spi: delete non-required instances of include <linux/init.h>
[cascardo/linux.git] / drivers / spi / spi-pxa2xx-dma.c
1 /*
2  * PXA2xx SPI DMA engine support.
3  *
4  * Copyright (C) 2013, Intel Corporation
5  * Author: Mika Westerberg <mika.westerberg@linux.intel.com>
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License version 2 as
9  * published by the Free Software Foundation.
10  */
11
12 #include <linux/device.h>
13 #include <linux/dma-mapping.h>
14 #include <linux/dmaengine.h>
15 #include <linux/pxa2xx_ssp.h>
16 #include <linux/scatterlist.h>
17 #include <linux/sizes.h>
18 #include <linux/spi/spi.h>
19 #include <linux/spi/pxa2xx_spi.h>
20
21 #include "spi-pxa2xx.h"
22
23 static int pxa2xx_spi_map_dma_buffer(struct driver_data *drv_data,
24                                      enum dma_data_direction dir)
25 {
26         int i, nents, len = drv_data->len;
27         struct scatterlist *sg;
28         struct device *dmadev;
29         struct sg_table *sgt;
30         void *buf, *pbuf;
31
32         /*
33          * Some DMA controllers have problems transferring buffers that are
34          * not multiple of 4 bytes. So we truncate the transfer so that it
35          * is suitable for such controllers, and handle the trailing bytes
36          * manually after the DMA completes.
37          *
38          * REVISIT: It would be better if this information could be
39          * retrieved directly from the DMA device in a similar way than
40          * ->copy_align etc. is done.
41          */
42         len = ALIGN(drv_data->len, 4);
43
44         if (dir == DMA_TO_DEVICE) {
45                 dmadev = drv_data->tx_chan->device->dev;
46                 sgt = &drv_data->tx_sgt;
47                 buf = drv_data->tx;
48                 drv_data->tx_map_len = len;
49         } else {
50                 dmadev = drv_data->rx_chan->device->dev;
51                 sgt = &drv_data->rx_sgt;
52                 buf = drv_data->rx;
53                 drv_data->rx_map_len = len;
54         }
55
56         nents = DIV_ROUND_UP(len, SZ_2K);
57         if (nents != sgt->nents) {
58                 int ret;
59
60                 sg_free_table(sgt);
61                 ret = sg_alloc_table(sgt, nents, GFP_ATOMIC);
62                 if (ret)
63                         return ret;
64         }
65
66         pbuf = buf;
67         for_each_sg(sgt->sgl, sg, sgt->nents, i) {
68                 size_t bytes = min_t(size_t, len, SZ_2K);
69
70                 if (buf)
71                         sg_set_buf(sg, pbuf, bytes);
72                 else
73                         sg_set_buf(sg, drv_data->dummy, bytes);
74
75                 pbuf += bytes;
76                 len -= bytes;
77         }
78
79         nents = dma_map_sg(dmadev, sgt->sgl, sgt->nents, dir);
80         if (!nents)
81                 return -ENOMEM;
82
83         return nents;
84 }
85
86 static void pxa2xx_spi_unmap_dma_buffer(struct driver_data *drv_data,
87                                         enum dma_data_direction dir)
88 {
89         struct device *dmadev;
90         struct sg_table *sgt;
91
92         if (dir == DMA_TO_DEVICE) {
93                 dmadev = drv_data->tx_chan->device->dev;
94                 sgt = &drv_data->tx_sgt;
95         } else {
96                 dmadev = drv_data->rx_chan->device->dev;
97                 sgt = &drv_data->rx_sgt;
98         }
99
100         dma_unmap_sg(dmadev, sgt->sgl, sgt->nents, dir);
101 }
102
103 static void pxa2xx_spi_unmap_dma_buffers(struct driver_data *drv_data)
104 {
105         if (!drv_data->dma_mapped)
106                 return;
107
108         pxa2xx_spi_unmap_dma_buffer(drv_data, DMA_FROM_DEVICE);
109         pxa2xx_spi_unmap_dma_buffer(drv_data, DMA_TO_DEVICE);
110
111         drv_data->dma_mapped = 0;
112 }
113
114 static void pxa2xx_spi_dma_transfer_complete(struct driver_data *drv_data,
115                                              bool error)
116 {
117         struct spi_message *msg = drv_data->cur_msg;
118
119         /*
120          * It is possible that one CPU is handling ROR interrupt and other
121          * just gets DMA completion. Calling pump_transfers() twice for the
122          * same transfer leads to problems thus we prevent concurrent calls
123          * by using ->dma_running.
124          */
125         if (atomic_dec_and_test(&drv_data->dma_running)) {
126                 void __iomem *reg = drv_data->ioaddr;
127
128                 /*
129                  * If the other CPU is still handling the ROR interrupt we
130                  * might not know about the error yet. So we re-check the
131                  * ROR bit here before we clear the status register.
132                  */
133                 if (!error) {
134                         u32 status = read_SSSR(reg) & drv_data->mask_sr;
135                         error = status & SSSR_ROR;
136                 }
137
138                 /* Clear status & disable interrupts */
139                 write_SSCR1(read_SSCR1(reg) & ~drv_data->dma_cr1, reg);
140                 write_SSSR_CS(drv_data, drv_data->clear_sr);
141                 if (!pxa25x_ssp_comp(drv_data))
142                         write_SSTO(0, reg);
143
144                 if (!error) {
145                         pxa2xx_spi_unmap_dma_buffers(drv_data);
146
147                         /* Handle the last bytes of unaligned transfer */
148                         drv_data->tx += drv_data->tx_map_len;
149                         drv_data->write(drv_data);
150
151                         drv_data->rx += drv_data->rx_map_len;
152                         drv_data->read(drv_data);
153
154                         msg->actual_length += drv_data->len;
155                         msg->state = pxa2xx_spi_next_transfer(drv_data);
156                 } else {
157                         /* In case we got an error we disable the SSP now */
158                         write_SSCR0(read_SSCR0(reg) & ~SSCR0_SSE, reg);
159
160                         msg->state = ERROR_STATE;
161                 }
162
163                 tasklet_schedule(&drv_data->pump_transfers);
164         }
165 }
166
167 static void pxa2xx_spi_dma_callback(void *data)
168 {
169         pxa2xx_spi_dma_transfer_complete(data, false);
170 }
171
172 static struct dma_async_tx_descriptor *
173 pxa2xx_spi_dma_prepare_one(struct driver_data *drv_data,
174                            enum dma_transfer_direction dir)
175 {
176         struct pxa2xx_spi_master *pdata = drv_data->master_info;
177         struct chip_data *chip = drv_data->cur_chip;
178         enum dma_slave_buswidth width;
179         struct dma_slave_config cfg;
180         struct dma_chan *chan;
181         struct sg_table *sgt;
182         int nents, ret;
183
184         switch (drv_data->n_bytes) {
185         case 1:
186                 width = DMA_SLAVE_BUSWIDTH_1_BYTE;
187                 break;
188         case 2:
189                 width = DMA_SLAVE_BUSWIDTH_2_BYTES;
190                 break;
191         default:
192                 width = DMA_SLAVE_BUSWIDTH_4_BYTES;
193                 break;
194         }
195
196         memset(&cfg, 0, sizeof(cfg));
197         cfg.direction = dir;
198
199         if (dir == DMA_MEM_TO_DEV) {
200                 cfg.dst_addr = drv_data->ssdr_physical;
201                 cfg.dst_addr_width = width;
202                 cfg.dst_maxburst = chip->dma_burst_size;
203                 cfg.slave_id = pdata->tx_slave_id;
204
205                 sgt = &drv_data->tx_sgt;
206                 nents = drv_data->tx_nents;
207                 chan = drv_data->tx_chan;
208         } else {
209                 cfg.src_addr = drv_data->ssdr_physical;
210                 cfg.src_addr_width = width;
211                 cfg.src_maxburst = chip->dma_burst_size;
212                 cfg.slave_id = pdata->rx_slave_id;
213
214                 sgt = &drv_data->rx_sgt;
215                 nents = drv_data->rx_nents;
216                 chan = drv_data->rx_chan;
217         }
218
219         ret = dmaengine_slave_config(chan, &cfg);
220         if (ret) {
221                 dev_warn(&drv_data->pdev->dev, "DMA slave config failed\n");
222                 return NULL;
223         }
224
225         return dmaengine_prep_slave_sg(chan, sgt->sgl, nents, dir,
226                                        DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
227 }
228
229 static bool pxa2xx_spi_dma_filter(struct dma_chan *chan, void *param)
230 {
231         const struct pxa2xx_spi_master *pdata = param;
232
233         return chan->chan_id == pdata->tx_chan_id ||
234                chan->chan_id == pdata->rx_chan_id;
235 }
236
237 bool pxa2xx_spi_dma_is_possible(size_t len)
238 {
239         return len <= MAX_DMA_LEN;
240 }
241
242 int pxa2xx_spi_map_dma_buffers(struct driver_data *drv_data)
243 {
244         const struct chip_data *chip = drv_data->cur_chip;
245         int ret;
246
247         if (!chip->enable_dma)
248                 return 0;
249
250         /* Don't bother with DMA if we can't do even a single burst */
251         if (drv_data->len < chip->dma_burst_size)
252                 return 0;
253
254         ret = pxa2xx_spi_map_dma_buffer(drv_data, DMA_TO_DEVICE);
255         if (ret <= 0) {
256                 dev_warn(&drv_data->pdev->dev, "failed to DMA map TX\n");
257                 return 0;
258         }
259
260         drv_data->tx_nents = ret;
261
262         ret = pxa2xx_spi_map_dma_buffer(drv_data, DMA_FROM_DEVICE);
263         if (ret <= 0) {
264                 pxa2xx_spi_unmap_dma_buffer(drv_data, DMA_TO_DEVICE);
265                 dev_warn(&drv_data->pdev->dev, "failed to DMA map RX\n");
266                 return 0;
267         }
268
269         drv_data->rx_nents = ret;
270         return 1;
271 }
272
273 irqreturn_t pxa2xx_spi_dma_transfer(struct driver_data *drv_data)
274 {
275         u32 status;
276
277         status = read_SSSR(drv_data->ioaddr) & drv_data->mask_sr;
278         if (status & SSSR_ROR) {
279                 dev_err(&drv_data->pdev->dev, "FIFO overrun\n");
280
281                 dmaengine_terminate_all(drv_data->rx_chan);
282                 dmaengine_terminate_all(drv_data->tx_chan);
283
284                 pxa2xx_spi_dma_transfer_complete(drv_data, true);
285                 return IRQ_HANDLED;
286         }
287
288         return IRQ_NONE;
289 }
290
291 int pxa2xx_spi_dma_prepare(struct driver_data *drv_data, u32 dma_burst)
292 {
293         struct dma_async_tx_descriptor *tx_desc, *rx_desc;
294
295         tx_desc = pxa2xx_spi_dma_prepare_one(drv_data, DMA_MEM_TO_DEV);
296         if (!tx_desc) {
297                 dev_err(&drv_data->pdev->dev,
298                         "failed to get DMA TX descriptor\n");
299                 return -EBUSY;
300         }
301
302         rx_desc = pxa2xx_spi_dma_prepare_one(drv_data, DMA_DEV_TO_MEM);
303         if (!rx_desc) {
304                 dev_err(&drv_data->pdev->dev,
305                         "failed to get DMA RX descriptor\n");
306                 return -EBUSY;
307         }
308
309         /* We are ready when RX completes */
310         rx_desc->callback = pxa2xx_spi_dma_callback;
311         rx_desc->callback_param = drv_data;
312
313         dmaengine_submit(rx_desc);
314         dmaengine_submit(tx_desc);
315         return 0;
316 }
317
318 void pxa2xx_spi_dma_start(struct driver_data *drv_data)
319 {
320         dma_async_issue_pending(drv_data->rx_chan);
321         dma_async_issue_pending(drv_data->tx_chan);
322
323         atomic_set(&drv_data->dma_running, 1);
324 }
325
326 int pxa2xx_spi_dma_setup(struct driver_data *drv_data)
327 {
328         struct pxa2xx_spi_master *pdata = drv_data->master_info;
329         struct device *dev = &drv_data->pdev->dev;
330         dma_cap_mask_t mask;
331
332         dma_cap_zero(mask);
333         dma_cap_set(DMA_SLAVE, mask);
334
335         drv_data->dummy = devm_kzalloc(dev, SZ_2K, GFP_KERNEL);
336         if (!drv_data->dummy)
337                 return -ENOMEM;
338
339         drv_data->tx_chan = dma_request_slave_channel_compat(mask,
340                                 pxa2xx_spi_dma_filter, pdata, dev, "tx");
341         if (!drv_data->tx_chan)
342                 return -ENODEV;
343
344         drv_data->rx_chan = dma_request_slave_channel_compat(mask,
345                                 pxa2xx_spi_dma_filter, pdata, dev, "rx");
346         if (!drv_data->rx_chan) {
347                 dma_release_channel(drv_data->tx_chan);
348                 drv_data->tx_chan = NULL;
349                 return -ENODEV;
350         }
351
352         return 0;
353 }
354
355 void pxa2xx_spi_dma_release(struct driver_data *drv_data)
356 {
357         if (drv_data->rx_chan) {
358                 dmaengine_terminate_all(drv_data->rx_chan);
359                 dma_release_channel(drv_data->rx_chan);
360                 sg_free_table(&drv_data->rx_sgt);
361                 drv_data->rx_chan = NULL;
362         }
363         if (drv_data->tx_chan) {
364                 dmaengine_terminate_all(drv_data->tx_chan);
365                 dma_release_channel(drv_data->tx_chan);
366                 sg_free_table(&drv_data->tx_sgt);
367                 drv_data->tx_chan = NULL;
368         }
369 }
370
371 void pxa2xx_spi_dma_resume(struct driver_data *drv_data)
372 {
373 }
374
375 int pxa2xx_spi_set_dma_burst_and_threshold(struct chip_data *chip,
376                                            struct spi_device *spi,
377                                            u8 bits_per_word, u32 *burst_code,
378                                            u32 *threshold)
379 {
380         struct pxa2xx_spi_chip *chip_info = spi->controller_data;
381
382         /*
383          * If the DMA burst size is given in chip_info we use that,
384          * otherwise we use the default. Also we use the default FIFO
385          * thresholds for now.
386          */
387         *burst_code = chip_info ? chip_info->dma_burst_size : 16;
388         *threshold = SSCR1_RxTresh(RX_THRESH_DFLT)
389                    | SSCR1_TxTresh(TX_THRESH_DFLT);
390
391         return 0;
392 }