ASoC: wm8904: add new compatible string
[cascardo/linux.git] / drivers / spi / spi-pxa2xx.c
1 /*
2  * Copyright (C) 2005 Stephen Street / StreetFire Sound Labs
3  * Copyright (C) 2013, Intel Corporation
4  *
5  * This program is free software; you can redistribute it and/or modify
6  * it under the terms of the GNU General Public License as published by
7  * the Free Software Foundation; either version 2 of the License, or
8  * (at your option) any later version.
9  *
10  * This program is distributed in the hope that it will be useful,
11  * but WITHOUT ANY WARRANTY; without even the implied warranty of
12  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
13  * GNU General Public License for more details.
14  *
15  * You should have received a copy of the GNU General Public License
16  * along with this program; if not, write to the Free Software
17  * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
18  */
19
20 #include <linux/init.h>
21 #include <linux/module.h>
22 #include <linux/device.h>
23 #include <linux/ioport.h>
24 #include <linux/errno.h>
25 #include <linux/err.h>
26 #include <linux/interrupt.h>
27 #include <linux/platform_device.h>
28 #include <linux/spi/pxa2xx_spi.h>
29 #include <linux/spi/spi.h>
30 #include <linux/delay.h>
31 #include <linux/gpio.h>
32 #include <linux/slab.h>
33 #include <linux/clk.h>
34 #include <linux/pm_runtime.h>
35 #include <linux/acpi.h>
36
37 #include <asm/io.h>
38 #include <asm/irq.h>
39 #include <asm/delay.h>
40
41 #include "spi-pxa2xx.h"
42
43 MODULE_AUTHOR("Stephen Street");
44 MODULE_DESCRIPTION("PXA2xx SSP SPI Controller");
45 MODULE_LICENSE("GPL");
46 MODULE_ALIAS("platform:pxa2xx-spi");
47
48 #define MAX_BUSES 3
49
50 #define TIMOUT_DFLT             1000
51
52 /*
53  * for testing SSCR1 changes that require SSP restart, basically
54  * everything except the service and interrupt enables, the pxa270 developer
55  * manual says only SSCR1_SCFR, SSCR1_SPH, SSCR1_SPO need to be in this
56  * list, but the PXA255 dev man says all bits without really meaning the
57  * service and interrupt enables
58  */
59 #define SSCR1_CHANGE_MASK (SSCR1_TTELP | SSCR1_TTE | SSCR1_SCFR \
60                                 | SSCR1_ECRA | SSCR1_ECRB | SSCR1_SCLKDIR \
61                                 | SSCR1_SFRMDIR | SSCR1_RWOT | SSCR1_TRAIL \
62                                 | SSCR1_IFS | SSCR1_STRF | SSCR1_EFWR \
63                                 | SSCR1_RFT | SSCR1_TFT | SSCR1_MWDS \
64                                 | SSCR1_SPH | SSCR1_SPO | SSCR1_LBM)
65
66 #define QUARK_X1000_SSCR1_CHANGE_MASK (QUARK_X1000_SSCR1_STRF   \
67                                 | QUARK_X1000_SSCR1_EFWR        \
68                                 | QUARK_X1000_SSCR1_RFT         \
69                                 | QUARK_X1000_SSCR1_TFT         \
70                                 | SSCR1_SPH | SSCR1_SPO | SSCR1_LBM)
71
72 #define LPSS_RX_THRESH_DFLT     64
73 #define LPSS_TX_LOTHRESH_DFLT   160
74 #define LPSS_TX_HITHRESH_DFLT   224
75
76 struct quark_spi_rate {
77         u32 bitrate;
78         u32 dds_clk_rate;
79         u32 clk_div;
80 };
81
82 /*
83  * 'rate', 'dds', 'clk_div' lookup table, which is defined in
84  * the Quark SPI datasheet.
85  */
86 static const struct quark_spi_rate quark_spi_rate_table[] = {
87 /*      bitrate,        dds_clk_rate,   clk_div */
88         {50000000,      0x800000,       0},
89         {40000000,      0x666666,       0},
90         {25000000,      0x400000,       0},
91         {20000000,      0x666666,       1},
92         {16667000,      0x800000,       2},
93         {13333000,      0x666666,       2},
94         {12500000,      0x200000,       0},
95         {10000000,      0x800000,       4},
96         {8000000,       0x666666,       4},
97         {6250000,       0x400000,       3},
98         {5000000,       0x400000,       4},
99         {4000000,       0x666666,       9},
100         {3125000,       0x80000,        0},
101         {2500000,       0x400000,       9},
102         {2000000,       0x666666,       19},
103         {1563000,       0x40000,        0},
104         {1250000,       0x200000,       9},
105         {1000000,       0x400000,       24},
106         {800000,        0x666666,       49},
107         {781250,        0x20000,        0},
108         {625000,        0x200000,       19},
109         {500000,        0x400000,       49},
110         {400000,        0x666666,       99},
111         {390625,        0x10000,        0},
112         {250000,        0x400000,       99},
113         {200000,        0x666666,       199},
114         {195313,        0x8000,         0},
115         {125000,        0x100000,       49},
116         {100000,        0x200000,       124},
117         {50000,         0x100000,       124},
118         {25000,         0x80000,        124},
119         {10016,         0x20000,        77},
120         {5040,          0x20000,        154},
121         {1002,          0x8000,         194},
122 };
123
124 /* Offset from drv_data->lpss_base */
125 #define GENERAL_REG             0x08
126 #define GENERAL_REG_RXTO_HOLDOFF_DISABLE BIT(24)
127 #define SSP_REG                 0x0c
128 #define SPI_CS_CONTROL          0x18
129 #define SPI_CS_CONTROL_SW_MODE  BIT(0)
130 #define SPI_CS_CONTROL_CS_HIGH  BIT(1)
131
132 static bool is_lpss_ssp(const struct driver_data *drv_data)
133 {
134         return drv_data->ssp_type == LPSS_SSP;
135 }
136
137 static bool is_quark_x1000_ssp(const struct driver_data *drv_data)
138 {
139         return drv_data->ssp_type == QUARK_X1000_SSP;
140 }
141
142 static u32 pxa2xx_spi_get_ssrc1_change_mask(const struct driver_data *drv_data)
143 {
144         switch (drv_data->ssp_type) {
145         case QUARK_X1000_SSP:
146                 return QUARK_X1000_SSCR1_CHANGE_MASK;
147         default:
148                 return SSCR1_CHANGE_MASK;
149         }
150 }
151
152 static u32
153 pxa2xx_spi_get_rx_default_thre(const struct driver_data *drv_data)
154 {
155         switch (drv_data->ssp_type) {
156         case QUARK_X1000_SSP:
157                 return RX_THRESH_QUARK_X1000_DFLT;
158         default:
159                 return RX_THRESH_DFLT;
160         }
161 }
162
163 static bool pxa2xx_spi_txfifo_full(const struct driver_data *drv_data)
164 {
165         void __iomem *reg = drv_data->ioaddr;
166         u32 mask;
167
168         switch (drv_data->ssp_type) {
169         case QUARK_X1000_SSP:
170                 mask = QUARK_X1000_SSSR_TFL_MASK;
171                 break;
172         default:
173                 mask = SSSR_TFL_MASK;
174                 break;
175         }
176
177         return (read_SSSR(reg) & mask) == mask;
178 }
179
180 static void pxa2xx_spi_clear_rx_thre(const struct driver_data *drv_data,
181                                      u32 *sccr1_reg)
182 {
183         u32 mask;
184
185         switch (drv_data->ssp_type) {
186         case QUARK_X1000_SSP:
187                 mask = QUARK_X1000_SSCR1_RFT;
188                 break;
189         default:
190                 mask = SSCR1_RFT;
191                 break;
192         }
193         *sccr1_reg &= ~mask;
194 }
195
196 static void pxa2xx_spi_set_rx_thre(const struct driver_data *drv_data,
197                                    u32 *sccr1_reg, u32 threshold)
198 {
199         switch (drv_data->ssp_type) {
200         case QUARK_X1000_SSP:
201                 *sccr1_reg |= QUARK_X1000_SSCR1_RxTresh(threshold);
202                 break;
203         default:
204                 *sccr1_reg |= SSCR1_RxTresh(threshold);
205                 break;
206         }
207 }
208
209 static u32 pxa2xx_configure_sscr0(const struct driver_data *drv_data,
210                                   u32 clk_div, u8 bits)
211 {
212         switch (drv_data->ssp_type) {
213         case QUARK_X1000_SSP:
214                 return clk_div
215                         | QUARK_X1000_SSCR0_Motorola
216                         | QUARK_X1000_SSCR0_DataSize(bits > 32 ? 8 : bits)
217                         | SSCR0_SSE;
218         default:
219                 return clk_div
220                         | SSCR0_Motorola
221                         | SSCR0_DataSize(bits > 16 ? bits - 16 : bits)
222                         | SSCR0_SSE
223                         | (bits > 16 ? SSCR0_EDSS : 0);
224         }
225 }
226
227 /*
228  * Read and write LPSS SSP private registers. Caller must first check that
229  * is_lpss_ssp() returns true before these can be called.
230  */
231 static u32 __lpss_ssp_read_priv(struct driver_data *drv_data, unsigned offset)
232 {
233         WARN_ON(!drv_data->lpss_base);
234         return readl(drv_data->lpss_base + offset);
235 }
236
237 static void __lpss_ssp_write_priv(struct driver_data *drv_data,
238                                   unsigned offset, u32 value)
239 {
240         WARN_ON(!drv_data->lpss_base);
241         writel(value, drv_data->lpss_base + offset);
242 }
243
244 /*
245  * lpss_ssp_setup - perform LPSS SSP specific setup
246  * @drv_data: pointer to the driver private data
247  *
248  * Perform LPSS SSP specific setup. This function must be called first if
249  * one is going to use LPSS SSP private registers.
250  */
251 static void lpss_ssp_setup(struct driver_data *drv_data)
252 {
253         unsigned offset = 0x400;
254         u32 value, orig;
255
256         if (!is_lpss_ssp(drv_data))
257                 return;
258
259         /*
260          * Perform auto-detection of the LPSS SSP private registers. They
261          * can be either at 1k or 2k offset from the base address.
262          */
263         orig = readl(drv_data->ioaddr + offset + SPI_CS_CONTROL);
264
265         /* Test SPI_CS_CONTROL_SW_MODE bit enabling */
266         value = orig | SPI_CS_CONTROL_SW_MODE;
267         writel(value, drv_data->ioaddr + offset + SPI_CS_CONTROL);
268         value = readl(drv_data->ioaddr + offset + SPI_CS_CONTROL);
269         if (value != (orig | SPI_CS_CONTROL_SW_MODE)) {
270                 offset = 0x800;
271                 goto detection_done;
272         }
273
274         orig = readl(drv_data->ioaddr + offset + SPI_CS_CONTROL);
275
276         /* Test SPI_CS_CONTROL_SW_MODE bit disabling */
277         value = orig & ~SPI_CS_CONTROL_SW_MODE;
278         writel(value, drv_data->ioaddr + offset + SPI_CS_CONTROL);
279         value = readl(drv_data->ioaddr + offset + SPI_CS_CONTROL);
280         if (value != (orig & ~SPI_CS_CONTROL_SW_MODE)) {
281                 offset = 0x800;
282                 goto detection_done;
283         }
284
285 detection_done:
286         /* Now set the LPSS base */
287         drv_data->lpss_base = drv_data->ioaddr + offset;
288
289         /* Enable software chip select control */
290         value = SPI_CS_CONTROL_SW_MODE | SPI_CS_CONTROL_CS_HIGH;
291         __lpss_ssp_write_priv(drv_data, SPI_CS_CONTROL, value);
292
293         /* Enable multiblock DMA transfers */
294         if (drv_data->master_info->enable_dma) {
295                 __lpss_ssp_write_priv(drv_data, SSP_REG, 1);
296
297                 value = __lpss_ssp_read_priv(drv_data, GENERAL_REG);
298                 value |= GENERAL_REG_RXTO_HOLDOFF_DISABLE;
299                 __lpss_ssp_write_priv(drv_data, GENERAL_REG, value);
300         }
301 }
302
303 static void lpss_ssp_cs_control(struct driver_data *drv_data, bool enable)
304 {
305         u32 value;
306
307         if (!is_lpss_ssp(drv_data))
308                 return;
309
310         value = __lpss_ssp_read_priv(drv_data, SPI_CS_CONTROL);
311         if (enable)
312                 value &= ~SPI_CS_CONTROL_CS_HIGH;
313         else
314                 value |= SPI_CS_CONTROL_CS_HIGH;
315         __lpss_ssp_write_priv(drv_data, SPI_CS_CONTROL, value);
316 }
317
318 static void cs_assert(struct driver_data *drv_data)
319 {
320         struct chip_data *chip = drv_data->cur_chip;
321
322         if (drv_data->ssp_type == CE4100_SSP) {
323                 write_SSSR(drv_data->cur_chip->frm, drv_data->ioaddr);
324                 return;
325         }
326
327         if (chip->cs_control) {
328                 chip->cs_control(PXA2XX_CS_ASSERT);
329                 return;
330         }
331
332         if (gpio_is_valid(chip->gpio_cs)) {
333                 gpio_set_value(chip->gpio_cs, chip->gpio_cs_inverted);
334                 return;
335         }
336
337         lpss_ssp_cs_control(drv_data, true);
338 }
339
340 static void cs_deassert(struct driver_data *drv_data)
341 {
342         struct chip_data *chip = drv_data->cur_chip;
343
344         if (drv_data->ssp_type == CE4100_SSP)
345                 return;
346
347         if (chip->cs_control) {
348                 chip->cs_control(PXA2XX_CS_DEASSERT);
349                 return;
350         }
351
352         if (gpio_is_valid(chip->gpio_cs)) {
353                 gpio_set_value(chip->gpio_cs, !chip->gpio_cs_inverted);
354                 return;
355         }
356
357         lpss_ssp_cs_control(drv_data, false);
358 }
359
360 int pxa2xx_spi_flush(struct driver_data *drv_data)
361 {
362         unsigned long limit = loops_per_jiffy << 1;
363
364         void __iomem *reg = drv_data->ioaddr;
365
366         do {
367                 while (read_SSSR(reg) & SSSR_RNE) {
368                         read_SSDR(reg);
369                 }
370         } while ((read_SSSR(reg) & SSSR_BSY) && --limit);
371         write_SSSR_CS(drv_data, SSSR_ROR);
372
373         return limit;
374 }
375
376 static int null_writer(struct driver_data *drv_data)
377 {
378         void __iomem *reg = drv_data->ioaddr;
379         u8 n_bytes = drv_data->n_bytes;
380
381         if (pxa2xx_spi_txfifo_full(drv_data)
382                 || (drv_data->tx == drv_data->tx_end))
383                 return 0;
384
385         write_SSDR(0, reg);
386         drv_data->tx += n_bytes;
387
388         return 1;
389 }
390
391 static int null_reader(struct driver_data *drv_data)
392 {
393         void __iomem *reg = drv_data->ioaddr;
394         u8 n_bytes = drv_data->n_bytes;
395
396         while ((read_SSSR(reg) & SSSR_RNE)
397                 && (drv_data->rx < drv_data->rx_end)) {
398                 read_SSDR(reg);
399                 drv_data->rx += n_bytes;
400         }
401
402         return drv_data->rx == drv_data->rx_end;
403 }
404
405 static int u8_writer(struct driver_data *drv_data)
406 {
407         void __iomem *reg = drv_data->ioaddr;
408
409         if (pxa2xx_spi_txfifo_full(drv_data)
410                 || (drv_data->tx == drv_data->tx_end))
411                 return 0;
412
413         write_SSDR(*(u8 *)(drv_data->tx), reg);
414         ++drv_data->tx;
415
416         return 1;
417 }
418
419 static int u8_reader(struct driver_data *drv_data)
420 {
421         void __iomem *reg = drv_data->ioaddr;
422
423         while ((read_SSSR(reg) & SSSR_RNE)
424                 && (drv_data->rx < drv_data->rx_end)) {
425                 *(u8 *)(drv_data->rx) = read_SSDR(reg);
426                 ++drv_data->rx;
427         }
428
429         return drv_data->rx == drv_data->rx_end;
430 }
431
432 static int u16_writer(struct driver_data *drv_data)
433 {
434         void __iomem *reg = drv_data->ioaddr;
435
436         if (pxa2xx_spi_txfifo_full(drv_data)
437                 || (drv_data->tx == drv_data->tx_end))
438                 return 0;
439
440         write_SSDR(*(u16 *)(drv_data->tx), reg);
441         drv_data->tx += 2;
442
443         return 1;
444 }
445
446 static int u16_reader(struct driver_data *drv_data)
447 {
448         void __iomem *reg = drv_data->ioaddr;
449
450         while ((read_SSSR(reg) & SSSR_RNE)
451                 && (drv_data->rx < drv_data->rx_end)) {
452                 *(u16 *)(drv_data->rx) = read_SSDR(reg);
453                 drv_data->rx += 2;
454         }
455
456         return drv_data->rx == drv_data->rx_end;
457 }
458
459 static int u32_writer(struct driver_data *drv_data)
460 {
461         void __iomem *reg = drv_data->ioaddr;
462
463         if (pxa2xx_spi_txfifo_full(drv_data)
464                 || (drv_data->tx == drv_data->tx_end))
465                 return 0;
466
467         write_SSDR(*(u32 *)(drv_data->tx), reg);
468         drv_data->tx += 4;
469
470         return 1;
471 }
472
473 static int u32_reader(struct driver_data *drv_data)
474 {
475         void __iomem *reg = drv_data->ioaddr;
476
477         while ((read_SSSR(reg) & SSSR_RNE)
478                 && (drv_data->rx < drv_data->rx_end)) {
479                 *(u32 *)(drv_data->rx) = read_SSDR(reg);
480                 drv_data->rx += 4;
481         }
482
483         return drv_data->rx == drv_data->rx_end;
484 }
485
486 void *pxa2xx_spi_next_transfer(struct driver_data *drv_data)
487 {
488         struct spi_message *msg = drv_data->cur_msg;
489         struct spi_transfer *trans = drv_data->cur_transfer;
490
491         /* Move to next transfer */
492         if (trans->transfer_list.next != &msg->transfers) {
493                 drv_data->cur_transfer =
494                         list_entry(trans->transfer_list.next,
495                                         struct spi_transfer,
496                                         transfer_list);
497                 return RUNNING_STATE;
498         } else
499                 return DONE_STATE;
500 }
501
502 /* caller already set message->status; dma and pio irqs are blocked */
503 static void giveback(struct driver_data *drv_data)
504 {
505         struct spi_transfer* last_transfer;
506         struct spi_message *msg;
507
508         msg = drv_data->cur_msg;
509         drv_data->cur_msg = NULL;
510         drv_data->cur_transfer = NULL;
511
512         last_transfer = list_last_entry(&msg->transfers, struct spi_transfer,
513                                         transfer_list);
514
515         /* Delay if requested before any change in chip select */
516         if (last_transfer->delay_usecs)
517                 udelay(last_transfer->delay_usecs);
518
519         /* Drop chip select UNLESS cs_change is true or we are returning
520          * a message with an error, or next message is for another chip
521          */
522         if (!last_transfer->cs_change)
523                 cs_deassert(drv_data);
524         else {
525                 struct spi_message *next_msg;
526
527                 /* Holding of cs was hinted, but we need to make sure
528                  * the next message is for the same chip.  Don't waste
529                  * time with the following tests unless this was hinted.
530                  *
531                  * We cannot postpone this until pump_messages, because
532                  * after calling msg->complete (below) the driver that
533                  * sent the current message could be unloaded, which
534                  * could invalidate the cs_control() callback...
535                  */
536
537                 /* get a pointer to the next message, if any */
538                 next_msg = spi_get_next_queued_message(drv_data->master);
539
540                 /* see if the next and current messages point
541                  * to the same chip
542                  */
543                 if (next_msg && next_msg->spi != msg->spi)
544                         next_msg = NULL;
545                 if (!next_msg || msg->state == ERROR_STATE)
546                         cs_deassert(drv_data);
547         }
548
549         spi_finalize_current_message(drv_data->master);
550         drv_data->cur_chip = NULL;
551 }
552
553 static void reset_sccr1(struct driver_data *drv_data)
554 {
555         void __iomem *reg = drv_data->ioaddr;
556         struct chip_data *chip = drv_data->cur_chip;
557         u32 sccr1_reg;
558
559         sccr1_reg = read_SSCR1(reg) & ~drv_data->int_cr1;
560         sccr1_reg &= ~SSCR1_RFT;
561         sccr1_reg |= chip->threshold;
562         write_SSCR1(sccr1_reg, reg);
563 }
564
565 static void int_error_stop(struct driver_data *drv_data, const char* msg)
566 {
567         void __iomem *reg = drv_data->ioaddr;
568
569         /* Stop and reset SSP */
570         write_SSSR_CS(drv_data, drv_data->clear_sr);
571         reset_sccr1(drv_data);
572         if (!pxa25x_ssp_comp(drv_data))
573                 write_SSTO(0, reg);
574         pxa2xx_spi_flush(drv_data);
575         write_SSCR0(read_SSCR0(reg) & ~SSCR0_SSE, reg);
576
577         dev_err(&drv_data->pdev->dev, "%s\n", msg);
578
579         drv_data->cur_msg->state = ERROR_STATE;
580         tasklet_schedule(&drv_data->pump_transfers);
581 }
582
583 static void int_transfer_complete(struct driver_data *drv_data)
584 {
585         void __iomem *reg = drv_data->ioaddr;
586
587         /* Stop SSP */
588         write_SSSR_CS(drv_data, drv_data->clear_sr);
589         reset_sccr1(drv_data);
590         if (!pxa25x_ssp_comp(drv_data))
591                 write_SSTO(0, reg);
592
593         /* Update total byte transferred return count actual bytes read */
594         drv_data->cur_msg->actual_length += drv_data->len -
595                                 (drv_data->rx_end - drv_data->rx);
596
597         /* Transfer delays and chip select release are
598          * handled in pump_transfers or giveback
599          */
600
601         /* Move to next transfer */
602         drv_data->cur_msg->state = pxa2xx_spi_next_transfer(drv_data);
603
604         /* Schedule transfer tasklet */
605         tasklet_schedule(&drv_data->pump_transfers);
606 }
607
608 static irqreturn_t interrupt_transfer(struct driver_data *drv_data)
609 {
610         void __iomem *reg = drv_data->ioaddr;
611
612         u32 irq_mask = (read_SSCR1(reg) & SSCR1_TIE) ?
613                         drv_data->mask_sr : drv_data->mask_sr & ~SSSR_TFS;
614
615         u32 irq_status = read_SSSR(reg) & irq_mask;
616
617         if (irq_status & SSSR_ROR) {
618                 int_error_stop(drv_data, "interrupt_transfer: fifo overrun");
619                 return IRQ_HANDLED;
620         }
621
622         if (irq_status & SSSR_TINT) {
623                 write_SSSR(SSSR_TINT, reg);
624                 if (drv_data->read(drv_data)) {
625                         int_transfer_complete(drv_data);
626                         return IRQ_HANDLED;
627                 }
628         }
629
630         /* Drain rx fifo, Fill tx fifo and prevent overruns */
631         do {
632                 if (drv_data->read(drv_data)) {
633                         int_transfer_complete(drv_data);
634                         return IRQ_HANDLED;
635                 }
636         } while (drv_data->write(drv_data));
637
638         if (drv_data->read(drv_data)) {
639                 int_transfer_complete(drv_data);
640                 return IRQ_HANDLED;
641         }
642
643         if (drv_data->tx == drv_data->tx_end) {
644                 u32 bytes_left;
645                 u32 sccr1_reg;
646
647                 sccr1_reg = read_SSCR1(reg);
648                 sccr1_reg &= ~SSCR1_TIE;
649
650                 /*
651                  * PXA25x_SSP has no timeout, set up rx threshould for the
652                  * remaining RX bytes.
653                  */
654                 if (pxa25x_ssp_comp(drv_data)) {
655                         u32 rx_thre;
656
657                         pxa2xx_spi_clear_rx_thre(drv_data, &sccr1_reg);
658
659                         bytes_left = drv_data->rx_end - drv_data->rx;
660                         switch (drv_data->n_bytes) {
661                         case 4:
662                                 bytes_left >>= 1;
663                         case 2:
664                                 bytes_left >>= 1;
665                         }
666
667                         rx_thre = pxa2xx_spi_get_rx_default_thre(drv_data);
668                         if (rx_thre > bytes_left)
669                                 rx_thre = bytes_left;
670
671                         pxa2xx_spi_set_rx_thre(drv_data, &sccr1_reg, rx_thre);
672                 }
673                 write_SSCR1(sccr1_reg, reg);
674         }
675
676         /* We did something */
677         return IRQ_HANDLED;
678 }
679
680 static irqreturn_t ssp_int(int irq, void *dev_id)
681 {
682         struct driver_data *drv_data = dev_id;
683         void __iomem *reg = drv_data->ioaddr;
684         u32 sccr1_reg;
685         u32 mask = drv_data->mask_sr;
686         u32 status;
687
688         /*
689          * The IRQ might be shared with other peripherals so we must first
690          * check that are we RPM suspended or not. If we are we assume that
691          * the IRQ was not for us (we shouldn't be RPM suspended when the
692          * interrupt is enabled).
693          */
694         if (pm_runtime_suspended(&drv_data->pdev->dev))
695                 return IRQ_NONE;
696
697         /*
698          * If the device is not yet in RPM suspended state and we get an
699          * interrupt that is meant for another device, check if status bits
700          * are all set to one. That means that the device is already
701          * powered off.
702          */
703         status = read_SSSR(reg);
704         if (status == ~0)
705                 return IRQ_NONE;
706
707         sccr1_reg = read_SSCR1(reg);
708
709         /* Ignore possible writes if we don't need to write */
710         if (!(sccr1_reg & SSCR1_TIE))
711                 mask &= ~SSSR_TFS;
712
713         if (!(status & mask))
714                 return IRQ_NONE;
715
716         if (!drv_data->cur_msg) {
717
718                 write_SSCR0(read_SSCR0(reg) & ~SSCR0_SSE, reg);
719                 write_SSCR1(read_SSCR1(reg) & ~drv_data->int_cr1, reg);
720                 if (!pxa25x_ssp_comp(drv_data))
721                         write_SSTO(0, reg);
722                 write_SSSR_CS(drv_data, drv_data->clear_sr);
723
724                 dev_err(&drv_data->pdev->dev,
725                         "bad message state in interrupt handler\n");
726
727                 /* Never fail */
728                 return IRQ_HANDLED;
729         }
730
731         return drv_data->transfer_handler(drv_data);
732 }
733
734 /*
735  * The Quark SPI data sheet gives a table, and for the given 'rate',
736  * the 'dds' and 'clk_div' can be found in the table.
737  */
738 static u32 quark_x1000_set_clk_regvals(u32 rate, u32 *dds, u32 *clk_div)
739 {
740         unsigned int i;
741
742         for (i = 0; i < ARRAY_SIZE(quark_spi_rate_table); i++) {
743                 if (rate >= quark_spi_rate_table[i].bitrate) {
744                         *dds = quark_spi_rate_table[i].dds_clk_rate;
745                         *clk_div = quark_spi_rate_table[i].clk_div;
746                         return quark_spi_rate_table[i].bitrate;
747                 }
748         }
749
750         *dds = quark_spi_rate_table[i-1].dds_clk_rate;
751         *clk_div = quark_spi_rate_table[i-1].clk_div;
752
753         return quark_spi_rate_table[i-1].bitrate;
754 }
755
756 static unsigned int ssp_get_clk_div(struct driver_data *drv_data, int rate)
757 {
758         unsigned long ssp_clk = drv_data->max_clk_rate;
759         const struct ssp_device *ssp = drv_data->ssp;
760
761         rate = min_t(int, ssp_clk, rate);
762
763         if (ssp->type == PXA25x_SSP || ssp->type == CE4100_SSP)
764                 return ((ssp_clk / (2 * rate) - 1) & 0xff) << 8;
765         else
766                 return ((ssp_clk / rate - 1) & 0xfff) << 8;
767 }
768
769 static unsigned int pxa2xx_ssp_get_clk_div(struct driver_data *drv_data,
770                                            struct chip_data *chip, int rate)
771 {
772         u32 clk_div;
773
774         switch (drv_data->ssp_type) {
775         case QUARK_X1000_SSP:
776                 quark_x1000_set_clk_regvals(rate, &chip->dds_rate, &clk_div);
777                 return clk_div << 8;
778         default:
779                 return ssp_get_clk_div(drv_data, rate);
780         }
781 }
782
783 static void pump_transfers(unsigned long data)
784 {
785         struct driver_data *drv_data = (struct driver_data *)data;
786         struct spi_message *message = NULL;
787         struct spi_transfer *transfer = NULL;
788         struct spi_transfer *previous = NULL;
789         struct chip_data *chip = NULL;
790         void __iomem *reg = drv_data->ioaddr;
791         u32 clk_div = 0;
792         u8 bits = 0;
793         u32 speed = 0;
794         u32 cr0;
795         u32 cr1;
796         u32 dma_thresh = drv_data->cur_chip->dma_threshold;
797         u32 dma_burst = drv_data->cur_chip->dma_burst_size;
798         u32 change_mask = pxa2xx_spi_get_ssrc1_change_mask(drv_data);
799
800         /* Get current state information */
801         message = drv_data->cur_msg;
802         transfer = drv_data->cur_transfer;
803         chip = drv_data->cur_chip;
804
805         /* Handle for abort */
806         if (message->state == ERROR_STATE) {
807                 message->status = -EIO;
808                 giveback(drv_data);
809                 return;
810         }
811
812         /* Handle end of message */
813         if (message->state == DONE_STATE) {
814                 message->status = 0;
815                 giveback(drv_data);
816                 return;
817         }
818
819         /* Delay if requested at end of transfer before CS change */
820         if (message->state == RUNNING_STATE) {
821                 previous = list_entry(transfer->transfer_list.prev,
822                                         struct spi_transfer,
823                                         transfer_list);
824                 if (previous->delay_usecs)
825                         udelay(previous->delay_usecs);
826
827                 /* Drop chip select only if cs_change is requested */
828                 if (previous->cs_change)
829                         cs_deassert(drv_data);
830         }
831
832         /* Check if we can DMA this transfer */
833         if (!pxa2xx_spi_dma_is_possible(transfer->len) && chip->enable_dma) {
834
835                 /* reject already-mapped transfers; PIO won't always work */
836                 if (message->is_dma_mapped
837                                 || transfer->rx_dma || transfer->tx_dma) {
838                         dev_err(&drv_data->pdev->dev,
839                                 "pump_transfers: mapped transfer length of "
840                                 "%u is greater than %d\n",
841                                 transfer->len, MAX_DMA_LEN);
842                         message->status = -EINVAL;
843                         giveback(drv_data);
844                         return;
845                 }
846
847                 /* warn ... we force this to PIO mode */
848                 dev_warn_ratelimited(&message->spi->dev,
849                                      "pump_transfers: DMA disabled for transfer length %ld "
850                                      "greater than %d\n",
851                                      (long)drv_data->len, MAX_DMA_LEN);
852         }
853
854         /* Setup the transfer state based on the type of transfer */
855         if (pxa2xx_spi_flush(drv_data) == 0) {
856                 dev_err(&drv_data->pdev->dev, "pump_transfers: flush failed\n");
857                 message->status = -EIO;
858                 giveback(drv_data);
859                 return;
860         }
861         drv_data->n_bytes = chip->n_bytes;
862         drv_data->tx = (void *)transfer->tx_buf;
863         drv_data->tx_end = drv_data->tx + transfer->len;
864         drv_data->rx = transfer->rx_buf;
865         drv_data->rx_end = drv_data->rx + transfer->len;
866         drv_data->rx_dma = transfer->rx_dma;
867         drv_data->tx_dma = transfer->tx_dma;
868         drv_data->len = transfer->len;
869         drv_data->write = drv_data->tx ? chip->write : null_writer;
870         drv_data->read = drv_data->rx ? chip->read : null_reader;
871
872         /* Change speed and bit per word on a per transfer */
873         cr0 = chip->cr0;
874         if (transfer->speed_hz || transfer->bits_per_word) {
875
876                 bits = chip->bits_per_word;
877                 speed = chip->speed_hz;
878
879                 if (transfer->speed_hz)
880                         speed = transfer->speed_hz;
881
882                 if (transfer->bits_per_word)
883                         bits = transfer->bits_per_word;
884
885                 clk_div = pxa2xx_ssp_get_clk_div(drv_data, chip, speed);
886
887                 if (bits <= 8) {
888                         drv_data->n_bytes = 1;
889                         drv_data->read = drv_data->read != null_reader ?
890                                                 u8_reader : null_reader;
891                         drv_data->write = drv_data->write != null_writer ?
892                                                 u8_writer : null_writer;
893                 } else if (bits <= 16) {
894                         drv_data->n_bytes = 2;
895                         drv_data->read = drv_data->read != null_reader ?
896                                                 u16_reader : null_reader;
897                         drv_data->write = drv_data->write != null_writer ?
898                                                 u16_writer : null_writer;
899                 } else if (bits <= 32) {
900                         drv_data->n_bytes = 4;
901                         drv_data->read = drv_data->read != null_reader ?
902                                                 u32_reader : null_reader;
903                         drv_data->write = drv_data->write != null_writer ?
904                                                 u32_writer : null_writer;
905                 }
906                 /* if bits/word is changed in dma mode, then must check the
907                  * thresholds and burst also */
908                 if (chip->enable_dma) {
909                         if (pxa2xx_spi_set_dma_burst_and_threshold(chip,
910                                                         message->spi,
911                                                         bits, &dma_burst,
912                                                         &dma_thresh))
913                                 dev_warn_ratelimited(&message->spi->dev,
914                                                      "pump_transfers: DMA burst size reduced to match bits_per_word\n");
915                 }
916
917                 cr0 = pxa2xx_configure_sscr0(drv_data, clk_div, bits);
918         }
919
920         message->state = RUNNING_STATE;
921
922         drv_data->dma_mapped = 0;
923         if (pxa2xx_spi_dma_is_possible(drv_data->len))
924                 drv_data->dma_mapped = pxa2xx_spi_map_dma_buffers(drv_data);
925         if (drv_data->dma_mapped) {
926
927                 /* Ensure we have the correct interrupt handler */
928                 drv_data->transfer_handler = pxa2xx_spi_dma_transfer;
929
930                 pxa2xx_spi_dma_prepare(drv_data, dma_burst);
931
932                 /* Clear status and start DMA engine */
933                 cr1 = chip->cr1 | dma_thresh | drv_data->dma_cr1;
934                 write_SSSR(drv_data->clear_sr, reg);
935
936                 pxa2xx_spi_dma_start(drv_data);
937         } else {
938                 /* Ensure we have the correct interrupt handler */
939                 drv_data->transfer_handler = interrupt_transfer;
940
941                 /* Clear status  */
942                 cr1 = chip->cr1 | chip->threshold | drv_data->int_cr1;
943                 write_SSSR_CS(drv_data, drv_data->clear_sr);
944         }
945
946         if (is_lpss_ssp(drv_data)) {
947                 if ((read_SSIRF(reg) & 0xff) != chip->lpss_rx_threshold)
948                         write_SSIRF(chip->lpss_rx_threshold, reg);
949                 if ((read_SSITF(reg) & 0xffff) != chip->lpss_tx_threshold)
950                         write_SSITF(chip->lpss_tx_threshold, reg);
951         }
952
953         if (is_quark_x1000_ssp(drv_data) &&
954             (read_DDS_RATE(reg) != chip->dds_rate))
955                 write_DDS_RATE(chip->dds_rate, reg);
956
957         /* see if we need to reload the config registers */
958         if ((read_SSCR0(reg) != cr0) ||
959             (read_SSCR1(reg) & change_mask) != (cr1 & change_mask)) {
960
961                 /* stop the SSP, and update the other bits */
962                 write_SSCR0(cr0 & ~SSCR0_SSE, reg);
963                 if (!pxa25x_ssp_comp(drv_data))
964                         write_SSTO(chip->timeout, reg);
965                 /* first set CR1 without interrupt and service enables */
966                 write_SSCR1(cr1 & change_mask, reg);
967                 /* restart the SSP */
968                 write_SSCR0(cr0, reg);
969
970         } else {
971                 if (!pxa25x_ssp_comp(drv_data))
972                         write_SSTO(chip->timeout, reg);
973         }
974
975         cs_assert(drv_data);
976
977         /* after chip select, release the data by enabling service
978          * requests and interrupts, without changing any mode bits */
979         write_SSCR1(cr1, reg);
980 }
981
982 static int pxa2xx_spi_transfer_one_message(struct spi_master *master,
983                                            struct spi_message *msg)
984 {
985         struct driver_data *drv_data = spi_master_get_devdata(master);
986
987         drv_data->cur_msg = msg;
988         /* Initial message state*/
989         drv_data->cur_msg->state = START_STATE;
990         drv_data->cur_transfer = list_entry(drv_data->cur_msg->transfers.next,
991                                                 struct spi_transfer,
992                                                 transfer_list);
993
994         /* prepare to setup the SSP, in pump_transfers, using the per
995          * chip configuration */
996         drv_data->cur_chip = spi_get_ctldata(drv_data->cur_msg->spi);
997
998         /* Mark as busy and launch transfers */
999         tasklet_schedule(&drv_data->pump_transfers);
1000         return 0;
1001 }
1002
1003 static int pxa2xx_spi_unprepare_transfer(struct spi_master *master)
1004 {
1005         struct driver_data *drv_data = spi_master_get_devdata(master);
1006
1007         /* Disable the SSP now */
1008         write_SSCR0(read_SSCR0(drv_data->ioaddr) & ~SSCR0_SSE,
1009                     drv_data->ioaddr);
1010
1011         return 0;
1012 }
1013
1014 static int setup_cs(struct spi_device *spi, struct chip_data *chip,
1015                     struct pxa2xx_spi_chip *chip_info)
1016 {
1017         int err = 0;
1018
1019         if (chip == NULL || chip_info == NULL)
1020                 return 0;
1021
1022         /* NOTE: setup() can be called multiple times, possibly with
1023          * different chip_info, release previously requested GPIO
1024          */
1025         if (gpio_is_valid(chip->gpio_cs))
1026                 gpio_free(chip->gpio_cs);
1027
1028         /* If (*cs_control) is provided, ignore GPIO chip select */
1029         if (chip_info->cs_control) {
1030                 chip->cs_control = chip_info->cs_control;
1031                 return 0;
1032         }
1033
1034         if (gpio_is_valid(chip_info->gpio_cs)) {
1035                 err = gpio_request(chip_info->gpio_cs, "SPI_CS");
1036                 if (err) {
1037                         dev_err(&spi->dev, "failed to request chip select GPIO%d\n",
1038                                 chip_info->gpio_cs);
1039                         return err;
1040                 }
1041
1042                 chip->gpio_cs = chip_info->gpio_cs;
1043                 chip->gpio_cs_inverted = spi->mode & SPI_CS_HIGH;
1044
1045                 err = gpio_direction_output(chip->gpio_cs,
1046                                         !chip->gpio_cs_inverted);
1047         }
1048
1049         return err;
1050 }
1051
1052 static int setup(struct spi_device *spi)
1053 {
1054         struct pxa2xx_spi_chip *chip_info = NULL;
1055         struct chip_data *chip;
1056         struct driver_data *drv_data = spi_master_get_devdata(spi->master);
1057         unsigned int clk_div;
1058         uint tx_thres, tx_hi_thres, rx_thres;
1059
1060         switch (drv_data->ssp_type) {
1061         case QUARK_X1000_SSP:
1062                 tx_thres = TX_THRESH_QUARK_X1000_DFLT;
1063                 tx_hi_thres = 0;
1064                 rx_thres = RX_THRESH_QUARK_X1000_DFLT;
1065                 break;
1066         case LPSS_SSP:
1067                 tx_thres = LPSS_TX_LOTHRESH_DFLT;
1068                 tx_hi_thres = LPSS_TX_HITHRESH_DFLT;
1069                 rx_thres = LPSS_RX_THRESH_DFLT;
1070                 break;
1071         default:
1072                 tx_thres = TX_THRESH_DFLT;
1073                 tx_hi_thres = 0;
1074                 rx_thres = RX_THRESH_DFLT;
1075                 break;
1076         }
1077
1078         /* Only alloc on first setup */
1079         chip = spi_get_ctldata(spi);
1080         if (!chip) {
1081                 chip = kzalloc(sizeof(struct chip_data), GFP_KERNEL);
1082                 if (!chip)
1083                         return -ENOMEM;
1084
1085                 if (drv_data->ssp_type == CE4100_SSP) {
1086                         if (spi->chip_select > 4) {
1087                                 dev_err(&spi->dev,
1088                                         "failed setup: cs number must not be > 4.\n");
1089                                 kfree(chip);
1090                                 return -EINVAL;
1091                         }
1092
1093                         chip->frm = spi->chip_select;
1094                 } else
1095                         chip->gpio_cs = -1;
1096                 chip->enable_dma = 0;
1097                 chip->timeout = TIMOUT_DFLT;
1098         }
1099
1100         /* protocol drivers may change the chip settings, so...
1101          * if chip_info exists, use it */
1102         chip_info = spi->controller_data;
1103
1104         /* chip_info isn't always needed */
1105         chip->cr1 = 0;
1106         if (chip_info) {
1107                 if (chip_info->timeout)
1108                         chip->timeout = chip_info->timeout;
1109                 if (chip_info->tx_threshold)
1110                         tx_thres = chip_info->tx_threshold;
1111                 if (chip_info->tx_hi_threshold)
1112                         tx_hi_thres = chip_info->tx_hi_threshold;
1113                 if (chip_info->rx_threshold)
1114                         rx_thres = chip_info->rx_threshold;
1115                 chip->enable_dma = drv_data->master_info->enable_dma;
1116                 chip->dma_threshold = 0;
1117                 if (chip_info->enable_loopback)
1118                         chip->cr1 = SSCR1_LBM;
1119         } else if (ACPI_HANDLE(&spi->dev)) {
1120                 /*
1121                  * Slave devices enumerated from ACPI namespace don't
1122                  * usually have chip_info but we still might want to use
1123                  * DMA with them.
1124                  */
1125                 chip->enable_dma = drv_data->master_info->enable_dma;
1126         }
1127
1128         chip->lpss_rx_threshold = SSIRF_RxThresh(rx_thres);
1129         chip->lpss_tx_threshold = SSITF_TxLoThresh(tx_thres)
1130                                 | SSITF_TxHiThresh(tx_hi_thres);
1131
1132         /* set dma burst and threshold outside of chip_info path so that if
1133          * chip_info goes away after setting chip->enable_dma, the
1134          * burst and threshold can still respond to changes in bits_per_word */
1135         if (chip->enable_dma) {
1136                 /* set up legal burst and threshold for dma */
1137                 if (pxa2xx_spi_set_dma_burst_and_threshold(chip, spi,
1138                                                 spi->bits_per_word,
1139                                                 &chip->dma_burst_size,
1140                                                 &chip->dma_threshold)) {
1141                         dev_warn(&spi->dev,
1142                                  "in setup: DMA burst size reduced to match bits_per_word\n");
1143                 }
1144         }
1145
1146         clk_div = pxa2xx_ssp_get_clk_div(drv_data, chip, spi->max_speed_hz);
1147         chip->speed_hz = spi->max_speed_hz;
1148
1149         chip->cr0 = pxa2xx_configure_sscr0(drv_data, clk_div,
1150                                            spi->bits_per_word);
1151         switch (drv_data->ssp_type) {
1152         case QUARK_X1000_SSP:
1153                 chip->threshold = (QUARK_X1000_SSCR1_RxTresh(rx_thres)
1154                                    & QUARK_X1000_SSCR1_RFT)
1155                                    | (QUARK_X1000_SSCR1_TxTresh(tx_thres)
1156                                    & QUARK_X1000_SSCR1_TFT);
1157                 break;
1158         default:
1159                 chip->threshold = (SSCR1_RxTresh(rx_thres) & SSCR1_RFT) |
1160                         (SSCR1_TxTresh(tx_thres) & SSCR1_TFT);
1161                 break;
1162         }
1163
1164         chip->cr1 &= ~(SSCR1_SPO | SSCR1_SPH);
1165         chip->cr1 |= (((spi->mode & SPI_CPHA) != 0) ? SSCR1_SPH : 0)
1166                         | (((spi->mode & SPI_CPOL) != 0) ? SSCR1_SPO : 0);
1167
1168         if (spi->mode & SPI_LOOP)
1169                 chip->cr1 |= SSCR1_LBM;
1170
1171         /* NOTE:  PXA25x_SSP _could_ use external clocking ... */
1172         if (!pxa25x_ssp_comp(drv_data))
1173                 dev_dbg(&spi->dev, "%ld Hz actual, %s\n",
1174                         drv_data->max_clk_rate
1175                                 / (1 + ((chip->cr0 & SSCR0_SCR(0xfff)) >> 8)),
1176                         chip->enable_dma ? "DMA" : "PIO");
1177         else
1178                 dev_dbg(&spi->dev, "%ld Hz actual, %s\n",
1179                         drv_data->max_clk_rate / 2
1180                                 / (1 + ((chip->cr0 & SSCR0_SCR(0x0ff)) >> 8)),
1181                         chip->enable_dma ? "DMA" : "PIO");
1182
1183         if (spi->bits_per_word <= 8) {
1184                 chip->n_bytes = 1;
1185                 chip->read = u8_reader;
1186                 chip->write = u8_writer;
1187         } else if (spi->bits_per_word <= 16) {
1188                 chip->n_bytes = 2;
1189                 chip->read = u16_reader;
1190                 chip->write = u16_writer;
1191         } else if (spi->bits_per_word <= 32) {
1192                 if (!is_quark_x1000_ssp(drv_data))
1193                         chip->cr0 |= SSCR0_EDSS;
1194                 chip->n_bytes = 4;
1195                 chip->read = u32_reader;
1196                 chip->write = u32_writer;
1197         }
1198         chip->bits_per_word = spi->bits_per_word;
1199
1200         spi_set_ctldata(spi, chip);
1201
1202         if (drv_data->ssp_type == CE4100_SSP)
1203                 return 0;
1204
1205         return setup_cs(spi, chip, chip_info);
1206 }
1207
1208 static void cleanup(struct spi_device *spi)
1209 {
1210         struct chip_data *chip = spi_get_ctldata(spi);
1211         struct driver_data *drv_data = spi_master_get_devdata(spi->master);
1212
1213         if (!chip)
1214                 return;
1215
1216         if (drv_data->ssp_type != CE4100_SSP && gpio_is_valid(chip->gpio_cs))
1217                 gpio_free(chip->gpio_cs);
1218
1219         kfree(chip);
1220 }
1221
1222 #ifdef CONFIG_ACPI
1223 static struct pxa2xx_spi_master *
1224 pxa2xx_spi_acpi_get_pdata(struct platform_device *pdev)
1225 {
1226         struct pxa2xx_spi_master *pdata;
1227         struct acpi_device *adev;
1228         struct ssp_device *ssp;
1229         struct resource *res;
1230         int devid;
1231
1232         if (!ACPI_HANDLE(&pdev->dev) ||
1233             acpi_bus_get_device(ACPI_HANDLE(&pdev->dev), &adev))
1234                 return NULL;
1235
1236         pdata = devm_kzalloc(&pdev->dev, sizeof(*pdata), GFP_KERNEL);
1237         if (!pdata)
1238                 return NULL;
1239
1240         res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1241         if (!res)
1242                 return NULL;
1243
1244         ssp = &pdata->ssp;
1245
1246         ssp->phys_base = res->start;
1247         ssp->mmio_base = devm_ioremap_resource(&pdev->dev, res);
1248         if (IS_ERR(ssp->mmio_base))
1249                 return NULL;
1250
1251         ssp->clk = devm_clk_get(&pdev->dev, NULL);
1252         ssp->irq = platform_get_irq(pdev, 0);
1253         ssp->type = LPSS_SSP;
1254         ssp->pdev = pdev;
1255
1256         ssp->port_id = -1;
1257         if (adev->pnp.unique_id && !kstrtoint(adev->pnp.unique_id, 0, &devid))
1258                 ssp->port_id = devid;
1259
1260         pdata->num_chipselect = 1;
1261         pdata->enable_dma = true;
1262
1263         return pdata;
1264 }
1265
1266 static struct acpi_device_id pxa2xx_spi_acpi_match[] = {
1267         { "INT33C0", 0 },
1268         { "INT33C1", 0 },
1269         { "INT3430", 0 },
1270         { "INT3431", 0 },
1271         { "80860F0E", 0 },
1272         { "8086228E", 0 },
1273         { },
1274 };
1275 MODULE_DEVICE_TABLE(acpi, pxa2xx_spi_acpi_match);
1276 #else
1277 static inline struct pxa2xx_spi_master *
1278 pxa2xx_spi_acpi_get_pdata(struct platform_device *pdev)
1279 {
1280         return NULL;
1281 }
1282 #endif
1283
1284 static int pxa2xx_spi_probe(struct platform_device *pdev)
1285 {
1286         struct device *dev = &pdev->dev;
1287         struct pxa2xx_spi_master *platform_info;
1288         struct spi_master *master;
1289         struct driver_data *drv_data;
1290         struct ssp_device *ssp;
1291         int status;
1292
1293         platform_info = dev_get_platdata(dev);
1294         if (!platform_info) {
1295                 platform_info = pxa2xx_spi_acpi_get_pdata(pdev);
1296                 if (!platform_info) {
1297                         dev_err(&pdev->dev, "missing platform data\n");
1298                         return -ENODEV;
1299                 }
1300         }
1301
1302         ssp = pxa_ssp_request(pdev->id, pdev->name);
1303         if (!ssp)
1304                 ssp = &platform_info->ssp;
1305
1306         if (!ssp->mmio_base) {
1307                 dev_err(&pdev->dev, "failed to get ssp\n");
1308                 return -ENODEV;
1309         }
1310
1311         /* Allocate master with space for drv_data and null dma buffer */
1312         master = spi_alloc_master(dev, sizeof(struct driver_data) + 16);
1313         if (!master) {
1314                 dev_err(&pdev->dev, "cannot alloc spi_master\n");
1315                 pxa_ssp_free(ssp);
1316                 return -ENOMEM;
1317         }
1318         drv_data = spi_master_get_devdata(master);
1319         drv_data->master = master;
1320         drv_data->master_info = platform_info;
1321         drv_data->pdev = pdev;
1322         drv_data->ssp = ssp;
1323
1324         master->dev.parent = &pdev->dev;
1325         master->dev.of_node = pdev->dev.of_node;
1326         /* the spi->mode bits understood by this driver: */
1327         master->mode_bits = SPI_CPOL | SPI_CPHA | SPI_CS_HIGH | SPI_LOOP;
1328
1329         master->bus_num = ssp->port_id;
1330         master->num_chipselect = platform_info->num_chipselect;
1331         master->dma_alignment = DMA_ALIGNMENT;
1332         master->cleanup = cleanup;
1333         master->setup = setup;
1334         master->transfer_one_message = pxa2xx_spi_transfer_one_message;
1335         master->unprepare_transfer_hardware = pxa2xx_spi_unprepare_transfer;
1336         master->auto_runtime_pm = true;
1337
1338         drv_data->ssp_type = ssp->type;
1339         drv_data->null_dma_buf = (u32 *)PTR_ALIGN(&drv_data[1], DMA_ALIGNMENT);
1340
1341         drv_data->ioaddr = ssp->mmio_base;
1342         drv_data->ssdr_physical = ssp->phys_base + SSDR;
1343         if (pxa25x_ssp_comp(drv_data)) {
1344                 switch (drv_data->ssp_type) {
1345                 case QUARK_X1000_SSP:
1346                         master->bits_per_word_mask = SPI_BPW_RANGE_MASK(4, 32);
1347                         break;
1348                 default:
1349                         master->bits_per_word_mask = SPI_BPW_RANGE_MASK(4, 16);
1350                         break;
1351                 }
1352
1353                 drv_data->int_cr1 = SSCR1_TIE | SSCR1_RIE;
1354                 drv_data->dma_cr1 = 0;
1355                 drv_data->clear_sr = SSSR_ROR;
1356                 drv_data->mask_sr = SSSR_RFS | SSSR_TFS | SSSR_ROR;
1357         } else {
1358                 master->bits_per_word_mask = SPI_BPW_RANGE_MASK(4, 32);
1359                 drv_data->int_cr1 = SSCR1_TIE | SSCR1_RIE | SSCR1_TINTE;
1360                 drv_data->dma_cr1 = DEFAULT_DMA_CR1;
1361                 drv_data->clear_sr = SSSR_ROR | SSSR_TINT;
1362                 drv_data->mask_sr = SSSR_TINT | SSSR_RFS | SSSR_TFS | SSSR_ROR;
1363         }
1364
1365         status = request_irq(ssp->irq, ssp_int, IRQF_SHARED, dev_name(dev),
1366                         drv_data);
1367         if (status < 0) {
1368                 dev_err(&pdev->dev, "cannot get IRQ %d\n", ssp->irq);
1369                 goto out_error_master_alloc;
1370         }
1371
1372         /* Setup DMA if requested */
1373         drv_data->tx_channel = -1;
1374         drv_data->rx_channel = -1;
1375         if (platform_info->enable_dma) {
1376                 status = pxa2xx_spi_dma_setup(drv_data);
1377                 if (status) {
1378                         dev_dbg(dev, "no DMA channels available, using PIO\n");
1379                         platform_info->enable_dma = false;
1380                 }
1381         }
1382
1383         /* Enable SOC clock */
1384         clk_prepare_enable(ssp->clk);
1385
1386         drv_data->max_clk_rate = clk_get_rate(ssp->clk);
1387
1388         /* Load default SSP configuration */
1389         write_SSCR0(0, drv_data->ioaddr);
1390         switch (drv_data->ssp_type) {
1391         case QUARK_X1000_SSP:
1392                 write_SSCR1(QUARK_X1000_SSCR1_RxTresh(
1393                                         RX_THRESH_QUARK_X1000_DFLT) |
1394                             QUARK_X1000_SSCR1_TxTresh(
1395                                         TX_THRESH_QUARK_X1000_DFLT),
1396                             drv_data->ioaddr);
1397
1398                 /* using the Motorola SPI protocol and use 8 bit frame */
1399                 write_SSCR0(QUARK_X1000_SSCR0_Motorola
1400                             | QUARK_X1000_SSCR0_DataSize(8),
1401                             drv_data->ioaddr);
1402                 break;
1403         default:
1404                 write_SSCR1(SSCR1_RxTresh(RX_THRESH_DFLT) |
1405                             SSCR1_TxTresh(TX_THRESH_DFLT),
1406                             drv_data->ioaddr);
1407                 write_SSCR0(SSCR0_SCR(2)
1408                             | SSCR0_Motorola
1409                             | SSCR0_DataSize(8),
1410                             drv_data->ioaddr);
1411                 break;
1412         }
1413
1414         if (!pxa25x_ssp_comp(drv_data))
1415                 write_SSTO(0, drv_data->ioaddr);
1416
1417         if (!is_quark_x1000_ssp(drv_data))
1418                 write_SSPSP(0, drv_data->ioaddr);
1419
1420         lpss_ssp_setup(drv_data);
1421
1422         tasklet_init(&drv_data->pump_transfers, pump_transfers,
1423                      (unsigned long)drv_data);
1424
1425         pm_runtime_set_autosuspend_delay(&pdev->dev, 50);
1426         pm_runtime_use_autosuspend(&pdev->dev);
1427         pm_runtime_set_active(&pdev->dev);
1428         pm_runtime_enable(&pdev->dev);
1429
1430         /* Register with the SPI framework */
1431         platform_set_drvdata(pdev, drv_data);
1432         status = devm_spi_register_master(&pdev->dev, master);
1433         if (status != 0) {
1434                 dev_err(&pdev->dev, "problem registering spi master\n");
1435                 goto out_error_clock_enabled;
1436         }
1437
1438         return status;
1439
1440 out_error_clock_enabled:
1441         clk_disable_unprepare(ssp->clk);
1442         pxa2xx_spi_dma_release(drv_data);
1443         free_irq(ssp->irq, drv_data);
1444
1445 out_error_master_alloc:
1446         spi_master_put(master);
1447         pxa_ssp_free(ssp);
1448         return status;
1449 }
1450
1451 static int pxa2xx_spi_remove(struct platform_device *pdev)
1452 {
1453         struct driver_data *drv_data = platform_get_drvdata(pdev);
1454         struct ssp_device *ssp;
1455
1456         if (!drv_data)
1457                 return 0;
1458         ssp = drv_data->ssp;
1459
1460         pm_runtime_get_sync(&pdev->dev);
1461
1462         /* Disable the SSP at the peripheral and SOC level */
1463         write_SSCR0(0, drv_data->ioaddr);
1464         clk_disable_unprepare(ssp->clk);
1465
1466         /* Release DMA */
1467         if (drv_data->master_info->enable_dma)
1468                 pxa2xx_spi_dma_release(drv_data);
1469
1470         pm_runtime_put_noidle(&pdev->dev);
1471         pm_runtime_disable(&pdev->dev);
1472
1473         /* Release IRQ */
1474         free_irq(ssp->irq, drv_data);
1475
1476         /* Release SSP */
1477         pxa_ssp_free(ssp);
1478
1479         return 0;
1480 }
1481
1482 static void pxa2xx_spi_shutdown(struct platform_device *pdev)
1483 {
1484         int status = 0;
1485
1486         if ((status = pxa2xx_spi_remove(pdev)) != 0)
1487                 dev_err(&pdev->dev, "shutdown failed with %d\n", status);
1488 }
1489
1490 #ifdef CONFIG_PM_SLEEP
1491 static int pxa2xx_spi_suspend(struct device *dev)
1492 {
1493         struct driver_data *drv_data = dev_get_drvdata(dev);
1494         struct ssp_device *ssp = drv_data->ssp;
1495         int status = 0;
1496
1497         status = spi_master_suspend(drv_data->master);
1498         if (status != 0)
1499                 return status;
1500         write_SSCR0(0, drv_data->ioaddr);
1501
1502         if (!pm_runtime_suspended(dev))
1503                 clk_disable_unprepare(ssp->clk);
1504
1505         return 0;
1506 }
1507
1508 static int pxa2xx_spi_resume(struct device *dev)
1509 {
1510         struct driver_data *drv_data = dev_get_drvdata(dev);
1511         struct ssp_device *ssp = drv_data->ssp;
1512         int status = 0;
1513
1514         pxa2xx_spi_dma_resume(drv_data);
1515
1516         /* Enable the SSP clock */
1517         if (!pm_runtime_suspended(dev))
1518                 clk_prepare_enable(ssp->clk);
1519
1520         /* Restore LPSS private register bits */
1521         lpss_ssp_setup(drv_data);
1522
1523         /* Start the queue running */
1524         status = spi_master_resume(drv_data->master);
1525         if (status != 0) {
1526                 dev_err(dev, "problem starting queue (%d)\n", status);
1527                 return status;
1528         }
1529
1530         return 0;
1531 }
1532 #endif
1533
1534 #ifdef CONFIG_PM
1535 static int pxa2xx_spi_runtime_suspend(struct device *dev)
1536 {
1537         struct driver_data *drv_data = dev_get_drvdata(dev);
1538
1539         clk_disable_unprepare(drv_data->ssp->clk);
1540         return 0;
1541 }
1542
1543 static int pxa2xx_spi_runtime_resume(struct device *dev)
1544 {
1545         struct driver_data *drv_data = dev_get_drvdata(dev);
1546
1547         clk_prepare_enable(drv_data->ssp->clk);
1548         return 0;
1549 }
1550 #endif
1551
1552 static const struct dev_pm_ops pxa2xx_spi_pm_ops = {
1553         SET_SYSTEM_SLEEP_PM_OPS(pxa2xx_spi_suspend, pxa2xx_spi_resume)
1554         SET_RUNTIME_PM_OPS(pxa2xx_spi_runtime_suspend,
1555                            pxa2xx_spi_runtime_resume, NULL)
1556 };
1557
1558 static struct platform_driver driver = {
1559         .driver = {
1560                 .name   = "pxa2xx-spi",
1561                 .pm     = &pxa2xx_spi_pm_ops,
1562                 .acpi_match_table = ACPI_PTR(pxa2xx_spi_acpi_match),
1563         },
1564         .probe = pxa2xx_spi_probe,
1565         .remove = pxa2xx_spi_remove,
1566         .shutdown = pxa2xx_spi_shutdown,
1567 };
1568
1569 static int __init pxa2xx_spi_init(void)
1570 {
1571         return platform_driver_register(&driver);
1572 }
1573 subsys_initcall(pxa2xx_spi_init);
1574
1575 static void __exit pxa2xx_spi_exit(void)
1576 {
1577         platform_driver_unregister(&driver);
1578 }
1579 module_exit(pxa2xx_spi_exit);