mwifiex: channel switch handling for station
[cascardo/linux.git] / drivers / spi / spi-atmel.c
1 /*
2  * Driver for Atmel AT32 and AT91 SPI Controllers
3  *
4  * Copyright (C) 2006 Atmel Corporation
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License version 2 as
8  * published by the Free Software Foundation.
9  */
10
11 #include <linux/kernel.h>
12 #include <linux/init.h>
13 #include <linux/clk.h>
14 #include <linux/module.h>
15 #include <linux/platform_device.h>
16 #include <linux/delay.h>
17 #include <linux/dma-mapping.h>
18 #include <linux/dmaengine.h>
19 #include <linux/err.h>
20 #include <linux/interrupt.h>
21 #include <linux/spi/spi.h>
22 #include <linux/slab.h>
23 #include <linux/platform_data/atmel.h>
24 #include <linux/platform_data/dma-atmel.h>
25 #include <linux/of.h>
26
27 #include <linux/io.h>
28 #include <linux/gpio.h>
29
30 /* SPI register offsets */
31 #define SPI_CR                                  0x0000
32 #define SPI_MR                                  0x0004
33 #define SPI_RDR                                 0x0008
34 #define SPI_TDR                                 0x000c
35 #define SPI_SR                                  0x0010
36 #define SPI_IER                                 0x0014
37 #define SPI_IDR                                 0x0018
38 #define SPI_IMR                                 0x001c
39 #define SPI_CSR0                                0x0030
40 #define SPI_CSR1                                0x0034
41 #define SPI_CSR2                                0x0038
42 #define SPI_CSR3                                0x003c
43 #define SPI_VERSION                             0x00fc
44 #define SPI_RPR                                 0x0100
45 #define SPI_RCR                                 0x0104
46 #define SPI_TPR                                 0x0108
47 #define SPI_TCR                                 0x010c
48 #define SPI_RNPR                                0x0110
49 #define SPI_RNCR                                0x0114
50 #define SPI_TNPR                                0x0118
51 #define SPI_TNCR                                0x011c
52 #define SPI_PTCR                                0x0120
53 #define SPI_PTSR                                0x0124
54
55 /* Bitfields in CR */
56 #define SPI_SPIEN_OFFSET                        0
57 #define SPI_SPIEN_SIZE                          1
58 #define SPI_SPIDIS_OFFSET                       1
59 #define SPI_SPIDIS_SIZE                         1
60 #define SPI_SWRST_OFFSET                        7
61 #define SPI_SWRST_SIZE                          1
62 #define SPI_LASTXFER_OFFSET                     24
63 #define SPI_LASTXFER_SIZE                       1
64
65 /* Bitfields in MR */
66 #define SPI_MSTR_OFFSET                         0
67 #define SPI_MSTR_SIZE                           1
68 #define SPI_PS_OFFSET                           1
69 #define SPI_PS_SIZE                             1
70 #define SPI_PCSDEC_OFFSET                       2
71 #define SPI_PCSDEC_SIZE                         1
72 #define SPI_FDIV_OFFSET                         3
73 #define SPI_FDIV_SIZE                           1
74 #define SPI_MODFDIS_OFFSET                      4
75 #define SPI_MODFDIS_SIZE                        1
76 #define SPI_WDRBT_OFFSET                        5
77 #define SPI_WDRBT_SIZE                          1
78 #define SPI_LLB_OFFSET                          7
79 #define SPI_LLB_SIZE                            1
80 #define SPI_PCS_OFFSET                          16
81 #define SPI_PCS_SIZE                            4
82 #define SPI_DLYBCS_OFFSET                       24
83 #define SPI_DLYBCS_SIZE                         8
84
85 /* Bitfields in RDR */
86 #define SPI_RD_OFFSET                           0
87 #define SPI_RD_SIZE                             16
88
89 /* Bitfields in TDR */
90 #define SPI_TD_OFFSET                           0
91 #define SPI_TD_SIZE                             16
92
93 /* Bitfields in SR */
94 #define SPI_RDRF_OFFSET                         0
95 #define SPI_RDRF_SIZE                           1
96 #define SPI_TDRE_OFFSET                         1
97 #define SPI_TDRE_SIZE                           1
98 #define SPI_MODF_OFFSET                         2
99 #define SPI_MODF_SIZE                           1
100 #define SPI_OVRES_OFFSET                        3
101 #define SPI_OVRES_SIZE                          1
102 #define SPI_ENDRX_OFFSET                        4
103 #define SPI_ENDRX_SIZE                          1
104 #define SPI_ENDTX_OFFSET                        5
105 #define SPI_ENDTX_SIZE                          1
106 #define SPI_RXBUFF_OFFSET                       6
107 #define SPI_RXBUFF_SIZE                         1
108 #define SPI_TXBUFE_OFFSET                       7
109 #define SPI_TXBUFE_SIZE                         1
110 #define SPI_NSSR_OFFSET                         8
111 #define SPI_NSSR_SIZE                           1
112 #define SPI_TXEMPTY_OFFSET                      9
113 #define SPI_TXEMPTY_SIZE                        1
114 #define SPI_SPIENS_OFFSET                       16
115 #define SPI_SPIENS_SIZE                         1
116
117 /* Bitfields in CSR0 */
118 #define SPI_CPOL_OFFSET                         0
119 #define SPI_CPOL_SIZE                           1
120 #define SPI_NCPHA_OFFSET                        1
121 #define SPI_NCPHA_SIZE                          1
122 #define SPI_CSAAT_OFFSET                        3
123 #define SPI_CSAAT_SIZE                          1
124 #define SPI_BITS_OFFSET                         4
125 #define SPI_BITS_SIZE                           4
126 #define SPI_SCBR_OFFSET                         8
127 #define SPI_SCBR_SIZE                           8
128 #define SPI_DLYBS_OFFSET                        16
129 #define SPI_DLYBS_SIZE                          8
130 #define SPI_DLYBCT_OFFSET                       24
131 #define SPI_DLYBCT_SIZE                         8
132
133 /* Bitfields in RCR */
134 #define SPI_RXCTR_OFFSET                        0
135 #define SPI_RXCTR_SIZE                          16
136
137 /* Bitfields in TCR */
138 #define SPI_TXCTR_OFFSET                        0
139 #define SPI_TXCTR_SIZE                          16
140
141 /* Bitfields in RNCR */
142 #define SPI_RXNCR_OFFSET                        0
143 #define SPI_RXNCR_SIZE                          16
144
145 /* Bitfields in TNCR */
146 #define SPI_TXNCR_OFFSET                        0
147 #define SPI_TXNCR_SIZE                          16
148
149 /* Bitfields in PTCR */
150 #define SPI_RXTEN_OFFSET                        0
151 #define SPI_RXTEN_SIZE                          1
152 #define SPI_RXTDIS_OFFSET                       1
153 #define SPI_RXTDIS_SIZE                         1
154 #define SPI_TXTEN_OFFSET                        8
155 #define SPI_TXTEN_SIZE                          1
156 #define SPI_TXTDIS_OFFSET                       9
157 #define SPI_TXTDIS_SIZE                         1
158
159 /* Constants for BITS */
160 #define SPI_BITS_8_BPT                          0
161 #define SPI_BITS_9_BPT                          1
162 #define SPI_BITS_10_BPT                         2
163 #define SPI_BITS_11_BPT                         3
164 #define SPI_BITS_12_BPT                         4
165 #define SPI_BITS_13_BPT                         5
166 #define SPI_BITS_14_BPT                         6
167 #define SPI_BITS_15_BPT                         7
168 #define SPI_BITS_16_BPT                         8
169
170 /* Bit manipulation macros */
171 #define SPI_BIT(name) \
172         (1 << SPI_##name##_OFFSET)
173 #define SPI_BF(name,value) \
174         (((value) & ((1 << SPI_##name##_SIZE) - 1)) << SPI_##name##_OFFSET)
175 #define SPI_BFEXT(name,value) \
176         (((value) >> SPI_##name##_OFFSET) & ((1 << SPI_##name##_SIZE) - 1))
177 #define SPI_BFINS(name,value,old) \
178         ( ((old) & ~(((1 << SPI_##name##_SIZE) - 1) << SPI_##name##_OFFSET)) \
179           | SPI_BF(name,value))
180
181 /* Register access macros */
182 #define spi_readl(port,reg) \
183         __raw_readl((port)->regs + SPI_##reg)
184 #define spi_writel(port,reg,value) \
185         __raw_writel((value), (port)->regs + SPI_##reg)
186
187 /* use PIO for small transfers, avoiding DMA setup/teardown overhead and
188  * cache operations; better heuristics consider wordsize and bitrate.
189  */
190 #define DMA_MIN_BYTES   16
191
192 struct atmel_spi_dma {
193         struct dma_chan                 *chan_rx;
194         struct dma_chan                 *chan_tx;
195         struct scatterlist              sgrx;
196         struct scatterlist              sgtx;
197         struct dma_async_tx_descriptor  *data_desc_rx;
198         struct dma_async_tx_descriptor  *data_desc_tx;
199
200         struct at_dma_slave     dma_slave;
201 };
202
203 struct atmel_spi_caps {
204         bool    is_spi2;
205         bool    has_wdrbt;
206         bool    has_dma_support;
207 };
208
209 /*
210  * The core SPI transfer engine just talks to a register bank to set up
211  * DMA transfers; transfer queue progress is driven by IRQs.  The clock
212  * framework provides the base clock, subdivided for each spi_device.
213  */
214 struct atmel_spi {
215         spinlock_t              lock;
216         unsigned long           flags;
217
218         phys_addr_t             phybase;
219         void __iomem            *regs;
220         int                     irq;
221         struct clk              *clk;
222         struct platform_device  *pdev;
223         struct spi_device       *stay;
224
225         u8                      stopping;
226         struct list_head        queue;
227         struct tasklet_struct   tasklet;
228         struct spi_transfer     *current_transfer;
229         unsigned long           current_remaining_bytes;
230         struct spi_transfer     *next_transfer;
231         unsigned long           next_remaining_bytes;
232         int                     done_status;
233
234         /* scratch buffer */
235         void                    *buffer;
236         dma_addr_t              buffer_dma;
237
238         struct atmel_spi_caps   caps;
239
240         bool                    use_dma;
241         bool                    use_pdc;
242         /* dmaengine data */
243         struct atmel_spi_dma    dma;
244 };
245
246 /* Controller-specific per-slave state */
247 struct atmel_spi_device {
248         unsigned int            npcs_pin;
249         u32                     csr;
250 };
251
252 #define BUFFER_SIZE             PAGE_SIZE
253 #define INVALID_DMA_ADDRESS     0xffffffff
254
255 /*
256  * Version 2 of the SPI controller has
257  *  - CR.LASTXFER
258  *  - SPI_MR.DIV32 may become FDIV or must-be-zero (here: always zero)
259  *  - SPI_SR.TXEMPTY, SPI_SR.NSSR (and corresponding irqs)
260  *  - SPI_CSRx.CSAAT
261  *  - SPI_CSRx.SBCR allows faster clocking
262  */
263 static bool atmel_spi_is_v2(struct atmel_spi *as)
264 {
265         return as->caps.is_spi2;
266 }
267
268 /*
269  * Earlier SPI controllers (e.g. on at91rm9200) have a design bug whereby
270  * they assume that spi slave device state will not change on deselect, so
271  * that automagic deselection is OK.  ("NPCSx rises if no data is to be
272  * transmitted")  Not so!  Workaround uses nCSx pins as GPIOs; or newer
273  * controllers have CSAAT and friends.
274  *
275  * Since the CSAAT functionality is a bit weird on newer controllers as
276  * well, we use GPIO to control nCSx pins on all controllers, updating
277  * MR.PCS to avoid confusing the controller.  Using GPIOs also lets us
278  * support active-high chipselects despite the controller's belief that
279  * only active-low devices/systems exists.
280  *
281  * However, at91rm9200 has a second erratum whereby nCS0 doesn't work
282  * right when driven with GPIO.  ("Mode Fault does not allow more than one
283  * Master on Chip Select 0.")  No workaround exists for that ... so for
284  * nCS0 on that chip, we (a) don't use the GPIO, (b) can't support CS_HIGH,
285  * and (c) will trigger that first erratum in some cases.
286  */
287
288 static void cs_activate(struct atmel_spi *as, struct spi_device *spi)
289 {
290         struct atmel_spi_device *asd = spi->controller_state;
291         unsigned active = spi->mode & SPI_CS_HIGH;
292         u32 mr;
293
294         if (atmel_spi_is_v2(as)) {
295                 spi_writel(as, CSR0 + 4 * spi->chip_select, asd->csr);
296                 /* For the low SPI version, there is a issue that PDC transfer
297                  * on CS1,2,3 needs SPI_CSR0.BITS config as SPI_CSR1,2,3.BITS
298                  */
299                 spi_writel(as, CSR0, asd->csr);
300                 if (as->caps.has_wdrbt) {
301                         spi_writel(as, MR,
302                                         SPI_BF(PCS, ~(0x01 << spi->chip_select))
303                                         | SPI_BIT(WDRBT)
304                                         | SPI_BIT(MODFDIS)
305                                         | SPI_BIT(MSTR));
306                 } else {
307                         spi_writel(as, MR,
308                                         SPI_BF(PCS, ~(0x01 << spi->chip_select))
309                                         | SPI_BIT(MODFDIS)
310                                         | SPI_BIT(MSTR));
311                 }
312
313                 mr = spi_readl(as, MR);
314                 gpio_set_value(asd->npcs_pin, active);
315         } else {
316                 u32 cpol = (spi->mode & SPI_CPOL) ? SPI_BIT(CPOL) : 0;
317                 int i;
318                 u32 csr;
319
320                 /* Make sure clock polarity is correct */
321                 for (i = 0; i < spi->master->num_chipselect; i++) {
322                         csr = spi_readl(as, CSR0 + 4 * i);
323                         if ((csr ^ cpol) & SPI_BIT(CPOL))
324                                 spi_writel(as, CSR0 + 4 * i,
325                                                 csr ^ SPI_BIT(CPOL));
326                 }
327
328                 mr = spi_readl(as, MR);
329                 mr = SPI_BFINS(PCS, ~(1 << spi->chip_select), mr);
330                 if (spi->chip_select != 0)
331                         gpio_set_value(asd->npcs_pin, active);
332                 spi_writel(as, MR, mr);
333         }
334
335         dev_dbg(&spi->dev, "activate %u%s, mr %08x\n",
336                         asd->npcs_pin, active ? " (high)" : "",
337                         mr);
338 }
339
340 static void cs_deactivate(struct atmel_spi *as, struct spi_device *spi)
341 {
342         struct atmel_spi_device *asd = spi->controller_state;
343         unsigned active = spi->mode & SPI_CS_HIGH;
344         u32 mr;
345
346         /* only deactivate *this* device; sometimes transfers to
347          * another device may be active when this routine is called.
348          */
349         mr = spi_readl(as, MR);
350         if (~SPI_BFEXT(PCS, mr) & (1 << spi->chip_select)) {
351                 mr = SPI_BFINS(PCS, 0xf, mr);
352                 spi_writel(as, MR, mr);
353         }
354
355         dev_dbg(&spi->dev, "DEactivate %u%s, mr %08x\n",
356                         asd->npcs_pin, active ? " (low)" : "",
357                         mr);
358
359         if (atmel_spi_is_v2(as) || spi->chip_select != 0)
360                 gpio_set_value(asd->npcs_pin, !active);
361 }
362
363 static void atmel_spi_lock(struct atmel_spi *as)
364 {
365         spin_lock_irqsave(&as->lock, as->flags);
366 }
367
368 static void atmel_spi_unlock(struct atmel_spi *as)
369 {
370         spin_unlock_irqrestore(&as->lock, as->flags);
371 }
372
373 static inline bool atmel_spi_use_dma(struct atmel_spi *as,
374                                 struct spi_transfer *xfer)
375 {
376         return as->use_dma && xfer->len >= DMA_MIN_BYTES;
377 }
378
379 static inline int atmel_spi_xfer_is_last(struct spi_message *msg,
380                                         struct spi_transfer *xfer)
381 {
382         return msg->transfers.prev == &xfer->transfer_list;
383 }
384
385 static inline int atmel_spi_xfer_can_be_chained(struct spi_transfer *xfer)
386 {
387         return xfer->delay_usecs == 0 && !xfer->cs_change;
388 }
389
390 static int atmel_spi_dma_slave_config(struct atmel_spi *as,
391                                 struct dma_slave_config *slave_config,
392                                 u8 bits_per_word)
393 {
394         int err = 0;
395
396         if (bits_per_word > 8) {
397                 slave_config->dst_addr_width = DMA_SLAVE_BUSWIDTH_2_BYTES;
398                 slave_config->src_addr_width = DMA_SLAVE_BUSWIDTH_2_BYTES;
399         } else {
400                 slave_config->dst_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE;
401                 slave_config->src_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE;
402         }
403
404         slave_config->dst_addr = (dma_addr_t)as->phybase + SPI_TDR;
405         slave_config->src_addr = (dma_addr_t)as->phybase + SPI_RDR;
406         slave_config->src_maxburst = 1;
407         slave_config->dst_maxburst = 1;
408         slave_config->device_fc = false;
409
410         slave_config->direction = DMA_MEM_TO_DEV;
411         if (dmaengine_slave_config(as->dma.chan_tx, slave_config)) {
412                 dev_err(&as->pdev->dev,
413                         "failed to configure tx dma channel\n");
414                 err = -EINVAL;
415         }
416
417         slave_config->direction = DMA_DEV_TO_MEM;
418         if (dmaengine_slave_config(as->dma.chan_rx, slave_config)) {
419                 dev_err(&as->pdev->dev,
420                         "failed to configure rx dma channel\n");
421                 err = -EINVAL;
422         }
423
424         return err;
425 }
426
427 static bool filter(struct dma_chan *chan, void *slave)
428 {
429         struct  at_dma_slave *sl = slave;
430
431         if (sl->dma_dev == chan->device->dev) {
432                 chan->private = sl;
433                 return true;
434         } else {
435                 return false;
436         }
437 }
438
439 static int atmel_spi_configure_dma(struct atmel_spi *as)
440 {
441         struct at_dma_slave *sdata = &as->dma.dma_slave;
442         struct dma_slave_config slave_config;
443         int err;
444
445         if (sdata && sdata->dma_dev) {
446                 dma_cap_mask_t mask;
447
448                 /* Try to grab two DMA channels */
449                 dma_cap_zero(mask);
450                 dma_cap_set(DMA_SLAVE, mask);
451                 as->dma.chan_tx = dma_request_channel(mask, filter, sdata);
452                 if (as->dma.chan_tx)
453                         as->dma.chan_rx =
454                                 dma_request_channel(mask, filter, sdata);
455         }
456         if (!as->dma.chan_rx || !as->dma.chan_tx) {
457                 dev_err(&as->pdev->dev,
458                         "DMA channel not available, SPI unable to use DMA\n");
459                 err = -EBUSY;
460                 goto error;
461         }
462
463         err = atmel_spi_dma_slave_config(as, &slave_config, 8);
464         if (err)
465                 goto error;
466
467         dev_info(&as->pdev->dev,
468                         "Using %s (tx) and %s (rx) for DMA transfers\n",
469                         dma_chan_name(as->dma.chan_tx),
470                         dma_chan_name(as->dma.chan_rx));
471         return 0;
472 error:
473         if (as->dma.chan_rx)
474                 dma_release_channel(as->dma.chan_rx);
475         if (as->dma.chan_tx)
476                 dma_release_channel(as->dma.chan_tx);
477         return err;
478 }
479
480 static void atmel_spi_stop_dma(struct atmel_spi *as)
481 {
482         if (as->dma.chan_rx)
483                 as->dma.chan_rx->device->device_control(as->dma.chan_rx,
484                                                         DMA_TERMINATE_ALL, 0);
485         if (as->dma.chan_tx)
486                 as->dma.chan_tx->device->device_control(as->dma.chan_tx,
487                                                         DMA_TERMINATE_ALL, 0);
488 }
489
490 static void atmel_spi_release_dma(struct atmel_spi *as)
491 {
492         if (as->dma.chan_rx)
493                 dma_release_channel(as->dma.chan_rx);
494         if (as->dma.chan_tx)
495                 dma_release_channel(as->dma.chan_tx);
496 }
497
498 /* This function is called by the DMA driver from tasklet context */
499 static void dma_callback(void *data)
500 {
501         struct spi_master       *master = data;
502         struct atmel_spi        *as = spi_master_get_devdata(master);
503
504         /* trigger SPI tasklet */
505         tasklet_schedule(&as->tasklet);
506 }
507
508 /*
509  * Next transfer using PIO.
510  * lock is held, spi tasklet is blocked
511  */
512 static void atmel_spi_next_xfer_pio(struct spi_master *master,
513                                 struct spi_transfer *xfer)
514 {
515         struct atmel_spi        *as = spi_master_get_devdata(master);
516
517         dev_vdbg(master->dev.parent, "atmel_spi_next_xfer_pio\n");
518
519         as->current_remaining_bytes = xfer->len;
520
521         /* Make sure data is not remaining in RDR */
522         spi_readl(as, RDR);
523         while (spi_readl(as, SR) & SPI_BIT(RDRF)) {
524                 spi_readl(as, RDR);
525                 cpu_relax();
526         }
527
528         if (xfer->tx_buf)
529                 spi_writel(as, TDR, *(u8 *)(xfer->tx_buf));
530         else
531                 spi_writel(as, TDR, 0);
532
533         dev_dbg(master->dev.parent,
534                 "  start pio xfer %p: len %u tx %p rx %p\n",
535                 xfer, xfer->len, xfer->tx_buf, xfer->rx_buf);
536
537         /* Enable relevant interrupts */
538         spi_writel(as, IER, SPI_BIT(RDRF) | SPI_BIT(OVRES));
539 }
540
541 /*
542  * Submit next transfer for DMA.
543  * lock is held, spi tasklet is blocked
544  */
545 static int atmel_spi_next_xfer_dma_submit(struct spi_master *master,
546                                 struct spi_transfer *xfer,
547                                 u32 *plen)
548 {
549         struct atmel_spi        *as = spi_master_get_devdata(master);
550         struct dma_chan         *rxchan = as->dma.chan_rx;
551         struct dma_chan         *txchan = as->dma.chan_tx;
552         struct dma_async_tx_descriptor *rxdesc;
553         struct dma_async_tx_descriptor *txdesc;
554         struct dma_slave_config slave_config;
555         dma_cookie_t            cookie;
556         u32     len = *plen;
557
558         dev_vdbg(master->dev.parent, "atmel_spi_next_xfer_dma_submit\n");
559
560         /* Check that the channels are available */
561         if (!rxchan || !txchan)
562                 return -ENODEV;
563
564         /* release lock for DMA operations */
565         atmel_spi_unlock(as);
566
567         /* prepare the RX dma transfer */
568         sg_init_table(&as->dma.sgrx, 1);
569         if (xfer->rx_buf) {
570                 as->dma.sgrx.dma_address = xfer->rx_dma + xfer->len - *plen;
571         } else {
572                 as->dma.sgrx.dma_address = as->buffer_dma;
573                 if (len > BUFFER_SIZE)
574                         len = BUFFER_SIZE;
575         }
576
577         /* prepare the TX dma transfer */
578         sg_init_table(&as->dma.sgtx, 1);
579         if (xfer->tx_buf) {
580                 as->dma.sgtx.dma_address = xfer->tx_dma + xfer->len - *plen;
581         } else {
582                 as->dma.sgtx.dma_address = as->buffer_dma;
583                 if (len > BUFFER_SIZE)
584                         len = BUFFER_SIZE;
585                 memset(as->buffer, 0, len);
586         }
587
588         sg_dma_len(&as->dma.sgtx) = len;
589         sg_dma_len(&as->dma.sgrx) = len;
590
591         *plen = len;
592
593         if (atmel_spi_dma_slave_config(as, &slave_config, 8))
594                 goto err_exit;
595
596         /* Send both scatterlists */
597         rxdesc = rxchan->device->device_prep_slave_sg(rxchan,
598                                         &as->dma.sgrx,
599                                         1,
600                                         DMA_FROM_DEVICE,
601                                         DMA_PREP_INTERRUPT | DMA_CTRL_ACK,
602                                         NULL);
603         if (!rxdesc)
604                 goto err_dma;
605
606         txdesc = txchan->device->device_prep_slave_sg(txchan,
607                                         &as->dma.sgtx,
608                                         1,
609                                         DMA_TO_DEVICE,
610                                         DMA_PREP_INTERRUPT | DMA_CTRL_ACK,
611                                         NULL);
612         if (!txdesc)
613                 goto err_dma;
614
615         dev_dbg(master->dev.parent,
616                 "  start dma xfer %p: len %u tx %p/%08x rx %p/%08x\n",
617                 xfer, xfer->len, xfer->tx_buf, xfer->tx_dma,
618                 xfer->rx_buf, xfer->rx_dma);
619
620         /* Enable relevant interrupts */
621         spi_writel(as, IER, SPI_BIT(OVRES));
622
623         /* Put the callback on the RX transfer only, that should finish last */
624         rxdesc->callback = dma_callback;
625         rxdesc->callback_param = master;
626
627         /* Submit and fire RX and TX with TX last so we're ready to read! */
628         cookie = rxdesc->tx_submit(rxdesc);
629         if (dma_submit_error(cookie))
630                 goto err_dma;
631         cookie = txdesc->tx_submit(txdesc);
632         if (dma_submit_error(cookie))
633                 goto err_dma;
634         rxchan->device->device_issue_pending(rxchan);
635         txchan->device->device_issue_pending(txchan);
636
637         /* take back lock */
638         atmel_spi_lock(as);
639         return 0;
640
641 err_dma:
642         spi_writel(as, IDR, SPI_BIT(OVRES));
643         atmel_spi_stop_dma(as);
644 err_exit:
645         atmel_spi_lock(as);
646         return -ENOMEM;
647 }
648
649 static void atmel_spi_next_xfer_data(struct spi_master *master,
650                                 struct spi_transfer *xfer,
651                                 dma_addr_t *tx_dma,
652                                 dma_addr_t *rx_dma,
653                                 u32 *plen)
654 {
655         struct atmel_spi        *as = spi_master_get_devdata(master);
656         u32                     len = *plen;
657
658         /* use scratch buffer only when rx or tx data is unspecified */
659         if (xfer->rx_buf)
660                 *rx_dma = xfer->rx_dma + xfer->len - *plen;
661         else {
662                 *rx_dma = as->buffer_dma;
663                 if (len > BUFFER_SIZE)
664                         len = BUFFER_SIZE;
665         }
666
667         if (xfer->tx_buf)
668                 *tx_dma = xfer->tx_dma + xfer->len - *plen;
669         else {
670                 *tx_dma = as->buffer_dma;
671                 if (len > BUFFER_SIZE)
672                         len = BUFFER_SIZE;
673                 memset(as->buffer, 0, len);
674                 dma_sync_single_for_device(&as->pdev->dev,
675                                 as->buffer_dma, len, DMA_TO_DEVICE);
676         }
677
678         *plen = len;
679 }
680
681 /*
682  * Submit next transfer for PDC.
683  * lock is held, spi irq is blocked
684  */
685 static void atmel_spi_pdc_next_xfer(struct spi_master *master,
686                                 struct spi_message *msg)
687 {
688         struct atmel_spi        *as = spi_master_get_devdata(master);
689         struct spi_transfer     *xfer;
690         u32                     len, remaining;
691         u32                     ieval;
692         dma_addr_t              tx_dma, rx_dma;
693
694         if (!as->current_transfer)
695                 xfer = list_entry(msg->transfers.next,
696                                 struct spi_transfer, transfer_list);
697         else if (!as->next_transfer)
698                 xfer = list_entry(as->current_transfer->transfer_list.next,
699                                 struct spi_transfer, transfer_list);
700         else
701                 xfer = NULL;
702
703         if (xfer) {
704                 spi_writel(as, PTCR, SPI_BIT(RXTDIS) | SPI_BIT(TXTDIS));
705
706                 len = xfer->len;
707                 atmel_spi_next_xfer_data(master, xfer, &tx_dma, &rx_dma, &len);
708                 remaining = xfer->len - len;
709
710                 spi_writel(as, RPR, rx_dma);
711                 spi_writel(as, TPR, tx_dma);
712
713                 if (msg->spi->bits_per_word > 8)
714                         len >>= 1;
715                 spi_writel(as, RCR, len);
716                 spi_writel(as, TCR, len);
717
718                 dev_dbg(&msg->spi->dev,
719                         "  start xfer %p: len %u tx %p/%08x rx %p/%08x\n",
720                         xfer, xfer->len, xfer->tx_buf, xfer->tx_dma,
721                         xfer->rx_buf, xfer->rx_dma);
722         } else {
723                 xfer = as->next_transfer;
724                 remaining = as->next_remaining_bytes;
725         }
726
727         as->current_transfer = xfer;
728         as->current_remaining_bytes = remaining;
729
730         if (remaining > 0)
731                 len = remaining;
732         else if (!atmel_spi_xfer_is_last(msg, xfer)
733                         && atmel_spi_xfer_can_be_chained(xfer)) {
734                 xfer = list_entry(xfer->transfer_list.next,
735                                 struct spi_transfer, transfer_list);
736                 len = xfer->len;
737         } else
738                 xfer = NULL;
739
740         as->next_transfer = xfer;
741
742         if (xfer) {
743                 u32     total;
744
745                 total = len;
746                 atmel_spi_next_xfer_data(master, xfer, &tx_dma, &rx_dma, &len);
747                 as->next_remaining_bytes = total - len;
748
749                 spi_writel(as, RNPR, rx_dma);
750                 spi_writel(as, TNPR, tx_dma);
751
752                 if (msg->spi->bits_per_word > 8)
753                         len >>= 1;
754                 spi_writel(as, RNCR, len);
755                 spi_writel(as, TNCR, len);
756
757                 dev_dbg(&msg->spi->dev,
758                         "  next xfer %p: len %u tx %p/%08x rx %p/%08x\n",
759                         xfer, xfer->len, xfer->tx_buf, xfer->tx_dma,
760                         xfer->rx_buf, xfer->rx_dma);
761                 ieval = SPI_BIT(ENDRX) | SPI_BIT(OVRES);
762         } else {
763                 spi_writel(as, RNCR, 0);
764                 spi_writel(as, TNCR, 0);
765                 ieval = SPI_BIT(RXBUFF) | SPI_BIT(ENDRX) | SPI_BIT(OVRES);
766         }
767
768         /* REVISIT: We're waiting for ENDRX before we start the next
769          * transfer because we need to handle some difficult timing
770          * issues otherwise. If we wait for ENDTX in one transfer and
771          * then starts waiting for ENDRX in the next, it's difficult
772          * to tell the difference between the ENDRX interrupt we're
773          * actually waiting for and the ENDRX interrupt of the
774          * previous transfer.
775          *
776          * It should be doable, though. Just not now...
777          */
778         spi_writel(as, IER, ieval);
779         spi_writel(as, PTCR, SPI_BIT(TXTEN) | SPI_BIT(RXTEN));
780 }
781
782 /*
783  * Choose way to submit next transfer and start it.
784  * lock is held, spi tasklet is blocked
785  */
786 static void atmel_spi_dma_next_xfer(struct spi_master *master,
787                                 struct spi_message *msg)
788 {
789         struct atmel_spi        *as = spi_master_get_devdata(master);
790         struct spi_transfer     *xfer;
791         u32     remaining, len;
792
793         remaining = as->current_remaining_bytes;
794         if (remaining) {
795                 xfer = as->current_transfer;
796                 len = remaining;
797         } else {
798                 if (!as->current_transfer)
799                         xfer = list_entry(msg->transfers.next,
800                                 struct spi_transfer, transfer_list);
801                 else
802                         xfer = list_entry(
803                                 as->current_transfer->transfer_list.next,
804                                         struct spi_transfer, transfer_list);
805
806                 as->current_transfer = xfer;
807                 len = xfer->len;
808         }
809
810         if (atmel_spi_use_dma(as, xfer)) {
811                 u32 total = len;
812                 if (!atmel_spi_next_xfer_dma_submit(master, xfer, &len)) {
813                         as->current_remaining_bytes = total - len;
814                         return;
815                 } else {
816                         dev_err(&msg->spi->dev, "unable to use DMA, fallback to PIO\n");
817                 }
818         }
819
820         /* use PIO if error appened using DMA */
821         atmel_spi_next_xfer_pio(master, xfer);
822 }
823
824 static void atmel_spi_next_message(struct spi_master *master)
825 {
826         struct atmel_spi        *as = spi_master_get_devdata(master);
827         struct spi_message      *msg;
828         struct spi_device       *spi;
829
830         BUG_ON(as->current_transfer);
831
832         msg = list_entry(as->queue.next, struct spi_message, queue);
833         spi = msg->spi;
834
835         dev_dbg(master->dev.parent, "start message %p for %s\n",
836                         msg, dev_name(&spi->dev));
837
838         /* select chip if it's not still active */
839         if (as->stay) {
840                 if (as->stay != spi) {
841                         cs_deactivate(as, as->stay);
842                         cs_activate(as, spi);
843                 }
844                 as->stay = NULL;
845         } else
846                 cs_activate(as, spi);
847
848         if (as->use_pdc)
849                 atmel_spi_pdc_next_xfer(master, msg);
850         else
851                 atmel_spi_dma_next_xfer(master, msg);
852 }
853
854 /*
855  * For DMA, tx_buf/tx_dma have the same relationship as rx_buf/rx_dma:
856  *  - The buffer is either valid for CPU access, else NULL
857  *  - If the buffer is valid, so is its DMA address
858  *
859  * This driver manages the dma address unless message->is_dma_mapped.
860  */
861 static int
862 atmel_spi_dma_map_xfer(struct atmel_spi *as, struct spi_transfer *xfer)
863 {
864         struct device   *dev = &as->pdev->dev;
865
866         xfer->tx_dma = xfer->rx_dma = INVALID_DMA_ADDRESS;
867         if (xfer->tx_buf) {
868                 /* tx_buf is a const void* where we need a void * for the dma
869                  * mapping */
870                 void *nonconst_tx = (void *)xfer->tx_buf;
871
872                 xfer->tx_dma = dma_map_single(dev,
873                                 nonconst_tx, xfer->len,
874                                 DMA_TO_DEVICE);
875                 if (dma_mapping_error(dev, xfer->tx_dma))
876                         return -ENOMEM;
877         }
878         if (xfer->rx_buf) {
879                 xfer->rx_dma = dma_map_single(dev,
880                                 xfer->rx_buf, xfer->len,
881                                 DMA_FROM_DEVICE);
882                 if (dma_mapping_error(dev, xfer->rx_dma)) {
883                         if (xfer->tx_buf)
884                                 dma_unmap_single(dev,
885                                                 xfer->tx_dma, xfer->len,
886                                                 DMA_TO_DEVICE);
887                         return -ENOMEM;
888                 }
889         }
890         return 0;
891 }
892
893 static void atmel_spi_dma_unmap_xfer(struct spi_master *master,
894                                      struct spi_transfer *xfer)
895 {
896         if (xfer->tx_dma != INVALID_DMA_ADDRESS)
897                 dma_unmap_single(master->dev.parent, xfer->tx_dma,
898                                  xfer->len, DMA_TO_DEVICE);
899         if (xfer->rx_dma != INVALID_DMA_ADDRESS)
900                 dma_unmap_single(master->dev.parent, xfer->rx_dma,
901                                  xfer->len, DMA_FROM_DEVICE);
902 }
903
904 static void atmel_spi_disable_pdc_transfer(struct atmel_spi *as)
905 {
906         spi_writel(as, PTCR, SPI_BIT(RXTDIS) | SPI_BIT(TXTDIS));
907 }
908
909 static void
910 atmel_spi_msg_done(struct spi_master *master, struct atmel_spi *as,
911                 struct spi_message *msg, int stay)
912 {
913         if (!stay || as->done_status < 0)
914                 cs_deactivate(as, msg->spi);
915         else
916                 as->stay = msg->spi;
917
918         list_del(&msg->queue);
919         msg->status = as->done_status;
920
921         dev_dbg(master->dev.parent,
922                 "xfer complete: %u bytes transferred\n",
923                 msg->actual_length);
924
925         atmel_spi_unlock(as);
926         msg->complete(msg->context);
927         atmel_spi_lock(as);
928
929         as->current_transfer = NULL;
930         as->next_transfer = NULL;
931         as->done_status = 0;
932
933         /* continue if needed */
934         if (list_empty(&as->queue) || as->stopping) {
935                 if (as->use_pdc)
936                         atmel_spi_disable_pdc_transfer(as);
937         } else {
938                 atmel_spi_next_message(master);
939         }
940 }
941
942 /* Called from IRQ
943  * lock is held
944  *
945  * Must update "current_remaining_bytes" to keep track of data
946  * to transfer.
947  */
948 static void
949 atmel_spi_pump_pio_data(struct atmel_spi *as, struct spi_transfer *xfer)
950 {
951         u8              *txp;
952         u8              *rxp;
953         unsigned long   xfer_pos = xfer->len - as->current_remaining_bytes;
954
955         if (xfer->rx_buf) {
956                 rxp = ((u8 *)xfer->rx_buf) + xfer_pos;
957                 *rxp = spi_readl(as, RDR);
958         } else {
959                 spi_readl(as, RDR);
960         }
961
962         as->current_remaining_bytes--;
963
964         if (as->current_remaining_bytes) {
965                 if (xfer->tx_buf) {
966                         txp = ((u8 *)xfer->tx_buf) + xfer_pos + 1;
967                         spi_writel(as, TDR, *txp);
968                 } else {
969                         spi_writel(as, TDR, 0);
970                 }
971         }
972 }
973
974 /* Tasklet
975  * Called from DMA callback + pio transfer and overrun IRQ.
976  */
977 static void atmel_spi_tasklet_func(unsigned long data)
978 {
979         struct spi_master       *master = (struct spi_master *)data;
980         struct atmel_spi        *as = spi_master_get_devdata(master);
981         struct spi_message      *msg;
982         struct spi_transfer     *xfer;
983
984         dev_vdbg(master->dev.parent, "atmel_spi_tasklet_func\n");
985
986         atmel_spi_lock(as);
987
988         xfer = as->current_transfer;
989
990         if (xfer == NULL)
991                 /* already been there */
992                 goto tasklet_out;
993
994         msg = list_entry(as->queue.next, struct spi_message, queue);
995
996         if (as->current_remaining_bytes == 0) {
997                 if (as->done_status < 0) {
998                         /* error happened (overrun) */
999                         if (atmel_spi_use_dma(as, xfer))
1000                                 atmel_spi_stop_dma(as);
1001                 } else {
1002                         /* only update length if no error */
1003                         msg->actual_length += xfer->len;
1004                 }
1005
1006                 if (atmel_spi_use_dma(as, xfer))
1007                         if (!msg->is_dma_mapped)
1008                                 atmel_spi_dma_unmap_xfer(master, xfer);
1009
1010                 if (xfer->delay_usecs)
1011                         udelay(xfer->delay_usecs);
1012
1013                 if (atmel_spi_xfer_is_last(msg, xfer) || as->done_status < 0) {
1014                         /* report completed (or erroneous) message */
1015                         atmel_spi_msg_done(master, as, msg, xfer->cs_change);
1016                 } else {
1017                         if (xfer->cs_change) {
1018                                 cs_deactivate(as, msg->spi);
1019                                 udelay(1);
1020                                 cs_activate(as, msg->spi);
1021                         }
1022
1023                         /*
1024                          * Not done yet. Submit the next transfer.
1025                          *
1026                          * FIXME handle protocol options for xfer
1027                          */
1028                         atmel_spi_dma_next_xfer(master, msg);
1029                 }
1030         } else {
1031                 /*
1032                  * Keep going, we still have data to send in
1033                  * the current transfer.
1034                  */
1035                 atmel_spi_dma_next_xfer(master, msg);
1036         }
1037
1038 tasklet_out:
1039         atmel_spi_unlock(as);
1040 }
1041
1042 /* Interrupt
1043  *
1044  * No need for locking in this Interrupt handler: done_status is the
1045  * only information modified. What we need is the update of this field
1046  * before tasklet runs. This is ensured by using barrier.
1047  */
1048 static irqreturn_t
1049 atmel_spi_pio_interrupt(int irq, void *dev_id)
1050 {
1051         struct spi_master       *master = dev_id;
1052         struct atmel_spi        *as = spi_master_get_devdata(master);
1053         u32                     status, pending, imr;
1054         struct spi_transfer     *xfer;
1055         int                     ret = IRQ_NONE;
1056
1057         imr = spi_readl(as, IMR);
1058         status = spi_readl(as, SR);
1059         pending = status & imr;
1060
1061         if (pending & SPI_BIT(OVRES)) {
1062                 ret = IRQ_HANDLED;
1063                 spi_writel(as, IDR, SPI_BIT(OVRES));
1064                 dev_warn(master->dev.parent, "overrun\n");
1065
1066                 /*
1067                  * When we get an overrun, we disregard the current
1068                  * transfer. Data will not be copied back from any
1069                  * bounce buffer and msg->actual_len will not be
1070                  * updated with the last xfer.
1071                  *
1072                  * We will also not process any remaning transfers in
1073                  * the message.
1074                  *
1075                  * All actions are done in tasklet with done_status indication
1076                  */
1077                 as->done_status = -EIO;
1078                 smp_wmb();
1079
1080                 /* Clear any overrun happening while cleaning up */
1081                 spi_readl(as, SR);
1082
1083                 tasklet_schedule(&as->tasklet);
1084
1085         } else if (pending & SPI_BIT(RDRF)) {
1086                 atmel_spi_lock(as);
1087
1088                 if (as->current_remaining_bytes) {
1089                         ret = IRQ_HANDLED;
1090                         xfer = as->current_transfer;
1091                         atmel_spi_pump_pio_data(as, xfer);
1092                         if (!as->current_remaining_bytes) {
1093                                 /* no more data to xfer, kick tasklet */
1094                                 spi_writel(as, IDR, pending);
1095                                 tasklet_schedule(&as->tasklet);
1096                         }
1097                 }
1098
1099                 atmel_spi_unlock(as);
1100         } else {
1101                 WARN_ONCE(pending, "IRQ not handled, pending = %x\n", pending);
1102                 ret = IRQ_HANDLED;
1103                 spi_writel(as, IDR, pending);
1104         }
1105
1106         return ret;
1107 }
1108
1109 static irqreturn_t
1110 atmel_spi_pdc_interrupt(int irq, void *dev_id)
1111 {
1112         struct spi_master       *master = dev_id;
1113         struct atmel_spi        *as = spi_master_get_devdata(master);
1114         struct spi_message      *msg;
1115         struct spi_transfer     *xfer;
1116         u32                     status, pending, imr;
1117         int                     ret = IRQ_NONE;
1118
1119         atmel_spi_lock(as);
1120
1121         xfer = as->current_transfer;
1122         msg = list_entry(as->queue.next, struct spi_message, queue);
1123
1124         imr = spi_readl(as, IMR);
1125         status = spi_readl(as, SR);
1126         pending = status & imr;
1127
1128         if (pending & SPI_BIT(OVRES)) {
1129                 int timeout;
1130
1131                 ret = IRQ_HANDLED;
1132
1133                 spi_writel(as, IDR, (SPI_BIT(RXBUFF) | SPI_BIT(ENDRX)
1134                                      | SPI_BIT(OVRES)));
1135
1136                 /*
1137                  * When we get an overrun, we disregard the current
1138                  * transfer. Data will not be copied back from any
1139                  * bounce buffer and msg->actual_len will not be
1140                  * updated with the last xfer.
1141                  *
1142                  * We will also not process any remaning transfers in
1143                  * the message.
1144                  *
1145                  * First, stop the transfer and unmap the DMA buffers.
1146                  */
1147                 spi_writel(as, PTCR, SPI_BIT(RXTDIS) | SPI_BIT(TXTDIS));
1148                 if (!msg->is_dma_mapped)
1149                         atmel_spi_dma_unmap_xfer(master, xfer);
1150
1151                 /* REVISIT: udelay in irq is unfriendly */
1152                 if (xfer->delay_usecs)
1153                         udelay(xfer->delay_usecs);
1154
1155                 dev_warn(master->dev.parent, "overrun (%u/%u remaining)\n",
1156                          spi_readl(as, TCR), spi_readl(as, RCR));
1157
1158                 /*
1159                  * Clean up DMA registers and make sure the data
1160                  * registers are empty.
1161                  */
1162                 spi_writel(as, RNCR, 0);
1163                 spi_writel(as, TNCR, 0);
1164                 spi_writel(as, RCR, 0);
1165                 spi_writel(as, TCR, 0);
1166                 for (timeout = 1000; timeout; timeout--)
1167                         if (spi_readl(as, SR) & SPI_BIT(TXEMPTY))
1168                                 break;
1169                 if (!timeout)
1170                         dev_warn(master->dev.parent,
1171                                  "timeout waiting for TXEMPTY");
1172                 while (spi_readl(as, SR) & SPI_BIT(RDRF))
1173                         spi_readl(as, RDR);
1174
1175                 /* Clear any overrun happening while cleaning up */
1176                 spi_readl(as, SR);
1177
1178                 as->done_status = -EIO;
1179                 atmel_spi_msg_done(master, as, msg, 0);
1180         } else if (pending & (SPI_BIT(RXBUFF) | SPI_BIT(ENDRX))) {
1181                 ret = IRQ_HANDLED;
1182
1183                 spi_writel(as, IDR, pending);
1184
1185                 if (as->current_remaining_bytes == 0) {
1186                         msg->actual_length += xfer->len;
1187
1188                         if (!msg->is_dma_mapped)
1189                                 atmel_spi_dma_unmap_xfer(master, xfer);
1190
1191                         /* REVISIT: udelay in irq is unfriendly */
1192                         if (xfer->delay_usecs)
1193                                 udelay(xfer->delay_usecs);
1194
1195                         if (atmel_spi_xfer_is_last(msg, xfer)) {
1196                                 /* report completed message */
1197                                 atmel_spi_msg_done(master, as, msg,
1198                                                 xfer->cs_change);
1199                         } else {
1200                                 if (xfer->cs_change) {
1201                                         cs_deactivate(as, msg->spi);
1202                                         udelay(1);
1203                                         cs_activate(as, msg->spi);
1204                                 }
1205
1206                                 /*
1207                                  * Not done yet. Submit the next transfer.
1208                                  *
1209                                  * FIXME handle protocol options for xfer
1210                                  */
1211                                 atmel_spi_pdc_next_xfer(master, msg);
1212                         }
1213                 } else {
1214                         /*
1215                          * Keep going, we still have data to send in
1216                          * the current transfer.
1217                          */
1218                         atmel_spi_pdc_next_xfer(master, msg);
1219                 }
1220         }
1221
1222         atmel_spi_unlock(as);
1223
1224         return ret;
1225 }
1226
1227 static int atmel_spi_setup(struct spi_device *spi)
1228 {
1229         struct atmel_spi        *as;
1230         struct atmel_spi_device *asd;
1231         u32                     scbr, csr;
1232         unsigned int            bits = spi->bits_per_word;
1233         unsigned long           bus_hz;
1234         unsigned int            npcs_pin;
1235         int                     ret;
1236
1237         as = spi_master_get_devdata(spi->master);
1238
1239         if (as->stopping)
1240                 return -ESHUTDOWN;
1241
1242         if (spi->chip_select > spi->master->num_chipselect) {
1243                 dev_dbg(&spi->dev,
1244                                 "setup: invalid chipselect %u (%u defined)\n",
1245                                 spi->chip_select, spi->master->num_chipselect);
1246                 return -EINVAL;
1247         }
1248
1249         if (bits < 8 || bits > 16) {
1250                 dev_dbg(&spi->dev,
1251                                 "setup: invalid bits_per_word %u (8 to 16)\n",
1252                                 bits);
1253                 return -EINVAL;
1254         }
1255
1256         /* see notes above re chipselect */
1257         if (!atmel_spi_is_v2(as)
1258                         && spi->chip_select == 0
1259                         && (spi->mode & SPI_CS_HIGH)) {
1260                 dev_dbg(&spi->dev, "setup: can't be active-high\n");
1261                 return -EINVAL;
1262         }
1263
1264         /* v1 chips start out at half the peripheral bus speed. */
1265         bus_hz = clk_get_rate(as->clk);
1266         if (!atmel_spi_is_v2(as))
1267                 bus_hz /= 2;
1268
1269         if (spi->max_speed_hz) {
1270                 /*
1271                  * Calculate the lowest divider that satisfies the
1272                  * constraint, assuming div32/fdiv/mbz == 0.
1273                  */
1274                 scbr = DIV_ROUND_UP(bus_hz, spi->max_speed_hz);
1275
1276                 /*
1277                  * If the resulting divider doesn't fit into the
1278                  * register bitfield, we can't satisfy the constraint.
1279                  */
1280                 if (scbr >= (1 << SPI_SCBR_SIZE)) {
1281                         dev_dbg(&spi->dev,
1282                                 "setup: %d Hz too slow, scbr %u; min %ld Hz\n",
1283                                 spi->max_speed_hz, scbr, bus_hz/255);
1284                         return -EINVAL;
1285                 }
1286         } else
1287                 /* speed zero means "as slow as possible" */
1288                 scbr = 0xff;
1289
1290         csr = SPI_BF(SCBR, scbr) | SPI_BF(BITS, bits - 8);
1291         if (spi->mode & SPI_CPOL)
1292                 csr |= SPI_BIT(CPOL);
1293         if (!(spi->mode & SPI_CPHA))
1294                 csr |= SPI_BIT(NCPHA);
1295
1296         /* DLYBS is mostly irrelevant since we manage chipselect using GPIOs.
1297          *
1298          * DLYBCT would add delays between words, slowing down transfers.
1299          * It could potentially be useful to cope with DMA bottlenecks, but
1300          * in those cases it's probably best to just use a lower bitrate.
1301          */
1302         csr |= SPI_BF(DLYBS, 0);
1303         csr |= SPI_BF(DLYBCT, 0);
1304
1305         /* chipselect must have been muxed as GPIO (e.g. in board setup) */
1306         npcs_pin = (unsigned int)spi->controller_data;
1307
1308         if (gpio_is_valid(spi->cs_gpio))
1309                 npcs_pin = spi->cs_gpio;
1310
1311         asd = spi->controller_state;
1312         if (!asd) {
1313                 asd = kzalloc(sizeof(struct atmel_spi_device), GFP_KERNEL);
1314                 if (!asd)
1315                         return -ENOMEM;
1316
1317                 ret = gpio_request(npcs_pin, dev_name(&spi->dev));
1318                 if (ret) {
1319                         kfree(asd);
1320                         return ret;
1321                 }
1322
1323                 asd->npcs_pin = npcs_pin;
1324                 spi->controller_state = asd;
1325                 gpio_direction_output(npcs_pin, !(spi->mode & SPI_CS_HIGH));
1326         } else {
1327                 atmel_spi_lock(as);
1328                 if (as->stay == spi)
1329                         as->stay = NULL;
1330                 cs_deactivate(as, spi);
1331                 atmel_spi_unlock(as);
1332         }
1333
1334         asd->csr = csr;
1335
1336         dev_dbg(&spi->dev,
1337                 "setup: %lu Hz bpw %u mode 0x%x -> csr%d %08x\n",
1338                 bus_hz / scbr, bits, spi->mode, spi->chip_select, csr);
1339
1340         if (!atmel_spi_is_v2(as))
1341                 spi_writel(as, CSR0 + 4 * spi->chip_select, csr);
1342
1343         return 0;
1344 }
1345
1346 static int atmel_spi_transfer(struct spi_device *spi, struct spi_message *msg)
1347 {
1348         struct atmel_spi        *as;
1349         struct spi_transfer     *xfer;
1350         struct device           *controller = spi->master->dev.parent;
1351         u8                      bits;
1352         struct atmel_spi_device *asd;
1353
1354         as = spi_master_get_devdata(spi->master);
1355
1356         dev_dbg(controller, "new message %p submitted for %s\n",
1357                         msg, dev_name(&spi->dev));
1358
1359         if (unlikely(list_empty(&msg->transfers)))
1360                 return -EINVAL;
1361
1362         if (as->stopping)
1363                 return -ESHUTDOWN;
1364
1365         list_for_each_entry(xfer, &msg->transfers, transfer_list) {
1366                 if (!(xfer->tx_buf || xfer->rx_buf) && xfer->len) {
1367                         dev_dbg(&spi->dev, "missing rx or tx buf\n");
1368                         return -EINVAL;
1369                 }
1370
1371                 if (xfer->bits_per_word) {
1372                         asd = spi->controller_state;
1373                         bits = (asd->csr >> 4) & 0xf;
1374                         if (bits != xfer->bits_per_word - 8) {
1375                                 dev_dbg(&spi->dev, "you can't yet change "
1376                                          "bits_per_word in transfers\n");
1377                                 return -ENOPROTOOPT;
1378                         }
1379                 }
1380
1381                 /* FIXME implement these protocol options!! */
1382                 if (xfer->speed_hz) {
1383                         dev_dbg(&spi->dev, "no protocol options yet\n");
1384                         return -ENOPROTOOPT;
1385                 }
1386
1387                 /*
1388                  * DMA map early, for performance (empties dcache ASAP) and
1389                  * better fault reporting.
1390                  */
1391                 if ((!msg->is_dma_mapped) && (atmel_spi_use_dma(as, xfer)
1392                         || as->use_pdc)) {
1393                         if (atmel_spi_dma_map_xfer(as, xfer) < 0)
1394                                 return -ENOMEM;
1395                 }
1396         }
1397
1398 #ifdef VERBOSE
1399         list_for_each_entry(xfer, &msg->transfers, transfer_list) {
1400                 dev_dbg(controller,
1401                         "  xfer %p: len %u tx %p/%08x rx %p/%08x\n",
1402                         xfer, xfer->len,
1403                         xfer->tx_buf, xfer->tx_dma,
1404                         xfer->rx_buf, xfer->rx_dma);
1405         }
1406 #endif
1407
1408         msg->status = -EINPROGRESS;
1409         msg->actual_length = 0;
1410
1411         atmel_spi_lock(as);
1412         list_add_tail(&msg->queue, &as->queue);
1413         if (!as->current_transfer)
1414                 atmel_spi_next_message(spi->master);
1415         atmel_spi_unlock(as);
1416
1417         return 0;
1418 }
1419
1420 static void atmel_spi_cleanup(struct spi_device *spi)
1421 {
1422         struct atmel_spi        *as = spi_master_get_devdata(spi->master);
1423         struct atmel_spi_device *asd = spi->controller_state;
1424         unsigned                gpio = (unsigned) spi->controller_data;
1425
1426         if (!asd)
1427                 return;
1428
1429         atmel_spi_lock(as);
1430         if (as->stay == spi) {
1431                 as->stay = NULL;
1432                 cs_deactivate(as, spi);
1433         }
1434         atmel_spi_unlock(as);
1435
1436         spi->controller_state = NULL;
1437         gpio_free(gpio);
1438         kfree(asd);
1439 }
1440
1441 static inline unsigned int atmel_get_version(struct atmel_spi *as)
1442 {
1443         return spi_readl(as, VERSION) & 0x00000fff;
1444 }
1445
1446 static void atmel_get_caps(struct atmel_spi *as)
1447 {
1448         unsigned int version;
1449
1450         version = atmel_get_version(as);
1451         dev_info(&as->pdev->dev, "version: 0x%x\n", version);
1452
1453         as->caps.is_spi2 = version > 0x121;
1454         as->caps.has_wdrbt = version >= 0x210;
1455         as->caps.has_dma_support = version >= 0x212;
1456 }
1457
1458 /*-------------------------------------------------------------------------*/
1459
1460 static int atmel_spi_probe(struct platform_device *pdev)
1461 {
1462         struct resource         *regs;
1463         int                     irq;
1464         struct clk              *clk;
1465         int                     ret;
1466         struct spi_master       *master;
1467         struct atmel_spi        *as;
1468
1469         regs = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1470         if (!regs)
1471                 return -ENXIO;
1472
1473         irq = platform_get_irq(pdev, 0);
1474         if (irq < 0)
1475                 return irq;
1476
1477         clk = clk_get(&pdev->dev, "spi_clk");
1478         if (IS_ERR(clk))
1479                 return PTR_ERR(clk);
1480
1481         /* setup spi core then atmel-specific driver state */
1482         ret = -ENOMEM;
1483         master = spi_alloc_master(&pdev->dev, sizeof *as);
1484         if (!master)
1485                 goto out_free;
1486
1487         /* the spi->mode bits understood by this driver: */
1488         master->mode_bits = SPI_CPOL | SPI_CPHA | SPI_CS_HIGH;
1489
1490         master->dev.of_node = pdev->dev.of_node;
1491         master->bus_num = pdev->id;
1492         master->num_chipselect = master->dev.of_node ? 0 : 4;
1493         master->setup = atmel_spi_setup;
1494         master->transfer = atmel_spi_transfer;
1495         master->cleanup = atmel_spi_cleanup;
1496         platform_set_drvdata(pdev, master);
1497
1498         as = spi_master_get_devdata(master);
1499
1500         /*
1501          * Scratch buffer is used for throwaway rx and tx data.
1502          * It's coherent to minimize dcache pollution.
1503          */
1504         as->buffer = dma_alloc_coherent(&pdev->dev, BUFFER_SIZE,
1505                                         &as->buffer_dma, GFP_KERNEL);
1506         if (!as->buffer)
1507                 goto out_free;
1508
1509         spin_lock_init(&as->lock);
1510         INIT_LIST_HEAD(&as->queue);
1511
1512         as->pdev = pdev;
1513         as->regs = ioremap(regs->start, resource_size(regs));
1514         if (!as->regs)
1515                 goto out_free_buffer;
1516         as->phybase = regs->start;
1517         as->irq = irq;
1518         as->clk = clk;
1519
1520         atmel_get_caps(as);
1521
1522         as->use_dma = false;
1523         as->use_pdc = false;
1524         if (as->caps.has_dma_support) {
1525                 if (atmel_spi_configure_dma(as) == 0)
1526                         as->use_dma = true;
1527         } else {
1528                 as->use_pdc = true;
1529         }
1530
1531         if (as->caps.has_dma_support && !as->use_dma)
1532                 dev_info(&pdev->dev, "Atmel SPI Controller using PIO only\n");
1533
1534         if (as->use_pdc) {
1535                 ret = request_irq(irq, atmel_spi_pdc_interrupt, 0,
1536                                         dev_name(&pdev->dev), master);
1537         } else {
1538                 tasklet_init(&as->tasklet, atmel_spi_tasklet_func,
1539                                         (unsigned long)master);
1540
1541                 ret = request_irq(irq, atmel_spi_pio_interrupt, 0,
1542                                         dev_name(&pdev->dev), master);
1543         }
1544         if (ret)
1545                 goto out_unmap_regs;
1546
1547         /* Initialize the hardware */
1548         clk_enable(clk);
1549         spi_writel(as, CR, SPI_BIT(SWRST));
1550         spi_writel(as, CR, SPI_BIT(SWRST)); /* AT91SAM9263 Rev B workaround */
1551         if (as->caps.has_wdrbt) {
1552                 spi_writel(as, MR, SPI_BIT(WDRBT) | SPI_BIT(MODFDIS)
1553                                 | SPI_BIT(MSTR));
1554         } else {
1555                 spi_writel(as, MR, SPI_BIT(MSTR) | SPI_BIT(MODFDIS));
1556         }
1557
1558         if (as->use_pdc)
1559                 spi_writel(as, PTCR, SPI_BIT(RXTDIS) | SPI_BIT(TXTDIS));
1560         spi_writel(as, CR, SPI_BIT(SPIEN));
1561
1562         /* go! */
1563         dev_info(&pdev->dev, "Atmel SPI Controller at 0x%08lx (irq %d)\n",
1564                         (unsigned long)regs->start, irq);
1565
1566         ret = spi_register_master(master);
1567         if (ret)
1568                 goto out_free_dma;
1569
1570         return 0;
1571
1572 out_free_dma:
1573         if (as->use_dma)
1574                 atmel_spi_release_dma(as);
1575
1576         spi_writel(as, CR, SPI_BIT(SWRST));
1577         spi_writel(as, CR, SPI_BIT(SWRST)); /* AT91SAM9263 Rev B workaround */
1578         clk_disable(clk);
1579         free_irq(irq, master);
1580 out_unmap_regs:
1581         iounmap(as->regs);
1582 out_free_buffer:
1583         if (!as->use_pdc)
1584                 tasklet_kill(&as->tasklet);
1585         dma_free_coherent(&pdev->dev, BUFFER_SIZE, as->buffer,
1586                         as->buffer_dma);
1587 out_free:
1588         clk_put(clk);
1589         spi_master_put(master);
1590         return ret;
1591 }
1592
1593 static int atmel_spi_remove(struct platform_device *pdev)
1594 {
1595         struct spi_master       *master = platform_get_drvdata(pdev);
1596         struct atmel_spi        *as = spi_master_get_devdata(master);
1597         struct spi_message      *msg;
1598         struct spi_transfer     *xfer;
1599
1600         /* reset the hardware and block queue progress */
1601         spin_lock_irq(&as->lock);
1602         as->stopping = 1;
1603         if (as->use_dma) {
1604                 atmel_spi_stop_dma(as);
1605                 atmel_spi_release_dma(as);
1606         }
1607
1608         spi_writel(as, CR, SPI_BIT(SWRST));
1609         spi_writel(as, CR, SPI_BIT(SWRST)); /* AT91SAM9263 Rev B workaround */
1610         spi_readl(as, SR);
1611         spin_unlock_irq(&as->lock);
1612
1613         /* Terminate remaining queued transfers */
1614         list_for_each_entry(msg, &as->queue, queue) {
1615                 list_for_each_entry(xfer, &msg->transfers, transfer_list) {
1616                         if (!msg->is_dma_mapped
1617                                 && (atmel_spi_use_dma(as, xfer)
1618                                         || as->use_pdc))
1619                                 atmel_spi_dma_unmap_xfer(master, xfer);
1620                 }
1621                 msg->status = -ESHUTDOWN;
1622                 msg->complete(msg->context);
1623         }
1624
1625         if (!as->use_pdc)
1626                 tasklet_kill(&as->tasklet);
1627         dma_free_coherent(&pdev->dev, BUFFER_SIZE, as->buffer,
1628                         as->buffer_dma);
1629
1630         clk_disable(as->clk);
1631         clk_put(as->clk);
1632         free_irq(as->irq, master);
1633         iounmap(as->regs);
1634
1635         spi_unregister_master(master);
1636
1637         return 0;
1638 }
1639
1640 #ifdef  CONFIG_PM
1641
1642 static int atmel_spi_suspend(struct platform_device *pdev, pm_message_t mesg)
1643 {
1644         struct spi_master       *master = platform_get_drvdata(pdev);
1645         struct atmel_spi        *as = spi_master_get_devdata(master);
1646
1647         clk_disable(as->clk);
1648         return 0;
1649 }
1650
1651 static int atmel_spi_resume(struct platform_device *pdev)
1652 {
1653         struct spi_master       *master = platform_get_drvdata(pdev);
1654         struct atmel_spi        *as = spi_master_get_devdata(master);
1655
1656         clk_enable(as->clk);
1657         return 0;
1658 }
1659
1660 #else
1661 #define atmel_spi_suspend       NULL
1662 #define atmel_spi_resume        NULL
1663 #endif
1664
1665 #if defined(CONFIG_OF)
1666 static const struct of_device_id atmel_spi_dt_ids[] = {
1667         { .compatible = "atmel,at91rm9200-spi" },
1668         { /* sentinel */ }
1669 };
1670
1671 MODULE_DEVICE_TABLE(of, atmel_spi_dt_ids);
1672 #endif
1673
1674 static struct platform_driver atmel_spi_driver = {
1675         .driver         = {
1676                 .name   = "atmel_spi",
1677                 .owner  = THIS_MODULE,
1678                 .of_match_table = of_match_ptr(atmel_spi_dt_ids),
1679         },
1680         .suspend        = atmel_spi_suspend,
1681         .resume         = atmel_spi_resume,
1682         .probe          = atmel_spi_probe,
1683         .remove         = atmel_spi_remove,
1684 };
1685 module_platform_driver(atmel_spi_driver);
1686
1687 MODULE_DESCRIPTION("Atmel AT32/AT91 SPI Controller driver");
1688 MODULE_AUTHOR("Haavard Skinnemoen (Atmel)");
1689 MODULE_LICENSE("GPL");
1690 MODULE_ALIAS("platform:atmel_spi");