397         BUILD_BUG_ON(sizeof(struct io_accel1_cmd) %
9398                         IOACCEL1_COMMANDLIST_ALIGNMENT);
9399         h->ioaccel_cmd_pool =
9400                 pci_alloc_consistent(h->pdev,
9401                         h->nr_cmds * sizeof(*h->ioaccel_cmd_pool),
9402                         &(h->ioaccel_cmd_pool_dhandle));
9403
9404         h->ioaccel1_blockFetchTable =
9405                 kmalloc(((h->ioaccel_maxsg + 1) *
9406                                 sizeof(u32)), GFP_KERNEL);
9407
9408         if ((h->ioaccel_cmd_pool == NULL) ||
9409                 (h->ioaccel1_blockFetchTable == NULL))
9410                 goto clean_up;
9411
9412         memset(h->ioaccel_cmd_pool, 0,
9413                 h->nr_cmds * sizeof(*h->ioaccel_cmd_pool));
9414         return 0;
9415
9416 clean_up:
9417         hpsa_free_ioaccel1_cmd_and_bft(h);
9418         return -ENOMEM;
9419 }
9420
9421 /* Free ioaccel2 mode command blocks and block fetch table */
9422 static void hpsa_free_ioaccel2_cmd_and_bft(struct ctlr_info *h)
9423 {
9424         hpsa_free_ioaccel2_sg_chain_blocks(h);
9425
9426         if (h->ioaccel2_cmd_pool) {
9427                 pci_free_consistent(h->pdev,
9428                         h->nr_cmds * sizeof(*h->ioaccel2_cmd_pool),
9429                         h->ioaccel2_cmd_pool,
9430                         h->ioaccel2_cmd_pool_dhandle);
9431                 h->ioaccel2_cmd_pool = NULL;
9432                 h->ioaccel2_cmd_pool_dhandle = 0;
9433         }
9434         kfree(h->ioaccel2_blockFetchTable);
9435         h->ioaccel2_blockFetchTable = NULL;
9436 }
9437
9438 /* Allocate ioaccel2 mode command blocks and block fetch table */
9439 static int hpsa_alloc_ioaccel2_cmd_and_bft(struct ctlr_info *h)
9440 {
9441         int rc;
9442
9443         /* Allocate ioaccel2 mode command blocks and block fetch table */
9444
9445         h->ioaccel_maxsg =
9446                 readl(&(h->cfgtable->io_accel_max_embedded_sg_count));
9447         if (h->ioaccel_maxsg > IOACCEL2_MAXSGENTRIES)
9448                 h->ioaccel_maxsg = IOACCEL2_MAXSGENTRIES;
9449
9450         BUILD_BUG_ON(sizeof(struct io_accel2_cmd) %
9451                         IOACCEL2_COMMANDLIST_ALIGNMENT);
9452         h->ioaccel2_cmd_pool =
9453                 pci_alloc_consistent(h->pdev,
9454                         h->nr_cmds * sizeof(*h->ioaccel2_cmd_pool),
9455                         &(h->ioaccel2_cmd_pool_dhandle));
9456
9457         h->ioaccel2_blockFetchTable =
9458                 kmalloc(((h->ioaccel_maxsg + 1) *
9459                                 sizeof(u32)), GFP_KERNEL);
9460
9461         if ((h->ioaccel2_cmd_pool == NULL) ||
9462                 (h->ioaccel2_blockFetchTable == NULL)) {
9463                 rc = -ENOMEM;
9464                 goto clean_up;
9465         }
9466
9467         rc = hpsa_allocate_ioaccel2_sg_chain_blocks(h);
9468         if (rc)
9469                 goto clean_up;
9470
9471         memset(h->ioaccel2_cmd_pool, 0,
9472                 h->nr_cmds * sizeof(*h->ioaccel2_cmd_pool));
9473         return 0;
9474
9475 clean_up:
9476         hpsa_free_ioaccel2_cmd_and_bft(h);
9477         return rc;
9478 }
9479
9480 /* Free items allocated by hpsa_put_ctlr_into_performant_mode */
9481 static void hpsa_free_performant_mode(struct ctlr_info *h)
9482 {
9483         kfree(h->blockFetchTable);
9484         h->blockFetchTable = NULL;
9485         hpsa_free_reply_queues(h);
9486         hpsa_free_ioaccel1_cmd_and_bft(h);
9487         hpsa_free_ioaccel2_cmd_and_bft(h);
9488 }
9489
9490 /* return -ENODEV on error, 0 on success (or no action)
9491  * allocates numerous items that must be freed later
9492  */
9493 static int hpsa_put_ctlr_into_performant_mode(struct ctlr_info *h)
9494 {
9495         u32 trans_support;
9496         unsigned long transMethod = CFGTBL_Trans_Performant |
9497                                         CFGTBL_Trans_use_short_tags;
9498         int i, rc;
9499
9500         if (hpsa_simple_mode)
9501                 return 0;
9502
9503         trans_support = readl(&(h->cfgtable->TransportSupport));
9504         if (!(trans_support & PERFORMANT_MODE))
9505                 return 0;
9506
9507         /* Check for I/O accelerator mode support */
9508         if (trans_support & CFGTBL_Trans_io_accel1) {
9509                 transMethod |= CFGTBL_Trans_io_accel1 |
9510                                 CFGTBL_Trans_enable_directed_msix;
9511                 rc = hpsa_alloc_ioaccel1_cmd_and_bft(h);
9512                 if (rc)
9513                         return rc;
9514         } else if (trans_support & CFGTBL_Trans_io_accel2) {
9515                 transMethod |= CFGTBL_Trans_io_accel2 |
9516                                 CFGTBL_Trans_enable_directed_msix;
9517                 rc = hpsa_alloc_ioaccel2_cmd_and_bft(h);
9518                 if (rc)
9519                         return rc;
9520         }
9521
9522         h->nreply_queues = h->msix_vector > 0 ? h->msix_vector : 1;
9523         hpsa_get_max_perf_mode_cmds(h);
9524         /* Performant mode ring buffer and supporting data structures */
9525         h->reply_queue_size = h->max_commands * sizeof(u64);
9526
9527         for (i = 0; i < h->nreply_queues; i++) {
9528                 h->reply_queue[i].head = pci_alloc_consistent(h->pdev,
9529                                                 h->reply_queue_size,
9530                                                 &(h->reply_queue[i].busaddr));
9531                 if (!h->reply_queue[i].head) {
9532                         rc = -ENOMEM;
9533                         goto clean1;    /* rq, ioaccel */
9534                 }
9535                 h->reply_queue[i].size = h->max_commands;
9536                 h->reply_queue[i].wraparound = 1;  /* spec: init to 1 */
9537                 h->reply_queue[i].current_entry = 0;
9538         }
9539
9540         /* Need a block fetch table for performant mode */
9541         h->blockFetchTable = kmalloc(((SG_ENTRIES_IN_CMD + 1) *
9542                                 sizeof(u32)), GFP_KERNEL);
9543         if (!h->blockFetchTable) {
9544                 rc = -ENOMEM;
9545                 goto clean1;    /* rq, ioaccel */
9546         }
9547
9548         rc = hpsa_enter_performant_mode(h, trans_support);
9549         if (rc)
9550                 goto clean2;    /* bft, rq, ioaccel */
9551         return 0;
9552
9553 clean2: /* bft, rq, ioaccel */
9554         kfree(h->blockFetchTable);
9555         h->blockFetchTable = NULL;
9556 clean1: /* rq, ioaccel */
9557         hpsa_free_reply_queues(h);
9558         hpsa_free_ioaccel1_cmd_and_bft(h);
9559         hpsa_free_ioaccel2_cmd_and_bft(h);
9560         return rc;
9561 }
9562
9563 static int is_accelerated_cmd(struct CommandList *c)
9564 {
9565         return c->cmd_type == CMD_IOACCEL1 || c->cmd_type == CMD_IOACCEL2;
9566 }
9567
9568 static void hpsa_drain_accel_commands(struct ctlr_info *h)
9569 {
9570         struct CommandList *c = NULL;
9571         int i, accel_cmds_out;
9572         int refcount;
9573
9574         do { /* wait for all outstanding ioaccel commands to drain out */
9575                 accel_cmds_out = 0;
9576                 for (i = 0; i < h->nr_cmds; i++) {
9577                         c = h->cmd_pool + i;
9578                         refcount = atomic_inc_return(&c->refcount);
9579                         if (refcount > 1) /* Command is allocated */
9580                                 accel_cmds_out += is_accelerated_cmd(c);
9581                         cmd_free(h, c);
9582                 }
9583                 if (accel_cmds_out <= 0)
9584                         break;
9585                 msleep(100);
9586         } while (1);
9587 }
9588
9589 static struct hpsa_sas_phy *hpsa_alloc_sas_phy(
9590                                 struct hpsa_sas_port *hpsa_sas_port)
9591 {
9592         struct hpsa_sas_phy *hpsa_sas_phy;
9593         struct sas_phy *phy;
9594
9595         hpsa_sas_phy = kzalloc(sizeof(*hpsa_sas_phy), GFP_KERNEL);
9596         if (!hpsa_sas_phy)
9597                 return NULL;
9598
9599         phy = sas_phy_alloc(hpsa_sas_port->parent_node->parent_dev,
9600                 hpsa_sas_port->next_phy_index);
9601         if (!phy) {
9602                 kfree(hpsa_sas_phy);
9603                 return NULL;
9604         }
9605
9606         hpsa_sas_port->next_phy_index++;
9607         hpsa_sas_phy->phy = phy;
9608         hpsa_sas_phy->parent_port = hpsa_sas_port;
9609
9610         return hpsa_sas_phy;
9611 }
9612
9613 static void hpsa_free_sas_phy(struct hpsa_sas_phy *hpsa_sas_phy)
9614 {
9615         struct sas_phy *phy = hpsa_sas_phy->phy;
9616
9617         sas_port_delete_phy(hpsa_sas_phy->parent_port->port, phy);
9618         sas_phy_free(phy);
9619         if (hpsa_sas_phy->added_to_port)
9620                 list_del(&hpsa_sas_phy->phy_list_entry);
9621         kfree(hpsa_sas_phy);
9622 }
9623
9624 static int hpsa_sas_port_add_phy(struct hpsa_sas_phy *hpsa_sas_phy)
9625 {
9626         int rc;
9627         struct hpsa_sas_port *hpsa_sas_port;
9628         struct sas_phy *phy;
9629         struct sas_identify *identify;
9630
9631         hpsa_sas_port = hpsa_sas_phy->parent_port;
9632         phy = hpsa_sas_phy->phy;
9633
9634         identify = &phy->identify;
9635         memset(identify, 0, sizeof(*identify));
9636         identify->sas_address = hpsa_sas_port->sas_address;
9637         identify->device_type = SAS_END_DEVICE;
9638         identify->initiator_port_protocols = SAS_PROTOCOL_STP;
9639         identify->target_port_protocols = SAS_PROTOCOL_STP;
9640         phy->minimum_linkrate_hw = SAS_LINK_RATE_UNKNOWN;
9641         phy->maximum_linkrate_hw = SAS_LINK_RATE_UNKNOWN;
9642         phy->minimum_linkrate = SAS_LINK_RATE_UNKNOWN;
9643         phy->maximum_linkrate = SAS_LINK_RATE_UNKNOWN;
9644         phy->negotiated_linkrate = SAS_LINK_RATE_UNKNOWN;
9645
9646         rc = sas_phy_add(hpsa_sas_phy->phy);
9647         if (rc)
9648                 return rc;
9649
9650         sas_port_add_phy(hpsa_sas_port->port, hpsa_sas_phy->phy);
9651         list_add_tail(&hpsa_sas_phy->phy_list_entry,
9652                         &hpsa_sas_port->phy_list_head);
9653         hpsa_sas_phy->added_to_port = true;
9654
9655         return 0;
9656 }
9657
9658 static int
9659         hpsa_sas_port_add_rphy(struct hpsa_sas_port *hpsa_sas_port,
9660                                 struct sas_rphy *rphy)
9661 {
9662         struct sas_identify *identify;
9663
9664         identify = &rphy->identify;
9665         identify->sas_address = hpsa_sas_port->sas_address;
9666         identify->initiator_port_protocols = SAS_PROTOCOL_STP;
9667         identify->target_port_protocols = SAS_PROTOCOL_STP;
9668
9669         return sas_rphy_add(rphy);
9670 }
9671
9672 static struct hpsa_sas_port
9673         *hpsa_alloc_sas_port(struct hpsa_sas_node *hpsa_sas_node,
9674                                 u64 sas_address)
9675 {
9676         int rc;
9677         struct hpsa_sas_port *hpsa_sas_port;
9678         struct sas_port *port;
9679
9680         hpsa_sas_port = kzalloc(sizeof(*hpsa_sas_port), GFP_KERNEL);
9681         if (!hpsa_sas_port)
9682                 return NULL;
9683
9684         INIT_LIST_HEAD(&hpsa_sas_port->phy_list_head);
9685         hpsa_sas_port->parent_node = hpsa_sas_node;
9686
9687         port = sas_port_alloc_num(hpsa_sas_node->parent_dev);
9688         if (!port)
9689                 goto free_hpsa_port;
9690
9691         rc = sas_port_add(port);
9692         if (rc)
9693                 goto free_sas_port;
9694
9695         hpsa_sas_port->port = port;
9696         hpsa_sas_port->sas_address = sas_address;
9697         list_add_tail(&hpsa_sas_port->port_list_entry,
9698                         &hpsa_sas_node->port_list_head);
9699
9700         return hpsa_sas_port;
9701
9702 free_sas_port:
9703         sas_port_free(port);
9704 free_hpsa_port:
9705         kfree(hpsa_sas_port);
9706
9707         return NULL;
9708 }
9709
9710 static void hpsa_free_sas_port(struct hpsa_sas_port *hpsa_sas_port)
9711 {
9712         struct hpsa_sas_phy *hpsa_sas_phy;
9713         struct hpsa_sas_phy *next;
9714
9715         list_for_each_entry_safe(hpsa_sas_phy, next,
9716                         &hpsa_sas_port->phy_list_head, phy_list_entry)
9717                 hpsa_free_sas_phy(hpsa_sas_phy);
9718
9719         sas_port_delete(hpsa_sas_port->port);
9720         list_del(&hpsa_sas_port->port_list_entry);
9721         kfree(hpsa_sas_port);
9722 }
9723
9724 static struct hpsa_sas_node *hpsa_alloc_sas_node(struct device *parent_dev)
9725 {
9726         struct hpsa_sas_node *hpsa_sas_node;
9727
9728         hpsa_sas_node = kzalloc(sizeof(*hpsa_sas_node), GFP_KERNEL);
9729         if (hpsa_sas_node) {
9730                 hpsa_sas_node->parent_dev = parent_dev;
9731                 INIT_LIST_HEAD(&hpsa_sas_node->port_list_head);
9732         }
9733
9734         return hpsa_sas_node;
9735 }
9736
9737 static void hpsa_free_sas_node(struct hpsa_sas_node *hpsa_sas_node)
9738 {
9739         struct hpsa_sas_port *hpsa_sas_port;
9740         struct hpsa_sas_port *next;
9741
9742         if (!hpsa_sas_node)
9743                 return;
9744
9745         list_for_each_entry_safe(hpsa_sas_port, next,
9746                         &hpsa_sas_node->port_list_head, port_list_entry)
9747                 hpsa_free_sas_port(hpsa_sas_port);
9748
9749         kfree(hpsa_sas_node);
9750 }
9751
9752 static struct hpsa_scsi_dev_t
9753         *hpsa_find_device_by_sas_rphy(struct ctlr_info *h,
9754                                         struct sas_rphy *rphy)
9755 {
9756         int i;
9757         struct hpsa_scsi_dev_t *device;
9758
9759         for (i = 0; i < h->ndevices; i++) {
9760                 device = h->dev[i];
9761                 if (!device->sas_port)
9762                         continue;
9763                 if (device->sas_port->rphy == rphy)
9764                         return device;
9765         }
9766
9767         return NULL;
9768 }
9769
9770 static int hpsa_add_sas_host(struct ctlr_info *h)
9771 {
9772         int rc;
9773         struct device *parent_dev;
9774         struct hpsa_sas_node *hpsa_sas_node;
9775         struct hpsa_sas_port *hpsa_sas_port;
9776         struct hpsa_sas_phy *hpsa_sas_phy;
9777
9778         parent_dev = &h->scsi_host->shost_gendev;
9779
9780         hpsa_sas_node = hpsa_alloc_sas_node(parent_dev);
9781         if (!hpsa_sas_node)
9782                 return -ENOMEM;
9783
9784         hpsa_sas_port = hpsa_alloc_sas_port(hpsa_sas_node, h->sas_address);
9785         if (!hpsa_sas_port) {
9786                 rc = -ENODEV;
9787                 goto free_sas_node;
9788         }
9789
9790         hpsa_sas_phy = hpsa_alloc_sas_phy(hpsa_sas_port);
9791         if (!hpsa_sas_phy) {
9792                 rc = -ENODEV;
9793                 goto free_sas_port;
9794         }
9795
9796         rc = hpsa_sas_port_add_phy(hpsa_sas_phy);
9797         if (rc)
9798                 goto free_sas_phy;
9799
9800         h->sas_host = hpsa_sas_node;
9801
9802         return 0;
9803
9804 free_sas_phy:
9805         hpsa_free_sas_phy(hpsa_sas_phy);
9806 free_sas_port:
9807         hpsa_free_sas_port(hpsa_sas_port);
9808 free_sas_node:
9809         hpsa_free_sas_node(hpsa_sas_node);
9810
9811         return rc;
9812 }
9813
9814 static void hpsa_delete_sas_host(struct ctlr_info *h)
9815 {
9816         hpsa_free_sas_node(h->sas_host);
9817 }
9818
9819 static int hpsa_add_sas_device(struct hpsa_sas_node *hpsa_sas_node,
9820                                 struct hpsa_scsi_dev_t *device)
9821 {
9822         int rc;
9823         struct hpsa_sas_port *hpsa_sas_port;
9824         struct sas_rphy *rphy;
9825
9826         hpsa_sas_port = hpsa_alloc_sas_port(hpsa_sas_node, device->sas_address);
9827         if (!hpsa_sas_port)
9828                 return -ENOMEM;
9829
9830         rphy = sas_end_device_alloc(hpsa_sas_port->port);
9831         if (!rphy) {
9832                 rc = -ENODEV;
9833                 goto free_sas_port;
9834         }
9835
9836         hpsa_sas_port->rphy = rphy;
9837         device->sas_port = hpsa_sas_port;
9838
9839         rc = hpsa_sas_port_add_rphy(hpsa_sas_port, rphy);
9840         if (rc)
9841                 goto free_sas_port;
9842
9843         return 0;
9844
9845 free_sas_port:
9846         hpsa_free_sas_port(hpsa_sas_port);
9847         device->sas_port = NULL;
9848
9849         return rc;
9850 }
9851
9852 static void hpsa_remove_sas_device(struct hpsa_scsi_dev_t *device)
9853 {
9854         if (device->sas_port) {
9855                 hpsa_free_sas_port(device->sas_port);
9856                 device->sas_port = NULL;
9857         }
9858 }
9859
9860 static int
9861 hpsa_sas_get_linkerrors(struct sas_phy *phy)
9862 {
9863         return 0;
9864 }
9865
9866 static int
9867 hpsa_sas_get_enclosure_identifier(struct sas_rphy *rphy, u64 *identifier)
9868 {
9869         *identifier = 0;
9870         return 0;
9871 }
9872
9873 static int
9874 hpsa_sas_get_bay_identifier(struct sas_rphy *rphy)
9875 {
9876         return -ENXIO;
9877 }
9878
9879 static int
9880 hpsa_sas_phy_reset(struct sas_phy *phy, int hard_reset)
9881 {
9882         return 0;
9883 }
9884
9885 static int
9886 hpsa_sas_phy_enable(struct sas_phy *phy, int enable)
9887 {
9888         return 0;
9889 }
9890
9891 static int
9892 hpsa_sas_phy_setup(struct sas_phy *phy)
9893 {
9894         return 0;
9895 }
9896
9897 static void
9898 hpsa_sas_phy_release(struct sas_phy *phy)
9899 {
9900 }
9901
9902 static int
9903 hpsa_sas_phy_speed(struct sas_phy *phy, struct sas_phy_linkrates *rates)
9904 {
9905         return -EINVAL;
9906 }
9907
9908 /* SMP = Serial Management Protocol */
9909 static int
9910 hpsa_sas_smp_handler(struct Scsi_Host *shost, struct sas_rphy *rphy,
9911 struct request *req)
9912 {
9913         return -EINVAL;
9914 }
9915
9916 static struct sas_function_template hpsa_sas_transport_functions = {
9917         .get_linkerrors = hpsa_sas_get_linkerrors,
9918         .get_enclosure_identifier = hpsa_sas_get_enclosure_identifier,
9919         .get_bay_identifier = hpsa_sas_get_bay_identifier,
9920         .phy_reset = hpsa_sas_phy_reset,
9921         .phy_enable = hpsa_sas_phy_enable,
9922         .phy_setup = hpsa_sas_phy_setup,
9923         .phy_release = hpsa_sas_phy_release,
9924         .set_phy_speed = hpsa_sas_phy_speed,
9925         .smp_handler = hpsa_sas_smp_handler,
9926 };
9927
9928 /*
9929  *  This is it.  Register the PCI driver information for the cards we control
9930  *  the OS will call our registered routines when it finds one of our cards.
9931  */
9932 static int __init hpsa_init(void)
9933 {
9934         int rc;
9935
9936         hpsa_sas_transport_template =
9937                 sas_attach_transport(&hpsa_sas_transport_functions);
9938         if (!hpsa_sas_transport_template)
9939                 return -ENODEV;
9940
9941         rc = pci_register_driver(&hpsa_pci_driver);
9942
9943         if (rc)
9944                 sas_release_transport(hpsa_sas_transport_template);
9945
9946         return rc;
9947 }
9948
9949 static void __exit hpsa_cleanup(void)
9950 {
9951         pci_unregister_driver(&hpsa_pci_driver);
9952         sas_release_transport(hpsa_sas_transport_template);
9953 }
9954
9955 static void __attribute__((unused)) verify_offsets(void)
9956 {
9957 #define VERIFY_OFFSET(member, offset) \
9958         BUILD_BUG_ON(offsetof(struct raid_map_data, member) != offset)
9959
9960         VERIFY_OFFSET(structure_size, 0);
9961         VERIFY_OFFSET(volume_blk_size, 4);
9962         VERIFY_OFFSET(volume_blk_cnt, 8);
9963         VERIFY_OFFSET(phys_blk_shift, 16);
9964         VERIFY_OFFSET(parity_rotation_shift, 17);
9965         VERIFY_OFFSET(strip_size, 18);
9966         VERIFY_OFFSET(disk_starting_blk, 20);
9967         VERIFY_OFFSET(disk_blk_cnt, 28);
9968         VERIFY_OFFSET(data_disks_per_row, 36);
9969         VERIFY_OFFSET(metadata_disks_per_row, 38);
9970         VERIFY_OFFSET(row_cnt, 40);
9971         VERIFY_OFFSET(layout_map_count, 42);
9972         VERIFY_OFFSET(flags, 44);
9973         VERIFY_OFFSET(dekindex, 46);
9974         /* VERIFY_OFFSET(reserved, 48 */
9975         VERIFY_OFFSET(data, 64);
9976
9977 #undef VERIFY_OFFSET
9978
9979 #define VERIFY_OFFSET(member, offset) \
9980         BUILD_BUG_ON(offsetof(struct io_accel2_cmd, member) != offset)
9981
9982         VERIFY_OFFSET(IU_type, 0);
9983         VERIFY_OFFSET(direction, 1);
9984         VERIFY_OFFSET(reply_queue, 2);
9985         /* VERIFY_OFFSET(reserved1, 3);  */
9986         VERIFY_OFFSET(scsi_nexus, 4);
9987         VERIFY_OFFSET(Tag, 8);
9988         VERIFY_OFFSET(cdb, 16);
9989         VERIFY_OFFSET(cciss_lun, 32);
9990         VERIFY_OFFSET(data_len, 40);
9991         VERIFY_OFFSET(cmd_priority_task_attr, 44);
9992         VERIFY_OFFSET(sg_count, 45);
9993         /* VERIFY_OFFSET(reserved3 */
9994         VERIFY_OFFSET(err_ptr, 48);
9995         VERIFY_OFFSET(err_len, 56);
9996         /* VERIFY_OFFSET(reserved4  */
9997         VERIFY_OFFSET(sg, 64);
9998
9999 #undef VERIFY_OFFSET
10000
10001 #define VERIFY_OFFSET(member, offset) \
10002         BUILD_BUG_ON(offsetof(struct io_accel1_cmd, member) != offset)
10003
10004         VERIFY_OFFSET(dev_handle, 0x00);
10005         VERIFY_OFFSET(reserved1, 0x02);
10006         VERIFY_OFFSET(function, 0x03);
10007         VERIFY_OFFSET(reserved2, 0x04);
10008         VERIFY_OFFSET(err_info, 0x0C);
10009         VERIFY_OFFSET(reserved3, 0x10);
10010         VERIFY_OFFSET(err_info_len, 0x12);
10011         VERIFY_OFFSET(reserved4, 0x13);
10012         VERIFY_OFFSET(sgl_offset, 0x14);
10013         VERIFY_OFFSET(reserved5, 0x15);
10014         VERIFY_OFFSET(transfer_len, 0x1C);
10015         VERIFY_OFFSET(reserved6, 0x20);
10016         VERIFY_OFFSET(io_flags, 0x24);
10017         VERIFY_OFFSET(reserved7, 0x26);
10018         VERIFY_OFFSET(LUN, 0x34);
10019         VERIFY_OFFSET(control, 0x3C);
10020         VERIFY_OFFSET(CDB, 0x40);
10021         VERIFY_OFFSET(reserved8, 0x50);
10022         VERIFY_OFFSET(host_context_flags, 0x60);
10023         VERIFY_OFFSET(timeout_sec, 0x62);
10024         VERIFY_OFFSET(ReplyQueue, 0x64);
10025         VERIFY_OFFSET(reserved9, 0x65);
10026         VERIFY_OFFSET(tag, 0x68);
10027         VERIFY_OFFSET(host_addr, 0x70);
10028         VERIFY_OFFSET(CISS_LUN, 0x78);
10029         VERIFY_OFFSET(SG, 0x78 + 8);
10030 #undef VERIFY_OFFSET
10031 }
10032
10033 module_init(hpsa_init);
10034 module_exit(hpsa_cleanup);