x86/smpboot: Init apic mapping before usage
[cascardo/linux.git] / drivers / spi / spi-bcm-qspi.c
1 /*
2  * Driver for Broadcom BRCMSTB, NSP,  NS2, Cygnus SPI Controllers
3  *
4  * Copyright 2016 Broadcom
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License, version 2, as
8  * published by the Free Software Foundation (the "GPL").
9  *
10  * This program is distributed in the hope that it will be useful, but
11  * WITHOUT ANY WARRANTY; without even the implied warranty of
12  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
13  * General Public License version 2 (GPLv2) for more details.
14  *
15  * You should have received a copy of the GNU General Public License
16  * version 2 (GPLv2) along with this source code.
17  */
18
19 #include <linux/clk.h>
20 #include <linux/delay.h>
21 #include <linux/device.h>
22 #include <linux/init.h>
23 #include <linux/interrupt.h>
24 #include <linux/io.h>
25 #include <linux/ioport.h>
26 #include <linux/kernel.h>
27 #include <linux/module.h>
28 #include <linux/mtd/spi-nor.h>
29 #include <linux/of.h>
30 #include <linux/of_irq.h>
31 #include <linux/platform_device.h>
32 #include <linux/slab.h>
33 #include <linux/spi/spi.h>
34 #include <linux/sysfs.h>
35 #include <linux/types.h>
36 #include "spi-bcm-qspi.h"
37
38 #define DRIVER_NAME "bcm_qspi"
39
40
41 /* BSPI register offsets */
42 #define BSPI_REVISION_ID                        0x000
43 #define BSPI_SCRATCH                            0x004
44 #define BSPI_MAST_N_BOOT_CTRL                   0x008
45 #define BSPI_BUSY_STATUS                        0x00c
46 #define BSPI_INTR_STATUS                        0x010
47 #define BSPI_B0_STATUS                          0x014
48 #define BSPI_B0_CTRL                            0x018
49 #define BSPI_B1_STATUS                          0x01c
50 #define BSPI_B1_CTRL                            0x020
51 #define BSPI_STRAP_OVERRIDE_CTRL                0x024
52 #define BSPI_FLEX_MODE_ENABLE                   0x028
53 #define BSPI_BITS_PER_CYCLE                     0x02c
54 #define BSPI_BITS_PER_PHASE                     0x030
55 #define BSPI_CMD_AND_MODE_BYTE                  0x034
56 #define BSPI_BSPI_FLASH_UPPER_ADDR_BYTE 0x038
57 #define BSPI_BSPI_XOR_VALUE                     0x03c
58 #define BSPI_BSPI_XOR_ENABLE                    0x040
59 #define BSPI_BSPI_PIO_MODE_ENABLE               0x044
60 #define BSPI_BSPI_PIO_IODIR                     0x048
61 #define BSPI_BSPI_PIO_DATA                      0x04c
62
63 /* RAF register offsets */
64 #define BSPI_RAF_START_ADDR                     0x100
65 #define BSPI_RAF_NUM_WORDS                      0x104
66 #define BSPI_RAF_CTRL                           0x108
67 #define BSPI_RAF_FULLNESS                       0x10c
68 #define BSPI_RAF_WATERMARK                      0x110
69 #define BSPI_RAF_STATUS                 0x114
70 #define BSPI_RAF_READ_DATA                      0x118
71 #define BSPI_RAF_WORD_CNT                       0x11c
72 #define BSPI_RAF_CURR_ADDR                      0x120
73
74 /* Override mode masks */
75 #define BSPI_STRAP_OVERRIDE_CTRL_OVERRIDE       BIT(0)
76 #define BSPI_STRAP_OVERRIDE_CTRL_DATA_DUAL      BIT(1)
77 #define BSPI_STRAP_OVERRIDE_CTRL_ADDR_4BYTE     BIT(2)
78 #define BSPI_STRAP_OVERRIDE_CTRL_DATA_QUAD      BIT(3)
79 #define BSPI_STRAP_OVERRIDE_CTRL_ENDAIN_MODE    BIT(4)
80
81 #define BSPI_ADDRLEN_3BYTES                     3
82 #define BSPI_ADDRLEN_4BYTES                     4
83
84 #define BSPI_RAF_STATUS_FIFO_EMPTY_MASK BIT(1)
85
86 #define BSPI_RAF_CTRL_START_MASK                BIT(0)
87 #define BSPI_RAF_CTRL_CLEAR_MASK                BIT(1)
88
89 #define BSPI_BPP_MODE_SELECT_MASK               BIT(8)
90 #define BSPI_BPP_ADDR_SELECT_MASK               BIT(16)
91
92 #define BSPI_READ_LENGTH                        256
93
94 /* MSPI register offsets */
95 #define MSPI_SPCR0_LSB                          0x000
96 #define MSPI_SPCR0_MSB                          0x004
97 #define MSPI_SPCR1_LSB                          0x008
98 #define MSPI_SPCR1_MSB                          0x00c
99 #define MSPI_NEWQP                              0x010
100 #define MSPI_ENDQP                              0x014
101 #define MSPI_SPCR2                              0x018
102 #define MSPI_MSPI_STATUS                        0x020
103 #define MSPI_CPTQP                              0x024
104 #define MSPI_SPCR3                              0x028
105 #define MSPI_TXRAM                              0x040
106 #define MSPI_RXRAM                              0x0c0
107 #define MSPI_CDRAM                              0x140
108 #define MSPI_WRITE_LOCK                 0x180
109
110 #define MSPI_MASTER_BIT                 BIT(7)
111
112 #define MSPI_NUM_CDRAM                          16
113 #define MSPI_CDRAM_CONT_BIT                     BIT(7)
114 #define MSPI_CDRAM_BITSE_BIT                    BIT(6)
115 #define MSPI_CDRAM_PCS                          0xf
116
117 #define MSPI_SPCR2_SPE                          BIT(6)
118 #define MSPI_SPCR2_CONT_AFTER_CMD               BIT(7)
119
120 #define MSPI_MSPI_STATUS_SPIF                   BIT(0)
121
122 #define INTR_BASE_BIT_SHIFT                     0x02
123 #define INTR_COUNT                              0x07
124
125 #define NUM_CHIPSELECT                          4
126 #define QSPI_SPBR_MIN                           8U
127 #define QSPI_SPBR_MAX                           255U
128
129 #define OPCODE_DIOR                             0xBB
130 #define OPCODE_QIOR                             0xEB
131 #define OPCODE_DIOR_4B                          0xBC
132 #define OPCODE_QIOR_4B                          0xEC
133
134 #define MAX_CMD_SIZE                            6
135
136 #define ADDR_4MB_MASK                           GENMASK(22, 0)
137
138 /* stop at end of transfer, no other reason */
139 #define TRANS_STATUS_BREAK_NONE         0
140 /* stop at end of spi_message */
141 #define TRANS_STATUS_BREAK_EOM                  1
142 /* stop at end of spi_transfer if delay */
143 #define TRANS_STATUS_BREAK_DELAY                2
144 /* stop at end of spi_transfer if cs_change */
145 #define TRANS_STATUS_BREAK_CS_CHANGE            4
146 /* stop if we run out of bytes */
147 #define TRANS_STATUS_BREAK_NO_BYTES             8
148
149 /* events that make us stop filling TX slots */
150 #define TRANS_STATUS_BREAK_TX (TRANS_STATUS_BREAK_EOM |         \
151                                TRANS_STATUS_BREAK_DELAY |               \
152                                TRANS_STATUS_BREAK_CS_CHANGE)
153
154 /* events that make us deassert CS */
155 #define TRANS_STATUS_BREAK_DESELECT (TRANS_STATUS_BREAK_EOM |           \
156                                      TRANS_STATUS_BREAK_CS_CHANGE)
157
158 struct bcm_qspi_parms {
159         u32 speed_hz;
160         u8 mode;
161         u8 bits_per_word;
162 };
163
164 struct bcm_xfer_mode {
165         bool flex_mode;
166         unsigned int width;
167         unsigned int addrlen;
168         unsigned int hp;
169 };
170
171 enum base_type {
172         MSPI,
173         BSPI,
174         CHIP_SELECT,
175         BASEMAX,
176 };
177
178 enum irq_source {
179         SINGLE_L2,
180         MUXED_L1,
181 };
182
183 struct bcm_qspi_irq {
184         const char *irq_name;
185         const irq_handler_t irq_handler;
186         int irq_source;
187         u32 mask;
188 };
189
190 struct bcm_qspi_dev_id {
191         const struct bcm_qspi_irq *irqp;
192         void *dev;
193 };
194
195 struct qspi_trans {
196         struct spi_transfer *trans;
197         int byte;
198 };
199
200 struct bcm_qspi {
201         struct platform_device *pdev;
202         struct spi_master *master;
203         struct clk *clk;
204         u32 base_clk;
205         u32 max_speed_hz;
206         void __iomem *base[BASEMAX];
207
208         /* Some SoCs provide custom interrupt status register(s) */
209         struct bcm_qspi_soc_intc        *soc_intc;
210
211         struct bcm_qspi_parms last_parms;
212         struct qspi_trans  trans_pos;
213         int curr_cs;
214         int bspi_maj_rev;
215         int bspi_min_rev;
216         int bspi_enabled;
217         struct spi_flash_read_message *bspi_rf_msg;
218         u32 bspi_rf_msg_idx;
219         u32 bspi_rf_msg_len;
220         u32 bspi_rf_msg_status;
221         struct bcm_xfer_mode xfer_mode;
222         u32 s3_strap_override_ctrl;
223         bool bspi_mode;
224         bool big_endian;
225         int num_irqs;
226         struct bcm_qspi_dev_id *dev_ids;
227         struct completion mspi_done;
228         struct completion bspi_done;
229 };
230
231 static inline bool has_bspi(struct bcm_qspi *qspi)
232 {
233         return qspi->bspi_mode;
234 }
235
236 /* Read qspi controller register*/
237 static inline u32 bcm_qspi_read(struct bcm_qspi *qspi, enum base_type type,
238                                 unsigned int offset)
239 {
240         return bcm_qspi_readl(qspi->big_endian, qspi->base[type] + offset);
241 }
242
243 /* Write qspi controller register*/
244 static inline void bcm_qspi_write(struct bcm_qspi *qspi, enum base_type type,
245                                   unsigned int offset, unsigned int data)
246 {
247         bcm_qspi_writel(qspi->big_endian, data, qspi->base[type] + offset);
248 }
249
250 /* BSPI helpers */
251 static int bcm_qspi_bspi_busy_poll(struct bcm_qspi *qspi)
252 {
253         int i;
254
255         /* this should normally finish within 10us */
256         for (i = 0; i < 1000; i++) {
257                 if (!(bcm_qspi_read(qspi, BSPI, BSPI_BUSY_STATUS) & 1))
258                         return 0;
259                 udelay(1);
260         }
261         dev_warn(&qspi->pdev->dev, "timeout waiting for !busy_status\n");
262         return -EIO;
263 }
264
265 static inline bool bcm_qspi_bspi_ver_three(struct bcm_qspi *qspi)
266 {
267         if (qspi->bspi_maj_rev < 4)
268                 return true;
269         return false;
270 }
271
272 static void bcm_qspi_bspi_flush_prefetch_buffers(struct bcm_qspi *qspi)
273 {
274         bcm_qspi_bspi_busy_poll(qspi);
275         /* Force rising edge for the b0/b1 'flush' field */
276         bcm_qspi_write(qspi, BSPI, BSPI_B0_CTRL, 1);
277         bcm_qspi_write(qspi, BSPI, BSPI_B1_CTRL, 1);
278         bcm_qspi_write(qspi, BSPI, BSPI_B0_CTRL, 0);
279         bcm_qspi_write(qspi, BSPI, BSPI_B1_CTRL, 0);
280 }
281
282 static int bcm_qspi_bspi_lr_is_fifo_empty(struct bcm_qspi *qspi)
283 {
284         return (bcm_qspi_read(qspi, BSPI, BSPI_RAF_STATUS) &
285                                 BSPI_RAF_STATUS_FIFO_EMPTY_MASK);
286 }
287
288 static inline u32 bcm_qspi_bspi_lr_read_fifo(struct bcm_qspi *qspi)
289 {
290         u32 data = bcm_qspi_read(qspi, BSPI, BSPI_RAF_READ_DATA);
291
292         /* BSPI v3 LR is LE only, convert data to host endianness */
293         if (bcm_qspi_bspi_ver_three(qspi))
294                 data = le32_to_cpu(data);
295
296         return data;
297 }
298
299 static inline void bcm_qspi_bspi_lr_start(struct bcm_qspi *qspi)
300 {
301         bcm_qspi_bspi_busy_poll(qspi);
302         bcm_qspi_write(qspi, BSPI, BSPI_RAF_CTRL,
303                        BSPI_RAF_CTRL_START_MASK);
304 }
305
306 static inline void bcm_qspi_bspi_lr_clear(struct bcm_qspi *qspi)
307 {
308         bcm_qspi_write(qspi, BSPI, BSPI_RAF_CTRL,
309                        BSPI_RAF_CTRL_CLEAR_MASK);
310         bcm_qspi_bspi_flush_prefetch_buffers(qspi);
311 }
312
313 static void bcm_qspi_bspi_lr_data_read(struct bcm_qspi *qspi)
314 {
315         u32 *buf = (u32 *)qspi->bspi_rf_msg->buf;
316         u32 data = 0;
317
318         dev_dbg(&qspi->pdev->dev, "xfer %p rx %p rxlen %d\n", qspi->bspi_rf_msg,
319                 qspi->bspi_rf_msg->buf, qspi->bspi_rf_msg_len);
320         while (!bcm_qspi_bspi_lr_is_fifo_empty(qspi)) {
321                 data = bcm_qspi_bspi_lr_read_fifo(qspi);
322                 if (likely(qspi->bspi_rf_msg_len >= 4) &&
323                     IS_ALIGNED((uintptr_t)buf, 4)) {
324                         buf[qspi->bspi_rf_msg_idx++] = data;
325                         qspi->bspi_rf_msg_len -= 4;
326                 } else {
327                         /* Read out remaining bytes, make sure*/
328                         u8 *cbuf = (u8 *)&buf[qspi->bspi_rf_msg_idx];
329
330                         data = cpu_to_le32(data);
331                         while (qspi->bspi_rf_msg_len) {
332                                 *cbuf++ = (u8)data;
333                                 data >>= 8;
334                                 qspi->bspi_rf_msg_len--;
335                         }
336                 }
337         }
338 }
339
340 static void bcm_qspi_bspi_set_xfer_params(struct bcm_qspi *qspi, u8 cmd_byte,
341                                           int bpp, int bpc, int flex_mode)
342 {
343         bcm_qspi_write(qspi, BSPI, BSPI_FLEX_MODE_ENABLE, 0);
344         bcm_qspi_write(qspi, BSPI, BSPI_BITS_PER_CYCLE, bpc);
345         bcm_qspi_write(qspi, BSPI, BSPI_BITS_PER_PHASE, bpp);
346         bcm_qspi_write(qspi, BSPI, BSPI_CMD_AND_MODE_BYTE, cmd_byte);
347         bcm_qspi_write(qspi, BSPI, BSPI_FLEX_MODE_ENABLE, flex_mode);
348 }
349
350 static int bcm_qspi_bspi_set_flex_mode(struct bcm_qspi *qspi, int width,
351                                        int addrlen, int hp)
352 {
353         int bpc = 0, bpp = 0;
354         u8 command = SPINOR_OP_READ_FAST;
355         int flex_mode = 1, rv = 0;
356         bool spans_4byte = false;
357
358         dev_dbg(&qspi->pdev->dev, "set flex mode w %x addrlen %x hp %d\n",
359                 width, addrlen, hp);
360
361         if (addrlen == BSPI_ADDRLEN_4BYTES) {
362                 bpp = BSPI_BPP_ADDR_SELECT_MASK;
363                 spans_4byte = true;
364         }
365
366         bpp |= 8;
367
368         switch (width) {
369         case SPI_NBITS_SINGLE:
370                 if (addrlen == BSPI_ADDRLEN_3BYTES)
371                         /* default mode, does not need flex_cmd */
372                         flex_mode = 0;
373                 else
374                         command = SPINOR_OP_READ4_FAST;
375                 break;
376         case SPI_NBITS_DUAL:
377                 bpc = 0x00000001;
378                 if (hp) {
379                         bpc |= 0x00010100; /* address and mode are 2-bit */
380                         bpp = BSPI_BPP_MODE_SELECT_MASK;
381                         command = OPCODE_DIOR;
382                         if (spans_4byte)
383                                 command = OPCODE_DIOR_4B;
384                 } else {
385                         command = SPINOR_OP_READ_1_1_2;
386                         if (spans_4byte)
387                                 command = SPINOR_OP_READ4_1_1_2;
388                 }
389                 break;
390         case SPI_NBITS_QUAD:
391                 bpc = 0x00000002;
392                 if (hp) {
393                         bpc |= 0x00020200; /* address and mode are 4-bit */
394                         bpp = 4; /* dummy cycles */
395                         bpp |= BSPI_BPP_ADDR_SELECT_MASK;
396                         command = OPCODE_QIOR;
397                         if (spans_4byte)
398                                 command = OPCODE_QIOR_4B;
399                 } else {
400                         command = SPINOR_OP_READ_1_1_4;
401                         if (spans_4byte)
402                                 command = SPINOR_OP_READ4_1_1_4;
403                 }
404                 break;
405         default:
406                 rv = -EINVAL;
407                 break;
408         }
409
410         if (rv == 0)
411                 bcm_qspi_bspi_set_xfer_params(qspi, command, bpp, bpc,
412                                               flex_mode);
413
414         return rv;
415 }
416
417 static int bcm_qspi_bspi_set_override(struct bcm_qspi *qspi, int width,
418                                       int addrlen, int hp)
419 {
420         u32 data = bcm_qspi_read(qspi, BSPI, BSPI_STRAP_OVERRIDE_CTRL);
421
422         dev_dbg(&qspi->pdev->dev, "set override mode w %x addrlen %x hp %d\n",
423                 width, addrlen, hp);
424
425         switch (width) {
426         case SPI_NBITS_SINGLE:
427                 /* clear quad/dual mode */
428                 data &= ~(BSPI_STRAP_OVERRIDE_CTRL_DATA_QUAD |
429                           BSPI_STRAP_OVERRIDE_CTRL_DATA_DUAL);
430                 break;
431
432         case SPI_NBITS_QUAD:
433                 /* clear dual mode and set quad mode */
434                 data &= ~BSPI_STRAP_OVERRIDE_CTRL_DATA_DUAL;
435                 data |= BSPI_STRAP_OVERRIDE_CTRL_DATA_QUAD;
436                 break;
437         case SPI_NBITS_DUAL:
438                 /* clear quad mode set dual mode */
439                 data &= ~BSPI_STRAP_OVERRIDE_CTRL_DATA_QUAD;
440                 data |= BSPI_STRAP_OVERRIDE_CTRL_DATA_DUAL;
441                 break;
442         default:
443                 return -EINVAL;
444         }
445
446         if (addrlen == BSPI_ADDRLEN_4BYTES)
447                 /* set 4byte mode*/
448                 data |= BSPI_STRAP_OVERRIDE_CTRL_ADDR_4BYTE;
449         else
450                 /* clear 4 byte mode */
451                 data &= ~BSPI_STRAP_OVERRIDE_CTRL_ADDR_4BYTE;
452
453         /* set the override mode */
454         data |= BSPI_STRAP_OVERRIDE_CTRL_OVERRIDE;
455         bcm_qspi_write(qspi, BSPI, BSPI_STRAP_OVERRIDE_CTRL, data);
456         bcm_qspi_bspi_set_xfer_params(qspi, SPINOR_OP_READ_FAST, 0, 0, 0);
457
458         return 0;
459 }
460
461 static int bcm_qspi_bspi_set_mode(struct bcm_qspi *qspi,
462                                   int width, int addrlen, int hp)
463 {
464         int error = 0;
465
466         /* default mode */
467         qspi->xfer_mode.flex_mode = true;
468
469         if (!bcm_qspi_bspi_ver_three(qspi)) {
470                 u32 val, mask;
471
472                 val = bcm_qspi_read(qspi, BSPI, BSPI_STRAP_OVERRIDE_CTRL);
473                 mask = BSPI_STRAP_OVERRIDE_CTRL_OVERRIDE;
474                 if (val & mask || qspi->s3_strap_override_ctrl & mask) {
475                         qspi->xfer_mode.flex_mode = false;
476                         bcm_qspi_write(qspi, BSPI, BSPI_FLEX_MODE_ENABLE,
477                                        0);
478
479                         if ((val | qspi->s3_strap_override_ctrl) &
480                             BSPI_STRAP_OVERRIDE_CTRL_DATA_DUAL)
481                                 width = SPI_NBITS_DUAL;
482                         else if ((val |  qspi->s3_strap_override_ctrl) &
483                                  BSPI_STRAP_OVERRIDE_CTRL_DATA_QUAD)
484                                 width = SPI_NBITS_QUAD;
485
486                         error = bcm_qspi_bspi_set_override(qspi, width, addrlen,
487                                                            hp);
488                 }
489         }
490
491         if (qspi->xfer_mode.flex_mode)
492                 error = bcm_qspi_bspi_set_flex_mode(qspi, width, addrlen, hp);
493
494         if (error) {
495                 dev_warn(&qspi->pdev->dev,
496                          "INVALID COMBINATION: width=%d addrlen=%d hp=%d\n",
497                          width, addrlen, hp);
498         } else if (qspi->xfer_mode.width != width ||
499                    qspi->xfer_mode.addrlen != addrlen ||
500                    qspi->xfer_mode.hp != hp) {
501                 qspi->xfer_mode.width = width;
502                 qspi->xfer_mode.addrlen = addrlen;
503                 qspi->xfer_mode.hp = hp;
504                 dev_dbg(&qspi->pdev->dev,
505                         "cs:%d %d-lane output, %d-byte address%s\n",
506                         qspi->curr_cs,
507                         qspi->xfer_mode.width,
508                         qspi->xfer_mode.addrlen,
509                         qspi->xfer_mode.hp != -1 ? ", hp mode" : "");
510         }
511
512         return error;
513 }
514
515 static void bcm_qspi_enable_bspi(struct bcm_qspi *qspi)
516 {
517         if (!has_bspi(qspi) || (qspi->bspi_enabled))
518                 return;
519
520         qspi->bspi_enabled = 1;
521         if ((bcm_qspi_read(qspi, BSPI, BSPI_MAST_N_BOOT_CTRL) & 1) == 0)
522                 return;
523
524         bcm_qspi_bspi_flush_prefetch_buffers(qspi);
525         udelay(1);
526         bcm_qspi_write(qspi, BSPI, BSPI_MAST_N_BOOT_CTRL, 0);
527         udelay(1);
528 }
529
530 static void bcm_qspi_disable_bspi(struct bcm_qspi *qspi)
531 {
532         if (!has_bspi(qspi) || (!qspi->bspi_enabled))
533                 return;
534
535         qspi->bspi_enabled = 0;
536         if ((bcm_qspi_read(qspi, BSPI, BSPI_MAST_N_BOOT_CTRL) & 1))
537                 return;
538
539         bcm_qspi_bspi_busy_poll(qspi);
540         bcm_qspi_write(qspi, BSPI, BSPI_MAST_N_BOOT_CTRL, 1);
541         udelay(1);
542 }
543
544 static void bcm_qspi_chip_select(struct bcm_qspi *qspi, int cs)
545 {
546         u32 data = 0;
547
548         if (qspi->curr_cs == cs)
549                 return;
550         if (qspi->base[CHIP_SELECT]) {
551                 data = bcm_qspi_read(qspi, CHIP_SELECT, 0);
552                 data = (data & ~0xff) | (1 << cs);
553                 bcm_qspi_write(qspi, CHIP_SELECT, 0, data);
554                 usleep_range(10, 20);
555         }
556         qspi->curr_cs = cs;
557 }
558
559 /* MSPI helpers */
560 static void bcm_qspi_hw_set_parms(struct bcm_qspi *qspi,
561                                   const struct bcm_qspi_parms *xp)
562 {
563         u32 spcr, spbr = 0;
564
565         if (xp->speed_hz)
566                 spbr = qspi->base_clk / (2 * xp->speed_hz);
567
568         spcr = clamp_val(spbr, QSPI_SPBR_MIN, QSPI_SPBR_MAX);
569         bcm_qspi_write(qspi, MSPI, MSPI_SPCR0_LSB, spcr);
570
571         spcr = MSPI_MASTER_BIT;
572         /* for 16 bit the data should be zero */
573         if (xp->bits_per_word != 16)
574                 spcr |= xp->bits_per_word << 2;
575         spcr |= xp->mode & 3;
576         bcm_qspi_write(qspi, MSPI, MSPI_SPCR0_MSB, spcr);
577
578         qspi->last_parms = *xp;
579 }
580
581 static void bcm_qspi_update_parms(struct bcm_qspi *qspi,
582                                   struct spi_device *spi,
583                                   struct spi_transfer *trans)
584 {
585         struct bcm_qspi_parms xp;
586
587         xp.speed_hz = trans->speed_hz;
588         xp.bits_per_word = trans->bits_per_word;
589         xp.mode = spi->mode;
590
591         bcm_qspi_hw_set_parms(qspi, &xp);
592 }
593
594 static int bcm_qspi_setup(struct spi_device *spi)
595 {
596         struct bcm_qspi_parms *xp;
597
598         if (spi->bits_per_word > 16)
599                 return -EINVAL;
600
601         xp = spi_get_ctldata(spi);
602         if (!xp) {
603                 xp = kzalloc(sizeof(*xp), GFP_KERNEL);
604                 if (!xp)
605                         return -ENOMEM;
606                 spi_set_ctldata(spi, xp);
607         }
608         xp->speed_hz = spi->max_speed_hz;
609         xp->mode = spi->mode;
610
611         if (spi->bits_per_word)
612                 xp->bits_per_word = spi->bits_per_word;
613         else
614                 xp->bits_per_word = 8;
615
616         return 0;
617 }
618
619 static int update_qspi_trans_byte_count(struct bcm_qspi *qspi,
620                                         struct qspi_trans *qt, int flags)
621 {
622         int ret = TRANS_STATUS_BREAK_NONE;
623
624         /* count the last transferred bytes */
625         if (qt->trans->bits_per_word <= 8)
626                 qt->byte++;
627         else
628                 qt->byte += 2;
629
630         if (qt->byte >= qt->trans->len) {
631                 /* we're at the end of the spi_transfer */
632
633                 /* in TX mode, need to pause for a delay or CS change */
634                 if (qt->trans->delay_usecs &&
635                     (flags & TRANS_STATUS_BREAK_DELAY))
636                         ret |= TRANS_STATUS_BREAK_DELAY;
637                 if (qt->trans->cs_change &&
638                     (flags & TRANS_STATUS_BREAK_CS_CHANGE))
639                         ret |= TRANS_STATUS_BREAK_CS_CHANGE;
640                 if (ret)
641                         goto done;
642
643                 dev_dbg(&qspi->pdev->dev, "advance msg exit\n");
644                 if (spi_transfer_is_last(qspi->master, qt->trans))
645                         ret = TRANS_STATUS_BREAK_EOM;
646                 else
647                         ret = TRANS_STATUS_BREAK_NO_BYTES;
648
649                 qt->trans = NULL;
650         }
651
652 done:
653         dev_dbg(&qspi->pdev->dev, "trans %p len %d byte %d ret %x\n",
654                 qt->trans, qt->trans ? qt->trans->len : 0, qt->byte, ret);
655         return ret;
656 }
657
658 static inline u8 read_rxram_slot_u8(struct bcm_qspi *qspi, int slot)
659 {
660         u32 slot_offset = MSPI_RXRAM + (slot << 3) + 0x4;
661
662         /* mask out reserved bits */
663         return bcm_qspi_read(qspi, MSPI, slot_offset) & 0xff;
664 }
665
666 static inline u16 read_rxram_slot_u16(struct bcm_qspi *qspi, int slot)
667 {
668         u32 reg_offset = MSPI_RXRAM;
669         u32 lsb_offset = reg_offset + (slot << 3) + 0x4;
670         u32 msb_offset = reg_offset + (slot << 3);
671
672         return (bcm_qspi_read(qspi, MSPI, lsb_offset) & 0xff) |
673                 ((bcm_qspi_read(qspi, MSPI, msb_offset) & 0xff) << 8);
674 }
675
676 static void read_from_hw(struct bcm_qspi *qspi, int slots)
677 {
678         struct qspi_trans tp;
679         int slot;
680
681         bcm_qspi_disable_bspi(qspi);
682
683         if (slots > MSPI_NUM_CDRAM) {
684                 /* should never happen */
685                 dev_err(&qspi->pdev->dev, "%s: too many slots!\n", __func__);
686                 return;
687         }
688
689         tp = qspi->trans_pos;
690
691         for (slot = 0; slot < slots; slot++) {
692                 if (tp.trans->bits_per_word <= 8) {
693                         u8 *buf = tp.trans->rx_buf;
694
695                         if (buf)
696                                 buf[tp.byte] = read_rxram_slot_u8(qspi, slot);
697                         dev_dbg(&qspi->pdev->dev, "RD %02x\n",
698                                 buf ? buf[tp.byte] : 0xff);
699                 } else {
700                         u16 *buf = tp.trans->rx_buf;
701
702                         if (buf)
703                                 buf[tp.byte / 2] = read_rxram_slot_u16(qspi,
704                                                                       slot);
705                         dev_dbg(&qspi->pdev->dev, "RD %04x\n",
706                                 buf ? buf[tp.byte] : 0xffff);
707                 }
708
709                 update_qspi_trans_byte_count(qspi, &tp,
710                                              TRANS_STATUS_BREAK_NONE);
711         }
712
713         qspi->trans_pos = tp;
714 }
715
716 static inline void write_txram_slot_u8(struct bcm_qspi *qspi, int slot,
717                                        u8 val)
718 {
719         u32 reg_offset = MSPI_TXRAM + (slot << 3);
720
721         /* mask out reserved bits */
722         bcm_qspi_write(qspi, MSPI, reg_offset, val);
723 }
724
725 static inline void write_txram_slot_u16(struct bcm_qspi *qspi, int slot,
726                                         u16 val)
727 {
728         u32 reg_offset = MSPI_TXRAM;
729         u32 msb_offset = reg_offset + (slot << 3);
730         u32 lsb_offset = reg_offset + (slot << 3) + 0x4;
731
732         bcm_qspi_write(qspi, MSPI, msb_offset, (val >> 8));
733         bcm_qspi_write(qspi, MSPI, lsb_offset, (val & 0xff));
734 }
735
736 static inline u32 read_cdram_slot(struct bcm_qspi *qspi, int slot)
737 {
738         return bcm_qspi_read(qspi, MSPI, MSPI_CDRAM + (slot << 2));
739 }
740
741 static inline void write_cdram_slot(struct bcm_qspi *qspi, int slot, u32 val)
742 {
743         bcm_qspi_write(qspi, MSPI, (MSPI_CDRAM + (slot << 2)), val);
744 }
745
746 /* Return number of slots written */
747 static int write_to_hw(struct bcm_qspi *qspi, struct spi_device *spi)
748 {
749         struct qspi_trans tp;
750         int slot = 0, tstatus = 0;
751         u32 mspi_cdram = 0;
752
753         bcm_qspi_disable_bspi(qspi);
754         tp = qspi->trans_pos;
755         bcm_qspi_update_parms(qspi, spi, tp.trans);
756
757         /* Run until end of transfer or reached the max data */
758         while (!tstatus && slot < MSPI_NUM_CDRAM) {
759                 if (tp.trans->bits_per_word <= 8) {
760                         const u8 *buf = tp.trans->tx_buf;
761                         u8 val = buf ? buf[tp.byte] : 0xff;
762
763                         write_txram_slot_u8(qspi, slot, val);
764                         dev_dbg(&qspi->pdev->dev, "WR %02x\n", val);
765                 } else {
766                         const u16 *buf = tp.trans->tx_buf;
767                         u16 val = buf ? buf[tp.byte / 2] : 0xffff;
768
769                         write_txram_slot_u16(qspi, slot, val);
770                         dev_dbg(&qspi->pdev->dev, "WR %04x\n", val);
771                 }
772                 mspi_cdram = MSPI_CDRAM_CONT_BIT;
773                 mspi_cdram |= (~(1 << spi->chip_select) &
774                                MSPI_CDRAM_PCS);
775                 mspi_cdram |= ((tp.trans->bits_per_word <= 8) ? 0 :
776                                 MSPI_CDRAM_BITSE_BIT);
777
778                 write_cdram_slot(qspi, slot, mspi_cdram);
779
780                 tstatus = update_qspi_trans_byte_count(qspi, &tp,
781                                                        TRANS_STATUS_BREAK_TX);
782                 slot++;
783         }
784
785         if (!slot) {
786                 dev_err(&qspi->pdev->dev, "%s: no data to send?", __func__);
787                 goto done;
788         }
789
790         dev_dbg(&qspi->pdev->dev, "submitting %d slots\n", slot);
791         bcm_qspi_write(qspi, MSPI, MSPI_NEWQP, 0);
792         bcm_qspi_write(qspi, MSPI, MSPI_ENDQP, slot - 1);
793
794         if (tstatus & TRANS_STATUS_BREAK_DESELECT) {
795                 mspi_cdram = read_cdram_slot(qspi, slot - 1) &
796                         ~MSPI_CDRAM_CONT_BIT;
797                 write_cdram_slot(qspi, slot - 1, mspi_cdram);
798         }
799
800         if (has_bspi(qspi))
801                 bcm_qspi_write(qspi, MSPI, MSPI_WRITE_LOCK, 1);
802
803         /* Must flush previous writes before starting MSPI operation */
804         mb();
805         /* Set cont | spe | spifie */
806         bcm_qspi_write(qspi, MSPI, MSPI_SPCR2, 0xe0);
807
808 done:
809         return slot;
810 }
811
812 static int bcm_qspi_bspi_flash_read(struct spi_device *spi,
813                                     struct spi_flash_read_message *msg)
814 {
815         struct bcm_qspi *qspi = spi_master_get_devdata(spi->master);
816         u32 addr = 0, len, len_words;
817         int ret = 0;
818         unsigned long timeo = msecs_to_jiffies(100);
819         struct bcm_qspi_soc_intc *soc_intc = qspi->soc_intc;
820
821         if (bcm_qspi_bspi_ver_three(qspi))
822                 if (msg->addr_width == BSPI_ADDRLEN_4BYTES)
823                         return -EIO;
824
825         bcm_qspi_chip_select(qspi, spi->chip_select);
826         bcm_qspi_write(qspi, MSPI, MSPI_WRITE_LOCK, 0);
827
828         /*
829          * when using flex mode mode we need to send
830          * the upper address byte to bspi
831          */
832         if (bcm_qspi_bspi_ver_three(qspi) == false) {
833                 addr = msg->from & 0xff000000;
834                 bcm_qspi_write(qspi, BSPI,
835                                BSPI_BSPI_FLASH_UPPER_ADDR_BYTE, addr);
836         }
837
838         if (!qspi->xfer_mode.flex_mode)
839                 addr = msg->from;
840         else
841                 addr = msg->from & 0x00ffffff;
842
843         /* set BSPI RAF buffer max read length */
844         len = msg->len;
845         if (len > BSPI_READ_LENGTH)
846                 len = BSPI_READ_LENGTH;
847
848         if (bcm_qspi_bspi_ver_three(qspi) == true)
849                 addr = (addr + 0xc00000) & 0xffffff;
850
851         reinit_completion(&qspi->bspi_done);
852         bcm_qspi_enable_bspi(qspi);
853         len_words = (len + 3) >> 2;
854         qspi->bspi_rf_msg = msg;
855         qspi->bspi_rf_msg_status = 0;
856         qspi->bspi_rf_msg_idx = 0;
857         qspi->bspi_rf_msg_len = len;
858         dev_dbg(&qspi->pdev->dev, "bspi xfr addr 0x%x len 0x%x", addr, len);
859
860         bcm_qspi_write(qspi, BSPI, BSPI_RAF_START_ADDR, addr);
861         bcm_qspi_write(qspi, BSPI, BSPI_RAF_NUM_WORDS, len_words);
862         bcm_qspi_write(qspi, BSPI, BSPI_RAF_WATERMARK, 0);
863
864         if (qspi->soc_intc) {
865                 /*
866                  * clear soc MSPI and BSPI interrupts and enable
867                  * BSPI interrupts.
868                  */
869                 soc_intc->bcm_qspi_int_ack(soc_intc, MSPI_BSPI_DONE);
870                 soc_intc->bcm_qspi_int_set(soc_intc, BSPI_DONE, true);
871         }
872
873         /* Must flush previous writes before starting BSPI operation */
874         mb();
875
876         bcm_qspi_bspi_lr_start(qspi);
877         if (!wait_for_completion_timeout(&qspi->bspi_done, timeo)) {
878                 dev_err(&qspi->pdev->dev, "timeout waiting for BSPI\n");
879                 ret = -ETIMEDOUT;
880         } else {
881                 /* set the return length for the caller */
882                 msg->retlen = len;
883         }
884
885         return ret;
886 }
887
888 static int bcm_qspi_flash_read(struct spi_device *spi,
889                                struct spi_flash_read_message *msg)
890 {
891         struct bcm_qspi *qspi = spi_master_get_devdata(spi->master);
892         int ret = 0;
893         bool mspi_read = false;
894         u32 io_width, addrlen, addr, len;
895         u_char *buf;
896
897         buf = msg->buf;
898         addr = msg->from;
899         len = msg->len;
900
901         if (bcm_qspi_bspi_ver_three(qspi) == true) {
902                 /*
903                  * The address coming into this function is a raw flash offset.
904                  * But for BSPI <= V3, we need to convert it to a remapped BSPI
905                  * address. If it crosses a 4MB boundary, just revert back to
906                  * using MSPI.
907                  */
908                 addr = (addr + 0xc00000) & 0xffffff;
909
910                 if ((~ADDR_4MB_MASK & addr) ^
911                     (~ADDR_4MB_MASK & (addr + len - 1)))
912                         mspi_read = true;
913         }
914
915         /* non-aligned and very short transfers are handled by MSPI */
916         if (!IS_ALIGNED((uintptr_t)addr, 4) || !IS_ALIGNED((uintptr_t)buf, 4) ||
917             len < 4)
918                 mspi_read = true;
919
920         if (mspi_read)
921                 /* this will make the m25p80 read to fallback to mspi read */
922                 return -EAGAIN;
923
924         io_width = msg->data_nbits ? msg->data_nbits : SPI_NBITS_SINGLE;
925         addrlen = msg->addr_width;
926         ret = bcm_qspi_bspi_set_mode(qspi, io_width, addrlen, -1);
927
928         if (!ret)
929                 ret = bcm_qspi_bspi_flash_read(spi, msg);
930
931         return ret;
932 }
933
934 static int bcm_qspi_transfer_one(struct spi_master *master,
935                                  struct spi_device *spi,
936                                  struct spi_transfer *trans)
937 {
938         struct bcm_qspi *qspi = spi_master_get_devdata(master);
939         int slots;
940         unsigned long timeo = msecs_to_jiffies(100);
941
942         bcm_qspi_chip_select(qspi, spi->chip_select);
943         qspi->trans_pos.trans = trans;
944         qspi->trans_pos.byte = 0;
945
946         while (qspi->trans_pos.byte < trans->len) {
947                 reinit_completion(&qspi->mspi_done);
948
949                 slots = write_to_hw(qspi, spi);
950                 if (!wait_for_completion_timeout(&qspi->mspi_done, timeo)) {
951                         dev_err(&qspi->pdev->dev, "timeout waiting for MSPI\n");
952                         return -ETIMEDOUT;
953                 }
954
955                 read_from_hw(qspi, slots);
956         }
957
958         return 0;
959 }
960
961 static void bcm_qspi_cleanup(struct spi_device *spi)
962 {
963         struct bcm_qspi_parms *xp = spi_get_ctldata(spi);
964
965         kfree(xp);
966 }
967
968 static irqreturn_t bcm_qspi_mspi_l2_isr(int irq, void *dev_id)
969 {
970         struct bcm_qspi_dev_id *qspi_dev_id = dev_id;
971         struct bcm_qspi *qspi = qspi_dev_id->dev;
972         u32 status = bcm_qspi_read(qspi, MSPI, MSPI_MSPI_STATUS);
973
974         if (status & MSPI_MSPI_STATUS_SPIF) {
975                 struct bcm_qspi_soc_intc *soc_intc = qspi->soc_intc;
976                 /* clear interrupt */
977                 status &= ~MSPI_MSPI_STATUS_SPIF;
978                 bcm_qspi_write(qspi, MSPI, MSPI_MSPI_STATUS, status);
979                 if (qspi->soc_intc)
980                         soc_intc->bcm_qspi_int_ack(soc_intc, MSPI_DONE);
981                 complete(&qspi->mspi_done);
982                 return IRQ_HANDLED;
983         }
984
985         return IRQ_NONE;
986 }
987
988 static irqreturn_t bcm_qspi_bspi_lr_l2_isr(int irq, void *dev_id)
989 {
990         struct bcm_qspi_dev_id *qspi_dev_id = dev_id;
991         struct bcm_qspi *qspi = qspi_dev_id->dev;
992         struct bcm_qspi_soc_intc *soc_intc = qspi->soc_intc;
993         u32 status = qspi_dev_id->irqp->mask;
994
995         if (qspi->bspi_enabled && qspi->bspi_rf_msg) {
996                 bcm_qspi_bspi_lr_data_read(qspi);
997                 if (qspi->bspi_rf_msg_len == 0) {
998                         qspi->bspi_rf_msg = NULL;
999                         if (qspi->soc_intc) {
1000                                 /* disable soc BSPI interrupt */
1001                                 soc_intc->bcm_qspi_int_set(soc_intc, BSPI_DONE,
1002                                                            false);
1003                                 /* indicate done */
1004                                 status = INTR_BSPI_LR_SESSION_DONE_MASK;
1005                         }
1006
1007                         if (qspi->bspi_rf_msg_status)
1008                                 bcm_qspi_bspi_lr_clear(qspi);
1009                         else
1010                                 bcm_qspi_bspi_flush_prefetch_buffers(qspi);
1011                 }
1012
1013                 if (qspi->soc_intc)
1014                         /* clear soc BSPI interrupt */
1015                         soc_intc->bcm_qspi_int_ack(soc_intc, BSPI_DONE);
1016         }
1017
1018         status &= INTR_BSPI_LR_SESSION_DONE_MASK;
1019         if (qspi->bspi_enabled && status && qspi->bspi_rf_msg_len == 0)
1020                 complete(&qspi->bspi_done);
1021
1022         return IRQ_HANDLED;
1023 }
1024
1025 static irqreturn_t bcm_qspi_bspi_lr_err_l2_isr(int irq, void *dev_id)
1026 {
1027         struct bcm_qspi_dev_id *qspi_dev_id = dev_id;
1028         struct bcm_qspi *qspi = qspi_dev_id->dev;
1029         struct bcm_qspi_soc_intc *soc_intc = qspi->soc_intc;
1030
1031         dev_err(&qspi->pdev->dev, "BSPI INT error\n");
1032         qspi->bspi_rf_msg_status = -EIO;
1033         if (qspi->soc_intc)
1034                 /* clear soc interrupt */
1035                 soc_intc->bcm_qspi_int_ack(soc_intc, BSPI_ERR);
1036
1037         complete(&qspi->bspi_done);
1038         return IRQ_HANDLED;
1039 }
1040
1041 static irqreturn_t bcm_qspi_l1_isr(int irq, void *dev_id)
1042 {
1043         struct bcm_qspi_dev_id *qspi_dev_id = dev_id;
1044         struct bcm_qspi *qspi = qspi_dev_id->dev;
1045         struct bcm_qspi_soc_intc *soc_intc = qspi->soc_intc;
1046         irqreturn_t ret = IRQ_NONE;
1047
1048         if (soc_intc) {
1049                 u32 status = soc_intc->bcm_qspi_get_int_status(soc_intc);
1050
1051                 if (status & MSPI_DONE)
1052                         ret = bcm_qspi_mspi_l2_isr(irq, dev_id);
1053                 else if (status & BSPI_DONE)
1054                         ret = bcm_qspi_bspi_lr_l2_isr(irq, dev_id);
1055                 else if (status & BSPI_ERR)
1056                         ret = bcm_qspi_bspi_lr_err_l2_isr(irq, dev_id);
1057         }
1058
1059         return ret;
1060 }
1061
1062 static const struct bcm_qspi_irq qspi_irq_tab[] = {
1063         {
1064                 .irq_name = "spi_lr_fullness_reached",
1065                 .irq_handler = bcm_qspi_bspi_lr_l2_isr,
1066                 .mask = INTR_BSPI_LR_FULLNESS_REACHED_MASK,
1067         },
1068         {
1069                 .irq_name = "spi_lr_session_aborted",
1070                 .irq_handler = bcm_qspi_bspi_lr_err_l2_isr,
1071                 .mask = INTR_BSPI_LR_SESSION_ABORTED_MASK,
1072         },
1073         {
1074                 .irq_name = "spi_lr_impatient",
1075                 .irq_handler = bcm_qspi_bspi_lr_err_l2_isr,
1076                 .mask = INTR_BSPI_LR_IMPATIENT_MASK,
1077         },
1078         {
1079                 .irq_name = "spi_lr_session_done",
1080                 .irq_handler = bcm_qspi_bspi_lr_l2_isr,
1081                 .mask = INTR_BSPI_LR_SESSION_DONE_MASK,
1082         },
1083 #ifdef QSPI_INT_DEBUG
1084         /* this interrupt is for debug purposes only, dont request irq */
1085         {
1086                 .irq_name = "spi_lr_overread",
1087                 .irq_handler = bcm_qspi_bspi_lr_err_l2_isr,
1088                 .mask = INTR_BSPI_LR_OVERREAD_MASK,
1089         },
1090 #endif
1091         {
1092                 .irq_name = "mspi_done",
1093                 .irq_handler = bcm_qspi_mspi_l2_isr,
1094                 .mask = INTR_MSPI_DONE_MASK,
1095         },
1096         {
1097                 .irq_name = "mspi_halted",
1098                 .irq_handler = bcm_qspi_mspi_l2_isr,
1099                 .mask = INTR_MSPI_HALTED_MASK,
1100         },
1101         {
1102                 /* single muxed L1 interrupt source */
1103                 .irq_name = "spi_l1_intr",
1104                 .irq_handler = bcm_qspi_l1_isr,
1105                 .irq_source = MUXED_L1,
1106                 .mask = QSPI_INTERRUPTS_ALL,
1107         },
1108 };
1109
1110 static void bcm_qspi_bspi_init(struct bcm_qspi *qspi)
1111 {
1112         u32 val = 0;
1113
1114         val = bcm_qspi_read(qspi, BSPI, BSPI_REVISION_ID);
1115         qspi->bspi_maj_rev = (val >> 8) & 0xff;
1116         qspi->bspi_min_rev = val & 0xff;
1117         if (!(bcm_qspi_bspi_ver_three(qspi))) {
1118                 /* Force mapping of BSPI address -> flash offset */
1119                 bcm_qspi_write(qspi, BSPI, BSPI_BSPI_XOR_VALUE, 0);
1120                 bcm_qspi_write(qspi, BSPI, BSPI_BSPI_XOR_ENABLE, 1);
1121         }
1122         qspi->bspi_enabled = 1;
1123         bcm_qspi_disable_bspi(qspi);
1124         bcm_qspi_write(qspi, BSPI, BSPI_B0_CTRL, 0);
1125         bcm_qspi_write(qspi, BSPI, BSPI_B1_CTRL, 0);
1126 }
1127
1128 static void bcm_qspi_hw_init(struct bcm_qspi *qspi)
1129 {
1130         struct bcm_qspi_parms parms;
1131
1132         bcm_qspi_write(qspi, MSPI, MSPI_SPCR1_LSB, 0);
1133         bcm_qspi_write(qspi, MSPI, MSPI_SPCR1_MSB, 0);
1134         bcm_qspi_write(qspi, MSPI, MSPI_NEWQP, 0);
1135         bcm_qspi_write(qspi, MSPI, MSPI_ENDQP, 0);
1136         bcm_qspi_write(qspi, MSPI, MSPI_SPCR2, 0x20);
1137
1138         parms.mode = SPI_MODE_3;
1139         parms.bits_per_word = 8;
1140         parms.speed_hz = qspi->max_speed_hz;
1141         bcm_qspi_hw_set_parms(qspi, &parms);
1142
1143         if (has_bspi(qspi))
1144                 bcm_qspi_bspi_init(qspi);
1145 }
1146
1147 static void bcm_qspi_hw_uninit(struct bcm_qspi *qspi)
1148 {
1149         bcm_qspi_write(qspi, MSPI, MSPI_SPCR2, 0);
1150         if (has_bspi(qspi))
1151                 bcm_qspi_write(qspi, MSPI, MSPI_WRITE_LOCK, 0);
1152
1153 }
1154
1155 static const struct of_device_id bcm_qspi_of_match[] = {
1156         { .compatible = "brcm,spi-bcm-qspi" },
1157         {},
1158 };
1159 MODULE_DEVICE_TABLE(of, bcm_qspi_of_match);
1160
1161 int bcm_qspi_probe(struct platform_device *pdev,
1162                    struct bcm_qspi_soc_intc *soc_intc)
1163 {
1164         struct device *dev = &pdev->dev;
1165         struct bcm_qspi *qspi;
1166         struct spi_master *master;
1167         struct resource *res;
1168         int irq, ret = 0, num_ints = 0;
1169         u32 val;
1170         const char *name = NULL;
1171         int num_irqs = ARRAY_SIZE(qspi_irq_tab);
1172
1173         /* We only support device-tree instantiation */
1174         if (!dev->of_node)
1175                 return -ENODEV;
1176
1177         if (!of_match_node(bcm_qspi_of_match, dev->of_node))
1178                 return -ENODEV;
1179
1180         master = spi_alloc_master(dev, sizeof(struct bcm_qspi));
1181         if (!master) {
1182                 dev_err(dev, "error allocating spi_master\n");
1183                 return -ENOMEM;
1184         }
1185
1186         qspi = spi_master_get_devdata(master);
1187         qspi->pdev = pdev;
1188         qspi->trans_pos.trans = NULL;
1189         qspi->trans_pos.byte = 0;
1190         qspi->master = master;
1191
1192         master->bus_num = -1;
1193         master->mode_bits = SPI_CPHA | SPI_CPOL | SPI_RX_DUAL | SPI_RX_QUAD;
1194         master->setup = bcm_qspi_setup;
1195         master->transfer_one = bcm_qspi_transfer_one;
1196         master->spi_flash_read = bcm_qspi_flash_read;
1197         master->cleanup = bcm_qspi_cleanup;
1198         master->dev.of_node = dev->of_node;
1199         master->num_chipselect = NUM_CHIPSELECT;
1200
1201         qspi->big_endian = of_device_is_big_endian(dev->of_node);
1202
1203         if (!of_property_read_u32(dev->of_node, "num-cs", &val))
1204                 master->num_chipselect = val;
1205
1206         res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "hif_mspi");
1207         if (!res)
1208                 res = platform_get_resource_byname(pdev, IORESOURCE_MEM,
1209                                                    "mspi");
1210
1211         if (res) {
1212                 qspi->base[MSPI]  = devm_ioremap_resource(dev, res);
1213                 if (IS_ERR(qspi->base[MSPI])) {
1214                         ret = PTR_ERR(qspi->base[MSPI]);
1215                         goto qspi_probe_err;
1216                 }
1217         } else {
1218                 goto qspi_probe_err;
1219         }
1220
1221         res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "bspi");
1222         if (res) {
1223                 qspi->base[BSPI]  = devm_ioremap_resource(dev, res);
1224                 if (IS_ERR(qspi->base[BSPI])) {
1225                         ret = PTR_ERR(qspi->base[BSPI]);
1226                         goto qspi_probe_err;
1227                 }
1228                 qspi->bspi_mode = true;
1229         } else {
1230                 qspi->bspi_mode = false;
1231         }
1232
1233         dev_info(dev, "using %smspi mode\n", qspi->bspi_mode ? "bspi-" : "");
1234
1235         res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "cs_reg");
1236         if (res) {
1237                 qspi->base[CHIP_SELECT]  = devm_ioremap_resource(dev, res);
1238                 if (IS_ERR(qspi->base[CHIP_SELECT])) {
1239                         ret = PTR_ERR(qspi->base[CHIP_SELECT]);
1240                         goto qspi_probe_err;
1241                 }
1242         }
1243
1244         qspi->dev_ids = kcalloc(num_irqs, sizeof(struct bcm_qspi_dev_id),
1245                                 GFP_KERNEL);
1246         if (!qspi->dev_ids) {
1247                 ret = -ENOMEM;
1248                 goto qspi_probe_err;
1249         }
1250
1251         for (val = 0; val < num_irqs; val++) {
1252                 irq = -1;
1253                 name = qspi_irq_tab[val].irq_name;
1254                 if (qspi_irq_tab[val].irq_source == SINGLE_L2) {
1255                         /* get the l2 interrupts */
1256                         irq = platform_get_irq_byname(pdev, name);
1257                 } else if (!num_ints && soc_intc) {
1258                         /* all mspi, bspi intrs muxed to one L1 intr */
1259                         irq = platform_get_irq(pdev, 0);
1260                 }
1261
1262                 if (irq  >= 0) {
1263                         ret = devm_request_irq(&pdev->dev, irq,
1264                                                qspi_irq_tab[val].irq_handler, 0,
1265                                                name,
1266                                                &qspi->dev_ids[val]);
1267                         if (ret < 0) {
1268                                 dev_err(&pdev->dev, "IRQ %s not found\n", name);
1269                                 goto qspi_probe_err;
1270                         }
1271
1272                         qspi->dev_ids[val].dev = qspi;
1273                         qspi->dev_ids[val].irqp = &qspi_irq_tab[val];
1274                         num_ints++;
1275                         dev_dbg(&pdev->dev, "registered IRQ %s %d\n",
1276                                 qspi_irq_tab[val].irq_name,
1277                                 irq);
1278                 }
1279         }
1280
1281         if (!num_ints) {
1282                 dev_err(&pdev->dev, "no IRQs registered, cannot init driver\n");
1283                 ret = -EINVAL;
1284                 goto qspi_probe_err;
1285         }
1286
1287         /*
1288          * Some SoCs integrate spi controller (e.g., its interrupt bits)
1289          * in specific ways
1290          */
1291         if (soc_intc) {
1292                 qspi->soc_intc = soc_intc;
1293                 soc_intc->bcm_qspi_int_set(soc_intc, MSPI_DONE, true);
1294         } else {
1295                 qspi->soc_intc = NULL;
1296         }
1297
1298         qspi->clk = devm_clk_get(&pdev->dev, NULL);
1299         if (IS_ERR(qspi->clk)) {
1300                 dev_warn(dev, "unable to get clock\n");
1301                 ret = PTR_ERR(qspi->clk);
1302                 goto qspi_probe_err;
1303         }
1304
1305         ret = clk_prepare_enable(qspi->clk);
1306         if (ret) {
1307                 dev_err(dev, "failed to prepare clock\n");
1308                 goto qspi_probe_err;
1309         }
1310
1311         qspi->base_clk = clk_get_rate(qspi->clk);
1312         qspi->max_speed_hz = qspi->base_clk / (QSPI_SPBR_MIN * 2);
1313
1314         bcm_qspi_hw_init(qspi);
1315         init_completion(&qspi->mspi_done);
1316         init_completion(&qspi->bspi_done);
1317         qspi->curr_cs = -1;
1318
1319         platform_set_drvdata(pdev, qspi);
1320
1321         qspi->xfer_mode.width = -1;
1322         qspi->xfer_mode.addrlen = -1;
1323         qspi->xfer_mode.hp = -1;
1324
1325         ret = devm_spi_register_master(&pdev->dev, master);
1326         if (ret < 0) {
1327                 dev_err(dev, "can't register master\n");
1328                 goto qspi_reg_err;
1329         }
1330
1331         return 0;
1332
1333 qspi_reg_err:
1334         bcm_qspi_hw_uninit(qspi);
1335         clk_disable_unprepare(qspi->clk);
1336 qspi_probe_err:
1337         spi_master_put(master);
1338         kfree(qspi->dev_ids);
1339         return ret;
1340 }
1341 /* probe function to be called by SoC specific platform driver probe */
1342 EXPORT_SYMBOL_GPL(bcm_qspi_probe);
1343
1344 int bcm_qspi_remove(struct platform_device *pdev)
1345 {
1346         struct bcm_qspi *qspi = platform_get_drvdata(pdev);
1347
1348         platform_set_drvdata(pdev, NULL);
1349         bcm_qspi_hw_uninit(qspi);
1350         clk_disable_unprepare(qspi->clk);
1351         kfree(qspi->dev_ids);
1352         spi_unregister_master(qspi->master);
1353
1354         return 0;
1355 }
1356 /* function to be called by SoC specific platform driver remove() */
1357 EXPORT_SYMBOL_GPL(bcm_qspi_remove);
1358
1359 static int __maybe_unused bcm_qspi_suspend(struct device *dev)
1360 {
1361         struct bcm_qspi *qspi = dev_get_drvdata(dev);
1362
1363         spi_master_suspend(qspi->master);
1364         clk_disable(qspi->clk);
1365         bcm_qspi_hw_uninit(qspi);
1366
1367         return 0;
1368 };
1369
1370 static int __maybe_unused bcm_qspi_resume(struct device *dev)
1371 {
1372         struct bcm_qspi *qspi = dev_get_drvdata(dev);
1373         int ret = 0;
1374
1375         bcm_qspi_hw_init(qspi);
1376         bcm_qspi_chip_select(qspi, qspi->curr_cs);
1377         if (qspi->soc_intc)
1378                 /* enable MSPI interrupt */
1379                 qspi->soc_intc->bcm_qspi_int_set(qspi->soc_intc, MSPI_DONE,
1380                                                  true);
1381
1382         ret = clk_enable(qspi->clk);
1383         if (!ret)
1384                 spi_master_resume(qspi->master);
1385
1386         return ret;
1387 }
1388
1389 SIMPLE_DEV_PM_OPS(bcm_qspi_pm_ops, bcm_qspi_suspend, bcm_qspi_resume);
1390
1391 /* pm_ops to be called by SoC specific platform driver */
1392 EXPORT_SYMBOL_GPL(bcm_qspi_pm_ops);
1393
1394 MODULE_AUTHOR("Kamal Dasu");
1395 MODULE_DESCRIPTION("Broadcom QSPI driver");
1396 MODULE_LICENSE("GPL v2");
1397 MODULE_ALIAS("platform:" DRIVER_NAME);