spi/atmel: add support for runtime PM
[cascardo/linux.git] / drivers / spi / spi-atmel.c
1 /*
2  * Driver for Atmel AT32 and AT91 SPI Controllers
3  *
4  * Copyright (C) 2006 Atmel Corporation
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License version 2 as
8  * published by the Free Software Foundation.
9  */
10
11 #include <linux/kernel.h>
12 #include <linux/clk.h>
13 #include <linux/module.h>
14 #include <linux/platform_device.h>
15 #include <linux/delay.h>
16 #include <linux/dma-mapping.h>
17 #include <linux/dmaengine.h>
18 #include <linux/err.h>
19 #include <linux/interrupt.h>
20 #include <linux/spi/spi.h>
21 #include <linux/slab.h>
22 #include <linux/platform_data/atmel.h>
23 #include <linux/platform_data/dma-atmel.h>
24 #include <linux/of.h>
25
26 #include <linux/io.h>
27 #include <linux/gpio.h>
28 #include <linux/pinctrl/consumer.h>
29 #include <linux/pm_runtime.h>
30
31 /* SPI register offsets */
32 #define SPI_CR                                  0x0000
33 #define SPI_MR                                  0x0004
34 #define SPI_RDR                                 0x0008
35 #define SPI_TDR                                 0x000c
36 #define SPI_SR                                  0x0010
37 #define SPI_IER                                 0x0014
38 #define SPI_IDR                                 0x0018
39 #define SPI_IMR                                 0x001c
40 #define SPI_CSR0                                0x0030
41 #define SPI_CSR1                                0x0034
42 #define SPI_CSR2                                0x0038
43 #define SPI_CSR3                                0x003c
44 #define SPI_VERSION                             0x00fc
45 #define SPI_RPR                                 0x0100
46 #define SPI_RCR                                 0x0104
47 #define SPI_TPR                                 0x0108
48 #define SPI_TCR                                 0x010c
49 #define SPI_RNPR                                0x0110
50 #define SPI_RNCR                                0x0114
51 #define SPI_TNPR                                0x0118
52 #define SPI_TNCR                                0x011c
53 #define SPI_PTCR                                0x0120
54 #define SPI_PTSR                                0x0124
55
56 /* Bitfields in CR */
57 #define SPI_SPIEN_OFFSET                        0
58 #define SPI_SPIEN_SIZE                          1
59 #define SPI_SPIDIS_OFFSET                       1
60 #define SPI_SPIDIS_SIZE                         1
61 #define SPI_SWRST_OFFSET                        7
62 #define SPI_SWRST_SIZE                          1
63 #define SPI_LASTXFER_OFFSET                     24
64 #define SPI_LASTXFER_SIZE                       1
65
66 /* Bitfields in MR */
67 #define SPI_MSTR_OFFSET                         0
68 #define SPI_MSTR_SIZE                           1
69 #define SPI_PS_OFFSET                           1
70 #define SPI_PS_SIZE                             1
71 #define SPI_PCSDEC_OFFSET                       2
72 #define SPI_PCSDEC_SIZE                         1
73 #define SPI_FDIV_OFFSET                         3
74 #define SPI_FDIV_SIZE                           1
75 #define SPI_MODFDIS_OFFSET                      4
76 #define SPI_MODFDIS_SIZE                        1
77 #define SPI_WDRBT_OFFSET                        5
78 #define SPI_WDRBT_SIZE                          1
79 #define SPI_LLB_OFFSET                          7
80 #define SPI_LLB_SIZE                            1
81 #define SPI_PCS_OFFSET                          16
82 #define SPI_PCS_SIZE                            4
83 #define SPI_DLYBCS_OFFSET                       24
84 #define SPI_DLYBCS_SIZE                         8
85
86 /* Bitfields in RDR */
87 #define SPI_RD_OFFSET                           0
88 #define SPI_RD_SIZE                             16
89
90 /* Bitfields in TDR */
91 #define SPI_TD_OFFSET                           0
92 #define SPI_TD_SIZE                             16
93
94 /* Bitfields in SR */
95 #define SPI_RDRF_OFFSET                         0
96 #define SPI_RDRF_SIZE                           1
97 #define SPI_TDRE_OFFSET                         1
98 #define SPI_TDRE_SIZE                           1
99 #define SPI_MODF_OFFSET                         2
100 #define SPI_MODF_SIZE                           1
101 #define SPI_OVRES_OFFSET                        3
102 #define SPI_OVRES_SIZE                          1
103 #define SPI_ENDRX_OFFSET                        4
104 #define SPI_ENDRX_SIZE                          1
105 #define SPI_ENDTX_OFFSET                        5
106 #define SPI_ENDTX_SIZE                          1
107 #define SPI_RXBUFF_OFFSET                       6
108 #define SPI_RXBUFF_SIZE                         1
109 #define SPI_TXBUFE_OFFSET                       7
110 #define SPI_TXBUFE_SIZE                         1
111 #define SPI_NSSR_OFFSET                         8
112 #define SPI_NSSR_SIZE                           1
113 #define SPI_TXEMPTY_OFFSET                      9
114 #define SPI_TXEMPTY_SIZE                        1
115 #define SPI_SPIENS_OFFSET                       16
116 #define SPI_SPIENS_SIZE                         1
117
118 /* Bitfields in CSR0 */
119 #define SPI_CPOL_OFFSET                         0
120 #define SPI_CPOL_SIZE                           1
121 #define SPI_NCPHA_OFFSET                        1
122 #define SPI_NCPHA_SIZE                          1
123 #define SPI_CSAAT_OFFSET                        3
124 #define SPI_CSAAT_SIZE                          1
125 #define SPI_BITS_OFFSET                         4
126 #define SPI_BITS_SIZE                           4
127 #define SPI_SCBR_OFFSET                         8
128 #define SPI_SCBR_SIZE                           8
129 #define SPI_DLYBS_OFFSET                        16
130 #define SPI_DLYBS_SIZE                          8
131 #define SPI_DLYBCT_OFFSET                       24
132 #define SPI_DLYBCT_SIZE                         8
133
134 /* Bitfields in RCR */
135 #define SPI_RXCTR_OFFSET                        0
136 #define SPI_RXCTR_SIZE                          16
137
138 /* Bitfields in TCR */
139 #define SPI_TXCTR_OFFSET                        0
140 #define SPI_TXCTR_SIZE                          16
141
142 /* Bitfields in RNCR */
143 #define SPI_RXNCR_OFFSET                        0
144 #define SPI_RXNCR_SIZE                          16
145
146 /* Bitfields in TNCR */
147 #define SPI_TXNCR_OFFSET                        0
148 #define SPI_TXNCR_SIZE                          16
149
150 /* Bitfields in PTCR */
151 #define SPI_RXTEN_OFFSET                        0
152 #define SPI_RXTEN_SIZE                          1
153 #define SPI_RXTDIS_OFFSET                       1
154 #define SPI_RXTDIS_SIZE                         1
155 #define SPI_TXTEN_OFFSET                        8
156 #define SPI_TXTEN_SIZE                          1
157 #define SPI_TXTDIS_OFFSET                       9
158 #define SPI_TXTDIS_SIZE                         1
159
160 /* Constants for BITS */
161 #define SPI_BITS_8_BPT                          0
162 #define SPI_BITS_9_BPT                          1
163 #define SPI_BITS_10_BPT                         2
164 #define SPI_BITS_11_BPT                         3
165 #define SPI_BITS_12_BPT                         4
166 #define SPI_BITS_13_BPT                         5
167 #define SPI_BITS_14_BPT                         6
168 #define SPI_BITS_15_BPT                         7
169 #define SPI_BITS_16_BPT                         8
170
171 /* Bit manipulation macros */
172 #define SPI_BIT(name) \
173         (1 << SPI_##name##_OFFSET)
174 #define SPI_BF(name, value) \
175         (((value) & ((1 << SPI_##name##_SIZE) - 1)) << SPI_##name##_OFFSET)
176 #define SPI_BFEXT(name, value) \
177         (((value) >> SPI_##name##_OFFSET) & ((1 << SPI_##name##_SIZE) - 1))
178 #define SPI_BFINS(name, value, old) \
179         (((old) & ~(((1 << SPI_##name##_SIZE) - 1) << SPI_##name##_OFFSET)) \
180           | SPI_BF(name, value))
181
182 /* Register access macros */
183 #define spi_readl(port, reg) \
184         __raw_readl((port)->regs + SPI_##reg)
185 #define spi_writel(port, reg, value) \
186         __raw_writel((value), (port)->regs + SPI_##reg)
187
188 /* use PIO for small transfers, avoiding DMA setup/teardown overhead and
189  * cache operations; better heuristics consider wordsize and bitrate.
190  */
191 #define DMA_MIN_BYTES   16
192
193 #define SPI_DMA_TIMEOUT         (msecs_to_jiffies(1000))
194
195 #define AUTOSUSPEND_TIMEOUT     2000
196
197 struct atmel_spi_dma {
198         struct dma_chan                 *chan_rx;
199         struct dma_chan                 *chan_tx;
200         struct scatterlist              sgrx;
201         struct scatterlist              sgtx;
202         struct dma_async_tx_descriptor  *data_desc_rx;
203         struct dma_async_tx_descriptor  *data_desc_tx;
204
205         struct at_dma_slave     dma_slave;
206 };
207
208 struct atmel_spi_caps {
209         bool    is_spi2;
210         bool    has_wdrbt;
211         bool    has_dma_support;
212 };
213
214 /*
215  * The core SPI transfer engine just talks to a register bank to set up
216  * DMA transfers; transfer queue progress is driven by IRQs.  The clock
217  * framework provides the base clock, subdivided for each spi_device.
218  */
219 struct atmel_spi {
220         spinlock_t              lock;
221         unsigned long           flags;
222
223         phys_addr_t             phybase;
224         void __iomem            *regs;
225         int                     irq;
226         struct clk              *clk;
227         struct platform_device  *pdev;
228
229         struct spi_transfer     *current_transfer;
230         int                     current_remaining_bytes;
231         int                     done_status;
232
233         struct completion       xfer_completion;
234
235         /* scratch buffer */
236         void                    *buffer;
237         dma_addr_t              buffer_dma;
238
239         struct atmel_spi_caps   caps;
240
241         bool                    use_dma;
242         bool                    use_pdc;
243         /* dmaengine data */
244         struct atmel_spi_dma    dma;
245
246         bool                    keep_cs;
247         bool                    cs_active;
248 };
249
250 /* Controller-specific per-slave state */
251 struct atmel_spi_device {
252         unsigned int            npcs_pin;
253         u32                     csr;
254 };
255
256 #define BUFFER_SIZE             PAGE_SIZE
257 #define INVALID_DMA_ADDRESS     0xffffffff
258
259 /*
260  * Version 2 of the SPI controller has
261  *  - CR.LASTXFER
262  *  - SPI_MR.DIV32 may become FDIV or must-be-zero (here: always zero)
263  *  - SPI_SR.TXEMPTY, SPI_SR.NSSR (and corresponding irqs)
264  *  - SPI_CSRx.CSAAT
265  *  - SPI_CSRx.SBCR allows faster clocking
266  */
267 static bool atmel_spi_is_v2(struct atmel_spi *as)
268 {
269         return as->caps.is_spi2;
270 }
271
272 /*
273  * Earlier SPI controllers (e.g. on at91rm9200) have a design bug whereby
274  * they assume that spi slave device state will not change on deselect, so
275  * that automagic deselection is OK.  ("NPCSx rises if no data is to be
276  * transmitted")  Not so!  Workaround uses nCSx pins as GPIOs; or newer
277  * controllers have CSAAT and friends.
278  *
279  * Since the CSAAT functionality is a bit weird on newer controllers as
280  * well, we use GPIO to control nCSx pins on all controllers, updating
281  * MR.PCS to avoid confusing the controller.  Using GPIOs also lets us
282  * support active-high chipselects despite the controller's belief that
283  * only active-low devices/systems exists.
284  *
285  * However, at91rm9200 has a second erratum whereby nCS0 doesn't work
286  * right when driven with GPIO.  ("Mode Fault does not allow more than one
287  * Master on Chip Select 0.")  No workaround exists for that ... so for
288  * nCS0 on that chip, we (a) don't use the GPIO, (b) can't support CS_HIGH,
289  * and (c) will trigger that first erratum in some cases.
290  */
291
292 static void cs_activate(struct atmel_spi *as, struct spi_device *spi)
293 {
294         struct atmel_spi_device *asd = spi->controller_state;
295         unsigned active = spi->mode & SPI_CS_HIGH;
296         u32 mr;
297
298         if (atmel_spi_is_v2(as)) {
299                 spi_writel(as, CSR0 + 4 * spi->chip_select, asd->csr);
300                 /* For the low SPI version, there is a issue that PDC transfer
301                  * on CS1,2,3 needs SPI_CSR0.BITS config as SPI_CSR1,2,3.BITS
302                  */
303                 spi_writel(as, CSR0, asd->csr);
304                 if (as->caps.has_wdrbt) {
305                         spi_writel(as, MR,
306                                         SPI_BF(PCS, ~(0x01 << spi->chip_select))
307                                         | SPI_BIT(WDRBT)
308                                         | SPI_BIT(MODFDIS)
309                                         | SPI_BIT(MSTR));
310                 } else {
311                         spi_writel(as, MR,
312                                         SPI_BF(PCS, ~(0x01 << spi->chip_select))
313                                         | SPI_BIT(MODFDIS)
314                                         | SPI_BIT(MSTR));
315                 }
316
317                 mr = spi_readl(as, MR);
318                 gpio_set_value(asd->npcs_pin, active);
319         } else {
320                 u32 cpol = (spi->mode & SPI_CPOL) ? SPI_BIT(CPOL) : 0;
321                 int i;
322                 u32 csr;
323
324                 /* Make sure clock polarity is correct */
325                 for (i = 0; i < spi->master->num_chipselect; i++) {
326                         csr = spi_readl(as, CSR0 + 4 * i);
327                         if ((csr ^ cpol) & SPI_BIT(CPOL))
328                                 spi_writel(as, CSR0 + 4 * i,
329                                                 csr ^ SPI_BIT(CPOL));
330                 }
331
332                 mr = spi_readl(as, MR);
333                 mr = SPI_BFINS(PCS, ~(1 << spi->chip_select), mr);
334                 if (spi->chip_select != 0)
335                         gpio_set_value(asd->npcs_pin, active);
336                 spi_writel(as, MR, mr);
337         }
338
339         dev_dbg(&spi->dev, "activate %u%s, mr %08x\n",
340                         asd->npcs_pin, active ? " (high)" : "",
341                         mr);
342 }
343
344 static void cs_deactivate(struct atmel_spi *as, struct spi_device *spi)
345 {
346         struct atmel_spi_device *asd = spi->controller_state;
347         unsigned active = spi->mode & SPI_CS_HIGH;
348         u32 mr;
349
350         /* only deactivate *this* device; sometimes transfers to
351          * another device may be active when this routine is called.
352          */
353         mr = spi_readl(as, MR);
354         if (~SPI_BFEXT(PCS, mr) & (1 << spi->chip_select)) {
355                 mr = SPI_BFINS(PCS, 0xf, mr);
356                 spi_writel(as, MR, mr);
357         }
358
359         dev_dbg(&spi->dev, "DEactivate %u%s, mr %08x\n",
360                         asd->npcs_pin, active ? " (low)" : "",
361                         mr);
362
363         if (atmel_spi_is_v2(as) || spi->chip_select != 0)
364                 gpio_set_value(asd->npcs_pin, !active);
365 }
366
367 static void atmel_spi_lock(struct atmel_spi *as) __acquires(&as->lock)
368 {
369         spin_lock_irqsave(&as->lock, as->flags);
370 }
371
372 static void atmel_spi_unlock(struct atmel_spi *as) __releases(&as->lock)
373 {
374         spin_unlock_irqrestore(&as->lock, as->flags);
375 }
376
377 static inline bool atmel_spi_use_dma(struct atmel_spi *as,
378                                 struct spi_transfer *xfer)
379 {
380         return as->use_dma && xfer->len >= DMA_MIN_BYTES;
381 }
382
383 static int atmel_spi_dma_slave_config(struct atmel_spi *as,
384                                 struct dma_slave_config *slave_config,
385                                 u8 bits_per_word)
386 {
387         int err = 0;
388
389         if (bits_per_word > 8) {
390                 slave_config->dst_addr_width = DMA_SLAVE_BUSWIDTH_2_BYTES;
391                 slave_config->src_addr_width = DMA_SLAVE_BUSWIDTH_2_BYTES;
392         } else {
393                 slave_config->dst_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE;
394                 slave_config->src_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE;
395         }
396
397         slave_config->dst_addr = (dma_addr_t)as->phybase + SPI_TDR;
398         slave_config->src_addr = (dma_addr_t)as->phybase + SPI_RDR;
399         slave_config->src_maxburst = 1;
400         slave_config->dst_maxburst = 1;
401         slave_config->device_fc = false;
402
403         slave_config->direction = DMA_MEM_TO_DEV;
404         if (dmaengine_slave_config(as->dma.chan_tx, slave_config)) {
405                 dev_err(&as->pdev->dev,
406                         "failed to configure tx dma channel\n");
407                 err = -EINVAL;
408         }
409
410         slave_config->direction = DMA_DEV_TO_MEM;
411         if (dmaengine_slave_config(as->dma.chan_rx, slave_config)) {
412                 dev_err(&as->pdev->dev,
413                         "failed to configure rx dma channel\n");
414                 err = -EINVAL;
415         }
416
417         return err;
418 }
419
420 static bool filter(struct dma_chan *chan, void *pdata)
421 {
422         struct atmel_spi_dma *sl_pdata = pdata;
423         struct at_dma_slave *sl;
424
425         if (!sl_pdata)
426                 return false;
427
428         sl = &sl_pdata->dma_slave;
429         if (sl->dma_dev == chan->device->dev) {
430                 chan->private = sl;
431                 return true;
432         } else {
433                 return false;
434         }
435 }
436
437 static int atmel_spi_configure_dma(struct atmel_spi *as)
438 {
439         struct dma_slave_config slave_config;
440         struct device *dev = &as->pdev->dev;
441         int err;
442
443         dma_cap_mask_t mask;
444         dma_cap_zero(mask);
445         dma_cap_set(DMA_SLAVE, mask);
446
447         as->dma.chan_tx = dma_request_slave_channel_compat(mask, filter,
448                                                            &as->dma,
449                                                            dev, "tx");
450         if (!as->dma.chan_tx) {
451                 dev_err(dev,
452                         "DMA TX channel not available, SPI unable to use DMA\n");
453                 err = -EBUSY;
454                 goto error;
455         }
456
457         as->dma.chan_rx = dma_request_slave_channel_compat(mask, filter,
458                                                            &as->dma,
459                                                            dev, "rx");
460
461         if (!as->dma.chan_rx) {
462                 dev_err(dev,
463                         "DMA RX channel not available, SPI unable to use DMA\n");
464                 err = -EBUSY;
465                 goto error;
466         }
467
468         err = atmel_spi_dma_slave_config(as, &slave_config, 8);
469         if (err)
470                 goto error;
471
472         dev_info(&as->pdev->dev,
473                         "Using %s (tx) and %s (rx) for DMA transfers\n",
474                         dma_chan_name(as->dma.chan_tx),
475                         dma_chan_name(as->dma.chan_rx));
476         return 0;
477 error:
478         if (as->dma.chan_rx)
479                 dma_release_channel(as->dma.chan_rx);
480         if (as->dma.chan_tx)
481                 dma_release_channel(as->dma.chan_tx);
482         return err;
483 }
484
485 static void atmel_spi_stop_dma(struct atmel_spi *as)
486 {
487         if (as->dma.chan_rx)
488                 dmaengine_terminate_all(as->dma.chan_rx);
489         if (as->dma.chan_tx)
490                 dmaengine_terminate_all(as->dma.chan_tx);
491 }
492
493 static void atmel_spi_release_dma(struct atmel_spi *as)
494 {
495         if (as->dma.chan_rx)
496                 dma_release_channel(as->dma.chan_rx);
497         if (as->dma.chan_tx)
498                 dma_release_channel(as->dma.chan_tx);
499 }
500
501 /* This function is called by the DMA driver from tasklet context */
502 static void dma_callback(void *data)
503 {
504         struct spi_master       *master = data;
505         struct atmel_spi        *as = spi_master_get_devdata(master);
506
507         complete(&as->xfer_completion);
508 }
509
510 /*
511  * Next transfer using PIO.
512  */
513 static void atmel_spi_next_xfer_pio(struct spi_master *master,
514                                 struct spi_transfer *xfer)
515 {
516         struct atmel_spi        *as = spi_master_get_devdata(master);
517         unsigned long xfer_pos = xfer->len - as->current_remaining_bytes;
518
519         dev_vdbg(master->dev.parent, "atmel_spi_next_xfer_pio\n");
520
521         /* Make sure data is not remaining in RDR */
522         spi_readl(as, RDR);
523         while (spi_readl(as, SR) & SPI_BIT(RDRF)) {
524                 spi_readl(as, RDR);
525                 cpu_relax();
526         }
527
528         if (xfer->tx_buf) {
529                 if (xfer->bits_per_word > 8)
530                         spi_writel(as, TDR, *(u16 *)(xfer->tx_buf + xfer_pos));
531                 else
532                         spi_writel(as, TDR, *(u8 *)(xfer->tx_buf + xfer_pos));
533         } else {
534                 spi_writel(as, TDR, 0);
535         }
536
537         dev_dbg(master->dev.parent,
538                 "  start pio xfer %p: len %u tx %p rx %p bitpw %d\n",
539                 xfer, xfer->len, xfer->tx_buf, xfer->rx_buf,
540                 xfer->bits_per_word);
541
542         /* Enable relevant interrupts */
543         spi_writel(as, IER, SPI_BIT(RDRF) | SPI_BIT(OVRES));
544 }
545
546 /*
547  * Submit next transfer for DMA.
548  */
549 static int atmel_spi_next_xfer_dma_submit(struct spi_master *master,
550                                 struct spi_transfer *xfer,
551                                 u32 *plen)
552 {
553         struct atmel_spi        *as = spi_master_get_devdata(master);
554         struct dma_chan         *rxchan = as->dma.chan_rx;
555         struct dma_chan         *txchan = as->dma.chan_tx;
556         struct dma_async_tx_descriptor *rxdesc;
557         struct dma_async_tx_descriptor *txdesc;
558         struct dma_slave_config slave_config;
559         dma_cookie_t            cookie;
560         u32     len = *plen;
561
562         dev_vdbg(master->dev.parent, "atmel_spi_next_xfer_dma_submit\n");
563
564         /* Check that the channels are available */
565         if (!rxchan || !txchan)
566                 return -ENODEV;
567
568         /* release lock for DMA operations */
569         atmel_spi_unlock(as);
570
571         /* prepare the RX dma transfer */
572         sg_init_table(&as->dma.sgrx, 1);
573         if (xfer->rx_buf) {
574                 as->dma.sgrx.dma_address = xfer->rx_dma + xfer->len - *plen;
575         } else {
576                 as->dma.sgrx.dma_address = as->buffer_dma;
577                 if (len > BUFFER_SIZE)
578                         len = BUFFER_SIZE;
579         }
580
581         /* prepare the TX dma transfer */
582         sg_init_table(&as->dma.sgtx, 1);
583         if (xfer->tx_buf) {
584                 as->dma.sgtx.dma_address = xfer->tx_dma + xfer->len - *plen;
585         } else {
586                 as->dma.sgtx.dma_address = as->buffer_dma;
587                 if (len > BUFFER_SIZE)
588                         len = BUFFER_SIZE;
589                 memset(as->buffer, 0, len);
590         }
591
592         sg_dma_len(&as->dma.sgtx) = len;
593         sg_dma_len(&as->dma.sgrx) = len;
594
595         *plen = len;
596
597         if (atmel_spi_dma_slave_config(as, &slave_config, 8))
598                 goto err_exit;
599
600         /* Send both scatterlists */
601         rxdesc = dmaengine_prep_slave_sg(rxchan, &as->dma.sgrx, 1,
602                                          DMA_FROM_DEVICE,
603                                          DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
604         if (!rxdesc)
605                 goto err_dma;
606
607         txdesc = dmaengine_prep_slave_sg(txchan, &as->dma.sgtx, 1,
608                                          DMA_TO_DEVICE,
609                                          DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
610         if (!txdesc)
611                 goto err_dma;
612
613         dev_dbg(master->dev.parent,
614                 "  start dma xfer %p: len %u tx %p/%08llx rx %p/%08llx\n",
615                 xfer, xfer->len, xfer->tx_buf, (unsigned long long)xfer->tx_dma,
616                 xfer->rx_buf, (unsigned long long)xfer->rx_dma);
617
618         /* Enable relevant interrupts */
619         spi_writel(as, IER, SPI_BIT(OVRES));
620
621         /* Put the callback on the RX transfer only, that should finish last */
622         rxdesc->callback = dma_callback;
623         rxdesc->callback_param = master;
624
625         /* Submit and fire RX and TX with TX last so we're ready to read! */
626         cookie = rxdesc->tx_submit(rxdesc);
627         if (dma_submit_error(cookie))
628                 goto err_dma;
629         cookie = txdesc->tx_submit(txdesc);
630         if (dma_submit_error(cookie))
631                 goto err_dma;
632         rxchan->device->device_issue_pending(rxchan);
633         txchan->device->device_issue_pending(txchan);
634
635         /* take back lock */
636         atmel_spi_lock(as);
637         return 0;
638
639 err_dma:
640         spi_writel(as, IDR, SPI_BIT(OVRES));
641         atmel_spi_stop_dma(as);
642 err_exit:
643         atmel_spi_lock(as);
644         return -ENOMEM;
645 }
646
647 static void atmel_spi_next_xfer_data(struct spi_master *master,
648                                 struct spi_transfer *xfer,
649                                 dma_addr_t *tx_dma,
650                                 dma_addr_t *rx_dma,
651                                 u32 *plen)
652 {
653         struct atmel_spi        *as = spi_master_get_devdata(master);
654         u32                     len = *plen;
655
656         /* use scratch buffer only when rx or tx data is unspecified */
657         if (xfer->rx_buf)
658                 *rx_dma = xfer->rx_dma + xfer->len - *plen;
659         else {
660                 *rx_dma = as->buffer_dma;
661                 if (len > BUFFER_SIZE)
662                         len = BUFFER_SIZE;
663         }
664
665         if (xfer->tx_buf)
666                 *tx_dma = xfer->tx_dma + xfer->len - *plen;
667         else {
668                 *tx_dma = as->buffer_dma;
669                 if (len > BUFFER_SIZE)
670                         len = BUFFER_SIZE;
671                 memset(as->buffer, 0, len);
672                 dma_sync_single_for_device(&as->pdev->dev,
673                                 as->buffer_dma, len, DMA_TO_DEVICE);
674         }
675
676         *plen = len;
677 }
678
679 static int atmel_spi_set_xfer_speed(struct atmel_spi *as,
680                                     struct spi_device *spi,
681                                     struct spi_transfer *xfer)
682 {
683         u32                     scbr, csr;
684         unsigned long           bus_hz;
685
686         /* v1 chips start out at half the peripheral bus speed. */
687         bus_hz = clk_get_rate(as->clk);
688         if (!atmel_spi_is_v2(as))
689                 bus_hz /= 2;
690
691         /*
692          * Calculate the lowest divider that satisfies the
693          * constraint, assuming div32/fdiv/mbz == 0.
694          */
695         if (xfer->speed_hz)
696                 scbr = DIV_ROUND_UP(bus_hz, xfer->speed_hz);
697         else
698                 /*
699                  * This can happend if max_speed is null.
700                  * In this case, we set the lowest possible speed
701                  */
702                 scbr = 0xff;
703
704         /*
705          * If the resulting divider doesn't fit into the
706          * register bitfield, we can't satisfy the constraint.
707          */
708         if (scbr >= (1 << SPI_SCBR_SIZE)) {
709                 dev_err(&spi->dev,
710                         "setup: %d Hz too slow, scbr %u; min %ld Hz\n",
711                         xfer->speed_hz, scbr, bus_hz/255);
712                 return -EINVAL;
713         }
714         if (scbr == 0) {
715                 dev_err(&spi->dev,
716                         "setup: %d Hz too high, scbr %u; max %ld Hz\n",
717                         xfer->speed_hz, scbr, bus_hz);
718                 return -EINVAL;
719         }
720         csr = spi_readl(as, CSR0 + 4 * spi->chip_select);
721         csr = SPI_BFINS(SCBR, scbr, csr);
722         spi_writel(as, CSR0 + 4 * spi->chip_select, csr);
723
724         return 0;
725 }
726
727 /*
728  * Submit next transfer for PDC.
729  * lock is held, spi irq is blocked
730  */
731 static void atmel_spi_pdc_next_xfer(struct spi_master *master,
732                                         struct spi_message *msg,
733                                         struct spi_transfer *xfer)
734 {
735         struct atmel_spi        *as = spi_master_get_devdata(master);
736         u32                     len;
737         dma_addr_t              tx_dma, rx_dma;
738
739         spi_writel(as, PTCR, SPI_BIT(RXTDIS) | SPI_BIT(TXTDIS));
740
741         len = as->current_remaining_bytes;
742         atmel_spi_next_xfer_data(master, xfer, &tx_dma, &rx_dma, &len);
743         as->current_remaining_bytes -= len;
744
745         spi_writel(as, RPR, rx_dma);
746         spi_writel(as, TPR, tx_dma);
747
748         if (msg->spi->bits_per_word > 8)
749                 len >>= 1;
750         spi_writel(as, RCR, len);
751         spi_writel(as, TCR, len);
752
753         dev_dbg(&msg->spi->dev,
754                 "  start xfer %p: len %u tx %p/%08llx rx %p/%08llx\n",
755                 xfer, xfer->len, xfer->tx_buf,
756                 (unsigned long long)xfer->tx_dma, xfer->rx_buf,
757                 (unsigned long long)xfer->rx_dma);
758
759         if (as->current_remaining_bytes) {
760                 len = as->current_remaining_bytes;
761                 atmel_spi_next_xfer_data(master, xfer, &tx_dma, &rx_dma, &len);
762                 as->current_remaining_bytes -= len;
763
764                 spi_writel(as, RNPR, rx_dma);
765                 spi_writel(as, TNPR, tx_dma);
766
767                 if (msg->spi->bits_per_word > 8)
768                         len >>= 1;
769                 spi_writel(as, RNCR, len);
770                 spi_writel(as, TNCR, len);
771
772                 dev_dbg(&msg->spi->dev,
773                         "  next xfer %p: len %u tx %p/%08llx rx %p/%08llx\n",
774                         xfer, xfer->len, xfer->tx_buf,
775                         (unsigned long long)xfer->tx_dma, xfer->rx_buf,
776                         (unsigned long long)xfer->rx_dma);
777         }
778
779         /* REVISIT: We're waiting for ENDRX before we start the next
780          * transfer because we need to handle some difficult timing
781          * issues otherwise. If we wait for ENDTX in one transfer and
782          * then starts waiting for ENDRX in the next, it's difficult
783          * to tell the difference between the ENDRX interrupt we're
784          * actually waiting for and the ENDRX interrupt of the
785          * previous transfer.
786          *
787          * It should be doable, though. Just not now...
788          */
789         spi_writel(as, IER, SPI_BIT(ENDRX) | SPI_BIT(OVRES));
790         spi_writel(as, PTCR, SPI_BIT(TXTEN) | SPI_BIT(RXTEN));
791 }
792
793 /*
794  * For DMA, tx_buf/tx_dma have the same relationship as rx_buf/rx_dma:
795  *  - The buffer is either valid for CPU access, else NULL
796  *  - If the buffer is valid, so is its DMA address
797  *
798  * This driver manages the dma address unless message->is_dma_mapped.
799  */
800 static int
801 atmel_spi_dma_map_xfer(struct atmel_spi *as, struct spi_transfer *xfer)
802 {
803         struct device   *dev = &as->pdev->dev;
804
805         xfer->tx_dma = xfer->rx_dma = INVALID_DMA_ADDRESS;
806         if (xfer->tx_buf) {
807                 /* tx_buf is a const void* where we need a void * for the dma
808                  * mapping */
809                 void *nonconst_tx = (void *)xfer->tx_buf;
810
811                 xfer->tx_dma = dma_map_single(dev,
812                                 nonconst_tx, xfer->len,
813                                 DMA_TO_DEVICE);
814                 if (dma_mapping_error(dev, xfer->tx_dma))
815                         return -ENOMEM;
816         }
817         if (xfer->rx_buf) {
818                 xfer->rx_dma = dma_map_single(dev,
819                                 xfer->rx_buf, xfer->len,
820                                 DMA_FROM_DEVICE);
821                 if (dma_mapping_error(dev, xfer->rx_dma)) {
822                         if (xfer->tx_buf)
823                                 dma_unmap_single(dev,
824                                                 xfer->tx_dma, xfer->len,
825                                                 DMA_TO_DEVICE);
826                         return -ENOMEM;
827                 }
828         }
829         return 0;
830 }
831
832 static void atmel_spi_dma_unmap_xfer(struct spi_master *master,
833                                      struct spi_transfer *xfer)
834 {
835         if (xfer->tx_dma != INVALID_DMA_ADDRESS)
836                 dma_unmap_single(master->dev.parent, xfer->tx_dma,
837                                  xfer->len, DMA_TO_DEVICE);
838         if (xfer->rx_dma != INVALID_DMA_ADDRESS)
839                 dma_unmap_single(master->dev.parent, xfer->rx_dma,
840                                  xfer->len, DMA_FROM_DEVICE);
841 }
842
843 static void atmel_spi_disable_pdc_transfer(struct atmel_spi *as)
844 {
845         spi_writel(as, PTCR, SPI_BIT(RXTDIS) | SPI_BIT(TXTDIS));
846 }
847
848 /* Called from IRQ
849  *
850  * Must update "current_remaining_bytes" to keep track of data
851  * to transfer.
852  */
853 static void
854 atmel_spi_pump_pio_data(struct atmel_spi *as, struct spi_transfer *xfer)
855 {
856         u8              *rxp;
857         u16             *rxp16;
858         unsigned long   xfer_pos = xfer->len - as->current_remaining_bytes;
859
860         if (xfer->rx_buf) {
861                 if (xfer->bits_per_word > 8) {
862                         rxp16 = (u16 *)(((u8 *)xfer->rx_buf) + xfer_pos);
863                         *rxp16 = spi_readl(as, RDR);
864                 } else {
865                         rxp = ((u8 *)xfer->rx_buf) + xfer_pos;
866                         *rxp = spi_readl(as, RDR);
867                 }
868         } else {
869                 spi_readl(as, RDR);
870         }
871         if (xfer->bits_per_word > 8) {
872                 if (as->current_remaining_bytes > 2)
873                         as->current_remaining_bytes -= 2;
874                 else
875                         as->current_remaining_bytes = 0;
876         } else {
877                 as->current_remaining_bytes--;
878         }
879 }
880
881 /* Interrupt
882  *
883  * No need for locking in this Interrupt handler: done_status is the
884  * only information modified.
885  */
886 static irqreturn_t
887 atmel_spi_pio_interrupt(int irq, void *dev_id)
888 {
889         struct spi_master       *master = dev_id;
890         struct atmel_spi        *as = spi_master_get_devdata(master);
891         u32                     status, pending, imr;
892         struct spi_transfer     *xfer;
893         int                     ret = IRQ_NONE;
894
895         imr = spi_readl(as, IMR);
896         status = spi_readl(as, SR);
897         pending = status & imr;
898
899         if (pending & SPI_BIT(OVRES)) {
900                 ret = IRQ_HANDLED;
901                 spi_writel(as, IDR, SPI_BIT(OVRES));
902                 dev_warn(master->dev.parent, "overrun\n");
903
904                 /*
905                  * When we get an overrun, we disregard the current
906                  * transfer. Data will not be copied back from any
907                  * bounce buffer and msg->actual_len will not be
908                  * updated with the last xfer.
909                  *
910                  * We will also not process any remaning transfers in
911                  * the message.
912                  */
913                 as->done_status = -EIO;
914                 smp_wmb();
915
916                 /* Clear any overrun happening while cleaning up */
917                 spi_readl(as, SR);
918
919                 complete(&as->xfer_completion);
920
921         } else if (pending & SPI_BIT(RDRF)) {
922                 atmel_spi_lock(as);
923
924                 if (as->current_remaining_bytes) {
925                         ret = IRQ_HANDLED;
926                         xfer = as->current_transfer;
927                         atmel_spi_pump_pio_data(as, xfer);
928                         if (!as->current_remaining_bytes)
929                                 spi_writel(as, IDR, pending);
930
931                         complete(&as->xfer_completion);
932                 }
933
934                 atmel_spi_unlock(as);
935         } else {
936                 WARN_ONCE(pending, "IRQ not handled, pending = %x\n", pending);
937                 ret = IRQ_HANDLED;
938                 spi_writel(as, IDR, pending);
939         }
940
941         return ret;
942 }
943
944 static irqreturn_t
945 atmel_spi_pdc_interrupt(int irq, void *dev_id)
946 {
947         struct spi_master       *master = dev_id;
948         struct atmel_spi        *as = spi_master_get_devdata(master);
949         u32                     status, pending, imr;
950         int                     ret = IRQ_NONE;
951
952         imr = spi_readl(as, IMR);
953         status = spi_readl(as, SR);
954         pending = status & imr;
955
956         if (pending & SPI_BIT(OVRES)) {
957
958                 ret = IRQ_HANDLED;
959
960                 spi_writel(as, IDR, (SPI_BIT(RXBUFF) | SPI_BIT(ENDRX)
961                                      | SPI_BIT(OVRES)));
962
963                 /* Clear any overrun happening while cleaning up */
964                 spi_readl(as, SR);
965
966                 as->done_status = -EIO;
967
968                 complete(&as->xfer_completion);
969
970         } else if (pending & (SPI_BIT(RXBUFF) | SPI_BIT(ENDRX))) {
971                 ret = IRQ_HANDLED;
972
973                 spi_writel(as, IDR, pending);
974
975                 complete(&as->xfer_completion);
976         }
977
978         return ret;
979 }
980
981 static int atmel_spi_setup(struct spi_device *spi)
982 {
983         struct atmel_spi        *as;
984         struct atmel_spi_device *asd;
985         u32                     csr;
986         unsigned int            bits = spi->bits_per_word;
987         unsigned int            npcs_pin;
988         int                     ret;
989
990         as = spi_master_get_devdata(spi->master);
991
992         /* see notes above re chipselect */
993         if (!atmel_spi_is_v2(as)
994                         && spi->chip_select == 0
995                         && (spi->mode & SPI_CS_HIGH)) {
996                 dev_dbg(&spi->dev, "setup: can't be active-high\n");
997                 return -EINVAL;
998         }
999
1000         csr = SPI_BF(BITS, bits - 8);
1001         if (spi->mode & SPI_CPOL)
1002                 csr |= SPI_BIT(CPOL);
1003         if (!(spi->mode & SPI_CPHA))
1004                 csr |= SPI_BIT(NCPHA);
1005
1006         /* DLYBS is mostly irrelevant since we manage chipselect using GPIOs.
1007          *
1008          * DLYBCT would add delays between words, slowing down transfers.
1009          * It could potentially be useful to cope with DMA bottlenecks, but
1010          * in those cases it's probably best to just use a lower bitrate.
1011          */
1012         csr |= SPI_BF(DLYBS, 0);
1013         csr |= SPI_BF(DLYBCT, 0);
1014
1015         /* chipselect must have been muxed as GPIO (e.g. in board setup) */
1016         npcs_pin = (unsigned long)spi->controller_data;
1017
1018         if (gpio_is_valid(spi->cs_gpio))
1019                 npcs_pin = spi->cs_gpio;
1020
1021         asd = spi->controller_state;
1022         if (!asd) {
1023                 asd = kzalloc(sizeof(struct atmel_spi_device), GFP_KERNEL);
1024                 if (!asd)
1025                         return -ENOMEM;
1026
1027                 ret = gpio_request(npcs_pin, dev_name(&spi->dev));
1028                 if (ret) {
1029                         kfree(asd);
1030                         return ret;
1031                 }
1032
1033                 asd->npcs_pin = npcs_pin;
1034                 spi->controller_state = asd;
1035                 gpio_direction_output(npcs_pin, !(spi->mode & SPI_CS_HIGH));
1036         }
1037
1038         asd->csr = csr;
1039
1040         dev_dbg(&spi->dev,
1041                 "setup: bpw %u mode 0x%x -> csr%d %08x\n",
1042                 bits, spi->mode, spi->chip_select, csr);
1043
1044         if (!atmel_spi_is_v2(as))
1045                 spi_writel(as, CSR0 + 4 * spi->chip_select, csr);
1046
1047         return 0;
1048 }
1049
1050 static int atmel_spi_one_transfer(struct spi_master *master,
1051                                         struct spi_message *msg,
1052                                         struct spi_transfer *xfer)
1053 {
1054         struct atmel_spi        *as;
1055         struct spi_device       *spi = msg->spi;
1056         u8                      bits;
1057         u32                     len;
1058         struct atmel_spi_device *asd;
1059         int                     timeout;
1060         int                     ret;
1061
1062         as = spi_master_get_devdata(master);
1063
1064         if (!(xfer->tx_buf || xfer->rx_buf) && xfer->len) {
1065                 dev_dbg(&spi->dev, "missing rx or tx buf\n");
1066                 return -EINVAL;
1067         }
1068
1069         if (xfer->bits_per_word) {
1070                 asd = spi->controller_state;
1071                 bits = (asd->csr >> 4) & 0xf;
1072                 if (bits != xfer->bits_per_word - 8) {
1073                         dev_dbg(&spi->dev,
1074                         "you can't yet change bits_per_word in transfers\n");
1075                         return -ENOPROTOOPT;
1076                 }
1077         }
1078
1079         /*
1080          * DMA map early, for performance (empties dcache ASAP) and
1081          * better fault reporting.
1082          */
1083         if ((!msg->is_dma_mapped)
1084                 && (atmel_spi_use_dma(as, xfer) || as->use_pdc)) {
1085                 if (atmel_spi_dma_map_xfer(as, xfer) < 0)
1086                         return -ENOMEM;
1087         }
1088
1089         atmel_spi_set_xfer_speed(as, msg->spi, xfer);
1090
1091         as->done_status = 0;
1092         as->current_transfer = xfer;
1093         as->current_remaining_bytes = xfer->len;
1094         while (as->current_remaining_bytes) {
1095                 reinit_completion(&as->xfer_completion);
1096
1097                 if (as->use_pdc) {
1098                         atmel_spi_pdc_next_xfer(master, msg, xfer);
1099                 } else if (atmel_spi_use_dma(as, xfer)) {
1100                         len = as->current_remaining_bytes;
1101                         ret = atmel_spi_next_xfer_dma_submit(master,
1102                                                                 xfer, &len);
1103                         if (ret) {
1104                                 dev_err(&spi->dev,
1105                                         "unable to use DMA, fallback to PIO\n");
1106                                 atmel_spi_next_xfer_pio(master, xfer);
1107                         } else {
1108                                 as->current_remaining_bytes -= len;
1109                                 if (as->current_remaining_bytes < 0)
1110                                         as->current_remaining_bytes = 0;
1111                         }
1112                 } else {
1113                         atmel_spi_next_xfer_pio(master, xfer);
1114                 }
1115
1116                 /* interrupts are disabled, so free the lock for schedule */
1117                 atmel_spi_unlock(as);
1118                 ret = wait_for_completion_timeout(&as->xfer_completion,
1119                                                         SPI_DMA_TIMEOUT);
1120                 atmel_spi_lock(as);
1121                 if (WARN_ON(ret == 0)) {
1122                         dev_err(&spi->dev,
1123                                 "spi trasfer timeout, err %d\n", ret);
1124                         as->done_status = -EIO;
1125                 } else {
1126                         ret = 0;
1127                 }
1128
1129                 if (as->done_status)
1130                         break;
1131         }
1132
1133         if (as->done_status) {
1134                 if (as->use_pdc) {
1135                         dev_warn(master->dev.parent,
1136                                 "overrun (%u/%u remaining)\n",
1137                                 spi_readl(as, TCR), spi_readl(as, RCR));
1138
1139                         /*
1140                          * Clean up DMA registers and make sure the data
1141                          * registers are empty.
1142                          */
1143                         spi_writel(as, RNCR, 0);
1144                         spi_writel(as, TNCR, 0);
1145                         spi_writel(as, RCR, 0);
1146                         spi_writel(as, TCR, 0);
1147                         for (timeout = 1000; timeout; timeout--)
1148                                 if (spi_readl(as, SR) & SPI_BIT(TXEMPTY))
1149                                         break;
1150                         if (!timeout)
1151                                 dev_warn(master->dev.parent,
1152                                          "timeout waiting for TXEMPTY");
1153                         while (spi_readl(as, SR) & SPI_BIT(RDRF))
1154                                 spi_readl(as, RDR);
1155
1156                         /* Clear any overrun happening while cleaning up */
1157                         spi_readl(as, SR);
1158
1159                 } else if (atmel_spi_use_dma(as, xfer)) {
1160                         atmel_spi_stop_dma(as);
1161                 }
1162
1163                 if (!msg->is_dma_mapped
1164                         && (atmel_spi_use_dma(as, xfer) || as->use_pdc))
1165                         atmel_spi_dma_unmap_xfer(master, xfer);
1166
1167                 return 0;
1168
1169         } else {
1170                 /* only update length if no error */
1171                 msg->actual_length += xfer->len;
1172         }
1173
1174         if (!msg->is_dma_mapped
1175                 && (atmel_spi_use_dma(as, xfer) || as->use_pdc))
1176                 atmel_spi_dma_unmap_xfer(master, xfer);
1177
1178         if (xfer->delay_usecs)
1179                 udelay(xfer->delay_usecs);
1180
1181         if (xfer->cs_change) {
1182                 if (list_is_last(&xfer->transfer_list,
1183                                  &msg->transfers)) {
1184                         as->keep_cs = true;
1185                 } else {
1186                         as->cs_active = !as->cs_active;
1187                         if (as->cs_active)
1188                                 cs_activate(as, msg->spi);
1189                         else
1190                                 cs_deactivate(as, msg->spi);
1191                 }
1192         }
1193
1194         return 0;
1195 }
1196
1197 static int atmel_spi_transfer_one_message(struct spi_master *master,
1198                                                 struct spi_message *msg)
1199 {
1200         struct atmel_spi *as;
1201         struct spi_transfer *xfer;
1202         struct spi_device *spi = msg->spi;
1203         int ret = 0;
1204
1205         as = spi_master_get_devdata(master);
1206
1207         dev_dbg(&spi->dev, "new message %p submitted for %s\n",
1208                                         msg, dev_name(&spi->dev));
1209
1210         atmel_spi_lock(as);
1211         cs_activate(as, spi);
1212
1213         as->cs_active = true;
1214         as->keep_cs = false;
1215
1216         msg->status = 0;
1217         msg->actual_length = 0;
1218
1219         list_for_each_entry(xfer, &msg->transfers, transfer_list) {
1220                 ret = atmel_spi_one_transfer(master, msg, xfer);
1221                 if (ret)
1222                         goto msg_done;
1223         }
1224
1225         if (as->use_pdc)
1226                 atmel_spi_disable_pdc_transfer(as);
1227
1228         list_for_each_entry(xfer, &msg->transfers, transfer_list) {
1229                 dev_dbg(&spi->dev,
1230                         "  xfer %p: len %u tx %p/%pad rx %p/%pad\n",
1231                         xfer, xfer->len,
1232                         xfer->tx_buf, &xfer->tx_dma,
1233                         xfer->rx_buf, &xfer->rx_dma);
1234         }
1235
1236 msg_done:
1237         if (!as->keep_cs)
1238                 cs_deactivate(as, msg->spi);
1239
1240         atmel_spi_unlock(as);
1241
1242         msg->status = as->done_status;
1243         spi_finalize_current_message(spi->master);
1244
1245         return ret;
1246 }
1247
1248 static void atmel_spi_cleanup(struct spi_device *spi)
1249 {
1250         struct atmel_spi_device *asd = spi->controller_state;
1251         unsigned                gpio = (unsigned long) spi->controller_data;
1252
1253         if (!asd)
1254                 return;
1255
1256         spi->controller_state = NULL;
1257         gpio_free(gpio);
1258         kfree(asd);
1259 }
1260
1261 static inline unsigned int atmel_get_version(struct atmel_spi *as)
1262 {
1263         return spi_readl(as, VERSION) & 0x00000fff;
1264 }
1265
1266 static void atmel_get_caps(struct atmel_spi *as)
1267 {
1268         unsigned int version;
1269
1270         version = atmel_get_version(as);
1271         dev_info(&as->pdev->dev, "version: 0x%x\n", version);
1272
1273         as->caps.is_spi2 = version > 0x121;
1274         as->caps.has_wdrbt = version >= 0x210;
1275         as->caps.has_dma_support = version >= 0x212;
1276 }
1277
1278 /*-------------------------------------------------------------------------*/
1279
1280 static int atmel_spi_probe(struct platform_device *pdev)
1281 {
1282         struct resource         *regs;
1283         int                     irq;
1284         struct clk              *clk;
1285         int                     ret;
1286         struct spi_master       *master;
1287         struct atmel_spi        *as;
1288
1289         /* Select default pin state */
1290         pinctrl_pm_select_default_state(&pdev->dev);
1291
1292         regs = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1293         if (!regs)
1294                 return -ENXIO;
1295
1296         irq = platform_get_irq(pdev, 0);
1297         if (irq < 0)
1298                 return irq;
1299
1300         clk = devm_clk_get(&pdev->dev, "spi_clk");
1301         if (IS_ERR(clk))
1302                 return PTR_ERR(clk);
1303
1304         /* setup spi core then atmel-specific driver state */
1305         ret = -ENOMEM;
1306         master = spi_alloc_master(&pdev->dev, sizeof(*as));
1307         if (!master)
1308                 goto out_free;
1309
1310         /* the spi->mode bits understood by this driver: */
1311         master->mode_bits = SPI_CPOL | SPI_CPHA | SPI_CS_HIGH;
1312         master->bits_per_word_mask = SPI_BPW_RANGE_MASK(8, 16);
1313         master->dev.of_node = pdev->dev.of_node;
1314         master->bus_num = pdev->id;
1315         master->num_chipselect = master->dev.of_node ? 0 : 4;
1316         master->setup = atmel_spi_setup;
1317         master->transfer_one_message = atmel_spi_transfer_one_message;
1318         master->cleanup = atmel_spi_cleanup;
1319         master->auto_runtime_pm = true;
1320         platform_set_drvdata(pdev, master);
1321
1322         as = spi_master_get_devdata(master);
1323
1324         /*
1325          * Scratch buffer is used for throwaway rx and tx data.
1326          * It's coherent to minimize dcache pollution.
1327          */
1328         as->buffer = dma_alloc_coherent(&pdev->dev, BUFFER_SIZE,
1329                                         &as->buffer_dma, GFP_KERNEL);
1330         if (!as->buffer)
1331                 goto out_free;
1332
1333         spin_lock_init(&as->lock);
1334
1335         as->pdev = pdev;
1336         as->regs = devm_ioremap_resource(&pdev->dev, regs);
1337         if (IS_ERR(as->regs)) {
1338                 ret = PTR_ERR(as->regs);
1339                 goto out_free_buffer;
1340         }
1341         as->phybase = regs->start;
1342         as->irq = irq;
1343         as->clk = clk;
1344
1345         init_completion(&as->xfer_completion);
1346
1347         atmel_get_caps(as);
1348
1349         as->use_dma = false;
1350         as->use_pdc = false;
1351         if (as->caps.has_dma_support) {
1352                 if (atmel_spi_configure_dma(as) == 0)
1353                         as->use_dma = true;
1354         } else {
1355                 as->use_pdc = true;
1356         }
1357
1358         if (as->caps.has_dma_support && !as->use_dma)
1359                 dev_info(&pdev->dev, "Atmel SPI Controller using PIO only\n");
1360
1361         if (as->use_pdc) {
1362                 ret = devm_request_irq(&pdev->dev, irq, atmel_spi_pdc_interrupt,
1363                                         0, dev_name(&pdev->dev), master);
1364         } else {
1365                 ret = devm_request_irq(&pdev->dev, irq, atmel_spi_pio_interrupt,
1366                                         0, dev_name(&pdev->dev), master);
1367         }
1368         if (ret)
1369                 goto out_unmap_regs;
1370
1371         /* Initialize the hardware */
1372         ret = clk_prepare_enable(clk);
1373         if (ret)
1374                 goto out_free_irq;
1375         spi_writel(as, CR, SPI_BIT(SWRST));
1376         spi_writel(as, CR, SPI_BIT(SWRST)); /* AT91SAM9263 Rev B workaround */
1377         if (as->caps.has_wdrbt) {
1378                 spi_writel(as, MR, SPI_BIT(WDRBT) | SPI_BIT(MODFDIS)
1379                                 | SPI_BIT(MSTR));
1380         } else {
1381                 spi_writel(as, MR, SPI_BIT(MSTR) | SPI_BIT(MODFDIS));
1382         }
1383
1384         if (as->use_pdc)
1385                 spi_writel(as, PTCR, SPI_BIT(RXTDIS) | SPI_BIT(TXTDIS));
1386         spi_writel(as, CR, SPI_BIT(SPIEN));
1387
1388         /* go! */
1389         dev_info(&pdev->dev, "Atmel SPI Controller at 0x%08lx (irq %d)\n",
1390                         (unsigned long)regs->start, irq);
1391
1392         pm_runtime_set_autosuspend_delay(&pdev->dev, AUTOSUSPEND_TIMEOUT);
1393         pm_runtime_use_autosuspend(&pdev->dev);
1394         pm_runtime_set_active(&pdev->dev);
1395         pm_runtime_enable(&pdev->dev);
1396
1397         ret = devm_spi_register_master(&pdev->dev, master);
1398         if (ret)
1399                 goto out_free_dma;
1400
1401         return 0;
1402
1403 out_free_dma:
1404         pm_runtime_disable(&pdev->dev);
1405         pm_runtime_set_suspended(&pdev->dev);
1406
1407         if (as->use_dma)
1408                 atmel_spi_release_dma(as);
1409
1410         spi_writel(as, CR, SPI_BIT(SWRST));
1411         spi_writel(as, CR, SPI_BIT(SWRST)); /* AT91SAM9263 Rev B workaround */
1412         clk_disable_unprepare(clk);
1413 out_free_irq:
1414 out_unmap_regs:
1415 out_free_buffer:
1416         dma_free_coherent(&pdev->dev, BUFFER_SIZE, as->buffer,
1417                         as->buffer_dma);
1418 out_free:
1419         spi_master_put(master);
1420         return ret;
1421 }
1422
1423 static int atmel_spi_remove(struct platform_device *pdev)
1424 {
1425         struct spi_master       *master = platform_get_drvdata(pdev);
1426         struct atmel_spi        *as = spi_master_get_devdata(master);
1427
1428         pm_runtime_get_sync(&pdev->dev);
1429
1430         /* reset the hardware and block queue progress */
1431         spin_lock_irq(&as->lock);
1432         if (as->use_dma) {
1433                 atmel_spi_stop_dma(as);
1434                 atmel_spi_release_dma(as);
1435         }
1436
1437         spi_writel(as, CR, SPI_BIT(SWRST));
1438         spi_writel(as, CR, SPI_BIT(SWRST)); /* AT91SAM9263 Rev B workaround */
1439         spi_readl(as, SR);
1440         spin_unlock_irq(&as->lock);
1441
1442         dma_free_coherent(&pdev->dev, BUFFER_SIZE, as->buffer,
1443                         as->buffer_dma);
1444
1445         clk_disable_unprepare(as->clk);
1446
1447         pm_runtime_put_noidle(&pdev->dev);
1448         pm_runtime_disable(&pdev->dev);
1449
1450         return 0;
1451 }
1452
1453 #ifdef CONFIG_PM
1454 #ifdef CONFIG_PM_SLEEP
1455 static int atmel_spi_suspend(struct device *dev)
1456 {
1457         struct spi_master       *master = dev_get_drvdata(dev);
1458         struct atmel_spi        *as = spi_master_get_devdata(master);
1459         int ret;
1460
1461         /* Stop the queue running */
1462         ret = spi_master_suspend(master);
1463         if (ret) {
1464                 dev_warn(dev, "cannot suspend master\n");
1465                 return ret;
1466         }
1467
1468         if (!pm_runtime_suspended(dev)) {
1469                 clk_disable_unprepare(as->clk);
1470                 pinctrl_pm_select_sleep_state(dev);
1471         }
1472
1473         return 0;
1474 }
1475
1476 static int atmel_spi_resume(struct device *dev)
1477 {
1478         struct spi_master       *master = dev_get_drvdata(dev);
1479         struct atmel_spi        *as = spi_master_get_devdata(master);
1480         int ret;
1481
1482         if (!pm_runtime_suspended(dev)) {
1483                 pinctrl_pm_select_default_state(dev);
1484                 ret = clk_prepare_enable(as->clk);
1485                 if (ret)
1486                         return ret;
1487         }
1488
1489         /* Start the queue running */
1490         ret = spi_master_resume(master);
1491         if (ret)
1492                 dev_err(dev, "problem starting queue (%d)\n", ret);
1493
1494         return ret;
1495 }
1496 #endif
1497
1498 #ifdef CONFIG_PM_RUNTIME
1499 static int atmel_spi_runtime_suspend(struct device *dev)
1500 {
1501         struct spi_master *master = dev_get_drvdata(dev);
1502         struct atmel_spi *as = spi_master_get_devdata(master);
1503
1504         clk_disable_unprepare(as->clk);
1505         pinctrl_pm_select_sleep_state(dev);
1506
1507         return 0;
1508 }
1509
1510 static int atmel_spi_runtime_resume(struct device *dev)
1511 {
1512         struct spi_master *master = dev_get_drvdata(dev);
1513         struct atmel_spi *as = spi_master_get_devdata(master);
1514         int ret;
1515
1516         pinctrl_pm_select_default_state(dev);
1517
1518         ret = clk_prepare_enable(as->clk);
1519         if (ret)
1520                 return ret;
1521
1522         return 0;
1523 }
1524 #endif
1525
1526 static const struct dev_pm_ops atmel_spi_pm_ops = {
1527         SET_SYSTEM_SLEEP_PM_OPS(atmel_spi_suspend, atmel_spi_resume)
1528         SET_RUNTIME_PM_OPS(atmel_spi_runtime_suspend,
1529                            atmel_spi_runtime_resume, NULL)
1530 };
1531 #define ATMEL_SPI_PM_OPS        (&atmel_spi_pm_ops)
1532 #else
1533 #define ATMEL_SPI_PM_OPS        NULL
1534 #endif
1535
1536 #if defined(CONFIG_OF)
1537 static const struct of_device_id atmel_spi_dt_ids[] = {
1538         { .compatible = "atmel,at91rm9200-spi" },
1539         { /* sentinel */ }
1540 };
1541
1542 MODULE_DEVICE_TABLE(of, atmel_spi_dt_ids);
1543 #endif
1544
1545 static struct platform_driver atmel_spi_driver = {
1546         .driver         = {
1547                 .name   = "atmel_spi",
1548                 .owner  = THIS_MODULE,
1549                 .pm     = ATMEL_SPI_PM_OPS,
1550                 .of_match_table = of_match_ptr(atmel_spi_dt_ids),
1551         },
1552         .probe          = atmel_spi_probe,
1553         .remove         = atmel_spi_remove,
1554 };
1555 module_platform_driver(atmel_spi_driver);
1556
1557 MODULE_DESCRIPTION("Atmel AT32/AT91 SPI Controller driver");
1558 MODULE_AUTHOR("Haavard Skinnemoen (Atmel)");
1559 MODULE_LICENSE("GPL");
1560 MODULE_ALIAS("platform:atmel_spi");