mac80211: replace restart_complete() with reconfig_complete()
[cascardo/linux.git] / drivers / scsi / scsi_lib.c
1 /*
2  * Copyright (C) 1999 Eric Youngdale
3  * Copyright (C) 2014 Christoph Hellwig
4  *
5  *  SCSI queueing library.
6  *      Initial versions: Eric Youngdale (eric@andante.org).
7  *                        Based upon conversations with large numbers
8  *                        of people at Linux Expo.
9  */
10
11 #include <linux/bio.h>
12 #include <linux/bitops.h>
13 #include <linux/blkdev.h>
14 #include <linux/completion.h>
15 #include <linux/kernel.h>
16 #include <linux/export.h>
17 #include <linux/mempool.h>
18 #include <linux/slab.h>
19 #include <linux/init.h>
20 #include <linux/pci.h>
21 #include <linux/delay.h>
22 #include <linux/hardirq.h>
23 #include <linux/scatterlist.h>
24 #include <linux/blk-mq.h>
25
26 #include <scsi/scsi.h>
27 #include <scsi/scsi_cmnd.h>
28 #include <scsi/scsi_dbg.h>
29 #include <scsi/scsi_device.h>
30 #include <scsi/scsi_driver.h>
31 #include <scsi/scsi_eh.h>
32 #include <scsi/scsi_host.h>
33
34 #include <trace/events/scsi.h>
35
36 #include "scsi_priv.h"
37 #include "scsi_logging.h"
38
39
40 #define SG_MEMPOOL_NR           ARRAY_SIZE(scsi_sg_pools)
41 #define SG_MEMPOOL_SIZE         2
42
43 struct scsi_host_sg_pool {
44         size_t          size;
45         char            *name;
46         struct kmem_cache       *slab;
47         mempool_t       *pool;
48 };
49
50 #define SP(x) { x, "sgpool-" __stringify(x) }
51 #if (SCSI_MAX_SG_SEGMENTS < 32)
52 #error SCSI_MAX_SG_SEGMENTS is too small (must be 32 or greater)
53 #endif
54 static struct scsi_host_sg_pool scsi_sg_pools[] = {
55         SP(8),
56         SP(16),
57 #if (SCSI_MAX_SG_SEGMENTS > 32)
58         SP(32),
59 #if (SCSI_MAX_SG_SEGMENTS > 64)
60         SP(64),
61 #if (SCSI_MAX_SG_SEGMENTS > 128)
62         SP(128),
63 #if (SCSI_MAX_SG_SEGMENTS > 256)
64 #error SCSI_MAX_SG_SEGMENTS is too large (256 MAX)
65 #endif
66 #endif
67 #endif
68 #endif
69         SP(SCSI_MAX_SG_SEGMENTS)
70 };
71 #undef SP
72
73 struct kmem_cache *scsi_sdb_cache;
74
75 /*
76  * When to reinvoke queueing after a resource shortage. It's 3 msecs to
77  * not change behaviour from the previous unplug mechanism, experimentation
78  * may prove this needs changing.
79  */
80 #define SCSI_QUEUE_DELAY        3
81
82 static void
83 scsi_set_blocked(struct scsi_cmnd *cmd, int reason)
84 {
85         struct Scsi_Host *host = cmd->device->host;
86         struct scsi_device *device = cmd->device;
87         struct scsi_target *starget = scsi_target(device);
88
89         /*
90          * Set the appropriate busy bit for the device/host.
91          *
92          * If the host/device isn't busy, assume that something actually
93          * completed, and that we should be able to queue a command now.
94          *
95          * Note that the prior mid-layer assumption that any host could
96          * always queue at least one command is now broken.  The mid-layer
97          * will implement a user specifiable stall (see
98          * scsi_host.max_host_blocked and scsi_device.max_device_blocked)
99          * if a command is requeued with no other commands outstanding
100          * either for the device or for the host.
101          */
102         switch (reason) {
103         case SCSI_MLQUEUE_HOST_BUSY:
104                 atomic_set(&host->host_blocked, host->max_host_blocked);
105                 break;
106         case SCSI_MLQUEUE_DEVICE_BUSY:
107         case SCSI_MLQUEUE_EH_RETRY:
108                 atomic_set(&device->device_blocked,
109                            device->max_device_blocked);
110                 break;
111         case SCSI_MLQUEUE_TARGET_BUSY:
112                 atomic_set(&starget->target_blocked,
113                            starget->max_target_blocked);
114                 break;
115         }
116 }
117
118 static void scsi_mq_requeue_cmd(struct scsi_cmnd *cmd)
119 {
120         struct scsi_device *sdev = cmd->device;
121         struct request_queue *q = cmd->request->q;
122
123         blk_mq_requeue_request(cmd->request);
124         blk_mq_kick_requeue_list(q);
125         put_device(&sdev->sdev_gendev);
126 }
127
128 /**
129  * __scsi_queue_insert - private queue insertion
130  * @cmd: The SCSI command being requeued
131  * @reason:  The reason for the requeue
132  * @unbusy: Whether the queue should be unbusied
133  *
134  * This is a private queue insertion.  The public interface
135  * scsi_queue_insert() always assumes the queue should be unbusied
136  * because it's always called before the completion.  This function is
137  * for a requeue after completion, which should only occur in this
138  * file.
139  */
140 static void __scsi_queue_insert(struct scsi_cmnd *cmd, int reason, int unbusy)
141 {
142         struct scsi_device *device = cmd->device;
143         struct request_queue *q = device->request_queue;
144         unsigned long flags;
145
146         SCSI_LOG_MLQUEUE(1, scmd_printk(KERN_INFO, cmd,
147                 "Inserting command %p into mlqueue\n", cmd));
148
149         scsi_set_blocked(cmd, reason);
150
151         /*
152          * Decrement the counters, since these commands are no longer
153          * active on the host/device.
154          */
155         if (unbusy)
156                 scsi_device_unbusy(device);
157
158         /*
159          * Requeue this command.  It will go before all other commands
160          * that are already in the queue. Schedule requeue work under
161          * lock such that the kblockd_schedule_work() call happens
162          * before blk_cleanup_queue() finishes.
163          */
164         cmd->result = 0;
165         if (q->mq_ops) {
166                 scsi_mq_requeue_cmd(cmd);
167                 return;
168         }
169         spin_lock_irqsave(q->queue_lock, flags);
170         blk_requeue_request(q, cmd->request);
171         kblockd_schedule_work(&device->requeue_work);
172         spin_unlock_irqrestore(q->queue_lock, flags);
173 }
174
175 /*
176  * Function:    scsi_queue_insert()
177  *
178  * Purpose:     Insert a command in the midlevel queue.
179  *
180  * Arguments:   cmd    - command that we are adding to queue.
181  *              reason - why we are inserting command to queue.
182  *
183  * Lock status: Assumed that lock is not held upon entry.
184  *
185  * Returns:     Nothing.
186  *
187  * Notes:       We do this for one of two cases.  Either the host is busy
188  *              and it cannot accept any more commands for the time being,
189  *              or the device returned QUEUE_FULL and can accept no more
190  *              commands.
191  * Notes:       This could be called either from an interrupt context or a
192  *              normal process context.
193  */
194 void scsi_queue_insert(struct scsi_cmnd *cmd, int reason)
195 {
196         __scsi_queue_insert(cmd, reason, 1);
197 }
198 /**
199  * scsi_execute - insert request and wait for the result
200  * @sdev:       scsi device
201  * @cmd:        scsi command
202  * @data_direction: data direction
203  * @buffer:     data buffer
204  * @bufflen:    len of buffer
205  * @sense:      optional sense buffer
206  * @timeout:    request timeout in seconds
207  * @retries:    number of times to retry request
208  * @flags:      or into request flags;
209  * @resid:      optional residual length
210  *
211  * returns the req->errors value which is the scsi_cmnd result
212  * field.
213  */
214 int scsi_execute(struct scsi_device *sdev, const unsigned char *cmd,
215                  int data_direction, void *buffer, unsigned bufflen,
216                  unsigned char *sense, int timeout, int retries, u64 flags,
217                  int *resid)
218 {
219         struct request *req;
220         int write = (data_direction == DMA_TO_DEVICE);
221         int ret = DRIVER_ERROR << 24;
222
223         req = blk_get_request(sdev->request_queue, write, __GFP_WAIT);
224         if (!req)
225                 return ret;
226         blk_rq_set_block_pc(req);
227
228         if (bufflen &&  blk_rq_map_kern(sdev->request_queue, req,
229                                         buffer, bufflen, __GFP_WAIT))
230                 goto out;
231
232         req->cmd_len = COMMAND_SIZE(cmd[0]);
233         memcpy(req->cmd, cmd, req->cmd_len);
234         req->sense = sense;
235         req->sense_len = 0;
236         req->retries = retries;
237         req->timeout = timeout;
238         req->cmd_flags |= flags | REQ_QUIET | REQ_PREEMPT;
239
240         /*
241          * head injection *required* here otherwise quiesce won't work
242          */
243         blk_execute_rq(req->q, NULL, req, 1);
244
245         /*
246          * Some devices (USB mass-storage in particular) may transfer
247          * garbage data together with a residue indicating that the data
248          * is invalid.  Prevent the garbage from being misinterpreted
249          * and prevent security leaks by zeroing out the excess data.
250          */
251         if (unlikely(req->resid_len > 0 && req->resid_len <= bufflen))
252                 memset(buffer + (bufflen - req->resid_len), 0, req->resid_len);
253
254         if (resid)
255                 *resid = req->resid_len;
256         ret = req->errors;
257  out:
258         blk_put_request(req);
259
260         return ret;
261 }
262 EXPORT_SYMBOL(scsi_execute);
263
264 int scsi_execute_req_flags(struct scsi_device *sdev, const unsigned char *cmd,
265                      int data_direction, void *buffer, unsigned bufflen,
266                      struct scsi_sense_hdr *sshdr, int timeout, int retries,
267                      int *resid, u64 flags)
268 {
269         char *sense = NULL;
270         int result;
271         
272         if (sshdr) {
273                 sense = kzalloc(SCSI_SENSE_BUFFERSIZE, GFP_NOIO);
274                 if (!sense)
275                         return DRIVER_ERROR << 24;
276         }
277         result = scsi_execute(sdev, cmd, data_direction, buffer, bufflen,
278                               sense, timeout, retries, flags, resid);
279         if (sshdr)
280                 scsi_normalize_sense(sense, SCSI_SENSE_BUFFERSIZE, sshdr);
281
282         kfree(sense);
283         return result;
284 }
285 EXPORT_SYMBOL(scsi_execute_req_flags);
286
287 /*
288  * Function:    scsi_init_cmd_errh()
289  *
290  * Purpose:     Initialize cmd fields related to error handling.
291  *
292  * Arguments:   cmd     - command that is ready to be queued.
293  *
294  * Notes:       This function has the job of initializing a number of
295  *              fields related to error handling.   Typically this will
296  *              be called once for each command, as required.
297  */
298 static void scsi_init_cmd_errh(struct scsi_cmnd *cmd)
299 {
300         cmd->serial_number = 0;
301         scsi_set_resid(cmd, 0);
302         memset(cmd->sense_buffer, 0, SCSI_SENSE_BUFFERSIZE);
303         if (cmd->cmd_len == 0)
304                 cmd->cmd_len = scsi_command_size(cmd->cmnd);
305 }
306
307 void scsi_device_unbusy(struct scsi_device *sdev)
308 {
309         struct Scsi_Host *shost = sdev->host;
310         struct scsi_target *starget = scsi_target(sdev);
311         unsigned long flags;
312
313         atomic_dec(&shost->host_busy);
314         if (starget->can_queue > 0)
315                 atomic_dec(&starget->target_busy);
316
317         if (unlikely(scsi_host_in_recovery(shost) &&
318                      (shost->host_failed || shost->host_eh_scheduled))) {
319                 spin_lock_irqsave(shost->host_lock, flags);
320                 scsi_eh_wakeup(shost);
321                 spin_unlock_irqrestore(shost->host_lock, flags);
322         }
323
324         atomic_dec(&sdev->device_busy);
325 }
326
327 static void scsi_kick_queue(struct request_queue *q)
328 {
329         if (q->mq_ops)
330                 blk_mq_start_hw_queues(q);
331         else
332                 blk_run_queue(q);
333 }
334
335 /*
336  * Called for single_lun devices on IO completion. Clear starget_sdev_user,
337  * and call blk_run_queue for all the scsi_devices on the target -
338  * including current_sdev first.
339  *
340  * Called with *no* scsi locks held.
341  */
342 static void scsi_single_lun_run(struct scsi_device *current_sdev)
343 {
344         struct Scsi_Host *shost = current_sdev->host;
345         struct scsi_device *sdev, *tmp;
346         struct scsi_target *starget = scsi_target(current_sdev);
347         unsigned long flags;
348
349         spin_lock_irqsave(shost->host_lock, flags);
350         starget->starget_sdev_user = NULL;
351         spin_unlock_irqrestore(shost->host_lock, flags);
352
353         /*
354          * Call blk_run_queue for all LUNs on the target, starting with
355          * current_sdev. We race with others (to set starget_sdev_user),
356          * but in most cases, we will be first. Ideally, each LU on the
357          * target would get some limited time or requests on the target.
358          */
359         scsi_kick_queue(current_sdev->request_queue);
360
361         spin_lock_irqsave(shost->host_lock, flags);
362         if (starget->starget_sdev_user)
363                 goto out;
364         list_for_each_entry_safe(sdev, tmp, &starget->devices,
365                         same_target_siblings) {
366                 if (sdev == current_sdev)
367                         continue;
368                 if (scsi_device_get(sdev))
369                         continue;
370
371                 spin_unlock_irqrestore(shost->host_lock, flags);
372                 scsi_kick_queue(sdev->request_queue);
373                 spin_lock_irqsave(shost->host_lock, flags);
374         
375                 scsi_device_put(sdev);
376         }
377  out:
378         spin_unlock_irqrestore(shost->host_lock, flags);
379 }
380
381 static inline bool scsi_device_is_busy(struct scsi_device *sdev)
382 {
383         if (atomic_read(&sdev->device_busy) >= sdev->queue_depth)
384                 return true;
385         if (atomic_read(&sdev->device_blocked) > 0)
386                 return true;
387         return false;
388 }
389
390 static inline bool scsi_target_is_busy(struct scsi_target *starget)
391 {
392         if (starget->can_queue > 0) {
393                 if (atomic_read(&starget->target_busy) >= starget->can_queue)
394                         return true;
395                 if (atomic_read(&starget->target_blocked) > 0)
396                         return true;
397         }
398         return false;
399 }
400
401 static inline bool scsi_host_is_busy(struct Scsi_Host *shost)
402 {
403         if (shost->can_queue > 0 &&
404             atomic_read(&shost->host_busy) >= shost->can_queue)
405                 return true;
406         if (atomic_read(&shost->host_blocked) > 0)
407                 return true;
408         if (shost->host_self_blocked)
409                 return true;
410         return false;
411 }
412
413 static void scsi_starved_list_run(struct Scsi_Host *shost)
414 {
415         LIST_HEAD(starved_list);
416         struct scsi_device *sdev;
417         unsigned long flags;
418
419         spin_lock_irqsave(shost->host_lock, flags);
420         list_splice_init(&shost->starved_list, &starved_list);
421
422         while (!list_empty(&starved_list)) {
423                 struct request_queue *slq;
424
425                 /*
426                  * As long as shost is accepting commands and we have
427                  * starved queues, call blk_run_queue. scsi_request_fn
428                  * drops the queue_lock and can add us back to the
429                  * starved_list.
430                  *
431                  * host_lock protects the starved_list and starved_entry.
432                  * scsi_request_fn must get the host_lock before checking
433                  * or modifying starved_list or starved_entry.
434                  */
435                 if (scsi_host_is_busy(shost))
436                         break;
437
438                 sdev = list_entry(starved_list.next,
439                                   struct scsi_device, starved_entry);
440                 list_del_init(&sdev->starved_entry);
441                 if (scsi_target_is_busy(scsi_target(sdev))) {
442                         list_move_tail(&sdev->starved_entry,
443                                        &shost->starved_list);
444                         continue;
445                 }
446
447                 /*
448                  * Once we drop the host lock, a racing scsi_remove_device()
449                  * call may remove the sdev from the starved list and destroy
450                  * it and the queue.  Mitigate by taking a reference to the
451                  * queue and never touching the sdev again after we drop the
452                  * host lock.  Note: if __scsi_remove_device() invokes
453                  * blk_cleanup_queue() before the queue is run from this
454                  * function then blk_run_queue() will return immediately since
455                  * blk_cleanup_queue() marks the queue with QUEUE_FLAG_DYING.
456                  */
457                 slq = sdev->request_queue;
458                 if (!blk_get_queue(slq))
459                         continue;
460                 spin_unlock_irqrestore(shost->host_lock, flags);
461
462                 scsi_kick_queue(slq);
463                 blk_put_queue(slq);
464
465                 spin_lock_irqsave(shost->host_lock, flags);
466         }
467         /* put any unprocessed entries back */
468         list_splice(&starved_list, &shost->starved_list);
469         spin_unlock_irqrestore(shost->host_lock, flags);
470 }
471
472 /*
473  * Function:   scsi_run_queue()
474  *
475  * Purpose:    Select a proper request queue to serve next
476  *
477  * Arguments:  q       - last request's queue
478  *
479  * Returns:     Nothing
480  *
481  * Notes:      The previous command was completely finished, start
482  *             a new one if possible.
483  */
484 static void scsi_run_queue(struct request_queue *q)
485 {
486         struct scsi_device *sdev = q->queuedata;
487
488         if (scsi_target(sdev)->single_lun)
489                 scsi_single_lun_run(sdev);
490         if (!list_empty(&sdev->host->starved_list))
491                 scsi_starved_list_run(sdev->host);
492
493         if (q->mq_ops)
494                 blk_mq_start_stopped_hw_queues(q, false);
495         else
496                 blk_run_queue(q);
497 }
498
499 void scsi_requeue_run_queue(struct work_struct *work)
500 {
501         struct scsi_device *sdev;
502         struct request_queue *q;
503
504         sdev = container_of(work, struct scsi_device, requeue_work);
505         q = sdev->request_queue;
506         scsi_run_queue(q);
507 }
508
509 /*
510  * Function:    scsi_requeue_command()
511  *
512  * Purpose:     Handle post-processing of completed commands.
513  *
514  * Arguments:   q       - queue to operate on
515  *              cmd     - command that may need to be requeued.
516  *
517  * Returns:     Nothing
518  *
519  * Notes:       After command completion, there may be blocks left
520  *              over which weren't finished by the previous command
521  *              this can be for a number of reasons - the main one is
522  *              I/O errors in the middle of the request, in which case
523  *              we need to request the blocks that come after the bad
524  *              sector.
525  * Notes:       Upon return, cmd is a stale pointer.
526  */
527 static void scsi_requeue_command(struct request_queue *q, struct scsi_cmnd *cmd)
528 {
529         struct scsi_device *sdev = cmd->device;
530         struct request *req = cmd->request;
531         unsigned long flags;
532
533         spin_lock_irqsave(q->queue_lock, flags);
534         blk_unprep_request(req);
535         req->special = NULL;
536         scsi_put_command(cmd);
537         blk_requeue_request(q, req);
538         spin_unlock_irqrestore(q->queue_lock, flags);
539
540         scsi_run_queue(q);
541
542         put_device(&sdev->sdev_gendev);
543 }
544
545 void scsi_next_command(struct scsi_cmnd *cmd)
546 {
547         struct scsi_device *sdev = cmd->device;
548         struct request_queue *q = sdev->request_queue;
549
550         scsi_put_command(cmd);
551         scsi_run_queue(q);
552
553         put_device(&sdev->sdev_gendev);
554 }
555
556 void scsi_run_host_queues(struct Scsi_Host *shost)
557 {
558         struct scsi_device *sdev;
559
560         shost_for_each_device(sdev, shost)
561                 scsi_run_queue(sdev->request_queue);
562 }
563
564 static inline unsigned int scsi_sgtable_index(unsigned short nents)
565 {
566         unsigned int index;
567
568         BUG_ON(nents > SCSI_MAX_SG_SEGMENTS);
569
570         if (nents <= 8)
571                 index = 0;
572         else
573                 index = get_count_order(nents) - 3;
574
575         return index;
576 }
577
578 static void scsi_sg_free(struct scatterlist *sgl, unsigned int nents)
579 {
580         struct scsi_host_sg_pool *sgp;
581
582         sgp = scsi_sg_pools + scsi_sgtable_index(nents);
583         mempool_free(sgl, sgp->pool);
584 }
585
586 static struct scatterlist *scsi_sg_alloc(unsigned int nents, gfp_t gfp_mask)
587 {
588         struct scsi_host_sg_pool *sgp;
589
590         sgp = scsi_sg_pools + scsi_sgtable_index(nents);
591         return mempool_alloc(sgp->pool, gfp_mask);
592 }
593
594 static void scsi_free_sgtable(struct scsi_data_buffer *sdb, bool mq)
595 {
596         if (mq && sdb->table.nents <= SCSI_MAX_SG_SEGMENTS)
597                 return;
598         __sg_free_table(&sdb->table, SCSI_MAX_SG_SEGMENTS, mq, scsi_sg_free);
599 }
600
601 static int scsi_alloc_sgtable(struct scsi_data_buffer *sdb, int nents,
602                               gfp_t gfp_mask, bool mq)
603 {
604         struct scatterlist *first_chunk = NULL;
605         int ret;
606
607         BUG_ON(!nents);
608
609         if (mq) {
610                 if (nents <= SCSI_MAX_SG_SEGMENTS) {
611                         sdb->table.nents = nents;
612                         sg_init_table(sdb->table.sgl, sdb->table.nents);
613                         return 0;
614                 }
615                 first_chunk = sdb->table.sgl;
616         }
617
618         ret = __sg_alloc_table(&sdb->table, nents, SCSI_MAX_SG_SEGMENTS,
619                                first_chunk, gfp_mask, scsi_sg_alloc);
620         if (unlikely(ret))
621                 scsi_free_sgtable(sdb, mq);
622         return ret;
623 }
624
625 static void scsi_uninit_cmd(struct scsi_cmnd *cmd)
626 {
627         if (cmd->request->cmd_type == REQ_TYPE_FS) {
628                 struct scsi_driver *drv = scsi_cmd_to_driver(cmd);
629
630                 if (drv->uninit_command)
631                         drv->uninit_command(cmd);
632         }
633 }
634
635 static void scsi_mq_free_sgtables(struct scsi_cmnd *cmd)
636 {
637         if (cmd->sdb.table.nents)
638                 scsi_free_sgtable(&cmd->sdb, true);
639         if (cmd->request->next_rq && cmd->request->next_rq->special)
640                 scsi_free_sgtable(cmd->request->next_rq->special, true);
641         if (scsi_prot_sg_count(cmd))
642                 scsi_free_sgtable(cmd->prot_sdb, true);
643 }
644
645 static void scsi_mq_uninit_cmd(struct scsi_cmnd *cmd)
646 {
647         struct scsi_device *sdev = cmd->device;
648         struct Scsi_Host *shost = sdev->host;
649         unsigned long flags;
650
651         scsi_mq_free_sgtables(cmd);
652         scsi_uninit_cmd(cmd);
653
654         if (shost->use_cmd_list) {
655                 BUG_ON(list_empty(&cmd->list));
656                 spin_lock_irqsave(&sdev->list_lock, flags);
657                 list_del_init(&cmd->list);
658                 spin_unlock_irqrestore(&sdev->list_lock, flags);
659         }
660 }
661
662 /*
663  * Function:    scsi_release_buffers()
664  *
665  * Purpose:     Free resources allocate for a scsi_command.
666  *
667  * Arguments:   cmd     - command that we are bailing.
668  *
669  * Lock status: Assumed that no lock is held upon entry.
670  *
671  * Returns:     Nothing
672  *
673  * Notes:       In the event that an upper level driver rejects a
674  *              command, we must release resources allocated during
675  *              the __init_io() function.  Primarily this would involve
676  *              the scatter-gather table.
677  */
678 static void scsi_release_buffers(struct scsi_cmnd *cmd)
679 {
680         if (cmd->sdb.table.nents)
681                 scsi_free_sgtable(&cmd->sdb, false);
682
683         memset(&cmd->sdb, 0, sizeof(cmd->sdb));
684
685         if (scsi_prot_sg_count(cmd))
686                 scsi_free_sgtable(cmd->prot_sdb, false);
687 }
688
689 static void scsi_release_bidi_buffers(struct scsi_cmnd *cmd)
690 {
691         struct scsi_data_buffer *bidi_sdb = cmd->request->next_rq->special;
692
693         scsi_free_sgtable(bidi_sdb, false);
694         kmem_cache_free(scsi_sdb_cache, bidi_sdb);
695         cmd->request->next_rq->special = NULL;
696 }
697
698 static bool scsi_end_request(struct request *req, int error,
699                 unsigned int bytes, unsigned int bidi_bytes)
700 {
701         struct scsi_cmnd *cmd = req->special;
702         struct scsi_device *sdev = cmd->device;
703         struct request_queue *q = sdev->request_queue;
704
705         if (blk_update_request(req, error, bytes))
706                 return true;
707
708         /* Bidi request must be completed as a whole */
709         if (unlikely(bidi_bytes) &&
710             blk_update_request(req->next_rq, error, bidi_bytes))
711                 return true;
712
713         if (blk_queue_add_random(q))
714                 add_disk_randomness(req->rq_disk);
715
716         if (req->mq_ctx) {
717                 /*
718                  * In the MQ case the command gets freed by __blk_mq_end_io,
719                  * so we have to do all cleanup that depends on it earlier.
720                  *
721                  * We also can't kick the queues from irq context, so we
722                  * will have to defer it to a workqueue.
723                  */
724                 scsi_mq_uninit_cmd(cmd);
725
726                 __blk_mq_end_io(req, error);
727
728                 if (scsi_target(sdev)->single_lun ||
729                     !list_empty(&sdev->host->starved_list))
730                         kblockd_schedule_work(&sdev->requeue_work);
731                 else
732                         blk_mq_start_stopped_hw_queues(q, true);
733
734                 put_device(&sdev->sdev_gendev);
735         } else {
736                 unsigned long flags;
737
738                 if (bidi_bytes)
739                         scsi_release_bidi_buffers(cmd);
740
741                 spin_lock_irqsave(q->queue_lock, flags);
742                 blk_finish_request(req, error);
743                 spin_unlock_irqrestore(q->queue_lock, flags);
744
745                 scsi_release_buffers(cmd);
746                 scsi_next_command(cmd);
747         }
748
749         return false;
750 }
751
752 /**
753  * __scsi_error_from_host_byte - translate SCSI error code into errno
754  * @cmd:        SCSI command (unused)
755  * @result:     scsi error code
756  *
757  * Translate SCSI error code into standard UNIX errno.
758  * Return values:
759  * -ENOLINK     temporary transport failure
760  * -EREMOTEIO   permanent target failure, do not retry
761  * -EBADE       permanent nexus failure, retry on other path
762  * -ENOSPC      No write space available
763  * -ENODATA     Medium error
764  * -EIO         unspecified I/O error
765  */
766 static int __scsi_error_from_host_byte(struct scsi_cmnd *cmd, int result)
767 {
768         int error = 0;
769
770         switch(host_byte(result)) {
771         case DID_TRANSPORT_FAILFAST:
772                 error = -ENOLINK;
773                 break;
774         case DID_TARGET_FAILURE:
775                 set_host_byte(cmd, DID_OK);
776                 error = -EREMOTEIO;
777                 break;
778         case DID_NEXUS_FAILURE:
779                 set_host_byte(cmd, DID_OK);
780                 error = -EBADE;
781                 break;
782         case DID_ALLOC_FAILURE:
783                 set_host_byte(cmd, DID_OK);
784                 error = -ENOSPC;
785                 break;
786         case DID_MEDIUM_ERROR:
787                 set_host_byte(cmd, DID_OK);
788                 error = -ENODATA;
789                 break;
790         default:
791                 error = -EIO;
792                 break;
793         }
794
795         return error;
796 }
797
798 /*
799  * Function:    scsi_io_completion()
800  *
801  * Purpose:     Completion processing for block device I/O requests.
802  *
803  * Arguments:   cmd   - command that is finished.
804  *
805  * Lock status: Assumed that no lock is held upon entry.
806  *
807  * Returns:     Nothing
808  *
809  * Notes:       We will finish off the specified number of sectors.  If we
810  *              are done, the command block will be released and the queue
811  *              function will be goosed.  If we are not done then we have to
812  *              figure out what to do next:
813  *
814  *              a) We can call scsi_requeue_command().  The request
815  *                 will be unprepared and put back on the queue.  Then
816  *                 a new command will be created for it.  This should
817  *                 be used if we made forward progress, or if we want
818  *                 to switch from READ(10) to READ(6) for example.
819  *
820  *              b) We can call __scsi_queue_insert().  The request will
821  *                 be put back on the queue and retried using the same
822  *                 command as before, possibly after a delay.
823  *
824  *              c) We can call scsi_end_request() with -EIO to fail
825  *                 the remainder of the request.
826  */
827 void scsi_io_completion(struct scsi_cmnd *cmd, unsigned int good_bytes)
828 {
829         int result = cmd->result;
830         struct request_queue *q = cmd->device->request_queue;
831         struct request *req = cmd->request;
832         int error = 0;
833         struct scsi_sense_hdr sshdr;
834         int sense_valid = 0;
835         int sense_deferred = 0;
836         enum {ACTION_FAIL, ACTION_REPREP, ACTION_RETRY,
837               ACTION_DELAYED_RETRY} action;
838         unsigned long wait_for = (cmd->allowed + 1) * req->timeout;
839
840         if (result) {
841                 sense_valid = scsi_command_normalize_sense(cmd, &sshdr);
842                 if (sense_valid)
843                         sense_deferred = scsi_sense_is_deferred(&sshdr);
844         }
845
846         if (req->cmd_type == REQ_TYPE_BLOCK_PC) { /* SG_IO ioctl from block level */
847                 if (result) {
848                         if (sense_valid && req->sense) {
849                                 /*
850                                  * SG_IO wants current and deferred errors
851                                  */
852                                 int len = 8 + cmd->sense_buffer[7];
853
854                                 if (len > SCSI_SENSE_BUFFERSIZE)
855                                         len = SCSI_SENSE_BUFFERSIZE;
856                                 memcpy(req->sense, cmd->sense_buffer,  len);
857                                 req->sense_len = len;
858                         }
859                         if (!sense_deferred)
860                                 error = __scsi_error_from_host_byte(cmd, result);
861                 }
862                 /*
863                  * __scsi_error_from_host_byte may have reset the host_byte
864                  */
865                 req->errors = cmd->result;
866
867                 req->resid_len = scsi_get_resid(cmd);
868
869                 if (scsi_bidi_cmnd(cmd)) {
870                         /*
871                          * Bidi commands Must be complete as a whole,
872                          * both sides at once.
873                          */
874                         req->next_rq->resid_len = scsi_in(cmd)->resid;
875                         if (scsi_end_request(req, 0, blk_rq_bytes(req),
876                                         blk_rq_bytes(req->next_rq)))
877                                 BUG();
878                         return;
879                 }
880         } else if (blk_rq_bytes(req) == 0 && result && !sense_deferred) {
881                 /*
882                  * Certain non BLOCK_PC requests are commands that don't
883                  * actually transfer anything (FLUSH), so cannot use
884                  * good_bytes != blk_rq_bytes(req) as the signal for an error.
885                  * This sets the error explicitly for the problem case.
886                  */
887                 error = __scsi_error_from_host_byte(cmd, result);
888         }
889
890         /* no bidi support for !REQ_TYPE_BLOCK_PC yet */
891         BUG_ON(blk_bidi_rq(req));
892
893         /*
894          * Next deal with any sectors which we were able to correctly
895          * handle.
896          */
897         SCSI_LOG_HLCOMPLETE(1, scmd_printk(KERN_INFO, cmd,
898                 "%u sectors total, %d bytes done.\n",
899                 blk_rq_sectors(req), good_bytes));
900
901         /*
902          * Recovered errors need reporting, but they're always treated
903          * as success, so fiddle the result code here.  For BLOCK_PC
904          * we already took a copy of the original into rq->errors which
905          * is what gets returned to the user
906          */
907         if (sense_valid && (sshdr.sense_key == RECOVERED_ERROR)) {
908                 /* if ATA PASS-THROUGH INFORMATION AVAILABLE skip
909                  * print since caller wants ATA registers. Only occurs on
910                  * SCSI ATA PASS_THROUGH commands when CK_COND=1
911                  */
912                 if ((sshdr.asc == 0x0) && (sshdr.ascq == 0x1d))
913                         ;
914                 else if (!(req->cmd_flags & REQ_QUIET))
915                         scsi_print_sense("", cmd);
916                 result = 0;
917                 /* BLOCK_PC may have set error */
918                 error = 0;
919         }
920
921         /*
922          * If we finished all bytes in the request we are done now.
923          */
924         if (!scsi_end_request(req, error, good_bytes, 0))
925                 return;
926
927         /*
928          * Kill remainder if no retrys.
929          */
930         if (error && scsi_noretry_cmd(cmd)) {
931                 if (scsi_end_request(req, error, blk_rq_bytes(req), 0))
932                         BUG();
933                 return;
934         }
935
936         /*
937          * If there had been no error, but we have leftover bytes in the
938          * requeues just queue the command up again.
939          */
940         if (result == 0)
941                 goto requeue;
942
943         error = __scsi_error_from_host_byte(cmd, result);
944
945         if (host_byte(result) == DID_RESET) {
946                 /* Third party bus reset or reset for error recovery
947                  * reasons.  Just retry the command and see what
948                  * happens.
949                  */
950                 action = ACTION_RETRY;
951         } else if (sense_valid && !sense_deferred) {
952                 switch (sshdr.sense_key) {
953                 case UNIT_ATTENTION:
954                         if (cmd->device->removable) {
955                                 /* Detected disc change.  Set a bit
956                                  * and quietly refuse further access.
957                                  */
958                                 cmd->device->changed = 1;
959                                 action = ACTION_FAIL;
960                         } else {
961                                 /* Must have been a power glitch, or a
962                                  * bus reset.  Could not have been a
963                                  * media change, so we just retry the
964                                  * command and see what happens.
965                                  */
966                                 action = ACTION_RETRY;
967                         }
968                         break;
969                 case ILLEGAL_REQUEST:
970                         /* If we had an ILLEGAL REQUEST returned, then
971                          * we may have performed an unsupported
972                          * command.  The only thing this should be
973                          * would be a ten byte read where only a six
974                          * byte read was supported.  Also, on a system
975                          * where READ CAPACITY failed, we may have
976                          * read past the end of the disk.
977                          */
978                         if ((cmd->device->use_10_for_rw &&
979                             sshdr.asc == 0x20 && sshdr.ascq == 0x00) &&
980                             (cmd->cmnd[0] == READ_10 ||
981                              cmd->cmnd[0] == WRITE_10)) {
982                                 /* This will issue a new 6-byte command. */
983                                 cmd->device->use_10_for_rw = 0;
984                                 action = ACTION_REPREP;
985                         } else if (sshdr.asc == 0x10) /* DIX */ {
986                                 action = ACTION_FAIL;
987                                 error = -EILSEQ;
988                         /* INVALID COMMAND OPCODE or INVALID FIELD IN CDB */
989                         } else if (sshdr.asc == 0x20 || sshdr.asc == 0x24) {
990                                 action = ACTION_FAIL;
991                                 error = -EREMOTEIO;
992                         } else
993                                 action = ACTION_FAIL;
994                         break;
995                 case ABORTED_COMMAND:
996                         action = ACTION_FAIL;
997                         if (sshdr.asc == 0x10) /* DIF */
998                                 error = -EILSEQ;
999                         break;
1000                 case NOT_READY:
1001                         /* If the device is in the process of becoming
1002                          * ready, or has a temporary blockage, retry.
1003                          */
1004                         if (sshdr.asc == 0x04) {
1005                                 switch (sshdr.ascq) {
1006                                 case 0x01: /* becoming ready */
1007                                 case 0x04: /* format in progress */
1008                                 case 0x05: /* rebuild in progress */
1009                                 case 0x06: /* recalculation in progress */
1010                                 case 0x07: /* operation in progress */
1011                                 case 0x08: /* Long write in progress */
1012                                 case 0x09: /* self test in progress */
1013                                 case 0x14: /* space allocation in progress */
1014                                         action = ACTION_DELAYED_RETRY;
1015                                         break;
1016                                 default:
1017                                         action = ACTION_FAIL;
1018                                         break;
1019                                 }
1020                         } else
1021                                 action = ACTION_FAIL;
1022                         break;
1023                 case VOLUME_OVERFLOW:
1024                         /* See SSC3rXX or current. */
1025                         action = ACTION_FAIL;
1026                         break;
1027                 default:
1028                         action = ACTION_FAIL;
1029                         break;
1030                 }
1031         } else
1032                 action = ACTION_FAIL;
1033
1034         if (action != ACTION_FAIL &&
1035             time_before(cmd->jiffies_at_alloc + wait_for, jiffies))
1036                 action = ACTION_FAIL;
1037
1038         switch (action) {
1039         case ACTION_FAIL:
1040                 /* Give up and fail the remainder of the request */
1041                 if (!(req->cmd_flags & REQ_QUIET)) {
1042                         scsi_print_result(cmd);
1043                         if (driver_byte(result) & DRIVER_SENSE)
1044                                 scsi_print_sense("", cmd);
1045                         scsi_print_command(cmd);
1046                 }
1047                 if (!scsi_end_request(req, error, blk_rq_err_bytes(req), 0))
1048                         return;
1049                 /*FALLTHRU*/
1050         case ACTION_REPREP:
1051         requeue:
1052                 /* Unprep the request and put it back at the head of the queue.
1053                  * A new command will be prepared and issued.
1054                  */
1055                 if (q->mq_ops) {
1056                         cmd->request->cmd_flags &= ~REQ_DONTPREP;
1057                         scsi_mq_uninit_cmd(cmd);
1058                         scsi_mq_requeue_cmd(cmd);
1059                 } else {
1060                         scsi_release_buffers(cmd);
1061                         scsi_requeue_command(q, cmd);
1062                 }
1063                 break;
1064         case ACTION_RETRY:
1065                 /* Retry the same command immediately */
1066                 __scsi_queue_insert(cmd, SCSI_MLQUEUE_EH_RETRY, 0);
1067                 break;
1068         case ACTION_DELAYED_RETRY:
1069                 /* Retry the same command after a delay */
1070                 __scsi_queue_insert(cmd, SCSI_MLQUEUE_DEVICE_BUSY, 0);
1071                 break;
1072         }
1073 }
1074
1075 static int scsi_init_sgtable(struct request *req, struct scsi_data_buffer *sdb,
1076                              gfp_t gfp_mask)
1077 {
1078         int count;
1079
1080         /*
1081          * If sg table allocation fails, requeue request later.
1082          */
1083         if (unlikely(scsi_alloc_sgtable(sdb, req->nr_phys_segments,
1084                                         gfp_mask, req->mq_ctx != NULL)))
1085                 return BLKPREP_DEFER;
1086
1087         /* 
1088          * Next, walk the list, and fill in the addresses and sizes of
1089          * each segment.
1090          */
1091         count = blk_rq_map_sg(req->q, req, sdb->table.sgl);
1092         BUG_ON(count > sdb->table.nents);
1093         sdb->table.nents = count;
1094         sdb->length = blk_rq_bytes(req);
1095         return BLKPREP_OK;
1096 }
1097
1098 /*
1099  * Function:    scsi_init_io()
1100  *
1101  * Purpose:     SCSI I/O initialize function.
1102  *
1103  * Arguments:   cmd   - Command descriptor we wish to initialize
1104  *
1105  * Returns:     0 on success
1106  *              BLKPREP_DEFER if the failure is retryable
1107  *              BLKPREP_KILL if the failure is fatal
1108  */
1109 int scsi_init_io(struct scsi_cmnd *cmd, gfp_t gfp_mask)
1110 {
1111         struct scsi_device *sdev = cmd->device;
1112         struct request *rq = cmd->request;
1113         bool is_mq = (rq->mq_ctx != NULL);
1114         int error;
1115
1116         BUG_ON(!rq->nr_phys_segments);
1117
1118         error = scsi_init_sgtable(rq, &cmd->sdb, gfp_mask);
1119         if (error)
1120                 goto err_exit;
1121
1122         if (blk_bidi_rq(rq)) {
1123                 if (!rq->q->mq_ops) {
1124                         struct scsi_data_buffer *bidi_sdb =
1125                                 kmem_cache_zalloc(scsi_sdb_cache, GFP_ATOMIC);
1126                         if (!bidi_sdb) {
1127                                 error = BLKPREP_DEFER;
1128                                 goto err_exit;
1129                         }
1130
1131                         rq->next_rq->special = bidi_sdb;
1132                 }
1133
1134                 error = scsi_init_sgtable(rq->next_rq, rq->next_rq->special,
1135                                           GFP_ATOMIC);
1136                 if (error)
1137                         goto err_exit;
1138         }
1139
1140         if (blk_integrity_rq(rq)) {
1141                 struct scsi_data_buffer *prot_sdb = cmd->prot_sdb;
1142                 int ivecs, count;
1143
1144                 BUG_ON(prot_sdb == NULL);
1145                 ivecs = blk_rq_count_integrity_sg(rq->q, rq->bio);
1146
1147                 if (scsi_alloc_sgtable(prot_sdb, ivecs, gfp_mask, is_mq)) {
1148                         error = BLKPREP_DEFER;
1149                         goto err_exit;
1150                 }
1151
1152                 count = blk_rq_map_integrity_sg(rq->q, rq->bio,
1153                                                 prot_sdb->table.sgl);
1154                 BUG_ON(unlikely(count > ivecs));
1155                 BUG_ON(unlikely(count > queue_max_integrity_segments(rq->q)));
1156
1157                 cmd->prot_sdb = prot_sdb;
1158                 cmd->prot_sdb->table.nents = count;
1159         }
1160
1161         return BLKPREP_OK;
1162 err_exit:
1163         if (is_mq) {
1164                 scsi_mq_free_sgtables(cmd);
1165         } else {
1166                 scsi_release_buffers(cmd);
1167                 cmd->request->special = NULL;
1168                 scsi_put_command(cmd);
1169                 put_device(&sdev->sdev_gendev);
1170         }
1171         return error;
1172 }
1173 EXPORT_SYMBOL(scsi_init_io);
1174
1175 static struct scsi_cmnd *scsi_get_cmd_from_req(struct scsi_device *sdev,
1176                 struct request *req)
1177 {
1178         struct scsi_cmnd *cmd;
1179
1180         if (!req->special) {
1181                 /* Bail if we can't get a reference to the device */
1182                 if (!get_device(&sdev->sdev_gendev))
1183                         return NULL;
1184
1185                 cmd = scsi_get_command(sdev, GFP_ATOMIC);
1186                 if (unlikely(!cmd)) {
1187                         put_device(&sdev->sdev_gendev);
1188                         return NULL;
1189                 }
1190                 req->special = cmd;
1191         } else {
1192                 cmd = req->special;
1193         }
1194
1195         /* pull a tag out of the request if we have one */
1196         cmd->tag = req->tag;
1197         cmd->request = req;
1198
1199         cmd->cmnd = req->cmd;
1200         cmd->prot_op = SCSI_PROT_NORMAL;
1201
1202         return cmd;
1203 }
1204
1205 static int scsi_setup_blk_pc_cmnd(struct scsi_device *sdev, struct request *req)
1206 {
1207         struct scsi_cmnd *cmd = req->special;
1208
1209         /*
1210          * BLOCK_PC requests may transfer data, in which case they must
1211          * a bio attached to them.  Or they might contain a SCSI command
1212          * that does not transfer data, in which case they may optionally
1213          * submit a request without an attached bio.
1214          */
1215         if (req->bio) {
1216                 int ret = scsi_init_io(cmd, GFP_ATOMIC);
1217                 if (unlikely(ret))
1218                         return ret;
1219         } else {
1220                 BUG_ON(blk_rq_bytes(req));
1221
1222                 memset(&cmd->sdb, 0, sizeof(cmd->sdb));
1223         }
1224
1225         cmd->cmd_len = req->cmd_len;
1226         cmd->transfersize = blk_rq_bytes(req);
1227         cmd->allowed = req->retries;
1228         return BLKPREP_OK;
1229 }
1230
1231 /*
1232  * Setup a REQ_TYPE_FS command.  These are simple request from filesystems
1233  * that still need to be translated to SCSI CDBs from the ULD.
1234  */
1235 static int scsi_setup_fs_cmnd(struct scsi_device *sdev, struct request *req)
1236 {
1237         struct scsi_cmnd *cmd = req->special;
1238
1239         if (unlikely(sdev->scsi_dh_data && sdev->scsi_dh_data->scsi_dh
1240                          && sdev->scsi_dh_data->scsi_dh->prep_fn)) {
1241                 int ret = sdev->scsi_dh_data->scsi_dh->prep_fn(sdev, req);
1242                 if (ret != BLKPREP_OK)
1243                         return ret;
1244         }
1245
1246         memset(cmd->cmnd, 0, BLK_MAX_CDB);
1247         return scsi_cmd_to_driver(cmd)->init_command(cmd);
1248 }
1249
1250 static int scsi_setup_cmnd(struct scsi_device *sdev, struct request *req)
1251 {
1252         struct scsi_cmnd *cmd = req->special;
1253
1254         if (!blk_rq_bytes(req))
1255                 cmd->sc_data_direction = DMA_NONE;
1256         else if (rq_data_dir(req) == WRITE)
1257                 cmd->sc_data_direction = DMA_TO_DEVICE;
1258         else
1259                 cmd->sc_data_direction = DMA_FROM_DEVICE;
1260
1261         switch (req->cmd_type) {
1262         case REQ_TYPE_FS:
1263                 return scsi_setup_fs_cmnd(sdev, req);
1264         case REQ_TYPE_BLOCK_PC:
1265                 return scsi_setup_blk_pc_cmnd(sdev, req);
1266         default:
1267                 return BLKPREP_KILL;
1268         }
1269 }
1270
1271 static int
1272 scsi_prep_state_check(struct scsi_device *sdev, struct request *req)
1273 {
1274         int ret = BLKPREP_OK;
1275
1276         /*
1277          * If the device is not in running state we will reject some
1278          * or all commands.
1279          */
1280         if (unlikely(sdev->sdev_state != SDEV_RUNNING)) {
1281                 switch (sdev->sdev_state) {
1282                 case SDEV_OFFLINE:
1283                 case SDEV_TRANSPORT_OFFLINE:
1284                         /*
1285                          * If the device is offline we refuse to process any
1286                          * commands.  The device must be brought online
1287                          * before trying any recovery commands.
1288                          */
1289                         sdev_printk(KERN_ERR, sdev,
1290                                     "rejecting I/O to offline device\n");
1291                         ret = BLKPREP_KILL;
1292                         break;
1293                 case SDEV_DEL:
1294                         /*
1295                          * If the device is fully deleted, we refuse to
1296                          * process any commands as well.
1297                          */
1298                         sdev_printk(KERN_ERR, sdev,
1299                                     "rejecting I/O to dead device\n");
1300                         ret = BLKPREP_KILL;
1301                         break;
1302                 case SDEV_QUIESCE:
1303                 case SDEV_BLOCK:
1304                 case SDEV_CREATED_BLOCK:
1305                         /*
1306                          * If the devices is blocked we defer normal commands.
1307                          */
1308                         if (!(req->cmd_flags & REQ_PREEMPT))
1309                                 ret = BLKPREP_DEFER;
1310                         break;
1311                 default:
1312                         /*
1313                          * For any other not fully online state we only allow
1314                          * special commands.  In particular any user initiated
1315                          * command is not allowed.
1316                          */
1317                         if (!(req->cmd_flags & REQ_PREEMPT))
1318                                 ret = BLKPREP_KILL;
1319                         break;
1320                 }
1321         }
1322         return ret;
1323 }
1324
1325 static int
1326 scsi_prep_return(struct request_queue *q, struct request *req, int ret)
1327 {
1328         struct scsi_device *sdev = q->queuedata;
1329
1330         switch (ret) {
1331         case BLKPREP_KILL:
1332                 req->errors = DID_NO_CONNECT << 16;
1333                 /* release the command and kill it */
1334                 if (req->special) {
1335                         struct scsi_cmnd *cmd = req->special;
1336                         scsi_release_buffers(cmd);
1337                         scsi_put_command(cmd);
1338                         put_device(&sdev->sdev_gendev);
1339                         req->special = NULL;
1340                 }
1341                 break;
1342         case BLKPREP_DEFER:
1343                 /*
1344                  * If we defer, the blk_peek_request() returns NULL, but the
1345                  * queue must be restarted, so we schedule a callback to happen
1346                  * shortly.
1347                  */
1348                 if (atomic_read(&sdev->device_busy) == 0)
1349                         blk_delay_queue(q, SCSI_QUEUE_DELAY);
1350                 break;
1351         default:
1352                 req->cmd_flags |= REQ_DONTPREP;
1353         }
1354
1355         return ret;
1356 }
1357
1358 static int scsi_prep_fn(struct request_queue *q, struct request *req)
1359 {
1360         struct scsi_device *sdev = q->queuedata;
1361         struct scsi_cmnd *cmd;
1362         int ret;
1363
1364         ret = scsi_prep_state_check(sdev, req);
1365         if (ret != BLKPREP_OK)
1366                 goto out;
1367
1368         cmd = scsi_get_cmd_from_req(sdev, req);
1369         if (unlikely(!cmd)) {
1370                 ret = BLKPREP_DEFER;
1371                 goto out;
1372         }
1373
1374         ret = scsi_setup_cmnd(sdev, req);
1375 out:
1376         return scsi_prep_return(q, req, ret);
1377 }
1378
1379 static void scsi_unprep_fn(struct request_queue *q, struct request *req)
1380 {
1381         scsi_uninit_cmd(req->special);
1382 }
1383
1384 /*
1385  * scsi_dev_queue_ready: if we can send requests to sdev, return 1 else
1386  * return 0.
1387  *
1388  * Called with the queue_lock held.
1389  */
1390 static inline int scsi_dev_queue_ready(struct request_queue *q,
1391                                   struct scsi_device *sdev)
1392 {
1393         unsigned int busy;
1394
1395         busy = atomic_inc_return(&sdev->device_busy) - 1;
1396         if (atomic_read(&sdev->device_blocked)) {
1397                 if (busy)
1398                         goto out_dec;
1399
1400                 /*
1401                  * unblock after device_blocked iterates to zero
1402                  */
1403                 if (atomic_dec_return(&sdev->device_blocked) > 0) {
1404                         /*
1405                          * For the MQ case we take care of this in the caller.
1406                          */
1407                         if (!q->mq_ops)
1408                                 blk_delay_queue(q, SCSI_QUEUE_DELAY);
1409                         goto out_dec;
1410                 }
1411                 SCSI_LOG_MLQUEUE(3, sdev_printk(KERN_INFO, sdev,
1412                                    "unblocking device at zero depth\n"));
1413         }
1414
1415         if (busy >= sdev->queue_depth)
1416                 goto out_dec;
1417
1418         return 1;
1419 out_dec:
1420         atomic_dec(&sdev->device_busy);
1421         return 0;
1422 }
1423
1424 /*
1425  * scsi_target_queue_ready: checks if there we can send commands to target
1426  * @sdev: scsi device on starget to check.
1427  */
1428 static inline int scsi_target_queue_ready(struct Scsi_Host *shost,
1429                                            struct scsi_device *sdev)
1430 {
1431         struct scsi_target *starget = scsi_target(sdev);
1432         unsigned int busy;
1433
1434         if (starget->single_lun) {
1435                 spin_lock_irq(shost->host_lock);
1436                 if (starget->starget_sdev_user &&
1437                     starget->starget_sdev_user != sdev) {
1438                         spin_unlock_irq(shost->host_lock);
1439                         return 0;
1440                 }
1441                 starget->starget_sdev_user = sdev;
1442                 spin_unlock_irq(shost->host_lock);
1443         }
1444
1445         if (starget->can_queue <= 0)
1446                 return 1;
1447
1448         busy = atomic_inc_return(&starget->target_busy) - 1;
1449         if (atomic_read(&starget->target_blocked) > 0) {
1450                 if (busy)
1451                         goto starved;
1452
1453                 /*
1454                  * unblock after target_blocked iterates to zero
1455                  */
1456                 if (atomic_dec_return(&starget->target_blocked) > 0)
1457                         goto out_dec;
1458
1459                 SCSI_LOG_MLQUEUE(3, starget_printk(KERN_INFO, starget,
1460                                  "unblocking target at zero depth\n"));
1461         }
1462
1463         if (busy >= starget->can_queue)
1464                 goto starved;
1465
1466         return 1;
1467
1468 starved:
1469         spin_lock_irq(shost->host_lock);
1470         list_move_tail(&sdev->starved_entry, &shost->starved_list);
1471         spin_unlock_irq(shost->host_lock);
1472 out_dec:
1473         if (starget->can_queue > 0)
1474                 atomic_dec(&starget->target_busy);
1475         return 0;
1476 }
1477
1478 /*
1479  * scsi_host_queue_ready: if we can send requests to shost, return 1 else
1480  * return 0. We must end up running the queue again whenever 0 is
1481  * returned, else IO can hang.
1482  */
1483 static inline int scsi_host_queue_ready(struct request_queue *q,
1484                                    struct Scsi_Host *shost,
1485                                    struct scsi_device *sdev)
1486 {
1487         unsigned int busy;
1488
1489         if (scsi_host_in_recovery(shost))
1490                 return 0;
1491
1492         busy = atomic_inc_return(&shost->host_busy) - 1;
1493         if (atomic_read(&shost->host_blocked) > 0) {
1494                 if (busy)
1495                         goto starved;
1496
1497                 /*
1498                  * unblock after host_blocked iterates to zero
1499                  */
1500                 if (atomic_dec_return(&shost->host_blocked) > 0)
1501                         goto out_dec;
1502
1503                 SCSI_LOG_MLQUEUE(3,
1504                         shost_printk(KERN_INFO, shost,
1505                                      "unblocking host at zero depth\n"));
1506         }
1507
1508         if (shost->can_queue > 0 && busy >= shost->can_queue)
1509                 goto starved;
1510         if (shost->host_self_blocked)
1511                 goto starved;
1512
1513         /* We're OK to process the command, so we can't be starved */
1514         if (!list_empty(&sdev->starved_entry)) {
1515                 spin_lock_irq(shost->host_lock);
1516                 if (!list_empty(&sdev->starved_entry))
1517                         list_del_init(&sdev->starved_entry);
1518                 spin_unlock_irq(shost->host_lock);
1519         }
1520
1521         return 1;
1522
1523 starved:
1524         spin_lock_irq(shost->host_lock);
1525         if (list_empty(&sdev->starved_entry))
1526                 list_add_tail(&sdev->starved_entry, &shost->starved_list);
1527         spin_unlock_irq(shost->host_lock);
1528 out_dec:
1529         atomic_dec(&shost->host_busy);
1530         return 0;
1531 }
1532
1533 /*
1534  * Busy state exporting function for request stacking drivers.
1535  *
1536  * For efficiency, no lock is taken to check the busy state of
1537  * shost/starget/sdev, since the returned value is not guaranteed and
1538  * may be changed after request stacking drivers call the function,
1539  * regardless of taking lock or not.
1540  *
1541  * When scsi can't dispatch I/Os anymore and needs to kill I/Os scsi
1542  * needs to return 'not busy'. Otherwise, request stacking drivers
1543  * may hold requests forever.
1544  */
1545 static int scsi_lld_busy(struct request_queue *q)
1546 {
1547         struct scsi_device *sdev = q->queuedata;
1548         struct Scsi_Host *shost;
1549
1550         if (blk_queue_dying(q))
1551                 return 0;
1552
1553         shost = sdev->host;
1554
1555         /*
1556          * Ignore host/starget busy state.
1557          * Since block layer does not have a concept of fairness across
1558          * multiple queues, congestion of host/starget needs to be handled
1559          * in SCSI layer.
1560          */
1561         if (scsi_host_in_recovery(shost) || scsi_device_is_busy(sdev))
1562                 return 1;
1563
1564         return 0;
1565 }
1566
1567 /*
1568  * Kill a request for a dead device
1569  */
1570 static void scsi_kill_request(struct request *req, struct request_queue *q)
1571 {
1572         struct scsi_cmnd *cmd = req->special;
1573         struct scsi_device *sdev;
1574         struct scsi_target *starget;
1575         struct Scsi_Host *shost;
1576
1577         blk_start_request(req);
1578
1579         scmd_printk(KERN_INFO, cmd, "killing request\n");
1580
1581         sdev = cmd->device;
1582         starget = scsi_target(sdev);
1583         shost = sdev->host;
1584         scsi_init_cmd_errh(cmd);
1585         cmd->result = DID_NO_CONNECT << 16;
1586         atomic_inc(&cmd->device->iorequest_cnt);
1587
1588         /*
1589          * SCSI request completion path will do scsi_device_unbusy(),
1590          * bump busy counts.  To bump the counters, we need to dance
1591          * with the locks as normal issue path does.
1592          */
1593         atomic_inc(&sdev->device_busy);
1594         atomic_inc(&shost->host_busy);
1595         if (starget->can_queue > 0)
1596                 atomic_inc(&starget->target_busy);
1597
1598         blk_complete_request(req);
1599 }
1600
1601 static void scsi_softirq_done(struct request *rq)
1602 {
1603         struct scsi_cmnd *cmd = rq->special;
1604         unsigned long wait_for = (cmd->allowed + 1) * rq->timeout;
1605         int disposition;
1606
1607         INIT_LIST_HEAD(&cmd->eh_entry);
1608
1609         atomic_inc(&cmd->device->iodone_cnt);
1610         if (cmd->result)
1611                 atomic_inc(&cmd->device->ioerr_cnt);
1612
1613         disposition = scsi_decide_disposition(cmd);
1614         if (disposition != SUCCESS &&
1615             time_before(cmd->jiffies_at_alloc + wait_for, jiffies)) {
1616                 sdev_printk(KERN_ERR, cmd->device,
1617                             "timing out command, waited %lus\n",
1618                             wait_for/HZ);
1619                 disposition = SUCCESS;
1620         }
1621
1622         scsi_log_completion(cmd, disposition);
1623
1624         switch (disposition) {
1625                 case SUCCESS:
1626                         scsi_finish_command(cmd);
1627                         break;
1628                 case NEEDS_RETRY:
1629                         scsi_queue_insert(cmd, SCSI_MLQUEUE_EH_RETRY);
1630                         break;
1631                 case ADD_TO_MLQUEUE:
1632                         scsi_queue_insert(cmd, SCSI_MLQUEUE_DEVICE_BUSY);
1633                         break;
1634                 default:
1635                         if (!scsi_eh_scmd_add(cmd, 0))
1636                                 scsi_finish_command(cmd);
1637         }
1638 }
1639
1640 /**
1641  * scsi_done - Invoke completion on finished SCSI command.
1642  * @cmd: The SCSI Command for which a low-level device driver (LLDD) gives
1643  * ownership back to SCSI Core -- i.e. the LLDD has finished with it.
1644  *
1645  * Description: This function is the mid-level's (SCSI Core) interrupt routine,
1646  * which regains ownership of the SCSI command (de facto) from a LLDD, and
1647  * calls blk_complete_request() for further processing.
1648  *
1649  * This function is interrupt context safe.
1650  */
1651 static void scsi_done(struct scsi_cmnd *cmd)
1652 {
1653         trace_scsi_dispatch_cmd_done(cmd);
1654         blk_complete_request(cmd->request);
1655 }
1656
1657 /*
1658  * Function:    scsi_request_fn()
1659  *
1660  * Purpose:     Main strategy routine for SCSI.
1661  *
1662  * Arguments:   q       - Pointer to actual queue.
1663  *
1664  * Returns:     Nothing
1665  *
1666  * Lock status: IO request lock assumed to be held when called.
1667  */
1668 static void scsi_request_fn(struct request_queue *q)
1669         __releases(q->queue_lock)
1670         __acquires(q->queue_lock)
1671 {
1672         struct scsi_device *sdev = q->queuedata;
1673         struct Scsi_Host *shost;
1674         struct scsi_cmnd *cmd;
1675         struct request *req;
1676
1677         /*
1678          * To start with, we keep looping until the queue is empty, or until
1679          * the host is no longer able to accept any more requests.
1680          */
1681         shost = sdev->host;
1682         for (;;) {
1683                 int rtn;
1684                 /*
1685                  * get next queueable request.  We do this early to make sure
1686                  * that the request is fully prepared even if we cannot
1687                  * accept it.
1688                  */
1689                 req = blk_peek_request(q);
1690                 if (!req)
1691                         break;
1692
1693                 if (unlikely(!scsi_device_online(sdev))) {
1694                         sdev_printk(KERN_ERR, sdev,
1695                                     "rejecting I/O to offline device\n");
1696                         scsi_kill_request(req, q);
1697                         continue;
1698                 }
1699
1700                 if (!scsi_dev_queue_ready(q, sdev))
1701                         break;
1702
1703                 /*
1704                  * Remove the request from the request list.
1705                  */
1706                 if (!(blk_queue_tagged(q) && !blk_queue_start_tag(q, req)))
1707                         blk_start_request(req);
1708
1709                 spin_unlock_irq(q->queue_lock);
1710                 cmd = req->special;
1711                 if (unlikely(cmd == NULL)) {
1712                         printk(KERN_CRIT "impossible request in %s.\n"
1713                                          "please mail a stack trace to "
1714                                          "linux-scsi@vger.kernel.org\n",
1715                                          __func__);
1716                         blk_dump_rq_flags(req, "foo");
1717                         BUG();
1718                 }
1719
1720                 /*
1721                  * We hit this when the driver is using a host wide
1722                  * tag map. For device level tag maps the queue_depth check
1723                  * in the device ready fn would prevent us from trying
1724                  * to allocate a tag. Since the map is a shared host resource
1725                  * we add the dev to the starved list so it eventually gets
1726                  * a run when a tag is freed.
1727                  */
1728                 if (blk_queue_tagged(q) && !blk_rq_tagged(req)) {
1729                         spin_lock_irq(shost->host_lock);
1730                         if (list_empty(&sdev->starved_entry))
1731                                 list_add_tail(&sdev->starved_entry,
1732                                               &shost->starved_list);
1733                         spin_unlock_irq(shost->host_lock);
1734                         goto not_ready;
1735                 }
1736
1737                 if (!scsi_target_queue_ready(shost, sdev))
1738                         goto not_ready;
1739
1740                 if (!scsi_host_queue_ready(q, shost, sdev))
1741                         goto host_not_ready;
1742
1743                 /*
1744                  * Finally, initialize any error handling parameters, and set up
1745                  * the timers for timeouts.
1746                  */
1747                 scsi_init_cmd_errh(cmd);
1748
1749                 /*
1750                  * Dispatch the command to the low-level driver.
1751                  */
1752                 cmd->scsi_done = scsi_done;
1753                 rtn = scsi_dispatch_cmd(cmd);
1754                 if (rtn) {
1755                         scsi_queue_insert(cmd, rtn);
1756                         spin_lock_irq(q->queue_lock);
1757                         goto out_delay;
1758                 }
1759                 spin_lock_irq(q->queue_lock);
1760         }
1761
1762         return;
1763
1764  host_not_ready:
1765         if (scsi_target(sdev)->can_queue > 0)
1766                 atomic_dec(&scsi_target(sdev)->target_busy);
1767  not_ready:
1768         /*
1769          * lock q, handle tag, requeue req, and decrement device_busy. We
1770          * must return with queue_lock held.
1771          *
1772          * Decrementing device_busy without checking it is OK, as all such
1773          * cases (host limits or settings) should run the queue at some
1774          * later time.
1775          */
1776         spin_lock_irq(q->queue_lock);
1777         blk_requeue_request(q, req);
1778         atomic_dec(&sdev->device_busy);
1779 out_delay:
1780         if (!atomic_read(&sdev->device_busy) && !scsi_device_blocked(sdev))
1781                 blk_delay_queue(q, SCSI_QUEUE_DELAY);
1782 }
1783
1784 static inline int prep_to_mq(int ret)
1785 {
1786         switch (ret) {
1787         case BLKPREP_OK:
1788                 return 0;
1789         case BLKPREP_DEFER:
1790                 return BLK_MQ_RQ_QUEUE_BUSY;
1791         default:
1792                 return BLK_MQ_RQ_QUEUE_ERROR;
1793         }
1794 }
1795
1796 static int scsi_mq_prep_fn(struct request *req)
1797 {
1798         struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
1799         struct scsi_device *sdev = req->q->queuedata;
1800         struct Scsi_Host *shost = sdev->host;
1801         unsigned char *sense_buf = cmd->sense_buffer;
1802         struct scatterlist *sg;
1803
1804         memset(cmd, 0, sizeof(struct scsi_cmnd));
1805
1806         req->special = cmd;
1807
1808         cmd->request = req;
1809         cmd->device = sdev;
1810         cmd->sense_buffer = sense_buf;
1811
1812         cmd->tag = req->tag;
1813
1814         cmd->cmnd = req->cmd;
1815         cmd->prot_op = SCSI_PROT_NORMAL;
1816
1817         INIT_LIST_HEAD(&cmd->list);
1818         INIT_DELAYED_WORK(&cmd->abort_work, scmd_eh_abort_handler);
1819         cmd->jiffies_at_alloc = jiffies;
1820
1821         if (shost->use_cmd_list) {
1822                 spin_lock_irq(&sdev->list_lock);
1823                 list_add_tail(&cmd->list, &sdev->cmd_list);
1824                 spin_unlock_irq(&sdev->list_lock);
1825         }
1826
1827         sg = (void *)cmd + sizeof(struct scsi_cmnd) + shost->hostt->cmd_size;
1828         cmd->sdb.table.sgl = sg;
1829
1830         if (scsi_host_get_prot(shost)) {
1831                 cmd->prot_sdb = (void *)sg +
1832                         shost->sg_tablesize * sizeof(struct scatterlist);
1833                 memset(cmd->prot_sdb, 0, sizeof(struct scsi_data_buffer));
1834
1835                 cmd->prot_sdb->table.sgl =
1836                         (struct scatterlist *)(cmd->prot_sdb + 1);
1837         }
1838
1839         if (blk_bidi_rq(req)) {
1840                 struct request *next_rq = req->next_rq;
1841                 struct scsi_data_buffer *bidi_sdb = blk_mq_rq_to_pdu(next_rq);
1842
1843                 memset(bidi_sdb, 0, sizeof(struct scsi_data_buffer));
1844                 bidi_sdb->table.sgl =
1845                         (struct scatterlist *)(bidi_sdb + 1);
1846
1847                 next_rq->special = bidi_sdb;
1848         }
1849
1850         return scsi_setup_cmnd(sdev, req);
1851 }
1852
1853 static void scsi_mq_done(struct scsi_cmnd *cmd)
1854 {
1855         trace_scsi_dispatch_cmd_done(cmd);
1856         blk_mq_complete_request(cmd->request);
1857 }
1858
1859 static int scsi_queue_rq(struct blk_mq_hw_ctx *hctx, struct request *req)
1860 {
1861         struct request_queue *q = req->q;
1862         struct scsi_device *sdev = q->queuedata;
1863         struct Scsi_Host *shost = sdev->host;
1864         struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
1865         int ret;
1866         int reason;
1867
1868         ret = prep_to_mq(scsi_prep_state_check(sdev, req));
1869         if (ret)
1870                 goto out;
1871
1872         ret = BLK_MQ_RQ_QUEUE_BUSY;
1873         if (!get_device(&sdev->sdev_gendev))
1874                 goto out;
1875
1876         if (!scsi_dev_queue_ready(q, sdev))
1877                 goto out_put_device;
1878         if (!scsi_target_queue_ready(shost, sdev))
1879                 goto out_dec_device_busy;
1880         if (!scsi_host_queue_ready(q, shost, sdev))
1881                 goto out_dec_target_busy;
1882
1883         if (!(req->cmd_flags & REQ_DONTPREP)) {
1884                 ret = prep_to_mq(scsi_mq_prep_fn(req));
1885                 if (ret)
1886                         goto out_dec_host_busy;
1887                 req->cmd_flags |= REQ_DONTPREP;
1888         }
1889
1890         scsi_init_cmd_errh(cmd);
1891         cmd->scsi_done = scsi_mq_done;
1892
1893         reason = scsi_dispatch_cmd(cmd);
1894         if (reason) {
1895                 scsi_set_blocked(cmd, reason);
1896                 ret = BLK_MQ_RQ_QUEUE_BUSY;
1897                 goto out_dec_host_busy;
1898         }
1899
1900         return BLK_MQ_RQ_QUEUE_OK;
1901
1902 out_dec_host_busy:
1903         atomic_dec(&shost->host_busy);
1904 out_dec_target_busy:
1905         if (scsi_target(sdev)->can_queue > 0)
1906                 atomic_dec(&scsi_target(sdev)->target_busy);
1907 out_dec_device_busy:
1908         atomic_dec(&sdev->device_busy);
1909 out_put_device:
1910         put_device(&sdev->sdev_gendev);
1911 out:
1912         switch (ret) {
1913         case BLK_MQ_RQ_QUEUE_BUSY:
1914                 blk_mq_stop_hw_queue(hctx);
1915                 if (atomic_read(&sdev->device_busy) == 0 &&
1916                     !scsi_device_blocked(sdev))
1917                         blk_mq_delay_queue(hctx, SCSI_QUEUE_DELAY);
1918                 break;
1919         case BLK_MQ_RQ_QUEUE_ERROR:
1920                 /*
1921                  * Make sure to release all allocated ressources when
1922                  * we hit an error, as we will never see this command
1923                  * again.
1924                  */
1925                 if (req->cmd_flags & REQ_DONTPREP)
1926                         scsi_mq_uninit_cmd(cmd);
1927                 break;
1928         default:
1929                 break;
1930         }
1931         return ret;
1932 }
1933
1934 static int scsi_init_request(void *data, struct request *rq,
1935                 unsigned int hctx_idx, unsigned int request_idx,
1936                 unsigned int numa_node)
1937 {
1938         struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq);
1939
1940         cmd->sense_buffer = kzalloc_node(SCSI_SENSE_BUFFERSIZE, GFP_KERNEL,
1941                         numa_node);
1942         if (!cmd->sense_buffer)
1943                 return -ENOMEM;
1944         return 0;
1945 }
1946
1947 static void scsi_exit_request(void *data, struct request *rq,
1948                 unsigned int hctx_idx, unsigned int request_idx)
1949 {
1950         struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq);
1951
1952         kfree(cmd->sense_buffer);
1953 }
1954
1955 static u64 scsi_calculate_bounce_limit(struct Scsi_Host *shost)
1956 {
1957         struct device *host_dev;
1958         u64 bounce_limit = 0xffffffff;
1959
1960         if (shost->unchecked_isa_dma)
1961                 return BLK_BOUNCE_ISA;
1962         /*
1963          * Platforms with virtual-DMA translation
1964          * hardware have no practical limit.
1965          */
1966         if (!PCI_DMA_BUS_IS_PHYS)
1967                 return BLK_BOUNCE_ANY;
1968
1969         host_dev = scsi_get_device(shost);
1970         if (host_dev && host_dev->dma_mask)
1971                 bounce_limit = (u64)dma_max_pfn(host_dev) << PAGE_SHIFT;
1972
1973         return bounce_limit;
1974 }
1975
1976 static void __scsi_init_queue(struct Scsi_Host *shost, struct request_queue *q)
1977 {
1978         struct device *dev = shost->dma_dev;
1979
1980         /*
1981          * this limit is imposed by hardware restrictions
1982          */
1983         blk_queue_max_segments(q, min_t(unsigned short, shost->sg_tablesize,
1984                                         SCSI_MAX_SG_CHAIN_SEGMENTS));
1985
1986         if (scsi_host_prot_dma(shost)) {
1987                 shost->sg_prot_tablesize =
1988                         min_not_zero(shost->sg_prot_tablesize,
1989                                      (unsigned short)SCSI_MAX_PROT_SG_SEGMENTS);
1990                 BUG_ON(shost->sg_prot_tablesize < shost->sg_tablesize);
1991                 blk_queue_max_integrity_segments(q, shost->sg_prot_tablesize);
1992         }
1993
1994         blk_queue_max_hw_sectors(q, shost->max_sectors);
1995         blk_queue_bounce_limit(q, scsi_calculate_bounce_limit(shost));
1996         blk_queue_segment_boundary(q, shost->dma_boundary);
1997         dma_set_seg_boundary(dev, shost->dma_boundary);
1998
1999         blk_queue_max_segment_size(q, dma_get_max_seg_size(dev));
2000
2001         if (!shost->use_clustering)
2002                 q->limits.cluster = 0;
2003
2004         /*
2005          * set a reasonable default alignment on word boundaries: the
2006          * host and device may alter it using
2007          * blk_queue_update_dma_alignment() later.
2008          */
2009         blk_queue_dma_alignment(q, 0x03);
2010 }
2011
2012 struct request_queue *__scsi_alloc_queue(struct Scsi_Host *shost,
2013                                          request_fn_proc *request_fn)
2014 {
2015         struct request_queue *q;
2016
2017         q = blk_init_queue(request_fn, NULL);
2018         if (!q)
2019                 return NULL;
2020         __scsi_init_queue(shost, q);
2021         return q;
2022 }
2023 EXPORT_SYMBOL(__scsi_alloc_queue);
2024
2025 struct request_queue *scsi_alloc_queue(struct scsi_device *sdev)
2026 {
2027         struct request_queue *q;
2028
2029         q = __scsi_alloc_queue(sdev->host, scsi_request_fn);
2030         if (!q)
2031                 return NULL;
2032
2033         blk_queue_prep_rq(q, scsi_prep_fn);
2034         blk_queue_unprep_rq(q, scsi_unprep_fn);
2035         blk_queue_softirq_done(q, scsi_softirq_done);
2036         blk_queue_rq_timed_out(q, scsi_times_out);
2037         blk_queue_lld_busy(q, scsi_lld_busy);
2038         return q;
2039 }
2040
2041 static struct blk_mq_ops scsi_mq_ops = {
2042         .map_queue      = blk_mq_map_queue,
2043         .queue_rq       = scsi_queue_rq,
2044         .complete       = scsi_softirq_done,
2045         .timeout        = scsi_times_out,
2046         .init_request   = scsi_init_request,
2047         .exit_request   = scsi_exit_request,
2048 };
2049
2050 struct request_queue *scsi_mq_alloc_queue(struct scsi_device *sdev)
2051 {
2052         sdev->request_queue = blk_mq_init_queue(&sdev->host->tag_set);
2053         if (IS_ERR(sdev->request_queue))
2054                 return NULL;
2055
2056         sdev->request_queue->queuedata = sdev;
2057         __scsi_init_queue(sdev->host, sdev->request_queue);
2058         return sdev->request_queue;
2059 }
2060
2061 int scsi_mq_setup_tags(struct Scsi_Host *shost)
2062 {
2063         unsigned int cmd_size, sgl_size, tbl_size;
2064
2065         tbl_size = shost->sg_tablesize;
2066         if (tbl_size > SCSI_MAX_SG_SEGMENTS)
2067                 tbl_size = SCSI_MAX_SG_SEGMENTS;
2068         sgl_size = tbl_size * sizeof(struct scatterlist);
2069         cmd_size = sizeof(struct scsi_cmnd) + shost->hostt->cmd_size + sgl_size;
2070         if (scsi_host_get_prot(shost))
2071                 cmd_size += sizeof(struct scsi_data_buffer) + sgl_size;
2072
2073         memset(&shost->tag_set, 0, sizeof(shost->tag_set));
2074         shost->tag_set.ops = &scsi_mq_ops;
2075         shost->tag_set.nr_hw_queues = 1;
2076         shost->tag_set.queue_depth = shost->can_queue;
2077         shost->tag_set.cmd_size = cmd_size;
2078         shost->tag_set.numa_node = NUMA_NO_NODE;
2079         shost->tag_set.flags = BLK_MQ_F_SHOULD_MERGE | BLK_MQ_F_SG_MERGE;
2080         shost->tag_set.driver_data = shost;
2081
2082         return blk_mq_alloc_tag_set(&shost->tag_set);
2083 }
2084
2085 void scsi_mq_destroy_tags(struct Scsi_Host *shost)
2086 {
2087         blk_mq_free_tag_set(&shost->tag_set);
2088 }
2089
2090 /*
2091  * Function:    scsi_block_requests()
2092  *
2093  * Purpose:     Utility function used by low-level drivers to prevent further
2094  *              commands from being queued to the device.
2095  *
2096  * Arguments:   shost       - Host in question
2097  *
2098  * Returns:     Nothing
2099  *
2100  * Lock status: No locks are assumed held.
2101  *
2102  * Notes:       There is no timer nor any other means by which the requests
2103  *              get unblocked other than the low-level driver calling
2104  *              scsi_unblock_requests().
2105  */
2106 void scsi_block_requests(struct Scsi_Host *shost)
2107 {
2108         shost->host_self_blocked = 1;
2109 }
2110 EXPORT_SYMBOL(scsi_block_requests);
2111
2112 /*
2113  * Function:    scsi_unblock_requests()
2114  *
2115  * Purpose:     Utility function used by low-level drivers to allow further
2116  *              commands from being queued to the device.
2117  *
2118  * Arguments:   shost       - Host in question
2119  *
2120  * Returns:     Nothing
2121  *
2122  * Lock status: No locks are assumed held.
2123  *
2124  * Notes:       There is no timer nor any other means by which the requests
2125  *              get unblocked other than the low-level driver calling
2126  *              scsi_unblock_requests().
2127  *
2128  *              This is done as an API function so that changes to the
2129  *              internals of the scsi mid-layer won't require wholesale
2130  *              changes to drivers that use this feature.
2131  */
2132 void scsi_unblock_requests(struct Scsi_Host *shost)
2133 {
2134         shost->host_self_blocked = 0;
2135         scsi_run_host_queues(shost);
2136 }
2137 EXPORT_SYMBOL(scsi_unblock_requests);
2138
2139 int __init scsi_init_queue(void)
2140 {
2141         int i;
2142
2143         scsi_sdb_cache = kmem_cache_create("scsi_data_buffer",
2144                                            sizeof(struct scsi_data_buffer),
2145                                            0, 0, NULL);
2146         if (!scsi_sdb_cache) {
2147                 printk(KERN_ERR "SCSI: can't init scsi sdb cache\n");
2148                 return -ENOMEM;
2149         }
2150
2151         for (i = 0; i < SG_MEMPOOL_NR; i++) {
2152                 struct scsi_host_sg_pool *sgp = scsi_sg_pools + i;
2153                 int size = sgp->size * sizeof(struct scatterlist);
2154
2155                 sgp->slab = kmem_cache_create(sgp->name, size, 0,
2156                                 SLAB_HWCACHE_ALIGN, NULL);
2157                 if (!sgp->slab) {
2158                         printk(KERN_ERR "SCSI: can't init sg slab %s\n",
2159                                         sgp->name);
2160                         goto cleanup_sdb;
2161                 }
2162
2163                 sgp->pool = mempool_create_slab_pool(SG_MEMPOOL_SIZE,
2164                                                      sgp->slab);
2165                 if (!sgp->pool) {
2166                         printk(KERN_ERR "SCSI: can't init sg mempool %s\n",
2167                                         sgp->name);
2168                         goto cleanup_sdb;
2169                 }
2170         }
2171
2172         return 0;
2173
2174 cleanup_sdb:
2175         for (i = 0; i < SG_MEMPOOL_NR; i++) {
2176                 struct scsi_host_sg_pool *sgp = scsi_sg_pools + i;
2177                 if (sgp->pool)
2178                         mempool_destroy(sgp->pool);
2179                 if (sgp->slab)
2180                         kmem_cache_destroy(sgp->slab);
2181         }
2182         kmem_cache_destroy(scsi_sdb_cache);
2183
2184         return -ENOMEM;
2185 }
2186
2187 void scsi_exit_queue(void)
2188 {
2189         int i;
2190
2191         kmem_cache_destroy(scsi_sdb_cache);
2192
2193         for (i = 0; i < SG_MEMPOOL_NR; i++) {
2194                 struct scsi_host_sg_pool *sgp = scsi_sg_pools + i;
2195                 mempool_destroy(sgp->pool);
2196                 kmem_cache_destroy(sgp->slab);
2197         }
2198 }
2199
2200 /**
2201  *      scsi_mode_select - issue a mode select
2202  *      @sdev:  SCSI device to be queried
2203  *      @pf:    Page format bit (1 == standard, 0 == vendor specific)
2204  *      @sp:    Save page bit (0 == don't save, 1 == save)
2205  *      @modepage: mode page being requested
2206  *      @buffer: request buffer (may not be smaller than eight bytes)
2207  *      @len:   length of request buffer.
2208  *      @timeout: command timeout
2209  *      @retries: number of retries before failing
2210  *      @data: returns a structure abstracting the mode header data
2211  *      @sshdr: place to put sense data (or NULL if no sense to be collected).
2212  *              must be SCSI_SENSE_BUFFERSIZE big.
2213  *
2214  *      Returns zero if successful; negative error number or scsi
2215  *      status on error
2216  *
2217  */
2218 int
2219 scsi_mode_select(struct scsi_device *sdev, int pf, int sp, int modepage,
2220                  unsigned char *buffer, int len, int timeout, int retries,
2221                  struct scsi_mode_data *data, struct scsi_sense_hdr *sshdr)
2222 {
2223         unsigned char cmd[10];
2224         unsigned char *real_buffer;
2225         int ret;
2226
2227         memset(cmd, 0, sizeof(cmd));
2228         cmd[1] = (pf ? 0x10 : 0) | (sp ? 0x01 : 0);
2229
2230         if (sdev->use_10_for_ms) {
2231                 if (len > 65535)
2232                         return -EINVAL;
2233                 real_buffer = kmalloc(8 + len, GFP_KERNEL);
2234                 if (!real_buffer)
2235                         return -ENOMEM;
2236                 memcpy(real_buffer + 8, buffer, len);
2237                 len += 8;
2238                 real_buffer[0] = 0;
2239                 real_buffer[1] = 0;
2240                 real_buffer[2] = data->medium_type;
2241                 real_buffer[3] = data->device_specific;
2242                 real_buffer[4] = data->longlba ? 0x01 : 0;
2243                 real_buffer[5] = 0;
2244                 real_buffer[6] = data->block_descriptor_length >> 8;
2245                 real_buffer[7] = data->block_descriptor_length;
2246
2247                 cmd[0] = MODE_SELECT_10;
2248                 cmd[7] = len >> 8;
2249                 cmd[8] = len;
2250         } else {
2251                 if (len > 255 || data->block_descriptor_length > 255 ||
2252                     data->longlba)
2253                         return -EINVAL;
2254
2255                 real_buffer = kmalloc(4 + len, GFP_KERNEL);
2256                 if (!real_buffer)
2257                         return -ENOMEM;
2258                 memcpy(real_buffer + 4, buffer, len);
2259                 len += 4;
2260                 real_buffer[0] = 0;
2261                 real_buffer[1] = data->medium_type;
2262                 real_buffer[2] = data->device_specific;
2263                 real_buffer[3] = data->block_descriptor_length;
2264                 
2265
2266                 cmd[0] = MODE_SELECT;
2267                 cmd[4] = len;
2268         }
2269
2270         ret = scsi_execute_req(sdev, cmd, DMA_TO_DEVICE, real_buffer, len,
2271                                sshdr, timeout, retries, NULL);
2272         kfree(real_buffer);
2273         return ret;
2274 }
2275 EXPORT_SYMBOL_GPL(scsi_mode_select);
2276
2277 /**
2278  *      scsi_mode_sense - issue a mode sense, falling back from 10 to six bytes if necessary.
2279  *      @sdev:  SCSI device to be queried
2280  *      @dbd:   set if mode sense will allow block descriptors to be returned
2281  *      @modepage: mode page being requested
2282  *      @buffer: request buffer (may not be smaller than eight bytes)
2283  *      @len:   length of request buffer.
2284  *      @timeout: command timeout
2285  *      @retries: number of retries before failing
2286  *      @data: returns a structure abstracting the mode header data
2287  *      @sshdr: place to put sense data (or NULL if no sense to be collected).
2288  *              must be SCSI_SENSE_BUFFERSIZE big.
2289  *
2290  *      Returns zero if unsuccessful, or the header offset (either 4
2291  *      or 8 depending on whether a six or ten byte command was
2292  *      issued) if successful.
2293  */
2294 int
2295 scsi_mode_sense(struct scsi_device *sdev, int dbd, int modepage,
2296                   unsigned char *buffer, int len, int timeout, int retries,
2297                   struct scsi_mode_data *data, struct scsi_sense_hdr *sshdr)
2298 {
2299         unsigned char cmd[12];
2300         int use_10_for_ms;
2301         int header_length;
2302         int result;
2303         struct scsi_sense_hdr my_sshdr;
2304
2305         memset(data, 0, sizeof(*data));
2306         memset(&cmd[0], 0, 12);
2307         cmd[1] = dbd & 0x18;    /* allows DBD and LLBA bits */
2308         cmd[2] = modepage;
2309
2310         /* caller might not be interested in sense, but we need it */
2311         if (!sshdr)
2312                 sshdr = &my_sshdr;
2313
2314  retry:
2315         use_10_for_ms = sdev->use_10_for_ms;
2316
2317         if (use_10_for_ms) {
2318                 if (len < 8)
2319                         len = 8;
2320
2321                 cmd[0] = MODE_SENSE_10;
2322                 cmd[8] = len;
2323                 header_length = 8;
2324         } else {
2325                 if (len < 4)
2326                         len = 4;
2327
2328                 cmd[0] = MODE_SENSE;
2329                 cmd[4] = len;
2330                 header_length = 4;
2331         }
2332
2333         memset(buffer, 0, len);
2334
2335         result = scsi_execute_req(sdev, cmd, DMA_FROM_DEVICE, buffer, len,
2336                                   sshdr, timeout, retries, NULL);
2337
2338         /* This code looks awful: what it's doing is making sure an
2339          * ILLEGAL REQUEST sense return identifies the actual command
2340          * byte as the problem.  MODE_SENSE commands can return
2341          * ILLEGAL REQUEST if the code page isn't supported */
2342
2343         if (use_10_for_ms && !scsi_status_is_good(result) &&
2344             (driver_byte(result) & DRIVER_SENSE)) {
2345                 if (scsi_sense_valid(sshdr)) {
2346                         if ((sshdr->sense_key == ILLEGAL_REQUEST) &&
2347                             (sshdr->asc == 0x20) && (sshdr->ascq == 0)) {
2348                                 /* 
2349                                  * Invalid command operation code
2350                                  */
2351                                 sdev->use_10_for_ms = 0;
2352                                 goto retry;
2353                         }
2354                 }
2355         }
2356
2357         if(scsi_status_is_good(result)) {
2358                 if (unlikely(buffer[0] == 0x86 && buffer[1] == 0x0b &&
2359                              (modepage == 6 || modepage == 8))) {
2360                         /* Initio breakage? */
2361                         header_length = 0;
2362                         data->length = 13;
2363                         data->medium_type = 0;
2364                         data->device_specific = 0;
2365                         data->longlba = 0;
2366                         data->block_descriptor_length = 0;
2367                 } else if(use_10_for_ms) {
2368                         data->length = buffer[0]*256 + buffer[1] + 2;
2369                         data->medium_type = buffer[2];
2370                         data->device_specific = buffer[3];
2371                         data->longlba = buffer[4] & 0x01;
2372                         data->block_descriptor_length = buffer[6]*256
2373                                 + buffer[7];
2374                 } else {
2375                         data->length = buffer[0] + 1;
2376                         data->medium_type = buffer[1];
2377                         data->device_specific = buffer[2];
2378                         data->block_descriptor_length = buffer[3];
2379                 }
2380                 data->header_length = header_length;
2381         }
2382
2383         return result;
2384 }
2385 EXPORT_SYMBOL(scsi_mode_sense);
2386
2387 /**
2388  *      scsi_test_unit_ready - test if unit is ready
2389  *      @sdev:  scsi device to change the state of.
2390  *      @timeout: command timeout
2391  *      @retries: number of retries before failing
2392  *      @sshdr_external: Optional pointer to struct scsi_sense_hdr for
2393  *              returning sense. Make sure that this is cleared before passing
2394  *              in.
2395  *
2396  *      Returns zero if unsuccessful or an error if TUR failed.  For
2397  *      removable media, UNIT_ATTENTION sets ->changed flag.
2398  **/
2399 int
2400 scsi_test_unit_ready(struct scsi_device *sdev, int timeout, int retries,
2401                      struct scsi_sense_hdr *sshdr_external)
2402 {
2403         char cmd[] = {
2404                 TEST_UNIT_READY, 0, 0, 0, 0, 0,
2405         };
2406         struct scsi_sense_hdr *sshdr;
2407         int result;
2408
2409         if (!sshdr_external)
2410                 sshdr = kzalloc(sizeof(*sshdr), GFP_KERNEL);
2411         else
2412                 sshdr = sshdr_external;
2413
2414         /* try to eat the UNIT_ATTENTION if there are enough retries */
2415         do {
2416                 result = scsi_execute_req(sdev, cmd, DMA_NONE, NULL, 0, sshdr,
2417                                           timeout, retries, NULL);
2418                 if (sdev->removable && scsi_sense_valid(sshdr) &&
2419                     sshdr->sense_key == UNIT_ATTENTION)
2420                         sdev->changed = 1;
2421         } while (scsi_sense_valid(sshdr) &&
2422                  sshdr->sense_key == UNIT_ATTENTION && --retries);
2423
2424         if (!sshdr_external)
2425                 kfree(sshdr);
2426         return result;
2427 }
2428 EXPORT_SYMBOL(scsi_test_unit_ready);
2429
2430 /**
2431  *      scsi_device_set_state - Take the given device through the device state model.
2432  *      @sdev:  scsi device to change the state of.
2433  *      @state: state to change to.
2434  *
2435  *      Returns zero if unsuccessful or an error if the requested 
2436  *      transition is illegal.
2437  */
2438 int
2439 scsi_device_set_state(struct scsi_device *sdev, enum scsi_device_state state)
2440 {
2441         enum scsi_device_state oldstate = sdev->sdev_state;
2442
2443         if (state == oldstate)
2444                 return 0;
2445
2446         switch (state) {
2447         case SDEV_CREATED:
2448                 switch (oldstate) {
2449                 case SDEV_CREATED_BLOCK:
2450                         break;
2451                 default:
2452                         goto illegal;
2453                 }
2454                 break;
2455                         
2456         case SDEV_RUNNING:
2457                 switch (oldstate) {
2458                 case SDEV_CREATED:
2459                 case SDEV_OFFLINE:
2460                 case SDEV_TRANSPORT_OFFLINE:
2461                 case SDEV_QUIESCE:
2462                 case SDEV_BLOCK:
2463                         break;
2464                 default:
2465                         goto illegal;
2466                 }
2467                 break;
2468
2469         case SDEV_QUIESCE:
2470                 switch (oldstate) {
2471                 case SDEV_RUNNING:
2472                 case SDEV_OFFLINE:
2473                 case SDEV_TRANSPORT_OFFLINE:
2474                         break;
2475                 default:
2476                         goto illegal;
2477                 }
2478                 break;
2479
2480         case SDEV_OFFLINE:
2481         case SDEV_TRANSPORT_OFFLINE:
2482                 switch (oldstate) {
2483                 case SDEV_CREATED:
2484                 case SDEV_RUNNING:
2485                 case SDEV_QUIESCE:
2486                 case SDEV_BLOCK:
2487                         break;
2488                 default:
2489                         goto illegal;
2490                 }
2491                 break;
2492
2493         case SDEV_BLOCK:
2494                 switch (oldstate) {
2495                 case SDEV_RUNNING:
2496                 case SDEV_CREATED_BLOCK:
2497                         break;
2498                 default:
2499                         goto illegal;
2500                 }
2501                 break;
2502
2503         case SDEV_CREATED_BLOCK:
2504                 switch (oldstate) {
2505                 case SDEV_CREATED:
2506                         break;
2507                 default:
2508                         goto illegal;
2509                 }
2510                 break;
2511
2512         case SDEV_CANCEL:
2513                 switch (oldstate) {
2514                 case SDEV_CREATED:
2515                 case SDEV_RUNNING:
2516                 case SDEV_QUIESCE:
2517                 case SDEV_OFFLINE:
2518                 case SDEV_TRANSPORT_OFFLINE:
2519                 case SDEV_BLOCK:
2520                         break;
2521                 default:
2522                         goto illegal;
2523                 }
2524                 break;
2525
2526         case SDEV_DEL:
2527                 switch (oldstate) {
2528                 case SDEV_CREATED:
2529                 case SDEV_RUNNING:
2530                 case SDEV_OFFLINE:
2531                 case SDEV_TRANSPORT_OFFLINE:
2532                 case SDEV_CANCEL:
2533                 case SDEV_CREATED_BLOCK:
2534                         break;
2535                 default:
2536                         goto illegal;
2537                 }
2538                 break;
2539
2540         }
2541         sdev->sdev_state = state;
2542         return 0;
2543
2544  illegal:
2545         SCSI_LOG_ERROR_RECOVERY(1,
2546                                 sdev_printk(KERN_ERR, sdev,
2547                                             "Illegal state transition %s->%s",
2548                                             scsi_device_state_name(oldstate),
2549                                             scsi_device_state_name(state))
2550                                 );
2551         return -EINVAL;
2552 }
2553 EXPORT_SYMBOL(scsi_device_set_state);
2554
2555 /**
2556  *      sdev_evt_emit - emit a single SCSI device uevent
2557  *      @sdev: associated SCSI device
2558  *      @evt: event to emit
2559  *
2560  *      Send a single uevent (scsi_event) to the associated scsi_device.
2561  */
2562 static void scsi_evt_emit(struct scsi_device *sdev, struct scsi_event *evt)
2563 {
2564         int idx = 0;
2565         char *envp[3];
2566
2567         switch (evt->evt_type) {
2568         case SDEV_EVT_MEDIA_CHANGE:
2569                 envp[idx++] = "SDEV_MEDIA_CHANGE=1";
2570                 break;
2571         case SDEV_EVT_INQUIRY_CHANGE_REPORTED:
2572                 envp[idx++] = "SDEV_UA=INQUIRY_DATA_HAS_CHANGED";
2573                 break;
2574         case SDEV_EVT_CAPACITY_CHANGE_REPORTED:
2575                 envp[idx++] = "SDEV_UA=CAPACITY_DATA_HAS_CHANGED";
2576                 break;
2577         case SDEV_EVT_SOFT_THRESHOLD_REACHED_REPORTED:
2578                envp[idx++] = "SDEV_UA=THIN_PROVISIONING_SOFT_THRESHOLD_REACHED";
2579                 break;
2580         case SDEV_EVT_MODE_PARAMETER_CHANGE_REPORTED:
2581                 envp[idx++] = "SDEV_UA=MODE_PARAMETERS_CHANGED";
2582                 break;
2583         case SDEV_EVT_LUN_CHANGE_REPORTED:
2584                 envp[idx++] = "SDEV_UA=REPORTED_LUNS_DATA_HAS_CHANGED";
2585                 break;
2586         default:
2587                 /* do nothing */
2588                 break;
2589         }
2590
2591         envp[idx++] = NULL;
2592
2593         kobject_uevent_env(&sdev->sdev_gendev.kobj, KOBJ_CHANGE, envp);
2594 }
2595
2596 /**
2597  *      sdev_evt_thread - send a uevent for each scsi event
2598  *      @work: work struct for scsi_device
2599  *
2600  *      Dispatch queued events to their associated scsi_device kobjects
2601  *      as uevents.
2602  */
2603 void scsi_evt_thread(struct work_struct *work)
2604 {
2605         struct scsi_device *sdev;
2606         enum scsi_device_event evt_type;
2607         LIST_HEAD(event_list);
2608
2609         sdev = container_of(work, struct scsi_device, event_work);
2610
2611         for (evt_type = SDEV_EVT_FIRST; evt_type <= SDEV_EVT_LAST; evt_type++)
2612                 if (test_and_clear_bit(evt_type, sdev->pending_events))
2613                         sdev_evt_send_simple(sdev, evt_type, GFP_KERNEL);
2614
2615         while (1) {
2616                 struct scsi_event *evt;
2617                 struct list_head *this, *tmp;
2618                 unsigned long flags;
2619
2620                 spin_lock_irqsave(&sdev->list_lock, flags);
2621                 list_splice_init(&sdev->event_list, &event_list);
2622                 spin_unlock_irqrestore(&sdev->list_lock, flags);
2623
2624                 if (list_empty(&event_list))
2625                         break;
2626
2627                 list_for_each_safe(this, tmp, &event_list) {
2628                         evt = list_entry(this, struct scsi_event, node);
2629                         list_del(&evt->node);
2630                         scsi_evt_emit(sdev, evt);
2631                         kfree(evt);
2632                 }
2633         }
2634 }
2635
2636 /**
2637  *      sdev_evt_send - send asserted event to uevent thread
2638  *      @sdev: scsi_device event occurred on
2639  *      @evt: event to send
2640  *
2641  *      Assert scsi device event asynchronously.
2642  */
2643 void sdev_evt_send(struct scsi_device *sdev, struct scsi_event *evt)
2644 {
2645         unsigned long flags;
2646
2647 #if 0
2648         /* FIXME: currently this check eliminates all media change events
2649          * for polled devices.  Need to update to discriminate between AN
2650          * and polled events */
2651         if (!test_bit(evt->evt_type, sdev->supported_events)) {
2652                 kfree(evt);
2653                 return;
2654         }
2655 #endif
2656
2657         spin_lock_irqsave(&sdev->list_lock, flags);
2658         list_add_tail(&evt->node, &sdev->event_list);
2659         schedule_work(&sdev->event_work);
2660         spin_unlock_irqrestore(&sdev->list_lock, flags);
2661 }
2662 EXPORT_SYMBOL_GPL(sdev_evt_send);
2663
2664 /**
2665  *      sdev_evt_alloc - allocate a new scsi event
2666  *      @evt_type: type of event to allocate
2667  *      @gfpflags: GFP flags for allocation
2668  *
2669  *      Allocates and returns a new scsi_event.
2670  */
2671 struct scsi_event *sdev_evt_alloc(enum scsi_device_event evt_type,
2672                                   gfp_t gfpflags)
2673 {
2674         struct scsi_event *evt = kzalloc(sizeof(struct scsi_event), gfpflags);
2675         if (!evt)
2676                 return NULL;
2677
2678         evt->evt_type = evt_type;
2679         INIT_LIST_HEAD(&evt->node);
2680
2681         /* evt_type-specific initialization, if any */
2682         switch (evt_type) {
2683         case SDEV_EVT_MEDIA_CHANGE:
2684         case SDEV_EVT_INQUIRY_CHANGE_REPORTED:
2685         case SDEV_EVT_CAPACITY_CHANGE_REPORTED:
2686         case SDEV_EVT_SOFT_THRESHOLD_REACHED_REPORTED:
2687         case SDEV_EVT_MODE_PARAMETER_CHANGE_REPORTED:
2688         case SDEV_EVT_LUN_CHANGE_REPORTED:
2689         default:
2690                 /* do nothing */
2691                 break;
2692         }
2693
2694         return evt;
2695 }
2696 EXPORT_SYMBOL_GPL(sdev_evt_alloc);
2697
2698 /**
2699  *      sdev_evt_send_simple - send asserted event to uevent thread
2700  *      @sdev: scsi_device event occurred on
2701  *      @evt_type: type of event to send
2702  *      @gfpflags: GFP flags for allocation
2703  *
2704  *      Assert scsi device event asynchronously, given an event type.
2705  */
2706 void sdev_evt_send_simple(struct scsi_device *sdev,
2707                           enum scsi_device_event evt_type, gfp_t gfpflags)
2708 {
2709         struct scsi_event *evt = sdev_evt_alloc(evt_type, gfpflags);
2710         if (!evt) {
2711                 sdev_printk(KERN_ERR, sdev, "event %d eaten due to OOM\n",
2712                             evt_type);
2713                 return;
2714         }
2715
2716         sdev_evt_send(sdev, evt);
2717 }
2718 EXPORT_SYMBOL_GPL(sdev_evt_send_simple);
2719
2720 /**
2721  *      scsi_device_quiesce - Block user issued commands.
2722  *      @sdev:  scsi device to quiesce.
2723  *
2724  *      This works by trying to transition to the SDEV_QUIESCE state
2725  *      (which must be a legal transition).  When the device is in this
2726  *      state, only special requests will be accepted, all others will
2727  *      be deferred.  Since special requests may also be requeued requests,
2728  *      a successful return doesn't guarantee the device will be 
2729  *      totally quiescent.
2730  *
2731  *      Must be called with user context, may sleep.
2732  *
2733  *      Returns zero if unsuccessful or an error if not.
2734  */
2735 int
2736 scsi_device_quiesce(struct scsi_device *sdev)
2737 {
2738         int err = scsi_device_set_state(sdev, SDEV_QUIESCE);
2739         if (err)
2740                 return err;
2741
2742         scsi_run_queue(sdev->request_queue);
2743         while (atomic_read(&sdev->device_busy)) {
2744                 msleep_interruptible(200);
2745                 scsi_run_queue(sdev->request_queue);
2746         }
2747         return 0;
2748 }
2749 EXPORT_SYMBOL(scsi_device_quiesce);
2750
2751 /**
2752  *      scsi_device_resume - Restart user issued commands to a quiesced device.
2753  *      @sdev:  scsi device to resume.
2754  *
2755  *      Moves the device from quiesced back to running and restarts the
2756  *      queues.
2757  *
2758  *      Must be called with user context, may sleep.
2759  */
2760 void scsi_device_resume(struct scsi_device *sdev)
2761 {
2762         /* check if the device state was mutated prior to resume, and if
2763          * so assume the state is being managed elsewhere (for example
2764          * device deleted during suspend)
2765          */
2766         if (sdev->sdev_state != SDEV_QUIESCE ||
2767             scsi_device_set_state(sdev, SDEV_RUNNING))
2768                 return;
2769         scsi_run_queue(sdev->request_queue);
2770 }
2771 EXPORT_SYMBOL(scsi_device_resume);
2772
2773 static void
2774 device_quiesce_fn(struct scsi_device *sdev, void *data)
2775 {
2776         scsi_device_quiesce(sdev);
2777 }
2778
2779 void
2780 scsi_target_quiesce(struct scsi_target *starget)
2781 {
2782         starget_for_each_device(starget, NULL, device_quiesce_fn);
2783 }
2784 EXPORT_SYMBOL(scsi_target_quiesce);
2785
2786 static void
2787 device_resume_fn(struct scsi_device *sdev, void *data)
2788 {
2789         scsi_device_resume(sdev);
2790 }
2791
2792 void
2793 scsi_target_resume(struct scsi_target *starget)
2794 {
2795         starget_for_each_device(starget, NULL, device_resume_fn);
2796 }
2797 EXPORT_SYMBOL(scsi_target_resume);
2798
2799 /**
2800  * scsi_internal_device_block - internal function to put a device temporarily into the SDEV_BLOCK state
2801  * @sdev:       device to block
2802  *
2803  * Block request made by scsi lld's to temporarily stop all
2804  * scsi commands on the specified device.  Called from interrupt
2805  * or normal process context.
2806  *
2807  * Returns zero if successful or error if not
2808  *
2809  * Notes:       
2810  *      This routine transitions the device to the SDEV_BLOCK state
2811  *      (which must be a legal transition).  When the device is in this
2812  *      state, all commands are deferred until the scsi lld reenables
2813  *      the device with scsi_device_unblock or device_block_tmo fires.
2814  */
2815 int
2816 scsi_internal_device_block(struct scsi_device *sdev)
2817 {
2818         struct request_queue *q = sdev->request_queue;
2819         unsigned long flags;
2820         int err = 0;
2821
2822         err = scsi_device_set_state(sdev, SDEV_BLOCK);
2823         if (err) {
2824                 err = scsi_device_set_state(sdev, SDEV_CREATED_BLOCK);
2825
2826                 if (err)
2827                         return err;
2828         }
2829
2830         /* 
2831          * The device has transitioned to SDEV_BLOCK.  Stop the
2832          * block layer from calling the midlayer with this device's
2833          * request queue. 
2834          */
2835         if (q->mq_ops) {
2836                 blk_mq_stop_hw_queues(q);
2837         } else {
2838                 spin_lock_irqsave(q->queue_lock, flags);
2839                 blk_stop_queue(q);
2840                 spin_unlock_irqrestore(q->queue_lock, flags);
2841         }
2842
2843         return 0;
2844 }
2845 EXPORT_SYMBOL_GPL(scsi_internal_device_block);
2846  
2847 /**
2848  * scsi_internal_device_unblock - resume a device after a block request
2849  * @sdev:       device to resume
2850  * @new_state:  state to set devices to after unblocking
2851  *
2852  * Called by scsi lld's or the midlayer to restart the device queue
2853  * for the previously suspended scsi device.  Called from interrupt or
2854  * normal process context.
2855  *
2856  * Returns zero if successful or error if not.
2857  *
2858  * Notes:       
2859  *      This routine transitions the device to the SDEV_RUNNING state
2860  *      or to one of the offline states (which must be a legal transition)
2861  *      allowing the midlayer to goose the queue for this device.
2862  */
2863 int
2864 scsi_internal_device_unblock(struct scsi_device *sdev,
2865                              enum scsi_device_state new_state)
2866 {
2867         struct request_queue *q = sdev->request_queue; 
2868         unsigned long flags;
2869
2870         /*
2871          * Try to transition the scsi device to SDEV_RUNNING or one of the
2872          * offlined states and goose the device queue if successful.
2873          */
2874         if ((sdev->sdev_state == SDEV_BLOCK) ||
2875             (sdev->sdev_state == SDEV_TRANSPORT_OFFLINE))
2876                 sdev->sdev_state = new_state;
2877         else if (sdev->sdev_state == SDEV_CREATED_BLOCK) {
2878                 if (new_state == SDEV_TRANSPORT_OFFLINE ||
2879                     new_state == SDEV_OFFLINE)
2880                         sdev->sdev_state = new_state;
2881                 else
2882                         sdev->sdev_state = SDEV_CREATED;
2883         } else if (sdev->sdev_state != SDEV_CANCEL &&
2884                  sdev->sdev_state != SDEV_OFFLINE)
2885                 return -EINVAL;
2886
2887         if (q->mq_ops) {
2888                 blk_mq_start_stopped_hw_queues(q, false);
2889         } else {
2890                 spin_lock_irqsave(q->queue_lock, flags);
2891                 blk_start_queue(q);
2892                 spin_unlock_irqrestore(q->queue_lock, flags);
2893         }
2894
2895         return 0;
2896 }
2897 EXPORT_SYMBOL_GPL(scsi_internal_device_unblock);
2898
2899 static void
2900 device_block(struct scsi_device *sdev, void *data)
2901 {
2902         scsi_internal_device_block(sdev);
2903 }
2904
2905 static int
2906 target_block(struct device *dev, void *data)
2907 {
2908         if (scsi_is_target_device(dev))
2909                 starget_for_each_device(to_scsi_target(dev), NULL,
2910                                         device_block);
2911         return 0;
2912 }
2913
2914 void
2915 scsi_target_block(struct device *dev)
2916 {
2917         if (scsi_is_target_device(dev))
2918                 starget_for_each_device(to_scsi_target(dev), NULL,
2919                                         device_block);
2920         else
2921                 device_for_each_child(dev, NULL, target_block);
2922 }
2923 EXPORT_SYMBOL_GPL(scsi_target_block);
2924
2925 static void
2926 device_unblock(struct scsi_device *sdev, void *data)
2927 {
2928         scsi_internal_device_unblock(sdev, *(enum scsi_device_state *)data);
2929 }
2930
2931 static int
2932 target_unblock(struct device *dev, void *data)
2933 {
2934         if (scsi_is_target_device(dev))
2935                 starget_for_each_device(to_scsi_target(dev), data,
2936                                         device_unblock);
2937         return 0;
2938 }
2939
2940 void
2941 scsi_target_unblock(struct device *dev, enum scsi_device_state new_state)
2942 {
2943         if (scsi_is_target_device(dev))
2944                 starget_for_each_device(to_scsi_target(dev), &new_state,
2945                                         device_unblock);
2946         else
2947                 device_for_each_child(dev, &new_state, target_unblock);
2948 }
2949 EXPORT_SYMBOL_GPL(scsi_target_unblock);
2950
2951 /**
2952  * scsi_kmap_atomic_sg - find and atomically map an sg-elemnt
2953  * @sgl:        scatter-gather list
2954  * @sg_count:   number of segments in sg
2955  * @offset:     offset in bytes into sg, on return offset into the mapped area
2956  * @len:        bytes to map, on return number of bytes mapped
2957  *
2958  * Returns virtual address of the start of the mapped page
2959  */
2960 void *scsi_kmap_atomic_sg(struct scatterlist *sgl, int sg_count,
2961                           size_t *offset, size_t *len)
2962 {
2963         int i;
2964         size_t sg_len = 0, len_complete = 0;
2965         struct scatterlist *sg;
2966         struct page *page;
2967
2968         WARN_ON(!irqs_disabled());
2969
2970         for_each_sg(sgl, sg, sg_count, i) {
2971                 len_complete = sg_len; /* Complete sg-entries */
2972                 sg_len += sg->length;
2973                 if (sg_len > *offset)
2974                         break;
2975         }
2976
2977         if (unlikely(i == sg_count)) {
2978                 printk(KERN_ERR "%s: Bytes in sg: %zu, requested offset %zu, "
2979                         "elements %d\n",
2980                        __func__, sg_len, *offset, sg_count);
2981                 WARN_ON(1);
2982                 return NULL;
2983         }
2984
2985         /* Offset starting from the beginning of first page in this sg-entry */
2986         *offset = *offset - len_complete + sg->offset;
2987
2988         /* Assumption: contiguous pages can be accessed as "page + i" */
2989         page = nth_page(sg_page(sg), (*offset >> PAGE_SHIFT));
2990         *offset &= ~PAGE_MASK;
2991
2992         /* Bytes in this sg-entry from *offset to the end of the page */
2993         sg_len = PAGE_SIZE - *offset;
2994         if (*len > sg_len)
2995                 *len = sg_len;
2996
2997         return kmap_atomic(page);
2998 }
2999 EXPORT_SYMBOL(scsi_kmap_atomic_sg);
3000
3001 /**
3002  * scsi_kunmap_atomic_sg - atomically unmap a virtual address, previously mapped with scsi_kmap_atomic_sg
3003  * @virt:       virtual address to be unmapped
3004  */
3005 void scsi_kunmap_atomic_sg(void *virt)
3006 {
3007         kunmap_atomic(virt);
3008 }
3009 EXPORT_SYMBOL(scsi_kunmap_atomic_sg);
3010
3011 void sdev_disable_disk_events(struct scsi_device *sdev)
3012 {
3013         atomic_inc(&sdev->disk_events_disable_depth);
3014 }
3015 EXPORT_SYMBOL(sdev_disable_disk_events);
3016
3017 void sdev_enable_disk_events(struct scsi_device *sdev)
3018 {
3019         if (WARN_ON_ONCE(atomic_read(&sdev->disk_events_disable_depth) <= 0))
3020                 return;
3021         atomic_dec(&sdev->disk_events_disable_depth);
3022 }
3023 EXPORT_SYMBOL(sdev_enable_disk_events);