spi: loopback-test: mark rx_ranges_cmp() static
[cascardo/linux.git] / drivers / scsi / mpt3sas / mpt3sas_base.c
1 /*
2  * This is the Fusion MPT base driver providing common API layer interface
3  * for access to MPT (Message Passing Technology) firmware.
4  *
5  * This code is based on drivers/scsi/mpt3sas/mpt3sas_base.c
6  * Copyright (C) 2012-2014  LSI Corporation
7  * Copyright (C) 2013-2014 Avago Technologies
8  *  (mailto: MPT-FusionLinux.pdl@avagotech.com)
9  *
10  * This program is free software; you can redistribute it and/or
11  * modify it under the terms of the GNU General Public License
12  * as published by the Free Software Foundation; either version 2
13  * of the License, or (at your option) any later version.
14  *
15  * This program is distributed in the hope that it will be useful,
16  * but WITHOUT ANY WARRANTY; without even the implied warranty of
17  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
18  * GNU General Public License for more details.
19  *
20  * NO WARRANTY
21  * THE PROGRAM IS PROVIDED ON AN "AS IS" BASIS, WITHOUT WARRANTIES OR
22  * CONDITIONS OF ANY KIND, EITHER EXPRESS OR IMPLIED INCLUDING, WITHOUT
23  * LIMITATION, ANY WARRANTIES OR CONDITIONS OF TITLE, NON-INFRINGEMENT,
24  * MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Each Recipient is
25  * solely responsible for determining the appropriateness of using and
26  * distributing the Program and assumes all risks associated with its
27  * exercise of rights under this Agreement, including but not limited to
28  * the risks and costs of program errors, damage to or loss of data,
29  * programs or equipment, and unavailability or interruption of operations.
30
31  * DISCLAIMER OF LIABILITY
32  * NEITHER RECIPIENT NOR ANY CONTRIBUTORS SHALL HAVE ANY LIABILITY FOR ANY
33  * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
34  * DAMAGES (INCLUDING WITHOUT LIMITATION LOST PROFITS), HOWEVER CAUSED AND
35  * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR
36  * TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
37  * USE OR DISTRIBUTION OF THE PROGRAM OR THE EXERCISE OF ANY RIGHTS GRANTED
38  * HEREUNDER, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGES
39
40  * You should have received a copy of the GNU General Public License
41  * along with this program; if not, write to the Free Software
42  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301,
43  * USA.
44  */
45
46 #include <linux/kernel.h>
47 #include <linux/module.h>
48 #include <linux/errno.h>
49 #include <linux/init.h>
50 #include <linux/slab.h>
51 #include <linux/types.h>
52 #include <linux/pci.h>
53 #include <linux/kdev_t.h>
54 #include <linux/blkdev.h>
55 #include <linux/delay.h>
56 #include <linux/interrupt.h>
57 #include <linux/dma-mapping.h>
58 #include <linux/io.h>
59 #include <linux/time.h>
60 #include <linux/ktime.h>
61 #include <linux/kthread.h>
62 #include <linux/aer.h>
63
64
65 #include "mpt3sas_base.h"
66
67 static MPT_CALLBACK     mpt_callbacks[MPT_MAX_CALLBACKS];
68
69
70 #define FAULT_POLLING_INTERVAL 1000 /* in milliseconds */
71
72  /* maximum controller queue depth */
73 #define MAX_HBA_QUEUE_DEPTH     30000
74 #define MAX_CHAIN_DEPTH         100000
75 static int max_queue_depth = -1;
76 module_param(max_queue_depth, int, 0);
77 MODULE_PARM_DESC(max_queue_depth, " max controller queue depth ");
78
79 static int max_sgl_entries = -1;
80 module_param(max_sgl_entries, int, 0);
81 MODULE_PARM_DESC(max_sgl_entries, " max sg entries ");
82
83 static int msix_disable = -1;
84 module_param(msix_disable, int, 0);
85 MODULE_PARM_DESC(msix_disable, " disable msix routed interrupts (default=0)");
86
87 static int smp_affinity_enable = 1;
88 module_param(smp_affinity_enable, int, S_IRUGO);
89 MODULE_PARM_DESC(smp_affinity_enable, "SMP affinity feature enable/disbale Default: enable(1)");
90
91 static int max_msix_vectors = -1;
92 module_param(max_msix_vectors, int, 0);
93 MODULE_PARM_DESC(max_msix_vectors,
94         " max msix vectors");
95
96 static int mpt3sas_fwfault_debug;
97 MODULE_PARM_DESC(mpt3sas_fwfault_debug,
98         " enable detection of firmware fault and halt firmware - (default=0)");
99
100 static int
101 _base_get_ioc_facts(struct MPT3SAS_ADAPTER *ioc, int sleep_flag);
102
103 /**
104  * _scsih_set_fwfault_debug - global setting of ioc->fwfault_debug.
105  *
106  */
107 static int
108 _scsih_set_fwfault_debug(const char *val, struct kernel_param *kp)
109 {
110         int ret = param_set_int(val, kp);
111         struct MPT3SAS_ADAPTER *ioc;
112
113         if (ret)
114                 return ret;
115
116         /* global ioc spinlock to protect controller list on list operations */
117         pr_info("setting fwfault_debug(%d)\n", mpt3sas_fwfault_debug);
118         spin_lock(&gioc_lock);
119         list_for_each_entry(ioc, &mpt3sas_ioc_list, list)
120                 ioc->fwfault_debug = mpt3sas_fwfault_debug;
121         spin_unlock(&gioc_lock);
122         return 0;
123 }
124 module_param_call(mpt3sas_fwfault_debug, _scsih_set_fwfault_debug,
125         param_get_int, &mpt3sas_fwfault_debug, 0644);
126
127 /**
128  *  mpt3sas_remove_dead_ioc_func - kthread context to remove dead ioc
129  * @arg: input argument, used to derive ioc
130  *
131  * Return 0 if controller is removed from pci subsystem.
132  * Return -1 for other case.
133  */
134 static int mpt3sas_remove_dead_ioc_func(void *arg)
135 {
136         struct MPT3SAS_ADAPTER *ioc = (struct MPT3SAS_ADAPTER *)arg;
137         struct pci_dev *pdev;
138
139         if ((ioc == NULL))
140                 return -1;
141
142         pdev = ioc->pdev;
143         if ((pdev == NULL))
144                 return -1;
145         pci_stop_and_remove_bus_device_locked(pdev);
146         return 0;
147 }
148
149 /**
150  * _base_fault_reset_work - workq handling ioc fault conditions
151  * @work: input argument, used to derive ioc
152  * Context: sleep.
153  *
154  * Return nothing.
155  */
156 static void
157 _base_fault_reset_work(struct work_struct *work)
158 {
159         struct MPT3SAS_ADAPTER *ioc =
160             container_of(work, struct MPT3SAS_ADAPTER, fault_reset_work.work);
161         unsigned long    flags;
162         u32 doorbell;
163         int rc;
164         struct task_struct *p;
165
166
167         spin_lock_irqsave(&ioc->ioc_reset_in_progress_lock, flags);
168         if (ioc->shost_recovery || ioc->pci_error_recovery)
169                 goto rearm_timer;
170         spin_unlock_irqrestore(&ioc->ioc_reset_in_progress_lock, flags);
171
172         doorbell = mpt3sas_base_get_iocstate(ioc, 0);
173         if ((doorbell & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_MASK) {
174                 pr_err(MPT3SAS_FMT "SAS host is non-operational !!!!\n",
175                     ioc->name);
176
177                 /* It may be possible that EEH recovery can resolve some of
178                  * pci bus failure issues rather removing the dead ioc function
179                  * by considering controller is in a non-operational state. So
180                  * here priority is given to the EEH recovery. If it doesn't
181                  * not resolve this issue, mpt3sas driver will consider this
182                  * controller to non-operational state and remove the dead ioc
183                  * function.
184                  */
185                 if (ioc->non_operational_loop++ < 5) {
186                         spin_lock_irqsave(&ioc->ioc_reset_in_progress_lock,
187                                                          flags);
188                         goto rearm_timer;
189                 }
190
191                 /*
192                  * Call _scsih_flush_pending_cmds callback so that we flush all
193                  * pending commands back to OS. This call is required to aovid
194                  * deadlock at block layer. Dead IOC will fail to do diag reset,
195                  * and this call is safe since dead ioc will never return any
196                  * command back from HW.
197                  */
198                 ioc->schedule_dead_ioc_flush_running_cmds(ioc);
199                 /*
200                  * Set remove_host flag early since kernel thread will
201                  * take some time to execute.
202                  */
203                 ioc->remove_host = 1;
204                 /*Remove the Dead Host */
205                 p = kthread_run(mpt3sas_remove_dead_ioc_func, ioc,
206                     "%s_dead_ioc_%d", ioc->driver_name, ioc->id);
207                 if (IS_ERR(p))
208                         pr_err(MPT3SAS_FMT
209                         "%s: Running mpt3sas_dead_ioc thread failed !!!!\n",
210                         ioc->name, __func__);
211                 else
212                         pr_err(MPT3SAS_FMT
213                         "%s: Running mpt3sas_dead_ioc thread success !!!!\n",
214                         ioc->name, __func__);
215                 return; /* don't rearm timer */
216         }
217
218         ioc->non_operational_loop = 0;
219
220         if ((doorbell & MPI2_IOC_STATE_MASK) != MPI2_IOC_STATE_OPERATIONAL) {
221                 rc = mpt3sas_base_hard_reset_handler(ioc, CAN_SLEEP,
222                     FORCE_BIG_HAMMER);
223                 pr_warn(MPT3SAS_FMT "%s: hard reset: %s\n", ioc->name,
224                     __func__, (rc == 0) ? "success" : "failed");
225                 doorbell = mpt3sas_base_get_iocstate(ioc, 0);
226                 if ((doorbell & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_FAULT)
227                         mpt3sas_base_fault_info(ioc, doorbell &
228                             MPI2_DOORBELL_DATA_MASK);
229                 if (rc && (doorbell & MPI2_IOC_STATE_MASK) !=
230                     MPI2_IOC_STATE_OPERATIONAL)
231                         return; /* don't rearm timer */
232         }
233
234         spin_lock_irqsave(&ioc->ioc_reset_in_progress_lock, flags);
235  rearm_timer:
236         if (ioc->fault_reset_work_q)
237                 queue_delayed_work(ioc->fault_reset_work_q,
238                     &ioc->fault_reset_work,
239                     msecs_to_jiffies(FAULT_POLLING_INTERVAL));
240         spin_unlock_irqrestore(&ioc->ioc_reset_in_progress_lock, flags);
241 }
242
243 /**
244  * mpt3sas_base_start_watchdog - start the fault_reset_work_q
245  * @ioc: per adapter object
246  * Context: sleep.
247  *
248  * Return nothing.
249  */
250 void
251 mpt3sas_base_start_watchdog(struct MPT3SAS_ADAPTER *ioc)
252 {
253         unsigned long    flags;
254
255         if (ioc->fault_reset_work_q)
256                 return;
257
258         /* initialize fault polling */
259
260         INIT_DELAYED_WORK(&ioc->fault_reset_work, _base_fault_reset_work);
261         snprintf(ioc->fault_reset_work_q_name,
262             sizeof(ioc->fault_reset_work_q_name), "poll_%s%d_status",
263             ioc->driver_name, ioc->id);
264         ioc->fault_reset_work_q =
265                 create_singlethread_workqueue(ioc->fault_reset_work_q_name);
266         if (!ioc->fault_reset_work_q) {
267                 pr_err(MPT3SAS_FMT "%s: failed (line=%d)\n",
268                     ioc->name, __func__, __LINE__);
269                         return;
270         }
271         spin_lock_irqsave(&ioc->ioc_reset_in_progress_lock, flags);
272         if (ioc->fault_reset_work_q)
273                 queue_delayed_work(ioc->fault_reset_work_q,
274                     &ioc->fault_reset_work,
275                     msecs_to_jiffies(FAULT_POLLING_INTERVAL));
276         spin_unlock_irqrestore(&ioc->ioc_reset_in_progress_lock, flags);
277 }
278
279 /**
280  * mpt3sas_base_stop_watchdog - stop the fault_reset_work_q
281  * @ioc: per adapter object
282  * Context: sleep.
283  *
284  * Return nothing.
285  */
286 void
287 mpt3sas_base_stop_watchdog(struct MPT3SAS_ADAPTER *ioc)
288 {
289         unsigned long flags;
290         struct workqueue_struct *wq;
291
292         spin_lock_irqsave(&ioc->ioc_reset_in_progress_lock, flags);
293         wq = ioc->fault_reset_work_q;
294         ioc->fault_reset_work_q = NULL;
295         spin_unlock_irqrestore(&ioc->ioc_reset_in_progress_lock, flags);
296         if (wq) {
297                 if (!cancel_delayed_work_sync(&ioc->fault_reset_work))
298                         flush_workqueue(wq);
299                 destroy_workqueue(wq);
300         }
301 }
302
303 /**
304  * mpt3sas_base_fault_info - verbose translation of firmware FAULT code
305  * @ioc: per adapter object
306  * @fault_code: fault code
307  *
308  * Return nothing.
309  */
310 void
311 mpt3sas_base_fault_info(struct MPT3SAS_ADAPTER *ioc , u16 fault_code)
312 {
313         pr_err(MPT3SAS_FMT "fault_state(0x%04x)!\n",
314             ioc->name, fault_code);
315 }
316
317 /**
318  * mpt3sas_halt_firmware - halt's mpt controller firmware
319  * @ioc: per adapter object
320  *
321  * For debugging timeout related issues.  Writing 0xCOFFEE00
322  * to the doorbell register will halt controller firmware. With
323  * the purpose to stop both driver and firmware, the enduser can
324  * obtain a ring buffer from controller UART.
325  */
326 void
327 mpt3sas_halt_firmware(struct MPT3SAS_ADAPTER *ioc)
328 {
329         u32 doorbell;
330
331         if (!ioc->fwfault_debug)
332                 return;
333
334         dump_stack();
335
336         doorbell = readl(&ioc->chip->Doorbell);
337         if ((doorbell & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_FAULT)
338                 mpt3sas_base_fault_info(ioc , doorbell);
339         else {
340                 writel(0xC0FFEE00, &ioc->chip->Doorbell);
341                 pr_err(MPT3SAS_FMT "Firmware is halted due to command timeout\n",
342                         ioc->name);
343         }
344
345         if (ioc->fwfault_debug == 2)
346                 for (;;)
347                         ;
348         else
349                 panic("panic in %s\n", __func__);
350 }
351
352 /**
353  * _base_sas_ioc_info - verbose translation of the ioc status
354  * @ioc: per adapter object
355  * @mpi_reply: reply mf payload returned from firmware
356  * @request_hdr: request mf
357  *
358  * Return nothing.
359  */
360 static void
361 _base_sas_ioc_info(struct MPT3SAS_ADAPTER *ioc, MPI2DefaultReply_t *mpi_reply,
362         MPI2RequestHeader_t *request_hdr)
363 {
364         u16 ioc_status = le16_to_cpu(mpi_reply->IOCStatus) &
365             MPI2_IOCSTATUS_MASK;
366         char *desc = NULL;
367         u16 frame_sz;
368         char *func_str = NULL;
369
370         /* SCSI_IO, RAID_PASS are handled from _scsih_scsi_ioc_info */
371         if (request_hdr->Function == MPI2_FUNCTION_SCSI_IO_REQUEST ||
372             request_hdr->Function == MPI2_FUNCTION_RAID_SCSI_IO_PASSTHROUGH ||
373             request_hdr->Function == MPI2_FUNCTION_EVENT_NOTIFICATION)
374                 return;
375
376         if (ioc_status == MPI2_IOCSTATUS_CONFIG_INVALID_PAGE)
377                 return;
378
379         switch (ioc_status) {
380
381 /****************************************************************************
382 *  Common IOCStatus values for all replies
383 ****************************************************************************/
384
385         case MPI2_IOCSTATUS_INVALID_FUNCTION:
386                 desc = "invalid function";
387                 break;
388         case MPI2_IOCSTATUS_BUSY:
389                 desc = "busy";
390                 break;
391         case MPI2_IOCSTATUS_INVALID_SGL:
392                 desc = "invalid sgl";
393                 break;
394         case MPI2_IOCSTATUS_INTERNAL_ERROR:
395                 desc = "internal error";
396                 break;
397         case MPI2_IOCSTATUS_INVALID_VPID:
398                 desc = "invalid vpid";
399                 break;
400         case MPI2_IOCSTATUS_INSUFFICIENT_RESOURCES:
401                 desc = "insufficient resources";
402                 break;
403         case MPI2_IOCSTATUS_INSUFFICIENT_POWER:
404                 desc = "insufficient power";
405                 break;
406         case MPI2_IOCSTATUS_INVALID_FIELD:
407                 desc = "invalid field";
408                 break;
409         case MPI2_IOCSTATUS_INVALID_STATE:
410                 desc = "invalid state";
411                 break;
412         case MPI2_IOCSTATUS_OP_STATE_NOT_SUPPORTED:
413                 desc = "op state not supported";
414                 break;
415
416 /****************************************************************************
417 *  Config IOCStatus values
418 ****************************************************************************/
419
420         case MPI2_IOCSTATUS_CONFIG_INVALID_ACTION:
421                 desc = "config invalid action";
422                 break;
423         case MPI2_IOCSTATUS_CONFIG_INVALID_TYPE:
424                 desc = "config invalid type";
425                 break;
426         case MPI2_IOCSTATUS_CONFIG_INVALID_PAGE:
427                 desc = "config invalid page";
428                 break;
429         case MPI2_IOCSTATUS_CONFIG_INVALID_DATA:
430                 desc = "config invalid data";
431                 break;
432         case MPI2_IOCSTATUS_CONFIG_NO_DEFAULTS:
433                 desc = "config no defaults";
434                 break;
435         case MPI2_IOCSTATUS_CONFIG_CANT_COMMIT:
436                 desc = "config cant commit";
437                 break;
438
439 /****************************************************************************
440 *  SCSI IO Reply
441 ****************************************************************************/
442
443         case MPI2_IOCSTATUS_SCSI_RECOVERED_ERROR:
444         case MPI2_IOCSTATUS_SCSI_INVALID_DEVHANDLE:
445         case MPI2_IOCSTATUS_SCSI_DEVICE_NOT_THERE:
446         case MPI2_IOCSTATUS_SCSI_DATA_OVERRUN:
447         case MPI2_IOCSTATUS_SCSI_DATA_UNDERRUN:
448         case MPI2_IOCSTATUS_SCSI_IO_DATA_ERROR:
449         case MPI2_IOCSTATUS_SCSI_PROTOCOL_ERROR:
450         case MPI2_IOCSTATUS_SCSI_TASK_TERMINATED:
451         case MPI2_IOCSTATUS_SCSI_RESIDUAL_MISMATCH:
452         case MPI2_IOCSTATUS_SCSI_TASK_MGMT_FAILED:
453         case MPI2_IOCSTATUS_SCSI_IOC_TERMINATED:
454         case MPI2_IOCSTATUS_SCSI_EXT_TERMINATED:
455                 break;
456
457 /****************************************************************************
458 *  For use by SCSI Initiator and SCSI Target end-to-end data protection
459 ****************************************************************************/
460
461         case MPI2_IOCSTATUS_EEDP_GUARD_ERROR:
462                 desc = "eedp guard error";
463                 break;
464         case MPI2_IOCSTATUS_EEDP_REF_TAG_ERROR:
465                 desc = "eedp ref tag error";
466                 break;
467         case MPI2_IOCSTATUS_EEDP_APP_TAG_ERROR:
468                 desc = "eedp app tag error";
469                 break;
470
471 /****************************************************************************
472 *  SCSI Target values
473 ****************************************************************************/
474
475         case MPI2_IOCSTATUS_TARGET_INVALID_IO_INDEX:
476                 desc = "target invalid io index";
477                 break;
478         case MPI2_IOCSTATUS_TARGET_ABORTED:
479                 desc = "target aborted";
480                 break;
481         case MPI2_IOCSTATUS_TARGET_NO_CONN_RETRYABLE:
482                 desc = "target no conn retryable";
483                 break;
484         case MPI2_IOCSTATUS_TARGET_NO_CONNECTION:
485                 desc = "target no connection";
486                 break;
487         case MPI2_IOCSTATUS_TARGET_XFER_COUNT_MISMATCH:
488                 desc = "target xfer count mismatch";
489                 break;
490         case MPI2_IOCSTATUS_TARGET_DATA_OFFSET_ERROR:
491                 desc = "target data offset error";
492                 break;
493         case MPI2_IOCSTATUS_TARGET_TOO_MUCH_WRITE_DATA:
494                 desc = "target too much write data";
495                 break;
496         case MPI2_IOCSTATUS_TARGET_IU_TOO_SHORT:
497                 desc = "target iu too short";
498                 break;
499         case MPI2_IOCSTATUS_TARGET_ACK_NAK_TIMEOUT:
500                 desc = "target ack nak timeout";
501                 break;
502         case MPI2_IOCSTATUS_TARGET_NAK_RECEIVED:
503                 desc = "target nak received";
504                 break;
505
506 /****************************************************************************
507 *  Serial Attached SCSI values
508 ****************************************************************************/
509
510         case MPI2_IOCSTATUS_SAS_SMP_REQUEST_FAILED:
511                 desc = "smp request failed";
512                 break;
513         case MPI2_IOCSTATUS_SAS_SMP_DATA_OVERRUN:
514                 desc = "smp data overrun";
515                 break;
516
517 /****************************************************************************
518 *  Diagnostic Buffer Post / Diagnostic Release values
519 ****************************************************************************/
520
521         case MPI2_IOCSTATUS_DIAGNOSTIC_RELEASED:
522                 desc = "diagnostic released";
523                 break;
524         default:
525                 break;
526         }
527
528         if (!desc)
529                 return;
530
531         switch (request_hdr->Function) {
532         case MPI2_FUNCTION_CONFIG:
533                 frame_sz = sizeof(Mpi2ConfigRequest_t) + ioc->sge_size;
534                 func_str = "config_page";
535                 break;
536         case MPI2_FUNCTION_SCSI_TASK_MGMT:
537                 frame_sz = sizeof(Mpi2SCSITaskManagementRequest_t);
538                 func_str = "task_mgmt";
539                 break;
540         case MPI2_FUNCTION_SAS_IO_UNIT_CONTROL:
541                 frame_sz = sizeof(Mpi2SasIoUnitControlRequest_t);
542                 func_str = "sas_iounit_ctl";
543                 break;
544         case MPI2_FUNCTION_SCSI_ENCLOSURE_PROCESSOR:
545                 frame_sz = sizeof(Mpi2SepRequest_t);
546                 func_str = "enclosure";
547                 break;
548         case MPI2_FUNCTION_IOC_INIT:
549                 frame_sz = sizeof(Mpi2IOCInitRequest_t);
550                 func_str = "ioc_init";
551                 break;
552         case MPI2_FUNCTION_PORT_ENABLE:
553                 frame_sz = sizeof(Mpi2PortEnableRequest_t);
554                 func_str = "port_enable";
555                 break;
556         case MPI2_FUNCTION_SMP_PASSTHROUGH:
557                 frame_sz = sizeof(Mpi2SmpPassthroughRequest_t) + ioc->sge_size;
558                 func_str = "smp_passthru";
559                 break;
560         default:
561                 frame_sz = 32;
562                 func_str = "unknown";
563                 break;
564         }
565
566         pr_warn(MPT3SAS_FMT "ioc_status: %s(0x%04x), request(0x%p),(%s)\n",
567                 ioc->name, desc, ioc_status, request_hdr, func_str);
568
569         _debug_dump_mf(request_hdr, frame_sz/4);
570 }
571
572 /**
573  * _base_display_event_data - verbose translation of firmware asyn events
574  * @ioc: per adapter object
575  * @mpi_reply: reply mf payload returned from firmware
576  *
577  * Return nothing.
578  */
579 static void
580 _base_display_event_data(struct MPT3SAS_ADAPTER *ioc,
581         Mpi2EventNotificationReply_t *mpi_reply)
582 {
583         char *desc = NULL;
584         u16 event;
585
586         if (!(ioc->logging_level & MPT_DEBUG_EVENTS))
587                 return;
588
589         event = le16_to_cpu(mpi_reply->Event);
590
591         switch (event) {
592         case MPI2_EVENT_LOG_DATA:
593                 desc = "Log Data";
594                 break;
595         case MPI2_EVENT_STATE_CHANGE:
596                 desc = "Status Change";
597                 break;
598         case MPI2_EVENT_HARD_RESET_RECEIVED:
599                 desc = "Hard Reset Received";
600                 break;
601         case MPI2_EVENT_EVENT_CHANGE:
602                 desc = "Event Change";
603                 break;
604         case MPI2_EVENT_SAS_DEVICE_STATUS_CHANGE:
605                 desc = "Device Status Change";
606                 break;
607         case MPI2_EVENT_IR_OPERATION_STATUS:
608                 if (!ioc->hide_ir_msg)
609                         desc = "IR Operation Status";
610                 break;
611         case MPI2_EVENT_SAS_DISCOVERY:
612         {
613                 Mpi2EventDataSasDiscovery_t *event_data =
614                     (Mpi2EventDataSasDiscovery_t *)mpi_reply->EventData;
615                 pr_info(MPT3SAS_FMT "Discovery: (%s)", ioc->name,
616                     (event_data->ReasonCode == MPI2_EVENT_SAS_DISC_RC_STARTED) ?
617                     "start" : "stop");
618                 if (event_data->DiscoveryStatus)
619                         pr_info("discovery_status(0x%08x)",
620                             le32_to_cpu(event_data->DiscoveryStatus));
621                         pr_info("\n");
622                 return;
623         }
624         case MPI2_EVENT_SAS_BROADCAST_PRIMITIVE:
625                 desc = "SAS Broadcast Primitive";
626                 break;
627         case MPI2_EVENT_SAS_INIT_DEVICE_STATUS_CHANGE:
628                 desc = "SAS Init Device Status Change";
629                 break;
630         case MPI2_EVENT_SAS_INIT_TABLE_OVERFLOW:
631                 desc = "SAS Init Table Overflow";
632                 break;
633         case MPI2_EVENT_SAS_TOPOLOGY_CHANGE_LIST:
634                 desc = "SAS Topology Change List";
635                 break;
636         case MPI2_EVENT_SAS_ENCL_DEVICE_STATUS_CHANGE:
637                 desc = "SAS Enclosure Device Status Change";
638                 break;
639         case MPI2_EVENT_IR_VOLUME:
640                 if (!ioc->hide_ir_msg)
641                         desc = "IR Volume";
642                 break;
643         case MPI2_EVENT_IR_PHYSICAL_DISK:
644                 if (!ioc->hide_ir_msg)
645                         desc = "IR Physical Disk";
646                 break;
647         case MPI2_EVENT_IR_CONFIGURATION_CHANGE_LIST:
648                 if (!ioc->hide_ir_msg)
649                         desc = "IR Configuration Change List";
650                 break;
651         case MPI2_EVENT_LOG_ENTRY_ADDED:
652                 if (!ioc->hide_ir_msg)
653                         desc = "Log Entry Added";
654                 break;
655         case MPI2_EVENT_TEMP_THRESHOLD:
656                 desc = "Temperature Threshold";
657                 break;
658         case MPI2_EVENT_ACTIVE_CABLE_EXCEPTION:
659                 desc = "Active cable exception";
660                 break;
661         }
662
663         if (!desc)
664                 return;
665
666         pr_info(MPT3SAS_FMT "%s\n", ioc->name, desc);
667 }
668
669 /**
670  * _base_sas_log_info - verbose translation of firmware log info
671  * @ioc: per adapter object
672  * @log_info: log info
673  *
674  * Return nothing.
675  */
676 static void
677 _base_sas_log_info(struct MPT3SAS_ADAPTER *ioc , u32 log_info)
678 {
679         union loginfo_type {
680                 u32     loginfo;
681                 struct {
682                         u32     subcode:16;
683                         u32     code:8;
684                         u32     originator:4;
685                         u32     bus_type:4;
686                 } dw;
687         };
688         union loginfo_type sas_loginfo;
689         char *originator_str = NULL;
690
691         sas_loginfo.loginfo = log_info;
692         if (sas_loginfo.dw.bus_type != 3 /*SAS*/)
693                 return;
694
695         /* each nexus loss loginfo */
696         if (log_info == 0x31170000)
697                 return;
698
699         /* eat the loginfos associated with task aborts */
700         if (ioc->ignore_loginfos && (log_info == 0x30050000 || log_info ==
701             0x31140000 || log_info == 0x31130000))
702                 return;
703
704         switch (sas_loginfo.dw.originator) {
705         case 0:
706                 originator_str = "IOP";
707                 break;
708         case 1:
709                 originator_str = "PL";
710                 break;
711         case 2:
712                 if (!ioc->hide_ir_msg)
713                         originator_str = "IR";
714                 else
715                         originator_str = "WarpDrive";
716                 break;
717         }
718
719         pr_warn(MPT3SAS_FMT
720                 "log_info(0x%08x): originator(%s), code(0x%02x), sub_code(0x%04x)\n",
721                 ioc->name, log_info,
722              originator_str, sas_loginfo.dw.code,
723              sas_loginfo.dw.subcode);
724 }
725
726 /**
727  * _base_display_reply_info -
728  * @ioc: per adapter object
729  * @smid: system request message index
730  * @msix_index: MSIX table index supplied by the OS
731  * @reply: reply message frame(lower 32bit addr)
732  *
733  * Return nothing.
734  */
735 static void
736 _base_display_reply_info(struct MPT3SAS_ADAPTER *ioc, u16 smid, u8 msix_index,
737         u32 reply)
738 {
739         MPI2DefaultReply_t *mpi_reply;
740         u16 ioc_status;
741         u32 loginfo = 0;
742
743         mpi_reply = mpt3sas_base_get_reply_virt_addr(ioc, reply);
744         if (unlikely(!mpi_reply)) {
745                 pr_err(MPT3SAS_FMT "mpi_reply not valid at %s:%d/%s()!\n",
746                     ioc->name, __FILE__, __LINE__, __func__);
747                 return;
748         }
749         ioc_status = le16_to_cpu(mpi_reply->IOCStatus);
750
751         if ((ioc_status & MPI2_IOCSTATUS_MASK) &&
752             (ioc->logging_level & MPT_DEBUG_REPLY)) {
753                 _base_sas_ioc_info(ioc , mpi_reply,
754                    mpt3sas_base_get_msg_frame(ioc, smid));
755         }
756
757         if (ioc_status & MPI2_IOCSTATUS_FLAG_LOG_INFO_AVAILABLE) {
758                 loginfo = le32_to_cpu(mpi_reply->IOCLogInfo);
759                 _base_sas_log_info(ioc, loginfo);
760         }
761
762         if (ioc_status || loginfo) {
763                 ioc_status &= MPI2_IOCSTATUS_MASK;
764                 mpt3sas_trigger_mpi(ioc, ioc_status, loginfo);
765         }
766 }
767
768 /**
769  * mpt3sas_base_done - base internal command completion routine
770  * @ioc: per adapter object
771  * @smid: system request message index
772  * @msix_index: MSIX table index supplied by the OS
773  * @reply: reply message frame(lower 32bit addr)
774  *
775  * Return 1 meaning mf should be freed from _base_interrupt
776  *        0 means the mf is freed from this function.
777  */
778 u8
779 mpt3sas_base_done(struct MPT3SAS_ADAPTER *ioc, u16 smid, u8 msix_index,
780         u32 reply)
781 {
782         MPI2DefaultReply_t *mpi_reply;
783
784         mpi_reply = mpt3sas_base_get_reply_virt_addr(ioc, reply);
785         if (mpi_reply && mpi_reply->Function == MPI2_FUNCTION_EVENT_ACK)
786                 return mpt3sas_check_for_pending_internal_cmds(ioc, smid);
787
788         if (ioc->base_cmds.status == MPT3_CMD_NOT_USED)
789                 return 1;
790
791         ioc->base_cmds.status |= MPT3_CMD_COMPLETE;
792         if (mpi_reply) {
793                 ioc->base_cmds.status |= MPT3_CMD_REPLY_VALID;
794                 memcpy(ioc->base_cmds.reply, mpi_reply, mpi_reply->MsgLength*4);
795         }
796         ioc->base_cmds.status &= ~MPT3_CMD_PENDING;
797
798         complete(&ioc->base_cmds.done);
799         return 1;
800 }
801
802 /**
803  * _base_async_event - main callback handler for firmware asyn events
804  * @ioc: per adapter object
805  * @msix_index: MSIX table index supplied by the OS
806  * @reply: reply message frame(lower 32bit addr)
807  *
808  * Return 1 meaning mf should be freed from _base_interrupt
809  *        0 means the mf is freed from this function.
810  */
811 static u8
812 _base_async_event(struct MPT3SAS_ADAPTER *ioc, u8 msix_index, u32 reply)
813 {
814         Mpi2EventNotificationReply_t *mpi_reply;
815         Mpi2EventAckRequest_t *ack_request;
816         u16 smid;
817         struct _event_ack_list *delayed_event_ack;
818
819         mpi_reply = mpt3sas_base_get_reply_virt_addr(ioc, reply);
820         if (!mpi_reply)
821                 return 1;
822         if (mpi_reply->Function != MPI2_FUNCTION_EVENT_NOTIFICATION)
823                 return 1;
824
825         _base_display_event_data(ioc, mpi_reply);
826
827         if (!(mpi_reply->AckRequired & MPI2_EVENT_NOTIFICATION_ACK_REQUIRED))
828                 goto out;
829         smid = mpt3sas_base_get_smid(ioc, ioc->base_cb_idx);
830         if (!smid) {
831                 delayed_event_ack = kzalloc(sizeof(*delayed_event_ack),
832                                         GFP_ATOMIC);
833                 if (!delayed_event_ack)
834                         goto out;
835                 INIT_LIST_HEAD(&delayed_event_ack->list);
836                 delayed_event_ack->Event = mpi_reply->Event;
837                 delayed_event_ack->EventContext = mpi_reply->EventContext;
838                 list_add_tail(&delayed_event_ack->list,
839                                 &ioc->delayed_event_ack_list);
840                 dewtprintk(ioc, pr_info(MPT3SAS_FMT
841                                 "DELAYED: EVENT ACK: event (0x%04x)\n",
842                                 ioc->name, le16_to_cpu(mpi_reply->Event)));
843                 goto out;
844         }
845
846         ack_request = mpt3sas_base_get_msg_frame(ioc, smid);
847         memset(ack_request, 0, sizeof(Mpi2EventAckRequest_t));
848         ack_request->Function = MPI2_FUNCTION_EVENT_ACK;
849         ack_request->Event = mpi_reply->Event;
850         ack_request->EventContext = mpi_reply->EventContext;
851         ack_request->VF_ID = 0;  /* TODO */
852         ack_request->VP_ID = 0;
853         mpt3sas_base_put_smid_default(ioc, smid);
854
855  out:
856
857         /* scsih callback handler */
858         mpt3sas_scsih_event_callback(ioc, msix_index, reply);
859
860         /* ctl callback handler */
861         mpt3sas_ctl_event_callback(ioc, msix_index, reply);
862
863         return 1;
864 }
865
866 /**
867  * _base_get_cb_idx - obtain the callback index
868  * @ioc: per adapter object
869  * @smid: system request message index
870  *
871  * Return callback index.
872  */
873 static u8
874 _base_get_cb_idx(struct MPT3SAS_ADAPTER *ioc, u16 smid)
875 {
876         int i;
877         u8 cb_idx;
878
879         if (smid < ioc->hi_priority_smid) {
880                 i = smid - 1;
881                 cb_idx = ioc->scsi_lookup[i].cb_idx;
882         } else if (smid < ioc->internal_smid) {
883                 i = smid - ioc->hi_priority_smid;
884                 cb_idx = ioc->hpr_lookup[i].cb_idx;
885         } else if (smid <= ioc->hba_queue_depth) {
886                 i = smid - ioc->internal_smid;
887                 cb_idx = ioc->internal_lookup[i].cb_idx;
888         } else
889                 cb_idx = 0xFF;
890         return cb_idx;
891 }
892
893 /**
894  * _base_mask_interrupts - disable interrupts
895  * @ioc: per adapter object
896  *
897  * Disabling ResetIRQ, Reply and Doorbell Interrupts
898  *
899  * Return nothing.
900  */
901 static void
902 _base_mask_interrupts(struct MPT3SAS_ADAPTER *ioc)
903 {
904         u32 him_register;
905
906         ioc->mask_interrupts = 1;
907         him_register = readl(&ioc->chip->HostInterruptMask);
908         him_register |= MPI2_HIM_DIM + MPI2_HIM_RIM + MPI2_HIM_RESET_IRQ_MASK;
909         writel(him_register, &ioc->chip->HostInterruptMask);
910         readl(&ioc->chip->HostInterruptMask);
911 }
912
913 /**
914  * _base_unmask_interrupts - enable interrupts
915  * @ioc: per adapter object
916  *
917  * Enabling only Reply Interrupts
918  *
919  * Return nothing.
920  */
921 static void
922 _base_unmask_interrupts(struct MPT3SAS_ADAPTER *ioc)
923 {
924         u32 him_register;
925
926         him_register = readl(&ioc->chip->HostInterruptMask);
927         him_register &= ~MPI2_HIM_RIM;
928         writel(him_register, &ioc->chip->HostInterruptMask);
929         ioc->mask_interrupts = 0;
930 }
931
932 union reply_descriptor {
933         u64 word;
934         struct {
935                 u32 low;
936                 u32 high;
937         } u;
938 };
939
940 /**
941  * _base_interrupt - MPT adapter (IOC) specific interrupt handler.
942  * @irq: irq number (not used)
943  * @bus_id: bus identifier cookie == pointer to MPT_ADAPTER structure
944  * @r: pt_regs pointer (not used)
945  *
946  * Return IRQ_HANDLE if processed, else IRQ_NONE.
947  */
948 static irqreturn_t
949 _base_interrupt(int irq, void *bus_id)
950 {
951         struct adapter_reply_queue *reply_q = bus_id;
952         union reply_descriptor rd;
953         u32 completed_cmds;
954         u8 request_desript_type;
955         u16 smid;
956         u8 cb_idx;
957         u32 reply;
958         u8 msix_index = reply_q->msix_index;
959         struct MPT3SAS_ADAPTER *ioc = reply_q->ioc;
960         Mpi2ReplyDescriptorsUnion_t *rpf;
961         u8 rc;
962
963         if (ioc->mask_interrupts)
964                 return IRQ_NONE;
965
966         if (!atomic_add_unless(&reply_q->busy, 1, 1))
967                 return IRQ_NONE;
968
969         rpf = &reply_q->reply_post_free[reply_q->reply_post_host_index];
970         request_desript_type = rpf->Default.ReplyFlags
971              & MPI2_RPY_DESCRIPT_FLAGS_TYPE_MASK;
972         if (request_desript_type == MPI2_RPY_DESCRIPT_FLAGS_UNUSED) {
973                 atomic_dec(&reply_q->busy);
974                 return IRQ_NONE;
975         }
976
977         completed_cmds = 0;
978         cb_idx = 0xFF;
979         do {
980                 rd.word = le64_to_cpu(rpf->Words);
981                 if (rd.u.low == UINT_MAX || rd.u.high == UINT_MAX)
982                         goto out;
983                 reply = 0;
984                 smid = le16_to_cpu(rpf->Default.DescriptorTypeDependent1);
985                 if (request_desript_type ==
986                     MPI25_RPY_DESCRIPT_FLAGS_FAST_PATH_SCSI_IO_SUCCESS ||
987                     request_desript_type ==
988                     MPI2_RPY_DESCRIPT_FLAGS_SCSI_IO_SUCCESS) {
989                         cb_idx = _base_get_cb_idx(ioc, smid);
990                         if ((likely(cb_idx < MPT_MAX_CALLBACKS)) &&
991                             (likely(mpt_callbacks[cb_idx] != NULL))) {
992                                 rc = mpt_callbacks[cb_idx](ioc, smid,
993                                     msix_index, 0);
994                                 if (rc)
995                                         mpt3sas_base_free_smid(ioc, smid);
996                         }
997                 } else if (request_desript_type ==
998                     MPI2_RPY_DESCRIPT_FLAGS_ADDRESS_REPLY) {
999                         reply = le32_to_cpu(
1000                             rpf->AddressReply.ReplyFrameAddress);
1001                         if (reply > ioc->reply_dma_max_address ||
1002                             reply < ioc->reply_dma_min_address)
1003                                 reply = 0;
1004                         if (smid) {
1005                                 cb_idx = _base_get_cb_idx(ioc, smid);
1006                                 if ((likely(cb_idx < MPT_MAX_CALLBACKS)) &&
1007                                     (likely(mpt_callbacks[cb_idx] != NULL))) {
1008                                         rc = mpt_callbacks[cb_idx](ioc, smid,
1009                                             msix_index, reply);
1010                                         if (reply)
1011                                                 _base_display_reply_info(ioc,
1012                                                     smid, msix_index, reply);
1013                                         if (rc)
1014                                                 mpt3sas_base_free_smid(ioc,
1015                                                     smid);
1016                                 }
1017                         } else {
1018                                 _base_async_event(ioc, msix_index, reply);
1019                         }
1020
1021                         /* reply free queue handling */
1022                         if (reply) {
1023                                 ioc->reply_free_host_index =
1024                                     (ioc->reply_free_host_index ==
1025                                     (ioc->reply_free_queue_depth - 1)) ?
1026                                     0 : ioc->reply_free_host_index + 1;
1027                                 ioc->reply_free[ioc->reply_free_host_index] =
1028                                     cpu_to_le32(reply);
1029                                 wmb();
1030                                 writel(ioc->reply_free_host_index,
1031                                     &ioc->chip->ReplyFreeHostIndex);
1032                         }
1033                 }
1034
1035                 rpf->Words = cpu_to_le64(ULLONG_MAX);
1036                 reply_q->reply_post_host_index =
1037                     (reply_q->reply_post_host_index ==
1038                     (ioc->reply_post_queue_depth - 1)) ? 0 :
1039                     reply_q->reply_post_host_index + 1;
1040                 request_desript_type =
1041                     reply_q->reply_post_free[reply_q->reply_post_host_index].
1042                     Default.ReplyFlags & MPI2_RPY_DESCRIPT_FLAGS_TYPE_MASK;
1043                 completed_cmds++;
1044                 if (request_desript_type == MPI2_RPY_DESCRIPT_FLAGS_UNUSED)
1045                         goto out;
1046                 if (!reply_q->reply_post_host_index)
1047                         rpf = reply_q->reply_post_free;
1048                 else
1049                         rpf++;
1050         } while (1);
1051
1052  out:
1053
1054         if (!completed_cmds) {
1055                 atomic_dec(&reply_q->busy);
1056                 return IRQ_NONE;
1057         }
1058
1059         wmb();
1060         if (ioc->is_warpdrive) {
1061                 writel(reply_q->reply_post_host_index,
1062                 ioc->reply_post_host_index[msix_index]);
1063                 atomic_dec(&reply_q->busy);
1064                 return IRQ_HANDLED;
1065         }
1066
1067         /* Update Reply Post Host Index.
1068          * For those HBA's which support combined reply queue feature
1069          * 1. Get the correct Supplemental Reply Post Host Index Register.
1070          *    i.e. (msix_index / 8)th entry from Supplemental Reply Post Host
1071          *    Index Register address bank i.e replyPostRegisterIndex[],
1072          * 2. Then update this register with new reply host index value
1073          *    in ReplyPostIndex field and the MSIxIndex field with
1074          *    msix_index value reduced to a value between 0 and 7,
1075          *    using a modulo 8 operation. Since each Supplemental Reply Post
1076          *    Host Index Register supports 8 MSI-X vectors.
1077          *
1078          * For other HBA's just update the Reply Post Host Index register with
1079          * new reply host index value in ReplyPostIndex Field and msix_index
1080          * value in MSIxIndex field.
1081          */
1082         if (ioc->msix96_vector)
1083                 writel(reply_q->reply_post_host_index | ((msix_index  & 7) <<
1084                         MPI2_RPHI_MSIX_INDEX_SHIFT),
1085                         ioc->replyPostRegisterIndex[msix_index/8]);
1086         else
1087                 writel(reply_q->reply_post_host_index | (msix_index <<
1088                         MPI2_RPHI_MSIX_INDEX_SHIFT),
1089                         &ioc->chip->ReplyPostHostIndex);
1090         atomic_dec(&reply_q->busy);
1091         return IRQ_HANDLED;
1092 }
1093
1094 /**
1095  * _base_is_controller_msix_enabled - is controller support muli-reply queues
1096  * @ioc: per adapter object
1097  *
1098  */
1099 static inline int
1100 _base_is_controller_msix_enabled(struct MPT3SAS_ADAPTER *ioc)
1101 {
1102         return (ioc->facts.IOCCapabilities &
1103             MPI2_IOCFACTS_CAPABILITY_MSI_X_INDEX) && ioc->msix_enable;
1104 }
1105
1106 /**
1107  * mpt3sas_base_sync_reply_irqs - flush pending MSIX interrupts
1108  * @ioc: per adapter object
1109  * Context: non ISR conext
1110  *
1111  * Called when a Task Management request has completed.
1112  *
1113  * Return nothing.
1114  */
1115 void
1116 mpt3sas_base_sync_reply_irqs(struct MPT3SAS_ADAPTER *ioc)
1117 {
1118         struct adapter_reply_queue *reply_q;
1119
1120         /* If MSIX capability is turned off
1121          * then multi-queues are not enabled
1122          */
1123         if (!_base_is_controller_msix_enabled(ioc))
1124                 return;
1125
1126         list_for_each_entry(reply_q, &ioc->reply_queue_list, list) {
1127                 if (ioc->shost_recovery || ioc->remove_host ||
1128                                 ioc->pci_error_recovery)
1129                         return;
1130                 /* TMs are on msix_index == 0 */
1131                 if (reply_q->msix_index == 0)
1132                         continue;
1133                 synchronize_irq(reply_q->vector);
1134         }
1135 }
1136
1137 /**
1138  * mpt3sas_base_release_callback_handler - clear interrupt callback handler
1139  * @cb_idx: callback index
1140  *
1141  * Return nothing.
1142  */
1143 void
1144 mpt3sas_base_release_callback_handler(u8 cb_idx)
1145 {
1146         mpt_callbacks[cb_idx] = NULL;
1147 }
1148
1149 /**
1150  * mpt3sas_base_register_callback_handler - obtain index for the interrupt callback handler
1151  * @cb_func: callback function
1152  *
1153  * Returns cb_func.
1154  */
1155 u8
1156 mpt3sas_base_register_callback_handler(MPT_CALLBACK cb_func)
1157 {
1158         u8 cb_idx;
1159
1160         for (cb_idx = MPT_MAX_CALLBACKS-1; cb_idx; cb_idx--)
1161                 if (mpt_callbacks[cb_idx] == NULL)
1162                         break;
1163
1164         mpt_callbacks[cb_idx] = cb_func;
1165         return cb_idx;
1166 }
1167
1168 /**
1169  * mpt3sas_base_initialize_callback_handler - initialize the interrupt callback handler
1170  *
1171  * Return nothing.
1172  */
1173 void
1174 mpt3sas_base_initialize_callback_handler(void)
1175 {
1176         u8 cb_idx;
1177
1178         for (cb_idx = 0; cb_idx < MPT_MAX_CALLBACKS; cb_idx++)
1179                 mpt3sas_base_release_callback_handler(cb_idx);
1180 }
1181
1182
1183 /**
1184  * _base_build_zero_len_sge - build zero length sg entry
1185  * @ioc: per adapter object
1186  * @paddr: virtual address for SGE
1187  *
1188  * Create a zero length scatter gather entry to insure the IOCs hardware has
1189  * something to use if the target device goes brain dead and tries
1190  * to send data even when none is asked for.
1191  *
1192  * Return nothing.
1193  */
1194 static void
1195 _base_build_zero_len_sge(struct MPT3SAS_ADAPTER *ioc, void *paddr)
1196 {
1197         u32 flags_length = (u32)((MPI2_SGE_FLAGS_LAST_ELEMENT |
1198             MPI2_SGE_FLAGS_END_OF_BUFFER | MPI2_SGE_FLAGS_END_OF_LIST |
1199             MPI2_SGE_FLAGS_SIMPLE_ELEMENT) <<
1200             MPI2_SGE_FLAGS_SHIFT);
1201         ioc->base_add_sg_single(paddr, flags_length, -1);
1202 }
1203
1204 /**
1205  * _base_add_sg_single_32 - Place a simple 32 bit SGE at address pAddr.
1206  * @paddr: virtual address for SGE
1207  * @flags_length: SGE flags and data transfer length
1208  * @dma_addr: Physical address
1209  *
1210  * Return nothing.
1211  */
1212 static void
1213 _base_add_sg_single_32(void *paddr, u32 flags_length, dma_addr_t dma_addr)
1214 {
1215         Mpi2SGESimple32_t *sgel = paddr;
1216
1217         flags_length |= (MPI2_SGE_FLAGS_32_BIT_ADDRESSING |
1218             MPI2_SGE_FLAGS_SYSTEM_ADDRESS) << MPI2_SGE_FLAGS_SHIFT;
1219         sgel->FlagsLength = cpu_to_le32(flags_length);
1220         sgel->Address = cpu_to_le32(dma_addr);
1221 }
1222
1223
1224 /**
1225  * _base_add_sg_single_64 - Place a simple 64 bit SGE at address pAddr.
1226  * @paddr: virtual address for SGE
1227  * @flags_length: SGE flags and data transfer length
1228  * @dma_addr: Physical address
1229  *
1230  * Return nothing.
1231  */
1232 static void
1233 _base_add_sg_single_64(void *paddr, u32 flags_length, dma_addr_t dma_addr)
1234 {
1235         Mpi2SGESimple64_t *sgel = paddr;
1236
1237         flags_length |= (MPI2_SGE_FLAGS_64_BIT_ADDRESSING |
1238             MPI2_SGE_FLAGS_SYSTEM_ADDRESS) << MPI2_SGE_FLAGS_SHIFT;
1239         sgel->FlagsLength = cpu_to_le32(flags_length);
1240         sgel->Address = cpu_to_le64(dma_addr);
1241 }
1242
1243 /**
1244  * _base_get_chain_buffer_tracker - obtain chain tracker
1245  * @ioc: per adapter object
1246  * @smid: smid associated to an IO request
1247  *
1248  * Returns chain tracker(from ioc->free_chain_list)
1249  */
1250 static struct chain_tracker *
1251 _base_get_chain_buffer_tracker(struct MPT3SAS_ADAPTER *ioc, u16 smid)
1252 {
1253         struct chain_tracker *chain_req;
1254         unsigned long flags;
1255
1256         spin_lock_irqsave(&ioc->scsi_lookup_lock, flags);
1257         if (list_empty(&ioc->free_chain_list)) {
1258                 spin_unlock_irqrestore(&ioc->scsi_lookup_lock, flags);
1259                 dfailprintk(ioc, pr_warn(MPT3SAS_FMT
1260                         "chain buffers not available\n", ioc->name));
1261                 return NULL;
1262         }
1263         chain_req = list_entry(ioc->free_chain_list.next,
1264             struct chain_tracker, tracker_list);
1265         list_del_init(&chain_req->tracker_list);
1266         list_add_tail(&chain_req->tracker_list,
1267             &ioc->scsi_lookup[smid - 1].chain_list);
1268         spin_unlock_irqrestore(&ioc->scsi_lookup_lock, flags);
1269         return chain_req;
1270 }
1271
1272
1273 /**
1274  * _base_build_sg - build generic sg
1275  * @ioc: per adapter object
1276  * @psge: virtual address for SGE
1277  * @data_out_dma: physical address for WRITES
1278  * @data_out_sz: data xfer size for WRITES
1279  * @data_in_dma: physical address for READS
1280  * @data_in_sz: data xfer size for READS
1281  *
1282  * Return nothing.
1283  */
1284 static void
1285 _base_build_sg(struct MPT3SAS_ADAPTER *ioc, void *psge,
1286         dma_addr_t data_out_dma, size_t data_out_sz, dma_addr_t data_in_dma,
1287         size_t data_in_sz)
1288 {
1289         u32 sgl_flags;
1290
1291         if (!data_out_sz && !data_in_sz) {
1292                 _base_build_zero_len_sge(ioc, psge);
1293                 return;
1294         }
1295
1296         if (data_out_sz && data_in_sz) {
1297                 /* WRITE sgel first */
1298                 sgl_flags = (MPI2_SGE_FLAGS_SIMPLE_ELEMENT |
1299                     MPI2_SGE_FLAGS_END_OF_BUFFER | MPI2_SGE_FLAGS_HOST_TO_IOC);
1300                 sgl_flags = sgl_flags << MPI2_SGE_FLAGS_SHIFT;
1301                 ioc->base_add_sg_single(psge, sgl_flags |
1302                     data_out_sz, data_out_dma);
1303
1304                 /* incr sgel */
1305                 psge += ioc->sge_size;
1306
1307                 /* READ sgel last */
1308                 sgl_flags = (MPI2_SGE_FLAGS_SIMPLE_ELEMENT |
1309                     MPI2_SGE_FLAGS_LAST_ELEMENT | MPI2_SGE_FLAGS_END_OF_BUFFER |
1310                     MPI2_SGE_FLAGS_END_OF_LIST);
1311                 sgl_flags = sgl_flags << MPI2_SGE_FLAGS_SHIFT;
1312                 ioc->base_add_sg_single(psge, sgl_flags |
1313                     data_in_sz, data_in_dma);
1314         } else if (data_out_sz) /* WRITE */ {
1315                 sgl_flags = (MPI2_SGE_FLAGS_SIMPLE_ELEMENT |
1316                     MPI2_SGE_FLAGS_LAST_ELEMENT | MPI2_SGE_FLAGS_END_OF_BUFFER |
1317                     MPI2_SGE_FLAGS_END_OF_LIST | MPI2_SGE_FLAGS_HOST_TO_IOC);
1318                 sgl_flags = sgl_flags << MPI2_SGE_FLAGS_SHIFT;
1319                 ioc->base_add_sg_single(psge, sgl_flags |
1320                     data_out_sz, data_out_dma);
1321         } else if (data_in_sz) /* READ */ {
1322                 sgl_flags = (MPI2_SGE_FLAGS_SIMPLE_ELEMENT |
1323                     MPI2_SGE_FLAGS_LAST_ELEMENT | MPI2_SGE_FLAGS_END_OF_BUFFER |
1324                     MPI2_SGE_FLAGS_END_OF_LIST);
1325                 sgl_flags = sgl_flags << MPI2_SGE_FLAGS_SHIFT;
1326                 ioc->base_add_sg_single(psge, sgl_flags |
1327                     data_in_sz, data_in_dma);
1328         }
1329 }
1330
1331 /* IEEE format sgls */
1332
1333 /**
1334  * _base_add_sg_single_ieee - add sg element for IEEE format
1335  * @paddr: virtual address for SGE
1336  * @flags: SGE flags
1337  * @chain_offset: number of 128 byte elements from start of segment
1338  * @length: data transfer length
1339  * @dma_addr: Physical address
1340  *
1341  * Return nothing.
1342  */
1343 static void
1344 _base_add_sg_single_ieee(void *paddr, u8 flags, u8 chain_offset, u32 length,
1345         dma_addr_t dma_addr)
1346 {
1347         Mpi25IeeeSgeChain64_t *sgel = paddr;
1348
1349         sgel->Flags = flags;
1350         sgel->NextChainOffset = chain_offset;
1351         sgel->Length = cpu_to_le32(length);
1352         sgel->Address = cpu_to_le64(dma_addr);
1353 }
1354
1355 /**
1356  * _base_build_zero_len_sge_ieee - build zero length sg entry for IEEE format
1357  * @ioc: per adapter object
1358  * @paddr: virtual address for SGE
1359  *
1360  * Create a zero length scatter gather entry to insure the IOCs hardware has
1361  * something to use if the target device goes brain dead and tries
1362  * to send data even when none is asked for.
1363  *
1364  * Return nothing.
1365  */
1366 static void
1367 _base_build_zero_len_sge_ieee(struct MPT3SAS_ADAPTER *ioc, void *paddr)
1368 {
1369         u8 sgl_flags = (MPI2_IEEE_SGE_FLAGS_SIMPLE_ELEMENT |
1370                 MPI2_IEEE_SGE_FLAGS_SYSTEM_ADDR |
1371                 MPI25_IEEE_SGE_FLAGS_END_OF_LIST);
1372
1373         _base_add_sg_single_ieee(paddr, sgl_flags, 0, 0, -1);
1374 }
1375
1376 /**
1377  * _base_build_sg_scmd - main sg creation routine
1378  * @ioc: per adapter object
1379  * @scmd: scsi command
1380  * @smid: system request message index
1381  * Context: none.
1382  *
1383  * The main routine that builds scatter gather table from a given
1384  * scsi request sent via the .queuecommand main handler.
1385  *
1386  * Returns 0 success, anything else error
1387  */
1388 static int
1389 _base_build_sg_scmd(struct MPT3SAS_ADAPTER *ioc,
1390                 struct scsi_cmnd *scmd, u16 smid)
1391 {
1392         Mpi2SCSIIORequest_t *mpi_request;
1393         dma_addr_t chain_dma;
1394         struct scatterlist *sg_scmd;
1395         void *sg_local, *chain;
1396         u32 chain_offset;
1397         u32 chain_length;
1398         u32 chain_flags;
1399         int sges_left;
1400         u32 sges_in_segment;
1401         u32 sgl_flags;
1402         u32 sgl_flags_last_element;
1403         u32 sgl_flags_end_buffer;
1404         struct chain_tracker *chain_req;
1405
1406         mpi_request = mpt3sas_base_get_msg_frame(ioc, smid);
1407
1408         /* init scatter gather flags */
1409         sgl_flags = MPI2_SGE_FLAGS_SIMPLE_ELEMENT;
1410         if (scmd->sc_data_direction == DMA_TO_DEVICE)
1411                 sgl_flags |= MPI2_SGE_FLAGS_HOST_TO_IOC;
1412         sgl_flags_last_element = (sgl_flags | MPI2_SGE_FLAGS_LAST_ELEMENT)
1413             << MPI2_SGE_FLAGS_SHIFT;
1414         sgl_flags_end_buffer = (sgl_flags | MPI2_SGE_FLAGS_LAST_ELEMENT |
1415             MPI2_SGE_FLAGS_END_OF_BUFFER | MPI2_SGE_FLAGS_END_OF_LIST)
1416             << MPI2_SGE_FLAGS_SHIFT;
1417         sgl_flags = sgl_flags << MPI2_SGE_FLAGS_SHIFT;
1418
1419         sg_scmd = scsi_sglist(scmd);
1420         sges_left = scsi_dma_map(scmd);
1421         if (sges_left < 0) {
1422                 sdev_printk(KERN_ERR, scmd->device,
1423                  "pci_map_sg failed: request for %d bytes!\n",
1424                  scsi_bufflen(scmd));
1425                 return -ENOMEM;
1426         }
1427
1428         sg_local = &mpi_request->SGL;
1429         sges_in_segment = ioc->max_sges_in_main_message;
1430         if (sges_left <= sges_in_segment)
1431                 goto fill_in_last_segment;
1432
1433         mpi_request->ChainOffset = (offsetof(Mpi2SCSIIORequest_t, SGL) +
1434             (sges_in_segment * ioc->sge_size))/4;
1435
1436         /* fill in main message segment when there is a chain following */
1437         while (sges_in_segment) {
1438                 if (sges_in_segment == 1)
1439                         ioc->base_add_sg_single(sg_local,
1440                             sgl_flags_last_element | sg_dma_len(sg_scmd),
1441                             sg_dma_address(sg_scmd));
1442                 else
1443                         ioc->base_add_sg_single(sg_local, sgl_flags |
1444                             sg_dma_len(sg_scmd), sg_dma_address(sg_scmd));
1445                 sg_scmd = sg_next(sg_scmd);
1446                 sg_local += ioc->sge_size;
1447                 sges_left--;
1448                 sges_in_segment--;
1449         }
1450
1451         /* initializing the chain flags and pointers */
1452         chain_flags = MPI2_SGE_FLAGS_CHAIN_ELEMENT << MPI2_SGE_FLAGS_SHIFT;
1453         chain_req = _base_get_chain_buffer_tracker(ioc, smid);
1454         if (!chain_req)
1455                 return -1;
1456         chain = chain_req->chain_buffer;
1457         chain_dma = chain_req->chain_buffer_dma;
1458         do {
1459                 sges_in_segment = (sges_left <=
1460                     ioc->max_sges_in_chain_message) ? sges_left :
1461                     ioc->max_sges_in_chain_message;
1462                 chain_offset = (sges_left == sges_in_segment) ?
1463                     0 : (sges_in_segment * ioc->sge_size)/4;
1464                 chain_length = sges_in_segment * ioc->sge_size;
1465                 if (chain_offset) {
1466                         chain_offset = chain_offset <<
1467                             MPI2_SGE_CHAIN_OFFSET_SHIFT;
1468                         chain_length += ioc->sge_size;
1469                 }
1470                 ioc->base_add_sg_single(sg_local, chain_flags | chain_offset |
1471                     chain_length, chain_dma);
1472                 sg_local = chain;
1473                 if (!chain_offset)
1474                         goto fill_in_last_segment;
1475
1476                 /* fill in chain segments */
1477                 while (sges_in_segment) {
1478                         if (sges_in_segment == 1)
1479                                 ioc->base_add_sg_single(sg_local,
1480                                     sgl_flags_last_element |
1481                                     sg_dma_len(sg_scmd),
1482                                     sg_dma_address(sg_scmd));
1483                         else
1484                                 ioc->base_add_sg_single(sg_local, sgl_flags |
1485                                     sg_dma_len(sg_scmd),
1486                                     sg_dma_address(sg_scmd));
1487                         sg_scmd = sg_next(sg_scmd);
1488                         sg_local += ioc->sge_size;
1489                         sges_left--;
1490                         sges_in_segment--;
1491                 }
1492
1493                 chain_req = _base_get_chain_buffer_tracker(ioc, smid);
1494                 if (!chain_req)
1495                         return -1;
1496                 chain = chain_req->chain_buffer;
1497                 chain_dma = chain_req->chain_buffer_dma;
1498         } while (1);
1499
1500
1501  fill_in_last_segment:
1502
1503         /* fill the last segment */
1504         while (sges_left) {
1505                 if (sges_left == 1)
1506                         ioc->base_add_sg_single(sg_local, sgl_flags_end_buffer |
1507                             sg_dma_len(sg_scmd), sg_dma_address(sg_scmd));
1508                 else
1509                         ioc->base_add_sg_single(sg_local, sgl_flags |
1510                             sg_dma_len(sg_scmd), sg_dma_address(sg_scmd));
1511                 sg_scmd = sg_next(sg_scmd);
1512                 sg_local += ioc->sge_size;
1513                 sges_left--;
1514         }
1515
1516         return 0;
1517 }
1518
1519 /**
1520  * _base_build_sg_scmd_ieee - main sg creation routine for IEEE format
1521  * @ioc: per adapter object
1522  * @scmd: scsi command
1523  * @smid: system request message index
1524  * Context: none.
1525  *
1526  * The main routine that builds scatter gather table from a given
1527  * scsi request sent via the .queuecommand main handler.
1528  *
1529  * Returns 0 success, anything else error
1530  */
1531 static int
1532 _base_build_sg_scmd_ieee(struct MPT3SAS_ADAPTER *ioc,
1533         struct scsi_cmnd *scmd, u16 smid)
1534 {
1535         Mpi2SCSIIORequest_t *mpi_request;
1536         dma_addr_t chain_dma;
1537         struct scatterlist *sg_scmd;
1538         void *sg_local, *chain;
1539         u32 chain_offset;
1540         u32 chain_length;
1541         int sges_left;
1542         u32 sges_in_segment;
1543         u8 simple_sgl_flags;
1544         u8 simple_sgl_flags_last;
1545         u8 chain_sgl_flags;
1546         struct chain_tracker *chain_req;
1547
1548         mpi_request = mpt3sas_base_get_msg_frame(ioc, smid);
1549
1550         /* init scatter gather flags */
1551         simple_sgl_flags = MPI2_IEEE_SGE_FLAGS_SIMPLE_ELEMENT |
1552             MPI2_IEEE_SGE_FLAGS_SYSTEM_ADDR;
1553         simple_sgl_flags_last = simple_sgl_flags |
1554             MPI25_IEEE_SGE_FLAGS_END_OF_LIST;
1555         chain_sgl_flags = MPI2_IEEE_SGE_FLAGS_CHAIN_ELEMENT |
1556             MPI2_IEEE_SGE_FLAGS_SYSTEM_ADDR;
1557
1558         sg_scmd = scsi_sglist(scmd);
1559         sges_left = scsi_dma_map(scmd);
1560         if (sges_left < 0) {
1561                 sdev_printk(KERN_ERR, scmd->device,
1562                         "pci_map_sg failed: request for %d bytes!\n",
1563                         scsi_bufflen(scmd));
1564                 return -ENOMEM;
1565         }
1566
1567         sg_local = &mpi_request->SGL;
1568         sges_in_segment = (ioc->request_sz -
1569             offsetof(Mpi2SCSIIORequest_t, SGL))/ioc->sge_size_ieee;
1570         if (sges_left <= sges_in_segment)
1571                 goto fill_in_last_segment;
1572
1573         mpi_request->ChainOffset = (sges_in_segment - 1 /* chain element */) +
1574             (offsetof(Mpi2SCSIIORequest_t, SGL)/ioc->sge_size_ieee);
1575
1576         /* fill in main message segment when there is a chain following */
1577         while (sges_in_segment > 1) {
1578                 _base_add_sg_single_ieee(sg_local, simple_sgl_flags, 0,
1579                     sg_dma_len(sg_scmd), sg_dma_address(sg_scmd));
1580                 sg_scmd = sg_next(sg_scmd);
1581                 sg_local += ioc->sge_size_ieee;
1582                 sges_left--;
1583                 sges_in_segment--;
1584         }
1585
1586         /* initializing the pointers */
1587         chain_req = _base_get_chain_buffer_tracker(ioc, smid);
1588         if (!chain_req)
1589                 return -1;
1590         chain = chain_req->chain_buffer;
1591         chain_dma = chain_req->chain_buffer_dma;
1592         do {
1593                 sges_in_segment = (sges_left <=
1594                     ioc->max_sges_in_chain_message) ? sges_left :
1595                     ioc->max_sges_in_chain_message;
1596                 chain_offset = (sges_left == sges_in_segment) ?
1597                     0 : sges_in_segment;
1598                 chain_length = sges_in_segment * ioc->sge_size_ieee;
1599                 if (chain_offset)
1600                         chain_length += ioc->sge_size_ieee;
1601                 _base_add_sg_single_ieee(sg_local, chain_sgl_flags,
1602                     chain_offset, chain_length, chain_dma);
1603
1604                 sg_local = chain;
1605                 if (!chain_offset)
1606                         goto fill_in_last_segment;
1607
1608                 /* fill in chain segments */
1609                 while (sges_in_segment) {
1610                         _base_add_sg_single_ieee(sg_local, simple_sgl_flags, 0,
1611                             sg_dma_len(sg_scmd), sg_dma_address(sg_scmd));
1612                         sg_scmd = sg_next(sg_scmd);
1613                         sg_local += ioc->sge_size_ieee;
1614                         sges_left--;
1615                         sges_in_segment--;
1616                 }
1617
1618                 chain_req = _base_get_chain_buffer_tracker(ioc, smid);
1619                 if (!chain_req)
1620                         return -1;
1621                 chain = chain_req->chain_buffer;
1622                 chain_dma = chain_req->chain_buffer_dma;
1623         } while (1);
1624
1625
1626  fill_in_last_segment:
1627
1628         /* fill the last segment */
1629         while (sges_left > 0) {
1630                 if (sges_left == 1)
1631                         _base_add_sg_single_ieee(sg_local,
1632                             simple_sgl_flags_last, 0, sg_dma_len(sg_scmd),
1633                             sg_dma_address(sg_scmd));
1634                 else
1635                         _base_add_sg_single_ieee(sg_local, simple_sgl_flags, 0,
1636                             sg_dma_len(sg_scmd), sg_dma_address(sg_scmd));
1637                 sg_scmd = sg_next(sg_scmd);
1638                 sg_local += ioc->sge_size_ieee;
1639                 sges_left--;
1640         }
1641
1642         return 0;
1643 }
1644
1645 /**
1646  * _base_build_sg_ieee - build generic sg for IEEE format
1647  * @ioc: per adapter object
1648  * @psge: virtual address for SGE
1649  * @data_out_dma: physical address for WRITES
1650  * @data_out_sz: data xfer size for WRITES
1651  * @data_in_dma: physical address for READS
1652  * @data_in_sz: data xfer size for READS
1653  *
1654  * Return nothing.
1655  */
1656 static void
1657 _base_build_sg_ieee(struct MPT3SAS_ADAPTER *ioc, void *psge,
1658         dma_addr_t data_out_dma, size_t data_out_sz, dma_addr_t data_in_dma,
1659         size_t data_in_sz)
1660 {
1661         u8 sgl_flags;
1662
1663         if (!data_out_sz && !data_in_sz) {
1664                 _base_build_zero_len_sge_ieee(ioc, psge);
1665                 return;
1666         }
1667
1668         if (data_out_sz && data_in_sz) {
1669                 /* WRITE sgel first */
1670                 sgl_flags = MPI2_IEEE_SGE_FLAGS_SIMPLE_ELEMENT |
1671                     MPI2_IEEE_SGE_FLAGS_SYSTEM_ADDR;
1672                 _base_add_sg_single_ieee(psge, sgl_flags, 0, data_out_sz,
1673                     data_out_dma);
1674
1675                 /* incr sgel */
1676                 psge += ioc->sge_size_ieee;
1677
1678                 /* READ sgel last */
1679                 sgl_flags |= MPI25_IEEE_SGE_FLAGS_END_OF_LIST;
1680                 _base_add_sg_single_ieee(psge, sgl_flags, 0, data_in_sz,
1681                     data_in_dma);
1682         } else if (data_out_sz) /* WRITE */ {
1683                 sgl_flags = MPI2_IEEE_SGE_FLAGS_SIMPLE_ELEMENT |
1684                     MPI25_IEEE_SGE_FLAGS_END_OF_LIST |
1685                     MPI2_IEEE_SGE_FLAGS_SYSTEM_ADDR;
1686                 _base_add_sg_single_ieee(psge, sgl_flags, 0, data_out_sz,
1687                     data_out_dma);
1688         } else if (data_in_sz) /* READ */ {
1689                 sgl_flags = MPI2_IEEE_SGE_FLAGS_SIMPLE_ELEMENT |
1690                     MPI25_IEEE_SGE_FLAGS_END_OF_LIST |
1691                     MPI2_IEEE_SGE_FLAGS_SYSTEM_ADDR;
1692                 _base_add_sg_single_ieee(psge, sgl_flags, 0, data_in_sz,
1693                     data_in_dma);
1694         }
1695 }
1696
1697 #define convert_to_kb(x) ((x) << (PAGE_SHIFT - 10))
1698
1699 /**
1700  * _base_config_dma_addressing - set dma addressing
1701  * @ioc: per adapter object
1702  * @pdev: PCI device struct
1703  *
1704  * Returns 0 for success, non-zero for failure.
1705  */
1706 static int
1707 _base_config_dma_addressing(struct MPT3SAS_ADAPTER *ioc, struct pci_dev *pdev)
1708 {
1709         struct sysinfo s;
1710         u64 consistent_dma_mask;
1711
1712         if (ioc->dma_mask)
1713                 consistent_dma_mask = DMA_BIT_MASK(64);
1714         else
1715                 consistent_dma_mask = DMA_BIT_MASK(32);
1716
1717         if (sizeof(dma_addr_t) > 4) {
1718                 const uint64_t required_mask =
1719                     dma_get_required_mask(&pdev->dev);
1720                 if ((required_mask > DMA_BIT_MASK(32)) &&
1721                     !pci_set_dma_mask(pdev, DMA_BIT_MASK(64)) &&
1722                     !pci_set_consistent_dma_mask(pdev, consistent_dma_mask)) {
1723                         ioc->base_add_sg_single = &_base_add_sg_single_64;
1724                         ioc->sge_size = sizeof(Mpi2SGESimple64_t);
1725                         ioc->dma_mask = 64;
1726                         goto out;
1727                 }
1728         }
1729
1730         if (!pci_set_dma_mask(pdev, DMA_BIT_MASK(32))
1731             && !pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32))) {
1732                 ioc->base_add_sg_single = &_base_add_sg_single_32;
1733                 ioc->sge_size = sizeof(Mpi2SGESimple32_t);
1734                 ioc->dma_mask = 32;
1735         } else
1736                 return -ENODEV;
1737
1738  out:
1739         si_meminfo(&s);
1740         pr_info(MPT3SAS_FMT
1741                 "%d BIT PCI BUS DMA ADDRESSING SUPPORTED, total mem (%ld kB)\n",
1742                 ioc->name, ioc->dma_mask, convert_to_kb(s.totalram));
1743
1744         return 0;
1745 }
1746
1747 static int
1748 _base_change_consistent_dma_mask(struct MPT3SAS_ADAPTER *ioc,
1749                                       struct pci_dev *pdev)
1750 {
1751         if (pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(64))) {
1752                 if (pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32)))
1753                         return -ENODEV;
1754         }
1755         return 0;
1756 }
1757
1758 /**
1759  * _base_check_enable_msix - checks MSIX capabable.
1760  * @ioc: per adapter object
1761  *
1762  * Check to see if card is capable of MSIX, and set number
1763  * of available msix vectors
1764  */
1765 static int
1766 _base_check_enable_msix(struct MPT3SAS_ADAPTER *ioc)
1767 {
1768         int base;
1769         u16 message_control;
1770
1771         /* Check whether controller SAS2008 B0 controller,
1772          * if it is SAS2008 B0 controller use IO-APIC instead of MSIX
1773          */
1774         if (ioc->pdev->device == MPI2_MFGPAGE_DEVID_SAS2008 &&
1775             ioc->pdev->revision == SAS2_PCI_DEVICE_B0_REVISION) {
1776                 return -EINVAL;
1777         }
1778
1779         base = pci_find_capability(ioc->pdev, PCI_CAP_ID_MSIX);
1780         if (!base) {
1781                 dfailprintk(ioc, pr_info(MPT3SAS_FMT "msix not supported\n",
1782                         ioc->name));
1783                 return -EINVAL;
1784         }
1785
1786         /* get msix vector count */
1787         /* NUMA_IO not supported for older controllers */
1788         if (ioc->pdev->device == MPI2_MFGPAGE_DEVID_SAS2004 ||
1789             ioc->pdev->device == MPI2_MFGPAGE_DEVID_SAS2008 ||
1790             ioc->pdev->device == MPI2_MFGPAGE_DEVID_SAS2108_1 ||
1791             ioc->pdev->device == MPI2_MFGPAGE_DEVID_SAS2108_2 ||
1792             ioc->pdev->device == MPI2_MFGPAGE_DEVID_SAS2108_3 ||
1793             ioc->pdev->device == MPI2_MFGPAGE_DEVID_SAS2116_1 ||
1794             ioc->pdev->device == MPI2_MFGPAGE_DEVID_SAS2116_2)
1795                 ioc->msix_vector_count = 1;
1796         else {
1797                 pci_read_config_word(ioc->pdev, base + 2, &message_control);
1798                 ioc->msix_vector_count = (message_control & 0x3FF) + 1;
1799         }
1800         dinitprintk(ioc, pr_info(MPT3SAS_FMT
1801                 "msix is supported, vector_count(%d)\n",
1802                 ioc->name, ioc->msix_vector_count));
1803         return 0;
1804 }
1805
1806 /**
1807  * _base_free_irq - free irq
1808  * @ioc: per adapter object
1809  *
1810  * Freeing respective reply_queue from the list.
1811  */
1812 static void
1813 _base_free_irq(struct MPT3SAS_ADAPTER *ioc)
1814 {
1815         struct adapter_reply_queue *reply_q, *next;
1816
1817         if (list_empty(&ioc->reply_queue_list))
1818                 return;
1819
1820         list_for_each_entry_safe(reply_q, next, &ioc->reply_queue_list, list) {
1821                 list_del(&reply_q->list);
1822                 if (smp_affinity_enable) {
1823                         irq_set_affinity_hint(reply_q->vector, NULL);
1824                         free_cpumask_var(reply_q->affinity_hint);
1825                 }
1826                 free_irq(reply_q->vector, reply_q);
1827                 kfree(reply_q);
1828         }
1829 }
1830
1831 /**
1832  * _base_request_irq - request irq
1833  * @ioc: per adapter object
1834  * @index: msix index into vector table
1835  * @vector: irq vector
1836  *
1837  * Inserting respective reply_queue into the list.
1838  */
1839 static int
1840 _base_request_irq(struct MPT3SAS_ADAPTER *ioc, u8 index, u32 vector)
1841 {
1842         struct adapter_reply_queue *reply_q;
1843         int r;
1844
1845         reply_q =  kzalloc(sizeof(struct adapter_reply_queue), GFP_KERNEL);
1846         if (!reply_q) {
1847                 pr_err(MPT3SAS_FMT "unable to allocate memory %d!\n",
1848                     ioc->name, (int)sizeof(struct adapter_reply_queue));
1849                 return -ENOMEM;
1850         }
1851         reply_q->ioc = ioc;
1852         reply_q->msix_index = index;
1853         reply_q->vector = vector;
1854
1855         if (smp_affinity_enable) {
1856                 if (!zalloc_cpumask_var(&reply_q->affinity_hint, GFP_KERNEL)) {
1857                         kfree(reply_q);
1858                         return -ENOMEM;
1859                 }
1860         }
1861
1862         atomic_set(&reply_q->busy, 0);
1863         if (ioc->msix_enable)
1864                 snprintf(reply_q->name, MPT_NAME_LENGTH, "%s%d-msix%d",
1865                     ioc->driver_name, ioc->id, index);
1866         else
1867                 snprintf(reply_q->name, MPT_NAME_LENGTH, "%s%d",
1868                     ioc->driver_name, ioc->id);
1869         r = request_irq(vector, _base_interrupt, IRQF_SHARED, reply_q->name,
1870             reply_q);
1871         if (r) {
1872                 pr_err(MPT3SAS_FMT "unable to allocate interrupt %d!\n",
1873                     reply_q->name, vector);
1874                 free_cpumask_var(reply_q->affinity_hint);
1875                 kfree(reply_q);
1876                 return -EBUSY;
1877         }
1878
1879         INIT_LIST_HEAD(&reply_q->list);
1880         list_add_tail(&reply_q->list, &ioc->reply_queue_list);
1881         return 0;
1882 }
1883
1884 /**
1885  * _base_assign_reply_queues - assigning msix index for each cpu
1886  * @ioc: per adapter object
1887  *
1888  * The enduser would need to set the affinity via /proc/irq/#/smp_affinity
1889  *
1890  * It would nice if we could call irq_set_affinity, however it is not
1891  * an exported symbol
1892  */
1893 static void
1894 _base_assign_reply_queues(struct MPT3SAS_ADAPTER *ioc)
1895 {
1896         unsigned int cpu, nr_cpus, nr_msix, index = 0;
1897         struct adapter_reply_queue *reply_q;
1898
1899         if (!_base_is_controller_msix_enabled(ioc))
1900                 return;
1901
1902         memset(ioc->cpu_msix_table, 0, ioc->cpu_msix_table_sz);
1903
1904         nr_cpus = num_online_cpus();
1905         nr_msix = ioc->reply_queue_count = min(ioc->reply_queue_count,
1906                                                ioc->facts.MaxMSIxVectors);
1907         if (!nr_msix)
1908                 return;
1909
1910         cpu = cpumask_first(cpu_online_mask);
1911
1912         list_for_each_entry(reply_q, &ioc->reply_queue_list, list) {
1913
1914                 unsigned int i, group = nr_cpus / nr_msix;
1915
1916                 if (cpu >= nr_cpus)
1917                         break;
1918
1919                 if (index < nr_cpus % nr_msix)
1920                         group++;
1921
1922                 for (i = 0 ; i < group ; i++) {
1923                         ioc->cpu_msix_table[cpu] = index;
1924                         if (smp_affinity_enable)
1925                                 cpumask_or(reply_q->affinity_hint,
1926                                    reply_q->affinity_hint, get_cpu_mask(cpu));
1927                         cpu = cpumask_next(cpu, cpu_online_mask);
1928                 }
1929                 if (smp_affinity_enable)
1930                         if (irq_set_affinity_hint(reply_q->vector,
1931                                            reply_q->affinity_hint))
1932                                 dinitprintk(ioc, pr_info(MPT3SAS_FMT
1933                                  "Err setting affinity hint to irq vector %d\n",
1934                                  ioc->name, reply_q->vector));
1935                 index++;
1936         }
1937 }
1938
1939 /**
1940  * _base_disable_msix - disables msix
1941  * @ioc: per adapter object
1942  *
1943  */
1944 static void
1945 _base_disable_msix(struct MPT3SAS_ADAPTER *ioc)
1946 {
1947         if (!ioc->msix_enable)
1948                 return;
1949         pci_disable_msix(ioc->pdev);
1950         ioc->msix_enable = 0;
1951 }
1952
1953 /**
1954  * _base_enable_msix - enables msix, failback to io_apic
1955  * @ioc: per adapter object
1956  *
1957  */
1958 static int
1959 _base_enable_msix(struct MPT3SAS_ADAPTER *ioc)
1960 {
1961         struct msix_entry *entries, *a;
1962         int r;
1963         int i;
1964         u8 try_msix = 0;
1965
1966         if (msix_disable == -1 || msix_disable == 0)
1967                 try_msix = 1;
1968
1969         if (!try_msix)
1970                 goto try_ioapic;
1971
1972         if (_base_check_enable_msix(ioc) != 0)
1973                 goto try_ioapic;
1974
1975         ioc->reply_queue_count = min_t(int, ioc->cpu_count,
1976             ioc->msix_vector_count);
1977
1978         printk(MPT3SAS_FMT "MSI-X vectors supported: %d, no of cores"
1979           ": %d, max_msix_vectors: %d\n", ioc->name, ioc->msix_vector_count,
1980           ioc->cpu_count, max_msix_vectors);
1981
1982         if (!ioc->rdpq_array_enable && max_msix_vectors == -1)
1983                 max_msix_vectors = 8;
1984
1985         if (max_msix_vectors > 0) {
1986                 ioc->reply_queue_count = min_t(int, max_msix_vectors,
1987                         ioc->reply_queue_count);
1988                 ioc->msix_vector_count = ioc->reply_queue_count;
1989         } else if (max_msix_vectors == 0)
1990                 goto try_ioapic;
1991
1992         if (ioc->msix_vector_count < ioc->cpu_count)
1993                 smp_affinity_enable = 0;
1994
1995         entries = kcalloc(ioc->reply_queue_count, sizeof(struct msix_entry),
1996             GFP_KERNEL);
1997         if (!entries) {
1998                 dfailprintk(ioc, pr_info(MPT3SAS_FMT
1999                         "kcalloc failed @ at %s:%d/%s() !!!\n",
2000                         ioc->name, __FILE__, __LINE__, __func__));
2001                 goto try_ioapic;
2002         }
2003
2004         for (i = 0, a = entries; i < ioc->reply_queue_count; i++, a++)
2005                 a->entry = i;
2006
2007         r = pci_enable_msix_exact(ioc->pdev, entries, ioc->reply_queue_count);
2008         if (r) {
2009                 dfailprintk(ioc, pr_info(MPT3SAS_FMT
2010                         "pci_enable_msix_exact failed (r=%d) !!!\n",
2011                         ioc->name, r));
2012                 kfree(entries);
2013                 goto try_ioapic;
2014         }
2015
2016         ioc->msix_enable = 1;
2017         for (i = 0, a = entries; i < ioc->reply_queue_count; i++, a++) {
2018                 r = _base_request_irq(ioc, i, a->vector);
2019                 if (r) {
2020                         _base_free_irq(ioc);
2021                         _base_disable_msix(ioc);
2022                         kfree(entries);
2023                         goto try_ioapic;
2024                 }
2025         }
2026
2027         kfree(entries);
2028         return 0;
2029
2030 /* failback to io_apic interrupt routing */
2031  try_ioapic:
2032
2033         ioc->reply_queue_count = 1;
2034         r = _base_request_irq(ioc, 0, ioc->pdev->irq);
2035
2036         return r;
2037 }
2038
2039 /**
2040  * mpt3sas_base_unmap_resources - free controller resources
2041  * @ioc: per adapter object
2042  */
2043 void
2044 mpt3sas_base_unmap_resources(struct MPT3SAS_ADAPTER *ioc)
2045 {
2046         struct pci_dev *pdev = ioc->pdev;
2047
2048         dexitprintk(ioc, printk(MPT3SAS_FMT "%s\n",
2049                 ioc->name, __func__));
2050
2051         _base_free_irq(ioc);
2052         _base_disable_msix(ioc);
2053
2054         if (ioc->msix96_vector) {
2055                 kfree(ioc->replyPostRegisterIndex);
2056                 ioc->replyPostRegisterIndex = NULL;
2057         }
2058
2059         if (ioc->chip_phys) {
2060                 iounmap(ioc->chip);
2061                 ioc->chip_phys = 0;
2062         }
2063
2064         if (pci_is_enabled(pdev)) {
2065                 pci_release_selected_regions(ioc->pdev, ioc->bars);
2066                 pci_disable_pcie_error_reporting(pdev);
2067                 pci_disable_device(pdev);
2068         }
2069 }
2070
2071 /**
2072  * mpt3sas_base_map_resources - map in controller resources (io/irq/memap)
2073  * @ioc: per adapter object
2074  *
2075  * Returns 0 for success, non-zero for failure.
2076  */
2077 int
2078 mpt3sas_base_map_resources(struct MPT3SAS_ADAPTER *ioc)
2079 {
2080         struct pci_dev *pdev = ioc->pdev;
2081         u32 memap_sz;
2082         u32 pio_sz;
2083         int i, r = 0;
2084         u64 pio_chip = 0;
2085         u64 chip_phys = 0;
2086         struct adapter_reply_queue *reply_q;
2087
2088         dinitprintk(ioc, pr_info(MPT3SAS_FMT "%s\n",
2089             ioc->name, __func__));
2090
2091         ioc->bars = pci_select_bars(pdev, IORESOURCE_MEM);
2092         if (pci_enable_device_mem(pdev)) {
2093                 pr_warn(MPT3SAS_FMT "pci_enable_device_mem: failed\n",
2094                         ioc->name);
2095                 ioc->bars = 0;
2096                 return -ENODEV;
2097         }
2098
2099
2100         if (pci_request_selected_regions(pdev, ioc->bars,
2101             ioc->driver_name)) {
2102                 pr_warn(MPT3SAS_FMT "pci_request_selected_regions: failed\n",
2103                         ioc->name);
2104                 ioc->bars = 0;
2105                 r = -ENODEV;
2106                 goto out_fail;
2107         }
2108
2109 /* AER (Advanced Error Reporting) hooks */
2110         pci_enable_pcie_error_reporting(pdev);
2111
2112         pci_set_master(pdev);
2113
2114
2115         if (_base_config_dma_addressing(ioc, pdev) != 0) {
2116                 pr_warn(MPT3SAS_FMT "no suitable DMA mask for %s\n",
2117                     ioc->name, pci_name(pdev));
2118                 r = -ENODEV;
2119                 goto out_fail;
2120         }
2121
2122         for (i = 0, memap_sz = 0, pio_sz = 0; (i < DEVICE_COUNT_RESOURCE) &&
2123              (!memap_sz || !pio_sz); i++) {
2124                 if (pci_resource_flags(pdev, i) & IORESOURCE_IO) {
2125                         if (pio_sz)
2126                                 continue;
2127                         pio_chip = (u64)pci_resource_start(pdev, i);
2128                         pio_sz = pci_resource_len(pdev, i);
2129                 } else if (pci_resource_flags(pdev, i) & IORESOURCE_MEM) {
2130                         if (memap_sz)
2131                                 continue;
2132                         ioc->chip_phys = pci_resource_start(pdev, i);
2133                         chip_phys = (u64)ioc->chip_phys;
2134                         memap_sz = pci_resource_len(pdev, i);
2135                         ioc->chip = ioremap(ioc->chip_phys, memap_sz);
2136                 }
2137         }
2138
2139         if (ioc->chip == NULL) {
2140                 pr_err(MPT3SAS_FMT "unable to map adapter memory! "
2141                         " or resource not found\n", ioc->name);
2142                 r = -EINVAL;
2143                 goto out_fail;
2144         }
2145
2146         _base_mask_interrupts(ioc);
2147
2148         r = _base_get_ioc_facts(ioc, CAN_SLEEP);
2149         if (r)
2150                 goto out_fail;
2151
2152         if (!ioc->rdpq_array_enable_assigned) {
2153                 ioc->rdpq_array_enable = ioc->rdpq_array_capable;
2154                 ioc->rdpq_array_enable_assigned = 1;
2155         }
2156
2157         r = _base_enable_msix(ioc);
2158         if (r)
2159                 goto out_fail;
2160
2161         /* Use the Combined reply queue feature only for SAS3 C0 & higher
2162          * revision HBAs and also only when reply queue count is greater than 8
2163          */
2164         if (ioc->msix96_vector && ioc->reply_queue_count > 8) {
2165                 /* Determine the Supplemental Reply Post Host Index Registers
2166                  * Addresse. Supplemental Reply Post Host Index Registers
2167                  * starts at offset MPI25_SUP_REPLY_POST_HOST_INDEX_OFFSET and
2168                  * each register is at offset bytes of
2169                  * MPT3_SUP_REPLY_POST_HOST_INDEX_REG_OFFSET from previous one.
2170                  */
2171                 ioc->replyPostRegisterIndex = kcalloc(
2172                      MPT3_SUP_REPLY_POST_HOST_INDEX_REG_COUNT,
2173                      sizeof(resource_size_t *), GFP_KERNEL);
2174                 if (!ioc->replyPostRegisterIndex) {
2175                         dfailprintk(ioc, printk(MPT3SAS_FMT
2176                         "allocation for reply Post Register Index failed!!!\n",
2177                                                                    ioc->name));
2178                         r = -ENOMEM;
2179                         goto out_fail;
2180                 }
2181
2182                 for (i = 0; i < MPT3_SUP_REPLY_POST_HOST_INDEX_REG_COUNT; i++) {
2183                         ioc->replyPostRegisterIndex[i] = (resource_size_t *)
2184                              ((u8 *)&ioc->chip->Doorbell +
2185                              MPI25_SUP_REPLY_POST_HOST_INDEX_OFFSET +
2186                              (i * MPT3_SUP_REPLY_POST_HOST_INDEX_REG_OFFSET));
2187                 }
2188         } else
2189                 ioc->msix96_vector = 0;
2190
2191         list_for_each_entry(reply_q, &ioc->reply_queue_list, list)
2192                 pr_info(MPT3SAS_FMT "%s: IRQ %d\n",
2193                     reply_q->name,  ((ioc->msix_enable) ? "PCI-MSI-X enabled" :
2194                     "IO-APIC enabled"), reply_q->vector);
2195
2196         pr_info(MPT3SAS_FMT "iomem(0x%016llx), mapped(0x%p), size(%d)\n",
2197             ioc->name, (unsigned long long)chip_phys, ioc->chip, memap_sz);
2198         pr_info(MPT3SAS_FMT "ioport(0x%016llx), size(%d)\n",
2199             ioc->name, (unsigned long long)pio_chip, pio_sz);
2200
2201         /* Save PCI configuration state for recovery from PCI AER/EEH errors */
2202         pci_save_state(pdev);
2203         return 0;
2204
2205  out_fail:
2206         mpt3sas_base_unmap_resources(ioc);
2207         return r;
2208 }
2209
2210 /**
2211  * mpt3sas_base_get_msg_frame - obtain request mf pointer
2212  * @ioc: per adapter object
2213  * @smid: system request message index(smid zero is invalid)
2214  *
2215  * Returns virt pointer to message frame.
2216  */
2217 void *
2218 mpt3sas_base_get_msg_frame(struct MPT3SAS_ADAPTER *ioc, u16 smid)
2219 {
2220         return (void *)(ioc->request + (smid * ioc->request_sz));
2221 }
2222
2223 /**
2224  * mpt3sas_base_get_sense_buffer - obtain a sense buffer virt addr
2225  * @ioc: per adapter object
2226  * @smid: system request message index
2227  *
2228  * Returns virt pointer to sense buffer.
2229  */
2230 void *
2231 mpt3sas_base_get_sense_buffer(struct MPT3SAS_ADAPTER *ioc, u16 smid)
2232 {
2233         return (void *)(ioc->sense + ((smid - 1) * SCSI_SENSE_BUFFERSIZE));
2234 }
2235
2236 /**
2237  * mpt3sas_base_get_sense_buffer_dma - obtain a sense buffer dma addr
2238  * @ioc: per adapter object
2239  * @smid: system request message index
2240  *
2241  * Returns phys pointer to the low 32bit address of the sense buffer.
2242  */
2243 __le32
2244 mpt3sas_base_get_sense_buffer_dma(struct MPT3SAS_ADAPTER *ioc, u16 smid)
2245 {
2246         return cpu_to_le32(ioc->sense_dma + ((smid - 1) *
2247             SCSI_SENSE_BUFFERSIZE));
2248 }
2249
2250 /**
2251  * mpt3sas_base_get_reply_virt_addr - obtain reply frames virt address
2252  * @ioc: per adapter object
2253  * @phys_addr: lower 32 physical addr of the reply
2254  *
2255  * Converts 32bit lower physical addr into a virt address.
2256  */
2257 void *
2258 mpt3sas_base_get_reply_virt_addr(struct MPT3SAS_ADAPTER *ioc, u32 phys_addr)
2259 {
2260         if (!phys_addr)
2261                 return NULL;
2262         return ioc->reply + (phys_addr - (u32)ioc->reply_dma);
2263 }
2264
2265 static inline u8
2266 _base_get_msix_index(struct MPT3SAS_ADAPTER *ioc)
2267 {
2268         return ioc->cpu_msix_table[raw_smp_processor_id()];
2269 }
2270
2271 /**
2272  * mpt3sas_base_get_smid - obtain a free smid from internal queue
2273  * @ioc: per adapter object
2274  * @cb_idx: callback index
2275  *
2276  * Returns smid (zero is invalid)
2277  */
2278 u16
2279 mpt3sas_base_get_smid(struct MPT3SAS_ADAPTER *ioc, u8 cb_idx)
2280 {
2281         unsigned long flags;
2282         struct request_tracker *request;
2283         u16 smid;
2284
2285         spin_lock_irqsave(&ioc->scsi_lookup_lock, flags);
2286         if (list_empty(&ioc->internal_free_list)) {
2287                 spin_unlock_irqrestore(&ioc->scsi_lookup_lock, flags);
2288                 pr_err(MPT3SAS_FMT "%s: smid not available\n",
2289                     ioc->name, __func__);
2290                 return 0;
2291         }
2292
2293         request = list_entry(ioc->internal_free_list.next,
2294             struct request_tracker, tracker_list);
2295         request->cb_idx = cb_idx;
2296         smid = request->smid;
2297         list_del(&request->tracker_list);
2298         spin_unlock_irqrestore(&ioc->scsi_lookup_lock, flags);
2299         return smid;
2300 }
2301
2302 /**
2303  * mpt3sas_base_get_smid_scsiio - obtain a free smid from scsiio queue
2304  * @ioc: per adapter object
2305  * @cb_idx: callback index
2306  * @scmd: pointer to scsi command object
2307  *
2308  * Returns smid (zero is invalid)
2309  */
2310 u16
2311 mpt3sas_base_get_smid_scsiio(struct MPT3SAS_ADAPTER *ioc, u8 cb_idx,
2312         struct scsi_cmnd *scmd)
2313 {
2314         unsigned long flags;
2315         struct scsiio_tracker *request;
2316         u16 smid;
2317
2318         spin_lock_irqsave(&ioc->scsi_lookup_lock, flags);
2319         if (list_empty(&ioc->free_list)) {
2320                 spin_unlock_irqrestore(&ioc->scsi_lookup_lock, flags);
2321                 pr_err(MPT3SAS_FMT "%s: smid not available\n",
2322                     ioc->name, __func__);
2323                 return 0;
2324         }
2325
2326         request = list_entry(ioc->free_list.next,
2327             struct scsiio_tracker, tracker_list);
2328         request->scmd = scmd;
2329         request->cb_idx = cb_idx;
2330         smid = request->smid;
2331         request->msix_io = _base_get_msix_index(ioc);
2332         list_del(&request->tracker_list);
2333         spin_unlock_irqrestore(&ioc->scsi_lookup_lock, flags);
2334         return smid;
2335 }
2336
2337 /**
2338  * mpt3sas_base_get_smid_hpr - obtain a free smid from hi-priority queue
2339  * @ioc: per adapter object
2340  * @cb_idx: callback index
2341  *
2342  * Returns smid (zero is invalid)
2343  */
2344 u16
2345 mpt3sas_base_get_smid_hpr(struct MPT3SAS_ADAPTER *ioc, u8 cb_idx)
2346 {
2347         unsigned long flags;
2348         struct request_tracker *request;
2349         u16 smid;
2350
2351         spin_lock_irqsave(&ioc->scsi_lookup_lock, flags);
2352         if (list_empty(&ioc->hpr_free_list)) {
2353                 spin_unlock_irqrestore(&ioc->scsi_lookup_lock, flags);
2354                 return 0;
2355         }
2356
2357         request = list_entry(ioc->hpr_free_list.next,
2358             struct request_tracker, tracker_list);
2359         request->cb_idx = cb_idx;
2360         smid = request->smid;
2361         list_del(&request->tracker_list);
2362         spin_unlock_irqrestore(&ioc->scsi_lookup_lock, flags);
2363         return smid;
2364 }
2365
2366 /**
2367  * mpt3sas_base_free_smid - put smid back on free_list
2368  * @ioc: per adapter object
2369  * @smid: system request message index
2370  *
2371  * Return nothing.
2372  */
2373 void
2374 mpt3sas_base_free_smid(struct MPT3SAS_ADAPTER *ioc, u16 smid)
2375 {
2376         unsigned long flags;
2377         int i;
2378         struct chain_tracker *chain_req, *next;
2379
2380         spin_lock_irqsave(&ioc->scsi_lookup_lock, flags);
2381         if (smid < ioc->hi_priority_smid) {
2382                 /* scsiio queue */
2383                 i = smid - 1;
2384                 if (!list_empty(&ioc->scsi_lookup[i].chain_list)) {
2385                         list_for_each_entry_safe(chain_req, next,
2386                             &ioc->scsi_lookup[i].chain_list, tracker_list) {
2387                                 list_del_init(&chain_req->tracker_list);
2388                                 list_add(&chain_req->tracker_list,
2389                                     &ioc->free_chain_list);
2390                         }
2391                 }
2392                 ioc->scsi_lookup[i].cb_idx = 0xFF;
2393                 ioc->scsi_lookup[i].scmd = NULL;
2394                 ioc->scsi_lookup[i].direct_io = 0;
2395                 list_add(&ioc->scsi_lookup[i].tracker_list, &ioc->free_list);
2396                 spin_unlock_irqrestore(&ioc->scsi_lookup_lock, flags);
2397
2398                 /*
2399                  * See _wait_for_commands_to_complete() call with regards
2400                  * to this code.
2401                  */
2402                 if (ioc->shost_recovery && ioc->pending_io_count) {
2403                         if (ioc->pending_io_count == 1)
2404                                 wake_up(&ioc->reset_wq);
2405                         ioc->pending_io_count--;
2406                 }
2407                 return;
2408         } else if (smid < ioc->internal_smid) {
2409                 /* hi-priority */
2410                 i = smid - ioc->hi_priority_smid;
2411                 ioc->hpr_lookup[i].cb_idx = 0xFF;
2412                 list_add(&ioc->hpr_lookup[i].tracker_list, &ioc->hpr_free_list);
2413         } else if (smid <= ioc->hba_queue_depth) {
2414                 /* internal queue */
2415                 i = smid - ioc->internal_smid;
2416                 ioc->internal_lookup[i].cb_idx = 0xFF;
2417                 list_add(&ioc->internal_lookup[i].tracker_list,
2418                     &ioc->internal_free_list);
2419         }
2420         spin_unlock_irqrestore(&ioc->scsi_lookup_lock, flags);
2421 }
2422
2423 /**
2424  * _base_writeq - 64 bit write to MMIO
2425  * @ioc: per adapter object
2426  * @b: data payload
2427  * @addr: address in MMIO space
2428  * @writeq_lock: spin lock
2429  *
2430  * Glue for handling an atomic 64 bit word to MMIO. This special handling takes
2431  * care of 32 bit environment where its not quarenteed to send the entire word
2432  * in one transfer.
2433  */
2434 #if defined(writeq) && defined(CONFIG_64BIT)
2435 static inline void
2436 _base_writeq(__u64 b, volatile void __iomem *addr, spinlock_t *writeq_lock)
2437 {
2438         writeq(cpu_to_le64(b), addr);
2439 }
2440 #else
2441 static inline void
2442 _base_writeq(__u64 b, volatile void __iomem *addr, spinlock_t *writeq_lock)
2443 {
2444         unsigned long flags;
2445         __u64 data_out = cpu_to_le64(b);
2446
2447         spin_lock_irqsave(writeq_lock, flags);
2448         writel((u32)(data_out), addr);
2449         writel((u32)(data_out >> 32), (addr + 4));
2450         spin_unlock_irqrestore(writeq_lock, flags);
2451 }
2452 #endif
2453
2454 /**
2455  * mpt3sas_base_put_smid_scsi_io - send SCSI_IO request to firmware
2456  * @ioc: per adapter object
2457  * @smid: system request message index
2458  * @handle: device handle
2459  *
2460  * Return nothing.
2461  */
2462 void
2463 mpt3sas_base_put_smid_scsi_io(struct MPT3SAS_ADAPTER *ioc, u16 smid, u16 handle)
2464 {
2465         Mpi2RequestDescriptorUnion_t descriptor;
2466         u64 *request = (u64 *)&descriptor;
2467
2468
2469         descriptor.SCSIIO.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_SCSI_IO;
2470         descriptor.SCSIIO.MSIxIndex =  _base_get_msix_index(ioc);
2471         descriptor.SCSIIO.SMID = cpu_to_le16(smid);
2472         descriptor.SCSIIO.DevHandle = cpu_to_le16(handle);
2473         descriptor.SCSIIO.LMID = 0;
2474         _base_writeq(*request, &ioc->chip->RequestDescriptorPostLow,
2475             &ioc->scsi_lookup_lock);
2476 }
2477
2478 /**
2479  * mpt3sas_base_put_smid_fast_path - send fast path request to firmware
2480  * @ioc: per adapter object
2481  * @smid: system request message index
2482  * @handle: device handle
2483  *
2484  * Return nothing.
2485  */
2486 void
2487 mpt3sas_base_put_smid_fast_path(struct MPT3SAS_ADAPTER *ioc, u16 smid,
2488         u16 handle)
2489 {
2490         Mpi2RequestDescriptorUnion_t descriptor;
2491         u64 *request = (u64 *)&descriptor;
2492
2493         descriptor.SCSIIO.RequestFlags =
2494             MPI25_REQ_DESCRIPT_FLAGS_FAST_PATH_SCSI_IO;
2495         descriptor.SCSIIO.MSIxIndex = _base_get_msix_index(ioc);
2496         descriptor.SCSIIO.SMID = cpu_to_le16(smid);
2497         descriptor.SCSIIO.DevHandle = cpu_to_le16(handle);
2498         descriptor.SCSIIO.LMID = 0;
2499         _base_writeq(*request, &ioc->chip->RequestDescriptorPostLow,
2500             &ioc->scsi_lookup_lock);
2501 }
2502
2503 /**
2504  * mpt3sas_base_put_smid_hi_priority - send Task Managment request to firmware
2505  * @ioc: per adapter object
2506  * @smid: system request message index
2507  * @msix_task: msix_task will be same as msix of IO incase of task abort else 0.
2508  * Return nothing.
2509  */
2510 void
2511 mpt3sas_base_put_smid_hi_priority(struct MPT3SAS_ADAPTER *ioc, u16 smid,
2512         u16 msix_task)
2513 {
2514         Mpi2RequestDescriptorUnion_t descriptor;
2515         u64 *request = (u64 *)&descriptor;
2516
2517         descriptor.HighPriority.RequestFlags =
2518             MPI2_REQ_DESCRIPT_FLAGS_HIGH_PRIORITY;
2519         descriptor.HighPriority.MSIxIndex =  msix_task;
2520         descriptor.HighPriority.SMID = cpu_to_le16(smid);
2521         descriptor.HighPriority.LMID = 0;
2522         descriptor.HighPriority.Reserved1 = 0;
2523         _base_writeq(*request, &ioc->chip->RequestDescriptorPostLow,
2524             &ioc->scsi_lookup_lock);
2525 }
2526
2527 /**
2528  * mpt3sas_base_put_smid_default - Default, primarily used for config pages
2529  * @ioc: per adapter object
2530  * @smid: system request message index
2531  *
2532  * Return nothing.
2533  */
2534 void
2535 mpt3sas_base_put_smid_default(struct MPT3SAS_ADAPTER *ioc, u16 smid)
2536 {
2537         Mpi2RequestDescriptorUnion_t descriptor;
2538         u64 *request = (u64 *)&descriptor;
2539
2540         descriptor.Default.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_DEFAULT_TYPE;
2541         descriptor.Default.MSIxIndex =  _base_get_msix_index(ioc);
2542         descriptor.Default.SMID = cpu_to_le16(smid);
2543         descriptor.Default.LMID = 0;
2544         descriptor.Default.DescriptorTypeDependent = 0;
2545         _base_writeq(*request, &ioc->chip->RequestDescriptorPostLow,
2546             &ioc->scsi_lookup_lock);
2547 }
2548
2549 /**
2550  * _base_display_OEMs_branding - Display branding string
2551  * @ioc: per adapter object
2552  *
2553  * Return nothing.
2554  */
2555 static void
2556 _base_display_OEMs_branding(struct MPT3SAS_ADAPTER *ioc)
2557 {
2558         if (ioc->pdev->subsystem_vendor != PCI_VENDOR_ID_INTEL)
2559                 return;
2560
2561         switch (ioc->pdev->subsystem_vendor) {
2562         case PCI_VENDOR_ID_INTEL:
2563                 switch (ioc->pdev->device) {
2564                 case MPI2_MFGPAGE_DEVID_SAS2008:
2565                         switch (ioc->pdev->subsystem_device) {
2566                         case MPT2SAS_INTEL_RMS2LL080_SSDID:
2567                                 pr_info(MPT3SAS_FMT "%s\n", ioc->name,
2568                                     MPT2SAS_INTEL_RMS2LL080_BRANDING);
2569                                 break;
2570                         case MPT2SAS_INTEL_RMS2LL040_SSDID:
2571                                 pr_info(MPT3SAS_FMT "%s\n", ioc->name,
2572                                     MPT2SAS_INTEL_RMS2LL040_BRANDING);
2573                                 break;
2574                         case MPT2SAS_INTEL_SSD910_SSDID:
2575                                 pr_info(MPT3SAS_FMT "%s\n", ioc->name,
2576                                     MPT2SAS_INTEL_SSD910_BRANDING);
2577                                 break;
2578                         default:
2579                                 pr_info(MPT3SAS_FMT
2580                                  "Intel(R) Controller: Subsystem ID: 0x%X\n",
2581                                  ioc->name, ioc->pdev->subsystem_device);
2582                                 break;
2583                         }
2584                 case MPI2_MFGPAGE_DEVID_SAS2308_2:
2585                         switch (ioc->pdev->subsystem_device) {
2586                         case MPT2SAS_INTEL_RS25GB008_SSDID:
2587                                 pr_info(MPT3SAS_FMT "%s\n", ioc->name,
2588                                     MPT2SAS_INTEL_RS25GB008_BRANDING);
2589                                 break;
2590                         case MPT2SAS_INTEL_RMS25JB080_SSDID:
2591                                 pr_info(MPT3SAS_FMT "%s\n", ioc->name,
2592                                     MPT2SAS_INTEL_RMS25JB080_BRANDING);
2593                                 break;
2594                         case MPT2SAS_INTEL_RMS25JB040_SSDID:
2595                                 pr_info(MPT3SAS_FMT "%s\n", ioc->name,
2596                                     MPT2SAS_INTEL_RMS25JB040_BRANDING);
2597                                 break;
2598                         case MPT2SAS_INTEL_RMS25KB080_SSDID:
2599                                 pr_info(MPT3SAS_FMT "%s\n", ioc->name,
2600                                     MPT2SAS_INTEL_RMS25KB080_BRANDING);
2601                                 break;
2602                         case MPT2SAS_INTEL_RMS25KB040_SSDID:
2603                                 pr_info(MPT3SAS_FMT "%s\n", ioc->name,
2604                                     MPT2SAS_INTEL_RMS25KB040_BRANDING);
2605                                 break;
2606                         case MPT2SAS_INTEL_RMS25LB040_SSDID:
2607                                 pr_info(MPT3SAS_FMT "%s\n", ioc->name,
2608                                     MPT2SAS_INTEL_RMS25LB040_BRANDING);
2609                                 break;
2610                         case MPT2SAS_INTEL_RMS25LB080_SSDID:
2611                                 pr_info(MPT3SAS_FMT "%s\n", ioc->name,
2612                                     MPT2SAS_INTEL_RMS25LB080_BRANDING);
2613                                 break;
2614                         default:
2615                                 pr_info(MPT3SAS_FMT
2616                                  "Intel(R) Controller: Subsystem ID: 0x%X\n",
2617                                  ioc->name, ioc->pdev->subsystem_device);
2618                                 break;
2619                         }
2620                 case MPI25_MFGPAGE_DEVID_SAS3008:
2621                         switch (ioc->pdev->subsystem_device) {
2622                         case MPT3SAS_INTEL_RMS3JC080_SSDID:
2623                                 pr_info(MPT3SAS_FMT "%s\n", ioc->name,
2624                                         MPT3SAS_INTEL_RMS3JC080_BRANDING);
2625                                 break;
2626
2627                         case MPT3SAS_INTEL_RS3GC008_SSDID:
2628                                 pr_info(MPT3SAS_FMT "%s\n", ioc->name,
2629                                         MPT3SAS_INTEL_RS3GC008_BRANDING);
2630                                 break;
2631                         case MPT3SAS_INTEL_RS3FC044_SSDID:
2632                                 pr_info(MPT3SAS_FMT "%s\n", ioc->name,
2633                                         MPT3SAS_INTEL_RS3FC044_BRANDING);
2634                                 break;
2635                         case MPT3SAS_INTEL_RS3UC080_SSDID:
2636                                 pr_info(MPT3SAS_FMT "%s\n", ioc->name,
2637                                         MPT3SAS_INTEL_RS3UC080_BRANDING);
2638                                 break;
2639                         default:
2640                                 pr_info(MPT3SAS_FMT
2641                                  "Intel(R) Controller: Subsystem ID: 0x%X\n",
2642                                  ioc->name, ioc->pdev->subsystem_device);
2643                                 break;
2644                         }
2645                         break;
2646                 default:
2647                         pr_info(MPT3SAS_FMT
2648                          "Intel(R) Controller: Subsystem ID: 0x%X\n",
2649                          ioc->name, ioc->pdev->subsystem_device);
2650                         break;
2651                 }
2652                 break;
2653         case PCI_VENDOR_ID_DELL:
2654                 switch (ioc->pdev->device) {
2655                 case MPI2_MFGPAGE_DEVID_SAS2008:
2656                         switch (ioc->pdev->subsystem_device) {
2657                         case MPT2SAS_DELL_6GBPS_SAS_HBA_SSDID:
2658                                 pr_info(MPT3SAS_FMT "%s\n", ioc->name,
2659                                  MPT2SAS_DELL_6GBPS_SAS_HBA_BRANDING);
2660                                 break;
2661                         case MPT2SAS_DELL_PERC_H200_ADAPTER_SSDID:
2662                                 pr_info(MPT3SAS_FMT "%s\n", ioc->name,
2663                                  MPT2SAS_DELL_PERC_H200_ADAPTER_BRANDING);
2664                                 break;
2665                         case MPT2SAS_DELL_PERC_H200_INTEGRATED_SSDID:
2666                                 pr_info(MPT3SAS_FMT "%s\n", ioc->name,
2667                                  MPT2SAS_DELL_PERC_H200_INTEGRATED_BRANDING);
2668                                 break;
2669                         case MPT2SAS_DELL_PERC_H200_MODULAR_SSDID:
2670                                 pr_info(MPT3SAS_FMT "%s\n", ioc->name,
2671                                  MPT2SAS_DELL_PERC_H200_MODULAR_BRANDING);
2672                                 break;
2673                         case MPT2SAS_DELL_PERC_H200_EMBEDDED_SSDID:
2674                                 pr_info(MPT3SAS_FMT "%s\n", ioc->name,
2675                                  MPT2SAS_DELL_PERC_H200_EMBEDDED_BRANDING);
2676                                 break;
2677                         case MPT2SAS_DELL_PERC_H200_SSDID:
2678                                 pr_info(MPT3SAS_FMT "%s\n", ioc->name,
2679                                  MPT2SAS_DELL_PERC_H200_BRANDING);
2680                                 break;
2681                         case MPT2SAS_DELL_6GBPS_SAS_SSDID:
2682                                 pr_info(MPT3SAS_FMT "%s\n", ioc->name,
2683                                  MPT2SAS_DELL_6GBPS_SAS_BRANDING);
2684                                 break;
2685                         default:
2686                                 pr_info(MPT3SAS_FMT
2687                                    "Dell 6Gbps HBA: Subsystem ID: 0x%X\n",
2688                                    ioc->name, ioc->pdev->subsystem_device);
2689                                 break;
2690                         }
2691                         break;
2692                 case MPI25_MFGPAGE_DEVID_SAS3008:
2693                         switch (ioc->pdev->subsystem_device) {
2694                         case MPT3SAS_DELL_12G_HBA_SSDID:
2695                                 pr_info(MPT3SAS_FMT "%s\n", ioc->name,
2696                                         MPT3SAS_DELL_12G_HBA_BRANDING);
2697                                 break;
2698                         default:
2699                                 pr_info(MPT3SAS_FMT
2700                                    "Dell 12Gbps HBA: Subsystem ID: 0x%X\n",
2701                                    ioc->name, ioc->pdev->subsystem_device);
2702                                 break;
2703                         }
2704                         break;
2705                 default:
2706                         pr_info(MPT3SAS_FMT
2707                            "Dell HBA: Subsystem ID: 0x%X\n", ioc->name,
2708                            ioc->pdev->subsystem_device);
2709                         break;
2710                 }
2711                 break;
2712         case PCI_VENDOR_ID_CISCO:
2713                 switch (ioc->pdev->device) {
2714                 case MPI25_MFGPAGE_DEVID_SAS3008:
2715                         switch (ioc->pdev->subsystem_device) {
2716                         case MPT3SAS_CISCO_12G_8E_HBA_SSDID:
2717                                 pr_info(MPT3SAS_FMT "%s\n", ioc->name,
2718                                         MPT3SAS_CISCO_12G_8E_HBA_BRANDING);
2719                                 break;
2720                         case MPT3SAS_CISCO_12G_8I_HBA_SSDID:
2721                                 pr_info(MPT3SAS_FMT "%s\n", ioc->name,
2722                                         MPT3SAS_CISCO_12G_8I_HBA_BRANDING);
2723                                 break;
2724                         case MPT3SAS_CISCO_12G_AVILA_HBA_SSDID:
2725                                 pr_info(MPT3SAS_FMT "%s\n", ioc->name,
2726                                         MPT3SAS_CISCO_12G_AVILA_HBA_BRANDING);
2727                                 break;
2728                         default:
2729                                 pr_info(MPT3SAS_FMT
2730                                   "Cisco 12Gbps SAS HBA: Subsystem ID: 0x%X\n",
2731                                   ioc->name, ioc->pdev->subsystem_device);
2732                                 break;
2733                         }
2734                         break;
2735                 case MPI25_MFGPAGE_DEVID_SAS3108_1:
2736                         switch (ioc->pdev->subsystem_device) {
2737                         case MPT3SAS_CISCO_12G_AVILA_HBA_SSDID:
2738                                 pr_info(MPT3SAS_FMT "%s\n", ioc->name,
2739                                 MPT3SAS_CISCO_12G_AVILA_HBA_BRANDING);
2740                                 break;
2741                         case MPT3SAS_CISCO_12G_COLUSA_MEZZANINE_HBA_SSDID:
2742                                 pr_info(MPT3SAS_FMT "%s\n", ioc->name,
2743                                 MPT3SAS_CISCO_12G_COLUSA_MEZZANINE_HBA_BRANDING
2744                                 );
2745                                 break;
2746                         default:
2747                                 pr_info(MPT3SAS_FMT
2748                                  "Cisco 12Gbps SAS HBA: Subsystem ID: 0x%X\n",
2749                                  ioc->name, ioc->pdev->subsystem_device);
2750                                 break;
2751                         }
2752                         break;
2753                 default:
2754                         pr_info(MPT3SAS_FMT
2755                            "Cisco SAS HBA: Subsystem ID: 0x%X\n",
2756                            ioc->name, ioc->pdev->subsystem_device);
2757                         break;
2758                 }
2759                 break;
2760         case MPT2SAS_HP_3PAR_SSVID:
2761                 switch (ioc->pdev->device) {
2762                 case MPI2_MFGPAGE_DEVID_SAS2004:
2763                         switch (ioc->pdev->subsystem_device) {
2764                         case MPT2SAS_HP_DAUGHTER_2_4_INTERNAL_SSDID:
2765                                 pr_info(MPT3SAS_FMT "%s\n", ioc->name,
2766                                     MPT2SAS_HP_DAUGHTER_2_4_INTERNAL_BRANDING);
2767                                 break;
2768                         default:
2769                                 pr_info(MPT3SAS_FMT
2770                                    "HP 6Gbps SAS HBA: Subsystem ID: 0x%X\n",
2771                                    ioc->name, ioc->pdev->subsystem_device);
2772                                 break;
2773                         }
2774                 case MPI2_MFGPAGE_DEVID_SAS2308_2:
2775                         switch (ioc->pdev->subsystem_device) {
2776                         case MPT2SAS_HP_2_4_INTERNAL_SSDID:
2777                                 pr_info(MPT3SAS_FMT "%s\n", ioc->name,
2778                                     MPT2SAS_HP_2_4_INTERNAL_BRANDING);
2779                                 break;
2780                         case MPT2SAS_HP_2_4_EXTERNAL_SSDID:
2781                                 pr_info(MPT3SAS_FMT "%s\n", ioc->name,
2782                                     MPT2SAS_HP_2_4_EXTERNAL_BRANDING);
2783                                 break;
2784                         case MPT2SAS_HP_1_4_INTERNAL_1_4_EXTERNAL_SSDID:
2785                                 pr_info(MPT3SAS_FMT "%s\n", ioc->name,
2786                                  MPT2SAS_HP_1_4_INTERNAL_1_4_EXTERNAL_BRANDING);
2787                                 break;
2788                         case MPT2SAS_HP_EMBEDDED_2_4_INTERNAL_SSDID:
2789                                 pr_info(MPT3SAS_FMT "%s\n", ioc->name,
2790                                     MPT2SAS_HP_EMBEDDED_2_4_INTERNAL_BRANDING);
2791                                 break;
2792                         default:
2793                                 pr_info(MPT3SAS_FMT
2794                                    "HP 6Gbps SAS HBA: Subsystem ID: 0x%X\n",
2795                                    ioc->name, ioc->pdev->subsystem_device);
2796                                 break;
2797                         }
2798                 default:
2799                         pr_info(MPT3SAS_FMT
2800                            "HP SAS HBA: Subsystem ID: 0x%X\n",
2801                            ioc->name, ioc->pdev->subsystem_device);
2802                         break;
2803                 }
2804         default:
2805                 break;
2806         }
2807 }
2808
2809 /**
2810  * _base_display_ioc_capabilities - Disply IOC's capabilities.
2811  * @ioc: per adapter object
2812  *
2813  * Return nothing.
2814  */
2815 static void
2816 _base_display_ioc_capabilities(struct MPT3SAS_ADAPTER *ioc)
2817 {
2818         int i = 0;
2819         char desc[16];
2820         u32 iounit_pg1_flags;
2821         u32 bios_version;
2822
2823         bios_version = le32_to_cpu(ioc->bios_pg3.BiosVersion);
2824         strncpy(desc, ioc->manu_pg0.ChipName, 16);
2825         pr_info(MPT3SAS_FMT "%s: FWVersion(%02d.%02d.%02d.%02d), "\
2826            "ChipRevision(0x%02x), BiosVersion(%02d.%02d.%02d.%02d)\n",
2827             ioc->name, desc,
2828            (ioc->facts.FWVersion.Word & 0xFF000000) >> 24,
2829            (ioc->facts.FWVersion.Word & 0x00FF0000) >> 16,
2830            (ioc->facts.FWVersion.Word & 0x0000FF00) >> 8,
2831            ioc->facts.FWVersion.Word & 0x000000FF,
2832            ioc->pdev->revision,
2833            (bios_version & 0xFF000000) >> 24,
2834            (bios_version & 0x00FF0000) >> 16,
2835            (bios_version & 0x0000FF00) >> 8,
2836             bios_version & 0x000000FF);
2837
2838         _base_display_OEMs_branding(ioc);
2839
2840         pr_info(MPT3SAS_FMT "Protocol=(", ioc->name);
2841
2842         if (ioc->facts.ProtocolFlags & MPI2_IOCFACTS_PROTOCOL_SCSI_INITIATOR) {
2843                 pr_info("Initiator");
2844                 i++;
2845         }
2846
2847         if (ioc->facts.ProtocolFlags & MPI2_IOCFACTS_PROTOCOL_SCSI_TARGET) {
2848                 pr_info("%sTarget", i ? "," : "");
2849                 i++;
2850         }
2851
2852         i = 0;
2853         pr_info("), ");
2854         pr_info("Capabilities=(");
2855
2856         if (!ioc->hide_ir_msg) {
2857                 if (ioc->facts.IOCCapabilities &
2858                     MPI2_IOCFACTS_CAPABILITY_INTEGRATED_RAID) {
2859                         pr_info("Raid");
2860                         i++;
2861                 }
2862         }
2863
2864         if (ioc->facts.IOCCapabilities & MPI2_IOCFACTS_CAPABILITY_TLR) {
2865                 pr_info("%sTLR", i ? "," : "");
2866                 i++;
2867         }
2868
2869         if (ioc->facts.IOCCapabilities & MPI2_IOCFACTS_CAPABILITY_MULTICAST) {
2870                 pr_info("%sMulticast", i ? "," : "");
2871                 i++;
2872         }
2873
2874         if (ioc->facts.IOCCapabilities &
2875             MPI2_IOCFACTS_CAPABILITY_BIDIRECTIONAL_TARGET) {
2876                 pr_info("%sBIDI Target", i ? "," : "");
2877                 i++;
2878         }
2879
2880         if (ioc->facts.IOCCapabilities & MPI2_IOCFACTS_CAPABILITY_EEDP) {
2881                 pr_info("%sEEDP", i ? "," : "");
2882                 i++;
2883         }
2884
2885         if (ioc->facts.IOCCapabilities &
2886             MPI2_IOCFACTS_CAPABILITY_SNAPSHOT_BUFFER) {
2887                 pr_info("%sSnapshot Buffer", i ? "," : "");
2888                 i++;
2889         }
2890
2891         if (ioc->facts.IOCCapabilities &
2892             MPI2_IOCFACTS_CAPABILITY_DIAG_TRACE_BUFFER) {
2893                 pr_info("%sDiag Trace Buffer", i ? "," : "");
2894                 i++;
2895         }
2896
2897         if (ioc->facts.IOCCapabilities &
2898             MPI2_IOCFACTS_CAPABILITY_EXTENDED_BUFFER) {
2899                 pr_info("%sDiag Extended Buffer", i ? "," : "");
2900                 i++;
2901         }
2902
2903         if (ioc->facts.IOCCapabilities &
2904             MPI2_IOCFACTS_CAPABILITY_TASK_SET_FULL_HANDLING) {
2905                 pr_info("%sTask Set Full", i ? "," : "");
2906                 i++;
2907         }
2908
2909         iounit_pg1_flags = le32_to_cpu(ioc->iounit_pg1.Flags);
2910         if (!(iounit_pg1_flags & MPI2_IOUNITPAGE1_NATIVE_COMMAND_Q_DISABLE)) {
2911                 pr_info("%sNCQ", i ? "," : "");
2912                 i++;
2913         }
2914
2915         pr_info(")\n");
2916 }
2917
2918 /**
2919  * mpt3sas_base_update_missing_delay - change the missing delay timers
2920  * @ioc: per adapter object
2921  * @device_missing_delay: amount of time till device is reported missing
2922  * @io_missing_delay: interval IO is returned when there is a missing device
2923  *
2924  * Return nothing.
2925  *
2926  * Passed on the command line, this function will modify the device missing
2927  * delay, as well as the io missing delay. This should be called at driver
2928  * load time.
2929  */
2930 void
2931 mpt3sas_base_update_missing_delay(struct MPT3SAS_ADAPTER *ioc,
2932         u16 device_missing_delay, u8 io_missing_delay)
2933 {
2934         u16 dmd, dmd_new, dmd_orignal;
2935         u8 io_missing_delay_original;
2936         u16 sz;
2937         Mpi2SasIOUnitPage1_t *sas_iounit_pg1 = NULL;
2938         Mpi2ConfigReply_t mpi_reply;
2939         u8 num_phys = 0;
2940         u16 ioc_status;
2941
2942         mpt3sas_config_get_number_hba_phys(ioc, &num_phys);
2943         if (!num_phys)
2944                 return;
2945
2946         sz = offsetof(Mpi2SasIOUnitPage1_t, PhyData) + (num_phys *
2947             sizeof(Mpi2SasIOUnit1PhyData_t));
2948         sas_iounit_pg1 = kzalloc(sz, GFP_KERNEL);
2949         if (!sas_iounit_pg1) {
2950                 pr_err(MPT3SAS_FMT "failure at %s:%d/%s()!\n",
2951                     ioc->name, __FILE__, __LINE__, __func__);
2952                 goto out;
2953         }
2954         if ((mpt3sas_config_get_sas_iounit_pg1(ioc, &mpi_reply,
2955             sas_iounit_pg1, sz))) {
2956                 pr_err(MPT3SAS_FMT "failure at %s:%d/%s()!\n",
2957                     ioc->name, __FILE__, __LINE__, __func__);
2958                 goto out;
2959         }
2960         ioc_status = le16_to_cpu(mpi_reply.IOCStatus) &
2961             MPI2_IOCSTATUS_MASK;
2962         if (ioc_status != MPI2_IOCSTATUS_SUCCESS) {
2963                 pr_err(MPT3SAS_FMT "failure at %s:%d/%s()!\n",
2964                     ioc->name, __FILE__, __LINE__, __func__);
2965                 goto out;
2966         }
2967
2968         /* device missing delay */
2969         dmd = sas_iounit_pg1->ReportDeviceMissingDelay;
2970         if (dmd & MPI2_SASIOUNIT1_REPORT_MISSING_UNIT_16)
2971                 dmd = (dmd & MPI2_SASIOUNIT1_REPORT_MISSING_TIMEOUT_MASK) * 16;
2972         else
2973                 dmd = dmd & MPI2_SASIOUNIT1_REPORT_MISSING_TIMEOUT_MASK;
2974         dmd_orignal = dmd;
2975         if (device_missing_delay > 0x7F) {
2976                 dmd = (device_missing_delay > 0x7F0) ? 0x7F0 :
2977                     device_missing_delay;
2978                 dmd = dmd / 16;
2979                 dmd |= MPI2_SASIOUNIT1_REPORT_MISSING_UNIT_16;
2980         } else
2981                 dmd = device_missing_delay;
2982         sas_iounit_pg1->ReportDeviceMissingDelay = dmd;
2983
2984         /* io missing delay */
2985         io_missing_delay_original = sas_iounit_pg1->IODeviceMissingDelay;
2986         sas_iounit_pg1->IODeviceMissingDelay = io_missing_delay;
2987
2988         if (!mpt3sas_config_set_sas_iounit_pg1(ioc, &mpi_reply, sas_iounit_pg1,
2989             sz)) {
2990                 if (dmd & MPI2_SASIOUNIT1_REPORT_MISSING_UNIT_16)
2991                         dmd_new = (dmd &
2992                             MPI2_SASIOUNIT1_REPORT_MISSING_TIMEOUT_MASK) * 16;
2993                 else
2994                         dmd_new =
2995                     dmd & MPI2_SASIOUNIT1_REPORT_MISSING_TIMEOUT_MASK;
2996                 pr_info(MPT3SAS_FMT "device_missing_delay: old(%d), new(%d)\n",
2997                         ioc->name, dmd_orignal, dmd_new);
2998                 pr_info(MPT3SAS_FMT "ioc_missing_delay: old(%d), new(%d)\n",
2999                         ioc->name, io_missing_delay_original,
3000                     io_missing_delay);
3001                 ioc->device_missing_delay = dmd_new;
3002                 ioc->io_missing_delay = io_missing_delay;
3003         }
3004
3005 out:
3006         kfree(sas_iounit_pg1);
3007 }
3008 /**
3009  * _base_static_config_pages - static start of day config pages
3010  * @ioc: per adapter object
3011  *
3012  * Return nothing.
3013  */
3014 static void
3015 _base_static_config_pages(struct MPT3SAS_ADAPTER *ioc)
3016 {
3017         Mpi2ConfigReply_t mpi_reply;
3018         u32 iounit_pg1_flags;
3019
3020         mpt3sas_config_get_manufacturing_pg0(ioc, &mpi_reply, &ioc->manu_pg0);
3021         if (ioc->ir_firmware)
3022                 mpt3sas_config_get_manufacturing_pg10(ioc, &mpi_reply,
3023                     &ioc->manu_pg10);
3024
3025         /*
3026          * Ensure correct T10 PI operation if vendor left EEDPTagMode
3027          * flag unset in NVDATA.
3028          */
3029         mpt3sas_config_get_manufacturing_pg11(ioc, &mpi_reply, &ioc->manu_pg11);
3030         if (ioc->manu_pg11.EEDPTagMode == 0) {
3031                 pr_err("%s: overriding NVDATA EEDPTagMode setting\n",
3032                     ioc->name);
3033                 ioc->manu_pg11.EEDPTagMode &= ~0x3;
3034                 ioc->manu_pg11.EEDPTagMode |= 0x1;
3035                 mpt3sas_config_set_manufacturing_pg11(ioc, &mpi_reply,
3036                     &ioc->manu_pg11);
3037         }
3038
3039         mpt3sas_config_get_bios_pg2(ioc, &mpi_reply, &ioc->bios_pg2);
3040         mpt3sas_config_get_bios_pg3(ioc, &mpi_reply, &ioc->bios_pg3);
3041         mpt3sas_config_get_ioc_pg8(ioc, &mpi_reply, &ioc->ioc_pg8);
3042         mpt3sas_config_get_iounit_pg0(ioc, &mpi_reply, &ioc->iounit_pg0);
3043         mpt3sas_config_get_iounit_pg1(ioc, &mpi_reply, &ioc->iounit_pg1);
3044         mpt3sas_config_get_iounit_pg8(ioc, &mpi_reply, &ioc->iounit_pg8);
3045         _base_display_ioc_capabilities(ioc);
3046
3047         /*
3048          * Enable task_set_full handling in iounit_pg1 when the
3049          * facts capabilities indicate that its supported.
3050          */
3051         iounit_pg1_flags = le32_to_cpu(ioc->iounit_pg1.Flags);
3052         if ((ioc->facts.IOCCapabilities &
3053             MPI2_IOCFACTS_CAPABILITY_TASK_SET_FULL_HANDLING))
3054                 iounit_pg1_flags &=
3055                     ~MPI2_IOUNITPAGE1_DISABLE_TASK_SET_FULL_HANDLING;
3056         else
3057                 iounit_pg1_flags |=
3058                     MPI2_IOUNITPAGE1_DISABLE_TASK_SET_FULL_HANDLING;
3059         ioc->iounit_pg1.Flags = cpu_to_le32(iounit_pg1_flags);
3060         mpt3sas_config_set_iounit_pg1(ioc, &mpi_reply, &ioc->iounit_pg1);
3061
3062         if (ioc->iounit_pg8.NumSensors)
3063                 ioc->temp_sensors_count = ioc->iounit_pg8.NumSensors;
3064 }
3065
3066 /**
3067  * _base_release_memory_pools - release memory
3068  * @ioc: per adapter object
3069  *
3070  * Free memory allocated from _base_allocate_memory_pools.
3071  *
3072  * Return nothing.
3073  */
3074 static void
3075 _base_release_memory_pools(struct MPT3SAS_ADAPTER *ioc)
3076 {
3077         int i = 0;
3078         struct reply_post_struct *rps;
3079
3080         dexitprintk(ioc, pr_info(MPT3SAS_FMT "%s\n", ioc->name,
3081             __func__));
3082
3083         if (ioc->request) {
3084                 pci_free_consistent(ioc->pdev, ioc->request_dma_sz,
3085                     ioc->request,  ioc->request_dma);
3086                 dexitprintk(ioc, pr_info(MPT3SAS_FMT
3087                         "request_pool(0x%p): free\n",
3088                         ioc->name, ioc->request));
3089                 ioc->request = NULL;
3090         }
3091
3092         if (ioc->sense) {
3093                 pci_pool_free(ioc->sense_dma_pool, ioc->sense, ioc->sense_dma);
3094                 if (ioc->sense_dma_pool)
3095                         pci_pool_destroy(ioc->sense_dma_pool);
3096                 dexitprintk(ioc, pr_info(MPT3SAS_FMT
3097                         "sense_pool(0x%p): free\n",
3098                         ioc->name, ioc->sense));
3099                 ioc->sense = NULL;
3100         }
3101
3102         if (ioc->reply) {
3103                 pci_pool_free(ioc->reply_dma_pool, ioc->reply, ioc->reply_dma);
3104                 if (ioc->reply_dma_pool)
3105                         pci_pool_destroy(ioc->reply_dma_pool);
3106                 dexitprintk(ioc, pr_info(MPT3SAS_FMT
3107                         "reply_pool(0x%p): free\n",
3108                         ioc->name, ioc->reply));
3109                 ioc->reply = NULL;
3110         }
3111
3112         if (ioc->reply_free) {
3113                 pci_pool_free(ioc->reply_free_dma_pool, ioc->reply_free,
3114                     ioc->reply_free_dma);
3115                 if (ioc->reply_free_dma_pool)
3116                         pci_pool_destroy(ioc->reply_free_dma_pool);
3117                 dexitprintk(ioc, pr_info(MPT3SAS_FMT
3118                         "reply_free_pool(0x%p): free\n",
3119                         ioc->name, ioc->reply_free));
3120                 ioc->reply_free = NULL;
3121         }
3122
3123         if (ioc->reply_post) {
3124                 do {
3125                         rps = &ioc->reply_post[i];
3126                         if (rps->reply_post_free) {
3127                                 pci_pool_free(
3128                                     ioc->reply_post_free_dma_pool,
3129                                     rps->reply_post_free,
3130                                     rps->reply_post_free_dma);
3131                                 dexitprintk(ioc, pr_info(MPT3SAS_FMT
3132                                     "reply_post_free_pool(0x%p): free\n",
3133                                     ioc->name, rps->reply_post_free));
3134                                 rps->reply_post_free = NULL;
3135                         }
3136                 } while (ioc->rdpq_array_enable &&
3137                            (++i < ioc->reply_queue_count));
3138
3139                 if (ioc->reply_post_free_dma_pool)
3140                         pci_pool_destroy(ioc->reply_post_free_dma_pool);
3141                 kfree(ioc->reply_post);
3142         }
3143
3144         if (ioc->config_page) {
3145                 dexitprintk(ioc, pr_info(MPT3SAS_FMT
3146                     "config_page(0x%p): free\n", ioc->name,
3147                     ioc->config_page));
3148                 pci_free_consistent(ioc->pdev, ioc->config_page_sz,
3149                     ioc->config_page, ioc->config_page_dma);
3150         }
3151
3152         if (ioc->scsi_lookup) {
3153                 free_pages((ulong)ioc->scsi_lookup, ioc->scsi_lookup_pages);
3154                 ioc->scsi_lookup = NULL;
3155         }
3156         kfree(ioc->hpr_lookup);
3157         kfree(ioc->internal_lookup);
3158         if (ioc->chain_lookup) {
3159                 for (i = 0; i < ioc->chain_depth; i++) {
3160                         if (ioc->chain_lookup[i].chain_buffer)
3161                                 pci_pool_free(ioc->chain_dma_pool,
3162                                     ioc->chain_lookup[i].chain_buffer,
3163                                     ioc->chain_lookup[i].chain_buffer_dma);
3164                 }
3165                 if (ioc->chain_dma_pool)
3166                         pci_pool_destroy(ioc->chain_dma_pool);
3167                 free_pages((ulong)ioc->chain_lookup, ioc->chain_pages);
3168                 ioc->chain_lookup = NULL;
3169         }
3170 }
3171
3172 /**
3173  * _base_allocate_memory_pools - allocate start of day memory pools
3174  * @ioc: per adapter object
3175  * @sleep_flag: CAN_SLEEP or NO_SLEEP
3176  *
3177  * Returns 0 success, anything else error
3178  */
3179 static int
3180 _base_allocate_memory_pools(struct MPT3SAS_ADAPTER *ioc,  int sleep_flag)
3181 {
3182         struct mpt3sas_facts *facts;
3183         u16 max_sge_elements;
3184         u16 chains_needed_per_io;
3185         u32 sz, total_sz, reply_post_free_sz;
3186         u32 retry_sz;
3187         u16 max_request_credit;
3188         unsigned short sg_tablesize;
3189         u16 sge_size;
3190         int i;
3191
3192         dinitprintk(ioc, pr_info(MPT3SAS_FMT "%s\n", ioc->name,
3193             __func__));
3194
3195
3196         retry_sz = 0;
3197         facts = &ioc->facts;
3198
3199         /* command line tunables for max sgl entries */
3200         if (max_sgl_entries != -1)
3201                 sg_tablesize = max_sgl_entries;
3202         else {
3203                 if (ioc->hba_mpi_version_belonged == MPI2_VERSION)
3204                         sg_tablesize = MPT2SAS_SG_DEPTH;
3205                 else
3206                         sg_tablesize = MPT3SAS_SG_DEPTH;
3207         }
3208
3209         if (sg_tablesize < MPT_MIN_PHYS_SEGMENTS)
3210                 sg_tablesize = MPT_MIN_PHYS_SEGMENTS;
3211         else if (sg_tablesize > MPT_MAX_PHYS_SEGMENTS) {
3212                 sg_tablesize = min_t(unsigned short, sg_tablesize,
3213                                       SG_MAX_SEGMENTS);
3214                 pr_warn(MPT3SAS_FMT
3215                  "sg_tablesize(%u) is bigger than kernel"
3216                  " defined SG_CHUNK_SIZE(%u)\n", ioc->name,
3217                  sg_tablesize, MPT_MAX_PHYS_SEGMENTS);
3218         }
3219         ioc->shost->sg_tablesize = sg_tablesize;
3220
3221         ioc->internal_depth = min_t(int, (facts->HighPriorityCredit + (5)),
3222                 (facts->RequestCredit / 4));
3223         if (ioc->internal_depth < INTERNAL_CMDS_COUNT) {
3224                 if (facts->RequestCredit <= (INTERNAL_CMDS_COUNT +
3225                                 INTERNAL_SCSIIO_CMDS_COUNT)) {
3226                         pr_err(MPT3SAS_FMT "IOC doesn't have enough Request \
3227                             Credits, it has just %d number of credits\n",
3228                             ioc->name, facts->RequestCredit);
3229                         return -ENOMEM;
3230                 }
3231                 ioc->internal_depth = 10;
3232         }
3233
3234         ioc->hi_priority_depth = ioc->internal_depth - (5);
3235         /* command line tunables  for max controller queue depth */
3236         if (max_queue_depth != -1 && max_queue_depth != 0) {
3237                 max_request_credit = min_t(u16, max_queue_depth +
3238                         ioc->internal_depth, facts->RequestCredit);
3239                 if (max_request_credit > MAX_HBA_QUEUE_DEPTH)
3240                         max_request_credit =  MAX_HBA_QUEUE_DEPTH;
3241         } else
3242                 max_request_credit = min_t(u16, facts->RequestCredit,
3243                     MAX_HBA_QUEUE_DEPTH);
3244
3245         /* Firmware maintains additional facts->HighPriorityCredit number of
3246          * credits for HiPriprity Request messages, so hba queue depth will be
3247          * sum of max_request_credit and high priority queue depth.
3248          */
3249         ioc->hba_queue_depth = max_request_credit + ioc->hi_priority_depth;
3250
3251         /* request frame size */
3252         ioc->request_sz = facts->IOCRequestFrameSize * 4;
3253
3254         /* reply frame size */
3255         ioc->reply_sz = facts->ReplyFrameSize * 4;
3256
3257         /* chain segment size */
3258         if (ioc->hba_mpi_version_belonged != MPI2_VERSION) {
3259                 if (facts->IOCMaxChainSegmentSize)
3260                         ioc->chain_segment_sz =
3261                                         facts->IOCMaxChainSegmentSize *
3262                                         MAX_CHAIN_ELEMT_SZ;
3263                 else
3264                 /* set to 128 bytes size if IOCMaxChainSegmentSize is zero */
3265                         ioc->chain_segment_sz = DEFAULT_NUM_FWCHAIN_ELEMTS *
3266                                                     MAX_CHAIN_ELEMT_SZ;
3267         } else
3268                 ioc->chain_segment_sz = ioc->request_sz;
3269
3270         /* calculate the max scatter element size */
3271         sge_size = max_t(u16, ioc->sge_size, ioc->sge_size_ieee);
3272
3273  retry_allocation:
3274         total_sz = 0;
3275         /* calculate number of sg elements left over in the 1st frame */
3276         max_sge_elements = ioc->request_sz - ((sizeof(Mpi2SCSIIORequest_t) -
3277             sizeof(Mpi2SGEIOUnion_t)) + sge_size);
3278         ioc->max_sges_in_main_message = max_sge_elements/sge_size;
3279
3280         /* now do the same for a chain buffer */
3281         max_sge_elements = ioc->chain_segment_sz - sge_size;
3282         ioc->max_sges_in_chain_message = max_sge_elements/sge_size;
3283
3284         /*
3285          *  MPT3SAS_SG_DEPTH = CONFIG_FUSION_MAX_SGE
3286          */
3287         chains_needed_per_io = ((ioc->shost->sg_tablesize -
3288            ioc->max_sges_in_main_message)/ioc->max_sges_in_chain_message)
3289             + 1;
3290         if (chains_needed_per_io > facts->MaxChainDepth) {
3291                 chains_needed_per_io = facts->MaxChainDepth;
3292                 ioc->shost->sg_tablesize = min_t(u16,
3293                 ioc->max_sges_in_main_message + (ioc->max_sges_in_chain_message
3294                 * chains_needed_per_io), ioc->shost->sg_tablesize);
3295         }
3296         ioc->chains_needed_per_io = chains_needed_per_io;
3297
3298         /* reply free queue sizing - taking into account for 64 FW events */
3299         ioc->reply_free_queue_depth = ioc->hba_queue_depth + 64;
3300
3301         /* calculate reply descriptor post queue depth */
3302         ioc->reply_post_queue_depth = ioc->hba_queue_depth +
3303                                 ioc->reply_free_queue_depth +  1 ;
3304         /* align the reply post queue on the next 16 count boundary */
3305         if (ioc->reply_post_queue_depth % 16)
3306                 ioc->reply_post_queue_depth += 16 -
3307                 (ioc->reply_post_queue_depth % 16);
3308
3309         if (ioc->reply_post_queue_depth >
3310             facts->MaxReplyDescriptorPostQueueDepth) {
3311                 ioc->reply_post_queue_depth =
3312                                 facts->MaxReplyDescriptorPostQueueDepth -
3313                     (facts->MaxReplyDescriptorPostQueueDepth % 16);
3314                 ioc->hba_queue_depth =
3315                                 ((ioc->reply_post_queue_depth - 64) / 2) - 1;
3316                 ioc->reply_free_queue_depth = ioc->hba_queue_depth + 64;
3317         }
3318
3319         dinitprintk(ioc, pr_info(MPT3SAS_FMT "scatter gather: " \
3320             "sge_in_main_msg(%d), sge_per_chain(%d), sge_per_io(%d), "
3321             "chains_per_io(%d)\n", ioc->name, ioc->max_sges_in_main_message,
3322             ioc->max_sges_in_chain_message, ioc->shost->sg_tablesize,
3323             ioc->chains_needed_per_io));
3324
3325         /* reply post queue, 16 byte align */
3326         reply_post_free_sz = ioc->reply_post_queue_depth *
3327             sizeof(Mpi2DefaultReplyDescriptor_t);
3328
3329         sz = reply_post_free_sz;
3330         if (_base_is_controller_msix_enabled(ioc) && !ioc->rdpq_array_enable)
3331                 sz *= ioc->reply_queue_count;
3332
3333         ioc->reply_post = kcalloc((ioc->rdpq_array_enable) ?
3334             (ioc->reply_queue_count):1,
3335             sizeof(struct reply_post_struct), GFP_KERNEL);
3336
3337         if (!ioc->reply_post) {
3338                 pr_err(MPT3SAS_FMT "reply_post_free pool: kcalloc failed\n",
3339                         ioc->name);
3340                 goto out;
3341         }
3342         ioc->reply_post_free_dma_pool = pci_pool_create("reply_post_free pool",
3343             ioc->pdev, sz, 16, 0);
3344         if (!ioc->reply_post_free_dma_pool) {
3345                 pr_err(MPT3SAS_FMT
3346                  "reply_post_free pool: pci_pool_create failed\n",
3347                  ioc->name);
3348                 goto out;
3349         }
3350         i = 0;
3351         do {
3352                 ioc->reply_post[i].reply_post_free =
3353                     pci_pool_alloc(ioc->reply_post_free_dma_pool,
3354                     GFP_KERNEL,
3355                     &ioc->reply_post[i].reply_post_free_dma);
3356                 if (!ioc->reply_post[i].reply_post_free) {
3357                         pr_err(MPT3SAS_FMT
3358                         "reply_post_free pool: pci_pool_alloc failed\n",
3359                         ioc->name);
3360                         goto out;
3361                 }
3362                 memset(ioc->reply_post[i].reply_post_free, 0, sz);
3363                 dinitprintk(ioc, pr_info(MPT3SAS_FMT
3364                     "reply post free pool (0x%p): depth(%d),"
3365                     "element_size(%d), pool_size(%d kB)\n", ioc->name,
3366                     ioc->reply_post[i].reply_post_free,
3367                     ioc->reply_post_queue_depth, 8, sz/1024));
3368                 dinitprintk(ioc, pr_info(MPT3SAS_FMT
3369                     "reply_post_free_dma = (0x%llx)\n", ioc->name,
3370                     (unsigned long long)
3371                     ioc->reply_post[i].reply_post_free_dma));
3372                 total_sz += sz;
3373         } while (ioc->rdpq_array_enable && (++i < ioc->reply_queue_count));
3374
3375         if (ioc->dma_mask == 64) {
3376                 if (_base_change_consistent_dma_mask(ioc, ioc->pdev) != 0) {
3377                         pr_warn(MPT3SAS_FMT
3378                             "no suitable consistent DMA mask for %s\n",
3379                             ioc->name, pci_name(ioc->pdev));
3380                         goto out;
3381                 }
3382         }
3383
3384         ioc->scsiio_depth = ioc->hba_queue_depth -
3385             ioc->hi_priority_depth - ioc->internal_depth;
3386
3387         /* set the scsi host can_queue depth
3388          * with some internal commands that could be outstanding
3389          */
3390         ioc->shost->can_queue = ioc->scsiio_depth - INTERNAL_SCSIIO_CMDS_COUNT;
3391         dinitprintk(ioc, pr_info(MPT3SAS_FMT
3392                 "scsi host: can_queue depth (%d)\n",
3393                 ioc->name, ioc->shost->can_queue));
3394
3395
3396         /* contiguous pool for request and chains, 16 byte align, one extra "
3397          * "frame for smid=0
3398          */
3399         ioc->chain_depth = ioc->chains_needed_per_io * ioc->scsiio_depth;
3400         sz = ((ioc->scsiio_depth + 1) * ioc->request_sz);
3401
3402         /* hi-priority queue */
3403         sz += (ioc->hi_priority_depth * ioc->request_sz);
3404
3405         /* internal queue */
3406         sz += (ioc->internal_depth * ioc->request_sz);
3407
3408         ioc->request_dma_sz = sz;
3409         ioc->request = pci_alloc_consistent(ioc->pdev, sz, &ioc->request_dma);
3410         if (!ioc->request) {
3411                 pr_err(MPT3SAS_FMT "request pool: pci_alloc_consistent " \
3412                     "failed: hba_depth(%d), chains_per_io(%d), frame_sz(%d), "
3413                     "total(%d kB)\n", ioc->name, ioc->hba_queue_depth,
3414                     ioc->chains_needed_per_io, ioc->request_sz, sz/1024);
3415                 if (ioc->scsiio_depth < MPT3SAS_SAS_QUEUE_DEPTH)
3416                         goto out;
3417                 retry_sz = 64;
3418                 ioc->hba_queue_depth -= retry_sz;
3419                 _base_release_memory_pools(ioc);
3420                 goto retry_allocation;
3421         }
3422
3423         if (retry_sz)
3424                 pr_err(MPT3SAS_FMT "request pool: pci_alloc_consistent " \
3425                     "succeed: hba_depth(%d), chains_per_io(%d), frame_sz(%d), "
3426                     "total(%d kb)\n", ioc->name, ioc->hba_queue_depth,
3427                     ioc->chains_needed_per_io, ioc->request_sz, sz/1024);
3428
3429         /* hi-priority queue */
3430         ioc->hi_priority = ioc->request + ((ioc->scsiio_depth + 1) *
3431             ioc->request_sz);
3432         ioc->hi_priority_dma = ioc->request_dma + ((ioc->scsiio_depth + 1) *
3433             ioc->request_sz);
3434
3435         /* internal queue */
3436         ioc->internal = ioc->hi_priority + (ioc->hi_priority_depth *
3437             ioc->request_sz);
3438         ioc->internal_dma = ioc->hi_priority_dma + (ioc->hi_priority_depth *
3439             ioc->request_sz);
3440
3441         dinitprintk(ioc, pr_info(MPT3SAS_FMT
3442                 "request pool(0x%p): depth(%d), frame_size(%d), pool_size(%d kB)\n",
3443                 ioc->name, ioc->request, ioc->hba_queue_depth, ioc->request_sz,
3444             (ioc->hba_queue_depth * ioc->request_sz)/1024));
3445
3446         dinitprintk(ioc, pr_info(MPT3SAS_FMT "request pool: dma(0x%llx)\n",
3447             ioc->name, (unsigned long long) ioc->request_dma));
3448         total_sz += sz;
3449
3450         sz = ioc->scsiio_depth * sizeof(struct scsiio_tracker);
3451         ioc->scsi_lookup_pages = get_order(sz);
3452         ioc->scsi_lookup = (struct scsiio_tracker *)__get_free_pages(
3453             GFP_KERNEL, ioc->scsi_lookup_pages);
3454         if (!ioc->scsi_lookup) {
3455                 pr_err(MPT3SAS_FMT "scsi_lookup: get_free_pages failed, sz(%d)\n",
3456                         ioc->name, (int)sz);
3457                 goto out;
3458         }
3459
3460         dinitprintk(ioc, pr_info(MPT3SAS_FMT "scsiio(0x%p): depth(%d)\n",
3461                 ioc->name, ioc->request, ioc->scsiio_depth));
3462
3463         ioc->chain_depth = min_t(u32, ioc->chain_depth, MAX_CHAIN_DEPTH);
3464         sz = ioc->chain_depth * sizeof(struct chain_tracker);
3465         ioc->chain_pages = get_order(sz);
3466         ioc->chain_lookup = (struct chain_tracker *)__get_free_pages(
3467             GFP_KERNEL, ioc->chain_pages);
3468         if (!ioc->chain_lookup) {
3469                 pr_err(MPT3SAS_FMT "chain_lookup: __get_free_pages failed\n",
3470                         ioc->name);
3471                 goto out;
3472         }
3473         ioc->chain_dma_pool = pci_pool_create("chain pool", ioc->pdev,
3474             ioc->chain_segment_sz, 16, 0);
3475         if (!ioc->chain_dma_pool) {
3476                 pr_err(MPT3SAS_FMT "chain_dma_pool: pci_pool_create failed\n",
3477                         ioc->name);
3478                 goto out;
3479         }
3480         for (i = 0; i < ioc->chain_depth; i++) {
3481                 ioc->chain_lookup[i].chain_buffer = pci_pool_alloc(
3482                     ioc->chain_dma_pool , GFP_KERNEL,
3483                     &ioc->chain_lookup[i].chain_buffer_dma);
3484                 if (!ioc->chain_lookup[i].chain_buffer) {
3485                         ioc->chain_depth = i;
3486                         goto chain_done;
3487                 }
3488                 total_sz += ioc->chain_segment_sz;
3489         }
3490  chain_done:
3491         dinitprintk(ioc, pr_info(MPT3SAS_FMT
3492                 "chain pool depth(%d), frame_size(%d), pool_size(%d kB)\n",
3493                 ioc->name, ioc->chain_depth, ioc->chain_segment_sz,
3494                 ((ioc->chain_depth *  ioc->chain_segment_sz))/1024));
3495
3496         /* initialize hi-priority queue smid's */
3497         ioc->hpr_lookup = kcalloc(ioc->hi_priority_depth,
3498             sizeof(struct request_tracker), GFP_KERNEL);
3499         if (!ioc->hpr_lookup) {
3500                 pr_err(MPT3SAS_FMT "hpr_lookup: kcalloc failed\n",
3501                     ioc->name);
3502                 goto out;
3503         }
3504         ioc->hi_priority_smid = ioc->scsiio_depth + 1;
3505         dinitprintk(ioc, pr_info(MPT3SAS_FMT
3506                 "hi_priority(0x%p): depth(%d), start smid(%d)\n",
3507                 ioc->name, ioc->hi_priority,
3508             ioc->hi_priority_depth, ioc->hi_priority_smid));
3509
3510         /* initialize internal queue smid's */
3511         ioc->internal_lookup = kcalloc(ioc->internal_depth,
3512             sizeof(struct request_tracker), GFP_KERNEL);
3513         if (!ioc->internal_lookup) {
3514                 pr_err(MPT3SAS_FMT "internal_lookup: kcalloc failed\n",
3515                     ioc->name);
3516                 goto out;
3517         }
3518         ioc->internal_smid = ioc->hi_priority_smid + ioc->hi_priority_depth;
3519         dinitprintk(ioc, pr_info(MPT3SAS_FMT
3520                 "internal(0x%p): depth(%d), start smid(%d)\n",
3521                 ioc->name, ioc->internal,
3522             ioc->internal_depth, ioc->internal_smid));
3523
3524         /* sense buffers, 4 byte align */
3525         sz = ioc->scsiio_depth * SCSI_SENSE_BUFFERSIZE;
3526         ioc->sense_dma_pool = pci_pool_create("sense pool", ioc->pdev, sz, 4,
3527             0);
3528         if (!ioc->sense_dma_pool) {
3529                 pr_err(MPT3SAS_FMT "sense pool: pci_pool_create failed\n",
3530                     ioc->name);
3531                 goto out;
3532         }
3533         ioc->sense = pci_pool_alloc(ioc->sense_dma_pool , GFP_KERNEL,
3534             &ioc->sense_dma);
3535         if (!ioc->sense) {
3536                 pr_err(MPT3SAS_FMT "sense pool: pci_pool_alloc failed\n",
3537                     ioc->name);
3538                 goto out;
3539         }
3540         dinitprintk(ioc, pr_info(MPT3SAS_FMT
3541             "sense pool(0x%p): depth(%d), element_size(%d), pool_size"
3542             "(%d kB)\n", ioc->name, ioc->sense, ioc->scsiio_depth,
3543             SCSI_SENSE_BUFFERSIZE, sz/1024));
3544         dinitprintk(ioc, pr_info(MPT3SAS_FMT "sense_dma(0x%llx)\n",
3545             ioc->name, (unsigned long long)ioc->sense_dma));
3546         total_sz += sz;
3547
3548         /* reply pool, 4 byte align */
3549         sz = ioc->reply_free_queue_depth * ioc->reply_sz;
3550         ioc->reply_dma_pool = pci_pool_create("reply pool", ioc->pdev, sz, 4,
3551             0);
3552         if (!ioc->reply_dma_pool) {
3553                 pr_err(MPT3SAS_FMT "reply pool: pci_pool_create failed\n",
3554                     ioc->name);
3555                 goto out;
3556         }
3557         ioc->reply = pci_pool_alloc(ioc->reply_dma_pool , GFP_KERNEL,
3558             &ioc->reply_dma);
3559         if (!ioc->reply) {
3560                 pr_err(MPT3SAS_FMT "reply pool: pci_pool_alloc failed\n",
3561                     ioc->name);
3562                 goto out;
3563         }
3564         ioc->reply_dma_min_address = (u32)(ioc->reply_dma);
3565         ioc->reply_dma_max_address = (u32)(ioc->reply_dma) + sz;
3566         dinitprintk(ioc, pr_info(MPT3SAS_FMT
3567                 "reply pool(0x%p): depth(%d), frame_size(%d), pool_size(%d kB)\n",
3568                 ioc->name, ioc->reply,
3569             ioc->reply_free_queue_depth, ioc->reply_sz, sz/1024));
3570         dinitprintk(ioc, pr_info(MPT3SAS_FMT "reply_dma(0x%llx)\n",
3571             ioc->name, (unsigned long long)ioc->reply_dma));
3572         total_sz += sz;
3573
3574         /* reply free queue, 16 byte align */
3575         sz = ioc->reply_free_queue_depth * 4;
3576         ioc->reply_free_dma_pool = pci_pool_create("reply_free pool",
3577             ioc->pdev, sz, 16, 0);
3578         if (!ioc->reply_free_dma_pool) {
3579                 pr_err(MPT3SAS_FMT "reply_free pool: pci_pool_create failed\n",
3580                         ioc->name);
3581                 goto out;
3582         }
3583         ioc->reply_free = pci_pool_alloc(ioc->reply_free_dma_pool , GFP_KERNEL,
3584             &ioc->reply_free_dma);
3585         if (!ioc->reply_free) {
3586                 pr_err(MPT3SAS_FMT "reply_free pool: pci_pool_alloc failed\n",
3587                         ioc->name);
3588                 goto out;
3589         }
3590         memset(ioc->reply_free, 0, sz);
3591         dinitprintk(ioc, pr_info(MPT3SAS_FMT "reply_free pool(0x%p): " \
3592             "depth(%d), element_size(%d), pool_size(%d kB)\n", ioc->name,
3593             ioc->reply_free, ioc->reply_free_queue_depth, 4, sz/1024));
3594         dinitprintk(ioc, pr_info(MPT3SAS_FMT
3595                 "reply_free_dma (0x%llx)\n",
3596                 ioc->name, (unsigned long long)ioc->reply_free_dma));
3597         total_sz += sz;
3598
3599         ioc->config_page_sz = 512;
3600         ioc->config_page = pci_alloc_consistent(ioc->pdev,
3601             ioc->config_page_sz, &ioc->config_page_dma);
3602         if (!ioc->config_page) {
3603                 pr_err(MPT3SAS_FMT
3604                         "config page: pci_pool_alloc failed\n",
3605                         ioc->name);
3606                 goto out;
3607         }
3608         dinitprintk(ioc, pr_info(MPT3SAS_FMT
3609                 "config page(0x%p): size(%d)\n",
3610                 ioc->name, ioc->config_page, ioc->config_page_sz));
3611         dinitprintk(ioc, pr_info(MPT3SAS_FMT "config_page_dma(0x%llx)\n",
3612                 ioc->name, (unsigned long long)ioc->config_page_dma));
3613         total_sz += ioc->config_page_sz;
3614
3615         pr_info(MPT3SAS_FMT "Allocated physical memory: size(%d kB)\n",
3616             ioc->name, total_sz/1024);
3617         pr_info(MPT3SAS_FMT
3618                 "Current Controller Queue Depth(%d),Max Controller Queue Depth(%d)\n",
3619             ioc->name, ioc->shost->can_queue, facts->RequestCredit);
3620         pr_info(MPT3SAS_FMT "Scatter Gather Elements per IO(%d)\n",
3621             ioc->name, ioc->shost->sg_tablesize);
3622         return 0;
3623
3624  out:
3625         return -ENOMEM;
3626 }
3627
3628 /**
3629  * mpt3sas_base_get_iocstate - Get the current state of a MPT adapter.
3630  * @ioc: Pointer to MPT_ADAPTER structure
3631  * @cooked: Request raw or cooked IOC state
3632  *
3633  * Returns all IOC Doorbell register bits if cooked==0, else just the
3634  * Doorbell bits in MPI_IOC_STATE_MASK.
3635  */
3636 u32
3637 mpt3sas_base_get_iocstate(struct MPT3SAS_ADAPTER *ioc, int cooked)
3638 {
3639         u32 s, sc;
3640
3641         s = readl(&ioc->chip->Doorbell);
3642         sc = s & MPI2_IOC_STATE_MASK;
3643         return cooked ? sc : s;
3644 }
3645
3646 /**
3647  * _base_wait_on_iocstate - waiting on a particular ioc state
3648  * @ioc_state: controller state { READY, OPERATIONAL, or RESET }
3649  * @timeout: timeout in second
3650  * @sleep_flag: CAN_SLEEP or NO_SLEEP
3651  *
3652  * Returns 0 for success, non-zero for failure.
3653  */
3654 static int
3655 _base_wait_on_iocstate(struct MPT3SAS_ADAPTER *ioc, u32 ioc_state, int timeout,
3656         int sleep_flag)
3657 {
3658         u32 count, cntdn;
3659         u32 current_state;
3660
3661         count = 0;
3662         cntdn = (sleep_flag == CAN_SLEEP) ? 1000*timeout : 2000*timeout;
3663         do {
3664                 current_state = mpt3sas_base_get_iocstate(ioc, 1);
3665                 if (current_state == ioc_state)
3666                         return 0;
3667                 if (count && current_state == MPI2_IOC_STATE_FAULT)
3668                         break;
3669                 if (sleep_flag == CAN_SLEEP)
3670                         usleep_range(1000, 1500);
3671                 else
3672                         udelay(500);
3673                 count++;
3674         } while (--cntdn);
3675
3676         return current_state;
3677 }
3678
3679 /**
3680  * _base_wait_for_doorbell_int - waiting for controller interrupt(generated by
3681  * a write to the doorbell)
3682  * @ioc: per adapter object
3683  * @timeout: timeout in second
3684  * @sleep_flag: CAN_SLEEP or NO_SLEEP
3685  *
3686  * Returns 0 for success, non-zero for failure.
3687  *
3688  * Notes: MPI2_HIS_IOC2SYS_DB_STATUS - set to one when IOC writes to doorbell.
3689  */
3690 static int
3691 _base_diag_reset(struct MPT3SAS_ADAPTER *ioc, int sleep_flag);
3692
3693 static int
3694 _base_wait_for_doorbell_int(struct MPT3SAS_ADAPTER *ioc, int timeout,
3695         int sleep_flag)
3696 {
3697         u32 cntdn, count;
3698         u32 int_status;
3699
3700         count = 0;
3701         cntdn = (sleep_flag == CAN_SLEEP) ? 1000*timeout : 2000*timeout;
3702         do {
3703                 int_status = readl(&ioc->chip->HostInterruptStatus);
3704                 if (int_status & MPI2_HIS_IOC2SYS_DB_STATUS) {
3705                         dhsprintk(ioc, pr_info(MPT3SAS_FMT
3706                                 "%s: successful count(%d), timeout(%d)\n",
3707                                 ioc->name, __func__, count, timeout));
3708                         return 0;
3709                 }
3710                 if (sleep_flag == CAN_SLEEP)
3711                         usleep_range(1000, 1500);
3712                 else
3713                         udelay(500);
3714                 count++;
3715         } while (--cntdn);
3716
3717         pr_err(MPT3SAS_FMT
3718                 "%s: failed due to timeout count(%d), int_status(%x)!\n",
3719                 ioc->name, __func__, count, int_status);
3720         return -EFAULT;
3721 }
3722
3723 /**
3724  * _base_wait_for_doorbell_ack - waiting for controller to read the doorbell.
3725  * @ioc: per adapter object
3726  * @timeout: timeout in second
3727  * @sleep_flag: CAN_SLEEP or NO_SLEEP
3728  *
3729  * Returns 0 for success, non-zero for failure.
3730  *
3731  * Notes: MPI2_HIS_SYS2IOC_DB_STATUS - set to one when host writes to
3732  * doorbell.
3733  */
3734 static int
3735 _base_wait_for_doorbell_ack(struct MPT3SAS_ADAPTER *ioc, int timeout,
3736         int sleep_flag)
3737 {
3738         u32 cntdn, count;
3739         u32 int_status;
3740         u32 doorbell;
3741
3742         count = 0;
3743         cntdn = (sleep_flag == CAN_SLEEP) ? 1000*timeout : 2000*timeout;
3744         do {
3745                 int_status = readl(&ioc->chip->HostInterruptStatus);
3746                 if (!(int_status & MPI2_HIS_SYS2IOC_DB_STATUS)) {
3747                         dhsprintk(ioc, pr_info(MPT3SAS_FMT
3748                                 "%s: successful count(%d), timeout(%d)\n",
3749                                 ioc->name, __func__, count, timeout));
3750                         return 0;
3751                 } else if (int_status & MPI2_HIS_IOC2SYS_DB_STATUS) {
3752                         doorbell = readl(&ioc->chip->Doorbell);
3753                         if ((doorbell & MPI2_IOC_STATE_MASK) ==
3754                             MPI2_IOC_STATE_FAULT) {
3755                                 mpt3sas_base_fault_info(ioc , doorbell);
3756                                 return -EFAULT;
3757                         }
3758                 } else if (int_status == 0xFFFFFFFF)
3759                         goto out;
3760
3761                 if (sleep_flag == CAN_SLEEP)
3762                         usleep_range(1000, 1500);
3763                 else
3764                         udelay(500);
3765                 count++;
3766         } while (--cntdn);
3767
3768  out:
3769         pr_err(MPT3SAS_FMT
3770          "%s: failed due to timeout count(%d), int_status(%x)!\n",
3771          ioc->name, __func__, count, int_status);
3772         return -EFAULT;
3773 }
3774
3775 /**
3776  * _base_wait_for_doorbell_not_used - waiting for doorbell to not be in use
3777  * @ioc: per adapter object
3778  * @timeout: timeout in second
3779  * @sleep_flag: CAN_SLEEP or NO_SLEEP
3780  *
3781  * Returns 0 for success, non-zero for failure.
3782  *
3783  */
3784 static int
3785 _base_wait_for_doorbell_not_used(struct MPT3SAS_ADAPTER *ioc, int timeout,
3786         int sleep_flag)
3787 {
3788         u32 cntdn, count;
3789         u32 doorbell_reg;
3790
3791         count = 0;
3792         cntdn = (sleep_flag == CAN_SLEEP) ? 1000*timeout : 2000*timeout;
3793         do {
3794                 doorbell_reg = readl(&ioc->chip->Doorbell);
3795                 if (!(doorbell_reg & MPI2_DOORBELL_USED)) {
3796                         dhsprintk(ioc, pr_info(MPT3SAS_FMT
3797                                 "%s: successful count(%d), timeout(%d)\n",
3798                                 ioc->name, __func__, count, timeout));
3799                         return 0;
3800                 }
3801                 if (sleep_flag == CAN_SLEEP)
3802                         usleep_range(1000, 1500);
3803                 else
3804                         udelay(500);
3805                 count++;
3806         } while (--cntdn);
3807
3808         pr_err(MPT3SAS_FMT
3809                 "%s: failed due to timeout count(%d), doorbell_reg(%x)!\n",
3810                 ioc->name, __func__, count, doorbell_reg);
3811         return -EFAULT;
3812 }
3813
3814 /**
3815  * _base_send_ioc_reset - send doorbell reset
3816  * @ioc: per adapter object
3817  * @reset_type: currently only supports: MPI2_FUNCTION_IOC_MESSAGE_UNIT_RESET
3818  * @timeout: timeout in second
3819  * @sleep_flag: CAN_SLEEP or NO_SLEEP
3820  *
3821  * Returns 0 for success, non-zero for failure.
3822  */
3823 static int
3824 _base_send_ioc_reset(struct MPT3SAS_ADAPTER *ioc, u8 reset_type, int timeout,
3825         int sleep_flag)
3826 {
3827         u32 ioc_state;
3828         int r = 0;
3829
3830         if (reset_type != MPI2_FUNCTION_IOC_MESSAGE_UNIT_RESET) {
3831                 pr_err(MPT3SAS_FMT "%s: unknown reset_type\n",
3832                     ioc->name, __func__);
3833                 return -EFAULT;
3834         }
3835
3836         if (!(ioc->facts.IOCCapabilities &
3837            MPI2_IOCFACTS_CAPABILITY_EVENT_REPLAY))
3838                 return -EFAULT;
3839
3840         pr_info(MPT3SAS_FMT "sending message unit reset !!\n", ioc->name);
3841
3842         writel(reset_type << MPI2_DOORBELL_FUNCTION_SHIFT,
3843             &ioc->chip->Doorbell);
3844         if ((_base_wait_for_doorbell_ack(ioc, 15, sleep_flag))) {
3845                 r = -EFAULT;
3846                 goto out;
3847         }
3848         ioc_state = _base_wait_on_iocstate(ioc, MPI2_IOC_STATE_READY,
3849             timeout, sleep_flag);
3850         if (ioc_state) {
3851                 pr_err(MPT3SAS_FMT
3852                         "%s: failed going to ready state (ioc_state=0x%x)\n",
3853                         ioc->name, __func__, ioc_state);
3854                 r = -EFAULT;
3855                 goto out;
3856         }
3857  out:
3858         pr_info(MPT3SAS_FMT "message unit reset: %s\n",
3859             ioc->name, ((r == 0) ? "SUCCESS" : "FAILED"));
3860         return r;
3861 }
3862
3863 /**
3864  * _base_handshake_req_reply_wait - send request thru doorbell interface
3865  * @ioc: per adapter object
3866  * @request_bytes: request length
3867  * @request: pointer having request payload
3868  * @reply_bytes: reply length
3869  * @reply: pointer to reply payload
3870  * @timeout: timeout in second
3871  * @sleep_flag: CAN_SLEEP or NO_SLEEP
3872  *
3873  * Returns 0 for success, non-zero for failure.
3874  */
3875 static int
3876 _base_handshake_req_reply_wait(struct MPT3SAS_ADAPTER *ioc, int request_bytes,
3877         u32 *request, int reply_bytes, u16 *reply, int timeout, int sleep_flag)
3878 {
3879         MPI2DefaultReply_t *default_reply = (MPI2DefaultReply_t *)reply;
3880         int i;
3881         u8 failed;
3882         u16 dummy;
3883         __le32 *mfp;
3884
3885         /* make sure doorbell is not in use */
3886         if ((readl(&ioc->chip->Doorbell) & MPI2_DOORBELL_USED)) {
3887                 pr_err(MPT3SAS_FMT
3888                         "doorbell is in use (line=%d)\n",
3889                         ioc->name, __LINE__);
3890                 return -EFAULT;
3891         }
3892
3893         /* clear pending doorbell interrupts from previous state changes */
3894         if (readl(&ioc->chip->HostInterruptStatus) &
3895             MPI2_HIS_IOC2SYS_DB_STATUS)
3896                 writel(0, &ioc->chip->HostInterruptStatus);
3897
3898         /* send message to ioc */
3899         writel(((MPI2_FUNCTION_HANDSHAKE<<MPI2_DOORBELL_FUNCTION_SHIFT) |
3900             ((request_bytes/4)<<MPI2_DOORBELL_ADD_DWORDS_SHIFT)),
3901             &ioc->chip->Doorbell);
3902
3903         if ((_base_wait_for_doorbell_int(ioc, 5, NO_SLEEP))) {
3904                 pr_err(MPT3SAS_FMT
3905                         "doorbell handshake int failed (line=%d)\n",
3906                         ioc->name, __LINE__);
3907                 return -EFAULT;
3908         }
3909         writel(0, &ioc->chip->HostInterruptStatus);
3910
3911         if ((_base_wait_for_doorbell_ack(ioc, 5, sleep_flag))) {
3912                 pr_err(MPT3SAS_FMT
3913                         "doorbell handshake ack failed (line=%d)\n",
3914                         ioc->name, __LINE__);
3915                 return -EFAULT;
3916         }
3917
3918         /* send message 32-bits at a time */
3919         for (i = 0, failed = 0; i < request_bytes/4 && !failed; i++) {
3920                 writel(cpu_to_le32(request[i]), &ioc->chip->Doorbell);
3921                 if ((_base_wait_for_doorbell_ack(ioc, 5, sleep_flag)))
3922                         failed = 1;
3923         }
3924
3925         if (failed) {
3926                 pr_err(MPT3SAS_FMT
3927                         "doorbell handshake sending request failed (line=%d)\n",
3928                         ioc->name, __LINE__);
3929                 return -EFAULT;
3930         }
3931
3932         /* now wait for the reply */
3933         if ((_base_wait_for_doorbell_int(ioc, timeout, sleep_flag))) {
3934                 pr_err(MPT3SAS_FMT
3935                         "doorbell handshake int failed (line=%d)\n",
3936                         ioc->name, __LINE__);
3937                 return -EFAULT;
3938         }
3939
3940         /* read the first two 16-bits, it gives the total length of the reply */
3941         reply[0] = le16_to_cpu(readl(&ioc->chip->Doorbell)
3942             & MPI2_DOORBELL_DATA_MASK);
3943         writel(0, &ioc->chip->HostInterruptStatus);
3944         if ((_base_wait_for_doorbell_int(ioc, 5, sleep_flag))) {
3945                 pr_err(MPT3SAS_FMT
3946                         "doorbell handshake int failed (line=%d)\n",
3947                         ioc->name, __LINE__);
3948                 return -EFAULT;
3949         }
3950         reply[1] = le16_to_cpu(readl(&ioc->chip->Doorbell)
3951             & MPI2_DOORBELL_DATA_MASK);
3952         writel(0, &ioc->chip->HostInterruptStatus);
3953
3954         for (i = 2; i < default_reply->MsgLength * 2; i++)  {
3955                 if ((_base_wait_for_doorbell_int(ioc, 5, sleep_flag))) {
3956                         pr_err(MPT3SAS_FMT
3957                                 "doorbell handshake int failed (line=%d)\n",
3958                                 ioc->name, __LINE__);
3959                         return -EFAULT;
3960                 }
3961                 if (i >=  reply_bytes/2) /* overflow case */
3962                         dummy = readl(&ioc->chip->Doorbell);
3963                 else
3964                         reply[i] = le16_to_cpu(readl(&ioc->chip->Doorbell)
3965                             & MPI2_DOORBELL_DATA_MASK);
3966                 writel(0, &ioc->chip->HostInterruptStatus);
3967         }
3968
3969         _base_wait_for_doorbell_int(ioc, 5, sleep_flag);
3970         if (_base_wait_for_doorbell_not_used(ioc, 5, sleep_flag) != 0) {
3971                 dhsprintk(ioc, pr_info(MPT3SAS_FMT
3972                         "doorbell is in use (line=%d)\n", ioc->name, __LINE__));
3973         }
3974         writel(0, &ioc->chip->HostInterruptStatus);
3975
3976         if (ioc->logging_level & MPT_DEBUG_INIT) {
3977                 mfp = (__le32 *)reply;
3978                 pr_info("\toffset:data\n");
3979                 for (i = 0; i < reply_bytes/4; i++)
3980                         pr_info("\t[0x%02x]:%08x\n", i*4,
3981                             le32_to_cpu(mfp[i]));
3982         }
3983         return 0;
3984 }
3985
3986 /**
3987  * mpt3sas_base_sas_iounit_control - send sas iounit control to FW
3988  * @ioc: per adapter object
3989  * @mpi_reply: the reply payload from FW
3990  * @mpi_request: the request payload sent to FW
3991  *
3992  * The SAS IO Unit Control Request message allows the host to perform low-level
3993  * operations, such as resets on the PHYs of the IO Unit, also allows the host
3994  * to obtain the IOC assigned device handles for a device if it has other
3995  * identifying information about the device, in addition allows the host to
3996  * remove IOC resources associated with the device.
3997  *
3998  * Returns 0 for success, non-zero for failure.
3999  */
4000 int
4001 mpt3sas_base_sas_iounit_control(struct MPT3SAS_ADAPTER *ioc,
4002         Mpi2SasIoUnitControlReply_t *mpi_reply,
4003         Mpi2SasIoUnitControlRequest_t *mpi_request)
4004 {
4005         u16 smid;
4006         u32 ioc_state;
4007         unsigned long timeleft;
4008         bool issue_reset = false;
4009         int rc;
4010         void *request;
4011         u16 wait_state_count;
4012
4013         dinitprintk(ioc, pr_info(MPT3SAS_FMT "%s\n", ioc->name,
4014             __func__));
4015
4016         mutex_lock(&ioc->base_cmds.mutex);
4017
4018         if (ioc->base_cmds.status != MPT3_CMD_NOT_USED) {
4019                 pr_err(MPT3SAS_FMT "%s: base_cmd in use\n",
4020                     ioc->name, __func__);
4021                 rc = -EAGAIN;
4022                 goto out;
4023         }
4024
4025         wait_state_count = 0;
4026         ioc_state = mpt3sas_base_get_iocstate(ioc, 1);
4027         while (ioc_state != MPI2_IOC_STATE_OPERATIONAL) {
4028                 if (wait_state_count++ == 10) {
4029                         pr_err(MPT3SAS_FMT
4030                             "%s: failed due to ioc not operational\n",
4031                             ioc->name, __func__);
4032                         rc = -EFAULT;
4033                         goto out;
4034                 }
4035                 ssleep(1);
4036                 ioc_state = mpt3sas_base_get_iocstate(ioc, 1);
4037                 pr_info(MPT3SAS_FMT
4038                         "%s: waiting for operational state(count=%d)\n",
4039                         ioc->name, __func__, wait_state_count);
4040         }
4041
4042         smid = mpt3sas_base_get_smid(ioc, ioc->base_cb_idx);
4043         if (!smid) {
4044                 pr_err(MPT3SAS_FMT "%s: failed obtaining a smid\n",
4045                     ioc->name, __func__);
4046                 rc = -EAGAIN;
4047                 goto out;
4048         }
4049
4050         rc = 0;
4051         ioc->base_cmds.status = MPT3_CMD_PENDING;
4052         request = mpt3sas_base_get_msg_frame(ioc, smid);
4053         ioc->base_cmds.smid = smid;
4054         memcpy(request, mpi_request, sizeof(Mpi2SasIoUnitControlRequest_t));
4055         if (mpi_request->Operation == MPI2_SAS_OP_PHY_HARD_RESET ||
4056             mpi_request->Operation == MPI2_SAS_OP_PHY_LINK_RESET)
4057                 ioc->ioc_link_reset_in_progress = 1;
4058         init_completion(&ioc->base_cmds.done);
4059         mpt3sas_base_put_smid_default(ioc, smid);
4060         timeleft = wait_for_completion_timeout(&ioc->base_cmds.done,
4061             msecs_to_jiffies(10000));
4062         if ((mpi_request->Operation == MPI2_SAS_OP_PHY_HARD_RESET ||
4063             mpi_request->Operation == MPI2_SAS_OP_PHY_LINK_RESET) &&
4064             ioc->ioc_link_reset_in_progress)
4065                 ioc->ioc_link_reset_in_progress = 0;
4066         if (!(ioc->base_cmds.status & MPT3_CMD_COMPLETE)) {
4067                 pr_err(MPT3SAS_FMT "%s: timeout\n",
4068                     ioc->name, __func__);
4069                 _debug_dump_mf(mpi_request,
4070                     sizeof(Mpi2SasIoUnitControlRequest_t)/4);
4071                 if (!(ioc->base_cmds.status & MPT3_CMD_RESET))
4072                         issue_reset = true;
4073                 goto issue_host_reset;
4074         }
4075         if (ioc->base_cmds.status & MPT3_CMD_REPLY_VALID)
4076                 memcpy(mpi_reply, ioc->base_cmds.reply,
4077                     sizeof(Mpi2SasIoUnitControlReply_t));
4078         else
4079                 memset(mpi_reply, 0, sizeof(Mpi2SasIoUnitControlReply_t));
4080         ioc->base_cmds.status = MPT3_CMD_NOT_USED;
4081         goto out;
4082
4083  issue_host_reset:
4084         if (issue_reset)
4085                 mpt3sas_base_hard_reset_handler(ioc, CAN_SLEEP,
4086                     FORCE_BIG_HAMMER);
4087         ioc->base_cmds.status = MPT3_CMD_NOT_USED;
4088         rc = -EFAULT;
4089  out:
4090         mutex_unlock(&ioc->base_cmds.mutex);
4091         return rc;
4092 }
4093
4094 /**
4095  * mpt3sas_base_scsi_enclosure_processor - sending request to sep device
4096  * @ioc: per adapter object
4097  * @mpi_reply: the reply payload from FW
4098  * @mpi_request: the request payload sent to FW
4099  *
4100  * The SCSI Enclosure Processor request message causes the IOC to
4101  * communicate with SES devices to control LED status signals.
4102  *
4103  * Returns 0 for success, non-zero for failure.
4104  */
4105 int
4106 mpt3sas_base_scsi_enclosure_processor(struct MPT3SAS_ADAPTER *ioc,
4107         Mpi2SepReply_t *mpi_reply, Mpi2SepRequest_t *mpi_request)
4108 {
4109         u16 smid;
4110         u32 ioc_state;
4111         unsigned long timeleft;
4112         bool issue_reset = false;
4113         int rc;
4114         void *request;
4115         u16 wait_state_count;
4116
4117         dinitprintk(ioc, pr_info(MPT3SAS_FMT "%s\n", ioc->name,
4118             __func__));
4119
4120         mutex_lock(&ioc->base_cmds.mutex);
4121
4122         if (ioc->base_cmds.status != MPT3_CMD_NOT_USED) {
4123                 pr_err(MPT3SAS_FMT "%s: base_cmd in use\n",
4124                     ioc->name, __func__);
4125                 rc = -EAGAIN;
4126                 goto out;
4127         }
4128
4129         wait_state_count = 0;
4130         ioc_state = mpt3sas_base_get_iocstate(ioc, 1);
4131         while (ioc_state != MPI2_IOC_STATE_OPERATIONAL) {
4132                 if (wait_state_count++ == 10) {
4133                         pr_err(MPT3SAS_FMT
4134                             "%s: failed due to ioc not operational\n",
4135                             ioc->name, __func__);
4136                         rc = -EFAULT;
4137                         goto out;
4138                 }
4139                 ssleep(1);
4140                 ioc_state = mpt3sas_base_get_iocstate(ioc, 1);
4141                 pr_info(MPT3SAS_FMT
4142                         "%s: waiting for operational state(count=%d)\n",
4143                         ioc->name,
4144                     __func__, wait_state_count);
4145         }
4146
4147         smid = mpt3sas_base_get_smid(ioc, ioc->base_cb_idx);
4148         if (!smid) {
4149                 pr_err(MPT3SAS_FMT "%s: failed obtaining a smid\n",
4150                     ioc->name, __func__);
4151                 rc = -EAGAIN;
4152                 goto out;
4153         }
4154
4155         rc = 0;
4156         ioc->base_cmds.status = MPT3_CMD_PENDING;
4157         request = mpt3sas_base_get_msg_frame(ioc, smid);
4158         ioc->base_cmds.smid = smid;
4159         memcpy(request, mpi_request, sizeof(Mpi2SepReply_t));
4160         init_completion(&ioc->base_cmds.done);
4161         mpt3sas_base_put_smid_default(ioc, smid);
4162         timeleft = wait_for_completion_timeout(&ioc->base_cmds.done,
4163             msecs_to_jiffies(10000));
4164         if (!(ioc->base_cmds.status & MPT3_CMD_COMPLETE)) {
4165                 pr_err(MPT3SAS_FMT "%s: timeout\n",
4166                     ioc->name, __func__);
4167                 _debug_dump_mf(mpi_request,
4168                     sizeof(Mpi2SepRequest_t)/4);
4169                 if (!(ioc->base_cmds.status & MPT3_CMD_RESET))
4170                         issue_reset = false;
4171                 goto issue_host_reset;
4172         }
4173         if (ioc->base_cmds.status & MPT3_CMD_REPLY_VALID)
4174                 memcpy(mpi_reply, ioc->base_cmds.reply,
4175                     sizeof(Mpi2SepReply_t));
4176         else
4177                 memset(mpi_reply, 0, sizeof(Mpi2SepReply_t));
4178         ioc->base_cmds.status = MPT3_CMD_NOT_USED;
4179         goto out;
4180
4181  issue_host_reset:
4182         if (issue_reset)
4183                 mpt3sas_base_hard_reset_handler(ioc, CAN_SLEEP,
4184                     FORCE_BIG_HAMMER);
4185         ioc->base_cmds.status = MPT3_CMD_NOT_USED;
4186         rc = -EFAULT;
4187  out:
4188         mutex_unlock(&ioc->base_cmds.mutex);
4189         return rc;
4190 }
4191
4192 /**
4193  * _base_get_port_facts - obtain port facts reply and save in ioc
4194  * @ioc: per adapter object
4195  * @sleep_flag: CAN_SLEEP or NO_SLEEP
4196  *
4197  * Returns 0 for success, non-zero for failure.
4198  */
4199 static int
4200 _base_get_port_facts(struct MPT3SAS_ADAPTER *ioc, int port, int sleep_flag)
4201 {
4202         Mpi2PortFactsRequest_t mpi_request;
4203         Mpi2PortFactsReply_t mpi_reply;
4204         struct mpt3sas_port_facts *pfacts;
4205         int mpi_reply_sz, mpi_request_sz, r;
4206
4207         dinitprintk(ioc, pr_info(MPT3SAS_FMT "%s\n", ioc->name,
4208             __func__));
4209
4210         mpi_reply_sz = sizeof(Mpi2PortFactsReply_t);
4211         mpi_request_sz = sizeof(Mpi2PortFactsRequest_t);
4212         memset(&mpi_request, 0, mpi_request_sz);
4213         mpi_request.Function = MPI2_FUNCTION_PORT_FACTS;
4214         mpi_request.PortNumber = port;
4215         r = _base_handshake_req_reply_wait(ioc, mpi_request_sz,
4216             (u32 *)&mpi_request, mpi_reply_sz, (u16 *)&mpi_reply, 5, CAN_SLEEP);
4217
4218         if (r != 0) {
4219                 pr_err(MPT3SAS_FMT "%s: handshake failed (r=%d)\n",
4220                     ioc->name, __func__, r);
4221                 return r;
4222         }
4223
4224         pfacts = &ioc->pfacts[port];
4225         memset(pfacts, 0, sizeof(struct mpt3sas_port_facts));
4226         pfacts->PortNumber = mpi_reply.PortNumber;
4227         pfacts->VP_ID = mpi_reply.VP_ID;
4228         pfacts->VF_ID = mpi_reply.VF_ID;
4229         pfacts->MaxPostedCmdBuffers =
4230             le16_to_cpu(mpi_reply.MaxPostedCmdBuffers);
4231
4232         return 0;
4233 }
4234
4235 /**
4236  * _base_wait_for_iocstate - Wait until the card is in READY or OPERATIONAL
4237  * @ioc: per adapter object
4238  * @timeout:
4239  * @sleep_flag: CAN_SLEEP or NO_SLEEP
4240  *
4241  * Returns 0 for success, non-zero for failure.
4242  */
4243 static int
4244 _base_wait_for_iocstate(struct MPT3SAS_ADAPTER *ioc, int timeout,
4245         int sleep_flag)
4246 {
4247         u32 ioc_state;
4248         int rc;
4249
4250         dinitprintk(ioc, printk(MPT3SAS_FMT "%s\n", ioc->name,
4251             __func__));
4252
4253         if (ioc->pci_error_recovery) {
4254                 dfailprintk(ioc, printk(MPT3SAS_FMT
4255                     "%s: host in pci error recovery\n", ioc->name, __func__));
4256                 return -EFAULT;
4257         }
4258
4259         ioc_state = mpt3sas_base_get_iocstate(ioc, 0);
4260         dhsprintk(ioc, printk(MPT3SAS_FMT "%s: ioc_state(0x%08x)\n",
4261             ioc->name, __func__, ioc_state));
4262
4263         if (((ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_READY) ||
4264             (ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_OPERATIONAL)
4265                 return 0;
4266
4267         if (ioc_state & MPI2_DOORBELL_USED) {
4268                 dhsprintk(ioc, printk(MPT3SAS_FMT
4269                     "unexpected doorbell active!\n", ioc->name));
4270                 goto issue_diag_reset;
4271         }
4272
4273         if ((ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_FAULT) {
4274                 mpt3sas_base_fault_info(ioc, ioc_state &
4275                     MPI2_DOORBELL_DATA_MASK);
4276                 goto issue_diag_reset;
4277         }
4278
4279         ioc_state = _base_wait_on_iocstate(ioc, MPI2_IOC_STATE_READY,
4280             timeout, sleep_flag);
4281         if (ioc_state) {
4282                 dfailprintk(ioc, printk(MPT3SAS_FMT
4283                     "%s: failed going to ready state (ioc_state=0x%x)\n",
4284                     ioc->name, __func__, ioc_state));
4285                 return -EFAULT;
4286         }
4287
4288  issue_diag_reset:
4289         rc = _base_diag_reset(ioc, sleep_flag);
4290         return rc;
4291 }
4292
4293 /**
4294  * _base_get_ioc_facts - obtain ioc facts reply and save in ioc
4295  * @ioc: per adapter object
4296  * @sleep_flag: CAN_SLEEP or NO_SLEEP
4297  *
4298  * Returns 0 for success, non-zero for failure.
4299  */
4300 static int
4301 _base_get_ioc_facts(struct MPT3SAS_ADAPTER *ioc, int sleep_flag)
4302 {
4303         Mpi2IOCFactsRequest_t mpi_request;
4304         Mpi2IOCFactsReply_t mpi_reply;
4305         struct mpt3sas_facts *facts;
4306         int mpi_reply_sz, mpi_request_sz, r;
4307
4308         dinitprintk(ioc, pr_info(MPT3SAS_FMT "%s\n", ioc->name,
4309             __func__));
4310
4311         r = _base_wait_for_iocstate(ioc, 10, sleep_flag);
4312         if (r) {
4313                 dfailprintk(ioc, printk(MPT3SAS_FMT
4314                     "%s: failed getting to correct state\n",
4315                     ioc->name, __func__));
4316                 return r;
4317         }
4318         mpi_reply_sz = sizeof(Mpi2IOCFactsReply_t);
4319         mpi_request_sz = sizeof(Mpi2IOCFactsRequest_t);
4320         memset(&mpi_request, 0, mpi_request_sz);
4321         mpi_request.Function = MPI2_FUNCTION_IOC_FACTS;
4322         r = _base_handshake_req_reply_wait(ioc, mpi_request_sz,
4323             (u32 *)&mpi_request, mpi_reply_sz, (u16 *)&mpi_reply, 5, CAN_SLEEP);
4324
4325         if (r != 0) {
4326                 pr_err(MPT3SAS_FMT "%s: handshake failed (r=%d)\n",
4327                     ioc->name, __func__, r);
4328                 return r;
4329         }
4330
4331         facts = &ioc->facts;
4332         memset(facts, 0, sizeof(struct mpt3sas_facts));
4333         facts->MsgVersion = le16_to_cpu(mpi_reply.MsgVersion);
4334         facts->HeaderVersion = le16_to_cpu(mpi_reply.HeaderVersion);
4335         facts->VP_ID = mpi_reply.VP_ID;
4336         facts->VF_ID = mpi_reply.VF_ID;
4337         facts->IOCExceptions = le16_to_cpu(mpi_reply.IOCExceptions);
4338         facts->MaxChainDepth = mpi_reply.MaxChainDepth;
4339         facts->WhoInit = mpi_reply.WhoInit;
4340         facts->NumberOfPorts = mpi_reply.NumberOfPorts;
4341         facts->MaxMSIxVectors = mpi_reply.MaxMSIxVectors;
4342         facts->RequestCredit = le16_to_cpu(mpi_reply.RequestCredit);
4343         facts->MaxReplyDescriptorPostQueueDepth =
4344             le16_to_cpu(mpi_reply.MaxReplyDescriptorPostQueueDepth);
4345         facts->ProductID = le16_to_cpu(mpi_reply.ProductID);
4346         facts->IOCCapabilities = le32_to_cpu(mpi_reply.IOCCapabilities);
4347         if ((facts->IOCCapabilities & MPI2_IOCFACTS_CAPABILITY_INTEGRATED_RAID))
4348                 ioc->ir_firmware = 1;
4349         if ((facts->IOCCapabilities &
4350               MPI2_IOCFACTS_CAPABILITY_RDPQ_ARRAY_CAPABLE))
4351                 ioc->rdpq_array_capable = 1;
4352         facts->FWVersion.Word = le32_to_cpu(mpi_reply.FWVersion.Word);
4353         facts->IOCRequestFrameSize =
4354             le16_to_cpu(mpi_reply.IOCRequestFrameSize);
4355         if (ioc->hba_mpi_version_belonged != MPI2_VERSION) {
4356                 facts->IOCMaxChainSegmentSize =
4357                         le16_to_cpu(mpi_reply.IOCMaxChainSegmentSize);
4358         }
4359         facts->MaxInitiators = le16_to_cpu(mpi_reply.MaxInitiators);
4360         facts->MaxTargets = le16_to_cpu(mpi_reply.MaxTargets);
4361         ioc->shost->max_id = -1;
4362         facts->MaxSasExpanders = le16_to_cpu(mpi_reply.MaxSasExpanders);
4363         facts->MaxEnclosures = le16_to_cpu(mpi_reply.MaxEnclosures);
4364         facts->ProtocolFlags = le16_to_cpu(mpi_reply.ProtocolFlags);
4365         facts->HighPriorityCredit =
4366             le16_to_cpu(mpi_reply.HighPriorityCredit);
4367         facts->ReplyFrameSize = mpi_reply.ReplyFrameSize;
4368         facts->MaxDevHandle = le16_to_cpu(mpi_reply.MaxDevHandle);
4369
4370         dinitprintk(ioc, pr_info(MPT3SAS_FMT
4371                 "hba queue depth(%d), max chains per io(%d)\n",
4372                 ioc->name, facts->RequestCredit,
4373             facts->MaxChainDepth));
4374         dinitprintk(ioc, pr_info(MPT3SAS_FMT
4375                 "request frame size(%d), reply frame size(%d)\n", ioc->name,
4376             facts->IOCRequestFrameSize * 4, facts->ReplyFrameSize * 4));
4377         return 0;
4378 }
4379
4380 /**
4381  * _base_send_ioc_init - send ioc_init to firmware
4382  * @ioc: per adapter object
4383  * @sleep_flag: CAN_SLEEP or NO_SLEEP
4384  *
4385  * Returns 0 for success, non-zero for failure.
4386  */
4387 static int
4388 _base_send_ioc_init(struct MPT3SAS_ADAPTER *ioc, int sleep_flag)
4389 {
4390         Mpi2IOCInitRequest_t mpi_request;
4391         Mpi2IOCInitReply_t mpi_reply;
4392         int i, r = 0;
4393         ktime_t current_time;
4394         u16 ioc_status;
4395         u32 reply_post_free_array_sz = 0;
4396         Mpi2IOCInitRDPQArrayEntry *reply_post_free_array = NULL;
4397         dma_addr_t reply_post_free_array_dma;
4398
4399         dinitprintk(ioc, pr_info(MPT3SAS_FMT "%s\n", ioc->name,
4400             __func__));
4401
4402         memset(&mpi_request, 0, sizeof(Mpi2IOCInitRequest_t));
4403         mpi_request.Function = MPI2_FUNCTION_IOC_INIT;
4404         mpi_request.WhoInit = MPI2_WHOINIT_HOST_DRIVER;
4405         mpi_request.VF_ID = 0; /* TODO */
4406         mpi_request.VP_ID = 0;
4407         mpi_request.MsgVersion = cpu_to_le16(ioc->hba_mpi_version_belonged);
4408         mpi_request.HeaderVersion = cpu_to_le16(MPI2_HEADER_VERSION);
4409
4410         if (_base_is_controller_msix_enabled(ioc))
4411                 mpi_request.HostMSIxVectors = ioc->reply_queue_count;
4412         mpi_request.SystemRequestFrameSize = cpu_to_le16(ioc->request_sz/4);
4413         mpi_request.ReplyDescriptorPostQueueDepth =
4414             cpu_to_le16(ioc->reply_post_queue_depth);
4415         mpi_request.ReplyFreeQueueDepth =
4416             cpu_to_le16(ioc->reply_free_queue_depth);
4417
4418         mpi_request.SenseBufferAddressHigh =
4419             cpu_to_le32((u64)ioc->sense_dma >> 32);
4420         mpi_request.SystemReplyAddressHigh =
4421             cpu_to_le32((u64)ioc->reply_dma >> 32);
4422         mpi_request.SystemRequestFrameBaseAddress =
4423             cpu_to_le64((u64)ioc->request_dma);
4424         mpi_request.ReplyFreeQueueAddress =
4425             cpu_to_le64((u64)ioc->reply_free_dma);
4426
4427         if (ioc->rdpq_array_enable) {
4428                 reply_post_free_array_sz = ioc->reply_queue_count *
4429                     sizeof(Mpi2IOCInitRDPQArrayEntry);
4430                 reply_post_free_array = pci_alloc_consistent(ioc->pdev,
4431                         reply_post_free_array_sz, &reply_post_free_array_dma);
4432                 if (!reply_post_free_array) {
4433                         pr_err(MPT3SAS_FMT
4434                         "reply_post_free_array: pci_alloc_consistent failed\n",
4435                         ioc->name);
4436                         r = -ENOMEM;
4437                         goto out;
4438                 }
4439                 memset(reply_post_free_array, 0, reply_post_free_array_sz);
4440                 for (i = 0; i < ioc->reply_queue_count; i++)
4441                         reply_post_free_array[i].RDPQBaseAddress =
4442                             cpu_to_le64(
4443                                 (u64)ioc->reply_post[i].reply_post_free_dma);
4444                 mpi_request.MsgFlags = MPI2_IOCINIT_MSGFLAG_RDPQ_ARRAY_MODE;
4445                 mpi_request.ReplyDescriptorPostQueueAddress =
4446                     cpu_to_le64((u64)reply_post_free_array_dma);
4447         } else {
4448                 mpi_request.ReplyDescriptorPostQueueAddress =
4449                     cpu_to_le64((u64)ioc->reply_post[0].reply_post_free_dma);
4450         }
4451
4452         /* This time stamp specifies number of milliseconds
4453          * since epoch ~ midnight January 1, 1970.
4454          */
4455         current_time = ktime_get_real();
4456         mpi_request.TimeStamp = cpu_to_le64(ktime_to_ms(current_time));
4457
4458         if (ioc->logging_level & MPT_DEBUG_INIT) {
4459                 __le32 *mfp;
4460                 int i;
4461
4462                 mfp = (__le32 *)&mpi_request;
4463                 pr_info("\toffset:data\n");
4464                 for (i = 0; i < sizeof(Mpi2IOCInitRequest_t)/4; i++)
4465                         pr_info("\t[0x%02x]:%08x\n", i*4,
4466                             le32_to_cpu(mfp[i]));
4467         }
4468
4469         r = _base_handshake_req_reply_wait(ioc,
4470             sizeof(Mpi2IOCInitRequest_t), (u32 *)&mpi_request,
4471             sizeof(Mpi2IOCInitReply_t), (u16 *)&mpi_reply, 10,
4472             sleep_flag);
4473
4474         if (r != 0) {
4475                 pr_err(MPT3SAS_FMT "%s: handshake failed (r=%d)\n",
4476                     ioc->name, __func__, r);
4477                 goto out;
4478         }
4479
4480         ioc_status = le16_to_cpu(mpi_reply.IOCStatus) & MPI2_IOCSTATUS_MASK;
4481         if (ioc_status != MPI2_IOCSTATUS_SUCCESS ||
4482             mpi_reply.IOCLogInfo) {
4483                 pr_err(MPT3SAS_FMT "%s: failed\n", ioc->name, __func__);
4484                 r = -EIO;
4485         }
4486
4487 out:
4488         if (reply_post_free_array)
4489                 pci_free_consistent(ioc->pdev, reply_post_free_array_sz,
4490                                     reply_post_free_array,
4491                                     reply_post_free_array_dma);
4492         return r;
4493 }
4494
4495 /**
4496  * mpt3sas_port_enable_done - command completion routine for port enable
4497  * @ioc: per adapter object
4498  * @smid: system request message index
4499  * @msix_index: MSIX table index supplied by the OS
4500  * @reply: reply message frame(lower 32bit addr)
4501  *
4502  * Return 1 meaning mf should be freed from _base_interrupt
4503  *        0 means the mf is freed from this function.
4504  */
4505 u8
4506 mpt3sas_port_enable_done(struct MPT3SAS_ADAPTER *ioc, u16 smid, u8 msix_index,
4507         u32 reply)
4508 {
4509         MPI2DefaultReply_t *mpi_reply;
4510         u16 ioc_status;
4511
4512         if (ioc->port_enable_cmds.status == MPT3_CMD_NOT_USED)
4513                 return 1;
4514
4515         mpi_reply = mpt3sas_base_get_reply_virt_addr(ioc, reply);
4516         if (!mpi_reply)
4517                 return 1;
4518
4519         if (mpi_reply->Function != MPI2_FUNCTION_PORT_ENABLE)
4520                 return 1;
4521
4522         ioc->port_enable_cmds.status &= ~MPT3_CMD_PENDING;
4523         ioc->port_enable_cmds.status |= MPT3_CMD_COMPLETE;
4524         ioc->port_enable_cmds.status |= MPT3_CMD_REPLY_VALID;
4525         memcpy(ioc->port_enable_cmds.reply, mpi_reply, mpi_reply->MsgLength*4);
4526         ioc_status = le16_to_cpu(mpi_reply->IOCStatus) & MPI2_IOCSTATUS_MASK;
4527         if (ioc_status != MPI2_IOCSTATUS_SUCCESS)
4528                 ioc->port_enable_failed = 1;
4529
4530         if (ioc->is_driver_loading) {
4531                 if (ioc_status == MPI2_IOCSTATUS_SUCCESS) {
4532                         mpt3sas_port_enable_complete(ioc);
4533                         return 1;
4534                 } else {
4535                         ioc->start_scan_failed = ioc_status;
4536                         ioc->start_scan = 0;
4537                         return 1;
4538                 }
4539         }
4540         complete(&ioc->port_enable_cmds.done);
4541         return 1;
4542 }
4543
4544 /**
4545  * _base_send_port_enable - send port_enable(discovery stuff) to firmware
4546  * @ioc: per adapter object
4547  * @sleep_flag: CAN_SLEEP or NO_SLEEP
4548  *
4549  * Returns 0 for success, non-zero for failure.
4550  */
4551 static int
4552 _base_send_port_enable(struct MPT3SAS_ADAPTER *ioc, int sleep_flag)
4553 {
4554         Mpi2PortEnableRequest_t *mpi_request;
4555         Mpi2PortEnableReply_t *mpi_reply;
4556         unsigned long timeleft;
4557         int r = 0;
4558         u16 smid;
4559         u16 ioc_status;
4560
4561         pr_info(MPT3SAS_FMT "sending port enable !!\n", ioc->name);
4562
4563         if (ioc->port_enable_cmds.status & MPT3_CMD_PENDING) {
4564                 pr_err(MPT3SAS_FMT "%s: internal command already in use\n",
4565                     ioc->name, __func__);
4566                 return -EAGAIN;
4567         }
4568
4569         smid = mpt3sas_base_get_smid(ioc, ioc->port_enable_cb_idx);
4570         if (!smid) {
4571                 pr_err(MPT3SAS_FMT "%s: failed obtaining a smid\n",
4572                     ioc->name, __func__);
4573                 return -EAGAIN;
4574         }
4575
4576         ioc->port_enable_cmds.status = MPT3_CMD_PENDING;
4577         mpi_request = mpt3sas_base_get_msg_frame(ioc, smid);
4578         ioc->port_enable_cmds.smid = smid;
4579         memset(mpi_request, 0, sizeof(Mpi2PortEnableRequest_t));
4580         mpi_request->Function = MPI2_FUNCTION_PORT_ENABLE;
4581
4582         init_completion(&ioc->port_enable_cmds.done);
4583         mpt3sas_base_put_smid_default(ioc, smid);
4584         timeleft = wait_for_completion_timeout(&ioc->port_enable_cmds.done,
4585             300*HZ);
4586         if (!(ioc->port_enable_cmds.status & MPT3_CMD_COMPLETE)) {
4587                 pr_err(MPT3SAS_FMT "%s: timeout\n",
4588                     ioc->name, __func__);
4589                 _debug_dump_mf(mpi_request,
4590                     sizeof(Mpi2PortEnableRequest_t)/4);
4591                 if (ioc->port_enable_cmds.status & MPT3_CMD_RESET)
4592                         r = -EFAULT;
4593                 else
4594                         r = -ETIME;
4595                 goto out;
4596         }
4597
4598         mpi_reply = ioc->port_enable_cmds.reply;
4599         ioc_status = le16_to_cpu(mpi_reply->IOCStatus) & MPI2_IOCSTATUS_MASK;
4600         if (ioc_status != MPI2_IOCSTATUS_SUCCESS) {
4601                 pr_err(MPT3SAS_FMT "%s: failed with (ioc_status=0x%08x)\n",
4602                     ioc->name, __func__, ioc_status);
4603                 r = -EFAULT;
4604                 goto out;
4605         }
4606
4607  out:
4608         ioc->port_enable_cmds.status = MPT3_CMD_NOT_USED;
4609         pr_info(MPT3SAS_FMT "port enable: %s\n", ioc->name, ((r == 0) ?
4610             "SUCCESS" : "FAILED"));
4611         return r;
4612 }
4613
4614 /**
4615  * mpt3sas_port_enable - initiate firmware discovery (don't wait for reply)
4616  * @ioc: per adapter object
4617  *
4618  * Returns 0 for success, non-zero for failure.
4619  */
4620 int
4621 mpt3sas_port_enable(struct MPT3SAS_ADAPTER *ioc)
4622 {
4623         Mpi2PortEnableRequest_t *mpi_request;
4624         u16 smid;
4625
4626         pr_info(MPT3SAS_FMT "sending port enable !!\n", ioc->name);
4627
4628         if (ioc->port_enable_cmds.status & MPT3_CMD_PENDING) {
4629                 pr_err(MPT3SAS_FMT "%s: internal command already in use\n",
4630                     ioc->name, __func__);
4631                 return -EAGAIN;
4632         }
4633
4634         smid = mpt3sas_base_get_smid(ioc, ioc->port_enable_cb_idx);
4635         if (!smid) {
4636                 pr_err(MPT3SAS_FMT "%s: failed obtaining a smid\n",
4637                     ioc->name, __func__);
4638                 return -EAGAIN;
4639         }
4640
4641         ioc->port_enable_cmds.status = MPT3_CMD_PENDING;
4642         mpi_request = mpt3sas_base_get_msg_frame(ioc, smid);
4643         ioc->port_enable_cmds.smid = smid;
4644         memset(mpi_request, 0, sizeof(Mpi2PortEnableRequest_t));
4645         mpi_request->Function = MPI2_FUNCTION_PORT_ENABLE;
4646
4647         mpt3sas_base_put_smid_default(ioc, smid);
4648         return 0;
4649 }
4650
4651 /**
4652  * _base_determine_wait_on_discovery - desposition
4653  * @ioc: per adapter object
4654  *
4655  * Decide whether to wait on discovery to complete. Used to either
4656  * locate boot device, or report volumes ahead of physical devices.
4657  *
4658  * Returns 1 for wait, 0 for don't wait
4659  */
4660 static int
4661 _base_determine_wait_on_discovery(struct MPT3SAS_ADAPTER *ioc)
4662 {
4663         /* We wait for discovery to complete if IR firmware is loaded.
4664          * The sas topology events arrive before PD events, so we need time to
4665          * turn on the bit in ioc->pd_handles to indicate PD
4666          * Also, it maybe required to report Volumes ahead of physical
4667          * devices when MPI2_IOCPAGE8_IRFLAGS_LOW_VOLUME_MAPPING is set.
4668          */
4669         if (ioc->ir_firmware)
4670                 return 1;
4671
4672         /* if no Bios, then we don't need to wait */
4673         if (!ioc->bios_pg3.BiosVersion)
4674                 return 0;
4675
4676         /* Bios is present, then we drop down here.
4677          *
4678          * If there any entries in the Bios Page 2, then we wait
4679          * for discovery to complete.
4680          */
4681
4682         /* Current Boot Device */
4683         if ((ioc->bios_pg2.CurrentBootDeviceForm &
4684             MPI2_BIOSPAGE2_FORM_MASK) ==
4685             MPI2_BIOSPAGE2_FORM_NO_DEVICE_SPECIFIED &&
4686         /* Request Boot Device */
4687            (ioc->bios_pg2.ReqBootDeviceForm &
4688             MPI2_BIOSPAGE2_FORM_MASK) ==
4689             MPI2_BIOSPAGE2_FORM_NO_DEVICE_SPECIFIED &&
4690         /* Alternate Request Boot Device */
4691            (ioc->bios_pg2.ReqAltBootDeviceForm &
4692             MPI2_BIOSPAGE2_FORM_MASK) ==
4693             MPI2_BIOSPAGE2_FORM_NO_DEVICE_SPECIFIED)
4694                 return 0;
4695
4696         return 1;
4697 }
4698
4699 /**
4700  * _base_unmask_events - turn on notification for this event
4701  * @ioc: per adapter object
4702  * @event: firmware event
4703  *
4704  * The mask is stored in ioc->event_masks.
4705  */
4706 static void
4707 _base_unmask_events(struct MPT3SAS_ADAPTER *ioc, u16 event)
4708 {
4709         u32 desired_event;
4710
4711         if (event >= 128)
4712                 return;
4713
4714         desired_event = (1 << (event % 32));
4715
4716         if (event < 32)
4717                 ioc->event_masks[0] &= ~desired_event;
4718         else if (event < 64)
4719                 ioc->event_masks[1] &= ~desired_event;
4720         else if (event < 96)
4721                 ioc->event_masks[2] &= ~desired_event;
4722         else if (event < 128)
4723                 ioc->event_masks[3] &= ~desired_event;
4724 }
4725
4726 /**
4727  * _base_event_notification - send event notification
4728  * @ioc: per adapter object
4729  * @sleep_flag: CAN_SLEEP or NO_SLEEP
4730  *
4731  * Returns 0 for success, non-zero for failure.
4732  */
4733 static int
4734 _base_event_notification(struct MPT3SAS_ADAPTER *ioc, int sleep_flag)
4735 {
4736         Mpi2EventNotificationRequest_t *mpi_request;
4737         unsigned long timeleft;
4738         u16 smid;
4739         int r = 0;
4740         int i;
4741
4742         dinitprintk(ioc, pr_info(MPT3SAS_FMT "%s\n", ioc->name,
4743             __func__));
4744
4745         if (ioc->base_cmds.status & MPT3_CMD_PENDING) {
4746                 pr_err(MPT3SAS_FMT "%s: internal command already in use\n",
4747                     ioc->name, __func__);
4748                 return -EAGAIN;
4749         }
4750
4751         smid = mpt3sas_base_get_smid(ioc, ioc->base_cb_idx);
4752         if (!smid) {
4753                 pr_err(MPT3SAS_FMT "%s: failed obtaining a smid\n",
4754                     ioc->name, __func__);
4755                 return -EAGAIN;
4756         }
4757         ioc->base_cmds.status = MPT3_CMD_PENDING;
4758         mpi_request = mpt3sas_base_get_msg_frame(ioc, smid);
4759         ioc->base_cmds.smid = smid;
4760         memset(mpi_request, 0, sizeof(Mpi2EventNotificationRequest_t));
4761         mpi_request->Function = MPI2_FUNCTION_EVENT_NOTIFICATION;
4762         mpi_request->VF_ID = 0; /* TODO */
4763         mpi_request->VP_ID = 0;
4764         for (i = 0; i < MPI2_EVENT_NOTIFY_EVENTMASK_WORDS; i++)
4765                 mpi_request->EventMasks[i] =
4766                     cpu_to_le32(ioc->event_masks[i]);
4767         init_completion(&ioc->base_cmds.done);
4768         mpt3sas_base_put_smid_default(ioc, smid);
4769         timeleft = wait_for_completion_timeout(&ioc->base_cmds.done, 30*HZ);
4770         if (!(ioc->base_cmds.status & MPT3_CMD_COMPLETE)) {
4771                 pr_err(MPT3SAS_FMT "%s: timeout\n",
4772                     ioc->name, __func__);
4773                 _debug_dump_mf(mpi_request,
4774                     sizeof(Mpi2EventNotificationRequest_t)/4);
4775                 if (ioc->base_cmds.status & MPT3_CMD_RESET)
4776                         r = -EFAULT;
4777                 else
4778                         r = -ETIME;
4779         } else
4780                 dinitprintk(ioc, pr_info(MPT3SAS_FMT "%s: complete\n",
4781                     ioc->name, __func__));
4782         ioc->base_cmds.status = MPT3_CMD_NOT_USED;
4783         return r;
4784 }
4785
4786 /**
4787  * mpt3sas_base_validate_event_type - validating event types
4788  * @ioc: per adapter object
4789  * @event: firmware event
4790  *
4791  * This will turn on firmware event notification when application
4792  * ask for that event. We don't mask events that are already enabled.
4793  */
4794 void
4795 mpt3sas_base_validate_event_type(struct MPT3SAS_ADAPTER *ioc, u32 *event_type)
4796 {
4797         int i, j;
4798         u32 event_mask, desired_event;
4799         u8 send_update_to_fw;
4800
4801         for (i = 0, send_update_to_fw = 0; i <
4802             MPI2_EVENT_NOTIFY_EVENTMASK_WORDS; i++) {
4803                 event_mask = ~event_type[i];
4804                 desired_event = 1;
4805                 for (j = 0; j < 32; j++) {
4806                         if (!(event_mask & desired_event) &&
4807                             (ioc->event_masks[i] & desired_event)) {
4808                                 ioc->event_masks[i] &= ~desired_event;
4809                                 send_update_to_fw = 1;
4810                         }
4811                         desired_event = (desired_event << 1);
4812                 }
4813         }
4814
4815         if (!send_update_to_fw)
4816                 return;
4817
4818         mutex_lock(&ioc->base_cmds.mutex);
4819         _base_event_notification(ioc, CAN_SLEEP);
4820         mutex_unlock(&ioc->base_cmds.mutex);
4821 }
4822
4823 /**
4824  * _base_diag_reset - the "big hammer" start of day reset
4825  * @ioc: per adapter object
4826  * @sleep_flag: CAN_SLEEP or NO_SLEEP
4827  *
4828  * Returns 0 for success, non-zero for failure.
4829  */
4830 static int
4831 _base_diag_reset(struct MPT3SAS_ADAPTER *ioc, int sleep_flag)
4832 {
4833         u32 host_diagnostic;
4834         u32 ioc_state;
4835         u32 count;
4836         u32 hcb_size;
4837
4838         pr_info(MPT3SAS_FMT "sending diag reset !!\n", ioc->name);
4839
4840         drsprintk(ioc, pr_info(MPT3SAS_FMT "clear interrupts\n",
4841             ioc->name));
4842
4843         count = 0;
4844         do {
4845                 /* Write magic sequence to WriteSequence register
4846                  * Loop until in diagnostic mode
4847                  */
4848                 drsprintk(ioc, pr_info(MPT3SAS_FMT
4849                         "write magic sequence\n", ioc->name));
4850                 writel(MPI2_WRSEQ_FLUSH_KEY_VALUE, &ioc->chip->WriteSequence);
4851                 writel(MPI2_WRSEQ_1ST_KEY_VALUE, &ioc->chip->WriteSequence);
4852                 writel(MPI2_WRSEQ_2ND_KEY_VALUE, &ioc->chip->WriteSequence);
4853                 writel(MPI2_WRSEQ_3RD_KEY_VALUE, &ioc->chip->WriteSequence);
4854                 writel(MPI2_WRSEQ_4TH_KEY_VALUE, &ioc->chip->WriteSequence);
4855                 writel(MPI2_WRSEQ_5TH_KEY_VALUE, &ioc->chip->WriteSequence);
4856                 writel(MPI2_WRSEQ_6TH_KEY_VALUE, &ioc->chip->WriteSequence);
4857
4858                 /* wait 100 msec */
4859                 if (sleep_flag == CAN_SLEEP)
4860                         msleep(100);
4861                 else
4862                         mdelay(100);
4863
4864                 if (count++ > 20)
4865                         goto out;
4866
4867                 host_diagnostic = readl(&ioc->chip->HostDiagnostic);
4868                 drsprintk(ioc, pr_info(MPT3SAS_FMT
4869                         "wrote magic sequence: count(%d), host_diagnostic(0x%08x)\n",
4870                     ioc->name, count, host_diagnostic));
4871
4872         } while ((host_diagnostic & MPI2_DIAG_DIAG_WRITE_ENABLE) == 0);
4873
4874         hcb_size = readl(&ioc->chip->HCBSize);
4875
4876         drsprintk(ioc, pr_info(MPT3SAS_FMT "diag reset: issued\n",
4877             ioc->name));
4878         writel(host_diagnostic | MPI2_DIAG_RESET_ADAPTER,
4879              &ioc->chip->HostDiagnostic);
4880
4881         /*This delay allows the chip PCIe hardware time to finish reset tasks*/
4882         if (sleep_flag == CAN_SLEEP)
4883                 msleep(MPI2_HARD_RESET_PCIE_FIRST_READ_DELAY_MICRO_SEC/1000);
4884         else
4885                 mdelay(MPI2_HARD_RESET_PCIE_FIRST_READ_DELAY_MICRO_SEC/1000);
4886
4887         /* Approximately 300 second max wait */
4888         for (count = 0; count < (300000000 /
4889                 MPI2_HARD_RESET_PCIE_SECOND_READ_DELAY_MICRO_SEC); count++) {
4890
4891                 host_diagnostic = readl(&ioc->chip->HostDiagnostic);
4892
4893                 if (host_diagnostic == 0xFFFFFFFF)
4894                         goto out;
4895                 if (!(host_diagnostic & MPI2_DIAG_RESET_ADAPTER))
4896                         break;
4897
4898                 /* Wait to pass the second read delay window */
4899                 if (sleep_flag == CAN_SLEEP)
4900                         msleep(MPI2_HARD_RESET_PCIE_SECOND_READ_DELAY_MICRO_SEC
4901                                                                 / 1000);
4902                 else
4903                         mdelay(MPI2_HARD_RESET_PCIE_SECOND_READ_DELAY_MICRO_SEC
4904                                                                 / 1000);
4905         }
4906
4907         if (host_diagnostic & MPI2_DIAG_HCB_MODE) {
4908
4909                 drsprintk(ioc, pr_info(MPT3SAS_FMT
4910                 "restart the adapter assuming the HCB Address points to good F/W\n",
4911                     ioc->name));
4912                 host_diagnostic &= ~MPI2_DIAG_BOOT_DEVICE_SELECT_MASK;
4913                 host_diagnostic |= MPI2_DIAG_BOOT_DEVICE_SELECT_HCDW;
4914                 writel(host_diagnostic, &ioc->chip->HostDiagnostic);
4915
4916                 drsprintk(ioc, pr_info(MPT3SAS_FMT
4917                     "re-enable the HCDW\n", ioc->name));
4918                 writel(hcb_size | MPI2_HCB_SIZE_HCB_ENABLE,
4919                     &ioc->chip->HCBSize);
4920         }
4921
4922         drsprintk(ioc, pr_info(MPT3SAS_FMT "restart the adapter\n",
4923             ioc->name));
4924         writel(host_diagnostic & ~MPI2_DIAG_HOLD_IOC_RESET,
4925             &ioc->chip->HostDiagnostic);
4926
4927         drsprintk(ioc, pr_info(MPT3SAS_FMT
4928                 "disable writes to the diagnostic register\n", ioc->name));
4929         writel(MPI2_WRSEQ_FLUSH_KEY_VALUE, &ioc->chip->WriteSequence);
4930
4931         drsprintk(ioc, pr_info(MPT3SAS_FMT
4932                 "Wait for FW to go to the READY state\n", ioc->name));
4933         ioc_state = _base_wait_on_iocstate(ioc, MPI2_IOC_STATE_READY, 20,
4934             sleep_flag);
4935         if (ioc_state) {
4936                 pr_err(MPT3SAS_FMT
4937                         "%s: failed going to ready state (ioc_state=0x%x)\n",
4938                         ioc->name, __func__, ioc_state);
4939                 goto out;
4940         }
4941
4942         pr_info(MPT3SAS_FMT "diag reset: SUCCESS\n", ioc->name);
4943         return 0;
4944
4945  out:
4946         pr_err(MPT3SAS_FMT "diag reset: FAILED\n", ioc->name);
4947         return -EFAULT;
4948 }
4949
4950 /**
4951  * _base_make_ioc_ready - put controller in READY state
4952  * @ioc: per adapter object
4953  * @sleep_flag: CAN_SLEEP or NO_SLEEP
4954  * @type: FORCE_BIG_HAMMER or SOFT_RESET
4955  *
4956  * Returns 0 for success, non-zero for failure.
4957  */
4958 static int
4959 _base_make_ioc_ready(struct MPT3SAS_ADAPTER *ioc, int sleep_flag,
4960         enum reset_type type)
4961 {
4962         u32 ioc_state;
4963         int rc;
4964         int count;
4965
4966         dinitprintk(ioc, pr_info(MPT3SAS_FMT "%s\n", ioc->name,
4967             __func__));
4968
4969         if (ioc->pci_error_recovery)
4970                 return 0;
4971
4972         ioc_state = mpt3sas_base_get_iocstate(ioc, 0);
4973         dhsprintk(ioc, pr_info(MPT3SAS_FMT "%s: ioc_state(0x%08x)\n",
4974             ioc->name, __func__, ioc_state));
4975
4976         /* if in RESET state, it should move to READY state shortly */
4977         count = 0;
4978         if ((ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_RESET) {
4979                 while ((ioc_state & MPI2_IOC_STATE_MASK) !=
4980                     MPI2_IOC_STATE_READY) {
4981                         if (count++ == 10) {
4982                                 pr_err(MPT3SAS_FMT
4983                                         "%s: failed going to ready state (ioc_state=0x%x)\n",
4984                                     ioc->name, __func__, ioc_state);
4985                                 return -EFAULT;
4986                         }
4987                         if (sleep_flag == CAN_SLEEP)
4988                                 ssleep(1);
4989                         else
4990                                 mdelay(1000);
4991                         ioc_state = mpt3sas_base_get_iocstate(ioc, 0);
4992                 }
4993         }
4994
4995         if ((ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_READY)
4996                 return 0;
4997
4998         if (ioc_state & MPI2_DOORBELL_USED) {
4999                 dhsprintk(ioc, pr_info(MPT3SAS_FMT
5000                         "unexpected doorbell active!\n",
5001                         ioc->name));
5002                 goto issue_diag_reset;
5003         }
5004
5005         if ((ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_FAULT) {
5006                 mpt3sas_base_fault_info(ioc, ioc_state &
5007                     MPI2_DOORBELL_DATA_MASK);
5008                 goto issue_diag_reset;
5009         }
5010
5011         if (type == FORCE_BIG_HAMMER)
5012                 goto issue_diag_reset;
5013
5014         if ((ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_OPERATIONAL)
5015                 if (!(_base_send_ioc_reset(ioc,
5016                     MPI2_FUNCTION_IOC_MESSAGE_UNIT_RESET, 15, CAN_SLEEP))) {
5017                         return 0;
5018         }
5019
5020  issue_diag_reset:
5021         rc = _base_diag_reset(ioc, CAN_SLEEP);
5022         return rc;
5023 }
5024
5025 /**
5026  * _base_make_ioc_operational - put controller in OPERATIONAL state
5027  * @ioc: per adapter object
5028  * @sleep_flag: CAN_SLEEP or NO_SLEEP
5029  *
5030  * Returns 0 for success, non-zero for failure.
5031  */
5032 static int
5033 _base_make_ioc_operational(struct MPT3SAS_ADAPTER *ioc, int sleep_flag)
5034 {
5035         int r, i, index;
5036         unsigned long   flags;
5037         u32 reply_address;
5038         u16 smid;
5039         struct _tr_list *delayed_tr, *delayed_tr_next;
5040         struct _sc_list *delayed_sc, *delayed_sc_next;
5041         struct _event_ack_list *delayed_event_ack, *delayed_event_ack_next;
5042         u8 hide_flag;
5043         struct adapter_reply_queue *reply_q;
5044         Mpi2ReplyDescriptorsUnion_t *reply_post_free_contig;
5045
5046         dinitprintk(ioc, pr_info(MPT3SAS_FMT "%s\n", ioc->name,
5047             __func__));
5048
5049         /* clean the delayed target reset list */
5050         list_for_each_entry_safe(delayed_tr, delayed_tr_next,
5051             &ioc->delayed_tr_list, list) {
5052                 list_del(&delayed_tr->list);
5053                 kfree(delayed_tr);
5054         }
5055
5056
5057         list_for_each_entry_safe(delayed_tr, delayed_tr_next,
5058             &ioc->delayed_tr_volume_list, list) {
5059                 list_del(&delayed_tr->list);
5060                 kfree(delayed_tr);
5061         }
5062
5063         list_for_each_entry_safe(delayed_sc, delayed_sc_next,
5064             &ioc->delayed_sc_list, list) {
5065                 list_del(&delayed_sc->list);
5066                 kfree(delayed_sc);
5067         }
5068
5069         list_for_each_entry_safe(delayed_event_ack, delayed_event_ack_next,
5070             &ioc->delayed_event_ack_list, list) {
5071                 list_del(&delayed_event_ack->list);
5072                 kfree(delayed_event_ack);
5073         }
5074
5075         /* initialize the scsi lookup free list */
5076         spin_lock_irqsave(&ioc->scsi_lookup_lock, flags);
5077         INIT_LIST_HEAD(&ioc->free_list);
5078         smid = 1;
5079         for (i = 0; i < ioc->scsiio_depth; i++, smid++) {
5080                 INIT_LIST_HEAD(&ioc->scsi_lookup[i].chain_list);
5081                 ioc->scsi_lookup[i].cb_idx = 0xFF;
5082                 ioc->scsi_lookup[i].smid = smid;
5083                 ioc->scsi_lookup[i].scmd = NULL;
5084                 ioc->scsi_lookup[i].direct_io = 0;
5085                 list_add_tail(&ioc->scsi_lookup[i].tracker_list,
5086                     &ioc->free_list);
5087         }
5088
5089         /* hi-priority queue */
5090         INIT_LIST_HEAD(&ioc->hpr_free_list);
5091         smid = ioc->hi_priority_smid;
5092         for (i = 0; i < ioc->hi_priority_depth; i++, smid++) {
5093                 ioc->hpr_lookup[i].cb_idx = 0xFF;
5094                 ioc->hpr_lookup[i].smid = smid;
5095                 list_add_tail(&ioc->hpr_lookup[i].tracker_list,
5096                     &ioc->hpr_free_list);
5097         }
5098
5099         /* internal queue */
5100         INIT_LIST_HEAD(&ioc->internal_free_list);
5101         smid = ioc->internal_smid;
5102         for (i = 0; i < ioc->internal_depth; i++, smid++) {
5103                 ioc->internal_lookup[i].cb_idx = 0xFF;
5104                 ioc->internal_lookup[i].smid = smid;
5105                 list_add_tail(&ioc->internal_lookup[i].tracker_list,
5106                     &ioc->internal_free_list);
5107         }
5108
5109         /* chain pool */
5110         INIT_LIST_HEAD(&ioc->free_chain_list);
5111         for (i = 0; i < ioc->chain_depth; i++)
5112                 list_add_tail(&ioc->chain_lookup[i].tracker_list,
5113                     &ioc->free_chain_list);
5114
5115         spin_unlock_irqrestore(&ioc->scsi_lookup_lock, flags);
5116
5117         /* initialize Reply Free Queue */
5118         for (i = 0, reply_address = (u32)ioc->reply_dma ;
5119             i < ioc->reply_free_queue_depth ; i++, reply_address +=
5120             ioc->reply_sz)
5121                 ioc->reply_free[i] = cpu_to_le32(reply_address);
5122
5123         /* initialize reply queues */
5124         if (ioc->is_driver_loading)
5125                 _base_assign_reply_queues(ioc);
5126
5127         /* initialize Reply Post Free Queue */
5128         index = 0;
5129         reply_post_free_contig = ioc->reply_post[0].reply_post_free;
5130         list_for_each_entry(reply_q, &ioc->reply_queue_list, list) {
5131                 /*
5132                  * If RDPQ is enabled, switch to the next allocation.
5133                  * Otherwise advance within the contiguous region.
5134                  */
5135                 if (ioc->rdpq_array_enable) {
5136                         reply_q->reply_post_free =
5137                                 ioc->reply_post[index++].reply_post_free;
5138                 } else {
5139                         reply_q->reply_post_free = reply_post_free_contig;
5140                         reply_post_free_contig += ioc->reply_post_queue_depth;
5141                 }
5142
5143                 reply_q->reply_post_host_index = 0;
5144                 for (i = 0; i < ioc->reply_post_queue_depth; i++)
5145                         reply_q->reply_post_free[i].Words =
5146                             cpu_to_le64(ULLONG_MAX);
5147                 if (!_base_is_controller_msix_enabled(ioc))
5148                         goto skip_init_reply_post_free_queue;
5149         }
5150  skip_init_reply_post_free_queue:
5151
5152         r = _base_send_ioc_init(ioc, sleep_flag);
5153         if (r)
5154                 return r;
5155
5156         /* initialize reply free host index */
5157         ioc->reply_free_host_index = ioc->reply_free_queue_depth - 1;
5158         writel(ioc->reply_free_host_index, &ioc->chip->ReplyFreeHostIndex);
5159
5160         /* initialize reply post host index */
5161         list_for_each_entry(reply_q, &ioc->reply_queue_list, list) {
5162                 if (ioc->msix96_vector)
5163                         writel((reply_q->msix_index & 7)<<
5164                            MPI2_RPHI_MSIX_INDEX_SHIFT,
5165                            ioc->replyPostRegisterIndex[reply_q->msix_index/8]);
5166                 else
5167                         writel(reply_q->msix_index <<
5168                                 MPI2_RPHI_MSIX_INDEX_SHIFT,
5169                                 &ioc->chip->ReplyPostHostIndex);
5170
5171                 if (!_base_is_controller_msix_enabled(ioc))
5172                         goto skip_init_reply_post_host_index;
5173         }
5174
5175  skip_init_reply_post_host_index:
5176
5177         _base_unmask_interrupts(ioc);
5178         r = _base_event_notification(ioc, sleep_flag);
5179         if (r)
5180                 return r;
5181
5182         if (sleep_flag == CAN_SLEEP)
5183                 _base_static_config_pages(ioc);
5184
5185
5186         if (ioc->is_driver_loading) {
5187
5188                 if (ioc->is_warpdrive && ioc->manu_pg10.OEMIdentifier
5189                     == 0x80) {
5190                         hide_flag = (u8) (
5191                             le32_to_cpu(ioc->manu_pg10.OEMSpecificFlags0) &
5192                             MFG_PAGE10_HIDE_SSDS_MASK);
5193                         if (hide_flag != MFG_PAGE10_HIDE_SSDS_MASK)
5194                                 ioc->mfg_pg10_hide_flag = hide_flag;
5195                 }
5196
5197                 ioc->wait_for_discovery_to_complete =
5198                     _base_determine_wait_on_discovery(ioc);
5199
5200                 return r; /* scan_start and scan_finished support */
5201         }
5202
5203         r = _base_send_port_enable(ioc, sleep_flag);
5204         if (r)
5205                 return r;
5206
5207         return r;
5208 }
5209
5210 /**
5211  * mpt3sas_base_free_resources - free resources controller resources
5212  * @ioc: per adapter object
5213  *
5214  * Return nothing.
5215  */
5216 void
5217 mpt3sas_base_free_resources(struct MPT3SAS_ADAPTER *ioc)
5218 {
5219         dexitprintk(ioc, pr_info(MPT3SAS_FMT "%s\n", ioc->name,
5220             __func__));
5221
5222         /* synchronizing freeing resource with pci_access_mutex lock */
5223         mutex_lock(&ioc->pci_access_mutex);
5224         if (ioc->chip_phys && ioc->chip) {
5225                 _base_mask_interrupts(ioc);
5226                 ioc->shost_recovery = 1;
5227                 _base_make_ioc_ready(ioc, CAN_SLEEP, SOFT_RESET);
5228                 ioc->shost_recovery = 0;
5229         }
5230
5231         mpt3sas_base_unmap_resources(ioc);
5232         mutex_unlock(&ioc->pci_access_mutex);
5233         return;
5234 }
5235
5236 /**
5237  * mpt3sas_base_attach - attach controller instance
5238  * @ioc: per adapter object
5239  *
5240  * Returns 0 for success, non-zero for failure.
5241  */
5242 int
5243 mpt3sas_base_attach(struct MPT3SAS_ADAPTER *ioc)
5244 {
5245         int r, i;
5246         int cpu_id, last_cpu_id = 0;
5247
5248         dinitprintk(ioc, pr_info(MPT3SAS_FMT "%s\n", ioc->name,
5249             __func__));
5250
5251         /* setup cpu_msix_table */
5252         ioc->cpu_count = num_online_cpus();
5253         for_each_online_cpu(cpu_id)
5254                 last_cpu_id = cpu_id;
5255         ioc->cpu_msix_table_sz = last_cpu_id + 1;
5256         ioc->cpu_msix_table = kzalloc(ioc->cpu_msix_table_sz, GFP_KERNEL);
5257         ioc->reply_queue_count = 1;
5258         if (!ioc->cpu_msix_table) {
5259                 dfailprintk(ioc, pr_info(MPT3SAS_FMT
5260                         "allocation for cpu_msix_table failed!!!\n",
5261                         ioc->name));
5262                 r = -ENOMEM;
5263                 goto out_free_resources;
5264         }
5265
5266         if (ioc->is_warpdrive) {
5267                 ioc->reply_post_host_index = kcalloc(ioc->cpu_msix_table_sz,
5268                     sizeof(resource_size_t *), GFP_KERNEL);
5269                 if (!ioc->reply_post_host_index) {
5270                         dfailprintk(ioc, pr_info(MPT3SAS_FMT "allocation "
5271                                 "for cpu_msix_table failed!!!\n", ioc->name));
5272                         r = -ENOMEM;
5273                         goto out_free_resources;
5274                 }
5275         }
5276
5277         ioc->rdpq_array_enable_assigned = 0;
5278         ioc->dma_mask = 0;
5279         r = mpt3sas_base_map_resources(ioc);
5280         if (r)
5281                 goto out_free_resources;
5282
5283         if (ioc->is_warpdrive) {
5284                 ioc->reply_post_host_index[0] = (resource_size_t __iomem *)
5285                     &ioc->chip->ReplyPostHostIndex;
5286
5287                 for (i = 1; i < ioc->cpu_msix_table_sz; i++)
5288                         ioc->reply_post_host_index[i] =
5289                         (resource_size_t __iomem *)
5290                         ((u8 __iomem *)&ioc->chip->Doorbell + (0x4000 + ((i - 1)
5291                         * 4)));
5292         }
5293
5294         pci_set_drvdata(ioc->pdev, ioc->shost);
5295         r = _base_get_ioc_facts(ioc, CAN_SLEEP);
5296         if (r)
5297                 goto out_free_resources;
5298
5299         switch (ioc->hba_mpi_version_belonged) {
5300         case MPI2_VERSION:
5301                 ioc->build_sg_scmd = &_base_build_sg_scmd;
5302                 ioc->build_sg = &_base_build_sg;
5303                 ioc->build_zero_len_sge = &_base_build_zero_len_sge;
5304                 break;
5305         case MPI25_VERSION:
5306         case MPI26_VERSION:
5307                 /*
5308                  * In SAS3.0,
5309                  * SCSI_IO, SMP_PASSTHRU, SATA_PASSTHRU, Target Assist, and
5310                  * Target Status - all require the IEEE formated scatter gather
5311                  * elements.
5312                  */
5313                 ioc->build_sg_scmd = &_base_build_sg_scmd_ieee;
5314                 ioc->build_sg = &_base_build_sg_ieee;
5315                 ioc->build_zero_len_sge = &_base_build_zero_len_sge_ieee;
5316                 ioc->sge_size_ieee = sizeof(Mpi2IeeeSgeSimple64_t);
5317                 break;
5318         }
5319
5320         /*
5321          * These function pointers for other requests that don't
5322          * the require IEEE scatter gather elements.
5323          *
5324          * For example Configuration Pages and SAS IOUNIT Control don't.
5325          */
5326         ioc->build_sg_mpi = &_base_build_sg;
5327         ioc->build_zero_len_sge_mpi = &_base_build_zero_len_sge;
5328
5329         r = _base_make_ioc_ready(ioc, CAN_SLEEP, SOFT_RESET);
5330         if (r)
5331                 goto out_free_resources;
5332
5333         ioc->pfacts = kcalloc(ioc->facts.NumberOfPorts,
5334             sizeof(struct mpt3sas_port_facts), GFP_KERNEL);
5335         if (!ioc->pfacts) {
5336                 r = -ENOMEM;
5337                 goto out_free_resources;
5338         }
5339
5340         for (i = 0 ; i < ioc->facts.NumberOfPorts; i++) {
5341                 r = _base_get_port_facts(ioc, i, CAN_SLEEP);
5342                 if (r)
5343                         goto out_free_resources;
5344         }
5345
5346         r = _base_allocate_memory_pools(ioc, CAN_SLEEP);
5347         if (r)
5348                 goto out_free_resources;
5349
5350         init_waitqueue_head(&ioc->reset_wq);
5351
5352         /* allocate memory pd handle bitmask list */
5353         ioc->pd_handles_sz = (ioc->facts.MaxDevHandle / 8);
5354         if (ioc->facts.MaxDevHandle % 8)
5355                 ioc->pd_handles_sz++;
5356         ioc->pd_handles = kzalloc(ioc->pd_handles_sz,
5357             GFP_KERNEL);
5358         if (!ioc->pd_handles) {
5359                 r = -ENOMEM;
5360                 goto out_free_resources;
5361         }
5362         ioc->blocking_handles = kzalloc(ioc->pd_handles_sz,
5363             GFP_KERNEL);
5364         if (!ioc->blocking_handles) {
5365                 r = -ENOMEM;
5366                 goto out_free_resources;
5367         }
5368
5369         ioc->fwfault_debug = mpt3sas_fwfault_debug;
5370
5371         /* base internal command bits */
5372         mutex_init(&ioc->base_cmds.mutex);
5373         ioc->base_cmds.reply = kzalloc(ioc->reply_sz, GFP_KERNEL);
5374         ioc->base_cmds.status = MPT3_CMD_NOT_USED;
5375
5376         /* port_enable command bits */
5377         ioc->port_enable_cmds.reply = kzalloc(ioc->reply_sz, GFP_KERNEL);
5378         ioc->port_enable_cmds.status = MPT3_CMD_NOT_USED;
5379
5380         /* transport internal command bits */
5381         ioc->transport_cmds.reply = kzalloc(ioc->reply_sz, GFP_KERNEL);
5382         ioc->transport_cmds.status = MPT3_CMD_NOT_USED;
5383         mutex_init(&ioc->transport_cmds.mutex);
5384
5385         /* scsih internal command bits */
5386         ioc->scsih_cmds.reply = kzalloc(ioc->reply_sz, GFP_KERNEL);
5387         ioc->scsih_cmds.status = MPT3_CMD_NOT_USED;
5388         mutex_init(&ioc->scsih_cmds.mutex);
5389
5390         /* task management internal command bits */
5391         ioc->tm_cmds.reply = kzalloc(ioc->reply_sz, GFP_KERNEL);
5392         ioc->tm_cmds.status = MPT3_CMD_NOT_USED;
5393         mutex_init(&ioc->tm_cmds.mutex);
5394
5395         /* config page internal command bits */
5396         ioc->config_cmds.reply = kzalloc(ioc->reply_sz, GFP_KERNEL);
5397         ioc->config_cmds.status = MPT3_CMD_NOT_USED;
5398         mutex_init(&ioc->config_cmds.mutex);
5399
5400         /* ctl module internal command bits */
5401         ioc->ctl_cmds.reply = kzalloc(ioc->reply_sz, GFP_KERNEL);
5402         ioc->ctl_cmds.sense = kzalloc(SCSI_SENSE_BUFFERSIZE, GFP_KERNEL);
5403         ioc->ctl_cmds.status = MPT3_CMD_NOT_USED;
5404         mutex_init(&ioc->ctl_cmds.mutex);
5405
5406         if (!ioc->base_cmds.reply || !ioc->transport_cmds.reply ||
5407             !ioc->scsih_cmds.reply || !ioc->tm_cmds.reply ||
5408             !ioc->config_cmds.reply || !ioc->ctl_cmds.reply ||
5409             !ioc->ctl_cmds.sense) {
5410                 r = -ENOMEM;
5411                 goto out_free_resources;
5412         }
5413
5414         for (i = 0; i < MPI2_EVENT_NOTIFY_EVENTMASK_WORDS; i++)
5415                 ioc->event_masks[i] = -1;
5416
5417         /* here we enable the events we care about */
5418         _base_unmask_events(ioc, MPI2_EVENT_SAS_DISCOVERY);
5419         _base_unmask_events(ioc, MPI2_EVENT_SAS_BROADCAST_PRIMITIVE);
5420         _base_unmask_events(ioc, MPI2_EVENT_SAS_TOPOLOGY_CHANGE_LIST);
5421         _base_unmask_events(ioc, MPI2_EVENT_SAS_DEVICE_STATUS_CHANGE);
5422         _base_unmask_events(ioc, MPI2_EVENT_SAS_ENCL_DEVICE_STATUS_CHANGE);
5423         _base_unmask_events(ioc, MPI2_EVENT_IR_CONFIGURATION_CHANGE_LIST);
5424         _base_unmask_events(ioc, MPI2_EVENT_IR_VOLUME);
5425         _base_unmask_events(ioc, MPI2_EVENT_IR_PHYSICAL_DISK);
5426         _base_unmask_events(ioc, MPI2_EVENT_IR_OPERATION_STATUS);
5427         _base_unmask_events(ioc, MPI2_EVENT_LOG_ENTRY_ADDED);
5428         _base_unmask_events(ioc, MPI2_EVENT_TEMP_THRESHOLD);
5429         if (ioc->hba_mpi_version_belonged == MPI26_VERSION)
5430                 _base_unmask_events(ioc, MPI2_EVENT_ACTIVE_CABLE_EXCEPTION);
5431
5432         r = _base_make_ioc_operational(ioc, CAN_SLEEP);
5433         if (r)
5434                 goto out_free_resources;
5435
5436         ioc->non_operational_loop = 0;
5437         return 0;
5438
5439  out_free_resources:
5440
5441         ioc->remove_host = 1;
5442
5443         mpt3sas_base_free_resources(ioc);
5444         _base_release_memory_pools(ioc);
5445         pci_set_drvdata(ioc->pdev, NULL);
5446         kfree(ioc->cpu_msix_table);
5447         if (ioc->is_warpdrive)
5448                 kfree(ioc->reply_post_host_index);
5449         kfree(ioc->pd_handles);
5450         kfree(ioc->blocking_handles);
5451         kfree(ioc->tm_cmds.reply);
5452         kfree(ioc->transport_cmds.reply);
5453         kfree(ioc->scsih_cmds.reply);
5454         kfree(ioc->config_cmds.reply);
5455         kfree(ioc->base_cmds.reply);
5456         kfree(ioc->port_enable_cmds.reply);
5457         kfree(ioc->ctl_cmds.reply);
5458         kfree(ioc->ctl_cmds.sense);
5459         kfree(ioc->pfacts);
5460         ioc->ctl_cmds.reply = NULL;
5461         ioc->base_cmds.reply = NULL;
5462         ioc->tm_cmds.reply = NULL;
5463         ioc->scsih_cmds.reply = NULL;
5464         ioc->transport_cmds.reply = NULL;
5465         ioc->config_cmds.reply = NULL;
5466         ioc->pfacts = NULL;
5467         return r;
5468 }
5469
5470
5471 /**
5472  * mpt3sas_base_detach - remove controller instance
5473  * @ioc: per adapter object
5474  *
5475  * Return nothing.
5476  */
5477 void
5478 mpt3sas_base_detach(struct MPT3SAS_ADAPTER *ioc)
5479 {
5480         dexitprintk(ioc, pr_info(MPT3SAS_FMT "%s\n", ioc->name,
5481             __func__));
5482
5483         mpt3sas_base_stop_watchdog(ioc);
5484         mpt3sas_base_free_resources(ioc);
5485         _base_release_memory_pools(ioc);
5486         pci_set_drvdata(ioc->pdev, NULL);
5487         kfree(ioc->cpu_msix_table);
5488         if (ioc->is_warpdrive)
5489                 kfree(ioc->reply_post_host_index);
5490         kfree(ioc->pd_handles);
5491         kfree(ioc->blocking_handles);
5492         kfree(ioc->pfacts);
5493         kfree(ioc->ctl_cmds.reply);
5494         kfree(ioc->ctl_cmds.sense);
5495         kfree(ioc->base_cmds.reply);
5496         kfree(ioc->port_enable_cmds.reply);
5497         kfree(ioc->tm_cmds.reply);
5498         kfree(ioc->transport_cmds.reply);
5499         kfree(ioc->scsih_cmds.reply);
5500         kfree(ioc->config_cmds.reply);
5501 }
5502
5503 /**
5504  * _base_reset_handler - reset callback handler (for base)
5505  * @ioc: per adapter object
5506  * @reset_phase: phase
5507  *
5508  * The handler for doing any required cleanup or initialization.
5509  *
5510  * The reset phase can be MPT3_IOC_PRE_RESET, MPT3_IOC_AFTER_RESET,
5511  * MPT3_IOC_DONE_RESET
5512  *
5513  * Return nothing.
5514  */
5515 static void
5516 _base_reset_handler(struct MPT3SAS_ADAPTER *ioc, int reset_phase)
5517 {
5518         mpt3sas_scsih_reset_handler(ioc, reset_phase);
5519         mpt3sas_ctl_reset_handler(ioc, reset_phase);
5520         switch (reset_phase) {
5521         case MPT3_IOC_PRE_RESET:
5522                 dtmprintk(ioc, pr_info(MPT3SAS_FMT
5523                 "%s: MPT3_IOC_PRE_RESET\n", ioc->name, __func__));
5524                 break;
5525         case MPT3_IOC_AFTER_RESET:
5526                 dtmprintk(ioc, pr_info(MPT3SAS_FMT
5527                 "%s: MPT3_IOC_AFTER_RESET\n", ioc->name, __func__));
5528                 if (ioc->transport_cmds.status & MPT3_CMD_PENDING) {
5529                         ioc->transport_cmds.status |= MPT3_CMD_RESET;
5530                         mpt3sas_base_free_smid(ioc, ioc->transport_cmds.smid);
5531                         complete(&ioc->transport_cmds.done);
5532                 }
5533                 if (ioc->base_cmds.status & MPT3_CMD_PENDING) {
5534                         ioc->base_cmds.status |= MPT3_CMD_RESET;
5535                         mpt3sas_base_free_smid(ioc, ioc->base_cmds.smid);
5536                         complete(&ioc->base_cmds.done);
5537                 }
5538                 if (ioc->port_enable_cmds.status & MPT3_CMD_PENDING) {
5539                         ioc->port_enable_failed = 1;
5540                         ioc->port_enable_cmds.status |= MPT3_CMD_RESET;
5541                         mpt3sas_base_free_smid(ioc, ioc->port_enable_cmds.smid);
5542                         if (ioc->is_driver_loading) {
5543                                 ioc->start_scan_failed =
5544                                     MPI2_IOCSTATUS_INTERNAL_ERROR;
5545                                 ioc->start_scan = 0;
5546                                 ioc->port_enable_cmds.status =
5547                                     MPT3_CMD_NOT_USED;
5548                         } else
5549                                 complete(&ioc->port_enable_cmds.done);
5550                 }
5551                 if (ioc->config_cmds.status & MPT3_CMD_PENDING) {
5552                         ioc->config_cmds.status |= MPT3_CMD_RESET;
5553                         mpt3sas_base_free_smid(ioc, ioc->config_cmds.smid);
5554                         ioc->config_cmds.smid = USHRT_MAX;
5555                         complete(&ioc->config_cmds.done);
5556                 }
5557                 break;
5558         case MPT3_IOC_DONE_RESET:
5559                 dtmprintk(ioc, pr_info(MPT3SAS_FMT
5560                         "%s: MPT3_IOC_DONE_RESET\n", ioc->name, __func__));
5561                 break;
5562         }
5563 }
5564
5565 /**
5566  * _wait_for_commands_to_complete - reset controller
5567  * @ioc: Pointer to MPT_ADAPTER structure
5568  * @sleep_flag: CAN_SLEEP or NO_SLEEP
5569  *
5570  * This function waiting(3s) for all pending commands to complete
5571  * prior to putting controller in reset.
5572  */
5573 static void
5574 _wait_for_commands_to_complete(struct MPT3SAS_ADAPTER *ioc, int sleep_flag)
5575 {
5576         u32 ioc_state;
5577         unsigned long flags;
5578         u16 i;
5579
5580         ioc->pending_io_count = 0;
5581         if (sleep_flag != CAN_SLEEP)
5582                 return;
5583
5584         ioc_state = mpt3sas_base_get_iocstate(ioc, 0);
5585         if ((ioc_state & MPI2_IOC_STATE_MASK) != MPI2_IOC_STATE_OPERATIONAL)
5586                 return;
5587
5588         /* pending command count */
5589         spin_lock_irqsave(&ioc->scsi_lookup_lock, flags);
5590         for (i = 0; i < ioc->scsiio_depth; i++)
5591                 if (ioc->scsi_lookup[i].cb_idx != 0xFF)
5592                         ioc->pending_io_count++;
5593         spin_unlock_irqrestore(&ioc->scsi_lookup_lock, flags);
5594
5595         if (!ioc->pending_io_count)
5596                 return;
5597
5598         /* wait for pending commands to complete */
5599         wait_event_timeout(ioc->reset_wq, ioc->pending_io_count == 0, 10 * HZ);
5600 }
5601
5602 /**
5603  * mpt3sas_base_hard_reset_handler - reset controller
5604  * @ioc: Pointer to MPT_ADAPTER structure
5605  * @sleep_flag: CAN_SLEEP or NO_SLEEP
5606  * @type: FORCE_BIG_HAMMER or SOFT_RESET
5607  *
5608  * Returns 0 for success, non-zero for failure.
5609  */
5610 int
5611 mpt3sas_base_hard_reset_handler(struct MPT3SAS_ADAPTER *ioc, int sleep_flag,
5612         enum reset_type type)
5613 {
5614         int r;
5615         unsigned long flags;
5616         u32 ioc_state;
5617         u8 is_fault = 0, is_trigger = 0;
5618
5619         dtmprintk(ioc, pr_info(MPT3SAS_FMT "%s: enter\n", ioc->name,
5620             __func__));
5621
5622         if (ioc->pci_error_recovery) {
5623                 pr_err(MPT3SAS_FMT "%s: pci error recovery reset\n",
5624                     ioc->name, __func__);
5625                 r = 0;
5626                 goto out_unlocked;
5627         }
5628
5629         if (mpt3sas_fwfault_debug)
5630                 mpt3sas_halt_firmware(ioc);
5631
5632         /* TODO - What we really should be doing is pulling
5633          * out all the code associated with NO_SLEEP; its never used.
5634          * That is legacy code from mpt fusion driver, ported over.
5635          * I will leave this BUG_ON here for now till its been resolved.
5636          */
5637         BUG_ON(sleep_flag == NO_SLEEP);
5638
5639         /* wait for an active reset in progress to complete */
5640         if (!mutex_trylock(&ioc->reset_in_progress_mutex)) {
5641                 do {
5642                         ssleep(1);
5643                 } while (ioc->shost_recovery == 1);
5644                 dtmprintk(ioc, pr_info(MPT3SAS_FMT "%s: exit\n", ioc->name,
5645                     __func__));
5646                 return ioc->ioc_reset_in_progress_status;
5647         }
5648
5649         spin_lock_irqsave(&ioc->ioc_reset_in_progress_lock, flags);
5650         ioc->shost_recovery = 1;
5651         spin_unlock_irqrestore(&ioc->ioc_reset_in_progress_lock, flags);
5652
5653         if ((ioc->diag_buffer_status[MPI2_DIAG_BUF_TYPE_TRACE] &
5654             MPT3_DIAG_BUFFER_IS_REGISTERED) &&
5655             (!(ioc->diag_buffer_status[MPI2_DIAG_BUF_TYPE_TRACE] &
5656             MPT3_DIAG_BUFFER_IS_RELEASED))) {
5657                 is_trigger = 1;
5658                 ioc_state = mpt3sas_base_get_iocstate(ioc, 0);
5659                 if ((ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_FAULT)
5660                         is_fault = 1;
5661         }
5662         _base_reset_handler(ioc, MPT3_IOC_PRE_RESET);
5663         _wait_for_commands_to_complete(ioc, sleep_flag);
5664         _base_mask_interrupts(ioc);
5665         r = _base_make_ioc_ready(ioc, sleep_flag, type);
5666         if (r)
5667                 goto out;
5668         _base_reset_handler(ioc, MPT3_IOC_AFTER_RESET);
5669
5670         /* If this hard reset is called while port enable is active, then
5671          * there is no reason to call make_ioc_operational
5672          */
5673         if (ioc->is_driver_loading && ioc->port_enable_failed) {
5674                 ioc->remove_host = 1;
5675                 r = -EFAULT;
5676                 goto out;
5677         }
5678         r = _base_get_ioc_facts(ioc, CAN_SLEEP);
5679         if (r)
5680                 goto out;
5681
5682         if (ioc->rdpq_array_enable && !ioc->rdpq_array_capable)
5683                 panic("%s: Issue occurred with flashing controller firmware."
5684                       "Please reboot the system and ensure that the correct"
5685                       " firmware version is running\n", ioc->name);
5686
5687         r = _base_make_ioc_operational(ioc, sleep_flag);
5688         if (!r)
5689                 _base_reset_handler(ioc, MPT3_IOC_DONE_RESET);
5690
5691  out:
5692         dtmprintk(ioc, pr_info(MPT3SAS_FMT "%s: %s\n",
5693             ioc->name, __func__, ((r == 0) ? "SUCCESS" : "FAILED")));
5694
5695         spin_lock_irqsave(&ioc->ioc_reset_in_progress_lock, flags);
5696         ioc->ioc_reset_in_progress_status = r;
5697         ioc->shost_recovery = 0;
5698         spin_unlock_irqrestore(&ioc->ioc_reset_in_progress_lock, flags);
5699         ioc->ioc_reset_count++;
5700         mutex_unlock(&ioc->reset_in_progress_mutex);
5701
5702  out_unlocked:
5703         if ((r == 0) && is_trigger) {
5704                 if (is_fault)
5705                         mpt3sas_trigger_master(ioc, MASTER_TRIGGER_FW_FAULT);
5706                 else
5707                         mpt3sas_trigger_master(ioc,
5708                             MASTER_TRIGGER_ADAPTER_RESET);
5709         }
5710         dtmprintk(ioc, pr_info(MPT3SAS_FMT "%s: exit\n", ioc->name,
5711             __func__));
5712         return r;
5713 }