x86/smpboot: Init apic mapping before usage
[cascardo/linux.git] / drivers / spi / spi-rspi.c
1 /*
2  * SH RSPI driver
3  *
4  * Copyright (C) 2012, 2013  Renesas Solutions Corp.
5  * Copyright (C) 2014 Glider bvba
6  *
7  * Based on spi-sh.c:
8  * Copyright (C) 2011 Renesas Solutions Corp.
9  *
10  * This program is free software; you can redistribute it and/or modify
11  * it under the terms of the GNU General Public License as published by
12  * the Free Software Foundation; version 2 of the License.
13  *
14  * This program is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
17  * GNU General Public License for more details.
18  */
19
20 #include <linux/module.h>
21 #include <linux/kernel.h>
22 #include <linux/sched.h>
23 #include <linux/errno.h>
24 #include <linux/interrupt.h>
25 #include <linux/platform_device.h>
26 #include <linux/io.h>
27 #include <linux/clk.h>
28 #include <linux/dmaengine.h>
29 #include <linux/dma-mapping.h>
30 #include <linux/of_device.h>
31 #include <linux/pm_runtime.h>
32 #include <linux/sh_dma.h>
33 #include <linux/spi/spi.h>
34 #include <linux/spi/rspi.h>
35
36 #define RSPI_SPCR               0x00    /* Control Register */
37 #define RSPI_SSLP               0x01    /* Slave Select Polarity Register */
38 #define RSPI_SPPCR              0x02    /* Pin Control Register */
39 #define RSPI_SPSR               0x03    /* Status Register */
40 #define RSPI_SPDR               0x04    /* Data Register */
41 #define RSPI_SPSCR              0x08    /* Sequence Control Register */
42 #define RSPI_SPSSR              0x09    /* Sequence Status Register */
43 #define RSPI_SPBR               0x0a    /* Bit Rate Register */
44 #define RSPI_SPDCR              0x0b    /* Data Control Register */
45 #define RSPI_SPCKD              0x0c    /* Clock Delay Register */
46 #define RSPI_SSLND              0x0d    /* Slave Select Negation Delay Register */
47 #define RSPI_SPND               0x0e    /* Next-Access Delay Register */
48 #define RSPI_SPCR2              0x0f    /* Control Register 2 (SH only) */
49 #define RSPI_SPCMD0             0x10    /* Command Register 0 */
50 #define RSPI_SPCMD1             0x12    /* Command Register 1 */
51 #define RSPI_SPCMD2             0x14    /* Command Register 2 */
52 #define RSPI_SPCMD3             0x16    /* Command Register 3 */
53 #define RSPI_SPCMD4             0x18    /* Command Register 4 */
54 #define RSPI_SPCMD5             0x1a    /* Command Register 5 */
55 #define RSPI_SPCMD6             0x1c    /* Command Register 6 */
56 #define RSPI_SPCMD7             0x1e    /* Command Register 7 */
57 #define RSPI_SPCMD(i)           (RSPI_SPCMD0 + (i) * 2)
58 #define RSPI_NUM_SPCMD          8
59 #define RSPI_RZ_NUM_SPCMD       4
60 #define QSPI_NUM_SPCMD          4
61
62 /* RSPI on RZ only */
63 #define RSPI_SPBFCR             0x20    /* Buffer Control Register */
64 #define RSPI_SPBFDR             0x22    /* Buffer Data Count Setting Register */
65
66 /* QSPI only */
67 #define QSPI_SPBFCR             0x18    /* Buffer Control Register */
68 #define QSPI_SPBDCR             0x1a    /* Buffer Data Count Register */
69 #define QSPI_SPBMUL0            0x1c    /* Transfer Data Length Multiplier Setting Register 0 */
70 #define QSPI_SPBMUL1            0x20    /* Transfer Data Length Multiplier Setting Register 1 */
71 #define QSPI_SPBMUL2            0x24    /* Transfer Data Length Multiplier Setting Register 2 */
72 #define QSPI_SPBMUL3            0x28    /* Transfer Data Length Multiplier Setting Register 3 */
73 #define QSPI_SPBMUL(i)          (QSPI_SPBMUL0 + (i) * 4)
74
75 /* SPCR - Control Register */
76 #define SPCR_SPRIE              0x80    /* Receive Interrupt Enable */
77 #define SPCR_SPE                0x40    /* Function Enable */
78 #define SPCR_SPTIE              0x20    /* Transmit Interrupt Enable */
79 #define SPCR_SPEIE              0x10    /* Error Interrupt Enable */
80 #define SPCR_MSTR               0x08    /* Master/Slave Mode Select */
81 #define SPCR_MODFEN             0x04    /* Mode Fault Error Detection Enable */
82 /* RSPI on SH only */
83 #define SPCR_TXMD               0x02    /* TX Only Mode (vs. Full Duplex) */
84 #define SPCR_SPMS               0x01    /* 3-wire Mode (vs. 4-wire) */
85 /* QSPI on R-Car Gen2 only */
86 #define SPCR_WSWAP              0x02    /* Word Swap of read-data for DMAC */
87 #define SPCR_BSWAP              0x01    /* Byte Swap of read-data for DMAC */
88
89 /* SSLP - Slave Select Polarity Register */
90 #define SSLP_SSL1P              0x02    /* SSL1 Signal Polarity Setting */
91 #define SSLP_SSL0P              0x01    /* SSL0 Signal Polarity Setting */
92
93 /* SPPCR - Pin Control Register */
94 #define SPPCR_MOIFE             0x20    /* MOSI Idle Value Fixing Enable */
95 #define SPPCR_MOIFV             0x10    /* MOSI Idle Fixed Value */
96 #define SPPCR_SPOM              0x04
97 #define SPPCR_SPLP2             0x02    /* Loopback Mode 2 (non-inverting) */
98 #define SPPCR_SPLP              0x01    /* Loopback Mode (inverting) */
99
100 #define SPPCR_IO3FV             0x04    /* Single-/Dual-SPI Mode IO3 Output Fixed Value */
101 #define SPPCR_IO2FV             0x04    /* Single-/Dual-SPI Mode IO2 Output Fixed Value */
102
103 /* SPSR - Status Register */
104 #define SPSR_SPRF               0x80    /* Receive Buffer Full Flag */
105 #define SPSR_TEND               0x40    /* Transmit End */
106 #define SPSR_SPTEF              0x20    /* Transmit Buffer Empty Flag */
107 #define SPSR_PERF               0x08    /* Parity Error Flag */
108 #define SPSR_MODF               0x04    /* Mode Fault Error Flag */
109 #define SPSR_IDLNF              0x02    /* RSPI Idle Flag */
110 #define SPSR_OVRF               0x01    /* Overrun Error Flag (RSPI only) */
111
112 /* SPSCR - Sequence Control Register */
113 #define SPSCR_SPSLN_MASK        0x07    /* Sequence Length Specification */
114
115 /* SPSSR - Sequence Status Register */
116 #define SPSSR_SPECM_MASK        0x70    /* Command Error Mask */
117 #define SPSSR_SPCP_MASK         0x07    /* Command Pointer Mask */
118
119 /* SPDCR - Data Control Register */
120 #define SPDCR_TXDMY             0x80    /* Dummy Data Transmission Enable */
121 #define SPDCR_SPLW1             0x40    /* Access Width Specification (RZ) */
122 #define SPDCR_SPLW0             0x20    /* Access Width Specification (RZ) */
123 #define SPDCR_SPLLWORD          (SPDCR_SPLW1 | SPDCR_SPLW0)
124 #define SPDCR_SPLWORD           SPDCR_SPLW1
125 #define SPDCR_SPLBYTE           SPDCR_SPLW0
126 #define SPDCR_SPLW              0x20    /* Access Width Specification (SH) */
127 #define SPDCR_SPRDTD            0x10    /* Receive Transmit Data Select (SH) */
128 #define SPDCR_SLSEL1            0x08
129 #define SPDCR_SLSEL0            0x04
130 #define SPDCR_SLSEL_MASK        0x0c    /* SSL1 Output Select (SH) */
131 #define SPDCR_SPFC1             0x02
132 #define SPDCR_SPFC0             0x01
133 #define SPDCR_SPFC_MASK         0x03    /* Frame Count Setting (1-4) (SH) */
134
135 /* SPCKD - Clock Delay Register */
136 #define SPCKD_SCKDL_MASK        0x07    /* Clock Delay Setting (1-8) */
137
138 /* SSLND - Slave Select Negation Delay Register */
139 #define SSLND_SLNDL_MASK        0x07    /* SSL Negation Delay Setting (1-8) */
140
141 /* SPND - Next-Access Delay Register */
142 #define SPND_SPNDL_MASK         0x07    /* Next-Access Delay Setting (1-8) */
143
144 /* SPCR2 - Control Register 2 */
145 #define SPCR2_PTE               0x08    /* Parity Self-Test Enable */
146 #define SPCR2_SPIE              0x04    /* Idle Interrupt Enable */
147 #define SPCR2_SPOE              0x02    /* Odd Parity Enable (vs. Even) */
148 #define SPCR2_SPPE              0x01    /* Parity Enable */
149
150 /* SPCMDn - Command Registers */
151 #define SPCMD_SCKDEN            0x8000  /* Clock Delay Setting Enable */
152 #define SPCMD_SLNDEN            0x4000  /* SSL Negation Delay Setting Enable */
153 #define SPCMD_SPNDEN            0x2000  /* Next-Access Delay Enable */
154 #define SPCMD_LSBF              0x1000  /* LSB First */
155 #define SPCMD_SPB_MASK          0x0f00  /* Data Length Setting */
156 #define SPCMD_SPB_8_TO_16(bit)  (((bit - 1) << 8) & SPCMD_SPB_MASK)
157 #define SPCMD_SPB_8BIT          0x0000  /* QSPI only */
158 #define SPCMD_SPB_16BIT         0x0100
159 #define SPCMD_SPB_20BIT         0x0000
160 #define SPCMD_SPB_24BIT         0x0100
161 #define SPCMD_SPB_32BIT         0x0200
162 #define SPCMD_SSLKP             0x0080  /* SSL Signal Level Keeping */
163 #define SPCMD_SPIMOD_MASK       0x0060  /* SPI Operating Mode (QSPI only) */
164 #define SPCMD_SPIMOD1           0x0040
165 #define SPCMD_SPIMOD0           0x0020
166 #define SPCMD_SPIMOD_SINGLE     0
167 #define SPCMD_SPIMOD_DUAL       SPCMD_SPIMOD0
168 #define SPCMD_SPIMOD_QUAD       SPCMD_SPIMOD1
169 #define SPCMD_SPRW              0x0010  /* SPI Read/Write Access (Dual/Quad) */
170 #define SPCMD_SSLA_MASK         0x0030  /* SSL Assert Signal Setting (RSPI) */
171 #define SPCMD_BRDV_MASK         0x000c  /* Bit Rate Division Setting */
172 #define SPCMD_CPOL              0x0002  /* Clock Polarity Setting */
173 #define SPCMD_CPHA              0x0001  /* Clock Phase Setting */
174
175 /* SPBFCR - Buffer Control Register */
176 #define SPBFCR_TXRST            0x80    /* Transmit Buffer Data Reset */
177 #define SPBFCR_RXRST            0x40    /* Receive Buffer Data Reset */
178 #define SPBFCR_TXTRG_MASK       0x30    /* Transmit Buffer Data Triggering Number */
179 #define SPBFCR_RXTRG_MASK       0x07    /* Receive Buffer Data Triggering Number */
180 /* QSPI on R-Car Gen2 */
181 #define SPBFCR_TXTRG_1B         0x00    /* 31 bytes (1 byte available) */
182 #define SPBFCR_TXTRG_32B        0x30    /* 0 byte (32 bytes available) */
183 #define SPBFCR_RXTRG_1B         0x00    /* 1 byte (31 bytes available) */
184 #define SPBFCR_RXTRG_32B        0x07    /* 32 bytes (0 byte available) */
185
186 #define QSPI_BUFFER_SIZE        32u
187
188 struct rspi_data {
189         void __iomem *addr;
190         u32 max_speed_hz;
191         struct spi_master *master;
192         wait_queue_head_t wait;
193         struct clk *clk;
194         u16 spcmd;
195         u8 spsr;
196         u8 sppcr;
197         int rx_irq, tx_irq;
198         const struct spi_ops *ops;
199
200         unsigned dma_callbacked:1;
201         unsigned byte_access:1;
202 };
203
204 static void rspi_write8(const struct rspi_data *rspi, u8 data, u16 offset)
205 {
206         iowrite8(data, rspi->addr + offset);
207 }
208
209 static void rspi_write16(const struct rspi_data *rspi, u16 data, u16 offset)
210 {
211         iowrite16(data, rspi->addr + offset);
212 }
213
214 static void rspi_write32(const struct rspi_data *rspi, u32 data, u16 offset)
215 {
216         iowrite32(data, rspi->addr + offset);
217 }
218
219 static u8 rspi_read8(const struct rspi_data *rspi, u16 offset)
220 {
221         return ioread8(rspi->addr + offset);
222 }
223
224 static u16 rspi_read16(const struct rspi_data *rspi, u16 offset)
225 {
226         return ioread16(rspi->addr + offset);
227 }
228
229 static void rspi_write_data(const struct rspi_data *rspi, u16 data)
230 {
231         if (rspi->byte_access)
232                 rspi_write8(rspi, data, RSPI_SPDR);
233         else /* 16 bit */
234                 rspi_write16(rspi, data, RSPI_SPDR);
235 }
236
237 static u16 rspi_read_data(const struct rspi_data *rspi)
238 {
239         if (rspi->byte_access)
240                 return rspi_read8(rspi, RSPI_SPDR);
241         else /* 16 bit */
242                 return rspi_read16(rspi, RSPI_SPDR);
243 }
244
245 /* optional functions */
246 struct spi_ops {
247         int (*set_config_register)(struct rspi_data *rspi, int access_size);
248         int (*transfer_one)(struct spi_master *master, struct spi_device *spi,
249                             struct spi_transfer *xfer);
250         u16 mode_bits;
251         u16 flags;
252         u16 fifo_size;
253 };
254
255 /*
256  * functions for RSPI on legacy SH
257  */
258 static int rspi_set_config_register(struct rspi_data *rspi, int access_size)
259 {
260         int spbr;
261
262         /* Sets output mode, MOSI signal, and (optionally) loopback */
263         rspi_write8(rspi, rspi->sppcr, RSPI_SPPCR);
264
265         /* Sets transfer bit rate */
266         spbr = DIV_ROUND_UP(clk_get_rate(rspi->clk),
267                             2 * rspi->max_speed_hz) - 1;
268         rspi_write8(rspi, clamp(spbr, 0, 255), RSPI_SPBR);
269
270         /* Disable dummy transmission, set 16-bit word access, 1 frame */
271         rspi_write8(rspi, 0, RSPI_SPDCR);
272         rspi->byte_access = 0;
273
274         /* Sets RSPCK, SSL, next-access delay value */
275         rspi_write8(rspi, 0x00, RSPI_SPCKD);
276         rspi_write8(rspi, 0x00, RSPI_SSLND);
277         rspi_write8(rspi, 0x00, RSPI_SPND);
278
279         /* Sets parity, interrupt mask */
280         rspi_write8(rspi, 0x00, RSPI_SPCR2);
281
282         /* Sets SPCMD */
283         rspi->spcmd |= SPCMD_SPB_8_TO_16(access_size);
284         rspi_write16(rspi, rspi->spcmd, RSPI_SPCMD0);
285
286         /* Sets RSPI mode */
287         rspi_write8(rspi, SPCR_MSTR, RSPI_SPCR);
288
289         return 0;
290 }
291
292 /*
293  * functions for RSPI on RZ
294  */
295 static int rspi_rz_set_config_register(struct rspi_data *rspi, int access_size)
296 {
297         int spbr;
298         int div = 0;
299         unsigned long clksrc;
300
301         /* Sets output mode, MOSI signal, and (optionally) loopback */
302         rspi_write8(rspi, rspi->sppcr, RSPI_SPPCR);
303
304         clksrc = clk_get_rate(rspi->clk);
305         while (div < 3) {
306                 if (rspi->max_speed_hz >= clksrc/4) /* 4=(CLK/2)/2 */
307                         break;
308                 div++;
309                 clksrc /= 2;
310         }
311
312         /* Sets transfer bit rate */
313         spbr = DIV_ROUND_UP(clksrc, 2 * rspi->max_speed_hz) - 1;
314         rspi_write8(rspi, clamp(spbr, 0, 255), RSPI_SPBR);
315         rspi->spcmd |= div << 2;
316
317         /* Disable dummy transmission, set byte access */
318         rspi_write8(rspi, SPDCR_SPLBYTE, RSPI_SPDCR);
319         rspi->byte_access = 1;
320
321         /* Sets RSPCK, SSL, next-access delay value */
322         rspi_write8(rspi, 0x00, RSPI_SPCKD);
323         rspi_write8(rspi, 0x00, RSPI_SSLND);
324         rspi_write8(rspi, 0x00, RSPI_SPND);
325
326         /* Sets SPCMD */
327         rspi->spcmd |= SPCMD_SPB_8_TO_16(access_size);
328         rspi_write16(rspi, rspi->spcmd, RSPI_SPCMD0);
329
330         /* Sets RSPI mode */
331         rspi_write8(rspi, SPCR_MSTR, RSPI_SPCR);
332
333         return 0;
334 }
335
336 /*
337  * functions for QSPI
338  */
339 static int qspi_set_config_register(struct rspi_data *rspi, int access_size)
340 {
341         int spbr;
342
343         /* Sets output mode, MOSI signal, and (optionally) loopback */
344         rspi_write8(rspi, rspi->sppcr, RSPI_SPPCR);
345
346         /* Sets transfer bit rate */
347         spbr = DIV_ROUND_UP(clk_get_rate(rspi->clk), 2 * rspi->max_speed_hz);
348         rspi_write8(rspi, clamp(spbr, 0, 255), RSPI_SPBR);
349
350         /* Disable dummy transmission, set byte access */
351         rspi_write8(rspi, 0, RSPI_SPDCR);
352         rspi->byte_access = 1;
353
354         /* Sets RSPCK, SSL, next-access delay value */
355         rspi_write8(rspi, 0x00, RSPI_SPCKD);
356         rspi_write8(rspi, 0x00, RSPI_SSLND);
357         rspi_write8(rspi, 0x00, RSPI_SPND);
358
359         /* Data Length Setting */
360         if (access_size == 8)
361                 rspi->spcmd |= SPCMD_SPB_8BIT;
362         else if (access_size == 16)
363                 rspi->spcmd |= SPCMD_SPB_16BIT;
364         else
365                 rspi->spcmd |= SPCMD_SPB_32BIT;
366
367         rspi->spcmd |= SPCMD_SCKDEN | SPCMD_SLNDEN | SPCMD_SPNDEN;
368
369         /* Resets transfer data length */
370         rspi_write32(rspi, 0, QSPI_SPBMUL0);
371
372         /* Resets transmit and receive buffer */
373         rspi_write8(rspi, SPBFCR_TXRST | SPBFCR_RXRST, QSPI_SPBFCR);
374         /* Sets buffer to allow normal operation */
375         rspi_write8(rspi, 0x00, QSPI_SPBFCR);
376
377         /* Sets SPCMD */
378         rspi_write16(rspi, rspi->spcmd, RSPI_SPCMD0);
379
380         /* Enables SPI function in master mode */
381         rspi_write8(rspi, SPCR_SPE | SPCR_MSTR, RSPI_SPCR);
382
383         return 0;
384 }
385
386 static void qspi_update(const struct rspi_data *rspi, u8 mask, u8 val, u8 reg)
387 {
388         u8 data;
389
390         data = rspi_read8(rspi, reg);
391         data &= ~mask;
392         data |= (val & mask);
393         rspi_write8(rspi, data, reg);
394 }
395
396 static unsigned int qspi_set_send_trigger(struct rspi_data *rspi,
397                                           unsigned int len)
398 {
399         unsigned int n;
400
401         n = min(len, QSPI_BUFFER_SIZE);
402
403         if (len >= QSPI_BUFFER_SIZE) {
404                 /* sets triggering number to 32 bytes */
405                 qspi_update(rspi, SPBFCR_TXTRG_MASK,
406                              SPBFCR_TXTRG_32B, QSPI_SPBFCR);
407         } else {
408                 /* sets triggering number to 1 byte */
409                 qspi_update(rspi, SPBFCR_TXTRG_MASK,
410                              SPBFCR_TXTRG_1B, QSPI_SPBFCR);
411         }
412
413         return n;
414 }
415
416 static void qspi_set_receive_trigger(struct rspi_data *rspi, unsigned int len)
417 {
418         unsigned int n;
419
420         n = min(len, QSPI_BUFFER_SIZE);
421
422         if (len >= QSPI_BUFFER_SIZE) {
423                 /* sets triggering number to 32 bytes */
424                 qspi_update(rspi, SPBFCR_RXTRG_MASK,
425                              SPBFCR_RXTRG_32B, QSPI_SPBFCR);
426         } else {
427                 /* sets triggering number to 1 byte */
428                 qspi_update(rspi, SPBFCR_RXTRG_MASK,
429                              SPBFCR_RXTRG_1B, QSPI_SPBFCR);
430         }
431 }
432
433 #define set_config_register(spi, n) spi->ops->set_config_register(spi, n)
434
435 static void rspi_enable_irq(const struct rspi_data *rspi, u8 enable)
436 {
437         rspi_write8(rspi, rspi_read8(rspi, RSPI_SPCR) | enable, RSPI_SPCR);
438 }
439
440 static void rspi_disable_irq(const struct rspi_data *rspi, u8 disable)
441 {
442         rspi_write8(rspi, rspi_read8(rspi, RSPI_SPCR) & ~disable, RSPI_SPCR);
443 }
444
445 static int rspi_wait_for_interrupt(struct rspi_data *rspi, u8 wait_mask,
446                                    u8 enable_bit)
447 {
448         int ret;
449
450         rspi->spsr = rspi_read8(rspi, RSPI_SPSR);
451         if (rspi->spsr & wait_mask)
452                 return 0;
453
454         rspi_enable_irq(rspi, enable_bit);
455         ret = wait_event_timeout(rspi->wait, rspi->spsr & wait_mask, HZ);
456         if (ret == 0 && !(rspi->spsr & wait_mask))
457                 return -ETIMEDOUT;
458
459         return 0;
460 }
461
462 static inline int rspi_wait_for_tx_empty(struct rspi_data *rspi)
463 {
464         return rspi_wait_for_interrupt(rspi, SPSR_SPTEF, SPCR_SPTIE);
465 }
466
467 static inline int rspi_wait_for_rx_full(struct rspi_data *rspi)
468 {
469         return rspi_wait_for_interrupt(rspi, SPSR_SPRF, SPCR_SPRIE);
470 }
471
472 static int rspi_data_out(struct rspi_data *rspi, u8 data)
473 {
474         int error = rspi_wait_for_tx_empty(rspi);
475         if (error < 0) {
476                 dev_err(&rspi->master->dev, "transmit timeout\n");
477                 return error;
478         }
479         rspi_write_data(rspi, data);
480         return 0;
481 }
482
483 static int rspi_data_in(struct rspi_data *rspi)
484 {
485         int error;
486         u8 data;
487
488         error = rspi_wait_for_rx_full(rspi);
489         if (error < 0) {
490                 dev_err(&rspi->master->dev, "receive timeout\n");
491                 return error;
492         }
493         data = rspi_read_data(rspi);
494         return data;
495 }
496
497 static int rspi_pio_transfer(struct rspi_data *rspi, const u8 *tx, u8 *rx,
498                              unsigned int n)
499 {
500         while (n-- > 0) {
501                 if (tx) {
502                         int ret = rspi_data_out(rspi, *tx++);
503                         if (ret < 0)
504                                 return ret;
505                 }
506                 if (rx) {
507                         int ret = rspi_data_in(rspi);
508                         if (ret < 0)
509                                 return ret;
510                         *rx++ = ret;
511                 }
512         }
513
514         return 0;
515 }
516
517 static void rspi_dma_complete(void *arg)
518 {
519         struct rspi_data *rspi = arg;
520
521         rspi->dma_callbacked = 1;
522         wake_up_interruptible(&rspi->wait);
523 }
524
525 static int rspi_dma_transfer(struct rspi_data *rspi, struct sg_table *tx,
526                              struct sg_table *rx)
527 {
528         struct dma_async_tx_descriptor *desc_tx = NULL, *desc_rx = NULL;
529         u8 irq_mask = 0;
530         unsigned int other_irq = 0;
531         dma_cookie_t cookie;
532         int ret;
533
534         /* First prepare and submit the DMA request(s), as this may fail */
535         if (rx) {
536                 desc_rx = dmaengine_prep_slave_sg(rspi->master->dma_rx,
537                                         rx->sgl, rx->nents, DMA_FROM_DEVICE,
538                                         DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
539                 if (!desc_rx) {
540                         ret = -EAGAIN;
541                         goto no_dma_rx;
542                 }
543
544                 desc_rx->callback = rspi_dma_complete;
545                 desc_rx->callback_param = rspi;
546                 cookie = dmaengine_submit(desc_rx);
547                 if (dma_submit_error(cookie)) {
548                         ret = cookie;
549                         goto no_dma_rx;
550                 }
551
552                 irq_mask |= SPCR_SPRIE;
553         }
554
555         if (tx) {
556                 desc_tx = dmaengine_prep_slave_sg(rspi->master->dma_tx,
557                                         tx->sgl, tx->nents, DMA_TO_DEVICE,
558                                         DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
559                 if (!desc_tx) {
560                         ret = -EAGAIN;
561                         goto no_dma_tx;
562                 }
563
564                 if (rx) {
565                         /* No callback */
566                         desc_tx->callback = NULL;
567                 } else {
568                         desc_tx->callback = rspi_dma_complete;
569                         desc_tx->callback_param = rspi;
570                 }
571                 cookie = dmaengine_submit(desc_tx);
572                 if (dma_submit_error(cookie)) {
573                         ret = cookie;
574                         goto no_dma_tx;
575                 }
576
577                 irq_mask |= SPCR_SPTIE;
578         }
579
580         /*
581          * DMAC needs SPxIE, but if SPxIE is set, the IRQ routine will be
582          * called. So, this driver disables the IRQ while DMA transfer.
583          */
584         if (tx)
585                 disable_irq(other_irq = rspi->tx_irq);
586         if (rx && rspi->rx_irq != other_irq)
587                 disable_irq(rspi->rx_irq);
588
589         rspi_enable_irq(rspi, irq_mask);
590         rspi->dma_callbacked = 0;
591
592         /* Now start DMA */
593         if (rx)
594                 dma_async_issue_pending(rspi->master->dma_rx);
595         if (tx)
596                 dma_async_issue_pending(rspi->master->dma_tx);
597
598         ret = wait_event_interruptible_timeout(rspi->wait,
599                                                rspi->dma_callbacked, HZ);
600         if (ret > 0 && rspi->dma_callbacked)
601                 ret = 0;
602         else if (!ret) {
603                 dev_err(&rspi->master->dev, "DMA timeout\n");
604                 ret = -ETIMEDOUT;
605                 if (tx)
606                         dmaengine_terminate_all(rspi->master->dma_tx);
607                 if (rx)
608                         dmaengine_terminate_all(rspi->master->dma_rx);
609         }
610
611         rspi_disable_irq(rspi, irq_mask);
612
613         if (tx)
614                 enable_irq(rspi->tx_irq);
615         if (rx && rspi->rx_irq != other_irq)
616                 enable_irq(rspi->rx_irq);
617
618         return ret;
619
620 no_dma_tx:
621         if (rx)
622                 dmaengine_terminate_all(rspi->master->dma_rx);
623 no_dma_rx:
624         if (ret == -EAGAIN) {
625                 pr_warn_once("%s %s: DMA not available, falling back to PIO\n",
626                              dev_driver_string(&rspi->master->dev),
627                              dev_name(&rspi->master->dev));
628         }
629         return ret;
630 }
631
632 static void rspi_receive_init(const struct rspi_data *rspi)
633 {
634         u8 spsr;
635
636         spsr = rspi_read8(rspi, RSPI_SPSR);
637         if (spsr & SPSR_SPRF)
638                 rspi_read_data(rspi);   /* dummy read */
639         if (spsr & SPSR_OVRF)
640                 rspi_write8(rspi, rspi_read8(rspi, RSPI_SPSR) & ~SPSR_OVRF,
641                             RSPI_SPSR);
642 }
643
644 static void rspi_rz_receive_init(const struct rspi_data *rspi)
645 {
646         rspi_receive_init(rspi);
647         rspi_write8(rspi, SPBFCR_TXRST | SPBFCR_RXRST, RSPI_SPBFCR);
648         rspi_write8(rspi, 0, RSPI_SPBFCR);
649 }
650
651 static void qspi_receive_init(const struct rspi_data *rspi)
652 {
653         u8 spsr;
654
655         spsr = rspi_read8(rspi, RSPI_SPSR);
656         if (spsr & SPSR_SPRF)
657                 rspi_read_data(rspi);   /* dummy read */
658         rspi_write8(rspi, SPBFCR_TXRST | SPBFCR_RXRST, QSPI_SPBFCR);
659         rspi_write8(rspi, 0, QSPI_SPBFCR);
660 }
661
662 static bool __rspi_can_dma(const struct rspi_data *rspi,
663                            const struct spi_transfer *xfer)
664 {
665         return xfer->len > rspi->ops->fifo_size;
666 }
667
668 static bool rspi_can_dma(struct spi_master *master, struct spi_device *spi,
669                          struct spi_transfer *xfer)
670 {
671         struct rspi_data *rspi = spi_master_get_devdata(master);
672
673         return __rspi_can_dma(rspi, xfer);
674 }
675
676 static int rspi_dma_check_then_transfer(struct rspi_data *rspi,
677                                          struct spi_transfer *xfer)
678 {
679         if (!rspi->master->can_dma || !__rspi_can_dma(rspi, xfer))
680                 return -EAGAIN;
681
682         /* rx_buf can be NULL on RSPI on SH in TX-only Mode */
683         return rspi_dma_transfer(rspi, &xfer->tx_sg,
684                                 xfer->rx_buf ? &xfer->rx_sg : NULL);
685 }
686
687 static int rspi_common_transfer(struct rspi_data *rspi,
688                                 struct spi_transfer *xfer)
689 {
690         int ret;
691
692         ret = rspi_dma_check_then_transfer(rspi, xfer);
693         if (ret != -EAGAIN)
694                 return ret;
695
696         ret = rspi_pio_transfer(rspi, xfer->tx_buf, xfer->rx_buf, xfer->len);
697         if (ret < 0)
698                 return ret;
699
700         /* Wait for the last transmission */
701         rspi_wait_for_tx_empty(rspi);
702
703         return 0;
704 }
705
706 static int rspi_transfer_one(struct spi_master *master, struct spi_device *spi,
707                              struct spi_transfer *xfer)
708 {
709         struct rspi_data *rspi = spi_master_get_devdata(master);
710         u8 spcr;
711
712         spcr = rspi_read8(rspi, RSPI_SPCR);
713         if (xfer->rx_buf) {
714                 rspi_receive_init(rspi);
715                 spcr &= ~SPCR_TXMD;
716         } else {
717                 spcr |= SPCR_TXMD;
718         }
719         rspi_write8(rspi, spcr, RSPI_SPCR);
720
721         return rspi_common_transfer(rspi, xfer);
722 }
723
724 static int rspi_rz_transfer_one(struct spi_master *master,
725                                 struct spi_device *spi,
726                                 struct spi_transfer *xfer)
727 {
728         struct rspi_data *rspi = spi_master_get_devdata(master);
729
730         rspi_rz_receive_init(rspi);
731
732         return rspi_common_transfer(rspi, xfer);
733 }
734
735 static int qspi_trigger_transfer_out_in(struct rspi_data *rspi, const u8 *tx,
736                                         u8 *rx, unsigned int len)
737 {
738         unsigned int i, n;
739         int ret;
740
741         while (len > 0) {
742                 n = qspi_set_send_trigger(rspi, len);
743                 qspi_set_receive_trigger(rspi, len);
744                 if (n == QSPI_BUFFER_SIZE) {
745                         ret = rspi_wait_for_tx_empty(rspi);
746                         if (ret < 0) {
747                                 dev_err(&rspi->master->dev, "transmit timeout\n");
748                                 return ret;
749                         }
750                         for (i = 0; i < n; i++)
751                                 rspi_write_data(rspi, *tx++);
752
753                         ret = rspi_wait_for_rx_full(rspi);
754                         if (ret < 0) {
755                                 dev_err(&rspi->master->dev, "receive timeout\n");
756                                 return ret;
757                         }
758                         for (i = 0; i < n; i++)
759                                 *rx++ = rspi_read_data(rspi);
760                 } else {
761                         ret = rspi_pio_transfer(rspi, tx, rx, n);
762                         if (ret < 0)
763                                 return ret;
764                 }
765                 len -= n;
766         }
767
768         return 0;
769 }
770
771 static int qspi_transfer_out_in(struct rspi_data *rspi,
772                                 struct spi_transfer *xfer)
773 {
774         int ret;
775
776         qspi_receive_init(rspi);
777
778         ret = rspi_dma_check_then_transfer(rspi, xfer);
779         if (ret != -EAGAIN)
780                 return ret;
781
782         return qspi_trigger_transfer_out_in(rspi, xfer->tx_buf,
783                                             xfer->rx_buf, xfer->len);
784 }
785
786 static int qspi_transfer_out(struct rspi_data *rspi, struct spi_transfer *xfer)
787 {
788         int ret;
789
790         if (rspi->master->can_dma && __rspi_can_dma(rspi, xfer)) {
791                 ret = rspi_dma_transfer(rspi, &xfer->tx_sg, NULL);
792                 if (ret != -EAGAIN)
793                         return ret;
794         }
795
796         ret = rspi_pio_transfer(rspi, xfer->tx_buf, NULL, xfer->len);
797         if (ret < 0)
798                 return ret;
799
800         /* Wait for the last transmission */
801         rspi_wait_for_tx_empty(rspi);
802
803         return 0;
804 }
805
806 static int qspi_transfer_in(struct rspi_data *rspi, struct spi_transfer *xfer)
807 {
808         if (rspi->master->can_dma && __rspi_can_dma(rspi, xfer)) {
809                 int ret = rspi_dma_transfer(rspi, NULL, &xfer->rx_sg);
810                 if (ret != -EAGAIN)
811                         return ret;
812         }
813
814         return rspi_pio_transfer(rspi, NULL, xfer->rx_buf, xfer->len);
815 }
816
817 static int qspi_transfer_one(struct spi_master *master, struct spi_device *spi,
818                              struct spi_transfer *xfer)
819 {
820         struct rspi_data *rspi = spi_master_get_devdata(master);
821
822         if (spi->mode & SPI_LOOP) {
823                 return qspi_transfer_out_in(rspi, xfer);
824         } else if (xfer->tx_nbits > SPI_NBITS_SINGLE) {
825                 /* Quad or Dual SPI Write */
826                 return qspi_transfer_out(rspi, xfer);
827         } else if (xfer->rx_nbits > SPI_NBITS_SINGLE) {
828                 /* Quad or Dual SPI Read */
829                 return qspi_transfer_in(rspi, xfer);
830         } else {
831                 /* Single SPI Transfer */
832                 return qspi_transfer_out_in(rspi, xfer);
833         }
834 }
835
836 static int rspi_setup(struct spi_device *spi)
837 {
838         struct rspi_data *rspi = spi_master_get_devdata(spi->master);
839
840         rspi->max_speed_hz = spi->max_speed_hz;
841
842         rspi->spcmd = SPCMD_SSLKP;
843         if (spi->mode & SPI_CPOL)
844                 rspi->spcmd |= SPCMD_CPOL;
845         if (spi->mode & SPI_CPHA)
846                 rspi->spcmd |= SPCMD_CPHA;
847
848         /* CMOS output mode and MOSI signal from previous transfer */
849         rspi->sppcr = 0;
850         if (spi->mode & SPI_LOOP)
851                 rspi->sppcr |= SPPCR_SPLP;
852
853         set_config_register(rspi, 8);
854
855         return 0;
856 }
857
858 static u16 qspi_transfer_mode(const struct spi_transfer *xfer)
859 {
860         if (xfer->tx_buf)
861                 switch (xfer->tx_nbits) {
862                 case SPI_NBITS_QUAD:
863                         return SPCMD_SPIMOD_QUAD;
864                 case SPI_NBITS_DUAL:
865                         return SPCMD_SPIMOD_DUAL;
866                 default:
867                         return 0;
868                 }
869         if (xfer->rx_buf)
870                 switch (xfer->rx_nbits) {
871                 case SPI_NBITS_QUAD:
872                         return SPCMD_SPIMOD_QUAD | SPCMD_SPRW;
873                 case SPI_NBITS_DUAL:
874                         return SPCMD_SPIMOD_DUAL | SPCMD_SPRW;
875                 default:
876                         return 0;
877                 }
878
879         return 0;
880 }
881
882 static int qspi_setup_sequencer(struct rspi_data *rspi,
883                                 const struct spi_message *msg)
884 {
885         const struct spi_transfer *xfer;
886         unsigned int i = 0, len = 0;
887         u16 current_mode = 0xffff, mode;
888
889         list_for_each_entry(xfer, &msg->transfers, transfer_list) {
890                 mode = qspi_transfer_mode(xfer);
891                 if (mode == current_mode) {
892                         len += xfer->len;
893                         continue;
894                 }
895
896                 /* Transfer mode change */
897                 if (i) {
898                         /* Set transfer data length of previous transfer */
899                         rspi_write32(rspi, len, QSPI_SPBMUL(i - 1));
900                 }
901
902                 if (i >= QSPI_NUM_SPCMD) {
903                         dev_err(&msg->spi->dev,
904                                 "Too many different transfer modes");
905                         return -EINVAL;
906                 }
907
908                 /* Program transfer mode for this transfer */
909                 rspi_write16(rspi, rspi->spcmd | mode, RSPI_SPCMD(i));
910                 current_mode = mode;
911                 len = xfer->len;
912                 i++;
913         }
914         if (i) {
915                 /* Set final transfer data length and sequence length */
916                 rspi_write32(rspi, len, QSPI_SPBMUL(i - 1));
917                 rspi_write8(rspi, i - 1, RSPI_SPSCR);
918         }
919
920         return 0;
921 }
922
923 static int rspi_prepare_message(struct spi_master *master,
924                                 struct spi_message *msg)
925 {
926         struct rspi_data *rspi = spi_master_get_devdata(master);
927         int ret;
928
929         if (msg->spi->mode &
930             (SPI_TX_DUAL | SPI_TX_QUAD | SPI_RX_DUAL | SPI_RX_QUAD)) {
931                 /* Setup sequencer for messages with multiple transfer modes */
932                 ret = qspi_setup_sequencer(rspi, msg);
933                 if (ret < 0)
934                         return ret;
935         }
936
937         /* Enable SPI function in master mode */
938         rspi_write8(rspi, rspi_read8(rspi, RSPI_SPCR) | SPCR_SPE, RSPI_SPCR);
939         return 0;
940 }
941
942 static int rspi_unprepare_message(struct spi_master *master,
943                                   struct spi_message *msg)
944 {
945         struct rspi_data *rspi = spi_master_get_devdata(master);
946
947         /* Disable SPI function */
948         rspi_write8(rspi, rspi_read8(rspi, RSPI_SPCR) & ~SPCR_SPE, RSPI_SPCR);
949
950         /* Reset sequencer for Single SPI Transfers */
951         rspi_write16(rspi, rspi->spcmd, RSPI_SPCMD0);
952         rspi_write8(rspi, 0, RSPI_SPSCR);
953         return 0;
954 }
955
956 static irqreturn_t rspi_irq_mux(int irq, void *_sr)
957 {
958         struct rspi_data *rspi = _sr;
959         u8 spsr;
960         irqreturn_t ret = IRQ_NONE;
961         u8 disable_irq = 0;
962
963         rspi->spsr = spsr = rspi_read8(rspi, RSPI_SPSR);
964         if (spsr & SPSR_SPRF)
965                 disable_irq |= SPCR_SPRIE;
966         if (spsr & SPSR_SPTEF)
967                 disable_irq |= SPCR_SPTIE;
968
969         if (disable_irq) {
970                 ret = IRQ_HANDLED;
971                 rspi_disable_irq(rspi, disable_irq);
972                 wake_up(&rspi->wait);
973         }
974
975         return ret;
976 }
977
978 static irqreturn_t rspi_irq_rx(int irq, void *_sr)
979 {
980         struct rspi_data *rspi = _sr;
981         u8 spsr;
982
983         rspi->spsr = spsr = rspi_read8(rspi, RSPI_SPSR);
984         if (spsr & SPSR_SPRF) {
985                 rspi_disable_irq(rspi, SPCR_SPRIE);
986                 wake_up(&rspi->wait);
987                 return IRQ_HANDLED;
988         }
989
990         return 0;
991 }
992
993 static irqreturn_t rspi_irq_tx(int irq, void *_sr)
994 {
995         struct rspi_data *rspi = _sr;
996         u8 spsr;
997
998         rspi->spsr = spsr = rspi_read8(rspi, RSPI_SPSR);
999         if (spsr & SPSR_SPTEF) {
1000                 rspi_disable_irq(rspi, SPCR_SPTIE);
1001                 wake_up(&rspi->wait);
1002                 return IRQ_HANDLED;
1003         }
1004
1005         return 0;
1006 }
1007
1008 static struct dma_chan *rspi_request_dma_chan(struct device *dev,
1009                                               enum dma_transfer_direction dir,
1010                                               unsigned int id,
1011                                               dma_addr_t port_addr)
1012 {
1013         dma_cap_mask_t mask;
1014         struct dma_chan *chan;
1015         struct dma_slave_config cfg;
1016         int ret;
1017
1018         dma_cap_zero(mask);
1019         dma_cap_set(DMA_SLAVE, mask);
1020
1021         chan = dma_request_slave_channel_compat(mask, shdma_chan_filter,
1022                                 (void *)(unsigned long)id, dev,
1023                                 dir == DMA_MEM_TO_DEV ? "tx" : "rx");
1024         if (!chan) {
1025                 dev_warn(dev, "dma_request_slave_channel_compat failed\n");
1026                 return NULL;
1027         }
1028
1029         memset(&cfg, 0, sizeof(cfg));
1030         cfg.direction = dir;
1031         if (dir == DMA_MEM_TO_DEV) {
1032                 cfg.dst_addr = port_addr;
1033                 cfg.dst_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE;
1034         } else {
1035                 cfg.src_addr = port_addr;
1036                 cfg.src_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE;
1037         }
1038
1039         ret = dmaengine_slave_config(chan, &cfg);
1040         if (ret) {
1041                 dev_warn(dev, "dmaengine_slave_config failed %d\n", ret);
1042                 dma_release_channel(chan);
1043                 return NULL;
1044         }
1045
1046         return chan;
1047 }
1048
1049 static int rspi_request_dma(struct device *dev, struct spi_master *master,
1050                             const struct resource *res)
1051 {
1052         const struct rspi_plat_data *rspi_pd = dev_get_platdata(dev);
1053         unsigned int dma_tx_id, dma_rx_id;
1054
1055         if (dev->of_node) {
1056                 /* In the OF case we will get the slave IDs from the DT */
1057                 dma_tx_id = 0;
1058                 dma_rx_id = 0;
1059         } else if (rspi_pd && rspi_pd->dma_tx_id && rspi_pd->dma_rx_id) {
1060                 dma_tx_id = rspi_pd->dma_tx_id;
1061                 dma_rx_id = rspi_pd->dma_rx_id;
1062         } else {
1063                 /* The driver assumes no error. */
1064                 return 0;
1065         }
1066
1067         master->dma_tx = rspi_request_dma_chan(dev, DMA_MEM_TO_DEV, dma_tx_id,
1068                                                res->start + RSPI_SPDR);
1069         if (!master->dma_tx)
1070                 return -ENODEV;
1071
1072         master->dma_rx = rspi_request_dma_chan(dev, DMA_DEV_TO_MEM, dma_rx_id,
1073                                                res->start + RSPI_SPDR);
1074         if (!master->dma_rx) {
1075                 dma_release_channel(master->dma_tx);
1076                 master->dma_tx = NULL;
1077                 return -ENODEV;
1078         }
1079
1080         master->can_dma = rspi_can_dma;
1081         dev_info(dev, "DMA available");
1082         return 0;
1083 }
1084
1085 static void rspi_release_dma(struct spi_master *master)
1086 {
1087         if (master->dma_tx)
1088                 dma_release_channel(master->dma_tx);
1089         if (master->dma_rx)
1090                 dma_release_channel(master->dma_rx);
1091 }
1092
1093 static int rspi_remove(struct platform_device *pdev)
1094 {
1095         struct rspi_data *rspi = platform_get_drvdata(pdev);
1096
1097         rspi_release_dma(rspi->master);
1098         pm_runtime_disable(&pdev->dev);
1099
1100         return 0;
1101 }
1102
1103 static const struct spi_ops rspi_ops = {
1104         .set_config_register =  rspi_set_config_register,
1105         .transfer_one =         rspi_transfer_one,
1106         .mode_bits =            SPI_CPHA | SPI_CPOL | SPI_LOOP,
1107         .flags =                SPI_MASTER_MUST_TX,
1108         .fifo_size =            8,
1109 };
1110
1111 static const struct spi_ops rspi_rz_ops = {
1112         .set_config_register =  rspi_rz_set_config_register,
1113         .transfer_one =         rspi_rz_transfer_one,
1114         .mode_bits =            SPI_CPHA | SPI_CPOL | SPI_LOOP,
1115         .flags =                SPI_MASTER_MUST_RX | SPI_MASTER_MUST_TX,
1116         .fifo_size =            8,      /* 8 for TX, 32 for RX */
1117 };
1118
1119 static const struct spi_ops qspi_ops = {
1120         .set_config_register =  qspi_set_config_register,
1121         .transfer_one =         qspi_transfer_one,
1122         .mode_bits =            SPI_CPHA | SPI_CPOL | SPI_LOOP |
1123                                 SPI_TX_DUAL | SPI_TX_QUAD |
1124                                 SPI_RX_DUAL | SPI_RX_QUAD,
1125         .flags =                SPI_MASTER_MUST_RX | SPI_MASTER_MUST_TX,
1126         .fifo_size =            32,
1127 };
1128
1129 #ifdef CONFIG_OF
1130 static const struct of_device_id rspi_of_match[] = {
1131         /* RSPI on legacy SH */
1132         { .compatible = "renesas,rspi", .data = &rspi_ops },
1133         /* RSPI on RZ/A1H */
1134         { .compatible = "renesas,rspi-rz", .data = &rspi_rz_ops },
1135         /* QSPI on R-Car Gen2 */
1136         { .compatible = "renesas,qspi", .data = &qspi_ops },
1137         { /* sentinel */ }
1138 };
1139
1140 MODULE_DEVICE_TABLE(of, rspi_of_match);
1141
1142 static int rspi_parse_dt(struct device *dev, struct spi_master *master)
1143 {
1144         u32 num_cs;
1145         int error;
1146
1147         /* Parse DT properties */
1148         error = of_property_read_u32(dev->of_node, "num-cs", &num_cs);
1149         if (error) {
1150                 dev_err(dev, "of_property_read_u32 num-cs failed %d\n", error);
1151                 return error;
1152         }
1153
1154         master->num_chipselect = num_cs;
1155         return 0;
1156 }
1157 #else
1158 #define rspi_of_match   NULL
1159 static inline int rspi_parse_dt(struct device *dev, struct spi_master *master)
1160 {
1161         return -EINVAL;
1162 }
1163 #endif /* CONFIG_OF */
1164
1165 static int rspi_request_irq(struct device *dev, unsigned int irq,
1166                             irq_handler_t handler, const char *suffix,
1167                             void *dev_id)
1168 {
1169         const char *name = devm_kasprintf(dev, GFP_KERNEL, "%s:%s",
1170                                           dev_name(dev), suffix);
1171         if (!name)
1172                 return -ENOMEM;
1173
1174         return devm_request_irq(dev, irq, handler, 0, name, dev_id);
1175 }
1176
1177 static int rspi_probe(struct platform_device *pdev)
1178 {
1179         struct resource *res;
1180         struct spi_master *master;
1181         struct rspi_data *rspi;
1182         int ret;
1183         const struct of_device_id *of_id;
1184         const struct rspi_plat_data *rspi_pd;
1185         const struct spi_ops *ops;
1186
1187         master = spi_alloc_master(&pdev->dev, sizeof(struct rspi_data));
1188         if (master == NULL) {
1189                 dev_err(&pdev->dev, "spi_alloc_master error.\n");
1190                 return -ENOMEM;
1191         }
1192
1193         of_id = of_match_device(rspi_of_match, &pdev->dev);
1194         if (of_id) {
1195                 ops = of_id->data;
1196                 ret = rspi_parse_dt(&pdev->dev, master);
1197                 if (ret)
1198                         goto error1;
1199         } else {
1200                 ops = (struct spi_ops *)pdev->id_entry->driver_data;
1201                 rspi_pd = dev_get_platdata(&pdev->dev);
1202                 if (rspi_pd && rspi_pd->num_chipselect)
1203                         master->num_chipselect = rspi_pd->num_chipselect;
1204                 else
1205                         master->num_chipselect = 2; /* default */
1206         }
1207
1208         /* ops parameter check */
1209         if (!ops->set_config_register) {
1210                 dev_err(&pdev->dev, "there is no set_config_register\n");
1211                 ret = -ENODEV;
1212                 goto error1;
1213         }
1214
1215         rspi = spi_master_get_devdata(master);
1216         platform_set_drvdata(pdev, rspi);
1217         rspi->ops = ops;
1218         rspi->master = master;
1219
1220         res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1221         rspi->addr = devm_ioremap_resource(&pdev->dev, res);
1222         if (IS_ERR(rspi->addr)) {
1223                 ret = PTR_ERR(rspi->addr);
1224                 goto error1;
1225         }
1226
1227         rspi->clk = devm_clk_get(&pdev->dev, NULL);
1228         if (IS_ERR(rspi->clk)) {
1229                 dev_err(&pdev->dev, "cannot get clock\n");
1230                 ret = PTR_ERR(rspi->clk);
1231                 goto error1;
1232         }
1233
1234         pm_runtime_enable(&pdev->dev);
1235
1236         init_waitqueue_head(&rspi->wait);
1237
1238         master->bus_num = pdev->id;
1239         master->setup = rspi_setup;
1240         master->auto_runtime_pm = true;
1241         master->transfer_one = ops->transfer_one;
1242         master->prepare_message = rspi_prepare_message;
1243         master->unprepare_message = rspi_unprepare_message;
1244         master->mode_bits = ops->mode_bits;
1245         master->flags = ops->flags;
1246         master->dev.of_node = pdev->dev.of_node;
1247
1248         ret = platform_get_irq_byname(pdev, "rx");
1249         if (ret < 0) {
1250                 ret = platform_get_irq_byname(pdev, "mux");
1251                 if (ret < 0)
1252                         ret = platform_get_irq(pdev, 0);
1253                 if (ret >= 0)
1254                         rspi->rx_irq = rspi->tx_irq = ret;
1255         } else {
1256                 rspi->rx_irq = ret;
1257                 ret = platform_get_irq_byname(pdev, "tx");
1258                 if (ret >= 0)
1259                         rspi->tx_irq = ret;
1260         }
1261         if (ret < 0) {
1262                 dev_err(&pdev->dev, "platform_get_irq error\n");
1263                 goto error2;
1264         }
1265
1266         if (rspi->rx_irq == rspi->tx_irq) {
1267                 /* Single multiplexed interrupt */
1268                 ret = rspi_request_irq(&pdev->dev, rspi->rx_irq, rspi_irq_mux,
1269                                        "mux", rspi);
1270         } else {
1271                 /* Multi-interrupt mode, only SPRI and SPTI are used */
1272                 ret = rspi_request_irq(&pdev->dev, rspi->rx_irq, rspi_irq_rx,
1273                                        "rx", rspi);
1274                 if (!ret)
1275                         ret = rspi_request_irq(&pdev->dev, rspi->tx_irq,
1276                                                rspi_irq_tx, "tx", rspi);
1277         }
1278         if (ret < 0) {
1279                 dev_err(&pdev->dev, "request_irq error\n");
1280                 goto error2;
1281         }
1282
1283         ret = rspi_request_dma(&pdev->dev, master, res);
1284         if (ret < 0)
1285                 dev_warn(&pdev->dev, "DMA not available, using PIO\n");
1286
1287         ret = devm_spi_register_master(&pdev->dev, master);
1288         if (ret < 0) {
1289                 dev_err(&pdev->dev, "spi_register_master error.\n");
1290                 goto error3;
1291         }
1292
1293         dev_info(&pdev->dev, "probed\n");
1294
1295         return 0;
1296
1297 error3:
1298         rspi_release_dma(master);
1299 error2:
1300         pm_runtime_disable(&pdev->dev);
1301 error1:
1302         spi_master_put(master);
1303
1304         return ret;
1305 }
1306
1307 static const struct platform_device_id spi_driver_ids[] = {
1308         { "rspi",       (kernel_ulong_t)&rspi_ops },
1309         { "rspi-rz",    (kernel_ulong_t)&rspi_rz_ops },
1310         { "qspi",       (kernel_ulong_t)&qspi_ops },
1311         {},
1312 };
1313
1314 MODULE_DEVICE_TABLE(platform, spi_driver_ids);
1315
1316 static struct platform_driver rspi_driver = {
1317         .probe =        rspi_probe,
1318         .remove =       rspi_remove,
1319         .id_table =     spi_driver_ids,
1320         .driver         = {
1321                 .name = "renesas_spi",
1322                 .of_match_table = of_match_ptr(rspi_of_match),
1323         },
1324 };
1325 module_platform_driver(rspi_driver);
1326
1327 MODULE_DESCRIPTION("Renesas RSPI bus driver");
1328 MODULE_LICENSE("GPL v2");
1329 MODULE_AUTHOR("Yoshihiro Shimoda");
1330 MODULE_ALIAS("platform:rspi");