x86/smpboot: Init apic mapping before usage
[cascardo/linux.git] / drivers / spi / spi-dw-mid.c
1 /*
2  * Special handling for DW core on Intel MID platform
3  *
4  * Copyright (c) 2009, 2014 Intel Corporation.
5  *
6  * This program is free software; you can redistribute it and/or modify it
7  * under the terms and conditions of the GNU General Public License,
8  * version 2, as published by the Free Software Foundation.
9  *
10  * This program is distributed in the hope it will be useful, but WITHOUT
11  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13  * more details.
14  */
15
16 #include <linux/dma-mapping.h>
17 #include <linux/dmaengine.h>
18 #include <linux/interrupt.h>
19 #include <linux/slab.h>
20 #include <linux/spi/spi.h>
21 #include <linux/types.h>
22
23 #include "spi-dw.h"
24
25 #ifdef CONFIG_SPI_DW_MID_DMA
26 #include <linux/pci.h>
27 #include <linux/platform_data/dma-dw.h>
28
29 #define RX_BUSY         0
30 #define TX_BUSY         1
31
32 static struct dw_dma_slave mid_dma_tx = { .dst_id = 1 };
33 static struct dw_dma_slave mid_dma_rx = { .src_id = 0 };
34
35 static bool mid_spi_dma_chan_filter(struct dma_chan *chan, void *param)
36 {
37         struct dw_dma_slave *s = param;
38
39         if (s->dma_dev != chan->device->dev)
40                 return false;
41
42         chan->private = s;
43         return true;
44 }
45
46 static int mid_spi_dma_init(struct dw_spi *dws)
47 {
48         struct pci_dev *dma_dev;
49         struct dw_dma_slave *tx = dws->dma_tx;
50         struct dw_dma_slave *rx = dws->dma_rx;
51         dma_cap_mask_t mask;
52
53         /*
54          * Get pci device for DMA controller, currently it could only
55          * be the DMA controller of Medfield
56          */
57         dma_dev = pci_get_device(PCI_VENDOR_ID_INTEL, 0x0827, NULL);
58         if (!dma_dev)
59                 return -ENODEV;
60
61         dma_cap_zero(mask);
62         dma_cap_set(DMA_SLAVE, mask);
63
64         /* 1. Init rx channel */
65         rx->dma_dev = &dma_dev->dev;
66         dws->rxchan = dma_request_channel(mask, mid_spi_dma_chan_filter, rx);
67         if (!dws->rxchan)
68                 goto err_exit;
69         dws->master->dma_rx = dws->rxchan;
70
71         /* 2. Init tx channel */
72         tx->dma_dev = &dma_dev->dev;
73         dws->txchan = dma_request_channel(mask, mid_spi_dma_chan_filter, tx);
74         if (!dws->txchan)
75                 goto free_rxchan;
76         dws->master->dma_tx = dws->txchan;
77
78         dws->dma_inited = 1;
79         return 0;
80
81 free_rxchan:
82         dma_release_channel(dws->rxchan);
83 err_exit:
84         return -EBUSY;
85 }
86
87 static void mid_spi_dma_exit(struct dw_spi *dws)
88 {
89         if (!dws->dma_inited)
90                 return;
91
92         dmaengine_terminate_sync(dws->txchan);
93         dma_release_channel(dws->txchan);
94
95         dmaengine_terminate_sync(dws->rxchan);
96         dma_release_channel(dws->rxchan);
97 }
98
99 static irqreturn_t dma_transfer(struct dw_spi *dws)
100 {
101         u16 irq_status = dw_readl(dws, DW_SPI_ISR);
102
103         if (!irq_status)
104                 return IRQ_NONE;
105
106         dw_readl(dws, DW_SPI_ICR);
107         spi_reset_chip(dws);
108
109         dev_err(&dws->master->dev, "%s: FIFO overrun/underrun\n", __func__);
110         dws->master->cur_msg->status = -EIO;
111         spi_finalize_current_transfer(dws->master);
112         return IRQ_HANDLED;
113 }
114
115 static bool mid_spi_can_dma(struct spi_master *master, struct spi_device *spi,
116                 struct spi_transfer *xfer)
117 {
118         struct dw_spi *dws = spi_master_get_devdata(master);
119
120         if (!dws->dma_inited)
121                 return false;
122
123         return xfer->len > dws->fifo_len;
124 }
125
126 static enum dma_slave_buswidth convert_dma_width(u32 dma_width) {
127         if (dma_width == 1)
128                 return DMA_SLAVE_BUSWIDTH_1_BYTE;
129         else if (dma_width == 2)
130                 return DMA_SLAVE_BUSWIDTH_2_BYTES;
131
132         return DMA_SLAVE_BUSWIDTH_UNDEFINED;
133 }
134
135 /*
136  * dws->dma_chan_busy is set before the dma transfer starts, callback for tx
137  * channel will clear a corresponding bit.
138  */
139 static void dw_spi_dma_tx_done(void *arg)
140 {
141         struct dw_spi *dws = arg;
142
143         clear_bit(TX_BUSY, &dws->dma_chan_busy);
144         if (test_bit(RX_BUSY, &dws->dma_chan_busy))
145                 return;
146         spi_finalize_current_transfer(dws->master);
147 }
148
149 static struct dma_async_tx_descriptor *dw_spi_dma_prepare_tx(struct dw_spi *dws,
150                 struct spi_transfer *xfer)
151 {
152         struct dma_slave_config txconf;
153         struct dma_async_tx_descriptor *txdesc;
154
155         if (!xfer->tx_buf)
156                 return NULL;
157
158         txconf.direction = DMA_MEM_TO_DEV;
159         txconf.dst_addr = dws->dma_addr;
160         txconf.dst_maxburst = 16;
161         txconf.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
162         txconf.dst_addr_width = convert_dma_width(dws->dma_width);
163         txconf.device_fc = false;
164
165         dmaengine_slave_config(dws->txchan, &txconf);
166
167         txdesc = dmaengine_prep_slave_sg(dws->txchan,
168                                 xfer->tx_sg.sgl,
169                                 xfer->tx_sg.nents,
170                                 DMA_MEM_TO_DEV,
171                                 DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
172         if (!txdesc)
173                 return NULL;
174
175         txdesc->callback = dw_spi_dma_tx_done;
176         txdesc->callback_param = dws;
177
178         return txdesc;
179 }
180
181 /*
182  * dws->dma_chan_busy is set before the dma transfer starts, callback for rx
183  * channel will clear a corresponding bit.
184  */
185 static void dw_spi_dma_rx_done(void *arg)
186 {
187         struct dw_spi *dws = arg;
188
189         clear_bit(RX_BUSY, &dws->dma_chan_busy);
190         if (test_bit(TX_BUSY, &dws->dma_chan_busy))
191                 return;
192         spi_finalize_current_transfer(dws->master);
193 }
194
195 static struct dma_async_tx_descriptor *dw_spi_dma_prepare_rx(struct dw_spi *dws,
196                 struct spi_transfer *xfer)
197 {
198         struct dma_slave_config rxconf;
199         struct dma_async_tx_descriptor *rxdesc;
200
201         if (!xfer->rx_buf)
202                 return NULL;
203
204         rxconf.direction = DMA_DEV_TO_MEM;
205         rxconf.src_addr = dws->dma_addr;
206         rxconf.src_maxburst = 16;
207         rxconf.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
208         rxconf.src_addr_width = convert_dma_width(dws->dma_width);
209         rxconf.device_fc = false;
210
211         dmaengine_slave_config(dws->rxchan, &rxconf);
212
213         rxdesc = dmaengine_prep_slave_sg(dws->rxchan,
214                                 xfer->rx_sg.sgl,
215                                 xfer->rx_sg.nents,
216                                 DMA_DEV_TO_MEM,
217                                 DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
218         if (!rxdesc)
219                 return NULL;
220
221         rxdesc->callback = dw_spi_dma_rx_done;
222         rxdesc->callback_param = dws;
223
224         return rxdesc;
225 }
226
227 static int mid_spi_dma_setup(struct dw_spi *dws, struct spi_transfer *xfer)
228 {
229         u16 dma_ctrl = 0;
230
231         dw_writel(dws, DW_SPI_DMARDLR, 0xf);
232         dw_writel(dws, DW_SPI_DMATDLR, 0x10);
233
234         if (xfer->tx_buf)
235                 dma_ctrl |= SPI_DMA_TDMAE;
236         if (xfer->rx_buf)
237                 dma_ctrl |= SPI_DMA_RDMAE;
238         dw_writel(dws, DW_SPI_DMACR, dma_ctrl);
239
240         /* Set the interrupt mask */
241         spi_umask_intr(dws, SPI_INT_TXOI | SPI_INT_RXUI | SPI_INT_RXOI);
242
243         dws->transfer_handler = dma_transfer;
244
245         return 0;
246 }
247
248 static int mid_spi_dma_transfer(struct dw_spi *dws, struct spi_transfer *xfer)
249 {
250         struct dma_async_tx_descriptor *txdesc, *rxdesc;
251
252         /* Prepare the TX dma transfer */
253         txdesc = dw_spi_dma_prepare_tx(dws, xfer);
254
255         /* Prepare the RX dma transfer */
256         rxdesc = dw_spi_dma_prepare_rx(dws, xfer);
257
258         /* rx must be started before tx due to spi instinct */
259         if (rxdesc) {
260                 set_bit(RX_BUSY, &dws->dma_chan_busy);
261                 dmaengine_submit(rxdesc);
262                 dma_async_issue_pending(dws->rxchan);
263         }
264
265         if (txdesc) {
266                 set_bit(TX_BUSY, &dws->dma_chan_busy);
267                 dmaengine_submit(txdesc);
268                 dma_async_issue_pending(dws->txchan);
269         }
270
271         return 0;
272 }
273
274 static void mid_spi_dma_stop(struct dw_spi *dws)
275 {
276         if (test_bit(TX_BUSY, &dws->dma_chan_busy)) {
277                 dmaengine_terminate_all(dws->txchan);
278                 clear_bit(TX_BUSY, &dws->dma_chan_busy);
279         }
280         if (test_bit(RX_BUSY, &dws->dma_chan_busy)) {
281                 dmaengine_terminate_all(dws->rxchan);
282                 clear_bit(RX_BUSY, &dws->dma_chan_busy);
283         }
284 }
285
286 static const struct dw_spi_dma_ops mid_dma_ops = {
287         .dma_init       = mid_spi_dma_init,
288         .dma_exit       = mid_spi_dma_exit,
289         .dma_setup      = mid_spi_dma_setup,
290         .can_dma        = mid_spi_can_dma,
291         .dma_transfer   = mid_spi_dma_transfer,
292         .dma_stop       = mid_spi_dma_stop,
293 };
294 #endif
295
296 /* Some specific info for SPI0 controller on Intel MID */
297
298 /* HW info for MRST Clk Control Unit, 32b reg per controller */
299 #define MRST_SPI_CLK_BASE       100000000       /* 100m */
300 #define MRST_CLK_SPI_REG        0xff11d86c
301 #define CLK_SPI_BDIV_OFFSET     0
302 #define CLK_SPI_BDIV_MASK       0x00000007
303 #define CLK_SPI_CDIV_OFFSET     9
304 #define CLK_SPI_CDIV_MASK       0x00000e00
305 #define CLK_SPI_DISABLE_OFFSET  8
306
307 int dw_spi_mid_init(struct dw_spi *dws)
308 {
309         void __iomem *clk_reg;
310         u32 clk_cdiv;
311
312         clk_reg = ioremap_nocache(MRST_CLK_SPI_REG, 16);
313         if (!clk_reg)
314                 return -ENOMEM;
315
316         /* Get SPI controller operating freq info */
317         clk_cdiv = readl(clk_reg + dws->bus_num * sizeof(u32));
318         clk_cdiv &= CLK_SPI_CDIV_MASK;
319         clk_cdiv >>= CLK_SPI_CDIV_OFFSET;
320         dws->max_freq = MRST_SPI_CLK_BASE / (clk_cdiv + 1);
321
322         iounmap(clk_reg);
323
324 #ifdef CONFIG_SPI_DW_MID_DMA
325         dws->dma_tx = &mid_dma_tx;
326         dws->dma_rx = &mid_dma_rx;
327         dws->dma_ops = &mid_dma_ops;
328 #endif
329         return 0;
330 }